Local Pass-Through and the Regressivity of Taxes Evidence from Automotive Fuel Markets

Samuel Stolper

University of Michigan

April 20th, 2018

Usual story: relative quantities dictates regressivity

Point of this paper: relative prices matter too!

This paper

What I do:

- Empirically measure tax pass-through and its effect on distributional equity in one particular context:
 - ► The Spanish market for automotive fuel
- Quantify not just average pass-through but also local pass-through, as a function of market conditions:
 - ► Degree of competition
 - Wealth of local consumers
- ▶ Link price impacts to welfare impacts, by wealth bracket

Bridging different strands of econ literature

Existing work on pass-through and distributional welfare

- ► Empirical pass-through literature
 - ▶ PT varies widely by type of good
 - ► E.g., Besley and Rosen (1999)
 - ► PT can vary with local market conditions
 - ► E.g., Marion and Muehlegger (2011)
- Pass-through under imperfect competition
 - Underlying primitives determine PT patterns
 - ► E.g., Weyl and Fabinger (2013)
 - ▶ PT can be used to ID other important parameters
 - ► E.g., Atkin and Donaldson (2016)
- Distributional welfare impacts of taxation
 - ► Caspersen and Metcalf (1994); Gruber and Koszegi (2004); West and Williams (2004); Bento et al. (2009)

Geoportal

Centimo Sanitario

Analysis sample

Price impacts of tax hikes are mean shifts

Average pass-through is essentially 100%

	Dependent variable: retail diesel price (c/l)				
	(1)	(2)	(3)	(4)	(5)
Mean tax level (c/I)	0.940*** (0.035)	0.944*** (0.037)	0.940*** (0.026)	0.931*** (0.036)	0.934*** (0.032)
Count of stations $w/in 5 min$.				-0.275 (0.161)	-0.178* (0.092)
Own-firm proportion				0.287** (0.133)	0.192 (0.112)
Geographic sample First differences	National	Urban	Urban X	Urban	Urban
Controls State-year FE				X	X X
R-Squared N	0.995 2,622,605	0.996 1,018,072	0.822 1,005,016	0.996 1,018,072	0.996 1,018,072

▶ FE estimating equations

Pass-through rises in market power

	Dependent variable: retail diesel price (c/l)				
	(1)	(2)	(3)	(4)	(5)
Mean tax level (c/l)	0.837*** (0.028)	0.936*** (0.032)	0.891*** (0.029)	0.821*** (0.028)	0.811*** (0.029)
Mean tax level X 1[Refiner]	0.137*** (0.022)			0.131*** (0.021)	0.128*** (0.019)
Mean tax level X # of rivals w/in 5 min		-0.048 (0.041)		-0.056 (0.039)	0.000 (0.020)
Mean tax level X Own-firm proportion			0.092*** (0.023)	0.049** (0.021)	0.031 (0.026)
Sample R-Squared N	Urban 0.996 1,018,072	Urban 0.996 1,018,072	Urban 0.996 1,018,072	Urban 0.996 1,018,072	Rural 0.995 1,604,090

▶ Event study by degree of competition

Pass-through rises in wealth

	Dep. var.: retail diesel price (c/l)		
	(1)	(2)	(3)
Mean tax level (c/I)	0.758*** (0.074)	0.916*** (0.030)	0.920*** (0.030)
Mean tax level X Avg. house price	0.122** (0.047)		
Mean tax level X 1[Avg. house price in 2nd quartile]		0.072*** (0.020)	0.061** (0.027)
Mean tax level X 1[Avg. house price in 3rd quartile]		0.110*** (0.037)	0.100** (0.039)
Mean tax level X 1[Avg. house price in 4th quartile]		0.172*** (0.054)	0.178*** (0.053)
Mean tax level X 1[Avg. house price missing]			0.012 (0.024)
Sample R-Squared N	Urban 0.999 6,766	Urban 0.999 6,766	National 0.996 77,465

Putting it all together

	Dep. var.: retail diesel price (c/l)		
	(1)	(2)	
Mean tax level (c/l)	0.596*** (0.080)	0.532*** (0.114)	
Mean tax level X 1[Refiner]	0.114*** (0.018)	0.103*** (0.022)	
Mean tax level X 1[# of rivals w/in 5 min.]	-0.063 (0.039)	-0.053** (0.024)	
Mean tax level X 1[Own-firm proportion]	0.057** (0.023)	0.083*** (0.024)	
Mean tax level X 1[Avg. house price]	0.152*** (0.047)	0.123*** (0.043)	
Controls R-Squared N	0.996 1,018,072	X 0.996 732,486	

Empirical distribution of pass-through rates

What about the long-run?

	8-week effect on retail diesel price (c/l)			
	(1)	(2)	(3)	
Crude oil price (c/l)	1.038*** (0.003)	0.967*** (0.011)	0.965*** (0.011)	
Crude oil price X 1[Avg. house price]		0.041*** (0.005)	0.042*** (0.005)	
Crude oil price X 1[Refiner]			-0.007** (0.003)	
Crude oil price X 1[Own-firm proportion]			0.010* (0.006)	
Crude oil price X 1[# of rivals w/in 5 min]			-0.004 (0.009)	
R-Squared N	0.569 961,385	0.573 961,385	0.578 961,385	

Pass-through vs. welfare

Incidence calculation

Goal: estimate proportional tax burdens by wealth bracket

- ► Following Poterba (1991), Fullerton and West (2003), and Treasury OTA
- Collect data on household consumption of automotive fuel (Q^{fuel}) and total expenditure (E^{tot})
- ▶ Graph average $\left(\frac{Q^{fuel}}{E^{tot}}\right)$ by decile of E^{tot}
 - lacktriangle Accurately depicts relative tax burdens only if $rac{dp}{dt}$ is uniform
- ► Compare to using $(\frac{Q^{fuel}}{E^{tot}}) * \frac{dp}{dt}$, where $\frac{dp}{dt}$ is the corresponding wealth-decile specific pass-through rate
 - ► Assumes house-price decile equals expenditure decile

Is the Spanish diesel tax regressive?

Is the Spanish diesel tax regressive?

Summary of findings so far

Pass-through is highly variable at the local level

- ► Rises in market power
- ► Rises in house prices
- ► Runs from approximately 70% to 120%
- Magnitude all but disappears for input cost PT

Has significant implications for modeling and welfare analysis

- ▶ Demand is convex
- ► The tax appears progressive

Broader points

Pass-through is a first-order input to calculations of regressivity

► Pass-through – wealth relationship dictates the sign/magnitude of bias in existing regressivity calculations

Underlying logic is variation in market structure and demand elasticities

► Perfect competition doesn't cut it

Response to tax changes differs from response to input cost changes

▶ Is there a behavioral explanation?

The possibility of > 100% pass-through

▶ Back

The determinants of pass-through

Perfect competition

$$\frac{dp_c}{dc} = \frac{\epsilon_S}{\epsilon_S - \epsilon_D} = \frac{1}{1 - \frac{\epsilon_D}{\epsilon_S}}$$

Monopoly, constant MC

$$\frac{dp_m}{dc} = \frac{\frac{\partial p(q_m)}{\partial q_m}}{2\frac{\partial p(q_m)}{\partial q_m} + q_m \frac{\partial^2 p(q_m)}{\partial q_m^2}}$$

▶ Back

Characteristics of Spanish retail gas stations

	Urban	Rural
Retail price (c/L)	98.62	98.20
Brand		
Refiner	0.64	0.59
Wholesaler	0.16	0.13
Contract		
COCO	0.30	0.20
Commission contracted	0.29	0.32
Firm-sale contracted	0.18	0.16
Amenities		
Carwash	0.48	0.42
Tires and fluids	0.63	0.65
Convenience store	0.67	0.64
Cafeteria	0.15	0.18
N	3,605	5,852

Characteristics of stations' surroundings

	Urban	Rural
Panel A. Competition measures		
# of rival stations within 5 minutes	3.53	1.27
Own-firm proportion	0.44	0.70
Panel B. Socioeconomic indicators		
Municipal population density (1000s/km²)	2.36	0.26
Municipal mean house price (1000s of euros/m ²)	1.87	
Education: Some schooling, up to high school	0.12	0.16
Education: High school and/or professional degree	0.47	0.49
Education: Baccalaureate, master, or doctoral degree	0.18	0.11
N	3,605	5,852

County-level price differences are negligible

Municipality-level differences are *not* neglible

Assessing price trends around tax hikes

Event study model

$$P_{it} = \alpha + \sum_{j=a}^{b} \pi^{j} D_{st}^{j} + \mathbf{X}'_{it} \delta + \lambda_{i} + \sigma_{t} + \varepsilon_{it}$$

- \blacktriangleright Index j denotes a time period relative to the event of interest
 - a tax hike
 - ▶ D_{st}^{j} is a binary variable equaling one if time t is j periods (where $j \in [a, b]$) after a tax hike in state s
 - [a, b] = [-12, 12]; observation window is thus 6 months wide

▶ Back

Empirical model of tax pass-through

Main fixed effects specification

$$P_{it} = \alpha + \beta Tax_{st} + \mathbf{X}'_{it}\delta + \lambda_i + \sigma_t + \varepsilon_{it}$$

Adding interactions between the tax variable and local market characteristics:

$$P_{it} = \alpha + \beta \operatorname{Tax}_{st} + \mathbf{X}_{it}^{'} \delta + \sum_{k=1}^{K} \left(\gamma_{k} \operatorname{Tax}_{st} * \mathbf{X}_{it}^{k} \right) + \lambda_{i} + \sigma_{t} + \varepsilon_{it}$$

→ Back

Is pass-through heterogeneous?

