
Air Pollution, Health Spending and Willingness to Pay for
Clean Air in China

Panle Jia Barwick Shanjun Li Deyu Rao Nahim Bin Zahur∗

March 2018

Abstract

Understanding the health impact of air pollution and consumer willingness to pay (WTP) for

clean air is critical for understanding the benefit of environmental regulations. Based on the

universe of credit and debit card transactions in China from 2013 to 2015, this paper provides

to our knowledge the first analysis of the impact of PM2.5 on healthcare costs for the entire

population of a developing country. To address potential endogeneity in pollution exposure,

we construct an instrumental variable by modeling the spatial spillovers of PM2.5 due to long-

range transport. We incorporate the IV method into a distributed-lag model estimated with

B-splines to flexibly capture the effect of past air pollution. Our analysis shows that PM2.5 has

significant impacts on health spending in both the short and medium term and that consumers

exhibit avoidance behavior in spending. The annual reduction in national health spending from

complying with the World Health Organization’s annual standard of 10 µg/m3 would amount

to over $40 billion, nearly 7% of China’s total health spending in 2015. Our estimates suggest

a lower bound of annual household WTP of $9.25 for a 10 µg/m3 reduction in PM2.5.
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1 Introduction

The health impact of air pollution and consumer willingness to pay (WTP) for clean air are im-
portant components of the overall benefit of environmental regulations. A rich literature from
epidemiology and more recently economics has consistently shown a positive association between
exposure to air pollution such as particulate matter and carbon monoxide and mortality. These
findings have provided guidance on air quality regulations such as setting up or tightening ambient
air quality standards. For example, research on the health impacts of particulate matter has led
the U.S. Environmental Protection Agency (EPA) to establish a standard for PM10 in 1987 and for
PM2.5 in 1997 (Dockery, 2009).

There is a growing literature in economics that tries to quantify the causal impact of air pollution
on health by using quasi-experimental methods to mimic random assignment of pollution exposure.
The literature have shown significant impacts of air pollution on mortality (Chay and Greenstone,
2003; Currie and Neidell, 2005; Currie and Walker, 2011; Knittel et al., 2015) and contemporane-
ous health (Neidell, 2004; Moretti and Neidell, 2011; Schlenker and Walker, 2015). This literature
has mainly focused on mortality risk, in particular for infants, in the U.S. and Europe.

Due to increased pressure from economic development and lax environmental regulations, de-
veloping countries and especially emerging economies such as China and India are experiencing
the worst air pollution in the world. This is especially concerning given the size of population and
the lack of access to adequate health care in these countries. While policy makers are increasingly
aware of the negative impacts of air pollution on human health and the quality of life, there is a lack
of reliable data and rigorous studies on the benefit of pollution reduction in these countries. As a
result, the dose-response relationship (between pollution exposure and health outcomes) estimated
using data from developed countries are often used as inputs for evaluating environmental regula-
tions in developing countries, raising the question of external validity of this approach (Arceo et
al., 2015).

This study fills this gap in the literature by examining the impact of PM2.5 on health spending in
China. To do so, we combine hourly air pollution readings from all monitoring stations from 2013
to 2015 with the universe of credit/debit card transactions in China during the same period. This is
to our knowledge the first comprehensive analysis of how air pollution affects health expenditures
from all medical conditions for the entire population of a developing country.1 The causal impact
of air pollution on out-of-pocket health spending also provides a lower bound estimate of consumer
WTP for improved air quality. The reliance on health spending to directly infer WTP is in contrast
with the revealed preference literature that relies on the implicit trade-off between risk factors and

1A growing literature uses health insurance claims data to examine the impact of air pollution on health spending in the
U.S. (Deschenes et al., forthcoming; Williams and Phaneuf, 2016; Deryugina et al., 2017). However, health insurance
tends to be inadequately provided in developing countries.
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prices in product choices.
There are a couple of key empirical challenges in identifying the causal effect of air pollution

on health spending. The first challenge is the potential endogeneity in contemporaneous and lagged
PM2.5 that we use to capture pollution exposure. The endogeneity can arise from multiple sources,
including unobservables that affect both the pollution level and consumer spending (e.g., economic
conditions) and avoidance behavior in response to air pollution (e.g., reduced outdoor activities).
In addition, there could be measurement errors in proxying pollution exposure using air quality
monitoring data. The pollution level could vary across locations within a city, and the pollution
exposure of the residents in a city ideally should be measured by the population weighted aver-
age of the pollution level in different parts of the city. However, monitoring stations are located
sparsely and this prevents us from constructing population weighted averages. To the extent the
measurement errors are classical, they would attenuate the estimates toward zero.

To deal with this challenge, we construct instrumental variables by modeling the spatial spillovers
of PM2.5 due to the property of long-range transport of fine particles that is affected by wind direc-
tion and speed. Our approach is in the same spirit of the source-receptor matrix in the atmospheric
science literature that is used to predict air quality from various pollution sources.2 Specifically, we
use a parsimonious and transparent model of PM2.5 concentration that allows us to disentangle the
contribution of non-local and local sources. The model uses wind patterns, lagged pollution levels
in other cities, and geographic information as inputs. We use this model to construct instruments
for the observed PM2.5 in that city as functions of PM2.5 that is imported from non-local sources
as well as prevailing wind patterns. The instruments we construct can be considered as various
weighted sums of lagged PM2.5 levels in other cities where the weights are a function of distance
between the two cities, wind direction and speed in other cities. We show that the total amount of
PM2.5 imported from non-local sources is a linear combination of our instruments. To address the
concern of spatial correlation of economic activities, we create a buffer zone of 150 km and only
use pollution sources outside of the buffer zone in generating these instruments. Our results are
robust to reasonable choices of the buffer zone and a variety of robustness checks to control for
unobservables and spatial correlations in them.

Our identification strategy is different from the regression discontinuity (RD) approach based
on the Huai River heating policy used in Chen et al. (2013); Ito and Zhang (2016); Ebenstein et
al. (2017). The RD design is better suited to study the long-term impact such as on mortality by
relying on the long-term cross-sectional variation in the data. This study focuses on the short-
and medium-term impacts and the IV approach allows us to leverage rich spatial and temporal
variations in our data. Our IV approach is similar to the identification strategy used in Williams

2In our model, we do not specify specific pollution sources (e.g., power plants), but instead use the pollution levels in
other cities as the influencing factors for the pollution level of a given city.
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and Phaneuf (2016) and Deryugina et al. (2017). The former constructs the IV based on air quality
predictions from the EPA’s source-receptor matrix using distant polluting facilities as inputs, while
the latter uses daily wind direction in a county as exogenous shocks to local air pollution.

The second challenge in estimating the causal effect of pollution on health spending arises from
the nature of the high-frequency data at the daily level. On the one hand, the data environment al-
lows us to characterize the dynamic path of the impacts. On the other hand, the daily pollution
measures exhibit high serial correlation. A direct OLS or IV estimation that includes many lagged
terms leads to oscillating estimates that are imprecise. To take advantage of the rich data while
addressing the high serial correlation, we propose a flexible distributed-lag model that extends the
Almon technique (Almon, 1965) and uses finite-order B-splines to flexibly capture the effects of
long lags. We incorporate the IV method in this framework to address endogeneity in contempora-
neous and lagged air pollution measures.

Based on the OLS analysis of city-level daily health spending with a rich set of temporal and
location fixed effects, a temporary increase of 10 µg/m3 in PM2.5 concentration that lasts for a
week is associated with an increase of 0.19% in the total number of hospital and pharmacy transac-
tions. A permanent elevation of 10 µg/m3 in PM2.5 concentration would raise the number of health
transactions by 0.86%. The results from IV analysis indicate much stronger impacts: a tempo-
rary increase of 10 µg/m3 in PM2.5 would lead to a 0.61% increase in health transactions, while a
permanent increase of the same magnitude would lead to a 2.65% increase in the number of trans-
actions in healthcare. The impact of PM2.5 differs across health facilities: spending in Children’s
hospitals is more than twice as responsive as that in other types of health facilities. For non-health
spending, we find a negative impact of PM2.5 in the short-term but no significant impact beyond
two weeks. In addition, a projected worsening of air quality in the next day increases today’s
spending in both health and non-health categories. Taken together, these results provide evidence
of avoidance behavior whereby consumers reduce outdoor activities (such as shopping) to mitigate
pollution exposure.

The estimates of health impacts of PM2.5 survive a variety of robustness checks including var-
ious parametric specifications of the medium-term impact, different buffer zones in constructing
the IV, and the inclusion of other pollutants such as CO, SO2 as well as the average of PM2.5 in
nearby cities. In monetary terms, a permanent reduction of 10 µg/m3 in daily PM2.5 would lead
to total annual savings of at least 60 billion yuan ($9 billion) in health spending. Bringing down
China’s PM2.5 to the World Health Organization’s (WHO) annual standard of 10 µg/m3 could lead
to savings in health spending exceeding $42 billion, nearly 7% of the total health spending or 0.4%
of China’s GDP in 2015.

Our analysis on health spending helps quantify consumer WTP for improved air quality, a key
policy parameter in the cost-benefit analysis of environmental regulations. Through a framework
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of consumer utility maximization, we show that consumer WTP for clean air can be bounded from
below by the estimated impacts of air pollution on health spending. Our results suggest a lower
bound of $9.25 for the annual household WTP for a 10 µg/m3 reduction in PM2.5, which is similar
to the WTP estimates for PM10 reduction among Chinese households from Ito and Zhang (2016).

This study makes four contributions to the literature. First, to our knowledge, this is the first
comprehensive study that analyzes the effect of pollution on health spending by the entire popula-
tion of a developing country. Our analysis is made possible by a novel data set that is composed
of the universe of credit card and debit card transactions in China from January 2011 to present.
There are 2.7 billion credit and debit cards that contribute to 1.5 trillion yuan of economic activities.
Besides covering fifty percent of out-of-pocket health spending in China, this data set also includes
spending in three hundred non-health sectors.

Second, a common practice in evaluating the health impact of air pollution in developing coun-
tries is to take the dose-response function estimated in developed countries to interpolate the mor-
tality or morbidity impact from reduced air pollution in developing countries (e.g. Lelieveld et
al. (2015) and World Bank (2007)). This benefit-transfer approach may lead to large inaccuracies
given the differences in air pollution levels, baseline health conditions, and access to health care
between these two groups of countries. In contrast, our paper directly estimates the health impact
of air pollution in a developing country, adding to the nascent literature using the same approach
(Arceo et al., 2015; Chen et al., 2013; Greenstone and Hanna, 2014; He et al., 2016; Ebenstein et
al., 2017). Different from other studies in this literature that mostly focus on mortality, the high-
frequency nature of our data allows us to identify the short- and medium-term impacts on health
spending. In addition, quantifying the benefits of reduced pollution by translating the reduced
mortality or morbidity into monetary terms requires adopting concepts such as the value of a sta-

tistical life (VSL).3 We benefit from directly observing health spending, which gets around such
interpolations.

Third, traditionally, consumer WTP for improved air quality is estimated using the revealed
preference approach that infers WTP based on the implicit trade-offs between risk levels and prices
in consumer goods such as housing and consumer products (Chay and Greenstone, 2005; Bayer et
al., 2009; Ito and Zhang, 2016). Resorting to the utility maximization framework, this approach
typically invokes behavioral assumptions such as perfect information on the health impact of air
pollution to infer consumer WTP. If consumers systematically underestimate the health impacts (for
example due to a lack of awareness), the estimated WTP would be biased toward zero. Different
from the revealed preference literature, this study uses realized health spending data and contributes
to the growing literature on estimating health impacts and WTP for improved air quality with med-

3Although there is a rich literature on estimating VSL in the US, there are very limited studies on VSL in developing
countries (Viscusi and Aldy, 2003).
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ical expenditures (Deschenes et al., forthcoming; Williams and Phaneuf, 2016; Deryugina et al.,
2017). The approach of using health spending data to estimate WTP does not rely on the informa-
tional assumption: the estimates are derived from the fact that elevated pollution leads to illnesses
which are then treated through healthcare spending. Whether or not consumers know that the un-
derlying cause for their illnesses is pollution is immaterial for our estimates. The disadvantage of
this approach is that the WTP estimates do not capture impacts through other channels such as on
mortality and labor productivity, which the revealed preference approach should capture in theory
under the assumption of perfect information.

Fourth, the rich spatial and temporal variations in our data allow us to examine both the short-
and medium-term impacts of air pollution on health spending. The aforementioned studies using
health insurance data all focus on the contemporaneous impact by using daily or quarterly data. We
are interested in both the contemporaneous and future health consequences of pollution. However,
as mentioned above, directly controlling for lagged daily measures leads to unstable estimates. Our
flexible distributed-lag model with IVs is computational light and has several advantages over ex-
isting methods such as VARs or local projection methods. It delivers a smooth impulse response
function, allows researchers to estimate both the short-term and long-run effects, and can easily
incorporate instrumental variables. To our knowledge, our study is the first analysis in the environ-
mental literature that uses this technique to estimate the short- and medium-term impacts with high
frequency data.

The rest of the paper is organized as follows. Section 2 describes the data and the air pollution
challenge in China. Section 3 provides a stylized model to illustrate that the estimated impact on
health spending can be used as a lower bound for consumer WTP for clean air. Section 4 discusses
our empirical framework and the identification strategy. Section 5 presents empirical results and
Section 6 discusses our findings in relation to the literature. Section 7 concludes.

2 Data

Our analysis is based on three comprehensive micro-level datasets of air pollution, consumer spend-
ing by category, and meteorology conditions that each has a national coverage. Collectively, they
form a daily city-level panel for more than 300 major Chinese cities from 2013 to 2015. This en-
ables us to evaluate the impact of air pollution on spending in both the short- and medium-term, as
well as heterogeneous impacts across pollution levels.
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2.1 Air Pollution

For nearly four decades, China has maintained its GDP growth at an annual rate of nearly 10%. The
economy has transformed from an agricultural economy to a manufacturing-dominated economy.
China became the world’s largest exporter of goods in 2009 and the largest trading nation in 2013.
This unprecedented economic growth is largely propelled by fossil fuels, with coal accounting for
about two-thirds of aggregate energy consumption and oil nearly twenty percent. China is by far
the largest energy consumer, accounting for roughly a quarter of world’s total energy consumption
and half of world’s coal consumption.

Fast economic growth and rising energy consumption have put an enormous pressure on the
environment, with air, water, and soil pollution becoming the most serious challenges in China
today that adversely affect human health, ecosystems, and the quality of life.4 Improving air quality
has become an important policy goal for the central government, which revised extensively the
Environmental Protection Law in 2014 and implicitly defined goals of pollution abatement in both
the 12th (2011 - 2015) and 13th (2016 - 2020) five-year plans.

Fine-scale air quality data at monitoring stations became publicly available in 2013. The Min-
istry of Environmental Protection (MEP) publishes hourly measures of PM2.5, CO, SO2, NO2, and
O3. The number of monitoring stations and cities covered increases steadily from 1003 stations in
159 cities in 2013 to 1582 stations in 367 cities in 2015. We calculate the daily concentration of
PM2.5 and other pollutants at the city level by averaging data across monitoring stations within a
city.

Figure 1 plots the three-year average of PM2.5 from 2013 to 2015 for each city. The nationwide
average during this period is 56 µg/m3 (with a standard error of 46 µg/m3), which is much higher
than the annual average standard of 12 µg/m3 that is set by the U.S. Environmental Protection
Agency or 35 µg/m3 by the China MEP.5 There is considerable regional disparity. Cities in the
northern and central China with a high concentration of manufacturing industries suffer from the
most severe pollution, with many of them experiencing a three-year average PM2.5 concentration of
90 µg/m3 or higher. The less-developed regions in the west and wealthy regions in the south have
better air quality. The latter, especially regions along the coast, has seen noticeable improvement in
air quality as a result of shutting down or relocating polluting industries and reorienting the industry
structure toward high tech and service industries.

One advantage of our empirical analysis is the rich variation in pollution measures both across
cities and over time. To illustrate the time-series variation, we present in figure 3 the daily PM2.5

4Lelieveld et al. (2015) estimate that air pollution led to 1.3 million premature deaths in China in 2010, accounting for
40% of the world’s total premature deaths in the same year. World Bank (2007) puts the health cost of air pollution
at 1.2-3.8% of China’s GDP in 2003.

5The EPA’s daily standard is 35 µg/m3 and annual standard is 12 µg/m3. China’s MEP sets limits on PM2.5 for the first
time in 2012 to take effect in 2016: the daily standard is 75 µg/m3 and annual standard is 35 µg/m3.
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concentration for the nation (the top panel) and each of the four broad regions (the bottom panel).6

In all regions of the country, the daily PM2.5 concentration is higher than 35 µg/m3, the official
MEP standard, for most days. The northern regions have much more pronounced peaks in the
winter than the southern region, largely because of the coal-fired central heating systems north of
Huai River (Chen et al., 2013) The pollution level is trending downwards in all regions, driven by
tightened government regulations, private and public investment in waste treatment, and changes
in China’s overall industry structure.

2.2 Consumer Spending

The second main database for our analysis is the universe of credit and debit card (or ‘bank card’)
transactions in China settled through the UnionPay network. The Unionpay network is the only
inter-bank payment network in China and is state owned. The network is the largest in the world
in terms of both the number and value of transactions, ahead of Visa and Mastercard. There are in
total 2.7 billion cards from 2013 to 2015 with transactions covering over 300 merchant categories.7

The database includes eight trillion yuan of annual economic activities. We observe the location,
time, merchant name, and amount for each transaction and we aggregate the data to daily spending
by category by city from 2013 to 2015. To our knowledge, this is the most comprehensive and
fine-scale data in temporal and spatial dimensions on consumer spending in China and we are the
first to utilize them for academic research.

Health care in China is financed by out-of-pocket spending, health insurance, and government
programs similar to the U.S. medicare. Medical expenses that are covered by the Chinese ‘medi-
care’ programs are often directly billed on medicare cards, most of which are settled through
the UnionPay network and enter the database as regular transactions. Commercial health insur-
ance companies usually require patients to pay for medical expenses first and get reimbursed later
through filing claims. If consumers pay for these expenses via their bank cards, then these transac-
tions will be included in our database.8

6The Northeastern region includes Heilongjiang, Jilin, Liaoning, and the northeastern part of Inner Mongolia. The
Northern region includes Beijing, Tianjin, Hebei, Shanxi, Shandong, Henan, and the rest of Inner Mongolia. The
Northwestern region includes Shanxi, Gansu, Qinghai, Ningxia, and Xinjiang. The Southern region includes Guang-
dong, Guangxi, Hainan, Guizhou, Yunnan, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan,
Chongqing, and Sichuan. Tibet is excluded in the regional plots due to the sparse coverage.

7There are seven major categories and 300 subcategories. The major categories are: retail; wholesale; direct sales; real
estate and finance; residential and commercial service; hotel, restaurant, and entertainment; and education, health,
and government service. Merchants are classified by these categories.

8The healthcare system and the insurance market in China have been improving with significant government support.
In 2009, China’s central government revealed plans to overhaul its healthcare system by providing 850 billion Yuan
to develop the healthcare system between 2009 and 2011 and to increase the basic health insurance coverage from 65
percent to 90 percent by 2011. By 2011, the insurance coverage through three major government supported insurance
programs reached nearly 95% and the reimbursement rate was about 44 to 68 percent depending on the insurance
program (Yu, 2015).
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Our data account for 31% of aggregate private healthcare spending in 2013, and as card penetra-
tion grew, the coverage rises to 51% in 2015, similar to the share of bank card transactions in other
sectors. The high penetration of bank cards in retail spending in China is remarkable given its short
history (the first credit card was issued in 1998 and it was not until late 2000s when consumers
began to adopt bank cards. The official statistics from Central Bank of China (2015) show that
bank card transactions accounted for 48% of overall spending on retail sales of consumer goods in
the third quarter of 2015, increasing from only 17% in 2006. In the U.S., spending from credit and
debit cards accounts for 55% of all consumer spending (Bagnall et al., 2014).

Figure 2 shows the spatial pattern of card adoption by plotting the number of active cards per
capita (i.e., registered resident) by city in 2015. We assign each card to one primary city based on
the location of its most frequent usage. The card adoption is higher in coastal or high-income cities.
This could partially be driven by the fact that in high-income cities, there are likely more firms who
own cards. In addition, some of the cards assigned to these cities could be owned by migrants and
tourists who are not part of the population in the denominator of the variable.

Despite the richness and uniqueness of the credit and debit card transactions, they only cover
about half of the healthcare spending in 2015 and they may not be representative of all the health-
care transactions. The card users are more likely to be urban residents, have higher income, and
younger than the population average or those who seek medical treatment. In order to interpret the
health impacts estimated based on our data as the population impacts, we need to assume that the
health impacts are not correlated with the method of payments. To the extent that the elderly are
less likely to use credit and debit cards while being more vulnerable to air pollution, the estimates
based on our data may be a lower bound of the population impacts. However, the underestimation
could be moderated by the fact that Chinese elderly tend to be cared for by the young who likely
accompany them for hospital visit and pay the bill. In addition, rural and low-income residents
likely have lower baseline health status. If this implies that air pollution has a more server health
impact for them, our analysis would also underestimate the population impacts.

Health spending includes transactions at hospitals, pharmacies, and other healthcare facilities
(e.g. small health clinics). In 2015, hospitals account for 83.5% of health spending in our data,
and 56.8% of transactions. Different from pharmacies in the U.S. such as CVS or Walgreens,
pharmacies in China only carry medicines and rarely sell daily necessities. Pharmacies account for
6.0% of total healthcare spending, and 31.0% of transactions in 2015. We separate hospitals and
pharmacies from other healthcare facilities. Within hospitals, we distinguish People’s hospitals and
Children’s hospitals from other hospitals. People’s hospitals are state-owned general hospitals and
tend to be the largest health care facilities in a city. Each city has at least one People’s hospital.
Children’s hospitals accept mostly children patients. Birth centers and infant health centers are
grouped into Children’s hospitals. People’s and Children’s hospitals account for 24.1% and 4.2%
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of total health spending respectively, and 26.2% and 9.0% of total number of transactions in 2015.9

In addition to health spending, we also analyze spending in non-health categories, such as daily
necessities. We follow United Nations’ Classification of Individual Consumption According to
Purpose (COICOP) closely in defining necessity goods.10 Relative to the health spending, total
non-health spending is seven times as large and transact six times as frequent. Spending on daily
necessities is three times as large and transact three times as frequent. A unique feature of Chinese
consumers’ shopping behavior is their frequent trips (often on a daily basis) for groceries at the
supermarkets. We therefore use supermarket spending as another proxy for daily consumption,
in addition to spending on necessities.11 Spending in supermarkets is over four times as large as
health spending in value and five times as frequent in 2015.

To illustrate the inter-temporal patterns, Figure 4 plots weekly healthcare spending and the
number of transactions at the national level from 2013 to 2015. There is a significant drop in both
the spending amount and the transaction frequency during holidays. In addition, both variables
have more than tripled during our sample period due to the diffusion of bank cards. We control for
these two salient features in our regression analysis through holiday fixed effects and city-specific
time trends.

2.3 Meteorology Data and Summary Statistics

Besides pollution, weather conditions could also directly affect health outcomes (Deschenes et al.,
2009). We obtain meteorology data from the Integrated Surface Database (ISD) that is hosted by
National Oceanic and Atmospheric Administration (NOAA). The ISD dataset includes hourly mea-
sures of temperature, precipitation, wind speed and wind direction for 407 monitoring stations in
China.12 We match cities with the nearest weather station according to their geographic coordinates
and compute daily temperature and wind speed from a simple average of the hourly data.

ISD’s hourly measure of precipitation suffers from noticeable measurement errors, so we use
daily precipitation from NOAA’s Global Surface Summary of the Day database (GSOD) instead.13

Wind direction of the day is calculated by adding up twenty-four hourly vectors of wind directions,
where the length of each vector is the hourly wind speed.

Table 1 reports the summary statistics for all variables used in our study at the city-day level.
The daily PM2.5 concentration is on average 56 µg/m3 between 2013 and 2015, where the in-

9We use hospital names and keyword matching to identify People’s hospitals and Children’s hospitals.
10United Nations’ COICOP defines necessity goods as 1) food and non-alcoholic beverages, 2) alcoholic beverages,

tobacco and narcotics, 3) clothing and footwear, 4) recreation and culture, and 5) restaurants and hotels.
11Since supermarkets sell a large variety of goods other than necessities, we exclude supermarkets in necessity spend-

ing.
12These stations cover most major Chinese cities from as early as the 1940s till now.
13GSOD reports daily precipitation using Greenwich Mean Time, which is the cumulative rainfall from 8 a.m. Beijing

time to 8 a.m. the next day. We use this measure as our daily precipitation.
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terquartile range is from 27 to 69 and the maximum is 985. Sixty-seven percent of these city-day
observations record a concentration level that is above the U.S. daily standard of 35 µg/m3. In terms
of health spending, the average daily number of transactions is 7,229 per city, and the average daily
spending is 6.7 million yuan.

3 Theoretical Model

Air pollution affects human health mainly through its impact on respiratory and cardiovascular
systems. Several decades of study in epidemiology and more recently economics has associated
exposure to air pollution with increases in mortality and morbidity risks (Brunekreef and Holgate,
2002; Pope and Dockery, 2012). Fine particles (PM2.5) are especially detrimental to health as they
can penetrate deep into lungs and carry toxins to other organs. High levels of PM2.5 irritate respi-
ratory and cardiovascular systems and can lead to aggravated asthma, lung disease, heart attacks,
and stroke.

In this section we provide a theoretical model to illustrate the relationship between the estimated
impact of PM2.5 on health spending and consumer WTP for improved air quality. The seminal pa-
per by Grossman (1972) first proposed the utility maximization framework of health production
where consumers choose optimal health care spending to alleviate the negative impact of air pollu-
tion exposure. Following this tradition, Deschenes et al. (forthcoming) and Williams and Phaneuf
(2016) show that the marginal effect of air pollution exposure on total health spending provides a
lower bound of consumers’ WTP for improved air quality. The marginal effect provides a conser-
vative estimate of WTP because consumers can engage in defensive spending such as purchases of
air purifiers or face masks or avoidance behavior such as staying indoors. Air purifier spending or
lost utility from staying indoors should constitute part of consumers’ WTP for clean air but is not
included in the marginal response of health spending. While the literature has largely neglected
the role of avoidance behavior and reduction in quality of life, here we present a static model to
account for both.

There is a continuum of consumers of measure 1. Each consumer i chooses health spending
(mi), non-health offline spending (ci), and non-health online spending (oi), subject to his budget
constraint. The consumer is exposed to air pollution whenever he goes outdoors, and we assume
that pollution exposure e(a,mi + ci) is an increasing and convex function of the air pollution level
a (which is exogenous to consumer i’s spending) and spending activities mi+ci, but is not affected
by online spending oi.14

14We combine all non-health spending (except online spending) in c and assume each $1 of spending results in the same
amount of pollution exposure independent of purpose. Convexity implies that on more polluted days, the marginal
impact of spending activities on pollution exposure is larger.
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Consumer i has an endowed health stock h0, which evolves as a result of exposure to air pollu-
tion and his own health spending that mitigates the negative consequences of pollution. Individuals
differ in how sick they become when exposed. This is captured by gi(ei), where gi ∼ Fi is a
non-decreasing function that is individual-specific and represents how much the individual’s health
stock changes with respect to ei.15 Thus the health stock equation can be written as:

hi = h0 +mi−gi(ei)

Consumers have health insurance, with π denoting the premium and p the proportion of health
spending that needs to be paid out-of-pocket.16 Thus, if the consumer undergoes hospital treatments
that cost a total of mi, the consumer’s out-of-pocket spending is equal to pmi, where p < 1. Income
y(hi) is composed of non-wage income y0, which is exogenous and does not depend on health, and
wage income w(hi), which is affected by health. Wage income is lower with diminished health, for
example due to productivity loss or sick days. The budget constraint is:

y(hi)≡ y0 +w(hi) = π + pmi + ci +oi

Consumer utility U(hi,ci,oi,ei) depends on health stock (hi), offline consumption (ci), online
spending (oi), and pollution exposure (ei). We allow utility to be both directly and indirectly af-
fected by the pollution exposure. The indirect effect comes through reduction in health stock. The
direct mechanism arises because consumers value the quality of life, which decreases with air pol-
lution. Heavy haze and smoky air reduce consumers’ utility even if their health stock is restored
(i.e. held constant). For example, Levinson (2012) finds that people report lower levels of happiness
on days with worse local air pollution.

Consumer i optimizes spendings to maximize utility, subject to his budget constraint and the
rule of health stock evolution:

max
{mi,ci,oi}

U [hi,ci,oi,e(a,mi + ci)],

s.t. y(hi)≡ y0 +w(hi) = π + pmi + ci +oi,

and hi = h0 +mi−gi(e(a,mi + ci)),

Our specification of the pollution exposure e(a,mi + ci) makes it explicit that all offline spend-
ing, whether health-related or not, affects pollution exposure because it involves time spent out-
15An example is gi(ei) = αiei, where αi ∼U [0,1]. Individuals with αi = 0 remain healthy even after being exposed to

air pollution; individuals with αi = 1 get very sick upon being exposed to air pollution, and experience a significant
decline in their health stock.

16We assume that every consumer has health insurance. In 2011, nearly 95% of China’s population was covered by
one of the three major public health insurance programs (Yu, 2015).
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doors.17 This is the key difference between our model and those in Deschenes et al. (forthcoming)
and Williams and Phaneuf (2016). In addition, our model incorporates utility from health (for ex-
ample, through morbidity) and allows income to depend on health, both of which are absent in
Williams and Phaneuf (2016)’s model.

The Lagrangian can be written as:

Li =U [hi,ci,oi,e(a,mi + ci)]+λi[y(hi)−π− pmi− ci−oi],

The first-order conditions are:

∂L∗i
∂mi

=Uh(1−g′i(ei)em)+Ueem +λi(yh(1−g′i(ei)em)− p) = 0,

∂L∗i
∂ci

=−Uhg′i(ei)ec +Uc +Ueec−λi(yhg′i(ei)ec +1) = 0,

∂L∗i
∂oi

=Uo−λi = 0,

∂L∗i
∂λi

= y(h∗i )−π− pm∗i − c∗i − s∗i = 0.

where Uh,Ue,Uc,Uo are partial derivatives of the utility function with respect to health stock, pol-
lution, consumption, and online spending, respectively. We assume Uh > 0,Uc > 0,Uo > 0,Ue < 0,
since health and consumption are desirable but pollution is not. em = ec is the marginal impact
of spending activities on pollution exposure e, which is allowed to be non-zero, as consumers are
exposed to air pollution whether buying food or seeing a doctor.18 The net impact of medical spend-
ing on health, dhi

dmi
= 1−em, is assumed to be positive, since the health benefit of medical treatment

should be much larger than the incremental risk due to additional pollution exposure from hospital
visits.19 Exposure increases with pollution (ea > 0). Finally, yh is the effect of health on income,
and is assumed to be positive.

Intuitively, when air quality worsens, medical spending should increase ∂m∗i
∂a > 0 and non-health

spending should decrease ∂c∗i
∂a < 0. Appendix A discusses sufficient conditions for these patterns.

∂c∗i
∂a < 0 holds under fairly weak conditions of the utility function. ∂m∗i

∂a > 0 holds true as long as the
health benefit from medical spending is much larger than any disutility from additional pollution
exposure during the trip, which is likely to be true in practice.

Denote Vi(a,h0,y0) as the indirect utility function and L∗i (a,h0,y0) as the optimal value of the

17In the short-term, consumer could reduce pollution exposure by delaying hospital visits or reducing time spent
outdoors. In the long term, both mi and ci will respond to changes in pollution.

18We assume em > 0,ec > 0, which seems reasonable.
19The optimal health spending is 0 if 1− em < 0.
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Lagrangian. The marginal WTP for reduction in air pollution can be obtained as:

MWT Pi =−
∂Vi
∂a
∂Vi
∂y0

=−
∂L∗i
∂a

∂L∗i
∂y0

As shown in Appendix A, individual i’ marginal WTP can be expressed as:

MWT Pi = p
∂m∗i
∂a

+ yh(−
dh∗i
da

)+
Uh

λi
(−dh∗i

da
)+(−Ue

λi
)
de∗i
da

+
Uc−Uo

λi
(−∂c∗i

∂a
) (1)

Equation (1) illustrates the relationship between the impact of air pollution on health spending,
given by ∂m∗i

∂a , and MWTP for improved air quality. Changes in an individual’s out-of-pocket health
spending provide a lower bound of his MWTP. The difference between the two quantities is deter-
mined by the last four terms in the equation. The first term, yh(−

dh∗i
da ), measures reduction in income

due to lower productivity as a result of pollution (dh∗i
da < 0). The second term Uh

λi
(−dh∗i

da ) denotes the

disutility from reduced health stock. The third term (−Ue
λi
)

de∗i
da captures the monetized utility loss

in the quality of life due to increased pollution exposure. Note that de∗i
da is the total derivative of

exposure with respect to pollution: de∗i
da = ea + em

∂m∗i
∂a + ec

∂c∗i
∂a , where ∂m∗i

∂a > 0 and ∂c∗i
∂a < 0. We

posit that non-health spending is relatively inelastic to pollution, |∂m∗i
∂a |> |

∂c∗i
∂a |, and hence de∗i

da > 0.
The last term Uc−Uo

λi
(−∂c∗i

∂a ) denotes reduction in monetized utility due to the sub-optimal level of
consumption distorted by pollution exposure. We assume Uc−Uo > 0, since otherwise consumers
would choose a corner solution and set c = 0.

Our model encompasses that of Deschenes et al. (forthcoming), which abstracts away from
pollution exposure associated with consumption (ec = 0), as well as the utility loss of reduced
quality of life (Ue = 0).20 When eo =Ue = 0, the FOCs indicates Uc =Uo = λ , and

MWT Pi = p
∂m∗i
∂a
− yh

dh∗i
da
−Uh

λ

dh∗i
da

.

In addition, if hi is preset (i.e. kept at a subsistence level with ∂hi
∂a = 0) and income y is

exogenous, as suggested by Williams and Phaneuf (2016), then our expression for the marginal

20In Deschenes et al. (forthcoming), MWT P = w ds
dc + pa

∂a
dc −

Us
λ

ds
dc , where w is wage rate (equivalent to yh in our

framework), s denotes number of sick days (equivalent to a negative change in health stock), a is defensive behavior,
pa is the price of taking defensive measures, and c is the concentration of pollutants (same as level of air pollution a
in our framework.)
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willingness-to-pay collapses to theirs:21

MWT Pi = p
∂m∗i
∂a

.

The previous discussion focuses on individuals’ MWTP. We now describe how to obtain a
lower bound measure for the society’s willingness to pay for pollution reduction. The society’s
willingness-to-pay has two components. First, each individual i is willing to pay at least MWT Pi

for a marginal reduction in pollution. Second, the net cost of providing insurance increases with
the level of air pollution: for a marginal decrease in pollution, the change in the net cost equals the
reduction in insurance pay-outs to individuals, or (1− p)

∫ ∂m∗i
∂a dFi, where Fi denotes the distribution

of pollution-induced health shocks across the population. China’s health insurance programs are
heavily subsidized by the government and the second component reflects the government’s savings
in supporting the health insurance market. A lower bound measure for the society’s MWTP for
pollution reductions is then given by the sum of individuals’ MWTP plus reduction in the society’s
spending on insurance programs:

MWT Psociety ≥
∫

p
∂m∗i
∂a

dFi +(1− p)
∫

∂m∗i
∂a

dFi

=
∫

∂m∗i
∂a

dFi

Thus the change in aggregate medical spending in response to air pollution is a lower bound for the
society’s MWTP for reducing air pollution.

To summarize, the utility maximization framework illustrates that the impact of air pollution
on health spending, the focus of our empirical analysis, provides a lower bound estimate for the
society’s MWTP for clean air, while the impact on out-of-pocket health spending provides a lower
bound estimate for each individual’s MWTP for clean air. The difference between MWTP and the
impact of pollution on health spending can arise from four additional factors: reduced income from
the loss of productivity, the disutility of reduced health stock (e.g., mortality risk), the disutility
associated with reduction in the quality of life from increased pollution exposure, and the loss in
utility due to consumption distortion (avoidance behavior). In the empirical analysis, we focus on
quantifying the impact of air pollution on health spending (∂m∗i

∂a ), and use changes in non-health
spending (∂c∗i

∂a ) to assess the importance of avoidance behavior.

21In Williams and Phaneuf (2016), MWT P = p ∂m∗
∂a + ∂π

∂a . They consider the case of a competitive insurance provider,
and argue that in equilibrium insurance premiums will adjust in response to expected pollution. By contrast, in our
setting, given that insurance reimbursement rates for China’s public insurance programs are rarely adjusted year-to-
year and are the same across cities despite large variance in pollution across cities, we find it more reasonable to
assume that ∂π

∂a = 0.
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4 Empirical Framework

In this section, we first present a flexible econometrics model that allows us to estimate the short-
and medium-term impacts of air pollution on health spending. Then we discuss our estimation
strategy and the construction of instrumental variables.

4.1 Flexible Distributed-Lag Model

Air pollution has both short- and long-term consequences on health spending. Different from quar-
terly or annual data commonly used in the literature, our high-frequency data at the daily level
allows us to characterize the path of health impacts from both contemporaneous and past air pollu-
tion exposure. We use the following distributed lag model (DL) to capture this relationship:

yct =
k

∑
i=0

βi pc,t−i +xctα +κct +ξc +ηw + εct (2)

where yct is daily health spending in a city, and pc,t−i is either contemporaneous (i = 0) or lagged
pollution exposure (i ≥ 1). xct includes a rich set of controls such as weather conditions, holiday
fixed effects, day-of-week fixed effects, seasonality, etc. κct is city-specific linear time trend, ξc is
city fixed effect, and ηw is week fixed effect. The key parameters of interest are β ’s, which capture
the short- and longer-term causal impacts of pollution exposure on health spending.

Let us assume for a moment that there is no measurement error in pollution exposure pc,t−i and
that there is no avoidance behavior or omitted variables (three important issues that we will return
to in the next section), then the DL model can be estimated using OLS. But the linear estimation
with a large number of lags is undesirable due to the high serial correlation among the lag terms
pc,t−i. The parameter estimates tend to be imprecise with artificial oscillations. To reduce the
number of parameters that need to be estimated while allowing for flexible and smooth longer-
term impacts, we extend Almon (1965) and specify βi’s as cubic B-spline functions of time with
z segments, where z is a constant chosen by econometricians. The intuition is that any smooth
function (here βi can be treated as a function of time) defined on a closed interval [a,b] can be
uniformly approximated arbitrarily closely by basis splines. Take k = 1 as an example, in which
case B-spline function collapses to a 3rd order polynomial:

βi = F(i) = γ0 + γ1i+ γ2i2 + γ3i3. (3)

where the contemporaneous effect of pollution on spending is captured by γ0, the effect of yes-
terday’s pollution is β1 = γ0 + γ1 + γ2 + γ3, while the effect of pollution i days’ in the past is
βi = γ0 + γ1i+ γ2i2 + γ3i3.
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Plug (3) back into (2) and rearrange terms, we have:

yct =
k

∑
i=0

βi pc,t−i +xctα +κct +ξc +ηw + εct

= γ0 pct +(γ0 + γ1 + γ2 + γ3)pc,t−1 + ...+(γ0 + γ1i+ γ2i2 + γ3i3)pc,t−i + ...

+(γ0 + γ1k+ γ2k2 + γ3k3)pc,t−k +xctα +κct +ξc +ηw + εct

= γ0(pct + pc,t−1 + pc,t−2 + ...+ pc,t−k)

+ γ1(1× pc,t−1 +2pc,t−2 + ...+ kpc,t−k)

+ γ2(12× pc,t−1 +22 pc,t−2 + ...+ k2 pc,t−k)

+ γ3(13× pc,t−1 +23 pc,t−2 + ...+ k3 pc,t−k)+xctα +κct +ξc +ηw + εct .

With this reformulation, we only need to estimate four coefficients γ’s rather than k+ 1 (the
number of lags plus current day) coefficients. The four key regressors are:

v1t = pct + pc,t−1 + pc,t−2 + ...+ pc,t−k,

v2t = pc,t−1 +2pc,t−2 + ...+ kpc,t−k,

v3t = pc,t−1 +4pc,t−2 + ...+ k2 pc,t−k,

v4t = pc,t−1 +8pc,t−2 + ...+ k3 pc,t−k.

(4)

where the first term is the sum of past pollution exposure, and the others are weighted sum of past
exposure with the weights being polynomial terms of time.

This approach has several advantages over competing distributed lag models, the most popular
one being the geometric decay model. One advantage of this approach is that these new regres-
sors as defined in equation (4) exhibit much less multicollinearity than lags of pc,t−i themselves.
Second, this model allows for much more flexible decaying patterns than those in geometric de-
cay models. Third, it is straightforward to impose additional restrictions that either is generated
by economic theories or reflect a prior knowledge of the data generating process. For example, if
tomorrow’s pollution exposure (forward one period) should not affect current health spending, then
β−1 = γ0− γ1 + γ2− γ3 = 0. If pollution exposure beyond Kleibergen-Paap Wald rk F-statistics is
reported in the last row and is cluster-robust at the city level. lags should not affect current health
spending, then βk+τ = γ0 +(k+ τ)γ1 +(k+ τ)2γ2 +(k+ τ)3γ3 = 0,∀τ ∈ N and τ > 0. These as-
sumptions can be imposed individually or jointly as constraints in the estimation or they can be
tested as linear restrictions. Fourth, this specification does not require instruments for the lagged
dependent variable as in the geometric decay model, which is often challenging. Finally, we allow
for arbitrary correlation between the contemporaneous error term and all of the past error terms,
which is difficult in geometric decay models.
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Once we choose the number of lags k, the order of polynomials q, the number of segments z,
and additional conditions on γ’s, the estimation can be carried out in (constrained) OLS and β ’s
can then be calculated based on parameter estimates from OLS.

4.2 Identification

4.2.1 Sources of Endogeneity

There are multiple sources of potential endogeneity in the key variable of interest, pollution expo-
sure. As is common in the literature on estimating the health impact of air pollution, our measure of
pollution exposure likely suffers from measurement errors. This arises from the fact that pollution
levels often vary across locations within a city and that we average the pollution data from mon-
itoring stations to the city level. For example, among the 9 monitoring stations in the urban core
of Beijing, the average difference between the maximum and minimum pollution level in a day is
about 35 µg/m3 in 2014 while the daily average at the city level is 87 µg/m3. Since population is
not evenly distributed within a city and the spatial distribution of monitoring stations does not align
with residential areas, the arithmetic mean across all stations within a city may not accurately re-
flect the city population’s exposure to pollution. An ideal measure should be population-weighted
average of local air quality, but this is impractical due to the lack of air pollution data at the finer
spatial level (e.g., city block or zip code) and many monitoring stations are located outside of pop-
ulation centers. In addition, our daily pollution is a simple average over hourly recordings and
abstracts away the temporal variation. To the extent that the measurement errors are classical, our
OLS estimates would suffer from the attenuation bias.22

Second, pollution exposure is potentially endogenous due to the avoidance behavior in both
the short- and longer-term. Chinese consumers have increased awareness of air quality and its
impact on health. PM2.5 readings are becoming readily accessible through cell phone apps or
from government websites in recent years.23 In the short term, during days of severe air pollution,
consumers may reduce outdoor activities, shift the timing of consumption (e.g. postpone visits to
hospitals for non-acute conditions), or undertake defensive measures such as wearing face masks
and using air purifiers indoors (Mu and Zhang, 2016; Ito and Zhang, 2016; Sun et al., 2017).
These types of behavior, in response to contemporaneous air quality variations, could reduce health
spending and render the pollution measure endogenous. Long-term air pollution trends could affect
migration across cities as documented in the U.S. (Banzhaf and Walsh, 2008). Consumers who are

22Satellite data on Aerosol Optical Depth (AOD) offer an alternative measure of the ground level pollution with finer
spatial resolutions (e.g., 3 km by 3 km from Terra satellite and 10 km by 10 km from Aqua). However, there are a lot
of missing values at the daily level, in addition to noises from inferring PM2.5 based on the AOD data.

23Hourly air pollution data in major Chinese cities are published on the website of the Ministry of Environment Pro-
tection and other non-governmental websites since 2013.
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more vulnerable to air pollution or have a high valuation of clean air would choose to move away
from more polluting cities. As a result, air pollution could be correlated with the error term (such
as the health stock of local residents).

In a short or medium time frame such as the one used in our analysis, location-specific time
trend help control for migration and other long-run avoidance behavior. However, the short-run
avoidance behavior as responses to contemporaneous air pollution is more challenging and can-
not be absorbed by location fixed effects. In addition, it is not obvious that endogeneity arising
from avoidance behavior could be addressed by the instrumental variable strategy since avoidance
directly responds to air pollution (and hence will be correlated with shocks that affects air pollu-
tion). We use spending on daily necessities and at supermarkets to quantify avoidance behavior.
Our results indicate that the avoidance behavior reduces spending in the short term (i.e., up to two
weeks) through inter-temporal substitutions, but there is no significant aggregate impact over a
longer period (a month or longer).

Another source of endogeneity in pollution measures is unobservables. Despite our rich set of
controls for weather and local conditions (e.g., city specific time trend and seasonality), there is
various temporal variation that can not be adequately controlled. For example, permanent local
shocks to health spending, such as income shocks, could be correlated with economic activities
and hence with air quality. Temporary local shocks, such as major sport and political events, could
affect both the air pollution level and health spending (and consumer activities in general). These
unobservables that are not absorbed by our location and trend/seasonality interactions render the
air quality variable endogenous.

4.2.2 IV Construction

To address the concern of endogeneity, we exploit the spatial spillovers of PM2.5 due to its long-
range transportability to construct instruments. PM2.5 particles are light, can travel at the speed of
10 mph, and often reside in the atmosphere for 3-4 days. Their region of influence is determined
by the wind speed and direction. Based on atmospheric modeling, Zhang et al. (2015) document
significant regional pollution transport in China. For example, nearly half of the pollution in Beijing
originates from sources outside of the municipality. These results suggest that PM2.5 from other
cities could serve as exogenous shocks to the pollution level for a given city.

The approach of constructing instruments exploiting PM2.5’s region of influence is in spirit
similar to the source-receptor matrix constructed by the US EPA for air pollution prediction. We
take each city as both a pollution source and a receptor, and develop a parsimonious model to
predict the air pollution level of a given city based on lagged pollution levels in the same city and
other cities, wind patterns (direction and speed), and distances between city pairs.24 This model
24Williams and Phaneuf (2016) construct their IV for air pollution using pollutants 60 km away (or 120 km away)
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allows us to estimate the contribution to the PM2.5 level in a given city from non-local sources,
i.e., PM2.5 originated from other cities. We construct a buffer zone to minimize the correlation in
unobserved regional economic shocks and only use cities outside of the buffer zone to construct the
instruments.

Our identification assumption is that pollution shocks (e.g., economic activities) in regions
outside of the buffer zone are not correlated with local shocks to spending. The assumption would
be violated if economic shocks (e.g., increased demand for electricity induced by high temperature)
in a given city affects production activities in other cities (e.g., electricity generation) outside of the
buffer zone which then affect the pollution level in those cities. We address this concern in three
ways. First, we test the robustness of our results to the buffer-zone radius in section 5 and show
that the results are robust to different radii. Second, our instruments are weighted sums of lagged

pollution levels in other cities, with the weights being a function of wind speed and direction as well
as the distance between cities. To the extent that economic shocks in a given city affect production
and hence pollution in other cities, this should induce correlation between the error term and future
rather than lagged pollution levels in other cities. In addition, the exogenous variation in wind
speed and direction should reduce such correlations. Third, in one of the robustness checks, we
add the average PM2.5 in other cities outside of the buffer zone but within the same region in the
regressions to control for regional spillovers in economic activities. The parameter estimates on
local PM2.5 levels are very similar to those in the benchmark analysis.

In principle, our identification assumption implies that any function of pollution and weather
conditions in cities outside the buffer zone is a valid instrument for pollution in city i. The set of
such instruments, however, is very large and many of these instruments are likely to be quite weak.
We therefore write down a simple model of air pollution transmission and use this model to guide
our construction of instrumental variables.

Denote the pollution level of city i in time t as pit . We model pit as a function of past pollution
and pollution from other cities:

pit = θ1 pi,t−1 +∑
j 6=i

p+j→i, t +µit , (5)

where θ1 captures the amount of pollution that is carried over from the previous day and it can
be affected by local meteorological conditions. p+j→i, t denotes the amount of PM2.5 pollutants
in city i at time t that are originated from city j, and µit is the error term. The contribution of
non-local sources to the pollution level of a given city could be affected by a host of weather and
topography conditions and is the subject of sophisticated air quality modeling. We use the following
parsimonious model to capture the key feature that PM2.5 pollutants dissipate over time and across

without exploiting wind patterns.
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space as they move.

p+j→i, t+si jt
=


cosΦ p jt f (di j,w jt ,wi,t+si jt ), if cosΦ > 0,

0, otherwise.

(6)

The above equation describes how p+j→i, t+si jt
, the amount of pollution that enters city i on day

t+si jt having originated from city j, is determined. Φ denotes the angle between the wind direction
and the direction from city j to city i. We invoke a simple vector decomposition and assume that the
amount of pollutants carried toward city i from city j is cos(Φ)p jt at speed cos(Φ)S jt , where S jt is
the wind speed in city j. Pollution decays over time as it travels and only part of the pollution that
was generated in city j and traveling in the direction of city i enters the atmosphere of city i. This is
represented by f (di j,w jt ,wi,t+si jt )∈ [0,1], which denotes the share of the pollution generated in city
j that enters city i, and is a function of the distance between the two cities (di j), weather conditions
in the source city at the time when the pollution was generated (w jt) and weather conditions in the
destination city at the time when the pollution enters its atmosphere (wi,t+si jt ). The number of days
it takes pollutants to travel from city j to city i, si jt , is calculated as the following and rounded to
the next smaller integer:

si jt =

⌊
di j

cos(Φ)S jt

⌋
.

Figure 5a shows the wind-pollution vectors from over 300 cities on Dec. 5, 2013 (denoted
as Day 0). Each arrow’s length indicates the wind speed, rescaled to match the exact distance
the arrow can travel in a day. The width of arrows indicates the level of PM2.5 concentration at
the source city. To illustrate how we predict city-day PM2.5, Figure 5b shows all subvectors of
pollutants that are blown towards Beijing on the same day. The pollution level of the receptor city,
Beijing in this example, is predicted by pollutants carried through the subvectors that reach Beijing
at time t, together with the lagged local pollution levels, as stated in Equation (5).

The only unknown in equation (6) is the form of the decay function f (di j,w jt ,wi,t+si jt ). We
assume that the unknown decay function can be approximated by a polynomial function in variables
(1/di j,w jt ,wi,t+si jt ):

p+j→i, t+si jt
=


cosΦ p jt ∑l γlul(1/di j,w jt ,wi,t+si jt ), if cosΦ > 0,

0, otherwise.

where γl , l = 1, ...,L are unknown parameters and ul(1/di j,w jt ,wi,t+si jt ) denote various polynomial
functions of (1/di j,w jt ,wi,t+si jt ).
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We now describe how to use the above model to motivate the construction of instruments. Let
r denote the radius of the buffer zone: for most of our results we assume a buffer zone of 150 km,
but we also check that the results are robust to the choice of the buffer zone. The total amount
of pollution imported from cities outside of the buffer zone, p̂ f ar

it , is described by the following
equation:

p̂ f ar
it = ∑

j:di j>r
p+j→i, t (7)

Plugging in p+j→i, t into the above equation, and interchanging the summation signs, we can
write p̂ f ar

it as:

p̂ f ar
it = ∑

j:di j>r
p+j→i, t

= ∑
j:di j>r

max(0,cosΦ)p j,t−si jt ∑
l

γlul(1/di j,w j,t−si jt ,wi,t)

= ∑
l

γl ∑
j:di j>r

max(0,cosΦ)p j,t−si jt ul(1/di j,w j,t−si jt ,wi,t)

= ∑
l

γlZl
it

where Zl
it = ∑ j:di j>r max(0,cosΦ)p j,t−si jt ul(1/di j,w j,t−si jt ,wi,t).

This shows that p̂ f ar
it , the total amount of pollution city i imports from cities outside the buffer

zone, is a linear function in the known objects Zl . As such, we follow the natural strategy of
using Zl

it , l = 1, ...,L, as instruments for pit . These are valid instruments since they depend only
on weather within city i, which we control for in our regressions, and on pollution and weather
variables in cities outside of the buffer zone, which are uncorrelated with local shocks to spending
by our identification assumption.

An alternative approach would have been to estimate the unknown parameters γl , use the above
equation to construct p̂ f ar

it , and then use p̂ f ar
it as an instrument for pit . However any imprecision in

the estimates of γl could then lead to a weaker first-stage prediction. The benefit of our approach
of using Zl directly as instruments is that we avoid having to estimate γl . 25

Notice that although we do not estimate the air pollution transmission model directly, the model
implies a number of restrictions on how pollution from outside the buffer zone reaches city i which
we exploit. For example, if the prevailing wind conditions are such that it takes two days for
pollution generated in city j to reach i, we would not expect any pollution generated in city j at

25As a robustness check, however, we have tried the alternative approach of estimating γl in order to construct p̂ f ar
it .

We have also constructed p̂ f ar
it using alternative functional forms for the decay function f (di j,w jt ,wi,t+si jt ), such as

an exponential decay function. The results are similar to what we report in the paper, though the first-stage is slightly
weaker.
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time t to have any effect on pi,t . Instead we should see this pollution show up only in pi,t+2. Our
IVs are constructed taking into account such considerations and are thus likely to out-perform naive
approaches such as using the sum of pollution levels in all cities outside the buffer zone.

To examine the strength of our instruments, we regress city-daily PM2.5 on our instruments
together with other controls (e.g., city-specific trends and week fixed effects) as in equation (2).
The number of observations is around 192,000 in total. The first-stage R2 is 0.47. It is important to
note that the goal of our first-stage model is not to maximize the accuracy of air quality predictions.
Instead, we want to create an instrumental variable that is both predictive of local air pollution and
at the same time exogenous to shocks to health spending. This is why we base our analysis on a
relatively conservative definition of the buffer zone and exclude PM2.5 from cities within 150 km
in constructing the IV (although our results are robust to the choice of buffer radius).

5 Empirical Results

5.1 Short-Term Impact

Our empirical analysis begins with the contemporaneous effect of air pollution on health. In the
discussion below, we use the log number of transactions as the dependent variable rather than the
value of transactions as in the literature using transaction-level purchase data (Einav et al., 2014).
The distribution of health spending rightly skewed with many large transactions (e.g., surgeries)
that are unlikely caused by air pollution in the short run. In Appendix B, we report results using the
value of transactions as the dependent variable. They are very similar in magnitude to those based
on the number of transactions but less precise.

In all of the regressions, we include city fixed effects to control for time-invariant unobservables
and week fixed effects to control for nationwide shocks. City-specific time trend and city-specific
seasonality (i.e., interactions of city fixed effects and quarterly dummies) are added to the regression
to control for trends in card adoption and seasonal diseases. We also add fixed effects for state
holidays, working weekend, day of the week, as well as weather variables to control for their direct
effects on spending. For example, people may reduce non-urgent hospital visits during holidays or
on days with bad weather. All standard errors are clustered at the city level.

Table 2 summarizes the short-term impacts estimated with OLS. A 10 µg/m3 increase in the
daily PM2.5 concentration is associated with a 0.11% increase in the total number of transactions on
health care on the same day. Transactions in pharmacies and especially in Children’s hospitals are
more sensitive to air pollution, with an impact of 0.12% and 0.18%, respectively, from a 10 µg/m3

increase in PM2.5. The larger impact on Children’s hospitals make intuitive sense since children
are more vulnerable to air pollution. Similarly, when elevated air pollution aggravates symptoms
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for people with respiratory problems, they may go to pharmacies to purchase drugs without visiting
hospitals.26

In contrast, a temporary increase in PM2.5 reduces transactions in daily necessities and super-
markets. This could be due to two possibilities. The first is the effect of the budget constraint: if
consumers have to spend more in heath care to mitigate the negative health impact of air pollution,
they may have less to spend on non-health-related categories. The second possibility is avoidance
behavior: consumers postpone or reduce shopping trips in response to poor air quality to reduce
pollution exposure. We test these two possibilities in Section 5.5.

To graphically illustrate the relationship between pollution and spending, we plot the log num-
ber of transactions against PM2.5 in Figure 6. All other controls (weather, city trend, etc.) are
partialled out, so the figure displays the net effect of pollution on spending. For ease of presenta-
tion, we group PM2.5 by percentiles and plot the in-group average of log number of transactions
against each percentile of PM2.5. In addition to the aggregate number of health transactions (top
left corner), we also plot the relationship separately for People’s hospitals, Children’s hospitals,
pharmacies, and two non-health categories (necessities and supermarkets). PM2.5 has a positive
relationship with spending in all health categories across all quantiles of PM2.5. The data points
tightly center around the fitted curve, which is consistent with the fact that our standard errors are
small.

To address the issue of endogeneity and measurement errors, we instrument PM2.5 using the
instruments constructed from pollutants originated from outside of the 150 km buffer zone as dis-
cussed in Section 4.2. Table 3 reports results from IV regressions. The first-stage cluster-robust
F-statistics on the instruments (reported in the last row of the table) vary from 52 to 62, suggesting
a strong correlation between the instrument and the endogenous variable. The IV estimates are con-
siderably larger than the OLS estimates, with most coefficients 3 to 7 times as large as their OLS
counterparts. A 10 µg/m3 increase in PM2.5 in a day is associated with a 0.65% contemporaneous
increase in transactions in the aggregate health care sector. The effect of air pollution on spending
at Children’s hospitals is the largest among different health care categories, and is nearly twice as
large as that for the overall healthcare spending.

The large difference between OLS and 2SLS results on the health impact of air pollution is
common in this literature (Knittel et al., 2015; Schlenker and Walker, 2015). The bias toward zero
in OLS estimates for both health and non-health spending is consistent with attenuation bias due to
(classical) measurement errors in PM2.5 as an imperfect proxy for population pollution exposure.
The downward bias could also be driven by temporary local shocks that are positively correlated

26There is no distinction between prescription and over-the-counter medicines in China and medicines can be purchased
without prescriptions from physicians. The Ministry of Human Resources and Social Security maintains the National
Reimbursement Drug List (NRDL) and only the drugs on the list are covered by China’s national medical insurance
programs, some in full (type A drugs) and others partially (type B).
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with air pollution such as economic activities or big events, which reduce health spending but
increase non-health spending (more outdoor activities and fewer hospital visits).

Our database reported more than two billion transactions in hospitals and more than one trillion
yuan ($153 billion) health spending in 2015. According to China’s National Health Commission,
the aggregate health expenditure, including both private and public spending, was more than four
trillion yuan ($614 billion) in the same year. Therefore, a 10 µg/m3 increase in PM2.5 in a day
could lead to millions more trips to healthcare facilities and billions added healthcare cost. As
discussed below in more detail in Section 5.6, our estimated short-term impact include both the
direct positive effect on health spending and the indirect negative effect through the avoidance
behavior. Therefore, the direct effect of air pollution on health spending is likely larger.

5.2 Longer-Term Impact

Exposure to PM2.5 could have longer-term health impacts. Directly estimating the coefficients of
a large number of lagged PM2.5 in equation (2) suffers from high serial correlation and imprecise
estimates. Instead, we employ the flexible Distributed-Lag model discussed in Section 4.1 and
allow pollution impacts to follow a smooth path of decay.

Table 4 reports the cumulative effects for different time periods across categories from the OLS
regressions. Our benchmark specification uses 90 lags and three segments for the cubic B-splines.
The standard errors are clustered at the city level and are reported in parentheses. The first column
shows that a temporary surge of 10 µg/m3 in PM2.5 concentration increases today’s number of
transactions in all healthcare facilities by 0.03%. A permanent elevation of 10 µg/m3 raises the
number of transactions by 0.86%, eight times as large as the effect reported in Table 2 when only
the contemporary PM2.5 concentration is controlled. The longer-term impact on pharmacies is the
largest while the impact on children’s hospitals is statistically insignificant. The last two columns
show a statistically significant negative impact on necessities and supermarket spending within two
weeks, but not in the long run.

To deal with the endogeneity in PM2.5, we use the instruments discussed in Section 4.2. Specifi-
cally we instrument for the local pollution on day s, pis, using the instruments Zl

cs that are functions
of pollution in faraway sources that reach city i on day s. The contemporary and cumulative effects
across different time spans are presented in Table 5.

Several important findings emerge from Table 5. First, the estimated longer-term impacts of
PM2.5 on health spending across all categories from 2SLS are positive and much larger than their
OLS counterparts, consistent with the comparison for the short-term impact discussed in Section
5.1. Specifically, a permanent increase of 10 µg/m3 in the PM2.5 concentration raises the number
of transactions in the health sector by 2.65%. Second, the impact on Children’s hospitals is the
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largest and more than twice as large as the impact on aggregate health spending, consistent with
the fact that children are among the most vulnerable group. Third, the effects on daily necessities
and supermarket spending are all negative and appear to be short-lived.

To examine how the impact on spending changes overtime, Figure 7 plots the estimates of both
current and past 90 days of pollution exposures for different categories.27 The (dotted) solid part
of each line indicates the impact being statistically (in)significant. There are several noticeable
patterns. First, PM2.5 has a positive impact on health spending in the short term across all health
categories. The impact diminishes over time and becomes small and imprecise after three months.
Second, air pollution has a negative impact on the spending on necessities and supermarkets in day
zero, but the effect disappears after two weeks. This temporal reduction is inconsistent with the
budget constraint hypothesis, since under a fixed budget, a permanent increase in health spending
would lead to a permanent reduction in necessities and supermarkets. Instead, our result lends
support to the hypothesis of avoidance behavior. We return to this issue in the next section.

Our results so far suggest that a 10 µg/m3 increase in PM2.5 would lead to an increase in the
number of health-related transactions in the long term by 0.8% from OLS and 2.6% from 2SLS. In
terms of the value of transactions, the effect is about 0.5% from OLS (Table B1 in Appendix B) and
1.5% from 2SLS (Table B2 in Appendix B). The estimates are somewhat less precise than those
based on the number of transactions. This is likely due to the larger noise inherent in the value
of health spending. For example, some of largest incidences of health transactions are likely to be
surgeries which are not related to air pollution.28 The smaller impact on the value of transactions
makes intuitive sense in that elevated pollution could reduce the desire to go to hospitals for minor
illnesses (and other outdoor activities), leading to a larger impact on transaction frequency. The
heterogeneity across different types of healthcare facilities and the impact on non-health spending
are similar to results using the number of transactions, but less precise.

5.3 Nonlinearity

Among the underlying concerns for the external validity of the benefit-transfer approach is the
potential nonlinearity of the dose-response function. The pollution level observed in developing
countries such as China and India is far greater than the prevailing level studied in the literature.
The potential nonlinearity could lead to under- or over-estimation of the health costs of air pollution
in developing countries based on the linear projections in the benefit-transfer approach (Lelieveld

27The number of lags for the optimal model should in theory differ across categories. For example, the effect of
pollution on non-health categories appears to be short-lived, while for children’s hospitals it could last for more than
3 months. To keep the results comparable, we impose the same lag structure on all categories.

28Our analysis focuses on transactions that cost less than 200,000 yuan. Among this sample, the 95th percentile of the
transaction value is 6,000 yuan and the 99th percentile is 10,000 yuan.
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et al. (2015) and World Bank (2007)). Despite of its important implications, there is a lack of
empirical evidence on the nonlinearity of the dose-response function (Lelieveld and Pöschl (2017)).
The rich spatial and temporal variation in our data allows us to examine the health impacts of PM2.5

for a wide range of the pollution level.
To capture the nonlinearity, we use a one-segment spline for simplicity (instead of three seg-

ments in the benchmark analysis) and interact the intercept with PM2.5 and its quadratic form.
Figure 8a plots the estimated surface of the marginal response for varying levels of PM2.5, and
along the time path for three months. For each value of PM2.5 the slice of the surface along the
p-axis is the estimated spline as in Figure 7a. The surface is slightly tilted upwards with a higher
marginal response for a higher pollution level. This suggests an increasing marginal impact of
PM2.5 on health spending. To further illustrate this, we collapse the time dimension by aggregating
the marginal effect over three months (∑t βt) to generate the 2D plot in Figure 8b. The plot shows
that the marginal impact on health spending is increasing in PM2.5 at a diminishing rate. The cumu-
lative effect ranges from 2.16% when PM2.5 is near zero, to 2.25% when the concentration reaches
150 µg/m3 (i.e., the 90 percentile of the daily average). Overall, the nonlinearity is not strong and
the curve in Figure 8b is almost flat. This allows us to extrapolate our estimates across a wide range
of pollution levels in the discussion below.

5.4 Robustness Checks

We conduct a variety of robustness checks. Table 6 reports the cumulative impact for overall
health spending under three different numbers of B-spline segments (1, 2, and 3) and five different
numbers of lags (60, 90, 120 and 150). The estimates across different number of segments are very
similar. We choose three segments (two knots) for our base specification since it is more flexible
and yet still precisely estimated.29 The cumulative impact tends to be smaller with 60 days of lags
and larger with 120 days of lags than that with 90 days, but the difference is small. The cumulative
impact using 30-day lags is considerably smaller. We prefer 90 lags because many of the estimated
effects for lagged pollution are significant till around 90 days and start to lose significance for later
periods.

Our second set of robustness checks is with regard to the radius size of the buffer zone in
constructing the IV. We fix the radius at 150 km in the benchmark specification and assume that
unobservables outside of the buffer zone of a city would not affect health spending in that city.
There is an inherent trade-off in the choice of the radius. On the one hand, the larger the buffer
zone, the easier it is for the exclusion restriction to hold; on the other hand, the bigger the radius,
the weaker the correlation between the predicted PM2.5 using non-local pollution and the observed

29Results from more than three knots suffer from the over-fitting problem and exhibit large swings over time.
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PM2.5 in a given city. Table 7 presents several choices of the buffer zone from 50 km to 300 km
with an increment of 50 km. The top panel in the table reports the first-stage results. Generally,
both the R2 and the F-statistics decrease with the radius of the buffer zone, suggesting a weaker
correlation between the IV and the endogenous variable as the buffer zone gets larger. The bottom
panel shows the cumulative long-term impact on health spending, which varies from 2.4% to 2.9%
across different radii when PM2.5 increases by 10 µg/m3 permanently. Our preferred specification
with 150 km radius delivers an estimate that is in the middle of this range.

The third set of robustness checks controls for other pollutants including O3, SO2, NO2 and
CO. Emission sources such as electricity generation and transportation produce both particulate
matters and other pollutants, which also have harmful health impacts. Therefore, the estimated
health impact from PM2.5 could be confounded by other pollutants especially in OLS regressions.
The IV strategy should address this issue to some extent in that it leverages the long-range trans-
port property of PM2.5 which is different for other pollutants especially O3 and CO. That is, the
predicted PM2.5 should be less correlated with observed level of local pollutants. Table 8 reports
estimates with these four pollutants as additional controls. The results for both health spending and
non-health spending categories are very similar to those in Table 5 without controlling for other
pollutants.30

The last set of robustness checks further addresses the concern of regional economic spillovers
by controlling for the average level of PM2.5 of nearby cities in the same region outside of the buffer
zone. If regional economic activities have systematic spillover effects beyond the buffer zone, one
might be concerned with the exogeneity of our IVs: local unobservables could be correlated with
economic activities in other cities which are in turn correlated with pollution levels in other cities.
Including the average level of PM2.5 of nearby cities in the regressions could help control for
economic activities in other cities. Table 9 presents estimation results with this additional control
and the results are very close to the benchmark specifications without this control.

5.5 Avoidance Behavior

The analyses of both the short-term and longer-term impact suggest that elevated PM2.5 leads to
increased health spending and reduced non-health spending. This negative impact on non-health
spending could be driven by two underlying mechanisms: the budget constraint or avoidance behav-
ior. As we argued in Section 5.2, the short-lived nature of the negative consequences is inconsistent
with the budget constraint hypothesis. In this section, we examine whether households engage in
avoidance behavior to mitigate their pollution exposure.

A key insight of our analysis is that when consumers engage in avoidance behavior, expectations

30The correlation coefficient between PM2.5 and O3, SO2, NO2 and CO is -0.13, 0.55, 0.66, 0.03, respectively.
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of future pollution levels should affect current consumption. For example, if consumers expect
pollution to improve in the near future, they may postpone their consumption to avoid exposure
today. On the other hand, an expectation of worse air tomorrow may encourage them to make
the consumption in advance. To investigate this, we assume that the consumers have a directional

perfect foresight, i.e. they have in their knowledge whether the next day’s air quality is better or
worse than today’s.

We add the dummy variable 1{pi,t+1> pi,t} in our baseline specification and report the results
in Table 10. The coefficient on this dummy variable indicates a 0.41% increase in healthcare
transactions when consumers anticipate worse air quality the next day. Interestingly, spending in
necessities and supermarkets increases when next-day pollution is expected to deteriorate. The
coefficient is also found to be larger for pharmacy than hospitals, where the transactions are less
flexible for inter-temporal substitution. The estimated cumulative impact on health spending that is
associated with a permanent reduction of 10 µg/m3 of PM2.5 is 2.71%, slightly higher than when
we do not control for avoidance.

5.6 Discussion

Our preferred specifications show that a 10 µg/m3 increase in PM2.5 would lead to a 2.6% increase
in the number of health-related transactions in the long term (Table 5) and a 1.5% increase in the
value of transactions (Table B2). Credit and debit card transactions (i.e., bank card transactions)
account for about half of the total spending in the health care industry, with the rest from cash
transactions and government transfers. Assuming that the health impact is the same for non-bank-
card spending, the 1.5% impact translates to more than 60 billion yuan ($9 billion) from a 10 µg/m3

(about 18%) increase in PM2.5. These numbers can directly inform the overall welfare cost of PM2.5

and related policy discussions. For example, a 2016 report by OECD based on the benefit-transfer
approach estimates that PM2.5 and ground level ozone are associated with a $20 billion direct cost
of health expenditure (due to morbidity) worldwide, with half of them accounted for by non-OECD
countries.31 With the average PM2.5 level of 56 µg/m3 and the recommended level of 10 µg/m3

by WHO, a simple linear interpolation would imply a $42 billion in added health spending in
China due to elevated PM2.5 relative to the WHO recommendation. Even with the assumption
that air pollution affects only health spending that is paid by bank cards and not health spending
via cash or government transfers, the interpolation based on our estimates would still suggest a
$21 billion impact on health spending. These results indicate that the OECD report significantly
underestimates the health cost from outdoor air pollution, potentially up to an order of magnitude

31The report, titled “The Economic Consequences of Air Pollution”, is available at http://www.oecd.org/env/
air-pollution-to-cause-6-9-million-premature-deaths-and-cost-1-gdp-by-2060.
htm.
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for developing countries.
To better understand the size of our estimates, we compare our results with the findings in

related literature in Table 11. In a study on preventive expenditure, Mu and Zhang (2016) estimate
that face mask purchases increase by 5.45% for a 10-point increase in AQI, and 7.06% for anti-
PM2.5 masks. Given that the translation from PM2.5 concentration to AQI is piecewise linear, a 10-
point increase in AQI is equivalent to an increase of 7.5 µg/m3 to 15 µg/m3 in PM2.5 concentration.
This means that exposure to 10 µg/m3 more PM2.5 leads to an increase ranging between 3.6% and
7.3% in preventive spending.

Williams and Phaneuf (2016) use similar estimation methods and data and find that a one-
standard-deviation change in PM2.5 (roughly 3.78 µg/m3 for their data) leads to 8.3% more spend-
ing on asthma and COPD, which is equivalent to a 22% increase for 10 µg/m3 more PM2.5. Ac-
cording to China’s National Health Commission, spending on respiratory diseases accounts for 8%
of total health expenditure in 2012. Assuming all additional spending induced by air pollution is
for respiratory diseases, our estimates translate to a 33% increase in respiratory-related spending,
about one and a half times as large as the estimate from Williams and Phaneuf (2016).

Our estimates of the effect of air pollution on total health spending provide a lower bound of the
social WTP for improved air quality in that the health spending impact does not take into account
mortality, the quality of life, the loss of productivity as well as the cost of avoidance behavior. An
increase in overall health spending of 60 billion yuan (or $9 billion) from a 10 µg/m3 increase in
PM2.5 suggests that a lower bound for the social WTP is 145 yuan (or $22) per household for a
reduction of PM2.5 by 10 µg/m3.

To estimate the consumers’ private WTP for air quality, we need to account for the fact that the
vast majority of consumers have health insurance and do not bear the full costs of their treatment.
As the theoretical model in Section 3 illustrates, the consumer WTP is bounded below by the
change in out-of-pocket spending resulting from a change in air quality. For urban residents, the
proportion of health spending that has to be paid for out-of-pocket equals 32% for employees and
52% for non-employees. An increase in overall health spending of 60 billion yuan translates into
25 billion yuan (or $4.5 billion) additional out-of-pocket spending.32 This implies a lower bound
for consumer WTP of 60 yuan (or $9.25) per household for a 10 µg/m3 reduction of PM2.5.

Using a discrete choice framework to estimate the demand of indoor air purifiers in China, Ito
and Zhang (2016) estimate a WTP of $1.1 for a one unit reduction in PM10 based on the trade-off
between price and quality (ability to remove more PM10). Their WTP estimate for PM10 reduc-
tion could capture consumers’ WTP for PM2.5 as PM2.5 constitutes the majority of harmful PM10

32Due to the low penetration of credit and debit cards in rural areas, our sample primarily consists of urban residents.
In 2011, there were 252 million urban employees and 221 million urban non-employees enrolled in China’s pub-
lic insurance programs (Yu (2015)). The population-weighted average proportion of health spending that must be
covered out-of-pocket thus equals 41%.
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pollutants and the higher-quality air purifiers (with HEPA filters) in their study can also effectively
remove PM2.5. Our analysis is in line with their estimates in a different context and without relying
on the revealed preference approach. Their estimates should capture both the morbidity and mor-
tality impact of PM10 to the extent that consumers are aware of their impacts while our estimates
only capture the morbidity impacts.

Using the hedonic model for the U.S. housing market, Chay and Greenstone (2005) find that
consumers are willing to pay $450 - $1,050 more in housing price (in 1982-84 dollars) for a one
µg/m3 reduction in TSP. With a 30-year time span and 5% annual discount rate, this translates
to an annual WTP of $72.9 - $168.5 in 2015 dollars. Based on the discrete-choice framework
that is also applied to the U.S. housing market, Bayer et al. (2009) estimate the annual household
WTP to be $23.9 - $29.5 in 2015 dollars for one unit reduction in PM10. These WTP estimates
are substantially larger than ours for at least three reasons. First, the average household income in
China during our data period is about one-eighth of that in the U.S., and the environmental quality
is shown to be a luxury good (Kahn and Matsusaka, 1997). Second, our estimate of WTP reflects
a lower bound and doesn’t account for the impacts on mortality and the quality of life etc. as
discussed above, while the WTP estimates using the revealed preference approach in both studies
should in theory reflect those impacts (provided that consumers are well-informed and rational).
Third, the difference could be partly due to the potential nonlinearity in the WTP schedule since
the level of air pollution is drastically different between these two countries.

6 Conclusion

WHO’s global air pollution database shows that the world’s most polluted cities in terms of PM2.5

in 2016 were all from developing countries such as China, India, Iran, Pakistan, Philippines, and
Saudi Arabia. The database also shows that 98% of cities in low- and middle-income countries
with more than 100,000 residents do not meet WHO air quality guidelines. However, past research
from epidemiology and economics going back several decades has focused on the impacts of air
pollution on human health (particularly mortality) in developed countries. This analysis examines
the direct health cost from PM2.5 based on the universe of credit and debit card transactions in
China and provides a lower bound estimate of social WTP for improved air quality that can be used
as an input for the cost-benefit analysis of environmental regulations.

To address the potential endogeneity in the air pollution measure, we develop an air quality
prediction model in the spirit of the US EPA’s source-receptor matrix that allows us to isolate
exogenous variations in local air quality using the spatial spillovers of PM2.5. We propose a flexible
distributed-lag model to estimate the temporal effect on health spending. Our IV results, three to
four times larger than those from OLS, suggest that a 10 µg/m3 decrease in PM2.5 would lead to
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at least 60 billion yuan ($9 billion) reduction in health spending annually, or 1.47% of total annual
healthcare expenditure nationally. Our estimate of the direct health cost from PM2.5 in China
suggests that the recent report by OECD (2016) drastically underestimates worldwide impact of air
pollution on health expenditure ($10 billion for all non-OCED countries).

In many major urban centers in Northern China, the annual average concentration of PM2.5 is
close to or even exceeds 100 µg/m3, compared to the WHO recommended level of 10 µg/m3. The
National Plan on Air Pollution Control developed by the State Council in 2013, for the first time as
a national policy, set a goal of reducing PM2.5 by 25%, 20% and 15% in 2017 relative to the 2012
levels in Beijing-Tianjin-HeBei, Yangtze River Delta, and Pearl River Delta regions. The findings
from this study imply that the targeted reductions could lead to significant economic benefit.

We offer to our knowledge the first national-level analysis of the impact of air pollution on
health spending in a developing country context. The air pollution level in urban centers in devel-
oping countries is often an order of magnitude higher than that observed in developed countries. As
urbanization continues and development pressure rises, air pollution could be further exacerbated
before it can get better. The full impacts of air pollution on economic growth through channels
such as human capital accumulation, productivity, talent loss due to migration, and foreign direct
investments are interesting and important areas for future research.
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Figure 1: Three-Year Average PM2.5 Concentration

2013 - 2015, µg/m3
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Figure 2: The Number of Active Cards per Capita, 2015

Notes: Active cards are defined as credit or debit cards that have been used at least once in the year. Each card
is assigned to one primary city based on the location of its most frequent usage. Population measure is year-end
registered population of each city.
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Figure 3: Daily PM2.5 Concentration

Jan. 2013 - Dec. 2015
National and Regional Average, µg/m3

(a) Northern Region (b) Northeastern Region

(c) Northwestern Region (d) Southern Region

Notes: The Red line in all subfigures indicates the daily standard set by US EPA: 35 µg/m3.
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Figure 4: National Weekly Healthcare Spending, 2013 - 2015

Figure 5: Wind-Pollution Vector Decomposition

(a) Day 0: Wind-Pollution Vectors (b) Day 0: Wind-Pollution Vectors toward Beijing

Notes: Day 0 = Dec. 5, 2013. Subfigure 5a depicts the wind-pollution vector fields on Day 0 from raw data, with each
vector’s length indicating wind speed (rescaled to match the distance traveled per day) and width indicating PM2.5
concentration level in the source city. Subfigure 5b plots the decomposed subvectors pointing towards Beijing.
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Figure 6: Residuals of Log Number of Transactions v. PM2.5 Concentration, by Category

(a) Total Healthcare Industry (b) Children’s Hospital

(c) People’s Hospital (d) Pharmacy

(e) Necessities (f) Supermarket

Notes: Each dot denotes the in-group average residuals, partialing out city FEs, weekly FEs, city-specific time trend,
city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends), and weather controls (tem-
perature, precipitation, wind speed). Groups are binned by percentiles of the x-axis variable, PM2.5.
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Figure 7: Impact of Air Pollution on Number of Transactions from IV with 90 Lags

(a) Health Total (b) All Hospitals (c) Pharmacies

(d) People’s Hospitals (e) Children’s hospitals

(f) Necessities (g) Supermarkets

Notes: The y-axis indicates the percentage change in the number of transactions per 10 µg/m3 increase in PM2.5
concentration. The x-axis (from left to right) refers to current pollution, pollution in the previous day, previous t day,
etc. Solid line indicates significance at 0.05 level. Gray areas are 95% confidence intervals. The y-axis for Children’s
Hospitals in subfigure (e) is scaled differently from other subfigures.
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Figure 8: Impact of Air Pollution on Number of Transactions from IV: Nonlinearity

(a) 3D Illustration of Nolinearity

(b) 2D Illustration of Nolinearity

Notes: The y-axis in (a) indicates the percentage change in the number of transactions for a 10 µg/m3 increase in
PM2.5 on a given day. The t-axis (from 0 to 90) refers to current pollution, pollution in the previous day, previous t day,
etc. The y-axis in (b) indicates the percentage change in the number of transactions for a 10 µg/m3 increase in PM2.5
persistently during the last three months. The p-axis denotes different levels of pollution.
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Table 1: Summary Statistics

Mean Std. Dev. Min. Max. N

Pollution
PM2.5 Concentration, µg/m3 56.33 46.37 0 985.18 198,246

Number of Transactions, Daily
Healthcare Industry, Total 7,229.2 21,308.6 0 330,974 211,318
All Hospitals 4,122.7 14,503.9 0 237,525 210,539
People’s Hospitals 1,060.6 2,800.4 0 40,332 203,407
Children’s hospitals 464.7 1,290.5 0 18,227 158,637

Pharmacies 2,245.3 7,063.3 0 96,336 210,001
Comparison Groups, from 1% card sample

Daily Necessities 233.3 628.6 0 10,865 211,318
Supermarkets 393.4 990.3 0 15,224 210,493

Total Value of Transactions, Daily, thousand yuan
Healthcare Industry, Total 6,701.8 17,818.9 0 301,108.7 211,318
All Hospitals 5,556.5 15,066.8 0 275,883.0 210,539
People’s Hospitals 1,588.1 3,401.2 0 56,856.9 203,407
Children’s hospitals 363.9 843.3 0 10,324.3 158,637

Pharmacies 407.4 1,109.5 0 16,735.1 210,001
Comparison Groups, from 1% card sample

Daily Necessities 236.9 551.3 0 9,532.4 211,318
Supermarkets 232.8 643.4 0 14,404.7 210,493

Weather
Mean Temperature, ◦F 60.11 18.92 -27.50 101.6 211,317
Precipitation, inch 0.13 0.42 0 15.6 211,318
Mean Wind Speed, mph 5.50 3.11 0 48.7 211,296
Wind Direction, navigational bearing - - 0 360 211,263

Notes: Data sources include China’s Ministry of Environmental Protection, Integrated Surface Database (ISD), and
Global Surface Summary of the Day (GSOD) Database. Data for comparison groups are calculated from a subsample
with randomly selected 1% of bank cards. Transactions with value larger than 200,000 yuan ($29,000) are excluded
from total value of transactions. The arithmetic mean and standard deviation of wind directions do not have statistical
meaning and are left out in the table.
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Table 2: OLS Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.11*** 0.11*** 0.12*** 0.13*** 0.18*** -0.06*** -0.03
(0.02) (0.02) (0.02) (0.02) (0.05) (0.02) (0.02)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766

Notes: The dependent variable is log(number of transactions). The controls are city FEs, weekly FEs, city-specific time trend, city-specific seasonality, day-of-week
FEs, dummies for holidays and working weekends, and weather controls (temperature, precipitation, wind speed). Each column reports the percentage change in
the number of transactions per 10 µg/m3 increase in PM2.5 concentration. Standard errors in parentheses, clustered at the city level. Significance levels are indicated
by *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table 3: IV Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.65*** 0.73*** 0.60*** 0.77*** 1.13*** -0.09 -0.10
(0.09) (0.11) (0.15) (0.13) (0.37) (0.15) (0.12)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766
First-stage F 61.93 61.77 61.78 59.47 52.32 61.92 61.97

Notes: The dependent variable is log(number of transactions). The IVs are various functions of non-local PM2.5 imported from cities more than 150 km away. Same
controls as in Table 2. Each column reports the percentage change in the number of transactions per 10 µg/m3 increase in PM2.5 concentration. Standard errors
in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Kleibergen-Paap Wald rk F-statistics is
reported in the last row and is cluster-robust at the city level.
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Table 4: Cumulative Effect of Pollution, OLS with 90 Lags

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.03*** 0.04*** 0.05*** 0.04*** 0.06*** -0.03*** -0.02**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Current + Past 3d 0.12*** 0.11*** 0.18*** 0.13*** 0.19** -0.11*** -0.07**
(0.03) (0.03) (0.04) (0.04) (0.08) (0.03) (0.03)

Current + Past 7d 0.19*** 0.16*** 0.32*** 0.21*** 0.25* -0.16*** -0.11***
(0.05) (0.06) (0.07) (0.06) (0.15) (0.05) (0.04)

Current + Past 14d 0.25*** 0.16 0.49*** 0.30*** 0.20 -0.16** -0.13**
(0.08) (0.10) (0.10) (0.08) (0.28) (0.07) (0.06)

Current + Past 28d 0.38*** 0.18 0.80*** 0.39*** 0.12 -0.15 -0.09
(0.13) (0.15) (0.16) (0.14) (0.50) (0.12) (0.11)

Current + Past 56d 0.66*** 0.27 1.42*** 0.47** 0.57 -0.27 0.03
(0.19) (0.20) (0.29) (0.24) (0.74) (0.21) (0.18)

Current + All Lags 0.86*** 0.34 1.81*** 0.59* 0.38 -0.08 0.02
(0.27) (0.28) (0.42) (0.36) (1.14) (0.27) (0.21)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652

Notes: The dependent variable is log(number of transactions). The effect of current and past air pollution is estimated using Flexible Distributed-Lag Model with
90 lags and 3 evenly-split segments. Same controls as in Table 2. Each row reports cumulative percentage change in the dependent variable in response to a 10
µg/m3 increase in PM2.5 for the corresponding period. Standard errors in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01,
** p < 0.05, and * p < 0.10.
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Table 5: Cumulative Effect of Pollution, IV with 90 Lags

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.12*** 0.12*** 0.07* 0.14*** 0.19*** -0.14*** -0.06***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.40*** 0.40*** 0.23* 0.47*** 0.65*** -0.45*** -0.21***
(0.07) (0.08) (0.12) (0.13) (0.23) (0.09) (0.07)

Current + Past 7d 0.61*** 0.62*** 0.39** 0.75*** 1.04*** -0.64*** -0.34***
(0.10) (0.12) (0.18) (0.19) (0.36) (0.13) (0.10)

Current + Past 14d 0.74*** 0.75*** 0.57*** 0.97*** 1.40*** -0.63*** -0.45***
(0.14) (0.16) (0.21) (0.22) (0.50) (0.16) (0.12)

Current + Past 28d 0.91*** 0.90*** 0.99*** 1.24*** 2.12*** -0.44* -0.41**
(0.22) (0.25) (0.30) (0.27) (0.79) (0.23) (0.21)

Current + Past 56d 1.97*** 1.71*** 2.31*** 2.01*** 4.65*** -0.85** -0.23
(0.42) (0.47) (0.54) (0.46) (1.56) (0.41) (0.36)

Current + All Lags 2.65*** 2.18*** 2.80*** 2.13*** 6.37*** -0.55 -0.57
(0.68) (0.71) (0.89) (0.75) (2.33) (0.58) (0.47)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652
First-stage F 38.35 38.36 38.37 39.69 47.79 38.29 38.29

Notes: The dependent variable is log(number of transactions). The effect of current and past air pollution is estimated using Flexible Distributed-Lag Model with 90
lags and 3 evenly-split segments. The IVs are various functions (both current and lagged) of non-local PM2.5 imported from cities more than 150 km away. Same
controls as in Table 2. Each row reports cumulative percentage change in the dependent variable in response to a 10 µg/m3 increase in PM2.5 for the corresponding
period. Standard errors in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Kleibergen-Paap
Wald rk F-statistics is reported in the last row and is cluster-robust at the city level.
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Table 6: IV Cumulative Effects of Pollution: Different Number of Lags and Segments

Lag k

Segments z 30 days 60 days 90 days 120 days 150 days

1 1.18*** 2.12*** 2.42*** 2.60*** 2.58*
(0.25) (0.51) (0.69) (0.98) (1.48)

2 1.41*** 2.26*** 2.67*** 2.80*** 2.62*
(0.25) (0.52) (0.69) (0.95) (1.43)

3 1.28*** 2.16*** 2.65*** 2.74*** 2.41*
(0.25) (0.49) (0.68) (0.93) (1.40)

Notes: The dependent variable is log(number of transactions). Each row indicates the number of segments for the cubic
B-splines. Each column reports the cumulative percentage change in the dependent variable in response to a 10 µg/m3

increase in PM2.5, over different number of days. Same IV and controls as in Table 5. Standard errors in parentheses,
clustered at city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table 7: IV Cumulative Effects of Pollution: Different Buffer Zone Radii

Radius for the Buffer Zone

50 km 100 km 150 km 200 km 250 km 300 km

First Stage Regression
N 192,586 192,586 192,586 192,586 192,586 192,586
R2 0.502 0.486 0.474 0.467 0.464 0.462

IV Regression
Total Long-Term Effect 2.56*** 2.42*** 2.65*** 2.86*** 2.86*** 2.88***

(0.78) (0.60) (0.68) (0.71) (0.72) (0.70)
First-stage F 34.48 46.69 38.35 34.14 35.36 35.33

Notes: The dependent variable is log(number of transactions). Each column uses a different buffer zone radius in
constructing the instruments and reports the cumulative percentage change in the dependent variable in response to a
10 µg/m3 increase in PM2.5 over 90 days. Same controls as in Table 5. Standard errors in parentheses, clustered at
city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Kleibergen-Paap Wald rk
F-statistics are reported in the last row and are cluster-robust at the city level.
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Table 8: IV Cumulative Effects of Pollution: Controlling for O3, SO2, NO2 and CO

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.09*** 0.09*** 0.05 0.12*** 0.16** -0.16*** -0.05**
(0.02) (0.03) (0.04) (0.04) (0.08) (0.03) (0.02)

Current + Past 3d 0.32*** 0.31*** 0.16 0.40*** 0.56** -0.51*** -0.18***
(0.07) (0.08) (0.12) (0.13) (0.24) (0.09) (0.07)

Current + Past 7d 0.50*** 0.49*** 0.29 0.65*** 0.91** -0.73*** -0.31***
(0.11) (0.12) (0.18) (0.19) (0.37) (0.14) (0.10)

Current + Past 14d 0.64*** 0.63*** 0.48** 0.89*** 1.27** -0.71*** -0.44***
(0.14) (0.16) (0.22) (0.23) (0.50) (0.16) (0.13)

Current + Past 28d 0.84*** 0.82*** 0.93*** 1.19*** 2.01** -0.49** -0.44**
(0.22) (0.25) (0.31) (0.27) (0.79) (0.23) (0.20)

Current + Past 56d 1.87*** 1.60*** 2.24*** 1.91*** 4.51*** -0.88** -0.30
(0.43) (0.47) (0.55) (0.46) (1.55) (0.41) (0.36)

Current + All Lags 2.55*** 2.07*** 2.73*** 2.01*** 6.21*** -0.55 -0.69
(0.69) (0.72) (0.91) (0.76) (2.34) (0.58) (0.46)

N 141,779 141,642 141,552 137,838 110,244 141,755 141,637
First-stage F 39.76 39.85 39.75 41.61 50.98 39.71 39.71

Notes: The dependent variable is log(number of transactions). The same IVs as in Table 5 are used. In addition to controls in Table 5, daily average concentration
levels of O3, SO2, NO2 and CO are included. Standard errors in parentheses, clustered at city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05,
and * p < 0.10. Kleibergen-Paap Wald rk F-statistics is reported in the last row and is cluster-robust at the city level.
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Table 9: IV Cumulative Effects of Pollution: Controlling for Regional Economic Spillover

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.11*** 0.10*** 0.05 0.13*** 0.19*** -0.15*** -0.05***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.35*** 0.34*** 0.17 0.44*** 0.64*** -0.46*** -0.19***
(0.07) (0.08) (0.12) (0.13) (0.23) (0.09) (0.07)

Current + Past 7d 0.55*** 0.54*** 0.31* 0.71*** 1.03*** -0.66*** -0.32***
(0.11) (0.13) (0.18) (0.19) (0.37) (0.14) (0.10)

Current + Past 14d 0.70*** 0.68*** 0.50** 0.95*** 1.39*** -0.65*** -0.43***
(0.14) (0.17) (0.21) (0.23) (0.51) (0.16) (0.13)

Current + Past 28d 0.89*** 0.87*** 0.96*** 1.23*** 2.13*** -0.46** -0.41*
(0.22) (0.25) (0.30) (0.27) (0.80) (0.23) (0.21)

Current + Past 56d 1.94*** 1.66*** 2.27*** 1.99*** 4.66*** -0.86** -0.22
(0.42) (0.47) (0.54) (0.46) (1.57) (0.41) (0.36)

Current + All Lags 2.62*** 2.15*** 2.76*** 2.12*** 6.37*** -0.56 -0.56
(0.68) (0.72) (0.89) (0.76) (2.34) (0.59) (0.47)

N 138,390 138,254 138,164 134,544 107,345 138,366 138,250
First-stage F 37.53 37.49 37.54 38.91 45.28 37.49 37.48

Notes: The dependent variable is log(number of transactions) and the same IVs as in Table 5 are used. In addition to controls in Table 5, we include the average
level of pollution in other cities outside of the buffer zone but within the same region, to control for regional economic spillovers. Standard errors in parentheses,
clustered at city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Kleibergen-Paap Wald rk F-statistics is reported in the last
row and is cluster-robust at the city level.
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Table 10: IV Cumulative Effects of Pollution: Controlling for Avoidance

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

1{P+1> P0} 0.41*** -0.15 0.95*** -0.11 0.29 0.36** 0.95***
(0.11) (0.13) (0.19) (0.20) (0.32) (0.15) (0.14)

Current Day 0.13*** 0.13*** 0.07* 0.15*** 0.20*** -0.14*** -0.05***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.41*** 0.41*** 0.25** 0.49*** 0.68*** -0.44*** -0.18***
(0.07) (0.08) (0.12) (0.13) (0.24) (0.09) (0.07)

Current + Past 7d 0.63*** 0.63*** 0.42** 0.78*** 1.09*** -0.63*** -0.31***
(0.11) (0.12) (0.18) (0.19) (0.37) (0.13) (0.10)

Current + Past 14d 0.77*** 0.77*** 0.60*** 1.01*** 1.48*** -0.63*** -0.43***
(0.14) (0.16) (0.22) (0.23) (0.51) (0.16) (0.13)

Current + Past 28d 0.95*** 0.94*** 1.03*** 1.29*** 2.25*** -0.45* -0.41*
(0.22) (0.25) (0.31) (0.27) (0.80) (0.23) (0.21)

Current + Past 56d 2.02*** 1.77*** 2.34*** 2.07*** 4.82*** -0.88** -0.24
(0.43) (0.47) (0.54) (0.46) (1.59) (0.42) (0.37)

Current + All Lags 2.71*** 2.27*** 2.83*** 2.22*** 6.57*** -0.60 -0.60
(0.69) (0.72) (0.90) (0.75) (2.38) (0.59) (0.48)

N 141,272 141,136 141,046 137,347 109,862 141,248 141,132
First-stage F 37.76 37.79 37.77 38.88 45.27 37.72 37.70

Notes: The dependent variable is log(number of transactions). Same IV as in Table 5. Besides controls used in Table 5, the dummy variable indicating whether
pollution level of next day is worse than current day is also included to control for avoidance behavior. Standard errors in parentheses, clustered at city level.
Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Kleibergen-Paap Wald rk F-statistics is reported in the last row and is cluster-robust
at the city level.
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Table 11: Summary of Dose-Response Relationships from Literature

Source Dose, additional Response

Mu and Zhang (2016) 100-point AQI 54.5% increase in masks purchases,
70.6% in anti-PM2.5 masks

Williams and Phaneuf (2016) 1 std. dev. PM2.5 (3.78 µg/m3) 8.3% more spending on asthma and COPD

Schlenker and Walker (2015) 1 std. dev. pollution 17% more asthma and total respiratory problems,
9% heart problems

Arceo et al. (2015) 1 µg/m3 PM10 0.23 per 100,000 increase in infant mortality
1 ppb CO 0.0046 per 100,000 increase in infant mortality

He et al. (2016) 10 µg/m3 PM10 (roughly 10%) 8.36% in all-cause mortality rate
285,000 premature deaths each year

Chay and Greenstone (2003) 1% TSP 0.35% in infant mortality rate nationwide

Chay and Greenstone (2005) 1 µg/m3 TSP WTP: $450-$1,050 in housing price

Bayer et al. (2009) 1 µg/m3 PM10 WTP: $149-$185 in housing price

Ito and Zhang (2016) 1 µg/m3 PM10 WTP: $1.1 per household per year

Our estimation
OLS 10 µg/m3 PM2.5 0.9% in hospital visits and pharmacy purchases,

0.5% in total health expenditure
IV 10 µg/m3 PM2.5 2.6% in hospital visits and pharmacy purchases,

1.5% in total health expenditure
WTP: $9.25 per household annually
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Appendices
A Derivation of Marginal Willingness-to-Pay for Clean Air

In this section, we show how to derive the expressions for the marginal willingness to pay for
pollution reductions described in Section 3. Recall that individual i’s maximization problem can be
written as:

max
{mi,ci,oi}

U [hi,ci,oi,e(a,mi + ci)],

s.t. y(hi)≡ y0 +w(hi) = π + pmi + ci +oi,

and hi = h0 +mi−gi(e(a,mi + ci)),

The Lagrangian can be written as:

Li =U [hi,ci,oi,e(a,mi + ci)]+λi[y(hi)−π− pmi− ci−oi],

The first-order conditions are:

∂L∗i
∂mi

=Uh(1−g′i(ei)em)+Ueem +λi(yh(1−g′i(ei)em)− p) = 0,

∂L∗i
∂ci

=−Uhg′i(ei)ec +Uc +Ueec−λi(yhg′i(ei)ec +1) = 0,

∂L∗i
∂oi

=Uo−λi = 0,

∂L∗i
∂λi

= y(h∗i )−π− pm∗i − c∗i −o∗i = 0.

where Uh,Uc,Uo are the derivatives of the utility function with respect to each component of the
utility function, and yh =

∂yi
∂hi

is the marginal effect of health stock on income.
How does an increase in air pollution a affect the consumer’s health and non-health spending

decisions? Because air pollution a affects a consumer’s wage income, a effectively governs the
relative prices of non-health consumption ci and health consumption mi with respect to online
spending o. The intuition is that when air pollution is high, the effective price of consuming one
unit of c is not just the amount spent on the good, but also the additional income lost from the
increased exposure to air pollution.33 An increase in a therefore corresponds to an increase in the
relative price of ci and a decrease in the relative price of mi. The "price" effect causes ci to decrease

33To see this more formally, notice that the consumer’s net income left over after purchasing ci is equal to y(hi)− ci.
Differentiating that with respect to ci, we see that a 1-unit increase in consumption reduces the consumer’s net income
available for spending on other goods by yhec +1, which is therefore the effective price of consumption with respect
to online spending. Since ec is increasing in a, it follows that the price of consumption is increasing in a.
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and mi to increase.
There is also an income effect: the reduction in income causes both ci and mi to decrease. Fi-

nally, a directly lowers the consumer’s utility by decreasing the health stock, hi, and by increasing
exposure ei. Assuming that consumption and health are complements, the marginal utility of con-
sumption is non-decreasing in hi and non-increasing in ei. Thus a decrease in hi and an increase in
ei caused by an increase in a lead to a further decrease in ci. Thus, taking into account all of these
effects, an increase in air pollution unambiguously causes ci to decrease.

The effect of an increase in a on mi is theoretically ambiguous, because the income and price
effects work in opposite directions, and because the consumer is trading off improvements in health
stock hi (which increases utility) against increased exposure to pollution ei (which lowers utility).
As long as income effects are not too large and the effect of medical spending on health stock hi

dominates the increased exposure ei from going out to visit the doctor, mi should be increasing in
a.

We now derive the marginal willingness to pay for pollution reduction. Denote Vi(a,h0,y0) as
the indirect utility function and L∗i (a,h0,y0) as the optimal value of the Lagrangian. The marginal
WTP for reduction in air pollution can be obtained as:

MWT Pi =−
∂Vi
∂a
∂Vi
∂y0

=−
∂L∗i
∂a

∂L∗i
∂y0

By the Envelope Theorem,

∂L∗i
∂a

=−Uhg′i(ei)ea +Ueea−λiyhg′i(ei)ea−λiπ
′(a)

=Ueea−g′i(ei)ea(Uh +λiyh)−λiπ
′(a) (8)

∂L∗i
∂y0

= λi

Taking the total derivatives of both the health stock hi and exposure ei with respect to a, we
obtain the following equations:

dh∗i
da

=
∂m∗i
∂a
−g′i(ei)ea−g′i(ei)ec(

∂m∗i
∂a

+
∂c∗i
∂a

) (9)

de∗i
da

= ea + ec(
∂m∗i
∂a

+
∂c∗i
∂a

) (10)

Rearranging terms, we obtain the following relations:

λi p =Ueecc +(Uh +λiyh)(1−g′i(ei)ec) (11)

Uc−Uo =−Ueec +(Uh +λiyh)g′i(ei)ec (12)
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Plugging these equations into equation (8), we obtain34:

∂L∗i
∂a

=Ue
(de∗i

da
− ec(

∂m∗i
∂a

+
∂c∗i
∂a

)
)
+
(dh∗i

da
− ∂m∗i

∂a
+g′i(ei)ec(

∂m∗i
∂a

+
∂c∗i
∂a

)
)(

Uh +λiyh
)
−λiπ

′(a)

=Ue
de∗i
da

+(Uh +λiyh)
dh∗i
da
− ∂m∗i

∂a

[
−Ueec +(Uh +λiyh)(1−g′i(ei)ec)

]
+

∂c∗i
∂a

[
−Ueec +(Uh +λiyh)g′i(ei)ec

]
−λiπ

′(a)

=−λi p
∂m∗i
∂a

+
dh∗i
da

(
Uh +λiyh

)
+Ue

de∗i
da

+(Uc−Uo)
∂c∗i
∂a
−λiπ

′(a)

The marginal WTP for individual i is then equal to:

MWT Pi =−
∂L∗i
∂a

∂L∗i
∂y0

=−Ueea−g′i(a)(Uh +λiyh)−λiπ
′(a)

λi

= p
∂m∗i
∂a

+
dπ

da
+ yh(−

dh∗i
da

)+
Uh

λi
(−dh∗i

da
)+(−Ue

λi
)
de∗i
da

+
Uc−Uo

λi
(−∂c∗i

∂a
)

We assume that premiums cannot adjust in response to pollution: dπ

da = 0. This seems reasonable
in the context of China, where the insurance reimbursement rates for the 3 major public insurance
programs are fixed by the government and don’t depend on individuals’ pollution exposure. The
MWTP for individual i can be simplified as:

MWT Pi = p
∂m∗i
∂a

+ yh(−
dh∗i
da

)+
Uh

λi
(−dh∗i

da
)+(−Ue

λi
)
de∗i
da

+
Uc−Uo

λi
(−∂c∗i

∂a
)

To derive the social MWTP, we additionally need to calculate how much the cost of providing
insurance changes in response to air pollution. For any level of air pollution a, the net payment that
the insurance program has to make to individual i equals (1− p)mi. Each individual i also pays a
fixed premium π into the insurance program. The insurance program’s net cost therefore equals:

C = (1− p)
∫

midFi−π

where
∫

midFi is the aggregate medical spending in the economy. When the premium is invariant
to pollution, the change in the cost of providing insurance due to a change in pollution equals:

dC
da

= (1− p)
∫

∂m∗i
∂a

dFi

34In the first line, we plug in (9) and (10). In the second line, we re-arrange and collect terms. To get to the third line,
we plug in (11) and (12).
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B Additional Regression Results using the Value of Transactions

Table B1: OLS Estimates of Pollution Impact on Value of Transactions with 90 Lags

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.01 0.01 0.02 0.01 -0.01 -0.03 -0.02
(0.01) (0.01) (0.02) (0.01) (0.03) (0.02) (0.02)

Current + Past 3d 0.04 0.04 0.08 0.04 -0.07 -0.10 -0.07
(0.03) (0.04) (0.05) (0.05) (0.10) (0.07) (0.06)

Current + Past 7d 0.07 0.07 0.15* 0.07 -0.16 -0.15 -0.10
(0.05) (0.06) (0.09) (0.07) (0.18) (0.10) (0.10)

Current + Past 14d 0.12 0.09 0.27** 0.10 -0.31 -0.17 -0.10
(0.08) (0.10) (0.13) (0.10) (0.34) (0.14) (0.14)

Current + Past 28d 0.19 0.12 0.46** 0.12 -0.37 -0.17 -0.09
(0.13) (0.15) (0.21) (0.17) (0.63) (0.21) (0.22)

Current + Past 56d 0.31* 0.09 1.02*** 0.00 0.40 -0.28 0.01
(0.17) (0.19) (0.37) (0.27) (0.88) (0.34) (0.36)

Current + All Lags 0.49* 0.21 1.14** -0.04 0.43 0.10 0.20
(0.25) (0.26) (0.51) (0.41) (1.31) (0.47) (0.48)

N 141,794 141,656 141,566 137,854 110,257 141,757 141,641

Notes: The dependent variable is log(value of transactions). Same controls as in Table 5. Each row reports cumulative percentage change in the dependent variable
in response to a 10 µg/m3 increase in PM2.5 for the corresponding period. Standard errors in parentheses, clustered at city level. Significance levels are indicated by
*** p < 0.01, ** p < 0.05, and * p < 0.10. The Kleibergen-Paap Wald rk F-statistics is reported in the last row and is cluster-robust at the city level.
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Table B2: IV Estimates of Pollution Impacts on Value of Transactions with 90 Lags

Health-Related Consumption Comparison Groups

Health All Hospital Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.07*** 0.07** 0.01 0.10** 0.01 -0.12** -0.04
(0.02) (0.03) (0.05) (0.05) (0.09) (0.05) (0.05)

Current + Past 3d 0.23*** 0.25*** 0.04 0.34** 0.05 -0.38** -0.16
(0.08) (0.08) (0.15) (0.15) (0.30) (0.17) (0.17)

Current + Past 7d 0.36*** 0.38*** 0.04 0.54** 0.13 -0.55** -0.36
(0.11) (0.13) (0.21) (0.23) (0.45) (0.24) (0.25)

Current + Past 14d 0.42*** 0.46*** 0.03 0.69** 0.33 -0.56** -0.68**
(0.15) (0.17) (0.24) (0.27) (0.59) (0.27) (0.31)

Current + Past 28d 0.43* 0.44 0.29 0.79*** 1.09 -0.34 -0.99**
(0.25) (0.29) (0.34) (0.30) (0.88) (0.34) (0.43)

Current + Past 56d 1.04** 0.83 1.64*** 1.15** 4.07** -0.32 -0.95
(0.47) (0.54) (0.61) (0.47) (1.72) (0.58) (0.75)

Current + All Lags 1.47** 1.08 1.96** 1.20 6.12** 0.54 -0.66
(0.70) (0.78) (0.96) (0.83) (2.61) (0.87) (1.04)

N 141,794 141,656 141,566 137,854 110,257 141,757 141,641
First-stage F 38.35 38.38 38.37 39.68 47.79 38.26 38.30

Notes: The dependent variable is log(value of transactions). Same IV and controls as in Table 5. Each row reports cumulative percentage change in the dependent
variable in response to a 10 µg/m3 increase in PM2.5 for the corresponding period. Standard errors in parentheses, clustered at city level. Significance levels are
indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The Kleibergen-Paap Wald rk F-statistics is reported in the last row and is cluster-robust at the city level.

5


	1 Introduction
	2 Data
	2.1 Air Pollution
	2.2 Consumer Spending
	2.3 Meteorology Data and Summary Statistics

	3 Theoretical Model
	4 Empirical Framework
	4.1 Flexible Distributed-Lag Model
	4.2 Identification
	4.2.1 Sources of Endogeneity
	4.2.2 IV Construction


	5 Empirical Results
	5.1 Short-Term Impact
	5.2 Longer-Term Impact
	5.3 Nonlinearity
	5.4 Robustness Checks
	5.5 Avoidance Behavior
	5.6 Discussion

	6 Conclusion
	Appendices
	A Derivation of Marginal Willingness-to-Pay for Clean Air
	B Additional Regression Results using the Value of Transactions

