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Abstract

Climate change is expected to have large, negative effects on the global

economy. Adaptation by individuals and firms will determine, in part, how

much damage ultimately occurs. This paper introduces a method for estimat-

ing forward-looking adaptation based on changes in expectations about the

weather, provides conditions under which public forecasts provide good mea-

sures for these expectations, and formalizes identification of ex ante adaptation

using ex post observations. To apply the method, I build a novel dataset of

El Niño/Southern Oscillation (ENSO) forecasts and estimate adaptation by

North Pacific albacore harvesters to ENSO-driven climate variation. The re-

sults show that, in this setting, nearly all of the effect of climate variation can be

controlled through adaptation. Detailed, firm-level data allows for exploration

of mechanisms, showing that vessels primarily adapt by timing entry into the

fishery.
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1 Introduction

Climate change is predicted to have substantial, negative impacts on the global econ-

omy. The ultimate amount of damage will depend on both public policy to reduce

emissions of greenhouse gases and on actions taken by individuals and society to

adapt to a changing climate. Despite the role that adaptation plays in determin-

ing climate change outcomes, little is known about the total adaptation potential

of climate-exposed industries or the economy. Moreover, much of what is known

comes from analysis of ex post adaptation to experienced weather rather than ex ante

adjustments made in expectation of climate change. Forward-looking adaptation is

especially important because it helps individuals avoid damages before they occur,

and studying this type of adaptation provides insight into the role of beliefs in de-

termining behavior in environmental contexts. Changes in expectations about the

climate suggest that such behavior will be an increasingly large part of the response

to climate change going forward.

Estimating adaptation is challenging. Many individual mechanisms—such as

choosing different inputs or altering consumption—might help reduce damage from

a changing environment. An extensive literature has shown that individuals and

firms do adapt to environmental changes along a number of dimensions.1 The policy-

relevant parameters, however, are the damage that results from changes in the en-

vironment net of all adaptation mechanisms and the aggregate cost of adaptation.

Identification of these quantities either requires a priori knowledge of each adaptation

mechanism available to agents and suitable exogenous variation for each one, or it

involves finding a way to identify the overall effect of adaptation without reference

to the underlying mechanisms. Following the seminal work of Dell et al. (2009), a

recent literature has used average weather to estimate environmental effects gross

of adaptation and used high frequency variation in weather to measure effects net of

adaptation. Comparison of these estimates provides a measure of overall adaptation.2

Surprisingly, given the evidence on individual adaptation mechanisms, these studies

have generally found that total adaptation has little to no effect on output losses from

1For some recent examples, see Greenstone and Gallagher (2008), Neidell (2009), Graff Zivin
et al. (2014), Graff Zivin and Neidell (2011), Deschênes and Greenstone (2011), Taraz (2015), and
Barreca et al. (2016).

2These papers generally fall into one of two groups: those using short-run variation in the weather
to get net-of-adaptation estimates and cross-sectional average weather to get gross-of-adaptation
estimates, as in Dell et al. (2009, 2012); Hsiang and Narita (2012); Butler and Huybers (2013);
Schlenker et al. (2013); Moore and Lobell (2014), and an approach that compares short-run variation
to sub-sample average weather as in Burke and Emerick (2016). For a review, see Dell et al. (2014).
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weather.3

In this paper, I use variation in individual expectations induced by public forecasts

to identify total, ex ante adaptation.4 This method contrasts with previous studies

of total adaptation both in terms of the object of study and in the assumptions

necessary for identification. Forecasts identify forward-looking adaptation rather than

actions taken after an event occurs. Adaptation that occurs in advance of a change

in the environment could be particularly important in many environmental contexts

including climate change where disaster can result from a failure to avoid the bad

state. Some researchers have questioned whether individuals will perform substantial

ex ante adaptation in real-world settings (Mendelsohn, 2000). The method presented

here allows for quantification of the degree of ex ante adaptation, and the empirical

results show that such adaptation is practically important.

Intuitively, identification comes from an assumption that expectations about the

weather only affect firm profit through input decisions—that there is no direct effect

of information. Conditional on realizations of weather, then, forecasts contain only

information available to firms before an event occurs, so the change in revenue with

respect to a change in this information identifies the overall benefit of ex ante deci-

sions. Under an additional assumption that the firms set all inputs before the state

realizes, forward-looking adaptation is equal to total adaptation, and the method

also identifies the direct effect of weather via weather realizations conditional on fore-

casts. Under these assumptions, the two estimates provide a complete picture of the

damages a firm experiences due to weather.

The method shares the benefit of the work following Dell et al. (2009) that the re-

searcher need not know the full suite of adaptation mechanisms available to an agent.

In practice, this is because the estimation strategy regresses firm revenue on a forecast

of a weather process and realizations of that process, and the forecast captures the

“reduced form” or aggregate effect that forward-looking-input changes have on firm

revenue. The method also has some unique benefits. First, by allowing the researcher

3Dell et al. (2009) find evidence for substantial adaptation in the gross domestic product–
temperature relationship when comparing rich countries to poor countries. Over the last 50 years,
however, Dell et al. (2012) shows that temperature effects on GDP have not weakened within income
groups, a point reinforced by Burke et al. (2015).

4A small but growing literature in environmental economics is using forecasts to study forward-
looking behavior. Neidell (2009) looks at the effect of pollution forecasts and public announcements
on consumer behavior, Rosenzweig and Udry (2014) use monsoon forecasts to study optimal weather
insurance for farmers, and Severen et al. (2016) ask whether farm land values have incorporated
information from long-run climate forecasts.
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to use firm revenue as the dependent variable, data requirements are reduced relative

to envelope theorem-based methods that require profit (Hsiang, 2016). Second, the

method allows for straightforward generalization to cases with discrete adaptation

mechanisms, with the intuition again being that the reduced form effect averages

over both continuous and discrete inputs. Third, by using a time varying measure of

expectations, this strategy allows for empirical methods that alleviate omitted vari-

able bias concerns. For instance, fixed characteristics of individuals or locations can

readily be controlled for.

Applying the method, I estimate the degree of forward-looking adaptation to El

Niño/Southern Oscillation (ENSO) by albacore tuna harvesters in the North Pacific.

The empirical setting is particularly suitable for using forecasts to estimate adapta-

tion. ENSO, a major source of global climate variation stemming from periodic but

stochastic warming and cooling of the equatorial Pacific Ocean, was thought to be un-

forecastable as recently as the mid 1980s. Within the decade, however, breakthroughs

in modeling, computing, and data collection allowed climatologists to create accurate

forecasts of ENSO months in advance of adverse events. Concurrent with these de-

velopments, the National Oceanic and Atmospheric Administration (NOAA) began

a program to disseminate these forecasts to ENSO-exposed fisheries. The albacore

fishery, historically a setting where output and profit declined substantially during

ENSO, was one such fishery. Because the fishery is spatially distant from the area

where ENSO forms, these forecasts and attendant NOAA reports on ocean conditions

were plausibly the only source of ENSO information available to albacore harvesters

over the sample period.

Estimates show that the information in the forecasts is important to the fishery.

The forecast has more than four times as large of an effect on revenue as does the

realization of ENSO. Interpreting this through the lens of the model, the estimates

suggest that forward-looking adaptation is large and effective in this setting. Har-

vesters are able to reduce the direct effect of ENSO to nearly zero, almost eliminating

observable profit losses from this event. The results also show that if adaptation

were ignored, estimates of the effect of ENSO on the fishery would be biased in two

ways. First, the direct effect of ENSO on output and profit would be overstated be-

cause correlation between beliefs and outcomes causes some of the adaptation effect

to be attributed to the direct effect. Overstatement of the direct damage from an

environmental process when adaptation is ignored is a central concern when setting

appropriate mitigation policy Mendelsohn et al. (1994). Second, the total effect of
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ENSO would be understated because realizations of ENSO do not capture the adap-

tation effect that is only operating through expectations. This understatement, in a

case where adaptation is costly, could lead to smaller than optimal policy responses.

Exploiting the richness of the spatially explicit, high-frequency, firm-level data,

secondary results examine mechanisms by which the vessels use the forecasts to adapt.

Overall, vessels respond to the forecasts by reducing their fishing effort during ad-

verse periods. On the intensive margin, in anticipation of changes in ENSO vessels

move closer to areas where albacore are expected to congregate given the weather

change. This behavior suggests that ENSO mainly affects the fishery by increasing

the uncertainty about where optimal fishing grounds will be located.

Similarly, within a month that the vessel chooses to go fishing, vessels fish for

fewer days and take slightly fewer trips per month if they anticipate that climate

conditions will be bad. Across months, vessels choose to actively participate in the

fishery much less often if ENSO is forecasted to be extreme. In contrast, the effect

of realized ENSO conditional on the forecasts causes little or no change in behavior.

Overall, the mechanism analysis supports the primary result. Revenue falls when

the forecast of ENSO is high, but the behaviors engaged in by the firm are generally

cost-saving measures, so the firms insulate themselves from negative profit shocks.

Finally, the model can be extended to study firm risk tolerance and learning. I

adopt the reduced form of the model from Rosenzweig and Udry (2014) to deter-

mine whether the firms in this setting are risk averse. Intuitively, a risk-averse firm

should care both about the level of the forecast and its ex ante uncertainty. In this

setting, firms do appear to be risk averse, since the past accuracy of ENSO fore-

casts (as measured by recent, historical mean squared forecast error) and a narrowing

of the dispersion of the members of the forecast ensemble both cause higher levels

of adaptation. Second, firms with more ENSO experience are better able to adapt

than novice firms. Together with the headline estimates, these results highlight both

the opportunity and limitations of using information as a public policy response to

environmental changes.

ENSO is an important, global driver of medium-term climate that, in addition

to fisheries, also affects health, civil conflict, agricultural productivity, worldwide

commodity markets, and many other outcomes (Kovats et al., 2003; Hsiang et al.,

2011; Solow et al., 1998; Brunner, 2002). The results from this paper show that

economic agents can manage their risk from this climate process by making ex ante

adaptation decisions. In the context of broader, global climate change, if vessels
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are able to adapt to changing ocean temperatures due to climate change in a way

that is similar to how they have adapted to ENSO, then the the results suggest

that realized climate change damages might be greatly reduced. Caution should

be exercised, however, since adaptation dynamics will certainly play an important

role when extrapolating from the medium-term, cyclical variation considered in this

paper to the longer-term changes caused by global climate change. Moving beyond

the particular setting, the empirical method from this paper can be use to estimate

adaptation in a number of industries to better inform impacts from ENSO and other

weather phenomena. The novel dataset of ENSO forecasts created for the project

can be used to assess adaptation to this climate process across the globe, and use of

routine weather forecasts can help understand the scope for weather adaptation more

generally.

Outside the context of environmental adaptation, the method discussed here also

illustrates the contribution that analysis of forecasts of environmental processes can

make to understanding long-standing problems in firm and consumer theory. For

instance, the theory of adaptation shares a formal similarity with theories of firm

flexibility introduced by Stigler (1939). Such theories are generally difficult to test

due to a lack of data on expectations. Using environmental forecasts will allow for

investigation of firm trade-offs in stochastic settings. Forecasts of environmental pro-

cesses are well suited to study these issues not only because they are routinely used by

firms and are easily observable by the researcher, but also because the processes about

which the forecasts are being made are generally exogenous. This feature contrasts

with other settings like finance where forecasts have the potential to endogenously

change the state, complicating empirical analyses. Studying forward-looking behav-

ior will likely become even more important in the future. Going forward, growing

bodies of data and falling costs of data analysis imply that more firms will be making

expectation-driven investments, increasing the need and opportunity to study such

behavior.

The rest of the paper proceeds as follows: Section 2 formalizes the role of expecta-

tions in adaptation, provides conditions under which public forecasts can act as good

proxies for agent expectations, and shows that a regression framework can identify

both climate adaptation and direct weather effects. Section 3 gives background on

the empirical setting and discusses the data. Section 4 lays out the specific empirical

analysis that will be performed on the data, and Section 5 reports the results of esti-

mating that model as well as robustness checks and tests of assumptions. Section 6
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investigates adaptation mechanisms over multiple time horizons. Section 7 examines

heterogeneity in the adaptation response and draws out additional implications of

forecast-driven adaptation. Finally, Section 8 concludes.

2 Identifying adaptation

2.1 Expectations identify ex ante adaptation

Economic adaptation is commonly defined as the actions taken by an individual

or group of individuals to help reduce the negative effects of a potential change in

the environment or to capitalize on gains from such a change.5 Formalizing this

notion of adaptation helps one understand how to estimate both adaptation and total

environmental impacts. In particular, a formal definition of adaptation will generalize

from the single adaptation strategies or mechanisms that much of the economics

literature has focused on—staying indoors on hot or polluted days (Neidell, 2009;

Graff Zivin and Neidell, 2009), changing the mix of crops or the use of agricultural

inputs (Rosenzweig and Udry, 2014; Hornbeck and Keskin, 2014), air conditioning

(Barreca et al., 2016), or migrating (Deschênes and Moretti, 2009)—to the overall

effect of adaptation on agent welfare.

The total effect of adaptation incorporates the effects of all adaptation mecha-

nisms and identifying it is necessary for decomposing impacts into the effect that an

agent chooses to control—the adaptation effect—and the residual portion that the

agent chooses not to adapt away—the direct effect. This decomposition is important

for understanding optimal public policy. If the scope for adaptation is small, then

mitigation can have large, first order effects on the outcomes of agents. On the other

hand, if adaptation is done in response to a pollutant, then even if adaptation poten-

tial is high, the costs of adapting should enter into the calculation of the pollution

externality.

In this study, I will use expectations of agents to estimate the value of total, for-

ward looking adaptation. This is the benefit to the firm of all behavioral responses

that occur in advance of a change in the future state of the environment. Expectations

drive such changes, as a consideration of the link between the adaptation mechanisms

listed above makes clear. In making investment decisions or decisions like migration

that involve high fixed costs, it is natural to characterize behavior as stemming from

5For examples of such a definition, see the Environmental Protection Agency’s climate change
website (www3.epa.gov/climatechange/adaptation/) or IPCC (2014). This study will primarily
focus on individual consumer or firm adaptation.
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an expectation that conditions will warrant the investment in the future. For behav-

iors that take time to set up or realize, expectations also play an obvious role. Even

for short-run behavior, however, expectations are still important. This link is drawn

explicitly by Neidell (2009). In the setting of that paper, public warnings are issued

each day if pollution levels are forecasted to surpass a threshold. These forecasts

are shown to have effects on how people choose their outdoor activities that day,

highlighting the importance of expectations to even near-term decisions.

Formalizing this notion in a standard model makes the centrality of beliefs to

total, forward-looking adaptation explicit and will lay the framework for econometric

identification results. Consider a firm producing a univariate output at time t which is

a function of weather as well as inputs that are chosen by the firm manager. Assume

that the firm’s production function is multiplicatively separable in terms of weather

and inputs, so that at the beginning of each period, the firm’s problem is to maximize

expected profit6

max
x

Et−1[πt] = ptf(xt)Et−1[g(Zt)]− c′txt (1)

Output price are denoted by by p, c is the J element vector of input prices, x is the

J dimensional vector of inputs, and Z is a stochastic weather variable with at least

one finite moment.7 Further assume that f(x) is twice continuously differentiable

and concave.8 As is standard, a subscript on an expectation operator denotes the

information set on which the expectation is conditioned, so Et−1[g(Zt)] is the expected

weather this period conditional on information about the weather in all time periods

up to and including period t − 1. To emphasize the uncertain effect of weather on

the production process, assume that the firm must choose each xjt before the weather

in period t is realized and that all xj’s are non-separable from Z.9 Denote realized

revenue by yt = pf(xt)g(zt) and ex ante revenue as the expectation of this term

6Multiplicative separability is not a necessary assumption, but it improves the clarity of pre-
sentation and simplifies the estimating equation. For an extension of the model to non-separable
weather, see Section A. I test the separability assumption empirically in Section 5.

7The model is presented with a single weather variable, Z, but nothing prevents the inclusion of
a vector of weather variables. In that case, the vectors of derivatives given below would simply be
replaced by Jacobian matrices.

8See Section A for the extension to discontinuous inputs. Identification remains unchanged, but
the welfare conclusions discussed below will change. The function g need not be differentiable since
the firm is not directly choosing Z.

9Additively separable inputs would not change in response to expected weather and are therefore
not adaptations under my definition. For the more general model considering inputs chosen after
weather has realized, see Section A.

8



with respect to information at t − 1. Prices are assumed to be constant. In a more

general discussion of climate change impacts, it might be appropriate to consider

prices that are a function of the climate. The estimator of total adaptation used

here will be unaffected by allowing for climate-driven output price changes under

additional assumptions on the elasticity of demand for the firm’s output that would

rule out extra risk taking during adverse events (Allen et al., 2016).10

An optimizing firm chooses inputs to maximize the value of Equation (1). Aside

from the weather variable, the problem is a standard one, as indicated by the repre-

sentative first order condition.

ptEt−1[g(Zit)]
∂f(xit)

∂xjit
= cjt. (2)

Adaptation, as per the above definition, is the response of agents to anticipated

changes in environmental conditions. In the context of the model, the agent chooses

inputs, and environmental conditions are determined by the distribution of weather.

The first order conditions make three things clear. First, adaptation is nothing

more or less than the set of changes in all inputs that are non-separable from weather.

Optimized inputs implicitly defined by Equation (2) can be denoted x∗jt(p, c,Et−1[g(Zt)])

for all j and t, so the formal definition of adaptation is

A =

(
∂x∗1t(p, c,Et−1[g(Zt)])

∂Et−1[g(Zt)]
, . . . ,

∂x∗Jt(p, c,Et−1[g(Zt)])

∂Et−1[g(Zt)]

)′
=

∂x∗t
∂Et−1[g(Zt)]

(3)

where, because this is a one-period problem, the time subscript on A has been

dropped.

Second, in the continuous case, optimal adaptation is determined by an equiva-

lence between the marginal cost of adapting and the marginal benefit of adapting.

The nominal return is a function of the marginal productivity of each input as well

as the expectation of the firm about the future state. This equivalence suggests

that, in principle, estimates of adaptation could come from exogenous changes in any

of these variables. To estimate total adaptation, however, one would need to have

prices for all adaptation mechanisms or shocks to all marginal products. Aside from

the high data hurdle, such a procedure requires the researcher to know the full set of

available adaptation mechanisms a priori. Using expectations, in contrast, allows the

10In the empirical setting, the assumption of prices being uncorrelated with weather is testable
and appears to hold. See Section 5.2.
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researcher to be agnostic about the set of available mechanisms since expectations will

fully capture the reduced form effect of all forward-looking adaptation. The downside

to using expectations is that one cannot analyze the contribution of each adaptation

mechanism to the overall level of adaptation; one would need an instrument for each

input in order to do this. Relatedly, the first order conditions suggest that adapta-

tion could be inferred from reductions in the direct effect of weather on profit over

time. If adaptation potential increases, for instance, due to increasing productivity

or decreased costs, then the direct effect of weather on profit should decrease. This

is the empirical strategy pursued by Hornbeck and Keskin (2014).

Third, the continuity assumption is not necessary for the definition of adapta-

tion. For discrete adaptations like technology adoption or changes in land use, the

derivatives in Equation (3) can be replaced by differences. In this case, adaptation

is the change in inputs, broadly defined, in response to changes in the environment.

Handling the case of discrete inputs is an important feature of any empirical method

for studying adaptation in light of the dramatically different welfare implications of

the continuous versus discrete cases. Continuous adaptation is, in classical models,

welfare neutral (a direct result of the envelope theorem) while discrete adaptations

are potentially welfare improving as shown by Guo and Costello (2013). Estimates of

the value of adaptation using expectations and revenue are robust to discrete inputs,

as will be discussed below.

Continuing the formalization within the continuous model, the value or benefit of

adaptation is the adaptation vector multiplied by the revenue value of those changes,

denoted

V (A) =
∂Et−1[y∗t ]
∂x∗t

· ∂x∗t
∂Et−1[g(Zt)]

(4)

where arguments of the maximized output and choice variables have been suppressed

for clarity. Estimating this value is the primary goal of this study. Such an estimate

is important for many reasons. Under the assumption of continuous adaptation, the

value of adaptation provides information on adaptation costs, it provides information

on how much adaptation contributes to revenue for the firm, and it is crucial, in

general, for estimating the total effect of weather on the firm.

Also important for policy is the direct effect of weather. In the context of the
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model, the direct effect of weather is

∂Et−1[y∗t ]
∂Et−1[g(Zt)]

. (5)

Under the assumption that all adaptations are forward looking, the direct effect of

weather on revenue is equal to the direct effect of weather on profit. This assumption

rules out amelioration behavior which happens after the state realizes (Graff Zivin

and Neidell, 2013). In a more general model, discussed in Section A, that incorpo-

rates choices made after the state realizes, it can be seen that both expectations and

realizations of weather enter a more general adaptation term.

From the model, one can see that if a researcher observes the expectations of

agents and has access to ex ante data, then both the value of adaptation and the

direct effect of weather can be estimated. In general, neither of these conditions is

likely to hold. The next two sections show that identification can still be achieved

with ex post data and a well-chosen proxy for agent beliefs.

2.2 Identifying ex ante adaptation with observed data

This section formalizes identification of the value of adaptation and the direct effect

of weather using ex post observable data. It is assumed that the researcher has access

to accurate measures of agent expectations about the weather. This assumption is

relaxed in the next section. Here, I show parametric identification results with a

known functional form for the function of weather, g, and I assume that weather is

multiplicatively separable from inputs. For the more general case with non-separable

inputs and non-parametric identification, see Section A.1.

Intuitively, identification is driven by the assumption that, conditional on expec-

tations, realized weather does not influence the input decisions made by firms at the

beginning of each period. Under this assumption, holding expectations fixed also

holds inputs (adaptation) fixed. Varying the realization of weather in this case traces

out the direct effect of weather on revenue. Changes in expectations holding realiza-

tions fixed have a complementary effect. Only forward-looking inputs are varied in

this case, identifying the output effect of adaptation.

More formally, inputs are a function of expected weather and not realized weather,

so Et−1[f(x∗)] = f(x∗). Thus, the direct effect is identified exactly by ex post data

because ∂yt/∂g(zt) = pf(x∗) = ∂Et−1[yt]/∂Et−1[g(Zt)].

For identification of the adaptation effect, note first that with respect to the in-

formation at time t − 1, ∂x∗/∂Et−1[g(Zt)] is known, so Et−1[∂x∗/∂Et−1[g(Zt)]] =
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∂x∗/∂Et−1[g(Zt)]. Showing that Et−1[∂yt/∂Et−1[g(Zt)]] = ∂Et−1[yt]/∂Et−1[g(Zt)] re-

quires an interchange of integration and differentiation. The assumption of mono-

tonicity of output with respect to x allows for the application of the dominated con-

vergence theorem, so this interchange is valid. Together, then, these two results show

that the expectation of the derivative of ex post output with respect to expected

weather recovers the partial derivative of ex ante output with respect to expected

weather. For estimation, a regression of revenue on g(zt) and Et−1[g(Zt)] will return

unconditional averages of these derivatives. These averages identify the derivatives

of interest after an application of the law of iterated expectations.

2.3 Using public forecasts to measure beliefs

Given the identification argument presented above, the ideal estimating equation to

measure adaptation and direct effects from weather would be

yt = α0 + α1g(zt) + α2Ept−1[g(Zt)] + νt, (6)

where Ept−1[g(Zt)] is the private expectation that the agent holds about the weather

next period.

Observing these private expectations is usually not possible in practice, and finding

good proxies for agent beliefs is challenging in general. Researchers studying weather

effects, however, are well positioned to employ a method with many good theoretical

properties—using professional forecasts of the relevant weather process as the measure

of agent beliefs. Modern weather forecasts are formal statements of the expectations

of the forecaster about future conditions, and many individuals and firms rely on

these forecasts to make weather-contingent plans. Therefore the forecasts have the

potential to capture some or all of the expectations of private agents in a way that is

amenable to estimation.

Professional forecasts will provide a good measure of agent beliefs under the as-

sumptions that the forecasts are public, that agents are maximizing expected profit,

and to the degree to which the forecasts capture the full information available to

agents. Under these conditions, it can be shown that forecasts are good proxies for

agent expectations.

To see this, denote the public forecast as ĝ(z), and consider the public forecast

as a proxy for the private expectation (Wooldridge, 2010, ch.4). The first condi-

tion for a good proxy is that it is redundant with the variable being proxied for. In

this case, redundant means that if the true expectations of the agent were observed,
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then the public forecast would not be helpful in explaining revenue. Formally, that

E
[
y|g(z),Ep[g(Z)], ĝ(z)

]
= E

[
y|g(z),Ep[g(Z)]

]
. Optimization ensures that this con-

dition will be satisfied. Private beliefs should always be either equal to or sufficient for

the public forecast (if not, then the agent is losing profit by ignoring information), so

conditioning on public forecast will not add any information relative to conditioning

on private forecasts.

The second condition for a forecast to be a good proxy is, informally, that it

removes the endogeneity of realized weather that occurs if agent expectations are not

taken into account in Equation (6). Writing public forecast as a linear projection of

private beliefs

Ept−1[g(Zt)] = θ0 + θ1ĝ(zt) + ξt (7)

this condition can be formalized as saying that if the researcher estimates

yt = α0 + α2θ0 + α̃1g(zt) + θ1α2ĝ(zt) + α2ξt + νt.

then the covariance between realized weather and the error term from Equation (7)

needs to be zero. In other words, one needs E[g(zt)ξt] = 0, assuming that exogeneity

holds for the true Equation (6). Under this condition, the estimate of the direct effect,

α1, will be consistent by the usual arguments for the consistency of the ordinary least

squares estimator. A sufficient condition for this to hold is that the public forecaster

has a weakly larger information set than the private agent. Elaboration on this

condition can be found in Section A.5.

The adaptation effect, α2, can be identified under a substantially weaker assump-

tion. To get correct inference on this parameter, the researcher only needs that θ1

be equal to 1. A sufficient condition for this to hold is that the private and public

forecasts are both unbiased estimates of g(zt). In that case, ĝ(zt) will be an unbiased

estimate of Ept−1[g(Zt)] as well, so θ1 = 1 and θ0 = 0. Section 3.1 provides evidence

that unbiasedness is the stated goal of forecasters in the empirical setting.

An alternative approach to measuring agent expectations is to use average weather.

When studying climate adaptation, using average weather might not provide good in-

ference. First, climate change implies that the distribution of weather is shifting over

time, so if agents are updating their beliefs about the climate, then historical averages

will not be perfectly accurate proxies for agent beliefs.11 In cases where the relevant

11The error in this approximation can be bad in extreme cases. For instance, if agents have
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stochastic variable is stationary and agents have unchanging beliefs, then adaptation

as defined by Equation (3) will be zero, and the appropriate way to study adaptation

would be through changes in returns to or prices for adaptation mechanisms. On the

other hand, using contemporary averages makes the assumption that agents have and

act on perfect foresight about the average temperature. This will lead to attenuation

of adaptation estimates in cases where agent beliefs do not perfectly match realized

changes in climate. This method also assumes that the period over which weather

is averaged is equal to the period over which beliefs about the weather are fixed.

Finally, average weather cannot be used in cases where the relevant climate shifts

are measured in terms of anomalies (as in the empirical setting of this study). The

expected value of the process over any sufficiently long period in this case will be zero

by construction, so no identifying variation in average weather will exist.

2.3.1 Violations of forecast proxy conditions

In many cases where the forecast proxy conditions are violated, the adaptation esti-

mate will be attenuated and the direct effect will be larger in magnitude—both leading

to underestimates of the relative degree of adaptation. Thus, the method presented

here provides a conservative estimate of adaptation under plausible assumptions.

Maintaining the assumptions that forecasts are public and that agents are fully

sophisticated but making no assumption about the relationship between the public

and private forecasts, an optimizing firm’s private forecast will only differ from the

public forecast if there is additional predictive power in the private forecast. In that

case one should expect that E[g(zt)ξt] > 0, so the usual omitted variable bias formula

can be applied to find that plim |α̃1| =
∣∣∣α1 + α2

Cov(ξ,g(z))
V(g(z))

∣∣∣ > |α1|. The magnitude of

the coefficient is larger because the sign of α1 should be the same as the sign of α2 and

because of the positive covariance between ξ and g(z). Therefore, the direct effect

will be over-estimated, leading to downward bias on the relative degree of adaptation.

Perhaps due to ensemble averaging considerations following Stein (1956) and Efron

and Morris (1975), a firm or the forecaster might prefer a biased estimator. If the

level of bias is constant, the bias will enter θ0, and the estimate of the adaptation

effect will still be consistent for the true adaptation effect. The covariance between

ξt and realized weather will no longer be zero, and the inconsistency will depend on

perfect foresight and the mean of the climate process is drawn from a stochastic process with no
serial correlation, then the historical average weather will have zero correlation with the expected
weather this period. In general, by measuring true beliefs with error, average weather will provide
attenuated estimates of adaptation and exaggerated estimates of direct effects.
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the sign of the bias of the estimator employed by the forecaster or agent.

If the firm and forecaster information sets are partly disjoint or if the firm creates

its own forecasts but with a smaller information set than the public forecaster, then

one could see bias in α2. For instance, if the firm consumes its own forecast even

though it is inferior to the public forecast, then the public forecast would possess

measurement error when used in the estimating equation. In general, so long as the

public forecast is positively correlated with the realized state, then unless the private

agent has a reason to construct a negatively correlated forecast, using the public

forecast for estimation will return the correct sign on the adaptation effect and will

help reduce the omitted variable bias from ignoring adaptation.

3 Background and data

3.1 Albacore fishing, ENSO, and ENSO forecasting

Three attributes of the North Pacific albacore fishery make it an ideal setting to study

adaptation. First, ENSO has a substantial effect on the fishery both because ENSO

causes substantial changes to the weather and oceanic conditions of the North Pacific

and because albacore are sensitive to those changes. Second, NOAA issues forecasts

directly to albacore harvesters in the fishery, and interviews with harvesters indicate

that these forecasts are utilized. Third, concerns about other confounding effects are

minimal. The fishery does not suffer from congestion, is not subject to catch quotas,

and the albacore population is relatively healthy (Albacore Working Group, 2014).

Also, the U.S. harvesters studied here account for a small part of the global albacore

tuna output, mitigating concerns about aggregate output price effects from ENSO,

and the primary variable cost comes from diesel fuel, a globally traded and produced

commodity.

Albacore (Thunnus alalunga) typically follow oceanic fronts with strong tempera-

ture gradients and stay in waters with sea surface temperature between 15 and 20◦C

(Childers et al., 2011). The temperature preferences of albacore make them highly

responsive to changes in climate. The preferences of the albacore have led harvesters

to develop rules of thumb based on sea surface temperature ranges when determining

where to try to catch fish (Clemens, 1961; Laurs et al., 1977). Since the mid-1980s,

scientists and harvesters have become increasingly aware of the influence of other

factors in determining albacore location, including water color and clarity, but tem-

perature remains an important choice variable for harvesters when determining fishing

location (Laurs et al., 1984; Childers et al., 2011).
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ENSO affects the temperature of the North Pacific (see Figure 6) and oceanic

structures like temperature gradients. These shifts make it harder for vessels to

locate albacore (Fiedler and Bernard, 1987).12 ENSO, therefore, generally entails

more intensive and costly search for fish. In interviews, harvesters indicate that if

uncertainty about optimal fishing location is too high or if expected fishing grounds

are too distant from shore, they respond by temporarily exiting the albacore fishery

in order to pursue crabs and other pelagic species less affected by ENSO conditions

(Wise, 2011; McGowan et al., 1998).

The average fishing trip is about two weeks long, and trips can last up to three

months. Harvesters generally take between 1 and 2 trips per month. An ideal trip

involves an initial transit to a fishing ground followed by little movement of the vessel

as actual fishing occurs. Because ENSO effects are felt in the fishery as quickly

as a week after equatorial temperature changes (Enfield and Mestas-Nuñez, 2000),

this strategy can be disrupted by unanticipated ENSO events. Unfortunately for the

harvesters, prior to the late 1980s, ENSO was not forecastable. In fact, despite the

importance of ENSO to global climate, equatorial temperature anomalies were often

not even detectable prior to the deployment of the Tropical Atmosphere Ocean (TAO)

array of weather buoys between 1984 and 1994 (Hayes et al., 1991).13

Skillful forecasts of ENSO were developed starting in the mid 1980s. An early

ENSO forecast based only on atmospheric modeling was published by Inoue and

O’Brien (1984). Cane et al. (1986), a group of researchers at the Lamont-Doherty

Earth Observatory (LDEO), published the first coupled ocean-atmosphere forecast,

termed LDEO1. In the late 1980s, NOAA’s Climate Prediction Center (CPC) began

to produce a statistical forecast of ENSO based on Canonical Correlation Analy-

sis (CCA). A stated goal of the LDEO forecasting group was to produce unbiased

forecasts of ENSO (Chen et al., 2000).

Starting in June 1989, the LDEO forecast was issued publicly in NOAA’s Climate

Diagnostics Bulletin, a publication of global climate information and medium term

climate forecasts. The Climate Diagnostics Bulletin incorporated additional ENSO

12Lehodey et al. (2003) shows that, in addition to spatial dislocation, Pacific albacore recruitment
tends to fall after El Niño periods, indicating that there might be temporal spillovers between ENSO
and catch in the fishery. I check this in Table 13 and rule it out as an explanation of the short-run
results.

13NOAA’s history of ENSO measurement notes, “Development of the Tropical Atmosphere Ocean
(TAO) array was motivated by the 1982-1983 El Niño event, the strongest of the century up to that
time, which was neither predicted nor detected until nearly at its peak.” http://www.pmel.noaa.

gov/tao/proj_over/taohis.html
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forecasts as they were published, starting with the CCA forecast in November 1989.14

Today, the Bulletin publishes 21 ENSO forecasts on a monthly basis. See Appendix

B.1 for more information on the content of the Bulletins. Analyses of forecast accuracy

and performance over time can be found in Barnston et al. (2010, 2012).

At nearly the same time that ENSO forecasts were being created, NOAA started a

program called CoastWatch, first launched in 1987, to disseminate forecasts, satellite

imagery, and other data to coastal businesses and individuals. ENSO forecasts from

the Climate Diagnostics Bulletin were incorporated in the CoastWatch releases, and

personal correspondence with albacore harvesters indicates that CoastWatch forecasts

were routinely posted at albacore fishing ports along the Pacific coast. Even today,

private companies selling weather forecasts and satellite imagery to the albacore fish-

ery repackage the NOAA ENSO forecasts.15

For this paper, I focus on the effects of the 3-month-ahead ENSO forecast. The

use of this forecast is primarily due to data constraints—it is the only forecasting

horizon that I observe over the full sample period—but it is also because of practical

considerations. The Bulletin forecasts are typically released a month after they have

been generated, so a three month ahead forecast is, practically, a one or two month

ahead forecast from the perspective of the fisher. Given the timing of ENSO effects

being felt in the North Pacific and typical trip length, this forecast horizon is likely

to be the relevant one for fishing decisions.

3.2 Dataset construction

For estimation, data on equatorial and North Pacific sea surface temperatures, ENSO

forecasts, vessel-level fish catch, and relevant prices need to be combined. Here, I

briefly describe each dataset used in the analysis. Summary statistics for the variables

can be found in Table 1 and more details about dataset construction can be found in

the Appendix.

NOAA’s Climate Prediction Center (CPC) publishes monthly average tempera-

ture anomalies in what is known as the Niño 3.4 region of the Pacific, a rectangular

area ranging from 120◦W-170◦W longitude and 5◦S-5◦N latitude. Anomalies are

calculated with respect the thirty-year average temperature. This study uses the

1971-2000 average. Following Trenberth (1997) and NOAA, I classify El Niño and La

14For examples of these historical Bulletins, one can see the archive going back to 1999 at the fol-
lowing link: http://www.cpc.ncep.noaa.gov/products/CDB/CDB Archive html/CDB archive.shtml

15For instance, SeaView Fishing, a private firm used by the fishers that I spoke to, simply links
to NOAA’s ENSO forecast website for predictions of El Niño and La Niña. See http://www.

seaviewfishing.com/News.html
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Niña events based on five consecutive months where the three month moving average

of the Niño 3.4 index is greater than 0.5◦C for El Niño or less than −0.5◦C for La

Niña.

Table 1: Summary Statistics

Panel A: Pre-forecast sample (1981-May 1989)
Mean St. Dev. Obs.

Catch per month (fish) 163.30 611.15 26,415
Catch weight (pounds) 1,079.31 5,849.68 26,415
Niño 3.4 index 0.01 1.02 26,415
Vessel length (ft) 50.50 9.63 26,385
Diesel price (2001 $) 1.95 0.68 21,710
Albacore price (2001 $) 1.35 0.27 20,061

Panel B: Post-forecast sample (June 1989-2010)
Mean St. Dev. Obs.

Catch per month (fish) 264.92 980.86 69,057
Catch weight (pounds) 3,081.94 12,687.92 69,057
Niño 3.4 index 0.16 0.81 69,057
3 month-ahead Niño 3.4 forecast 0.09 0.58 69,057
Vessel length (ft) 55.01 18.73 66,444
Diesel price (2001 $) 1.72 0.79 67,483
Albacore price (2001 $) 1.08 0.23 62,894

Notes: Averages, standard deviations and number of observations for
primary variables in the dataset are shown for the pre-forecast (panel
A) and the post-forecast (panel B) samples. Between 1981 and 2010,
the dataset contains 2,125 unique vessels.

Data on ENSO forecasts come from two sources. Public ENSO forecasts have

been issued as part of NOAA’s Climate Diagnostics Bulletin since June 1989. These

are generally point forecasts for the coming few months or seasons, along with obser-

vations of ENSO from recent months. I digitized forecasts from these bulletins for

the period from 1989 until 2002. In 2002, the International Research Institute for

Climate and Society (IRI) began keeping records of publicly issued ENSO forecasts,

and Anthony Barnston at IRI provided me with digital records for the period from

2002 to the present. More details on the construction of the historical forecast dataset

can be found in Appendix B.1.

The data for the albacore fishery consist of daily, vessel-level logbook observa-

tions of U.S. troll vessels from 1981 to 2010. All fishing days are observed, with

additional information provided for some transiting and port days (these latter data

do not appear to be consistently reported). For each fishing day, the logbooks report
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the number of fish caught, the weight of fish, a daily location record (latitude and

longitude), the sea surface temperature, the number of hours spent fishing, and the

number of troll lines used. At the trip-level, the logbooks report vessel length, depar-

ture and arrival port, and total weight of catch for the trip. Landing port is matched

to the Pacific Fisheries Information Network (PacFIN) database on annual albacore

sale prices for 1981 to 2010. Only ports in the continental U.S. are in the PacFIN

database, so albacore prices are only available for those landings (about 78% of the

primary estimation sample).

The vessels in the sample use #2 marine diesel fuel. Where available, the price for

this fuel is used for cost calculation, but the price for this exact fuel type is not avail-

able over the full sample. From 1983 to 1999, monthly, state-level average prices for

diesel, gasoline, or number 2 distillate (the class of fuel containing diesel and heating

oil) are available from the Energy Information Agency “Retailers’ Monthly Petroleum

Product Sales Report.” Different states have records for diesel fuel prices starting at

different dates, but by 1995, all states in my sample report diesel prices. For periods

prior to 1995 when a state does not report diesel prices, number 2 distillate prices are

used if they are available. Over the sample where both diesel and distillate prices are

observed, the values correspond closely. If neither diesel nor distillate prices are avail-

able, then gasoline prices are used after accounting for seasonal differences between

gas and diesel. From 1999 to the end of the sample, monthly, port-level prices for

marine diesel are available from the Pacific States Marine Fisheries Commission EFIN

database.16 All prices are pre-tax if possible. See Appendix B.3 for further details.

All prices have been deflated to 2001 dollars using the monthly core consumer price

index from the U.S. Bureau of Labor Statistics available from the Federal Reserve

Bank of St. Louis’ FRED database.

Finally, full costs, expenditures, and revenues for a panel of 35 albacore harvesters

were recorded from 1996 to 1999 in the National Marine Fisheries Service/American

Fisheries Research Foundation (NMFS/AFRF) Cost Expenditure Survey. These are

the best available data for costs in this fishery, and the fraction of costs attributable

to fuel is calculated based on this sample.

4 Empirical strategy

To estimate the effect of ENSO on the fishery one would ideally regress output on

the forecast and realization of ENSO, both transformed by a known function g, as

16Available online from www.psmfc.org/efin/data/fuel.html.
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in Equation (6). Since the function g is unknown in this case, I will first present

non-parametric results, and I will then give regression results with a theoretically

motivated parametric specification.

For the latter case, assuming that vessels are well adapted to “typical” climate

conditions suggests that profit should be highest when ENSO anomalies are neither

high nor low—in other words, when neither a La Niña nor an El Niño is occurring.

In that case, unexpected deviations in either direction will cause loss in profit relative

to the zero-anomaly case, so the relationship between the ENSO, as measured by

the Niño 3.4 index, and profit or revenue should be concave (recall that the model

shows that the direct effect is the same for both profit and revenue). A simplifying

assumption is that this relationship is symmetric for positive or negative ENSO events.

This theoretical relationship suggests that a quadratic function for g is appropriate.

The lag between changes in ENSO in the equatorial Pacific and the effects being felt

in the North Pacific suggests that this function should be in terms of the lag of ENSO.

Putting this together, let

g(zt−1) = γ + β1zt−1 − β2z2t−1, (8)

where γ is some positive constant sufficiently large to ensure that vessels would like to

enter the fishery and z is the Niño 3.4 index. Because the Niño 3.4 index is centered

around zero, the assumption that vessels are well adapted to normal conditions implies

that β1 = 0, so a simplified equation could exclude this term.

Given this function of weather, if agents are forming distributional beliefs about

ENSO, then the correct forecast term to include would be ĝ(zt−1) = γ+β1Et−h[Zt−1]−
β2Et−1[Z2

t−1], where h is how far in advance the forecast was issued (at least h > 1 in

this case). In practice, I observe point forecasts of ENSO, so I will use

ĝ(zt−1) = γ + β1Et−h[Zt−1]− β2Et−h[Zt−1]2 (9)

This necessitates one of two additional assumptions. Either one can assume that

agents are not forming time-varying distributional beliefs about ENSO so that the

changes in the point forecast fully capture both linear and nonlinear changes in expec-

tations, or one can assume constant variance of Z. To see the need for the constant

variance assumption, assume that agents forecast higher moments of the ENSO dis-
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tribution. Then

E[g(Z)] = γ + β1Et−h[Zt−1]− β2Et−h[Z2
t−1] (10)

The difference between this value and the measure used for estimation is

E[g(Z)]− g(E[Z]) = β2(Et−h[Zt−1]2 − Et−h[Z2
t−1]) = β2Vt−h(Zt) (11)

If one assumes that Zt has constant variance over time, then (11) is constant so the

difference between the two measures will be absorbed by the intercept term. Then,

despite a difference in levels, changes in the two values will carry the same identifying

information.

Whether these assumptions limit the interpretation of results is context specific.

In Appendix C Figure 5, I assess the stability of the variance of ENSO over time.

Aside from a period of high variance in the late 1990s, ENSO appears to have a stable

second moment relative to the movement in the mean. Much of the research on climate

change has focused on uniform shifts in the location of the weather distribution, but

climate change is expected to have effects on higher moments of weather as well.

Therefore, future work would benefit from using distributional forecasts to assess

adaptation to changes in the full distribution of weather.

Putting all elements together, the full estimating equation is

yit = β0 + β1zt−1 + β2z
2
t−1 + β3ẑt−1 + β4ẑ

2
t−1 + x′itα + εit (12)

where yit is output or revenue for vessel i at time t, time is measured in months, zt−1

is the realized value of the Niño 3.4 index the previous month, ẑt−1 is the forecast

of ENSO, x is a vector of control variables (vessel, year, and month fixed effects in

the baseline specification), and ε is a stochastic error term. Adaptation is indicated

by the slope of the ẑ terms relative to that of the z terms. This will be considered

formally in Section 5.3, but intuitively, the higher the magnitude of β4 relative to β2,

the greater the adaptation.

5 Results for ENSO effects and adaptation

5.1 Adaptation, direct effect, and total effect of ENSO

The timing of the release of public ENSO forecasts in 1989 allows for an initial assess-

ment of adaptation by comparing the effect of ENSO before forecasts were released
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to the effect after the release. Under the assumption that ENSO was unforecastable,

agent expectations in this period would be climatological or unchanging over time. In

that case, the effect of ENSO on output captures the effect absent any forward-looking

adaptation. After 1989 and the release of forecasts, the relationship between ENSO

and output should capture an average of the direct effect and the forward-looking

adaptation effect. In this case, one would expect the relationship to be attenuated

relative to the pre-forecast period if adaptation is occurring.17

Figure 1 gives results from implementing this method. The figure shows local

linear regressions between output (the y-axis) and the one-month lag of the Niño

3.4 index (x-axis) for the period before forecasts were released (1981-May 1989) in

red, and the period after forecasts were released (June 1989 to 2010) in blue. Both

the output and Niño 3.4 index measures are residuals from regressions on month

indicators to remove seasonality.

Before the introduction of forecasts, harvesters experienced large declines in catch

at both high and low levels of ENSO. Average catch in a month during this period

was 155 fish, so going from “normal” conditions (index value of 0) to a moderate El

Niño (index value of 1) was associated with a decrease in catch of about a third. The

losses were even steeper for extreme negative values of the index (La Niña events).

This result shows that ENSO was an important driver, historically, of catch in the

fishery.

In the period after forecasts were released, the relationship between ENSO and

catch flattens substantially and the effect becomes more symmetric about zero. Over-

all, catch per month has risen in the fishery between the 1980s and the present for

many reasons. Identification of the adaptation effect comes not from this level shift

in catch, however, but from the change in curvature between the solid and dashed

lines. The reduced curvature after forecasts were released provides initial evidence

that adaptation to ENSO is occurring in the fishery.

This figures does not, however, give a complete measure of adaptation. The

relationship after the release of the forecasts is a combination of the direct effect of

ENSO and the effect of adaptation by the firm. Because realizations of ENSO are not

perfectly correlated with forecasts, this combination will, in general, be attenuated

17The assumption of unforecastability is likely too strong, even in light of evidence presented in
Section 3.1 that in the 1980s ENSO was not consistently observed, much less predicted. ENSO
anomalies exhibit autocorrelation, so once an ENSO event begins, it is likely that it will last for
the rest of the year. Therefore, this evidence should be considered a lower bound on the effect from
adaptation.
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Figure 1: Output and ENSO before and after forecasts
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Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.38) of catch on the Niño 3.4 index the previous month. Both
variables are residualized on month of year to remove seasonality. The red,
solid line uses the sample from 1981 to May 1989 before ENSO forecasts
were released. The blue, dashed line uses the sample from after forecasts
were released in June 1989 until 2010. Shaded areas give the 95% confidence
intervals.

relative to the true total effect. The formal estimation strategy isolates the direct

effect from ENSO by regressing changes in the Niño 3.4 index on catch, controlling for

expectations, and it isolates the forward-looking adaptation response using forecast

changes holding realizations fixed. The total response by the firm to ENSO is the

sum of these two effects. A more careful analysis of ENSO effects in a regression

framework can perform this decomposition while also including control variables for

fixed vessel or time characteristics.

Table 2 gives results from implementing the formal identification strategy. Each

column shows estimates of versions of Equation (12) using monthly data. The depen-

dent variable in the first two columns is the number of fish caught per month by each

vessel, in the third column it is the log of the number of fish caught, and in the fourth

column it is revenue. The primary explanatory variables are listed in the left column

and control variables are indicated below the coefficient estimates. The standard er-

rors in all models are spatial-temporal heteroskedasticity and autocorrelation robust,

using a uniform kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation

(Conley, 1999).

23



Table 2: Effect of ENSO on catch and revenue

(1) (2) (3) (4)
Catch Catch Revenue Catch

if fishing
Niño3.4t−1 103.7*** -3.69 1153.4** 29.8

(36.6) (91.4) (473.0) (22.2)
Niño3.42

t−1 -16.3 -107.6*** -66.4 -32.1***
(15.7) (40.2) (200.9) (11.5)

N̂iño3.4t−1 -97.5*** -132.3 -1435.4***
(31.3) (86.3) (373.4)

N̂iño3.4
2

t−1 -72.5*** 95.6* -745.3**
(27.4) (53.2) (333.9)

Vessel FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Observations 69,057 12,430 62,894 69,057
R2 0.079 0.16 0.065 0.077

Notes: The table shows results from estimating equation (12) on
monthly data. The dependent variable in each model is indicated
at the top of the column. Catch is the total number of fish caught
per month by a vessel and revenue is the total ex-vessel value
of that catch. Catch if fishing is the sub-sample of observations
when vessels are active in the fishery and engaged in fishing in a
given month. Additional controls are indicated at the bottom and
are fixed effects for vessel, year, and month. In parentheses are
spatial-temporal HAC robust standard errors using a uniform ker-
nel, a distance cutoff of 30km, and 2 year lags for autocorrelation.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

For all but the last column, four coefficients are reported, corresponding to β1

through β4 from Equation (12). The Niño3.4 and Niño3.4 2 coefficients give the

effect on catch or revenue of a 1◦C change in the the Niño 3.4 index. The N̂iño3.4

and ̂Niño3.4 2 coefficients give the effect from a forecasted change in ENSO.

In the last column, only the Niño 3.4 index measure is included. This column

shows the inference that would result from näıvely estimating the effect of ENSO

on the fishery while ignoring expectations. The results indicate that ENSO has a

moderate, negative effect on catch. A one standard deviation change in the Niño 3.4

index is about 1, so column 4 says that a typical change in the Niño 3.4 index leads
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to a loss in catch of about 30 fish per month. Average catch is about 260 fish per

month, so this represents a little more than 10% change in catch.

Without including forecasts, however, this result does not give a complete or

accurate picture of the effects of ENSO in the fishery. Column 1 adds variables for

the forecast of the Niño 3.4 index. One can see that predicted changes in ENSO

actually have a much larger effect on output than realized changes. In particular,

changes in information lead to a change in output more than four times larger than

a comparable change in realized ENSO.

Summing the effects from both realized and forecasted ENSO, moving from normal

conditions to a moderate El Niño (Niño 3.4 index of 1) leads to a 30% decline in

output, on average, for a vessel. The effect from a change in ENSO conditional on

the forecast, however, is reduced substantially. Comparing these results to column 4,

the näıve method overstates the effect of a change in realized ENSO by a factor of

2. This illustrates the bias in climate damage estimates that can result from ignoring

adaptation, as argued by Mendelsohn et al. (1994). In addition, the total effect is

underestimated by a factor of 3. Since adaptation is, in general, costly, this high

degree of adaptation also has bearing on welfare analysis from this process.

Column 2 looks at the effect of ENSO on catch conditional on a vessel choosing

to fish in a given month. Vessels typically only choose to fish for albacore one-fifth

of the months that they are in the fishery. One can see that conditional on choosing

to go fishing, forecasts still have a substantial effect on catch—a 1 unit change in the

forecast of ENSO causes about a 20% decline in the number of fish caught in this

case—but the effect of a realized change in ENSO is much greater relative to the full

sample results.

Column 3 shows estimates using revenue (in constant 2001 dollars) as the depen-

dent variable. Revenue information is not available for the full dataset, either because

the logbook record is missing information on the weight of the fish caught or because

the vessel offloads fish at a port outside of California, Washington, or Oregon where

albacore price is observed. The results reported in this table use imputed weight

where weight is missing. The effect of this imputation is assessed in robustness Table

12. The missing values in revenue lead me to prefer the results using number of fish

caught, but comparison between columns 1 and 3 shows that the results are quali-

tatively similar between the two samples. This result provides initial evidence that

albacore prices are not changing in response to changes in ENSO, a topic that will

be taken up in detail in Section 5.2.
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Overall, these estimates provide evidence that beliefs correlated with the public

ENSO forecasts are important for output and revenue in the fishery. Assessing these

estimates in the context of adaptation requires the additional identifying assumptions

laid out in Sections 2.2 and 2.3. Support for these assumptions is discussed in the

following sections, and formal calculation of the adaptation effect is carried out in

Section 5.3

5.2 Price effects and profit

Measuring adaptation with output and revenue, as is done in the previous section,

is convenient from the standpoint of data availability and as the theory makes clear,

it might also be necessary in cases where a substantial portion of the adaptation

mechanisms are discrete. If profit is continuous in all adaptation mechanisms, then an

application of the envelope theorem shows that the marginal profit value of adaptation

is zero. In this case, estimates using profit as the dependent variable can return the

direct effect of weather but not an explicit measure of adaptation. On the other hand,

if some adaptation mechanisms are discrete, as in Lemoine and Traeger (2014), then

the profit effects of adaptation will be greater than or equal to zero in an optimizing

model (Guo and Costello, 2013). In general, using profit as the dependent variable

in a regression with only weather on the right hand side will yield estimates that are

an average of the direct effect and the effect of discrete adaptations.

The logbook data do not provide details on many of the inputs necessary to

calculate full profit measures in this empirical setting. In particular, there are no

measures of vessel maintenance or the number or wages of crew. The one input that

can be consistently calculated is movement during fishing trips. Appendix Section

B.5 has details on this measure, but the basic method is to use the latitude and

longitude records each day to calculate day-to-day movement. Such a calculation

will miss intra-day movement. To arrive at movement costs, I multiply movement

by the real price of fuel, based on port-level records. Vessel engine characteristics

are unavailable, but for vessels with known length, the average fuel consumption

per kilometer conditional on vessel size is calculated from the NMFS/AFRF Cost

Expenditure Survey and used to scale the fuel consumption. Fuel consumption for

all other vessels is based on the unconditional average rate. The Cost Expenditure

Survey shows that fuel costs represent 10 to 20% of the variable cost of running an

albacore vessel.

Table 3 compares the effect of forecasted and realized ENSO on revenue and

revenue net of movement costs, both for a consistent sub-sample where profit is ob-
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Table 3: ENSO effects on partial profit

(1) (2)
Revenue Net revenue

Niño3.4t−1 1171.4** 1003.2***
(473.2) (373.7)

Niño3.42
t−1 -73.0 -85.4

(200.8) (156.0)

N̂iño3.4t−1 -1439.3*** -1089.5***
(373.6) (308.6)

N̂iño3.4
2

t−1 -752.4** -643.8**
(333.5) (262.4)

Baseline FE Yes Yes
Observations 62,868 62,868
R2 0.066 0.042

Notes: The table shows results from estimation using monthly
data. The dependent variable is monthly average profit. Addi-
tional controls are indicated at the bottom and are fixed effects
for vessel, year, and month. In parentheses are spatial-temporal
HAC robust standard errors using a uniform kernel, a distance
cutoff of 30km, and 2 year lags for autocorrelation. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

served. As predicted, the magnitude of the effect of forecasted changes in ENSO falls

for partial profit. Theory suggests that since movement is an intensive adaptation

mechanism, the profit effect should be zero for the anticipated component. The results

support this conclusion, with the profit changes due to movement falling by about

15% for anticipated changes in ENSO. For unanticipated realizations, the linear term

also falls by 15% but the square term increases in magnitude by a similar amount.

These changes in profit are coming primarily through changes in firm behavior

rather than through changes in albacore or fuel prices. The lack of observable change

in albacore price in response to changes in ENSO can be inferred from a comparison

of the revenue and output results. Running a more explicit analysis of changes in

ENSO on the average time series for albacore and fuel prices shows that ENSO is

weakly, negatively associated with both prices. These results can be found in Table

14.
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5.3 Quantifying the importance of adaptation

Comparing the value of adaptation with the residual, direct effect helps to determine

whether the magnitude of total adaptation is large and aids in comparisons with other

studies. In particular, the value of adaptation can be normalized by dividing by the

total derivative of output with respect to a change in climate,

Vn(A) =
V (A)

dEt−1[y∗t ]/dEt−1[g(Zt)]
. (13)

The normalization creates an intuitive adaptation index because the total change in

output with respect to a change in climate can be decomposed into the change due

to adaptation and the change due to direct effects.

dEt−1[y∗t ]
dEt−1[g(Zt)]

=
∂Et−1[y∗t ]
∂x∗t

· ∂x∗t
∂Et−1[g(Zt)]

+
∂Et−1[y∗t ]

∂Et−1[g(Zt)]
(14)

If the value of adaptation is high relative to the direct effect, then this value will be

close to one. If adaptation is zero, this term will be equal to zero. The normalized

value of adaptation also has a welfare interpretation under the assumption of con-

tinuous inputs. Given a choice over two continuous production technologies with the

same costs, a firm would rather choose the technology with lower
∂Et−1[y∗t ]

∂Et−1[g(Zt)]
relative to

∂Et−1[y∗t ]
∂x∗

t
· ∂x∗

t

∂Et−1[g(Zt)]
, because the second term will be zero according to the first order

condition and is therefore profit neutral, while the direct effect influences profit.

Estimating the normalized value of adaptation using the parametric specification

in Equation (12) poses a problem, however, because the derivative of g will be zero at

the peak of the quadratic curve. This will cause the mean of the total effect to be zero

at this point, leading to division by zero. Figure 1 and the estimates from Table 2

show that the peak of the quadratic occurs near the center of the ENSO distribution,

so this issue is a problem in practice.18

There are a number of possible solutions to the division-by-zero problem, and

in this section, I pursue three of them to compare their effect on the estimated,

normalized value of adaptation. First, one can condition on being away from the

point of zero slope when estimating the expectations in Equation (13). This method

is convenient, but it also has interpretability. If the functional form of the relationship

between the level of ENSO and adaptation is such that more extreme events are harder

18The value of Vn(A) for all observations of Niño 3.4 can be found in Appendix Figure
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Table 4: Quantifying the effect of adaptation

(1) (2) (3)
Estimator of Vn(A) Catch Catch Revenue

if active
Average conditional on 0.86 0.40 0.81
|Niño3.4| > 0.5 (0.35,1.37) (-0.05,0.85) (0.10,1.52)

Limit as Niño3.4→∞ 0.82 0.47 0.92
(0.47,1.17) (0.12,0.82) (0.43,1.41)

Median 1.01 0.78 1.02
(0.48,1.54) (0.39,1.25) (0.47,1.57)

Notes: The table shows results from three estimators of Equation (13) using
monthly data. The dependent variable in each column corresponds to a
model from Table 2. 95% confidence intervals are shown in parentheses and
are calculated by the delta method for the limit and by bootstrap in the
case of the conditional mean and the median.

(or, less plausibly, easier) to adapt to, then conditioning on progressively high values

of ENSO will reflect that change. In practice, I condition on the Niño 3.4 index being

greater than 0.5 of less than -0.5, the cut-off for declaring an El Niño or La Niña,

respectively.

Second, one can calculate the median of Vn(A) using the empirical distribution of

ENSO. The median is less subject to outliers caused by division by zero, and even if

the true distribution of ENSO is of the family with no first moment (for instance, the

normal distribution), then the median still exists. For both the conditional mean and

the median, standard errors are calculated by bootstrap over the parameter estimates

from Table 2 and the empirical distribution of ENSO given by Niño 3.4 values from

1989 to 2010. Results using 300 bootstrap replications are shown.

Finally, for the parametric specification used in the baseline results, one can take a

limit of the numerator and denominator of Equation (13) as Niño 3.4 goes to infinity.

Because of the parametric assumption used to estimate the baseline results, this limit

is not a function of ENSO, and Vn(A) simplifies to be β2/(β2 + β4), where the coef-

ficients are those from Equation (12). This method has the advantage that standard

errors can be easily calculated using the delta method, under the assumption that

β2 6= 0. Given the quadratic estimating equation and the estimated parameters, the

limit-based estimate of Vn(A) will agree with the conditional average-based estimate

for a sufficiently wide interval of excluded Niño 3.4 values.
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In all cases, total adaptation is clearly statistically different from 0, in contrast

to recent studies of adaptation in other settings (Burke and Emerick, 2016; Dell

et al., 2012; Schlenker et al., 2013). For intensive-margin adaptation, the conditional

average estimate is only marginally statistically different from zero, but for the other

two estimators are highly significant. In none of the full adaptation cases can 100%

adaptation be rejected at conventional significance levels.

Three potential sources of bias also suggest that, if anything, these estimates

understate total adaptation. First, if harvesters have private information about ENSO

that is not captured by the public forecasts, then the model in Section 2.2 shows that

estimated, forward-looking adaptation will be attenuated. Second, if some adaptation

mechanisms can occur after the effects of ENSO events are known, then forward-

looking adaptation is only part of the total adaptation response, and part of the

direct effect would actually be an ex post adaptive response. I find some evidence

for ex post adaptation in Section 6, but the small magnitude of the realized ENSO

coefficients in Table 2 allows one to infer that there is, at most, only limited adaptation

of this type. Third, because the pre-2002 forecasts had to be digitized from printed

records, some (likely classical) measurement error probably exists. The ENSO index

is consistently well measured over the estimation sample period, since it occurs after

the advent of satellite buoy measurement, so the measurement error in the forecasts

should lead to attenuation of the forecast coefficient.

5.4 Robustness

Three parametric assumptions underlying the estimates can be assessed. First, the

quadratic functional form chosen for the estimating equation is tested nonparamet-

rically in Figure 1. In both the pre and post-forecast samples, the overall effect of

ENSO on output appears to be quadratic. Second, the constant variance assumption

is tested by calculating a rolling variance of the Niño 3.4 index in Appendix Figure 5.

Aside from a period of high variance in the late 1990s and early 2000s, this assump-

tion appears to roughly hold. Re-estimation of the baseline specification excluding

this period is done in Table 6, and the results are largely unchanged. Finally, the

assumption of multiplicative separability is tested in Table 13, Column 5 by includ-

ing an interaction between the forecast and realization of ENSO. High correlation

between the interaction term and the square terms prevents separate identification of

these effects. Note that this term cannot be used to assess forecast quality under the

assumption that production is concave in ENSO. In this case, firm profit is highest

if ENSO always turns out to be at whatever point corresponds to the peak of this
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concave function. For instance, if the firm is well adapted to normal conditions, then

profit should be highest at a Niño 3.4 near zero, regardless of whether the forecast is

accurate or not.

Table 13 also provides checks of robustness to changes in controls and the method

of standard error calculation. In Column 1, the separate vessel and year fixed effects

are replaced by a set of vessel-year fixed effects. These more flexible controls do not

appreciably change inference. Column 2 adds vessel-specific linear trends, again to

negligible effect on inference. Trends could be important since catch is rising, on

average, over time, and forecast quality is also changing over time (Appendix Figure

4). Another test to rule out trends as spuriously driving these results is reported in

Figure 11, which replaces the level of ENSO with the difference in ENSO between

the previous month and the month before that. Output has a concave and symmetric

relationship with the change in ENSO.

Column 3 clusters standard errors at the year-month level. ENSO is a group

shock, and forecasts are released each month, so this level of clustering more closely

matches the level of aggregation of the exogenous shock. Inference is slightly less

precise in this case—two variables go from being significant at the 1% level to being

significant at the 5% level. The spatial standard errors are preferred for the baseline

specification, however, because ENSO does have local effects on fishing conditions

that vary smoothly over space (see Appendix Figure 6), so year-month clustering is

likely to be too conservative.

Lehodey et al. (2003) raises the possibility that ENSO in one year might cause

a fall in recruitment of fish into the harvestable stock in the next year. Controlling

for a quadratic in the level of the Niño 3.4 index from a year prior to the current

month, however, does not indicate that conditions a year ago have strong bearing on

adaptation to changes in ENSO this year. The conclusion of Lehodey et al. (2003)

is strongly supported by the data, with year-ago ENSO values having a comparable

effect on catch to the contemporaneous measures.

Table 6 contains two more variations in specification and two sample restrictions.

The specification in Column 1 includes only the square Niño 3.4 terms. The theoret-

ical motivation for the quadratic specification discussed in Section 4 suggested that

excluding the linear terms could be appropriate. The significant linear terms in the

baseline model show that this conclusion is likely untrue, but the results are qualita-

tively similar if the linear terms are forced to be zero. Note that the calculation of

Vn(A) is simplified in this case because the ratio will not be a function of ENSO in
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Table 5: Robustness to clustering and controls

(1) (2) (3) (4) (5)
Catch Catch Catch Catch Catch

Niño3.4t−1 107.5*** 106.8*** 103.7** 87.1** 109.8***
(33.1) (36.6) (49.9) (35.7) (36.6)

Niño3.42t−1 -18.1 -15.9 -16.3 -14.4 28.6
(14.3) (15.6) (25.2) (15.5) (49.8)

N̂iño3.4t−1 -92.9*** -94.6*** -97.5** -115.6*** -101.9***
(29.6) (31.5) (47.5) (39.3) (31.9)

N̂iño3.4
2

t−1 -74.1*** -76.9*** -72.5** -80.4*** -21.9
(24.5) (27.8) (35.1) (29.9) (36.8)

Vessel trend -101.5***
(30.6)

Niño3.4t−12 61.5***
(21.1)

Niño3.42t−12 -68.3***
(13.1)

Niño3.4t−1 × ̂Niño3.4t−1 -98.4
(93.6)

FEs Vessel-year Baseline Baseline Baseline Baseline
SEs Spatial Spatial Year-month Spatial Spatial

cluster
Observations 69,057 69,057 69,057 69,057 69,057
R2 0.10 0.079 0.10 0.081 0.079

Notes: The table shows results from estimating versions of equation (12) on monthly
data. The dependent variable in each model is the monthly catch, where catch is the
number of fish caught. In addition to the listed variables, all models contain vessel,
year, and month-of-year fixed effects unless otherwise noted. In parentheses are spatial-
temporal HAC robust standard errors using a uniform kernel, a distance cutoff of 30km,
and 2 year lags for autocorrelation, unless otherwise noted. Significance indicated by:
*** p<0.01, ** p<0.05, * p<0.1.

this case.

Column 2 excludes observations near Canadian fishing grounds. Congestion in

the fishery is, in general, low. The exception commonly noted during interviews was

due to Canadian vessels near the northern edge of the fishery. Excluding this area,

if anything, strengthens the results. The sample restriction in Column 3 has already

been discussed.

Columns 4 adds the one-month lag of catch. The baseline estimates use two year

lags to account for autocorrelation in the residuals. Monthly autocorrelation might

also be important. including this control does not appreciably change the adaptation
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Table 6: Robustness to sample and specification changes

(1) (2) (3) (4)
Catch Catch Catch Catch

Niño3.4t−1 128.7*** 75.1** 71.0**
(36.9) (37.7) (35.0)

Niño3.42t−1 4.23 -31.8* 9.46 -15.9
(11.9) (16.9) (27.2) (18.8)

N̂iño3.4t−1 -104.5*** -112.9*** -79.0**
(34.4) (36.7) (34.4)

N̂iño3.4
2

t−1 -94.6*** -72.9*** -121.1*** -44.6*
(27.6) (28.1) (22.6) (26.1)

Catcht−1 0.41***
(0.018)

FEs Baseline Baseline Baseline Baseline
Sample Latitude< 46◦ Drop 1997-2001
Observations 69,057 46,608 51,920 57,100
R2 0.078 0.070 0.093 0.22

Notes: The table shows results from estimating versions of equation (12)
on monthly data. The dependent variable in each model is the monthly
catch, where catch is the number of fish caught. In addition to the
listed variables, all models contain vessel, year, and month-of-year fixed
effects unless otherwise noted. In parentheses are spatial-temporal HAC
robust standard errors using a uniform kernel, a distance cutoff of 30km,
and 2 year lags for autocorrelation, unless otherwise noted. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

effect, although the linear term on the direct effect changes sign.

The revenue calculation is an area where some interpolation was performed to

arrive at near-complete observations. This incompleteness comes from two sources

First, there is limited geographic coverage in albacore prices. Vessels missing albacore

price are simply excluded from the sample when estimating revenue or profit effects

since it is unknown by me whether prices in non-U.S. ports follow the same trends as

prices in U.S. ports. Among the remaining vessels, not all observations contain records

of the weight of fish caught that day. For those observations, I impute weight in one of

two ways. First, if the logbook records the total weight of fish caught during the trip,

I multiply the number of fish caught that day by the average weight of fish for the trip.

If trip-level weight is missing, then I interpolate weight based on catch of other vessels

fishing at the same time as the missing observation. Table 12 investigates whether

this interpolation procedure is leading to bias in estimates. Column 1 estimates

the baseline regression replacing the number of fish caught with the weight of fish
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for vessels with daily records of both weight and number of fish. The direct effect

of ENSO is slightly higher in this case, but the estimates are, overall, very close

to the baseline estimates in Table 2 Column 2. The second column of Table 12 uses

interpolated weight as the left-hand-side variable. Results to not change substantially.

Finally, column 3 uses revenue with no interpolation, again showing that results are

largely unchanged. Overall, these regressions show that the interpolation procedure

is not leading to substantive changes in estimates.

As a final robustness check, I want to rule out bias in the forecast coefficient due to

variables correlated with expected ENSO but not coming from changes in information.

The estimating equation should isolate variation in information by conditioning the

forecasts on realizations. The way El Niño and La Niña are announced in the United

States offers another way to isolate changes in information. In particular, NOAA

declares that an ENSO event is occurring if the Niño 3.4 index is above 0.5 (El

Niño) or below -0.5 (La Niña) for 5 consecutive months. This discontinuity in ENSO

declaration is unrelated to the physical processes in the ocean, and any realized

phenomena caused by ENSO should vary smoothly across the threshold since the

Niño 3.4 index is simple a measure of average temperature in the equatorial Pacific,

so continuity of Niño 3.4 across the threshold holds.

This result is consistent with harvesters paying particular attention to ENSO

around the value at which ENSO events are declared. Any technology or behavior

that is always operating, regardless of the Niño 3.4 index value, would not lead to

such a jump in output.19

6 Adaptation mechanisms

6.1 Adaptation mechanisms conditional on fishing

Table 7 shows estimates for the effect of anticipated and unanticipated changes in

ENSO on high frequency decisions of fishing vessels. Each of the outcomes listed in

the table are based on daily or intra-trip decisions.

Column 1 of Table 7 shows that if harvesters are able to anticipate a change in

ENSO, then they can more accurately target optimal water temperatures, according

to the heuristic that fish congregate most in water around 17 or 18◦C. The dependent

variable in the column is the squared difference between actual water temperature and

17.5◦C. In contrast, when the change in ENSO is unanticipated, harvesters are moved

19Niño 3.4 exceeding 0.5 is necessary but not sufficient for declaring an El Niño, so in practice,
this is a fuzzy regression discontinuity.
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Table 7: Intensive margin mechanisms

(1) (2) (3) (4) (5)
Temperature Hours per day Fishing Movement Movement
choice error fishing lines extensive intensive

Niño3.4t−1 -0.60 0.099 0.24 6.93 -1.06
(0.51) (0.24) (0.21) (5.84) (9.93)

Niño3.42
t−1 0.32 0.22 -0.14 2.84 -9.37

(0.42) (0.14) (0.13) (3.94) (6.11)

N̂iño3.4t−1 1.32* 0.0091 -0.30 -0.51 -14.7**
(0.70) (0.27) (0.24) (7.35) (7.50)

N̂iño3.4
2

t−1 -1.74*** -0.64*** -0.31* -35.4*** 4.08
(0.50) (0.22) (0.18) (8.77) (4.49)

Average 0.49 11.34 10.39 157.66 1,433.7
Baseline FE Yes Yes Yes Yes Yes
Observations 12,430 9,534 12,430 69,057 12,430
R2 0.095 0.066 0.030 0.062 0.031

Notes: The table shows results from estimating versions of equation (12) on monthly data. The
dependent variable in each model is indicated at the top of each column. Additional controls
are indicated at the bottom and are fixed effects for vessel, year, and month. In parentheses
are spatial-temporal HAC robust standard errors using a uniform kernel, a distance cutoff of
30km, and 2 year lags for autocorrelation. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.

further away from the optimal temperature, although this effect is not significant.

Other intensive mechanisms are shown in columns 2 and 3. In response to antici-

pated extremes in ENSO, harvesters decrease their hours fished per day slightly. The

number of lines used per day also appears to go down slightly, although the effect is

not strongly significant. The opposite sign responses to realized changes in ENSO for

many of these effects point to potential maladaptation ex post.

Movement costs and associated net revenue was discussed in Section 5.2. Columns

4 and 5 of Table 7 show that the net revenue improvement estimated in that section is

coming largely from changes in extensive margin movement. In other words, vessels

are saving fuel costs by sitting out of the albacore fishery.

Many of the adaptations available to albacore harvesters can only be implemented

between trips. In the extreme case, things like characteristics of the boat hull are fixed

once a trip has begun. Crew numbers are also fixed. Crew numbers are not observed

in the logbook data, and hull length (unsurprisingly) does not change in response to
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ENSO. One adaptation that is open to the harvesters on a trip-level frequency and

does appear to change with ENSO is the length of the trip, as shown in Table 8.

Table 8: Trip length and frequency

(1) (2) (3)
Fishing days Transiting days Trips per month

Niño3.4t−1 0.82* 0.063 0.13***
(0.45) (0.21) (0.034)

Niño3.42
t−1 -0.58** 0.014 -0.030*

(0.24) (0.12) (0.015)

N̂iño3.4t−1 -0.61 0.32 -0.056
(0.50) (0.26) (0.038)

N̂iño3.4
2

t−1 -0.91*** 0.13 -0.071***
(0.32) (0.15) (0.022)

Average 11.1 2.42 1.37
Baseline FE Yes Yes Yes
Observations 12,430 4,730 12,430
R2 0.17 0.024 0.040

Notes: The table shows results from estimating versions of equation (12) on
monthly data. The dependent variable in each model is indicated at the top
of each column. Additional controls are indicated at the bottom and are fixed
effects for vessel, year, and month. In parentheses are spatial-temporal HAC
robust standard errors using a uniform kernel, a distance cutoff of 30km, and 2
year lags for autocorrelation. Significance indicated by: *** p<0.01, ** p<0.05,
* p<0.1.

Column 1 shows that vessels fish slightly fewer days per month given either an

expected or unexpected change in ENSO, although the magnitude of the effect is

larger in for the expected case. This result is one example of an intensive-margin

adaptation that is similar in spirit to entry or exit from the fishery.

As far as can be discerned from the data, there does not seem to be an effect

of ENSO on transiting days, which are days away from port without any reported

fishing. As indicated by the number of observations, however, transiting days are not

recorded for every observation in the dataset.

Finally, trips per month also slightly fall when more extreme ENSO events occur.

Like the fishing days result, this decrease in the number of trips comes from both the

forecast and realization of ENSO, with the forecast effect being more than twice as

large as the realization effect.
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6.2 Entry and exit across months

The main results from Table 2 show that much of the adaptation occurring in the

fishery is coming from extensive margin adjustments across months. In particular,

vessels are choosing to sit out of the albacore fishery during many months of the

season rather than risk losses from fish that are too far offshore or that cannot be

located. Table 9 looks more closely at this decision.

Table 9: Entry and exit

(1) (2)
Active in Exit if active

the fishery last month
Niño3.4t−1 0.049 0.15

(0.10) (0.098)
Niño3.42

t−1 0.11* -0.085
(0.062) (0.060)

N̂iño3.4t−1 0.093 0.17
(0.12) (0.15)

N̂iño3.4
2

t−1 -0.53*** -0.088
(0.10) (0.11)

Baseline FE Yes Yes
Observations 60,695 12,430

Notes: The table shows results from estimating logit model ver-
sions of equation (12) on monthly data. The dependent variable
in each model is indicated at the top of the column. Additional
controls are indicated at the bottom. In parentheses are standard
errors clustered at the vessel level. Significance indicated by: ***
p<0.01, ** p<0.05, * p<0.1.

The dependent variables in these models are some measures of entry and exit.

Active in fishery is an indicator equal to one if the vessel is both in the fishery

and actively engaged in fishing for albacore. Exit if active last month is equal to

1 the month a vessel exits the fishery after having fished the previous month and

is 0 otherwise. The estimates are from logit models with vessel-level clustering of

standard errors.

The entry results show that vessels are much less likely to be active in the fishery

if ENSO is forecasted to have extreme values. This result helps explain the drop

in output that occurs during extreme ENSO events and also bolsters the movement
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results which indicated that most of the movement cost avoidance was done simply

by not entering the fishery in a given month. Realized changes in ENSO conditional

on forecasts do not have the same effect. If anything, vessels are slightly more likely

to enter the fishery during months with high residual realizations of ENSO, although

the effect is small relative to the anticipatory effect.

In contrast, the vessel exit decision is not strongly related to ENSO. This result

agrees with interviews with fishers indicating that on a normal fishing trip, a captain

will try to continue fishing in order to fill the hold even if the fishing is going poorly.

This type of behavior might make entry into the fishery a “stickier” state that is not

then as responsive to climate shocks.

The vessels are unlikely to be idle during months when they are not actively par-

ticipating in the albacore fishery. Wise (2011) reports that many fishers also harvest

crab and other species during non-albacore-fishing months. Under the assumption

that fishing for these other species is not ENSO-sensitive, then welfare calculations

based on the adaptation rates calculated in this paper are unaffected.

7 Learning and risk

7.1 Risk aversion

The theoretical model assumes that firms are solely maximizing profit. For many set-

tings, including small-scale firms like fishing vessels, risk aversion by the vessel owner

might also play an important role in decision making under uncertainty. Rosenzweig

and Udry (2014) use forecasts of monsoon rain in India to investigate risk aversion

in agriculture and the value of weather insurance. Adopting the reduced form of the

estimating equation from that paper allows for a test of risk aversion in this setting.

The expanded estimating equation becomes

yit = β0+β1zt−1 + β2z
2
t−1 + β3ẑt−1 + β4ẑ

2
t−1+ (15)

β5ẑt−1skillt−1 + β6ẑ
2
t−1skillt−1 + x′itα + εit

where the new variable skill is a measure of the ex ante quality of the forecast.

For the The intuition for this estimating equation is that the quality of the forecast

matters for a risk averse agent when he or she is making input decisions because the

skill measures how much uncertainty the forecast resolves. Therefore, if the agent

is risk averse, the skill of the forecast will be a moderating variable for the effect of

the forecast on output. Under the maintained assumption that forecasts only affect
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inputs, this leads to a modification of the baseline estimating equation where forecast

skill is interacted with the forecast terms.

Table 10: Assessing risk aversion

(1) (2)
Catch Catch

Niño3.4t−1 113.4*** 121.3***
(36.9) (37.6)

Niño3.42t−1 -2.00 -17.8
(17.7) (26.3)

N̂iño3.4t−1 235.1** -67.7
(100.3) (41.7)

N̂iño3.4
2

t−1 -48.0 -150.0***
(58.2) (32.2)

N̂iño3.4t−1 × skill -627.2***
(180.6)

N̂iño3.4
2

t−1 × skill -222.8**
(113.6)

N̂iño3.4t−1 × ens. error -120.7***
(32.0)

N̂iño3.4
2

t−1 × ens. error 108.9***
(23.3)

Vessel FE Yes Yes
Year FE Yes Yes
Month FE Yes Yes
Observations 69,057 67,715
R2 0.080 0.081

Notes: The table shows results from estimating equation (15) on
monthly data. The dependent variable in each model is total catch
per month. In addition to the listed variables, all models contain
vessel, year, and month-of-year fixed effects. In parentheses are
spatial-temporal HAC robust standard errors using a uniform ker-
nel, a distance cutoff of 30km, and 2 year lags for autocorrelation.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

I measure ex ante forecast quality in two ways. First, I calculate the normalized

root-mean squared error of the ensemble forecast during the previous two years and

normalize that by dividing by the root-mean squared error of a persistence forecast

of the Niño 3.4 index. I subtract this normalized value from 1 to create what weather

forecasters call the Brier Skill Score (Hamill and Juras, 2006). A value of this measure

at 1 means that the forecast is perfectly accurate relative to the näıve persistence

forecast. Small or negative numbers mean that the forecast is inaccurate. The skill
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measure used in Table 10 is the two-year moving average of this measure for all

periods prior to the estimation month, t. One should expect that a risk-averse agent

will adapt more if this skill measure is higher.

The second measure of skill is the standard deviation of the forecast plume each

month, labeled ens. error in the table. Because multiple forecasts are issued be-

ginning in the 1990s, the standard deviation of the plume gives a summary measure

of disagreement in the different forecasts. This measure is model-dependent and

influenced by model errors, so it does not necessarily represent the full probability

distribution of a single forecast (preventing its use as a perfect measure of the second

moment of the forecast), but it plausibly affects the confidence that harvesters have

in the projections. One should expect that a risk-averse agent will adapt less if this

standard deviation measure is higher.

Table 10 shows results from estimating Equation (15). The estimates indicate

that risk preferences are a potentially important factor in this context. If the skill

of the forecast has been higher in recent periods, then agents adapt much more

strongly, as shown by the relatively large magnitude of the coefficient on the forecast

squared interacted with skill. Similarly, column 2 shows that if the forecast plume is

wider, adaptation falls. Both of these results are consistent with preferences for more

certain forecasts. The results also show that agents are responding to forecast-specific

characteristics, lending support to the assumption that agents are directly consuming

these predictions.

7.2 Learning about ENSO and forecasts

By using a single public forecast to measure adaptation, the results assume that all

individuals have the same beliefs about ENSO. Differences in ability to understand

forecasts, heterogeneity in risk tolerance, or access to private information could alter

the conclusions.20 Here, I focus on heterogeneity in experience with ENSO. A captain

or vessel owner with more experience fishing during ENSO conditions might be better

equipped to handle the adverse climate, increasing adaptation. In contrast, a captain

who has repeatedly suffered from forecasts that missed the realization by a wide

margin might be less likely to trust the forecast in the future.

Table 11 investigates this hypothesis in the context of intensive margin catch.

Previous results showed that harvesters, on average, had a harder time adapting to

ENSO once they had entered the fishery. By including vessel-specific trends that

20See, for instance, Kala (2015) for recent evidence on behavioral responses to weather risk.
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Table 11: Learning about ENSO

Catch
Niño3.4t−1 -5.00

(125.0)
Niño3.42t−1 -129.1**

(60.2)
Niño3.42t−1 × ENSO experience 8.25

(8.10)

N̂iño3.4t−1 -169.1
(132.6)

̂Niño3.42t−1 50.6
(82.2)

N̂iño3.4
2

t−1 × ENSO experience -56.9**
(24.2)

Vn(A), 1 event 0.05
(0.55)

Vn(A), 3 events 0.53**
(0.24)

Vn(A), 6 events 0.79***
(0.17)

Baseline FE Yes
Vessel trend Yes
Observations 12,430
R2 0.14

Notes: The table shows results from estimating a modified version
of equation (12) on monthly data. The dependent variable is the
log of catch, where catch is the average number of fish caught per
day in the month. Additional controls are indicated at the bottom
and are fixed effects for vessel, year, and month. In parentheses
are spatial-temporal HAC robust standard errors using a uniform
kernel, a distance cutoff of 30km, and 2 year lags for autocor-
relation. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1. Standard errors for adaptation are calculated using the
delta method.

increment each time a vessel experiences an El Niño or La Niña event, the ability

for harvesters to learn can be assessed. Overall, the results suggest that there is an

important learning effect. Vessels that have been through more ENSO events adapt

at a higher rate. For a novice vessel, adaptation is minimal or non-existent. The

average vessel in the dataset has experienced 3 ENSO events, and for this vessel,

intensive margin adaptation is moderate. For very experienced vessels—only about

20% of vessels have experience with 6 or more events—intensive margin adaptation is
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nearly as effective as total extensive and intensive margin adaptation. Importantly,

this adaptation improvement comes both from loading more of the ENSO effect onto

the forecast and by reducing the direct effect from ENSO. Results are similar if El

Niño and La Niña event are considered separately.

8 Conclusion

Environmental impacts from a variety of source are currently large and, for many

important cases, are not being address by collective action at a scale appropriate to

the potential damages. Individual and firm adaptation will occur to counter some of

these impacts, and if public policy is not appropriately aggressive, such adaptation

could bear the brunt of impact reduction. Adaptation does not occur in a vacuum,

however. Individuals need to know about their own risks to make informed choices

over potential adaptive responses. The importance of this issue makes it crucial to

assess the role of information in affecting forward-looking adaptation and allows one

to use informational changes to estimate the effect of this adaptation.

In the setting of one large driver of global climate—ENSO—and firms with flexible

production functions, this paper assesses the degree of forward-looking adaptation

using an estimating equation informed by a structural model of adaptation to a

stochastic weather process. Detailed panel data and a unique set of real-time historical

ENSO forecasts allow for estimation of the role of information in climate adaptation,

showing that anticipation of ENSO allows harvesters to take action that substantially

reduces the direct effects of ENSO.

From a methodological standpoint, the empirical strategy presented here is not

unique to the setting. The novel collection of ENSO forecasts assembled for the

project and the estimation strategy should allow for investigation of adaptation to

ENSO processes in a number of different settings. Public forecasts of other weather,

climate, and pollution processes can similarly be harnessed to understand expectation-

driven behavior.

Whether these estimates should influence broader discussions of optimal climate

change mitigation policy hinges on extrapolating the results dynamically and across

other firms. The magnitude of the change in temperature caused by ENSO—2 to

4◦C for a complete El Niño to La Niña cycle—is comparable to the average warming

currently being forecast for the coming century (IPCC, 2014). Perhaps the more

important difference when extrapolating the effects of ENSO to the effects from global

climate change is that ENSO-driven changes are temporary, rarely lasting for more
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than two years. Therefore, attention to dynamics is critical to understanding whether

the estimates presented in this paper have any bearing on the effects of long-run

climate change.

At least three arguments suggest that short-run adaptation estimates provide

lower bounds for long-run adaptation. First, if an adaptation mechanism is inex-

haustible and it is available in the short run, then it will be available in the long

run. Second, if a firm owner expects a change in the environment to be permanent,

then he or she will be more willing to take adaptive actions that require long-term

investments. Third, technical change might improve the adaptive capacity of a given

production process.

On the other hand, if adaptation mechanisms are exhausted, if agents hit cor-

ner solutions, if the prices of adaptation mechanisms rise too rapidly, or if climate

change causes more extreme weather impacts, then short-run adaptation estimates

will not be as good of a guide for the long run. In the setting of this paper, the

primary adaptation mechanism—timing entry and exit from the fishery—cannot be

indefinitely maintained. If climate change permanently pushes fishing grounds so

far offshore that entry is never profitable in expectation, then this adaptation will

no longer provide any aid. The question of dynamics in individual adaptation to a

changing climate is an important open questions in climate economics.

These results are encouraging for the prospects of adaptation by other highly

mobile firms with ready access to non-climate exposed production processes. Caution

should be exercised, however, in over-interpreting the results as indicating that these

settings will be robust to long-term climate change. Indeed, as Hornbeck and Keskin

(2014) shows empirically, long-run adaptation can be perverse in the sense that a

relaxation of one constraint can allow individuals or firms to place themselves in an

even more precarious long-run position—a return to the Malthusian edge.

The results also inform the potential effectiveness of information as a climate

adaptation policy. According to the baseline results, forecast provision has been

helpful in mitigating the damage from ENSO in the setting of albacore fishing. It

is important to note that rather than indicating that adaptation is “policy-free”

in the sense that it will occur without intervention, the results here point to the

direct value of policy-driven information provision. Information externalities imply

that public provision of forecasts of weather and climate changes can have a positive

welfare impact even if adaptation mechanisms themselves are private (Grossman and

Stiglitz, 1980).
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A Model extensions

A.1 Non-separable weather

The model in Section 2 assumed that weather and inputs were multiplicatively separa-

ble. Without assuming this separability, the definition of adaptation and estimation

strategy still hold, but the relatively simple dependence of adaptation on a single

function of weather will no longer hold.

For simplicity, consider a single input model but without the separability assump-

tion. Formally, let the firm solve

max
x

Et−1[πit] = p1tEt−1[f(xit, Zit)]− p2txit. (16)

Suppressing time subscripts and using subscripts on equations to denote partial

derivatives, the first order condition will be

p1E[f1(xit, Zit)]− p2 = 0 (17)

By the implicit function theorem, one can find

∂x

∂E[Z]
= −∂E[f1(x, Z)]

∂E[Z]

(
∂E[f1(x, Z)]

∂x

)−1
= −

∂E[f1(x,Z)]
∂E[Z]

E[f11(x, Z)]
. (18)

Similar expressions can be derived for other moments of the weather distribution,

suggesting that a semiparametric procedure for estimating this more general model

would be to include progressively higher moments of the weather forecast distribution

in the estimating equation. Such a procedure would require a rich forecast (of the

probability density, for instance) or a simple weather process. Formal identification of

this model comes from application of recent results in identification of nonparametic

instrumental variables models with non-separable error.

Let the optimal input choice be

x∗t = argmax
x
{p1tE[f(xt, Zt)|ẑt|t−1]− p2txt}, (19)

where ẑt|t−1 is the vector of forecasts of moments of the distribution of Zt that the

agent forms based on the information set Gt−1.21 This problem yields an optimal

21Under loss functions discussed in Section A.5, this vector is simply the conditional expectation
of Zt.
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choice for x denoted x∗t = h(ẑt|t−1, ηt) where η contains everything that shifts factor

demand other than expectations about the weather. Finally, denote deviations from

expected weather by εn,t = E[Zn
t ] − ẑn,t|t−1, where n indexes the moments of the

weather distribution, and collect these deviations in the vector εt.

Assuming that xt is strictly monotonic in ηt and that ẑt|t−1 is independent of ηt

and εt, the results from Imbens and Newey (2009) can be applied to identify f . Two

of these assumptions are natural in this setting. In the model, η contains prices, so

the law of demand gives monotonicity. A sophisticated forecaster will ensure that ẑ

is exogenous with respect to εt.
22 Finally, a maintained assumption is that prices are

independent of expected weather, leading to independence of η and ẑ.

This more general identification reinforces the intuition from the separable case

presented in the body of the paper. Forecasts errors are useful for identifying direct

effects of weather, and under the assumption that forecasts only affect inputs, the

factor demand can be fully recovered even if prices are not observed.

A.2 Discrete adaptation

The model presented in Section 2 assumed that all adaptation inputs were continuous

and that the production function was differentiable in all inputs. These assumptions

are not necessary for the formal definition of adaptation, and the estimation strategy

presented in the text easily extends to the case of discrete adaptations. Continuity

and differentiability does help to derive exact expressions for the adaptation decision

rule through the implicit function theorem.

In the presence of discrete adaptations, denote adaptation as the vector of changes

in inputs with respect to changes in expected weather, or

A =

(
∆x∗1(p, r,E[g(Z)])

∆E[g(Z)]
, . . . ,

∆x∗J(p, r,E[g(Z)])

∆E[g(Z)]

)′
.

The value and normalized value of adaptation can be defined analogously.

In this case, estimation proceeds as in Section 4. For a single input, estimating

adaptation can be thought of as estimating the reduced form of an instrumental

variables (IV) regression where the first stage is a regression of weather expectations

on inputs and the second stage is a regression of inputs on output conditional on

realized weather. In this case, the distribution of the input variable is irrelevant to

consistent estimation of the reduced form so long as there is identifying variation in

22More details on this can be found below.
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weather expectations (Wooldridge, 2010, pg. 84).

This result illustrates, however, that the method presented here cannot be used,

in general, to determine the contribution of individual adaptation mechanisms to

total adaptation. In an IV setting, one would need as many instruments as inputs to

fully identify the effect of each input. Expectations only provide a single instrument.

Given particular functional forms for E[g(Z)], more instruments could potentially

be generated, but there is no guarantee that the number of instruments will equal

the number of inputs. More importantly, since expectations enter all non-separable

inputs, omitting one input from the second stage equation would lead to bias.

Finally, a specific example worth highlighting is the case where a firm has the

choice of two possible production functions,

yit =

{
f1(xit)g(Z) if E[f1(xit)] ≥ E[f2(xit)]

f2(xit)g(Z) if E[f1(xit)] < E[f2(xit)]

Define the indicator d as d = 1{E[f1(xit)] ≥ E[f2(xit)]} and the probability p as

p = P (E[f1(xit)] ≥ E[f2(xit)]), so output can be written as

E[yit] = E[df1(xit)g(Z) + (1− d)f2(xit)g(Z)]

= pf1(xit)E[g(Z)] + (1− p)f2(xit)E[g(Z)].

The partial derivative of output with respect to realized weather will be unaffected

by this set-up since the weather term can be distributed to the front of the output

expression. Moreover, the choice of x is still a function of E[g(Z)] in both f1 and f2,

so the reduced form estimation logic from above applies.

A.3 Mixed input timing decisions

The model presented in Section 2 assumes that all inputs are decided before the

random variable Z is realized each period. Here, I relax that assumption.

Consider two inputs, x1 and x2, where x1 is determined before the random variable

realizes (which I will call ex ante) and x2 is determined after the random variable

realizes (ex post). Consider a single firm so that entity subscripts can be dropped and

normalize the output price to 1. The problem can be solved by backward induction.

The firm’s ex post problem is

max
x2t

πt = f(x∗1t, x2t)g(zt)− p1x∗1t − p2x2t (20)
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given a fixed x∗1 from the beginning of the period and a realization, z, of Z. The first

order condition is

f2(x
∗
1t, x2t)g(zt) = p2

This condition makes clear that x2 will generally be a function of the realized weather

through g(z). In addition, it will be a function of the expected weather through x∗1.

For instance, in a Cobb-Douglas case with equal factor shares, the firm would like

to equalize inputs ex ante, so it would choose x1 assuming that g(z) = E[g(Z)]. Ex

post, the firm still has incentive to equalize inputs, so it will choose x2 closer to the

ex ante value than in a purely ex post case.

The ex ante value of adaptation given in Equation (4) will be the same, but

estimation of this value using realized data will no longer capture all adaptation

because

∂y

∂g(z)
= f2(x

∗
1, x
∗
2)

∂x∗2
∂g(z)

+ f(x∗1, x
∗
2).

The second term is the direct effect, as before, but now part of the value of adaptation,

f2(x
∗
1, x
∗
2)

∂x∗2
∂g(z)

, will be included in the estimate of the direct effect, which will be

included in the magnitude of the coefficient on g(zt). This will serve to attenuate the

estimate of the value of adaptation and increase the magnitude of the estimate of the

direct effect.

This set-up is easily amenable to dynamic modeling where x1 is capital and x2

is consumption or labor. For instance, consider the Euler equation from a standard

dynamic, stochastic growth model where C is consumption, X is investment, A is

technology, K is capital, and u is the utility function of a representative consumer.

Et

[
βu′(Ct+1)(1 + Atf

′
1(Xt+1, Zt+1))

u′(Ct)

]
= 0

The particular functional form through which beliefs about the future environ-

mental process enter utility or output will depend on the context and can still result

in all adaptation being ex ante. For instance, in the Hall (1978) quadratic utility
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formulation, consumption in period t is

Ct =

(
r

1 + r

)(
Et

∞∑
j=0

(
1

1 + r

)j
Af(Zt+j) +Kt

)

Therefore, consumption is a function of the expected value of the weather process

each period in the future.

Empirically decomposing amelioration behaviors and direct effects is challeng-

ing in general. Formally, one can think of realizations as unbiased, zero variance

forecasts, which allows one to still define all adaptation as “forward looking” in a

trivial sense. But, this will lead to a fundamental identification problem since such

a forecast cannot be distinguished from weather realizations. Thus, all adaptation

estimates based on accurate expectation proxies are, at best, lower bounds on total

adaptation in any setting with ex post adaptation mechanisms and accurate beliefs

about realizations.23 This issue should not be confused, however, with agents taking

actions because weather realizations caused them to update their belief about future

weather. In this case, realizations are driving ex ante behavior through changes in

expectations.

A.4 Adaptation to a non-stochastic environment

The empirical method presented in this paper uses forecasts to identify forward-

looking adaptation, so there must be some uncertainty about weather at the time of

some of the firm’s input decisions for the method to work. One can still gain intuition

for the various terms defined in Section 2, however, by examining a non-stochastic

version of the firm’s decision problem.

Consider a profit maximization problem where the firm chooses an input, x, which

enters a production (or revenue) function, f(x, z), which is also a function of weather,

z, known at the time of the input decision. Let costs be either linear or convex

in inputs and denote them by c(x). Assume that f is at least twice continuously

23The need for accurate beliefs about realizations leaves open some possibilities. First, in some
forecasting settings, zero-horizon forecasts are issued and do sometimes have errors with respect to
realizations that could be exploited. Second, knowing how people learn about something like the
weather might shed light on discrepancies between even near-term expectations and realizations. One
can think of a poorly calibrated thermometer that is the basis for a firm’s use of air conditioning.
This thermometer allows the AC to run coincident with the realization of the weather state, but the
true weather differs from the inputs to the firm’s decision. In this case, however, a researcher would
need access to an unbiased thermometer, and one might wonder why the firm did not use the better
thermometer.
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differentiable in x, at least once continuously differentiable in z, and that costs are

at least once continuously differentiable in x. Therefore, the firm’s problem is

max
x

f(x, z)− c(x)

The first order condition is the usual equality between marginal product and marginal

cost, f1(x, z) = c1(x), and applying the implicit function to this condition gives

∂x∗

∂z
= − f12(x

∗, z)

f11(x∗, z)− c11(x∗)
. (21)

This term is adaptation. Denoting output as y and suppressing arguments of functions

from here on, we can write the benefit of adaptation (defined in Equation (4)) as

V (A) =
∂y

∂x∗
∂x∗

∂z
= −f1

f12
f11 − c11

(22)

and divide this by the total derivative of output with respect to weather, f1(∂x
∗/∂z)+

f2, to get

Vn(A) =
−f1 f12

f11−c11

−f1 f12
f11−c11 + f2

=
f1f12

f1f12 − f2(f11 − c11)
(23)

.

This term approaches 1 as the marginal productivity of the input becomes large

and is zero if the marginal productivity is zero. The complementarity between inputs

and weather acts the same way.

In the case where weather and inputs are multiplicatively separable (the one con-

sidered in the body of the paper), signing the normalized benefit of adaptation is

simplified. In that case, ∂2y/∂x∂z = (∂y/∂x)(∂y/∂z), so the sign of the cross partial

derivative will equal the sign of the change in output with respect to weather. The

second order condition requires that f11 − c11 < 0. The f2 term can be canceled out,

so the denominator will always be strictly greater than the numerator, and the whole

Vn(A) term will be greater than or equal to zero.

A.5 Forecast sufficiency under unbiasedness

In Section 4, simple conditions were given for when forecasts will be perfect proxies

for private beliefs. Here, I consider alternative assumptions about the information

sets of private agents and a public forecaster and derive implications for the use of
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forecasts as expectation proxies under the assumption of unbiased forecasts. This

setting also allows consideration of forecast dynamics.

To simplify the analysis, consider a weather loss function based on the profit

maximization problem given in Equation (1). The function describes the profit or

output loss that results from realizations of the random variable Z. Denote expected

loss as

E[Lp(Zt, Ẑt,X(Ẑ)t,pt)|Gt−h] (24)

where we now allow inputs to be a vector and expectations about the future weather

are denoted by Ẑ. Gt ∈ F is the information available to the firm at time t, so this

function gives losses due to the h period ahead (or h horizon) forecast. Denote the

argument that minimizes Equation (24) in terms of Ẑt by spt|t−h, where the superscript

p denotes that this is the private firm’s value.

Assume that the firm’s loss function is symmetric about Zt = 0 and either of the

two following conditions hold

1. The first derivative of the function, Lp1(Zt, Ẑt,Xt,pt), is strictly monotonically

increasing over the range of Zt and f̄(Z) is symmetric about Z = sp where f̄(Z)

is the conditional distribution of Zt − E[Zt|Gt−h].

2. The distribution of Z, f(Z), is symmetric about Z = sp, is continuous, and is

unimodal.

Under either of these conditions, it can be shown that the optimal forecast is spt|t−h =

E[zt|Gt−h] (Granger, 1969). Symmetric loss is limiting but allows for greatly simpli-

fied analysis and easier nonparametric identification. The other conditions are more

benign. Condition 1 says that there can be no flat regions in the loss function and

that the unforecastable component of the stochastic process is elliptical. With pos-

itive marginal cost of action or a quadratic loss function, condition 1 will be met.

Condition 2 is met by any elliptical distribution.

Now, consider a professional forecaster that minimizes mean squared error (MSE)

conditional on the information set Ft−h

st|t−h = argmin
ŝ

E[(zt − ŝ)2|Ft−h].
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Solving the minimization problem, one finds that the public forecast in this case is

st|t−h = E[zt|Ft−h].

Minimization of MSE loss is used in practice by many weather forecasting agencies

(Katz and Murphy, 1997).

Patton and Timmermann (2012) show that MSE forecasts have the following

properties which will be useful below.

1. Forecasts are unbiased for all h

2. Forecast errors are unpredictable: Cov(st+h|t, xt) = 0 for all xt ∈ Ft

3. Longer lead forecasts are less precise:

• V(st+h|t) ≤ V(st+H|t) for all h ≤ H

• V(εt+h|t) ≤ V(εt+H|t) for all h ≤ H where εt+h|t = zt+h − st+h|t is the

forecast error

We also need to be able to compare private forecasts to public forecasts. The

lemma below says that variance of forecast error is sufficient for comparing forecast

quality.

Lemma A.1. If Gt ⊇ Ft and (Ft)t≥0 is strictly monotonic, then there exists a

forecast sτ |t+k such that V(ετ |t+k) = V(εpτ |t) for k ≥ 0.

Proof. Forecast properties gives us that V(ετ |t) ≥ V(εpτ |t) ≥ V(ετ |τ ).

Therefore, by continuity there must exist a k ≥ 0 satisfying the condition.

Lemma A.2. For two forecasts s1t+h|t and s2t+h|t, an agent with a Granger loss function

will choose the forecast with lower variance.

Proof. For condition one, this result holds due to increasing loss for larger deviations

in Z. For condition two, the higher variance forecast will create a mean-preserving

spread in conditional Z.

Now, we are ready for the first set of results, which are versions of the forecast

sufficiency assumption stated in Section 4. Assume that Gt ⊆ Ft, or that the public

forecaster has access to more information than the private firm. Then it is intuitive

that the public forecasts are strictly better than the private forecast, and the firm

should use the public forecasts.
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Proposition A.3. If the firm loss function or the data generating process satisfies

the Granger (1969) conditions and Gt ⊆ Ft, then spt+h|t = st+h|t.

Proof. The Granger conditions imply that spt+h|t = E[zt+h|Gt], so by Lemma A.1 and

MSE-forecast property 3, Gt ⊆ Ft implies

V(εpt+h|t) ≥ V(εt+h|t)

Therefore by lemma A.2, firm loss is minimized by choosing spt+h|t = st+h|t.

We will also be interested in what happens as the public forecast becomes arbi-

trarily accurate. Define the skill of the forecast as

Definition A.1. The Brier skill score or skill of a forecast is

1− MSE

MSEC

where MSE is the MSE of the forecast and MSEC is the MSE of a climatological or

reference forecast.

Then a perfectly skillful or accurate forecast has a score of 1.

Now we can show the simple result that if public forecasts are perfectly skillful,

then they will provide a perfect proxy for private beliefs.

Corollary A.4. If the public forecast has perfect ex ante skill, then the private ex-

pectations equal the public forecast.

Proof. An MSE-forecast, st+h|t, is unbiased for all h by forecast property 1. Therefore,

a forecast will have perfect skill iff V(εt+h|t) = 0. Now, assume that Gt ⊃ Ft. Then

0 ≤ V(εpt+h|t) < V(εt+h|t) = 0,

a contradiction. Therefore, Gt ⊆ Ft, and Prop. A.3 gives the result.

Now consider the case where the private firm knows more than the public fore-

caster: Gt * Ft

To estimate adaptation, we are interested in dy
dsp

. If we observed sp and Gt ⊇ Ft,

the chain rule gives

dy

dsp
=

∂y

∂sp
+
∂y

∂s

∂s

∂sp
.
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The question becomes one of how correlated are changes in the two information

sets. If the new information enters both G and F , then s and sp will both change,

and the change in the public forecast will again provide good inference for the change

in the private forecast. If, however, G grows by gaining information that is already

possessed by the private agent, then ∂s
∂sp

will equal 0.

The last case is when Gt + Ft and Gt * Ft. Here, since forecasts based on Ft are

public, the firm will incorporate the public forecast with their private information,

leading to s̃pt|τ = g(spt|τ , st|τ ). For instance, with arithmetic mean pooling

s̃pt|τ = (1/2)(spt|τ + st|τ )

⇒∂s̃p

∂s
=

1

2

which will generally outperform a non-pooled estimator.

Optimal ensembling by the firm will yield Gt ⊇ Ft in all cases where st+h|t is

sufficient for Ft. Therefore, in the event that the public forecasts are not sufficient for

the private beliefs of the agent, the ideal estimation strategy would be to instrument

for agent beliefs using the public forecasts.
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B Data construction details

B.1 ENSO forecast data

Gathering actual contemporary forecast values (what I call “real time” or “historical”

forecasts) was central to the project, because accurate knowledge of the information

sets available to harvesters is crucial for identification. Unfortunately, to my knowl-

edge, there does not exist a database of real time ENSO forecasts from their initiation

in 1989 to the present. Thus, I gathered real time forecasts from the Climate Diag-

nostics Bulletin (CDB) and the IRI Niño 3.4 summary. The CDB started releasing

forecasts in June 1989 and began incorporating the IRI summaries in April 2003. By

the year 2000, the number of forecasts incorporated into the Bulletin had grown from

1 to 8.

Figure 2: Example of ENSO forecast issued in the Climate Diagnostics Bulletin

Notes: The figure shows an ENSO forecast issued in the Climate Diagnostics
Bulletin in June of 1989. This figure is typical of the forecasts published be-
tween 1989 and 2002. The solid line shows the Niño 3 sea surface temperature
anomalies and the X are forecasts (and back-casts). Whiskers are the historical
standard error for the forecast, a feature present in this but not all models.

To gather the CDB data, I digitized paper records from 1989 to 1999 by scan-

ning each forecast from the Bulletin and then recording the data using the software

Graphclick. For Bulletins from 1999 to 2002, I used the online archive of CDBs, again

digitizing the figures using Graphclick. For each release, I digitized the CDC CCA,

LDEO1, LDEO2, LDEO3, LIM, and NCEP forecasts. Other forecasts were either

issued as maps or contained idiosyncratic issues that prevented digitization.
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For data from 2002 through 2010, I used IRI data helpfully supplied to me by

Anthony Barnston. These IRI data have formed the basis for analyses of ENSO

forecast performance as in Barnston et al. (2010, 2012).

In all cases, I used the actual ENSO index values reported in subsequent CDB

or IRI reports to calculate forecast accuracy. So, for instance, when digitizing the

Climate Prediction Center Canonical Correlation forecast at a 3 month lead, I used

the actual value reported in the CDB three months later. One could alternatively use

a standardized ENSO index across all forecasts. I chose not to do this for numerous

reasons. First, all forecasts initially, and many forecasts to the present day, use the

Niño 3 index rather than the Niño 3.4 index. Second, the base climatology used

to calculate ENSO indices has changed from the 1980s to the present. Third some

forecasting agencies might have used their own idiosyncratic calculations of an index

or used alternative SST measures. Using the real-time actual values eliminates these

sources of noise. On the other hand, what matters for fishing outcomes is the true

climate that realized each time period. Thus, for estimation, I use the most recently

released version of the Niño 3.4 index. For an alternative method based on scaling

alternative index values and visual averaging of maps, see the IRI ENSO Quick Look .

B.2 Albacore prices

Albacore prices come from the PacFIN database and are available from 1981 to 2010

at the annual level for ports in the continental United States. Prices are matched to

catch using the landing port reported by the vessel.

B.3 Fuel prices

Monthly port-level fuel prices are available for ports in Washington, California, and

Oregon from 1999 to the present. The prices are gathered using a phone survey during

the first two weeks of each month. The survey respondents are asked to give the price

per gallon or price per 600 gallons for number 2 marine diesel before tax.

From 1983 to until the end of 1993, state level prices for number 2 distillate are

used for Washington, Alaska, and Oregon. From 1994 until the end of 1998, highway

grade number 2 diesel price is used. For Alaska, the state average diesel price is also

used for the 1999 to 2010 period.

For California, the distillate price series is not available. State average diesel price

is used starting in July of 1995. Prior to July 1995, the gasoline price is used, after

accounting for seasonality. In particular, using all data where I observe both gasoline
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and diesel prices (1994 through 2010) I run the regression

dieselt = αmonth + γ0gast + γmonthgast + εt

where diesel is the diesel price, gas is the gasoline price, αmonth is a fixed effect for

each month of the year (1, . . . , 12), and γmonthgast is an interaction between a fixed

effect for each month and the gasoline price. I then predict the diesel price for the

pre-1994/5 period using the coefficients from this regression and the observed gasoline

price from 1983 to 1995. This procedure should account for intra-year changes in the

diesel-gasoline price gap caused by seasonal demand for heating oil. In practice, the

seasonal coefficients are not important for this sample.

The same procedure is used to estimate diesel prices for Hawaii over the full

sample.

B.4 Teleconnection

To quantify the relationship between ENSO and temperatures outside of the Niño

3.4 region—what climatologists call teleconnection—I use monthly 1981-2010 satel-

lite measures of sea surface temperatures at a (1/4)◦ spatial resolution from Reynolds

et al. (2002). Temperatures from so called “reconstruction analyses” like this are

recommended for use in climate studies by Auffhammer et al. (2013). I define tele-

connection as the correlation between temperature in a given location and the Niño

3.4 index from the month prior. I calculate separate teleconnection measures for

each month of the year for a given location, reflecting the time-varying strength of

ENSO within the year. In particular, ENSO events typically manifest in April or

May and last through the beginning of the next year, meaning that effect of ENSO

will generally be more apparent in the latter half of the year (Hsiang et al., 2011).

Formally, let m be the month, y be the year, x be the location, and L be a lag

length in months. Let ninom,y be the Niño 3.4 index value for month m in year

y, Tx,m,y be the temperature at location x, month m, and year y. Let ρx,m(L) =

corr(ninom,y, Tx,m+L,y) for all y. I define teleconnection as this correlation when L = 1,

or telx,m = ρx,m(1). This definition follows the one used in Hsiang et al. (2011).

The teleconnection value is what is shown in Figures 6, 7, and 8.

B.5 Vessel movement

Vessel movement is calculated from daily latitude and longitude records plus records of

the departure and landing ports. During a fishing trip, movement is calculated as the
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great circle distance between today’s and yesterday’s reported location. Calculations

were carried out using the geodist package in Stata.

For the date of departure, movement is calculated as the great circle distance

between the departure port location and the location reported in the first logbook

record for the trip. For the final day of the trip, movement is calculated as the great

circle distance between the last location reported in the logbook and the landing port.

B.6 Catch weight

Catch weight was not recorded in the logbook records for 63,435 of the 193,561 daily

records for the full sample (1981 - 2010). For the missing records, weight was interpo-

lated in order to obtain complete records for the creation of revenue measures. The

interpolation used two methods. First, if a total weight of fish catch was recorded

for the trip, then this average weight was used for all fish caught on the trip. Trip

weight records were used for interpolation in 11,396 of the missing cases. For the

remaining cases, a regression of weight on gear type, year, and month was used to

estimate weight.

Table 12: Robustness to interpolation of catch weight

(1) (2) (3) (4)
Catch Catch weight Catch weight, interpolated Revenue

Niño3.4t−1 95.9*** 1269.1*** 1542.6*** 1204.6***
(35.2) (477.1) (529.8) (451.5)

Niño3.42t−1 -14.2 -175.3 -222.0 -66.9
(15.1) (207.0) (227.2) (191.4)

N̂iño3.4t−1 -91.6*** -1250.6*** -1492.5*** -1433.6***
(30.2) (402.0) (452.9) (356.3)

N̂iño3.4
2

t−1 -69.3*** -1006.0*** -1075.1*** -771.7**
(26.3) (348.2) (385.0) (314.5)

FEs Baseline Baseline Baseline Baseline
Weight measure Observed Observed Interpolated Observed
Observations 67,232 67,232 69,057 67,232
R2 0.073 0.066 0.076 0.066

Notes: The table shows results from estimating versions of equation (12) on monthly data.
The dependent variable in each model is the monthly catch, where catch is the number
of fish caught. In addition to the listed variables, all models contain vessel, year, and
month-of-year fixed effects unless otherwise noted. In parentheses are spatial-temporal HAC
robust standard errors using a uniform kernel, a distance cutoff of 30km, and 2 year lags for
autocorrelation, unless otherwise noted. Significance indicated by: *** p<0.01, ** p<0.05,
* p<0.1.
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Table 12 assesses the effect of this interpolation procedure on the baseline results.

Column 1 reproduces the baseline results from Table 2 using only the sub-sample of

observations with recorded catch weight. Inference is nearly identical to baseline in

this case. Columns 2 and 3 show the baseline regression with catch weight as the

dependent variable with and without the interpolation, respectively. One can see

that the interpolation increases the magnitude of the results. This occurs because

more positive catch observations are being added to the dataset. Finally, Column 4

reproduces the revenue result from the baseline table, again showing slightly larger

magnitudes but with similar qualitative results between the interpolated and non-

interpolated versions.
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C Additional figures and tables

Figure 3: ENSO Cycle
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Notes: The ENSO cycle is represented here by the NINO3.4 index, which is the three month moving
average of SST anomalies from the NINO3.4 region of the Pacific. Values above 0.5 indicate an El Niño
and values below -0.5 indicate La Niña, as denoted by the red and blue shaded regions respectively.
For more information on this series, see Section 3.
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Figure 4: Forecast skill
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Notes: Forecast skill is indicated by the light gray lines, and the 12 month moving average of skill is
given by the blue lines. Skill is the rolling mean squared error of forecasts normalized by the rolling
mean squared error of a näıve persistence forecast. For details, see Section A.5. El Niño periods are
indicated in red, and La Niña periods are indicated in blue.
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Figure 5: Moving standard deviation of ENSO
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sample. Rolling values use a three year window and monthly data.
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Figure 6: Teleconnection between Niño 3.4 and sea surface temperature

Notes: The heat map shows correlation between the one month lag of the
Niño 3.4 index and sea surface temperature for each quarter degree latitude-
longitude grid cell. This correlation serves as the teleconnection measure in
this paper. For more information on this calculation, see Section 3.
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Figure 7: Fishing locations across the North Pacific

Notes: The heat map shows correlation between the one month lag of the
Niño 3.4 index and sea surface temperature for each quarter degree latitude-
longitude grid cell, as in Figure 6. Each point shows a daily observation of
either fishing or transiting.
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Figure 8: Teleconnection during ENSO events versus not
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Notes: Two histograms of daily teleconnection status are shown. The gray
is during ENSO events, and the black outline is not during ENSO events.
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Table 13: Additional robustness

(1) (2)
Catch Catch

Niño3.4t−1 111.8*** 123.8**
(41.7) (52.7)

Niño3.42t−1 -5.72 -11.9
(19.1) (24.4)

N̂iño3.4t−1 -81.0* -84.4*
(45.7) (44.8)

N̂iño3.4
2

t−1 -72.0** -69.9**
(31.3) (30.0)

N̂iño3.4t -30.6 -8.14
(61.9) (57.9)

N̂iño3.4
2

t -14.3 -27.1
(36.6) (31.9)

N̂iño3.4t+1 -34.5
(72.0)

N̂iño3.4
2

t+1 19.6
(32.1)

FEs Baseline Baseline
Observations 67,715 67,260
R2 0.079 0.079

Notes: The table shows results from estimating versions of equation (12) on monthly
data. The dependent variable in each model is the monthly catch, where catch is the
number of fish caught. In addition to the listed variables, all models contain vessel,
year, and month-of-year fixed effects unless otherwise noted. In parentheses are spatial-
temporal HAC robust standard errors using a uniform kernel, a distance cutoff of 30km,
and 2 year lags for autocorrelation, unless otherwise noted. Significance indicated by:
*** p<0.01, ** p<0.05, * p<0.1.
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Figure 9: Normalized value of adaptation as a function of Niño 3.4 values
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Notes: The normalized value of adaptation, Vn(A) is shown for the revenue
estimates in Table 2. For details on the calculation of this value, see Section
5.3.

Figure 10: Regression discontinuity of catch with respect to Niño 3.4
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Notes: Each point is the average catch in 0.05◦ bins of the Niño 3.4. Local
linear regressions (Epanechnikov kernel with bandwidth of 0.1) are fit to the
data that fall on either side of Niño 3.4= 0.5, the pre-requisite for declaring
an El Niño.
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Table 14: Price effects of ENSO

Albacore price Fuel price
Niño 3.4 -0.069 -0.13*

(0.070) (0.071)
Niño 3.42 -0.039 -0.014

(0.053) (0.045)
Constant 0.97*** 1.99***

(0.074) (0.076)
Observations 31 347

Notes: The table shows results from estimating Newey-West regressions on monthly (fuel
prices) or annual (albacore prices) data. The dependent variable in each model is indicated
at the top of the column. In parentheses are Newey-West standard errors with 2 lags for
autocorrelation. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Figure 11: Output and ENSO before and after forecasts, changes
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Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.18) of catch on the change in the Niño 3.4 index between
month t − 1 and t − 2. All variables are residualized on month. The red,
solid line uses the sample from 1981 to May 1989 before ENSO forecasts
were released. The blue, dashed line uses the sample from after forecasts
were released in June 1989 until 2010. Shaded areas give the 95% confidence
intervals.
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Figure 12: Output and ENSO before and after forecasts, raw data
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Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.38) of catch on the Niño 3.4 index the previous month. The
red, solid line uses the sample from 1981 to May 1989 before ENSO forecasts
were released. The blue, dashed line uses the sample from after forecasts
were released in June 1989 until 2010. Shaded areas give the 95% confidence
intervals.
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