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1 Introduction

Social interactions have been shown to play a pivotal role in the diffusion of many new

technologies and practices, and undergird classic economic models of technology diffu-

sion (Griliches 1957; Bass 1969; Rogers 1995). The idea that individuals learn from their

peers, neighbors, or friends to adopt behaviors or technologies has been explored in set-

tings ranging from agriculture (Foster and Rosenzweig 1995; Conley and Udry 2010) to

foreclosures (Towe and Lawley 2013) to schooling (Sacerdote 2001; Graham 2008). In the

environmental realm, such ‘peer effects’ have been shown in the adoption of solar photo-

voltaic panels (Bollinger and Gillingham 2012; Graziano and Gillingham 2015) and hybrid

vehicles (Narayanan and Nair 2013; Heutel and Muehlegger 2015).

This paper is the first to identify causal peer effects in water consumption and land-

scape choice. Our identification strategy relies on quasi-experimental variation from

consumer migration in which new households move into peer groups and make water

consumption and landscape changes. We use water billing data from over 300,000 house-

holds in Phoenix, one of the hottest and driest cities in the United States, along with hous-

ing transaction data to find that a 10% reduction in the mean of peer water consumption

leads to a 1.7% (207 gallon per month) reduction in a household’s water consumption,

where peers are defined as other households within a 500’ radius of the household. To

understand the mechanism underlying this result, we use a machine learning approach

to classify the greenness of a household’s landscaping using remote sensing data. We

show that the peer effects in water consumption are driven almost entirely by changes
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in landscaping. We also present novel evidence that a non-negligible price is necessary

for these peer effects to influence consumer behavior by examining consumers eligible

for extremely highly discounted Salt River Project irrigation water. Finally, we explore

heterogeneity in these effects to provide guidance for targeted policy.

Access to water is a major issue in many locations around the world. Over the 20th

century, global water use experienced a sixfold increase and by 2025, the U.N. Envi-

ronmental Program estimates that over two-thirds of the world’s population will live in

water-stressed regions. Concerns about water availability are equally important in many

regions of the United States. For example, the California droughts of 2012 and 2015 led

to combined economic losses of approximately $5.2 billion, and only a few years earlier,

droughts in the Southwest and Midwest led to losses of $20 billion.1 The U.S. Environ-

mental Protection Agency predicts up to a 40% decrease in snow runoff and soil mois-

ture in parts of the Western United States by 2050, further exacerbating concerns about

droughts.2

Residential water demand is of further interest due to rapid changes in both technolo-

gies and practices. For example, between 1990 and 2010, the diffusion of higher water

efficiency appliances and a shift towards dry landscaping reduced per capita residential

water use by roughly 10%.3 This decline in per capita water usage is a positive devel-

opment for concerns about water availability, but can pose challenges for municipalities

1See https://www.ama.org/publications/eNewsletters/Marketing-News-Weekly/Pages/economic-
loss-us-droughts.aspx and http://www.cnbc.com/2015/03/03/california-drought-seen-having-
worsening-3-billion-economic-impact-in-2015.html

2See https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-southwest .html
3See https://water.usgs.gov/watuse/data/2010/index.html
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that designed water systems for greater demand. Thus, understanding residential water

demand and the diffusion of technologies and practices that influence demand is of major

interest to policymakers.

Causal peer effects can be a major influencer of the diffusion of water-saving practices,

but it is well understood that these effects are challenging to identify. Challenges include

endogenous group formation leading to issues of self-selection of peers, correlated unob-

servables, and simultaneity (Manski 1993; Brock and Durlaf 2001; Moffitt 2001; Hartmann

et al. 2008). This study addresses endogenous group formation using a rich set of time-

varying geographic fixed effects. We address the other concerns using an instrumental

variables strategy based on exogenous shocks to the landscape from consumer migration

to a neighborhood. New residents to a particular house often change the landscaping of

that property within a short period of time after the move. At the same time, there is a

broader trend towards dry landscaping occurring in Phoenix, which we document. Thus,

we observe a much higher probability of a switch from green to dry landscaping just af-

ter a housing transaction. Our identification strategy therefore uses shocks in consumer

migration as an instrument for the average water consumption and landscape decisions

of a households peer group, while focusing on the variation remaining after inclusion of

time-varying geographic fixed effects.

This work contributes to several literatures. Most directly, it adds new, well-identified

evidence to the large and growing literature on peer effects in the diffusion of consumer

behaviors. In addition, it adds to the literature on how information transmission, in our
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case through social learning, can influence consumer decisions about energy and water

use. Several papers explore how social norm-based messages aimed at energy conserva-

tion can reduce energy use (e.g., Allcott 2011; Allcott and Rogers 2014; Ayres et al. 2012;

Costa and Kahn 2013; Dolan and Metcalfe 2015; Tsvetanov and Gillingham 2017) or how

prosocial appeals influence energy use relative to economic incentives (e.g., Reiss and

White 2008; Ito et al. 2017; Burkhardt et al. 2017).

Our paper is the first to explore how consumer behavior change due to social interac-

tions is directly influenced by economic incentives. Jessoe and Rapson (2014) show that

households are three standard deviations more responsive to temporary price increases

when provided with high frequency information on electricity usage, and Dolan and Met-

calfe (2015) show that the effect of financial incentives can disappear when information

on social norms is provided. In the context of residential water demand, Ferraro and Price

(2013) show that social comparison messages are the most effective among the least price

sensitive households. However, in these studies, information transmission is exogenously

manipulated. In contrast to these previous findings, we show that social interactions–a

phenomenon involving endogenous information transmission–is instead muted in the ab-

sence of a non-negligible price signal.

Our findings contribute to active policy discussions. Water districts make large up-

front infrastructure investments and face continual planning challenges. Understanding

the speed and pattern of the diffusion of water conservation activities, such as a tran-

sition from green to dry landscaping, is immediately valuable for water planning pur-
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poses. An understanding of such diffusion can also enable better targeting of policies.

Neighborhoods that begin with some landscape transitions in a given year may be ex-

pected to experience contagion from these first transitions, and observe a greater number

of transitions in the future relative to other neighborhoods. One-time targeted informa-

tion campaigns or subsidies for dry landscaping may be useful in fast-growing areas that

are straining the water system, while such efforts may be best withheld from areas that

have too much water system capacity. Furthermore, even more refined targeted cam-

paigns may be possible. For example, we find that pet owners and households near parks

display minimal peer effects in landscaping choices (perhaps due to a high preference for

green space) and thus may be less responsive to direct incentives, and less likely to exhibit

social spillovers through peer interventions.

The remainder of the paper is organized as follows. In the next section we provide

some background on water use in Arizona and describe our unique dataset, which com-

bines remote sensing images, water bills, and housing transaction data. Section 3 presents

the model and discusses our identification strategy. Section 4 describes the results and

mechanisms underlying the peer effect. Section 5 concludes.
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2 Background and Data

2.1 Background on Water Use in Arizona

Residential water in Phoenix comes from three sources: wells owned by individuals or

the city, the Salt and Verde rivers, and the Colorado river.4 These sources are constrained

and access to them is politically contentious. Moreover, between 1980 and 2010, the pop-

ulation of Phoenix increased by approximately 83%, leading to an increase in residential

water use of 23%.5

Fortunately for Phoenix and many arid regions of the United States, while water use

may be increasing, water use per household has been trending downwards over time.

Figure 1 shows the average water use per household in Phoenix between 1986 and 2012.

While there was a slight increase in the late 1990’s, there is a clear downward trend

throughout the entire time period. The broader decline in per household water use is

primarily attributed to improved water efficiency of appliances, such as low-flow toilets

and shower heads or water-efficient washers/driers and dishwashers. Yet there is a grow-

ing consensus among practitioners that the low hanging fruit in improvements in indoor

water efficiency has mostly been picked (CUWA 2017).

More recently, water districts have thus been focusing on behavior change and out-

door water use. Water conservation campaigns have become popular (Ferraro and Price

2013), and some areas have changed water pricing schedules. Promoting a shift to dry

4Phoenix receives only 8 inches of rain a year on average. For details see
http://archive.azcentral.com/members/Blog/ShaunMcKinnon/123051

5See https://www.biggestuscities.com/city/phoenix-arizona
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landscaping, with less grass and more drought-tolerant plants, is another option that has

been adopted in numerous arid water districts, including several in the Phoenix metro

area. Furthermore, in some cases this transition to dry landscaping is occurring without

policy action. As we will see shortly, Phoenix has seen just such a trend towards dry

landscaping in recent years.

2.2 Data

The foundation of our data set is monthly water billing data from the City of Phoenix

water department for all single-family households served by the water department be-

tween 2004 and 2012 (308,652 households). These contain the address of the land parcel,

allowing us to geocode all parcels. They also contain the total water consumption for each

household, with the exception of parcels that are eligible to receive a defined amount of

extremely reduced-cost flood irrigation water from the Salt River Project (SRP), a relic

from previous agricultural uses. SRP-eligible households only pay a small fee for the wa-

ter delivery; currently, this fee is on the order of $5 per month for most households and

has not appreciably changed in recent years. Relative to the cost of city water, this SRP

water is nearly free. However, the SRP flood irrigation water is only suitable for out-

door uses and households must construct berms to direct the water.6 For this reason, not

all eligible houses use SRP water, and eligible houses must supplement SRP water with

municipal water. We do not observe the consumption of SRP irrigation water, but from

6SRP water is provided to households based on plot size and is distributed in 45 minute increments.
We find that annually, off-project houses use approximately 12 cubic feet of municipal water more than
on-project houses on average, but this difference is not statistically significant once lot size is controlled for.
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conversations with the water department we were able to verify that SRP water provision

did not change over the time frame of our study. Roughly 43% of households in the city

of Phoenix Water District are within the boundaries of the SRP.

We complement the water billing data with remote sensing images provided by the

City of Phoenix in order to develop a measure of landscape greenness. These images,

taken once a year in the fall, have resolutions ranging from 0.3 to 0.8 feet. All years are

available at high resolution except 2010, which is only available at a lower resolution.

Therefore, our remote sensing dataset spans 2004-2012, excluding 2010. Each image has

three color bands (red, green, and blue). There are standard software packages for de-

veloping vegetation indices, such as the Normalized Difference Vegetation Index, but our

remote sensing images lack the infrared band needed for such standard packages. There-

fore, we used a machine learning approach to train the computer to find green pixels

through a series of iterations. The approach we used is a supervised maximum likeli-

hood classification approach developed by the company Imagine Software, Inc. To verify

the algorithm, we compared the machine learning results to hand-coded results.7 In com-

paring the results of machine learning approach to the hand-coded pixels, we found that

the machine learning approach achieved an accuracy of approximately 85-90%.8

Figure 2 provides an example of the output of the classification process. The photo

on the left shows several randomly chosen parcels while the photo on the right shows

the same parcels with the pixels the computer designates as green landscaping, including
7Specifically, the City of Phoenix had a group of interns visually estimate the percentage of turf and

greenery in 30,293 parcels.
8Furthermore, the means of the machine learning and hand coded parcels are not statistically different

from one another using a simple t-test of differences in means.
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tree tops, grasses, and other vegetation, highlighted in green. Figure 3 shows a map of

Phoenix with the water department territory, Salt River project territory, and the remote

sensing subsample of 71,477 parcels.

As is common in remote sensing work, further data cleaning is necessary to compare

remote sensing images taken at different times. For instance, images may contain more or

less shadow and more or less haze depending on when they were taken. The cameras or

camera settings used may have also been slightly different in each photo. Thus, we sys-

tematically adjust the remote sensing data by focusing on the variation in the landscape

greenness measure that can be explained by the water consumption data. Specifically,

we regress landscape greenness on household water consumption in all 12 months of the

year and use the fitted values of landscape greenness, thus allowing us to focus on the

relevant variation in landscape greenness for our analysis (see Appendix A for further de-

tails on this data adjustment). Not surprisingly, landscape greenness is highly correlated

with water consumption for nearly all months of the year, and especially for the drier

months of the year. Figure 4 plots the average percentage greenness in the landscape in

our cleaned data over time, indicating the same clear downward trend as in the water

consumption data.

Our next data source is the Maricopa County Assessor’s Office, which provided data

on housing sales and other other physical housing characteristics including pool size, lot

size, construction date, home size, and garage size. Importantly, we observe the date on

which the housing transactions occur and the address of the parcel, allowing us to match
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these data with the previous data sets.

For both the water billing data and the landscape data, we geocode all addresses. To

create a measure of peer decisions, we create a radius around the center of each house-

hold’s parcel. In our primary specifications, we use a radius of 500 feet, but we also

explore different radii in our robustness checks. We then create variables for the average

water use and average landscape greenness for all surrounding households within the

500-foot radius. Using the migration data, we also create a variable for the fraction of

households sold within that radius and during that year. Table 1 presents the summary

statistics for both the water consumption data, landscape data, and moving data. It shows

that just over 4% of the water consumption sample moves each year and that the mean

fraction of landscape greenness is 37% (with the mean taken over household parcels). As

can be seen in the summary statistics, all variables have substantial variation.

Our final data sources provide neighborhood and household demographics. First,

we purchased household-level demographic information for each of the households in

our remote sensing subset of data from the marketing company Acxiom. Axciom col-

lects demographic information from a variety of sources, including public records and

proprietary suppliers. These include data on physical household characteristics, such as

the home size, as well as variables such as income, age, political party affiliation, and

indices of interests based on magazine subscriptions. These data are useful for exploring

the heterogeneity in our estimates, as well as for informing additional robustness checks.

These demographic variables, as well as those from the Assessor’s office, are especially
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useful for comparing SRP-eligible households to other households, and comparing the

subsample of landscape data to the larger sample of water data.9

3 Empirical Specification

3.1 Challenges in Identifying Peer Effects

Peer effects are notoriously challenging to identify. A first question in any model of so-

cial interactions is how to define the peer group. Defining the peer group membership

too broadly could pick up sufficient heterogeneity in the group that it leads to spurious

correlations. Indeed, a careful definition of the peer group is central to identification in

some studies (e.g., Bertrand et al. 2000). In our setting, we are interested in how peer

effects influence the choice of landscaping and water usage. While water usage may not

be visible, landscaping is usually highly visible. This lends itself to a definition of the peer

group based on spatial proximity to the focal household parcel. In a similar setting, Towe

and Lawley (2013) define neighbors as the nearest 13 and nearest 25 neighbors by dis-

tance. Because there is variation in parcel sizes, we prefer a measure based on the radius

around the focal household parcel (our 500’ radius includes 23 neighbors on average).

Using a geographic peer group is also common in the literature (Topa 2001; Arzaghi and

Henderson 2007; Bell and Song 2007; Manchanda et al. 2008; Choi et al. 2010; McShane

9Appendix B presents summary statistics for both the Assessor’s Office and Acxiom data, as well as
tables of balance comparing SRP-eligible households to other households, and landscape data subsample
to the larger sample of water data. Appendix B also contains further details on the steps used to convert
our raw data into the final data set.
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et al. 2012; Narayanan and Nair 2013). Households can naturally also be expected to have

other social groups as well, such as those relating to family, friends, schools, and jobs.

So we view our measure as a minimal measure of the social group relevant to water and

landscape decisions.

Once the peer group has been defined, identification of peer effects also relies on ad-

dressing the further classic concerns: self-selection of peers, correlated unobservables,

and simultaneity. The challenge of self-selection of peers (sometimes described as ‘ho-

mophily’) is a major concern for identifying the relationship between an individual’s de-

cision and the average decisions by the peer group because individuals endogenously

choose their social networks. In the case of housing choice, consumers with similar pref-

erences can be expected to sort into neighborhoods. Empirical studies have often ad-

dressed this issue with a rich set of fixed effects that remove variation stemming from

endogenous selection of the peer group.

Correlated unobservables refer to the many other factors that may influence both the

focal consumer and peers. For example, if there is an economic downturn facing all

households in a neighborhood, their decisions may all appear to be aligned, but this align-

ment is due to the conditions faced by the households, rather than peer effects. Studies

address this issue in various ways, including time-varying fixed effects or an instrument

that provides a source of exogenous variation that shifts the peer characteristics but does

not shift the individual characteristics.

Simultaneity (sometimes called ‘reflection’) refers to the concern that just as peers may
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influence the focal household, the focal household may influence peers. At the extreme

this can lead to mathematical non-identification of peer effects. Simultaneity in this con-

text can be thought of as an endogeneity issue analogous to the classic simultaneity of

supply and demand. In the supply/demand context, the standard instrumental variables

approach requires an exclusion restriction, such as a supply shifter to identify demand or

a demand shifter to identify supply. Empirical studies often use instruments to address

this issue or alternatively use lagged values of the peer group variable.

For both the issue of simultaneity and correlated unobservables, the fundamental chal-

lenge is one of research design. Angrist (2014) clearly points out the ideal characteristics

of a well-identified peer effects study: “Research designs that manipulate peer charac-

teristics in a manner unrelated to individual characteristics provide the most compelling

evidence on the nature of social spillovers.” Our research design overcomes the above

challenges by focusing on variation within households and within zip code-by-year and

exploiting exogenous shocks that fulfill the criterion laid out by Angrist (2014).

3.2 Empirical Strategy

Consider a classic linear-in-means specification that models the water consumption or

landscape choice of household i in year t as a function of the peer group’s aggregate

choices, whether the household is moving in that year, time-invariant household charac-
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teristics, and time-varying characteristics of the local neighborhood or zip code z:

yit = θȳit + δmit + ηi + φtz + εit, (1)

where yit is the household’s choice (i.e., either water consumption or landscape choice).

If we denote household i’s peer group as Pi, then ȳit = 1
|Pi|
∑

i′∈Pi
yit is the average of

the choices of the household’s peers.10 mit is a dummy variable for whether the house-

hold just moved to the parcel they are occupying in that year (i.e., a housing transaction).

We include mit because we expect the mover’s preferences to often differ from those of

the previous owner and because the move event can help overcome consumer inertia in

the landscaping decision. ηi contains time-invariant household characteristics, which we

model as a household fixed effect (i.e., a fixed effect for each parcel x owner combina-

tion, so that there is a different fixed effect after a sale). φtz captures time-varying factors

such as localized economic shocks or major new development in a neighborhood, and we

model this with zip code x year fixed effects.

One clear implication of this model is that as long as δ is not zero, we would expect

the intensity of migration into a neighborhood to also influence ȳit, since each neighbor

who moved would be more likely to change their landscaping. This suggests the use of

the average migration into the peer group, m̄it, as an instrument for ȳit in (1).

The key identification assumption in this research design is that after the inclusion

of our fixed effects, there are no unobserved factors that influence both the decision of
10In the incomplete information framework of Manski (1993), ȳit would be represented by E [ygt], where

g refers to the group.
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potential neighbors to relocate into that neighborhood and the decision of the individual

household to change their water consumption or landscape. Our time-varying localized

fixed effects are crucially important for allowing us to focus on the idiosyncratic shocks

(off the mean) to water consumption or landscapes after conditioning on broader neigh-

borhood changes. The remaining variation after including time-varying localized fixed

effects is due to individuals deciding to change their water consumption or landscapes

after individual shocks, such as a decision to renovate, an individual-specific promotion

or loss of a job, etc.

This identification strategy overcomes the three primary challenges discussed above.

Household fixed effects immediately address self-selection of peers based on household-

specific preferences. Both correlated unobservables and simultaneity are endogeneity

concerns, and our instrumental variables strategy addresses these concerns by focusing

on the remaining variation after removing the time-varying localized fixed effects. Of

course, for our research strategy to work, the instrument cannot be weak.

Fortunately, just as expected, we find a strong relationship between the fraction of

movers into the peer group and the peer group’s decision (see Appendix C for full first-

stage results). The F-statistic for the first stage is 599.9 for the water data and 37.5 for

the landscape data.11 The economic explanation for this relationship is that when people

move into a new house, they are likely to use the opportunity to change things about the

house, including the landscaping. We find that when there is a greater fraction of sold

11The instrument also consistently passes the Kleibergen-Papp under-identification and weak identifica-
tion tests at the 1% level.
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homes in the peer group, the changes in water use and landscape greenness are negative,

suggesting that households that move tend to transition from greener landscapes to drier

landscapes. This is consistent with the broader trend towards drier landscapes in the

Southwest, and consumer migration provides the exogenous shock to spur the transitions

by peer group members.

4 Results

4.1 Primary Water Consumption Results

We begin by estimating our primary specification to identify peer effects in water con-

sumption (Equation 1). Table 2 presents the ordinary least squares (OLS) and instrumen-

tal variables (IV) estimates using household and year fixed effects (Columns 1 and 3) and

household and year x zip code fixed effects (Columns 2 and 4).12 The primary variable

of interest is the log of the mean water consumption of the peers within 500’. Columns 3

and 4 present the IV estimates instrumenting for the peer’s water consumption with the

fraction of parcels within 500’ that observe a housing transaction in that year.

Our preferred specification is in column 4, which indicates that a 10% change in the

peer group average water consumption results in a 1.7% change in house i′s water con-

sumption. This translates to a savings of 207 gallons per month out of an average monthly

consumption of 12,532 gallons. For reference, a typical load of laundry uses 30 gallons of

12These results are robust to substituting house/parcel fixed effects for household fixed effects, where the
former is tied to the parcel while latter changes when a house is sold.
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water. To calculate the effect of a change in water use by a single house in the peer group,

we can divide the coefficient by the average number of houses in a peer group (25.3). We

find that a 10 percentage point change in consumption for a single house in household

i′s 500’ peer group causes a 0.065% change in household i′s consumption. For compari-

son, if we use the -0.33 water demand elasticity from Olmstead et al. (2007), water prices

would have to change by 5.2% or $3.22 per month to achieve a similar change in water

consumption.

To better understand the spatial nature of this peer effect, we perform a further anal-

ysis in which we separate the peer group variable into two variables. In one variable, we

include only peers within 500’ that share the same street as the focal household, while

in a second variable we include only those that do not share the same street. Our hy-

pothesis is that individuals are more likely to be influenced by activities that affect water

consumption (e.g., changes in landscaping) by close neighbors on the same street than by

close neighbors on other streets.

The results are presented in Table 3. Column 1 displays OLS results while column

2 displays IV results. For interpreting the coefficients, it is useful to recognize that the

number of houses on the same street is smaller than the number of houses not on the

same street within the 500’ radius of any given house. The bottom two rows of the table

show the marginal effect per household, which can be interpreted as the percent change

in annual water consumption for the focal household with a 1% change for a single peer

household. The results in column 2 suggest that the per-household peer effect is almost
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twice as large for peers on the same street as peers on other streets, 0.009 and 0.005, respec-

tively. This provides evidence supporting our hypothesis that peer effects are stronger

with closer neighbors. However, this evidence should only be taken as suggestive, as the

per household marginal effects are not statistically different from one another (p=0.17).13

4.2 Primary Landscape Results

The regression results so far provide evidence of peer effects in aggregate water con-

sumption, with visible landscaping as a potential mechanism. To test the hypothesis that

landscaping is a primary mechanism for these peer effects, we estimate our model in (1)

using the cleaned remote sensing landscape data. Table 4 presents the primary landscape

results with household and year fixed effects (Columns 1 and 3) and household and year

x zip code fixed effects (Columns 2 and 4). As before, columns 1 and 2 present OLS re-

sults, while columns 3 and 4 present the results where we instrument for the peer group’s

landscape with the fraction of houses in the peer group that were sold in a particular year.

The primary variable of interest is the log of the average percentage of green landscap-

ing for the neighbors within a 500’ radius of the given household. Just as in the water

consumption results, we see statistically significant evidence of peer effects in landscape

choice.

The results from the IV specification in column 4 indicate that a 10% increase in the

peer group average landscaping results in a 1.4% increase in house i′s green landscaping.

Translating this to the marginal effect of a single peer household, we find that a 10%

13We find similar results with the landscape data.
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increase in green landscaping for a single household in house i′s 500’ peer group leads to

a 0.06% increase in house i′s green landscaping.14

In order to determine the extent to which the water consumption peer effect is driven

by outdoor landscaping decisions, we compare the water savings associated with the peer

effect in water consumption to the savings associated with landscape choice. To recap, a

10% change in the peer group average water consumption results in a 1.7% or 207 gallons

per month change in house i′s water consumption with a 90% confidence interval of 119-

294 gallons per month. A 10% change in peer landscaping results in a 1.4% change in

house i′s landscaping. When we regress landscape choice on water consumption (Table

A.1 in the Appendix), we find that a 53.2 gallon change in monthly water use (0.42%)

results in a 1% change in a household’s landscape on average. Using this conversion,

a 10% decrease in peer water use (1,253 gallons per month) maps to landscape changes

that result in a 3.3% change in house i′s landscaping, for a savings of 176 gallons per

month.15 This turns out to be remarkably close to the savings from peer effects in water

consumption regressions (207 gallons per month) and indeed the two are not statistically

significantly different.

This near equivalence between the magnitude of the water peer effect and the land-

scape peer effect suggests that nearly all, if not all, of the water consumption peer effect

is due to a peer effect in landscape choice. We view this result as eminently plausible, for

outdoor water use for landscaping is likely to to be the most visible and conspicuous wa-
14The peer group coefficient in column 4 is statistically significant at the 10% level when year x zip code

fixed effects are included. If we substitute year x 3-digit zip code fixed effects, we have statistical signifi-
cance at the 1% level, with little change in the coefficient.

15This translates to a savings of $0.81 per month or $9.74 per year per household.
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ter consumption, and thus is likely to be the consumption most likely to influence one’s

peers.

4.3 Role of Economic Incentives

With the Salt River Project’s provision of heavily discounted irrigation water for outdoor

use, we have an opportunity to test whether the price signal for water influences the

strength of the peer effect. We use the SRP as a natural experiment to explore whether

SRP-eligible households are less influenced by peer water consumption and landscape

choices than non-eligible households. Jessoe and Rapson (2014) show that in the elec-

tricity context consumers respond more to prices when relevant information is available,

and here we examine whether consumers respond more to peers when there is a stronger

price signal in landscape decisions.

For this to be a valid analysis, we must be confident that SRP-eligible households are

similar to non-eligible households. In Appendix B, we show that the characteristics of SRP

and non-SRP households tend to be statistically different from one another across quite

a few of the observables.16 Thus, we perform a nearest neighbor matching approach to

find a sample of non-SRP households that match the sample of SRP households. Our re-

sults are also robust to using other propensity score matching approaches, such as kernel

matching.

Columns 5 and 6 of Table 4 display evidence of the impact of water prices on the peer

16We also run a regression of an indicator for being an SRP household on demographic variables includ-
ing a subdivision fixed effect. In general, SRP and non-SRP households do not appear to be statistically
different from one another within subdivisions.
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effect. Column 5 displays the IV results using the nearest neighbor matched sample for

non-SRP households while column 6 runs the IV specification in column 4 on SRP-eligible

households only.17 The results are striking: there is a statistically significant peer effect

in landscaping for the off-project households, but no evidence supportive of a peer effect

for households that were eligible for the extremely heavily discounted (nearly free) SRP

irrigation water. The coefficient in column 6 (on-project) is not statistically distinguishable

from zero, while the coefficient in column 5 (off-project) is 0.49, larger than the result in

column 4 with the full dataset. The difference between the two estimates is statistically

significant at the 1% level.

The notable difference between the SRP and non-SRP peer coefficients suggests that

economic incentives to adopt dry landscaping are important for the operation of peer ef-

fects. In neighborhoods where green landscaping is costly, neighbors may discuss xeriscap-

ing (landscaping with slow-growing, drought-tolerant plants) as a money-saving tool.

There are at least two possible channels by which economic incentives affect the peer ef-

fects. Households may be more susceptible to peer effects in landscaping when there are

economic incentives because they are more likely to be looking to save money on their

water bill. Alternatively, neighbors may be more likely to discuss and share information

about dry landscaping when there is an obvious monetary benefit. While we cannot dif-

ferentiate between these two hypotheses, we can develop a deeper understanding of how

the peer effects work by estimating heterogeneous peer effects.

17Appendix C compares the results estimated on the nearest neighbor matched sample with the preferred
IV approach on non-SRP households only. The coefficient using the nearest neighbor matching approach is
larger in magnitude but the two estimates are not statically different from one another.
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4.4 Heterogeneous Peer Effects

We explore heterogeneity in peer effects for two main reasons. First, by understand-

ing which households are most susceptible to peer influence, we can shed light on the

mechanisms underpinning peer effects. Second, such an analysis provides useful infor-

mation for policymakers who might consider targeted information campaigns to ‘seed’

a neighborhood with dry landscaping. This may be particularly useful for fast-growing

neighborhoods or other areas with growing water demand. To examine heterogeneous

peer effects, we first estimate the IV specification described by (1) on four subsamples.

The first subsample we examine is a subsample of households with children. Col-

umn 1 in Table 5 shows evidence of statistically significant peer effects in landscaping

for households that have children. The coefficient is slightly less than the coefficient in

column 3 of Table 4, but it not statistically significantly different from that estimate. This

result indicates that peer effects in landscaping do occur for families with children, per-

haps facilitated by interactions with neighbors through children.

The second and third subsamples are restricted to households with a pet. One might

expect households with a pet to prefer green lawns and be less susceptible to peer influ-

ences relating to landscaping. Indeed in column 2 of Table 5, we restrict the sample to

households with a dog and see no statistically significant peer effect. This result is sim-

ply a failure to reject the null, which means that we cannot make a definitive statement.

However, the sample size is still quite large, so we view this result as suggesting that

households with dogs are less amenable to landscaping changes influenced by peers. In
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column 3, we see a similar result for cats, again suggesting that households with pets are

less like to switch landscaping due to the influence of peers.

The fourth subsample is restricted to households with a pool. This is a common oc-

currence in Phoenix; 42% of our sample has a pool. In column 4 of Table 5 we show

a larger and statistically significant peer effect, consistent with a hypothesis that pools

foster social interactions.

Last, we interact our peer greenness variable with the distance to the closest park and

the school. We hypothesize that households further away from parks and schools have

less access to publicly available green spaces and therefore are more likely to be affected

by their neighbors’ landscape choices, which may lead them to be more influenced by

their neighbors’ choices. The specification with interactions that we run is the following:

yit = θȳit +
∑
k∈K

γjDik +
∑
k∈K

ϑjDik ∗ ȳit + ρmit + µi + ξt + εit, (2)

where Dik refers to distance variables andK = {park, school}. Because our demographics

are perfectly collinear with zip code x year fixed effects, we use household i and year t

fixed effects in this specification, making it comparable to column 3 in Table 4.

Column 5 of Table 5 shows that increasing the distance to a park enhances the peer

effect in landscape choices, consistent with our hypothesis. An alternative explanation is

that houses closer to parks have a revealed preference for green space, and are thus less

affected. The effect is quite strong, as the units for the distance to a park is 1,000’ (the

mean distance is 2,725’ and standard deviation is 1,918’). So going from a -1 standard
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deviation to +1 standard deviation from the mean changes the magnitude of the effect of

all households in the peer group adding a 1% change by 0.172%. This change is larger

than our effect in our primary specification in Table 4.

To help understand why we might see such heterogeneity, we also explore the cor-

relational relationships between demographic variables and household preferences for

landscape choice by regressing the estimated household fixed effects on the demographic

variables. These results, included in Appendix C, indicate that households furthest from

the nearest park and school are correlated with less-green landscaping, consistent with

households sorting into residential location in part based on distance to green space.

However, this result did not hold for SRP households, suggesting that public green spaces

and schools may be substitutes for private green spaces, but only when there are low costs

for private green space. Dog and cat ownership, as well as having a pool are also corre-

lated with more green space. For policy, these correlational findings are useful bench-

marks that identify groups of households with the most green space that could be con-

verted to drier landscaping.

4.5 Implications for Policy and Targeted Interventions

Policies to promote dry landscaping may have substantial spillover effects due to peer

effects. Consider a dry landscaping subsidy that leads a single household to reduce its

landscaping greenness by 10%. To calculate the total impact of such a subsidy, we also

need to calculate the effect on the household’s peers. Using the results from our regres-
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sion with heterogeneous peer effects (column 5 of Table 5), we first calculate the peer

effect for each household from a 10% landscape transition by its entire peer group. This

is equal to 0.1 times the fitted peer effect from the regression, which is the peer effect

coefficient plus the interaction effects. We then divide by the number of peer houses to

calculate the ‘susceptibility’ of each household to the actions of a single peer. This can be

interpreted as the expected landscape change the household would make in response to

a peer landscape change of 10%. From our interaction results, we know that houses with

children and those further from parks are more susceptible to peer effects. Houses with

fewer peers are also more susceptible to a landscape change by a single peer because each

peer of a household with a small peer group has a larger effect on the average than for

households with large peer groups.

We calculate the average susceptibility of households in our data from a landscape

change by a single peer of 10% to be 0.124%. If we aggregate the peer susceptibility val-

ues for each focal household, considering that each focal household could be targeted for

a dry landscaping subsidy, the average total susceptibility of the peer group is 0.0275.18

This yields an average water savings for the entire peer group from the peer effect of 146 gal-

lons per month. This is 27.5% of the water savings from the original 10% intervention–a

substantial water savings from peer effects alone. Extrapolating, if 1,000 randomly dis-

tributed households across Phoenix were influenced by policy to reduce water use by

10%, in addition to the reduction by the targeted households of 532 thousand gallons, the

18If we instead were to multiply by the average peer group size of 23.2, this yields a value of 0.0288
instead of 0.0275 – the 5% difference results from the network structure.
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associated peer effects would lead to an additional reduction of approximately 146 thou-

sand gallons of water per month by the peers–the equivalent of the monthly water use of

13 households.

This illustrative calculation highlights the importance of accounting for peer influence

in assessing interventions, but it also ignores the ability to target. We have shown that

there is significant heterogeneity in landscaping peer effects, which would suggest that

targeted policies may be significantly more effective. Rather than a random set of house-

holds, if we instead targeted the 1,000 households whose peers had the highest suscepti-

bility to peer influence, the average total peer influence exerted by these top influencers

from a 10% decrease in greenness of landscaping is 0.174, more than six times the average

and 74% larger than the size of the original, hypothetical intervention. Targeting these

1,000 households would have a spillover effect on water savings of 928 thousand gallons

of water per month, the usage of 84 households.19 Even a simple targeting strategy of

off-project houses only increases the aggregate influence of a single house from 0.028 to

.031, and if we look at a random set of these that are also at least 2,000 feet from a park, the

aggregate effect increases further to 0.041, a 47% increase over the baseline average and

almost half the size of the original intervention. Of course such a targeted policy would

be most cost-effective if it also focused on areas most in need of future upgrades to the

water system due to increasing demand.

19The effect is actually slightly larger since this calculation ignores the additional effects on the peers-of-
peers.
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4.6 Robustness Checks

In this section we provide a series of robustness checks to build further evidence that our

peer effect estimate is well-identified and robust to various assumptions.

We begin by examining alternative definitions of the peer group. Our preferred spec-

ification uses a 500’ radius, which captures about 23 homes on average. This assumption

aligns with the number of neighbors we would expect a typical household to interact

with (even if it is just seeing the landscaping) and is in the same range as other peer

group specifications in the literature. But we recognize that one could argue for a broader

or narrower peer group. Table 6 presents the results of estimating our preferred specifi-

cations (column 4 of Table 2 and column 4 of Table 4) using a 400’, 600’, and 700’ radius.

The first three columns present the results using the water consumption data, while the

second three columns present the results using the landscape data. The key result from

this robustness check, as can be seen in the last two rows, is that the peer effect only

changes very modestly with distance, especially in the water consumption results. We

lose some statistical significance with a smaller radii in the landscape results, but the

marginal effects for a change by a single peer household remain very similar. In general,

the standard errors render the results at the different radii statistically indistinguishable

from one another.20

One potential concern that might lead to a difference in results for the landscaping and

water use analyses is the fact that the houses in the remote sensing sample are a subset of

20We extended the radius to 1000 feet and found that we lose statistical significance around a radius of
800 feet. Likewise, peer groups defined by radii smaller than 300 feet do not have a statistically significant
effect because they contain too few houses, a problem that occurs even at 400’ in the landscape data.
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the households in the water consumption sample. Sample selection bias in the landscap-

ing data is therefore a natural concern. In the Appendix, Table A.7 presents the results

of estimating the models in Table 2, our preferred water consumption regressions, on the

remote sensing sample of households. The estimates are statistically indistinguishable

indicating the remote sensing sample does not suffer from sample selection bias.

To address any remaining concerns about simultaneity (reflection), we estimate our

preferred specifications (column 4 of Table 2 and column 4 of Table 4) using the lag of

the log of peer water consumption or the lag of the log of peer landscaping in place of

contemporaneous peer water consumption and peer landscaping. We then instrument

each of the lagged peer variables with the lag of the proportion of houses sold in each peer

group (the lagged version of our primary instrumental variable). The results, presented

in columns 1 and 3 of Table A.10, show that the lagged peer effect estimates for water

consumption and landscaping are lower than the contemporaneous peer effect estimates

by 0.1 and 0.044 respectively. This might be expected if peer effects diminish over time.

However, the lagged and contemporaneous estimates are not statistically significantly

different from one another.21

Finally, despite controlling for housing transactions, one might be concerned that

landscape changes and water consumption changes for a focal household might be driven

more by whether they moved themselves rather than peer consumption and peer land-

scape changes. To address this concern, we estimate our preferred specifications on

21The lagged landscaping peer effect is not statistically significant using five-digit zip code by year fixed
effects. It is significant using three-digit zip code by year fixed effects however, but slightly larger in mag-
nitude. We present the five-digit zip code results to be consistent with our primary specifications.
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houses that were not sold in year t. The results are presented in columns 2 and 4 of

Table A.10. Both peer effect estimates remain statistically significant and the coefficients

are largely unchanged.

5 Conclusions

In this paper, we estimate causal peer effects in residential water consumption and land-

scaping using a unique IV strategy that leverages consumer migration into the peer group.

In this strategy, we exploit within household and within zip code-year variation, so that

our key identifying assumption is that peer housing transactions are an exogenous shock

to the individual’s peer group. Any factors that vary over time and are zip code-specific

as well as any factors that are household-specific will be accommodated by our fixed

effects, allowing our IV strategy to address all three known issues in identifying peer

effects: homophily, correlated unobservables, and simultaneity.

For our analysis of peer effects in landscaping, we use machine learning techniques on

high resolution remote sensing data to develop a robust measure of landscape greenness.

Our primary result is that a 10% change in peer water consumption results in a 1.7%

change in the individual household’s water consumption, while a 10% change in peer

landscape greenness results in a 1.4% change in the individual household’s landscape

greenness. These results translate to a savings of roughly 200 gallons or roughly $0.81

per household per month, or 2,112 gallons or $9.74 per household per year. Through a

simple calculation, we show that the peer effect in landscape transitions appears to fully
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or nearly fully explain the peer effect in total water consumption, providing evidence that

the peer effect works through the channel of outdoor water use.

One novel finding of this study is that the effect of social interactions depends on

economic incentives. By exploiting a natural experiment offered by the existence of the

Salt River Project’s provision of heavily discounted irrigation water, we show that the

landscaping peer effect is close to zero and not statistically significant for households

eligible for the discounted water. This provides further evidence that the mechanism

behind the water consumption peer effect is outdoor water use and demonstrates the

power of economic incentives on the influence of peers.

Our results have clear policy implications. The presence of a social spillover sug-

gests that policies may have disproportionately larger indirect effects. For example, a dry

landscaping subsidy that causes 1,000 distributed households within Phoenix to decrease

their green landscaping by 10% would lead to a social spillover effect equivalent to the

monthly water use of 13 households. We also showed that targeting may be especially

important. The social spillovers not only appear to be non-existent for the Salt River

Project households, but they appear much weaker for households near parks and house-

holds with pets. It is also clear that water districts in dry regions would only want to

consider such policies to encourage dry landscaping when there is a strain on parts of the

water system from increasing demand or reduced supply. Thus, optimal policy design

will inherently involve a consideration of both water district constraints and the potential

spillovers possible in the target audience.
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Tables & Figures

Table 1: Summary Statistics
Variable Mean Std. Dev. Min. Max.

Panel A: Water Consumption (N=2,533,715; 308,652 households)
household annual consumption 177.4 111.6 15.0 718.0
annual consumption of households within 500’ 177.0 63.9 16.0 717.0
1(housing transaction) 0.045 0.207 0 1
fraction of houses sold within 500’ 0.045 0.051 0 1
1(SRP-eligible) 0.43 0.50 0 1

Panel B: Landscape (N=531,650; 71,477 households)
fraction of landscape green 0.37 0.10 0.19 0.68
fraction green for households within 500’ 0.37 0.06 0.19 0.68
1(housing transaction) 0.04 0.20 0 1
fraction of households sold within 500’ 0.04 0.05 0 1
1(SRP-eligible) 0.38 0.49 0 1
Lot Size (ft2) 9,706 570 1,537 299,200
Notes: An observation is a household-year for both datasets. The units of household annual water con-
sumption are in hundred cubic feet (ccf) per year (1 ccf is 748 gallons). Figure 3 illustrates the parcels
covered in the landscape subsample and Appendix B provides evidence on the representativeness of
this sample. Summary statistics for other radii besides 500’ are also given in Appendix B.
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Table 2: Primary Specifications for Water Consumption
(1) (2) (3) (4)

OLS OLS IV IV
log(consumption within 500’) 0.18*** 0.12*** 0.31*** 0.17***

(0.01) (0.01) (0.03) (0.04)
1(housing transaction) -0.23*** -0.22*** -0.23*** -0.22***

(0.003) (0.003) (0.003) (0.003)
Household Fixed Effects Y Y Y Y
Year Fixed Effects Y N Y N
Year x Zip Code Fixed Effects N Y N Y
R-squared 0.77 0.77 0.77 0.77
N 2,533,715 2,533,715 2,533,715 2,533,715

Notes: The dependent variable is the log of annual water consumption. An observation is
a household parcel-year. log(consumption within 500’) is the log of the average annual con-
sumption of the neighbors within a 500-foot radius. On average, there are 25.3 houses within
a 500’ radius of any household in our study. Column 1 and 2 present OLS peer effect results.
Columns 3 and 4 instrument for log(consumption within 500’) using the fraction of parcels
with housing transactions within 500’. Standard errors are clustered at the subdivision level.
*** denotes significance at 1% level, ** at 5% level, * at 10% level.
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Table 3: Street Level Analysis for Water Consumption
(1) (2)

OLS IV
log(same street peer consumption) 0.054*** 0.067***

(0.004) (0.023)
log(other street peer consumption) 0.051*** 0.091***

(0.005) (0.025)
1(housing transaction) -0.25*** -0.25***

(0.004) (0.004)
Household Fixed Effects Y Y
Year x Zip Code Fixed Effects Y Y
R-squared 0.78 0.78
N 1,959,519 1,959,519
Marginal effect per peer household
Same street peer consumption 0.007 0.009
Other street peer consumption 0.003 0.005

Notes: The dependent variable is the log of annual water consumption.
An observation is a household parcel-year. log(same street peer
consumption) is the log of the average annual consumption of the
neighbors within a 500-foot radius who are on the same street as the
focal household. log(other street peer consumption) refers to those not
on the same street. Column 2 instruments for the same street log con-
sumption using the fraction of parcels with housing transactions within
500’ that are on the same street, while the other street log consumption
is instrumented with the fraction of parcels with transactions on other
streets. On average, there are 7.3 houses on the same street within a
500’ radius of any house in our study and 17.5 houses not on the same
street within a 500’ radius of any house. The final two rows show the
calculated marginal effect per household for same and other street
peers. Standard errors are clustered at the subdivision level. *** denotes
significance at 1% level, ** at 5% level, * at 10% level.
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Table 4: Primary Specifications for Landscape Data
(1) (2) (3) (4) (5) (6)

OLS IV IV
All All All All Off SRP On SRP

log(% green within 500’) 0.018*** 0.018*** 0.315*** 0.140* 0.489*** -0.058
(0.003) (0.003) (0.105) (0.073) (0.148) (0.084)

1(housing transaction) -0.007*** -0.007*** -0.007*** -0.007*** -0.01*** -0.006***
(0.0003) (0.0003) (0.0003) (0.0003) (0.002) (0.0003)

Household Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y N Y N N N
Year x Zip Code Fixed Effects N Y N Y Y Y
R-squared 0.04 0.08 0.02 0.03 0.09 0.03
N 531,650 531,650 531,650 531,650 230,372 203,030

Notes: The dependent variable in each regression is the log of the percentage of green pixels in a given parcel. An
observation is a household parcel-year. log(% green within 500’), the variable of interest, is the log of the average
percentage of green of the neighbors within a 500’ radius. On average, there are 23.2 houses within a 500 foot
radius of any household in our study. Column 1 and 2 present OLS results. Columns 3-6 instrument the peer
variable using the fraction of houses in the peer group that had a housing transaction. Columns 5 and 6 divide the
sample by whether the household is eligible for Salt River Project (SRP) discounted water. Column 5 uses a nearest
neighbor matched sample (see Appendix C for IV results using the entire sample). The number of households used
in columns 5 and 6 is 29,602. The number of observations do no match because the panel is unbalanced. Standard
errors are clustered at the subdivision level (block bootstrapped for column 5). *** denotes significance at 1% level,
** at 5% level, * at 10% level.
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Table 5: Heterogeneous Peer Effects in Landscaping
(1) (2) (3) (4) (5)

has kids has dog has cat has pool interactions
log(% green within 500’) 0.25** 0.04 -0.11 0.44*** 0.10

(0.11) (0.18) (0.21) (0.15) (0.09)
1(housing transaction) -0.008*** -0.008*** -0.007*** -0.005*** -0.008***

(0.0003) (0.0006) (0.0008) (0.0004) (0.0003)
% green x distance to park 0.05***

(0.02)
% green x distance to school 0.03

(0.03)
Household Fixed Effects Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y
R-squared 0.01 0.04 0.03 0.01 0.01
N 251,001 99,619 57,679 230,303 339,030

Notes: The dependent variable in each regression is the log of the percentage of green pixels in a given
parcel. An observation is a household parcel-year. log(% green within 500’), the variable of interest, is
the log of the average percentage of green of the neighbors within a 500’ radius. Column 1 restricts to
the subsample of households with children; 2 to households with a dog; 3 to households with a cat; 4 to
households with a pool. Column 5 interacts the variable of interest with the distance to the closest park
and school (in units of 1,000’). The main effects are also included in the interactions specification, but are
not shown for brevity. Standard errors are clustered at the subdivision level. *** denotes significance at
1% level, ** at 5% level, * at 10% level.

Table 6: Robustness Checks Comparing Different Radii
(1) (2) (3) (4) (5) (6)

Water Consumption Landscape
400’ 600’ 700’ 400’ 600’ 700’

log(consumption within radius) 0.14*** 0.17*** 0.17***
(0.03) (0.04) (0.04)

log(% green within radius) 0.10 0.19* 0.22**
(0.07) (0.07) (0.08)

1(housing transaction) -0.22*** -0.22*** -0.22*** -0.007*** -0.007*** -0.007***
(0.003) (0.003) (0.003) (0.0003) (0.0003) (0.0003)

Household Fixed Effects Y Y Y Y Y Y
Year x Zip Code Fixed Effects Y Y Y Y Y Y
R-squared 0.77 0.77 0.77 0.032 0.023 0.019
N 2,532,336 2,534,459 2,534,922 531,461 531,704 531,759
Marginal effect of a 10% change for a single peer household
consumption within radius 0.06% 0.06% 0.06%
% green within radius 0.05% 0.07% 0.08%

Notes: In the first three columns, the dependent variable is water consumption. In the second three, the dependent variable is the % landscape
greenness. All columns run our preferred IV specification using the fraction of movers in the peer group as the instrument for the peer group
variable. Each column uses a different radius for the peer group definition. On average, there are respectively 22.9, 26.25, and 26.7 houses within
a 400, 600, and 700 foot radius of any household in our study. Standard errors are clustered at the subdivision level. *** denotes significance at 1%
level, ** at 5% level, * at 10% level.
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Figure 1: Binscatter plot of the annual water consumption per household in the Phoenix
City Water District along with a linear best-fit trendline. Source: City of Phoenix Water

Services Department.

Figure 2: Illustrative remote sensing images demonstrating the classification of green
space. Panel A on the right shows what our remote sensing images look like, while Panel
B on the left shows how the machine learning algorithm codes the pixels of green space.
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Legend
Phoenix Municipal Water District
Salt River Project
Landscape Sample Parcels

Figure 3: Phoenix water district boundary, along with identification of areas under the
Salt River Project and landscape sample parcels.
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Figure 4: Mean landscape greenness by year with one standard deviation whiskers,
based on on the remote sensing imagery.
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ONLINE APPENDIX

A Remote Sensing Data Cleaning Methodology

This appendix lays out the issue we are faced with in our remote sensing data, why an

IV strategy does not solve it, and how we adjust the remote sensing data to develop a

consistent and robust measure of landscape greenness.

One common issue in remote sensing imagery data is that it contains inherent mea-

surement error from a variety of sources. These include the exact time and date that the

image was taken, the weather on those dates, the type of camera, and even the camera

settings. Thus, in remote sensing work it is common to adjust the imagery using other

data sources to develop a consistent time series of images. Our methodology uses the

water consumption data in a regression-based approach to adjust the remote sensing im-

agery data. This approach can be thought of as somewhat analogous to the PRISM model

developed by Daly et al. (2008), which is used in both the scientific (Loarie et al. 2009)

and economic (Deschnes and Greenstone 2007) literatures on climate change. The PRISM

interpolation process assumes a linear relationship between elevation and the climate

variables at each grid point (i.e., an intercept and a slope). The key assumption is that

“for a localized region, elevation is the most important factor in the distribution of tem-

perature and precipitation” (see section 4.1 in the linked data file). Thus elevation is used

to create the fitted climate variables at every grid point. In our setting, we use observed

water consumption as the most important determinant of the percentage of greenness in
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a the landscaping of any given parcel in Phoenix, a natural approach based on the climate

in Phoenix. We then use the fitted landscape values, just as the the PRISM approach uses

fitted climate values.

To further explain why we might have an issue, let yit be the true fraction of green

landscape on a given parcel i in year t. With the remote sensing data, we observe ỹit,

which is equal to yit with a measurement error uit:

ỹit = yit + uit.

Substituting in from (1), we have

ỹit = θ ¯̃yit + δmit + ηi + φtz + εit − θūit + uit.

where we define ¯̃yit = 1
|Pi|
∑

i′∈Pi
ỹit and ūit = 1

|Pi|
∑

i′∈Pi
uit.

The fundamental identification issue in this setting is that the remote sensing mea-

surement error can enter through ūit and at the same time may be correlated with factors

that influence peers to move into certain neighborhoods. For example, if people are more

likely to move to neighborhoods with larger lots and larger lots have more measurement

error, then the peer measurement error ūit will be correlated with the instrument (the frac-

tion of peers who moved into the peer group), leading to an invalid IV strategy. We might

expect larger lots to have more measurement error because in larger lots a larger fraction

of the lot is not covered by the house itself and one would expect that the non-house pix-
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els are more subject to measurement error (it is easy to identify the house in the remote

sensing imagery).

We thus recreate our landscape measures drawing upon the water consumption data.

We know (from basic botany) that the greenness of a lot in a climate zone such as Phoenix

is a direct function of how much water per square foot is used for irrigation. This implies:

Si ∗ yit =
∑
m∈t

qoutitmψi + ξoutit + ωt (3)

=
∑
m∈t

qitmψim −
∑
m∈t

ψimq
in
itm + ξoutit + ωt

≡
∑
m∈t

qitmψim + ζi + ωt + ξit,

where Si is the lot size of house i (since more water is needed for larger lots), qoutitm is

outdoor water usage in month m of year t, qinitm is monthly indoor water usage, qitm is

total monthly water usage, ζi is a household fixed effect, and ωt is a year fixed effect.

By substitution we know that

Si ∗ ỹit =
∑
m∈t

qitmψm + ζi + ωt + ξit + Siuit. (4)

We can then estimate ψ̂m with a standard fixed effects regression under the assumption

that changes in indoor water use are not correlated with the measurement error (after

conditioning on each household’s fixed effect). We thus obtain the the fitted ŷit:

ŷit ≡
1

Si

(∑
m∈t

qitmψ̂m + ζi + ωt

)
.
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This fitted ŷit relies on the variation in the landscape greenness that stems from varia-

tion in monthly water consumption. Intuitively, this is useful because variation in water

consumption will not have the measurement error inherent in the remote sensing images.

This fitted variable is the one we use in all of our landscape estimation, both for the focal

and peer variables.

To see why this approach addresses the issue of potentially correlated measurement

error, first note that by rearranging (4) and plugging in ŷit, we have:

yit = ŷit +
1

Si

ξit + eit, (5)

where eit is a mean-zero estimation error.

Now, by substitution of (5) into (1), we have:

ŷit = θ ¯̂yit + δmit + ηi + φtz + νit,

where we define ¯̂yit = 1
|Pi|
∑

i′∈Pi
ŷit, ξ̄it = 1

|Pi|
∑

i′∈Pi
ξit, and νit = εit+

1
Sj
ξ̄it− 1

Si
ξit+

1
Sj
eit−eit.

What is useful about this equation is that this specification no longer has uit. Thus,

with uit removed, the fraction of households that moved into the peer group in a given

year is again a valid instrument, as long as the unobservable in the indoor water use

regression, ξit, is uncorrelated with the move decision after conditioning on the fixed

effects. Moreover, this approach cleans the data in a way that develops a more sensible

and consistent time series of landscape data over time.
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We believe that this triangulation of the remote sensing image data and water con-

sumption data is essential to provide an accurate measure of actual landscape values.

When we run our preferred IV strategy on the uncorrected landscape data prior to the

data cleaning exercise, we largely just find noise–the peer landscape coefficient is spuri-

ous and very poorly identified. In our conversations with remote sensing experts, they

predicted that this could be the case.

The only final wrinkle is that ψit is likely to be different for SRP-eligible households

than non-eligible households, since less water is used for outdoor purposes for SRP houses.

Thus, we perform the data cleaning regression separately for each group of households.

Table A.1 below shows the results of the regression used to obtain ŷit as described above

in (4). One immediate finding is that we explain 84% of the variation in landscaping

through the water consumption data. The fact that so much variation is explained is not

surprising, but it is reassuring that the methodology is retaining much of the variation in

landscaping. In addition, the results can be interpreted as showing strongly positive cor-

relations between the monthly water consumption in the driest months of the year and

the fraction of green landscaping.
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Table A.1: Regression Used to Obtain ŷit
(1) (2) (3)

non-SRP SRP Full Sample
Water Consumption
January -1.51*** -0.56*** -1.09***

(0.17) (0.18) (0.12)
February -3.05*** -1.56*** -2.29***

(0.22) (0.21) (0.16)
March 3.10*** -0.40 1.77***

(0.40) (0.49) (0.31)
April 0.92*** 0.29** 0.58***

(0.15) (0.13) (0.10)
May 1.32*** 1.45*** 1.46***

(0.28) (0.33) (0.22)
June 2.90*** 1.92*** 2.52***

(0.28) (0.27) (0.20)
July -0.04 1.73*** 0.31**

(0.17) (0.33) (0.15)
August 0.61*** 0.17 0.56***

(0.15) (0.24) (0.13)
September -0.97*** -0.61*** -0.77***

(0.18) (0.22) (0.14)
October 2.37*** 1.33*** 1.76***

(0.22) (0.17) (0.14)
November -0.22 0.88*** 0.51***

(0.16) (0.15) (0.11)
December 3.27*** 1.51*** 2.14***

(0.20) (0.16) (0.12)
Household Fixed Effects Y Y Y
Year Fixed Effects Y Y Y
R-squared 0.84 0.84 0.84
N 340,643 214,239 554,882

Notes: Dependent variable is fraction of green landscaping in a given
parcel per square foot, i.e., lot size x percentage green. The covariates are
the water consumption for each month of the year. Standard errors are
clustered at the subdivision level. *** denotes significance at 1% level, **
at 5% level, * at 10% level.
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B Further Data Details

B.1 Details on Data Cleaning

The raw water consumption data set contains 2,623,751 observations and 311,049 house-

holds. Often the utility will make billing adjustments by manually changing a house-

hold’s water consumption in a particular month to either credit or charge an account.

Hence, negative and extremely large consumption values are either errors or billing ad-

justments and do not reflect actual consumption. Accordingly, we drop annual consump-

tion below the 1st percentile of consumption and above the 99th percentile of consump-

tion, as these are very likely to be outliers that do not reflect actual consumption. The

remaining data set has 2,572,534 observations and 310,040 households. Finally, includ-

ing household-level fixed effects leads to 33,022 singleton observations, resulting in an

unbalanced panel in the final dataset of 2,533,715 observations and 308,652 households.

The raw fitted landscaping data set contains 544,882 observations and 74,112 house-

holds. Again, we drop observations below the 1st percentile of consumption and above

the 99th percentile of consumption for similar reasons as above. The remaining data set

contains 540,451 observations and 72,007 households. Finally, including household-level

fixed effects leads to 7,313 singleton observations, resulting in a final data set of 531,650

observations and 71,477 households.

50



B.2 Further Summary Statistics

This appendix section contains summary statistics for some of the variables used in our

analysis of heterogeneity of the peer effect. We also include a histogram of our cleaned

landscape variable, which demonstrates substantial variation.

Figure A.1: Histogram of the percentage of the land area of a parcel that is green space,
as coded by the machine learning algorithm and adjusted to address remote sensing

measurement error. Values truncated at zero and one for clarity.

Table A.2: Summary Statistics for Household Characteristics
Variable Mean Std. Dev. Min. Max. N

# bathroom fixtures 7.09 2.60 1 40 308,256
home size (ft2) 1791.2 713.2 240 21012 308,263
construction date 1978.6 19.2 1900 2012 308,263
pool dummy 0.33 0.47 0 1 308,652
1(SRP project) 0.43 0.50 0 1 308,652
lot size (ft2) 8,808 6,036 531 222,790 308,652
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Table A.3: Summary Statistics for Demographic Variables
Variable Mean Std. Dev. Min. Max. N

lot size (ft2) 9,868.6 6,256.6 1,536.9 211,027.6 71,477
income bracket 7.9 3.6 1 13 59,139
age (years) 56.9 14.9 18 99 45,074
home value 10.2 4.2 1 19 58,567
number of kids 0.52 0.84 0 6 59,139
house size (ft2) 1821.8 665.9 288 10343 71,386
construction date 1971.3 15.4 1900 2012 71,386
1(pool) 0.42 0.50 0 1 71,477
1(cat) 0.13 0.34 0 1 59,140
1(dog) 0.22 0.42 0 1 59,140
1(renter) 0.08 0.27 0 1 59,139
1(democrat) 0.23 0.42 0 1 59,140
1(group sports) 0.46 0.46 0 1 59,140
1(group outdoors) 0.39 0.49 0 1 59,140
1(group travel) 0.50 0.50 0 1 59,140
1(group reading) 0.62 0.49 0 1 59,140
1(group cooking) 0.50 0.50 0 1 59,140
1(group exercise) 0.50 0.50 0 1 59,140
1(group music) 0.40 0.49 0 1 59,140
1(group electronics) 0.64 0.48 0 1 59,140
1(group home improvement) 0.57 0.50 0 1 59,140
1(group investing) 0.45 0.50 0 1 59,140
1(group antiques) 0.35 0.48 0 1 59,140
1(group SOHO) 0.09 0.28 0 1 59,140
distance to school (000s ft) 1.49 1.04 0 8.08 71,477
distance to park (000s ft) 2.73 1.92 0 10.96 71,477

Notes: Distance to school or park may be zero due to how ArcMap defines boundaries of poly-
gons. Demographic variables only apply to remote sensing image data set, where an observation
is a household parcel-year. The units of home value are hundreds of thousands of dollars.
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B.3 Tables of Balance

The following three tables display comparisons of summary statistics of important ob-

servable household and demographic characteristics for key subsets of our data. Table

A.4 compares the means of key variables between the water consumption data and the

landscaping data. Table A.5 compares the means of key variables between the off and

on-SRP households in the water consumption data while Table A.6 compares the means

of key variables between the off and on-SRP households in the landscape data. We per-

formed two-sided t-tests of differences in means for each variable and report them in

parentheses below the differences in means in column 3 of each table. The off and on-SRP

households are statistically different from one another in each of the data sets. Hence, in

our primary analysis of off-SRP households (Table 4 column 5) we use a propensity score

matching technique to control for potential selection bias.
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Table A.4: Summary Statistics by Water and Landscape Data Sets
Water Data Landscape Data Difference

Median Household Income 60,132 63,126 -2993
(44.1) (89.5) (-29.0)

% White 70.3 77.8 -7.5
(0.03) (0.05) (-104.7)

% Black 5.5 4.1 1.5
(0.01) (0.01) (69.0)

% Latino 34.9 22.7 12.2
(0.05) (0.07) (111.3)

# of Bath Fixtures 7.1 7.0 0.07
(0.005) (0.009) (6.4)

House Size (ft2) 1,795 1,838 -42
(1.3) (2.5) (-14.0)

Construction Date 1979 1972 6.5
(0.04) (0.06) (81.9)

Lot size (ft2) 8,941 9,968 -1027
(12.6) (24.0) (-35.5)

1(Pool) 0.33 0.43 -0.10
(0.001) (0.002) (-51.1)

N 308,652 71,477 308,652

Notes: Column 1 reports means for households in the water consumption
data with standard deviations in parentheses. Column 2 reports means for
households in the landscape data with standard deviations in parentheses.
Column 3 reports the difference in means with t-stats for a two-sided test
of differences in means in parentheses.
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Table A.5: Summary Statistics by On and Off-SRP Households: Water Data
Off-SRP On-SRP Difference

Median Household Income 71,048 45,913 25,136
(58) (44) (328)

% White 80.9 56.5 24.4
(0.03) (0.04) (520.4)

% Black 3.74 7.89 -4.15
(0.01) (0.02) (-226.7)

% Latino 18.0 56.8 -38.8
(0.04) (0.06) (-558.5)

# of Bath Fixtures 7.88 6.08 1.80
(0.006) (0.006) (201.9)

House Size (ft2) 1,975 1,561 413
(1.85) (1.56) (164.2)

Construction Date 1985 1971 14.1
(0.034) (0.059) (217.9)

Lot size (ft2) 9650.2 8048.8 1601.4
(19.5) (14.1) (63.6)

1(Pool) 0.43 0.19 0.24
(0.001) (0.001) (145.6)

N 174,840 133,812 308,652

Notes: Column 1 reports means for off-SRP households in
the water consumption data with standard deviations in
parentheses. Column 2 reports means for on-SRP households
in the water consumption data with standard deviations in
parentheses. Column 3 reports the difference in means with t-
stats for a two-sided test of differences in means in parentheses.
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Table A.6: Summary Statistics by On and Off-SRP Households: Landscape Data
Off-SRP On-SRP Difference

Median Household Income 70,460 50,694 19,767
(107.7) (122.5) (117.0)

% White 83.1 68.9 14.3
(0.03) (0.08) (177.5)

% Black 3.25 5.44 -2.20
(0.01) (0.02) (-115.6)

% Latino 14.9 35.9 -21.0
(0.04) (0.13) (-180.3)

# of Bath Fixtures 7.53 6.19 1.3
(0.01) (0.01) (74.1)

House Size (ft2) 1,925 1,689 236
(3.12) (4.10) (46.0)

Construction Date 1979 1959 20.1
(0.05) (0.09) (209.9)

Lot Size (ft2) 10,422 9,199 1223
(33.8) (29.6) (24.7)

1(Pool) 0.51 0.30 0.21
(0.002) (0.003) (53.6)

N 42,203 29,274 71,477

Notes: Column 1 reports means for off-SRP households in
the landscape data with standard deviations in parentheses.
Column 2 reports means for on-SRP households in the land-
scape data with standard deviations in parentheses. Column 3
reports the difference in means with t-stats for a two-sided test
of differences in means in parentheses.
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C First Stage Results and Robustness Checks

This appendix provides the results from the first stage of the IV specifications in our

primary results, as well as an additional set of robustness checks and further results. We

begin by exploring how our primary water consumption results change if we restrict the

sample to the subsample that has the landscape greenness coded.

Table A.7: Water Regressions On Remote Sensing Image Subsample
(1) (2) (3) (4)

OLS OLS IV IV
log(consumption within 500’) 0.14*** 0.08*** 0.36*** 0.24***

(0.01) (0.01) (0.07) (0.09)
1(housing transaction) -0.18*** -0.18*** -0.18*** -0.18***

(0.006) (0.006) (0.006) (0.006)
Household Fixed Effects Y Y Y Y
Year Fixed Effects Y Y
Year x Zip Code Fixed Effects Y Y
R-squared 0.80 0.80 0.80 0.80
N 533,426 533,426 533,426 533,426

Notes: Specifications are identical to those in Table 2 but estimated on
the remote sensing image subsample. Standard errors are clustered at
the subdivision level. *** denotes significance at the 1% level, ** at the
5% level, * at the 10% level.
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Table A.8: First Stage Preferred IV for Water and Landscape Data
(1) (2)

log peer consumption log peer landscape
mean sold houses radius 500 -0.2029*** -0.0096***

(0.0072) (0.0012)
move this year -0.0031*** -0.0000

(0.0006) (0.0001)
Household Fixed Effects Y Y
Year by Zip Fixed Effects Y Y
R-squared 0.947 0.421
N 2533715 538963

Notes: Dependent variable in column 1 is the log of average water consump-
tion for i′s peers within a 500 foot radius. Dependent variable in column 2 is
log of average green landscaping for i′s peers within a 500 foot radius. Mean
sold houses radius 500 is the average number of sold houses with i′s peer
group. Standard errors are clustered at the subdivision level. *** denotes sig-
nificance at the 1 percent level, ** at the 5 percent level, * at the 10 percent
level.
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Table A.9: Regressing Landscape Fixed Effects on Demographics
(1) (2) (3)

Off-SRP On-SRP Full Sample
distance to school (1,000 ft) -0.0005*** 0.0032*** -0.0006***

(0.0002) (0.0003) (0.0002)
distance to park (1,000 ft) -0.0011*** 0.0014*** -0.0003***

(0.0001) (0.0002) (0.0001)
lot size (1,000 sq ft) 1.4679*** 7.9256*** 2.1484***

(0.0340) (0.0879) (0.0317)
income bracket 0.0012*** 0.0018*** 0.0016***

(0.0001) (0.0001) (0.0001)
age -0.0001*** 0.0001*** 0.0000

(0.0000) (0.0000) (0.0000)
home value 0.0019*** 0.0034*** 0.0034***

(0.0001) (0.0001) (0.0001)
number of kids -0.0003 -0.0021*** -0.0009***

(0.0002) (0.0003) (0.0002)
house size (1,000 sq ft) 2.7294*** -21.0662*** -0.3607

(0.4288) (0.6629) (0.3580)
construct -0.001*** -0.001*** -0.001***

(0.000) (0.000) (0.000)
has pool -0.0141*** -0.0234*** -0.0175***

(0.0004) (0.0006) (0.0003)
has cat 0.0065*** 0.0053*** 0.0061***

(0.0005) (0.0008) (0.0005)
has dog 0.0032*** 0.0002 0.0020***

(0.0005) (0.0008) (0.0004)
renter 0.0053*** -0.0041** 0.0022*

(0.0016) (0.0019) (0.0012)
democrat 0.0017*** 0.0014** 0.0020***

(0.0004) (0.0006) (0.0003)
group sports -0.0013** 0.0049*** 0.0008*

(0.0005) (0.0007) (0.0004)
group outdoors 0.0020*** 0.0002 0.0009**

(0.0005) (0.0007) (0.0004)
group travel 0.0032*** 0.0009 0.0025***

(0.0005) (0.0007) (0.0004)
group reading -0.0002 0.0077*** 0.0033***

(0.0007) (0.0009) (0.0006)
group cooking 0.0079*** 0.0072*** 0.0077***

(0.0006) (0.0008) (0.0005)
group exercise -0.0034*** -0.0019** -0.0032***

(0.0006) (0.0008) (0.0005)
group music -0.0034*** -0.0050*** -0.0042***

(0.0005) (0.0008) (0.0004)
group electronics 0.0034*** 0.0019** 0.0029***

(0.0007) (0.0008) (0.0005)
group home improvement 0.0031*** 0.0069*** 0.0048***

(0.0006) (0.0009) (0.0005)
group investing -0.0013*** -0.0055*** -0.0034***

(0.0005) (0.0007) (0.0004)
group antiques 0.0006 0.0009 0.0009**

(0.0004) (0.0007) (0.0004)
group SOHO 0.0029*** -0.0008 0.0013**

(0.0006) (0.0009) (0.0005)
R-squared 0.043 0.185 0.097
N 215557 123684 339241

Notes: Results of regressing post-estimation fixed effects from Table
4 column 4 on demographics. Note we do not have demographic in-
formation and household characteristics for all households. Hence
the number of observations in Column 3 is fewer than the number of
observations in our main landscape specification. *** denotes signifi-
cance at the 1% level, ** at the 5% level, * at the 10% level.
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Table A.10: Additional Robustness Checks (IV Specification)
(1) (2) (3) (4)

Water Consumption Landscape
log(consumption within radius) 0.1215*** 0.2027***

(-0.0336) (-0.0875)
lag of log(consumption within radius) 0.0718* 0.096

(-0.0122) (0.073)
lag of 1(housing transaction) -0.012*** -0.001***

(-0.0016) (-0.0002)
Household Fixed Effects Y Y Y Y
Year x Zip Code Fixed Effects Y Y Y Y
R-squared 0.732 0.781 0.0355 0.0126
N 2,515,689 2,418,080 472,574 510,227

Notes: In the first two columns, the dependent variable is water consumption. In
the last two, the dependent variable is the % landscape greenness. Columns 1 and 3
estimate the preferred model using lagged peer consumption/landscaping in place
of contemporaneous peer consumption/landscaping instrumented by contempora-
neous and lagged peer housing transactions. Columns 2 and 4 estimate the preferred
specification limiting the sample to households that were not sold in year t. Standard
errors are clustered at the subdivision level. *** denotes significance at 1% level, ** at
5% level, * at 10% level.
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Table A.11: Propensity Score Matching Comparison
(1) (2)

IV Off-SRP IV Matched
log(consumption within radius) 0.288*** 0.489**

(0.104) (0.187)
1(housing transaction) -0.007*** -0.01***

(0.0004) (-0.002)
Household Fixed Effects Y Y
Year x Zip Code Fixed Effects Y Y
R-squared 0.03 0.0092
N 328,620 230,372

Notes: Column 1 is the primary landscaping regression for
off-SRP households only. Column 2 is identical to column 5
in Table 4, which implements a propensity score matching
routine to control for selection bias between on and off-SRP
households. Standard errors are clustered at the subdivision
level. *** denotes significance at 1% level, ** at 5% level, * at
10% level.
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