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Abstract 
 
The U.S. Department of Agriculture (USDA) operates several food assistance programs aimed at alleviating food 
insecurity among low-income households. While many assistance recipients participate in more than one food 
program, little is known about how the programs interact. The National Household Food Acquisition and Purchase 
Survey (FoodAPS) provides self-reported information about a household’s participation in selected food programs 
and validates participation status in the Supplemental Nutrition Assistance Program (SNAP), which is the largest 
program by expenditures. We leverage these key features of FoodAPS to focus on two programs—SNAP and the 
Special Supplemental Nutrition Program for Women, Infants, and Children (WIC)—and address the following 
questions: 

(1) To what extent does joint participation in SNAP and WIC alleviate food insecurity compared with 
participation in SNAP or WIC alone? 

(2) How can we combine self-reported program participation with administrative SNAP validation data to 
tighten inference on the causal effects of the programs? 

Identifying causal effects in this context presents a major methodological challenge due to two fundamental 
identification problems: (i) endogenous self-selection of households into the programs and (ii) systematic 
underreporting of food assistance in national surveys. We extend existing nonparametric treatment effect methods 
that account for endogenous selection and misreporting in a unifying framework to estimate bounds that isolate true 
causal effects. We derive several new econometric results to highlight what can be learned about average treatment 
effects (ATEs) when validation information about participation is available for one program (SNAP) but not the 
either (WIC). To tighten these bounds, we utilize the Geography Component of FoodAPS (FoodAPS-GC) to 
construct monotone instrumental variables (MIVs) representing selected aspects of the local food environment, 
including the availability of food stores and the cost of food. Monotone instrumental variables are weaker than 
standard IVs in that they require no a priori exclusion restriction. 
 
Our key finding is that we can identify the ATE on food security of jointly participating in SNAP and WIC versus 
participating in SNAP alone as strictly positive under relatively weak assumptions on the selection process 
combined with a novel food expenditure MIV.  Participating in both programs compared with SNAP alone is 
estimated to increase the food security rate in our sample of low income households by at least 24 percentage points.  
Accounting for sampling variability reflected in the 95 percent confidence interval, food security would rise by at 
least 1.9 percentage points.  Better understanding of the role played by joint program participation in enhancing food 
security can be applied to improve the design and targeting of food assistance programs. 
 
JEL codes: C21, I38 
 
Keywords: SNAP, WIC, validation, nonparametric bounds, partial identification 
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1. Introduction 

A household is food secure if it has access to enough food for an active, healthy life of all household 

members. Food security implies that nutritionally adequate and safe foods are readily available and 

the household has an assured ability to acquire them in socially acceptable ways (NRC, 2006). 

Substantial prevalence of food insecurity in the low-income U.S. population is a matter of intense 

public concern, since food insecurity can be detrimental to the health and well-being of adults and 

children (for a literature review, see Gundersen et al., 2011). In fact, among households with income 

below 130% of the federal poverty threshold in 2016, 20.2% experienced low food security and 

15.5% had very low food security, implying the food insecurity rate of 35.7% in this population 

group (Coleman-Jensen et al., 2017a; 2017b).1 

Since the 1930s, the United States has had several food assistance programs in place 

designed to alleviate food insecurity. The U.S. Department of Agriculture (USDA) presently 

administers 15 domestic food programs (Oliveira, 2017). The largest and third largest by total 

expenditures are, respectively, the Supplemental Nutrition Assistance Program (SNAP; $70.8 billion 

spent in the fiscal year 2016, 44.2 million participants on average per month) and Special 

Supplemental Nutrition Program for Women, Infants, and Children (WIC; $5.9 billion, 7.7 million 

participants). Although target populations and forms of benefits differ across the food programs, their 

common objective is to provide a nutritionally adequate diet and resources to increase the food 

supply for low-income households (U.S. GAO, 2010). Yet, 51.2% of households on SNAP and 

40.6% on WIC were food insecure in 2016. Moreover, the rate of food insecurity among SNAP 

recipients was more than twice that among potentially eligible, low-income nonrecipients. In the case 

of WIC, the food insecurity rate among recipients was 1.4 times that among nonrecipients (Coleman-

Jensen et al., 2017a). Such counterintuitive associations motivate a careful investigation of the 

programs’ effectiveness in alleviating food insecurity. 

Many food assistance recipients are eligible for and participate in several food programs 

concurrently, but little is known about how various programs interact in creating a food safety net. 

Potentially, participation in several programs may reduce the overall resource variability in a 

household and provide additional mechanisms to address food insecurity (for instance, through 

                                                 
1 For comparison, the rate of food insecurity among all U.S. households was 12.3% (Coleman-Jensen et al., 2017a). 
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nutrition education). Also, as suggested by prior research (e.g., Brien and Swann, 2000), programs 

may reinforce the effects of each other due to synergies. Thus, improving methods to study the 

effects of joint program participation supports a better understanding of the overall efficacy of the 

U.S. food safety net. 

In this paper, we focus on two specific food assistance programs, SNAP and WIC, which 

touch the lives of millions of adults and children. We leverage unique features of the National 

Household Food Acquisition and Purchase Survey (FoodAPS) to address the following questions: 

(1) To what extent does participation in both SNAP and WIC lead to an increase in 

household food security compared with participation in only SNAP or only WIC? 

(2) To what extent does combining self-reported survey data on program participation with 

auxiliary administrative data in FoodAPS on SNAP receipt help tighten inferences on causal average 

treatment effects (ATEs)? 

Identifying causal, rather than associative, effects of a food program is challenging because 

of (i) endogenous self-selection of households into the program (households are not randomly 

assigned) and (ii) pervasive underreporting of food assistance in national surveys. In particular, 

unobserved household characteristics such as expected future health status, human capital 

characteristics, and financial stability, for example, are thought to be jointly related to both food 

security outcomes and the choice to participate in food assistance programs. This simultaneity 

precludes the use of simple regression techniques (e.g., OLS or probit) to estimate causal effects (see 

Gundersen and Oliveira, 2001; Jensen, 2002; Fox et al., 2004; Wilde, 2007; Nord and Golla, 2009). 

Furthermore, households are thought to systematically underreport the receipt of food assistance in 

surveys (e.g., Bollinger and David, 1997; Meyer et al., 2015a; 2015b), and the propensity to 

misreport may vary across households based on both observed and unobserved characteristics. For 

example, comparing survey responses with data from administrative sources, Meyer et al. (2015a) 

find that less than 60% of SNAP benefits are recorded in recent waves of the Current Population 

Survey (CPS). Similarly, Bitler et al. (2003) find evidence of “severe” underreporting of WIC 

benefits. Under such circumstances, all of the classical measurement error assumptions are violated, 

and it is particularly important to exploit any available validation information to mitigate the 

measurement error problem. Analyzing the effects of not just one, but two food programs at once 

adds another layer of complexity. We must devise an approach to model food program participation 
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that is reflective of the participation’s intensity, but does not impose a rigid structure on the program 

effects. Also, we must address the increased dimensionality of the measurement error problem. 

This paper develops a new framework for assessing the causal effects of participation in up to 

two programs when participation can be partially verified. In particular, we extend the nonparametric 

treatment effect methods developed by Kreider and Hill (2009) and Kreider, Pepper, Gundersen, and 

Jolliffe (2012, hereafter KPGJ) to account for the endogenous selection and nonclassical 

measurement error identification problems in a unifying framework. We modify these partial 

identification methods, which are designed to handle a binary treatment variable, to accommodate a 

multinomial, partially-ordered treatment variable. We also extend the methodology in order to 

exploit partial validation of the treatment variable (FoodAPS provides both self-reported and 

administratively verified SNAP receipt data, but only self-reported WIC data). This approach allows 

us to incorporate auxiliary administrative information to tighten inferences on the causal effects of 

program participation and to assess broader impacts of misreporting when such information is 

unavailable. Our methodology significantly differs from the approaches of Fraker and Moffitt (1988), 

Keane and Moffitt (1998), and Brien and Swann (2001) in which participation decisions and the 

effects of programs on an outcome of interest are modeled jointly in a parametric, simultaneous 

equations setting.2 Notably, our methods do not impose the linear response assumption or any of the 

classical measurement error assumptions. 

An important component of our analysis involves investigating the power of assumptions in 

tightening inferences on causal effects. For example, we investigate a number of middle ground 

assumptions aimed at narrowing worst-case bounds under endogenous selection by restricting 

relationships between food security, participation in SNAP and WIC, and observed covariates. In 

particular, the Monotone Treatment Selection (MTS) assumption (Manski and Pepper, 2000) 

formalizes the idea that the decision to participate is monotonically related to food security 

outcomes: households participating in the programs possess attributes that are detrimental to food 

security and, therefore, are presumed to have worse latent food security outcomes on average. This 

assumption, which links households’ characteristics to the propensity to be food secure, is distinct 

from a Monotone Treatment Response (MTR) assumption (Manski, 1997) that directly links program 

                                                 
2 Also, in contrast to our paper, these studies do not address misreporting. 
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participation to food security. Under the MTR assumption, more participation cannot harm food 

security on average. A Monotone Instrumental Variable (MIV) assumption (Manski and Pepper, 

2000) formalizes the notion that the latent probability of food security varies monotonically with 

certain observed covariates. Specifically, we study the identifying power of an assumption that, on 

average, latent food security weakly rises with more household food expenditures relative to 

expenditures consistent with the Thrifty Food Plan (Carlson et al., 2007) and an assumption that it 

weakly rises with household income adjusted for household composition. Unlike standard 

instrumental variables (IVs), MIVs require no a priori exclusion restrictions (or mean independence 

assumptions). In addition, we investigate the identifying power of assumptions related to the 

misreporting process (e.g., no false positives) as well as of the (implausible) exogenous selection 

assumption and of IVs pertaining to state-level SNAP policies and design features, which are 

extracted from the SNAP Policy Database (ERS, 2017b). 

FoodAPS, which is our main data source, contains records for 4,826 households, who 

participated in the survey during one week between April 2012 and January 2013. We focus only on 

those that would be eligible to participate in SNAP and WIC concurrently. Given the eligibility 

restrictions associated with the two food programs, we choose to analyze households with income 

below 130% of the poverty threshold and containing a pregnant woman, or a child aged less than five 

years. The analytical sample contains 460 households, 37% of whom report being on both programs. 

Although bounds on ATEs tend to be wide without assumptions, by layering successively stronger 

assumptions, we are able to provide successively tighter bounds on the food program effects. Our key 

finding is that we can identify the ATE of jointly participating in SNAP and WIC versus 

participating in SNAP alone as strictly positive under relatively weak assumptions on the selection 

process combined with a food expenditure MIV. 

The remainder of the paper is organized as follows. Section 2 lays out the methodological 

framework, formally defines the identification problems, and provides several new sets of closed-

form analytical formulas for bounding ATEs given a potentially mismeasured, partially ordered, and 

partially verified treatment.  We describe empirical results corresponding to the new theory, 

highlighting the identifying power of successively stronger nonparametric assumptions.  Section 3 

describes the data and outlines the characteristics of the analytical sample. Section 4 provides 

additional sensitivity analysis, and Section 5 concludes. 
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2. Methodology 

2.1. General framework 

To estimate causal treatment effects of multiple program participation, we apply nonparametric 

bounding methods developed by KPGJ that account for the dual identification problems of 

endogenous selection and classification error.3 We extend their framework to introduce partially 

ordered multiple treatments, which is necessary to model joint program participation. We derive 

sharp bounds on average treatment effects that are logically consistent with the observed data and 

imposed statistical and behavioral assumptions. As described below, we also exploit a key feature of 

FoodAPS in that it contains both self-reported and administratively verified data on SNAP 

participation. This verification information is valuable in part because it allows us to reduce the 

dimensionality of the classification error problem. 

For the outcome, let Y = 1 indicate that a household is food secure, with Y = 0 otherwise. We 

also consider related outcomes such as very low food security. Let S ∗  be an unobserved indicator of 

true program participation where = 0S ∗  denotes no participation in SNAP or WIC, = 1S ∗  denotes 

participation in SNAP alone, = 2S ∗  denotes participation in WIC alone, and = 3S ∗  denotes 

participation in both SNAP and WIC. This treatment variable is partially ordered: = 1 or 2S ∗  

denotes some participation while = 0S ∗  does not, and = 3S ∗  involves more participation. (Since 

= 1S ∗  and = 2S ∗  represent different programs, these two treatments are not ordered.) 

Instead of observing S ∗  in the data, we observe a self-reported counterpart, S. We also 

observe FoodAPS administrative information on SNAP. Let 1SNAPV =  denote verification that a 

household truly received SNAP (weighted 57.6% of the analytical sample, using the FoodAPS 

variable “snapnowadmin”), implying that * 1 or 3,S =  with 0SNAPV =  (42.4% of the sample) 

conversely implying that * 0 or 2.S = 4 

We focus ATEs associated with participating in both food assistance programs versus a 
                                                 
3 See also Gundersen et al. (2012). 
4 Households with VSNAP = 0 include verified SNAP non-participants (weighted 2.6% of the analytical sample), 
households that could not be matched to existing administrative records (26.8%; most likely due to true 
nonparticipation), households that could not be matched because states provided no or insufficient administrative 
data (10.7%), and households that withheld consent for the administrative match (2.3%). For simplicity, we treat all 
of these households as true nonparticipants. 
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single program, or compared with no participation: 

{ }= [ ( = ) 1| ] [ ( = ) 1| ]  for  , 0,1,2,3 ,  jkATE P Y S j X P Y S k X j k j k∗ ∗= − = ∈ ≠ ,    (1) where 

( )Y S ∗  indicates the (latent) potential food security outcome under treatment S ∗ , X denotes any 

covariates of interest, and P denotes the probability of an outcome.5 It should be noted that there are 

no regression orthogonality conditions to be satisfied in our framework; thus, there is no need to 

include covariates as a means of avoiding omitted variable bias. To simplify notation, we suppress 

the conditioning on X and write [ ( = ) = 1]P Y S j∗  more compactly as [ ( ) 1]P Y j = . 

In what follows, we illustrate the case of 3j =  vs. 1k = . Here, 31 [ (3) 1]ATE P Y= =  

[ (1) 1]P Y− =  measures how the prevalence of food security would change if all eligible households 

participated in both SNAP and WIC rather than in SNAP alone.6 One cannot identify 31ATE  without 

additional assumptions, even if S is accurately reported, because the potential outcome ( = 3)Y S ∗  is 

observed only for households that chose to participate in both SNAP and WIC, while ( = 1)Y S ∗  is 

observed only for households that chose to participate in SNAP alone. The decomposition 
* *[ (3) 1] [ (3) 1| 3] ( 3)P Y P Y S P S= = = = = * *[ (3) 1| 3] ( 3)P Y S P S+ = ≠ ≠  highlights the selection 

problem: the term *[ (3) 1| 3]P Y S= ≠  represents an unobserved counterfactual outcome, namely, the 

likelihood of food security when participating in SNAP and WIC concurrently among households 

that actually chose not to be on both programs. 

As a further identification problem, households are thought to systematically underreport 

program participation in national surveys, and such misreporting may be related to personal 

characteristics (including the food security outcome itself). Allowing S to deviate from *S , let 
, *( , , ) for , {0,1,2,3}j k

i P Y i S j S k j kθ ≡ = = = =  denote the fraction of households with food security 

status i reporting participation status j when true participation status is k. Using the law of total 

probability, the first term in 31ATE  becomes 3,3 3, 3
1 1[ (3) 1] ( 1, 3)P Y P Y S θ θ− −= = = = + −   

                                                 
5 Our framework can be extended to handle continuous outcomes or the number of affirmed food insecurity 
conditions in the survey. 
6 Note that we are not restricting a treatment effect to be the same across different households. As emphasized by 
Moffitt (2005), the classical linear response model assumption, for example, is difficult to justify when considering 
government assistance programs that are thought to have heterogeneous effects. 
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* , , , ,
1 0 1 0

3
[ (3) 1| 3] ( 3) ( )j j j j j j j j

j
P Y S P S θ θ θ θ− − − −

≠

 
+ = ≠ ≠ + + − − 

 
∑ , where , *( , , )j k

i P Y i S j S kθ − ≡ = ≠ =   

and , *( , , ).j k
i P Y i S j S kθ − ≡ = = ≠  An analogous expression can be derived for [ (1) 1].P Y =  

  Without further assumptions, we show in Appendix A that the marginal impact on food 

security associated with participating in both SNAP and WIC, compared with participating in SNAP 

alone, is bounded as follows:7  

 

3,1

3,1

3,1

1 ( 1, 3) ( 0, 1)

1 ( 0, 3) ( 1, 1)

LB

UB

P Y S P Y S

ATE

P Y S P Y S

− + = = + = = +Θ

≤

− = = − = =

≤

+Θ

    (2) 

where 3,3 3, 3 1,1 1, 1
3,1 1 1 0 0
LB θ θ θ θ− − − −Θ ≡ − + −  and 3,3 3, 3 1,1 1, 1

3,1 0 0 1 1
UB θ θ θ θ− − − −Θ ≡ − + − +  could be positive or 

negative.  Terms like ( 1, 3)P Y S= =  are observed from the data, but the { }θ  components are 

unobserved.  Thus, the ATE bounds in Equation (2) are not yet operational.  In our FoodAPS sample, 

we have ( 1, 3) 0.238,P Y S= = =  ( 0, 1) 0.159,P Y S= = = ( 0, 3) 0.165,P Y S= = = and 

( 1, 1) 0.172.P Y S= = =   Thus, in our application the bounds in Equation (2) become 

    3,1 3,1 3,10.6 0.66303 LB UBATE +Θ≤− +Θ ≤  

If participation in SNAP and WIC were accurately measured, then setting 3,1
LBΘ  and 3,1

UBΘ  equal to zero 

would reduce the bounds in Equation (2) to Manski’s (1995) classic worst-case ATE bounds: 

[ 0.603,0.663].− 8  In the context of food assistance programs, however, participation is thought to be 

underreported.   

 Importantly, these error rates 3,1
LBΘ  and 3,1

UBΘ  are logically bounded. For example, 1,1
1θ
−  cannot exceed 

( 1, 1) 0.378,P Y S= ≠ =  a quantity directly observed in the data.  Without knowledge about the nature 

                                                 
7 To do: add this result to the proofs in Appendix A and use the following information: For the lower bound, 

( 0, 1) ( 1, 3)− = ≠ − = ≠P Y S P Y S 1 ( 0) ( 1)= − + = + =P Y P Y ( 0, 1)− = ≠P Y S ( 1, 3)− = ≠P Y S
1 ( 0, 1) ( 1, 3).= − + = = + = =P Y S P Y S  For the upper bound, ( 0, 3) ( 1, 1)= ≠ + = ≠P Y S P Y S

1 ( 0) ( 1)= − = − =P Y P Y ( 0, 3)+ = ≠P Y S ( 1, 1)+ = ≠P Y S 1 ( 0, 3) ( 1, 1).= − = = − = =P Y S P Y S  
8 With a binary treatment, the Manski bounds would have a width equal to 1 (and always include 0).  In the present 
context with multiple treatments, the Manski bounds have a width greater than 1.   
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and degree of reporting errors, however, nothing prevents the worst case bounds in Equation (2) from 

expanding to [ 1,1],−  in which case they are completely uninformative.  For the upper bound, for 

example, 3, 3
0θ
−  could be as large as ( 0, 3) 0.165,P Y S= = =  while 1, 1

1θ
−  could be as large as 

( 1, 1) 0.172.P Y S= = =   Since 1, 1
1θ
−  and 1, 1

1θ
−  could both be 0, the upper bound in Equation (2) attains 

1. Analogously, the lower bound attains -1. 

2.2. Partial validation data in FoodAPS 

Partial validation data in FoodAPS allow us to place informative restrictions on the 

magnitudes of  3,1
LBΘ  and 3,1 .UBΘ   Knowledge of whether or not a household participates in SNAP is not 

enough to pinpoint the value of *S , which represents the true joint participation status. In particular, 

confirmation of participation in SNAP merely identifies that * {1,3};S ∈  that is, the household might 

be participating in SNAP alone or in both SNAP and WIC. Similarly, confirmation of 

nonparticipation in SNAP merely identifies that * {0,2};S ∈  the household may have been 

participating in neither program or in WIC alone.  Still, confirmation of SNAP participation status – 

and modifying the observed treatment indicator S accordingly to align with known values – allows us 

to eliminate many of the error components of 3,1
LBΘ   and 3,1 .UBΘ   Specifically, 

0,3 1,3 2,3 3,0 3,1 3,2 0,1 2,1 3,1 1,0 1,2 1,3
3,1 1 1 1 1 1 1 0 0 0 0 0 0( ) ( ) ( ) ( )LB θ θ θ θ θ θ θ θ θ θ θ θΘ ≡ + + − + + + + + − + +  reduces to 

1,3 3,1 3,1 1,3
3,1 1 1 0 0
LB θ θ θ θΘ = − + −  after setting 0,3 2,3 3,0 3,2 0,1 2,1 1,0 1,2

1 1 1 1 0 0 0 0 0.θ θ θ θ θ θ θ θ= = = = = = = =   Eight of 

the 12 error components vanish using the FoodAPS validation information.  For example, 
*0,3

1 ( 1, 0, 3) 0P Y S Sθ ≡ = = = =  since SNAP validation rules out cases in which a household ends up 

falsely classified as participating in neither program since we have documentation that the household 

participated at least in SNAP.  Similarly, 0,3 1,3 2,3
3,1 0 0 0( )UB θ θ θΘ ≡ − + +  3,0 3,1 3,2

0 0 0( )θ θ θ+ + +

0,1 2,1 3,1
1 1 1( )θ θ θ− + +  1,0 1,2 1,3

1 1 1( )θ θ θ+ + +  reduces to 1,3 3,1 3,1 1,3
3,1 0 0 1 1
UB θ θ θ θΘ = − + − +  after setting 0,3 2,3

0 0θ θ=  

3,0 3,2
0 0θ θ= =  0,1 2,1

1 1θ θ= =  1,0 1,2
1 1 0.θ θ= = =   

Using the FoodAPS validation data, the average treatment effect bounds in Equation (2) are 

thus narrowed as follows: 
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1,3 3,1 3,1 1,3
1 1 0 0

3,1

1,3 3,1 3,1 1,3
1 1 0 0

1 ( 1, 3) ( 0, 1)

1 ( 0, 3) ( 1, 1) .

θ θ θ θ

θ θ θ θ

− + = = + = = + − + −

≤

− = = − = = + − + −

≤

P Y S P Y S

ATE

P Y S P Y S

      (3) 

Note that the error components 1,3 3,1 3,1 1,3
1 1 0 0θ θ θ θ− + −  shift the lower and upper bound by the same 

unknown constant.  In our application,  

       1,3 3,1 3,1 1,3 1,3 3,1 3,1 1,3
1 1 0 0 3,1 1 1 0 00.603 0.663 .ATEθ θ θ θ θ θ θ θ− + − + − + − + −≤≤  

 Despite eliminating eight of the 12 error components in 3,1
LBΘ  and 3,1 ,UBΘ  however, the bounds in 

Equation (3) are still completely uninformative: the ATE may still lie anywhere between -1 and 1.  

To see this, it is instructive to understand why the bounds in Equation (3) are informative in the 

absence of measurement error.  In that case, the lower bound is elevated above -1 because some 

fraction of households ( 1, 3) 0.238P Y S= = =  are known to be food secure while participating in 

both SNAP and WIC, while another fraction ( 0, 1) 0.159P Y S= = =  are known to be food insecure 

while participating in SNAP alone. The presence of these groups reveals that, at least sometimes, 

participation in both programs is not harmful relative to participation in SNAP alone.  Similarly, the 

upper bound cannot attain 1 when some fraction of households ( 0, 3) 0.165P Y S= = =  are known to 

be food insecure despite participating in both programs, and some from fraction 

( 1, 1) 0.172P Y S= = =  are food secure despite participating only in SNAP.  Thus, at least 

sometimes, participation in both programs is not beneficial compared with participation in SNAP 

alone. 

  In the presence of classification error, the difficulty is that *3,1
1 ( 1, 3, 1)θ = = = =P Y S S  in the 

lower bound could be as large as ( 1, 3) 0.238P Y S= = =  while *1,3
0 ( 0, 1, 3)θ = = = =P Y S S  could be 

as large as ( 0, 1) 0.159.P Y S= = =  Without further assumptions to constrain the patterns or degrees 

of misclassification, logically we cannot rule out the possibility that food secure households claiming 

to participate in both programs were actually participating only in SNAP.  Nor can we rule out the 

possibility that food insecure households claiming to participate in SNAP alone were actually 

participating in both programs.  The lower bound falls back to -1, returning to being completely 
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uninformative.  Similarly, the upper bound rises back to 1.  While these scenarios are obviously 

extreme, they help crystalize how data must be combined with assumptions before we can make 

logical, informative inferences.    

  FoodAPS currently does not contain information that can be used to validate WIC participation 

status.9 Thus, we cannot further constrain the error components in 3,1
LBΘ  or 3,1

UBΘ  using data alone.  Apart 

from not knowing whether a household is truly on WIC, we also do not know whether a household 

verified to be participating in SNAP was on SNAP alone *( 1)=S  or participating in both programs 

*( 3).=S  To learn anything about 3,1,ATE  we need to impose assumptions about the magnitudes or 

patterns of reporting errors.  Our objective is to strike a reasonable balance between making 

assumptions weak enough to be credible while strong enough to remain informative.   

2.3. No false positives 

Combined with the FoodAPS validation data for SNAP participation, we can make further progress 

in bounding 3,1ATE  by imposing a common “no false positives” assumption in the food assistance 

literature (e.g., Almada et al. 2016, KPGJ) that households do not falsely report benefits they do not 

actually receive.  Validation data from previous studies find only rare instances of these errors of 

commission (e.g., Bollinger and David 1997; Marquis and Moore 1990).  In our FoodAPS sample, 

only 1.8% of those reporting SNAP benefits were found not to be receiving benefits.   Under the no 

false positives assumption, the ATE bounds in Equation (3) reduce further and now become 

informative:10  

                    

1,3 1,3
1 0

3,1

1,3 1,3
1 0

1 ( 1, 3) ( 0, 1)

1 ( 0, 3) ( 1 ., 1)

θ θ

θ θ

− + = = + = = + −

≤

− = = − = −

≤

= +

P Y S P Y S

ATE

P Y S P Y S

   (4) 

 

                                                 
9 There is information reported on food expenditures funded through WIC vouchers at purchase events that might be 
used to partially validate participation. We plan to investigate this as a source of additional information. Of concern 
is the potential for lags in the timing of holding WIC benefits after no longer being considered a participant.  
10 Alternatively, or in addition, one could impose an upper bound on the degree of data corruption in the spirit of 
Horowitz and Manski (1995).  For example, one could impose a constraint that no more than some known 
percentage of households misreport their participation status.   
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Note that the error components 1,3 1,3
1 0θ θ−  shift the lower and upper bound by the same unknown 

constant.  Taking worst cases across 1,3
1θ  and 1,3

0 ,θ we can sharply bound 3,1ATE  as follows:   

Proposition 1A.  Given verification of SNAP status but not WIC status, the impact on food security 

associated with participating in both programs compared with SNAP alone is sharply bounded as 

follows:  

                               3,11 ( 1, 3) 1 ( 0, 3).P Y S P Y SATE− ≤ − =≤+ = = =  

See Appendix A for a proof. 

  These bounds are very wide, with width 2 ( 0, 3) ( 1, 3)− = = − = =P Y S P Y S .  Using our 

FoodAPS sample, 3,1ATE  may lie anywhere in the range [ 0.762,0.835]−  with a width of 1.60.  We 

have made important progress, however, in moving away from the [-1, 1] no-information bounds.  

Specifically, a fraction of households ( 1, 3) 0.238P Y S= = =  are food secure while claiming to 

participate in both programs, thus raising the lower bound away from -1. We trust their participation 

responses under the no false positives assumption.  Similarly, a fraction of households 

( 0, 3) 0.165P Y S= = =  are food insecure despite participating in both programs, thus lowering the 

upper bound away from 1.     

  To gain an understanding of how misreporting affects uncertainty about 3,1
WCATE  beyond 

uncertainty created by unknown counterfactuals, we trace out the Equation (4) bounds as a function 

of 1,3
1θ  and 1,3

0θ  in Figure __ (not yet available). 

  One way to narrow the Proposition 1 bounds is to further restrict the nature of classification 

errors.  Suppose, for example, that misreporting of SNAP or WIC participation arises independently 

of the household’s food security status. This nondifferential errors assumption specifies that 

*( | , 1)= = =P S j S k Y *( | , 0).= = = =P S j S k Y  Evidence from FoodAPS suggests that food secure 

and food insecure households are about equally likely to misreport the receipt of food assistance.11  

In this case, we can write 1,3 1,3
0 1κθ θ= in Equation (4), where ( 0, 1) / ( 1, 1)P Y S P Y Sκ ≡ = = = =  is 

                                                 
11 In The chances of being found to participate in SNAP when claiming otherwise is about 49% among food secure 
households and 44% among food insecure households. The fractions are also similar for the rare cases of reporting 
SNAP benefits not actually received.   
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observed in the data.12  

                 

1,3
1

3,1

1,3
1

1 ( 1, 3) ( 0, 1) (1 )

1 ( 0, 3) ( 1, 1) (1 )

κ θ

κ θ

− + = = + = = + −

≤ ≤

− = = − = = + −

P Y S P Y S

ATE

P Y S P Y S

   (5)  

This assumption has substantial identifying power, especially when κ is close to 1.  When 1κ =  

such that half the households reporting participation in SNAP alone are food secure, with the other 

half food insecure, classification error ceases to be an issue.  In that case, the worst-case bounds in 

Equation (5) reduce to Manski’s (1995) classic worst-case bounds described above.  Otherwise, the 

bounds reduce to the following: 

Proposition 1B.  Under the nondifferential errors assumption *( | , 1)= = =P S j S k Y

*( | , 0)= = = =P S j S k Y  that participation errors arise independently of food security status, the 

Proposition 1 bounds narrow as follows:  

              

{ }

{ }
3,1

1 ( 1, 3) min ( 0, 1), ( 1, 1)

1 ( 0, 3) min ( 0, 1), ( 1, 1)

− + = = + = = = =

≤

− = = −

≤

= = = =

P Y S P Y S P Y S

ATE

P Y S P Y S P Y S

   

See Appendix A for a proof. 

  Notice the similarity between these Proposition 1B bounds and Manski’s worst-case bounds in 

Equation (2) when there is no measurement error 3,1 3,1 ).( LB UBΘ Θ=   In the reference case that 1,κ =  the 

bounds are identical: SNAP verification combined with no false positives and nondifferential errors 

is equivalent to assuming no measurement error at all.  When 1κ >  such that more than half of the 

households reporting participation in SNAP alone are food insecure, the Proposition 1B upper bound 

is identical to Manski’s no-errors upper bound.  When 1κ <  such that more than half of the 

households reporting participation in SNAP alone are food secure, the Proposition 1B lower bound is 

identical to Manski’s no-errors lower bound.   

                                                 
12 Specifically, *1,3

0 ( 0, 1, 3)θ ≡ = = =P Y S S *( 3 | 0, 1) ( 0, 1)= = = = = =P S Y S P Y S *( 3 | 1, 1) ( 0, 1)= = = = = =P S Y S P Y S
1,3 1,3
1 1( 0, 1) / ( 1, 1) ( 0 | 1) / ( 1 | 1).θ θ= = = = = = = = = =P Y S P Y S P Y S P Y S  
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  In our FoodAPS sample, 0.92 1κ = <  which implies ( 0, 1) ( 1, 1).= = < = =P Y S P Y S  Thus, 

the Proposition 2 bounds reduce to  

                     3,1

1 ( 1, 3) ( 0, 1)

1 ( 0, 3) ( 0, 1).

− + = = + = =

≤

− = =

≤

− = =

P Y S P Y S

ATE

P Y S P Y S

          (6) 

In our sample, the Proposition 1A bounds narrow from [ 0.762,0.835]−  to [ 0.603,0.676]− with a 

width of 1.28, a 32 percentage point reduction in the width.  The lower bound of -0.603 is identical to 

Manski’s lower bound reported above.  

To vividly demonstrate the impact of assumptions on inference, we next investigate the 

identifying power of exogenous selection: 

          *[ ( ) 1] [ ( ) 1| ] , .P Y j P Y j S k j k= = = = ∀           (7) 

Equation (7) means that, on average, potential outcomes do not depend on the realized treatment. The 

assumption of exogenous selection makes sense when households are assigned to programs in a truly 

random manner (so that there are no systematic differences in household attributes across different 

treatment groups).  Because households select into food programs on their own accord, exogeneity is 

unlikely to hold in our setting. Nevertheless, it remains instructive to understand its identifying 

power: 

Proposition 2A.  Under exogenous selection (e.g., random assignment), the Proposition 1A worst-

case bounds narrow as follows: 

                          3,1

( 0, 3) ( 0, 1)
( 3) ( 0, 1)

( 1, 3) ( 1, 1)
( 3) ( 1, 1)

P Y S P Y S
P S P Y S

ATE

P Y S P Y S
P S P Y S

= = + = =
−

= + =

≤

=

≤

= = + = =
= + = =

   

See Appendix A for a proof. 

 

 In our application, the Proposition 1A worst-case bounds narrow from [ 0.762,0.835]−  to 
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[ 0.576,0.713].−   Even though the exogeneity assumption completely eliminates uncertainty 

associated with unknown counterfactuals – the only source of identification uncertainty in most 

treatment effects models – the bounds remain very wide because of the measurement error problem.    

As before with Proposition 1, we can further narrow the bounds by imposing the nondifferential 

errors assumption: 

Proposition 2B.  Under exogenous selection combined with nondifferential errors, the Proposition 

2A bounds narrow as follows: 

                          3,1

( 1 | 3) ( 1| 1)

( 1, 3) ( 1, 1)
( 3) ( 1)

ATE

P Y S P Y S
P S P

P Y S P Y S

S

= = − =

≤

= = + =
+

=

=
=

≤

=

   

See Appendix A for a proof. 

 The Proposition 2B lower bound is simply the observed difference in food security rates between 

households reporting participation in both programs vs. those reporting participation in SNAP alone.  

In our application, the lower bound is given by 0.5905 0.5204−  0.0701.=  This lower bound is 

identical to the average treatment effect that would be obtained under conditions of random 

assignment and no measurement error.  Comparing denominators, the Proposition 2B upper bound 

improves on the Proposition 2A upper bound as long as some households that report participation in 

SNAP alone are food insecure: ( 1) ( 1, 1).P S P Y S= > = =   In our application, the Proposition 2A 

upper bound improves from 0.713 to 0.559.  (In a subsequent draft, we will add a figure that traces 

out 
1,3 1,3
1 1

3,1 1,3 1,3 1,3 1,3
1 0 1 0

( 1, 3) ( 1, 1)
( 3) ( 1)

P Y S P Y SATE
P S P S

θ θ
θ θ θ θ

= = + = = −
= −

= + + = − −
  as a function of the two error components.) 

Monotonicity assumptions 

For the remainder of the analysis, we do not impose the exogenous selection assumption.  

Instead, we study how the Proposition 1A and 1B worst-case bounds can be narrowed under 

relatively weak monotonicity restrictions such as Monotone Treatment Selection (Manski and 

Pepper, 2000; KPGJ) and Monotone Treatment Response (Manski, 1997; KPGJ). The MTS 

assumption formalizes the notion that unobserved factors related to food insecurity are likely to be 



15 
 

positively associated with the decision to take up food assistance programs. Under the MTR 

assumption, participating in SNAP and WIC would not harm food security, on average, conditional 

on treatment selection, reflecting a general consensus that food assistance would not cause food 

insecurity (Currie, 2003). 

Formally, the MTS assumption in our partially-ordered treatment framework is specified as 

follows:  

 

      * * *[ ( ) 1 3] [ ( ) 1 ] [ ( ) 1 0]    and 1,2.| | |P Y j S P Y j S k P Y j S j k= = ≤ = = ≤ = = ∀ =            (8) 

 

For each potential treatment j, we posit that the latent food security probability is (weakly) less 

favorable among households that enrolled in both programs *( 3)S =  compared with only one 

program *( 1 or 2),S =  and similarly less favorable among households that enrolled in one program 

compared with no program *( 0).S =   We impose no ordering between households that enroll in only 

one program versus the other.  The MTS assumption does not imply that any households would be 

better off changing their participation status—only that those who chose to participate in more 

programs start out relatively disadvantaged, on average, under any potential treatment.  We prove the 

following result:  

Proposition 3A.  Under the MTS assumption in Equation (7), the Proposition 1 worst-case lower 

bound improves as follows, with the upper bound remaining unchanged:  

               3,1
( 1, 3)1 .

( 3) ( 0, 1)
MTS P Y SATE

P S P Y S
= =

≥ − +
= + = =

 

See Appendix A for a proof. 

 

 Using the FoodAPS data, the Proposition 1A bounds improve from [ 0.762,0.835]−  to 

[ 0.576,0.835].−   This lower bound is improved further under the nondifferential errors assumption 

that misreporting does not depend on food security status: 
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Proposition 3B.  Under nondifferential errors, the Proposition 3A MTS lower bound improves as 

follows: 

[ ]3,1
( 1, 3) ( 1, 1)  1 max ( 1| 3), ( 0 | 1) ( 3) ( 1) .

( 3) ( 1)
MTS P Y S P Y SATE P Y S P Y S P S P S

P Y P Y
 = = + = =

− + = = + = = = + = = + = 
≥

See Appendix A for a proof. 

 

In our application, the improvement is dramatic. The Proposition 3A bounds narrow from 

[ 0.576,0.835]−  to [ 0.058,0.835].−  The lower bound is improved 70 percentage points compared 

with the Proposition 1A worst-case lower bound, and it is improved 54 percentage points compared 

with Manski’s no-errors worst-case lower bound.  

 

Monotone Treatment Response 

To formally specify the MTR assumption, we extend Manski’s (1995, 1997) original 

approach. For a given realized program participation status, we suppose that potential participation in 

SNAP alone or WIC alone would not harm a household’s food security on average compared with no 

participation, nor would participation in both programs be detrimental on average compared with 

participation in either program alone:  

   * * *[ (3) 1| ] [ (1) 1| ] [ (0) 1| ]P Y S P Y S P Y S= ≥ = ≥ =   

   * * *[ (3) 1| ] [ (2) 1| ] [ (0) 1| ].P Y S P Y S P Y S= ≥ = ≥ =    (9) 

MTR implies 3,1ATE  is nonnegative, but it does not rule out zero effects.  In isolation, this 

assumption is not informative since it precludes strictly negative effects by construction.  It can have 

identifying power, however, when combined with the instrumental variable assumptions described 

next.  In particular, it assures that the effect is nonnegative across all values of the instrument.  We 

can narrow the bounds further by employing MIVs. Monotone instruments are often easier to 

motivate than standard IVs, because they do not require any orthogonality/exclusion restrictions. In 

the application, we merely require that the instrument leads to a weakly improved latent food security 

outcome, on average, conditional on the treatment. As MIVs, we use variables reflective of important 
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aspects of local food environment, as recorded in FoodAPS-GC.13 For example, we employ the 

densities of supermarkets and of all food stores in the household’s neighborhood and the ratio of 

actual household expenditures on food at home to food expenditures consistent with the TFP 

recommendations and local prices. We also investigate the usefulness of other MIVs, including a 

conventional MIV based on household income and composition. An assumption underlying these 

monotone instruments is that, broadly speaking, more resources in the household and easier access to 

food cannot harm food security. 

Let u  represent a monotone instrument. The MIV assumption specifies that higher values of 

u lead to weakly improved food security outcomes, on average, under each treatment:  

1 2 1 2[ ( ) 1| = ] [ ( ) 1| = ] [ ( ) 1| = ]u u u P Y j v u P Y j v u P Y j v u≤ ≤ ⇒ = ≤ = ≤ =  for each j.     (5) 

While these conditional probabilities are not identified, they can be bounded as described by Manski 

and Pepper (2000). Bounds on the unconditional latent probability, [ ( ) 1],P Y j =  can, in turn, be 

obtained by applying the law of total probability and calculating a weighted average of the bounds on 

[ ( ) 1| = ]P Y j v u=  over different values of u.14  When combined with MTS or MTR, those 

assumptions are assumed to apply at each value of the instrument, v. 

  In our empirical analysis, we layer successively stronger combinations of assumptions in order 

to investigate how they shape inference and also provide successively tighter bounds on the causal 

impact of participation in SNAP and WIC.  The table below demonstrates the identifying power of 

the MTS, MTR, and MIV assumptions.  Point estimates (p.e.) of the bounds are provided along with 

Imbens-Manski (2004) confidence intervals that cover the true value of the ATE with 95% 

probability.  Strictly positive estimated average treatment effects are highlighted in bold.  The key 

finding is that we can identify the ATE as strictly positive and statistically significant when 

combining the MTS, MTR, and expenditure MIV assumptions.  Participating in both SNAP and WIC 

                                                 
13 Previous studies have shown that the local food environment is an important contributor to food security and 
health through differences in access, availability, and cost of food (e.g., Rose and Richards, 2004; Ver Ploeg, 2010; 
Bonanno and Goetz, 2012; Lee, 2012). In particular, the relative cost of food in the area can substantially affect a 
low-income household’s ability to provide an adequate diet to its members. Zhylyevskyy et al. (2013) find that 
lower relative fruit and vegetable prices positively affect the selection of these foods in a study of African American 
youths and parents. 
14 As noted by Manski and Pepper (2000), the MIV estimator is consistent but biased in finite samples.  We employ 
Kreider and Pepper’s (2007) modified MIV estimator that accounts for the finite sample bias using a nonparametric 
bootstrap correction method. Following KPGJ, we assume that the ratio of actual to potential underreporting does 
not vary across MIV groups (defined according to the value of u). 
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compared with participating in SNAP alone is estimated to increase the food security rate among 

low-income households in our sample by at least 24 percentage points.  Accounting for sampling 

variability reflected in the confidence interval, food security would rise by at least 1.9 percentage 

points.  (We will add further discussion.) 
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Table 1a.  ATE Associated with Participating in Both SNAP and WIC vs. Participating in SNAP Alone 

 (A) Income-to-Poverty MIV: 

                        Differential Errors          Nondifferential Errors 

 

                       MTS + MIV                    MTS + MIV 

                       LB     UB         width                LB        UB        width      
        p.e.  [-0.549,  0.657]   1.206        [ 0.0251,  0.657]     0.632 
        CI    [-0.694,  0.752]                [-0.143,    0.752]     

   MTR + MIV                    MTR + MIV 

                       LB     UB         width            LB        UB     width      
             p.e. [ 0.000,  0.657]     0.657    [ 0.000,  0.657]      0.657 
                 CI  [-0.118,  0.752]              [-0.118,  0.752]      

                            MTS + MTR + MIV         MTS + MTR + MIV 

                       LB     UB         width              LB       UB     width      
      p.e  [ 0.000,  0.657]     0.657         [ 0.0310,  0.657]    0.626 
       CI      [-0.117,  0.752]               [-0.135,    0.752]      
 

 (B) Expenditure MIV: 

                        Differential Errors          Nondifferential Errors 

 

                       MTS + MIV                    MTS + MIV 

                       LB     UB         width                LB        UB        width      
        p.e.  [-0.485,  0.634]   1.119        [ 0.239,    0.634]     0.394 
        CI    [-0.685,  0.768]                [ 0.006,    0.752]     

   MTR + MIV                    MTR + MIV 

                       LB     UB         width            LB        UB     width      
             p.e. [ 0.000,  0.634]     0.634    [ 0.000,  0.634]      0.634 
                 CI  [-0.164,  0.768]              [-0.164,  0.768]      

                            MTS + MTR + MIV         MTS + MTR + MIV 

                       LB     UB         width              LB       UB     width      
      p.e  [ 0.000,  0.634]     0.634         [ 0.242,    0.634]    0.392 
       CI      [-0.183,  0.768]               [ 0.019,    0.768]      
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3. Data 

3.1. Main Data Source 

Our main data source is the USDA’s National Household Food Acquisition and Purchase Survey 

(FoodAPS), the first nationally representative survey to collect comprehensive data about household 

food purchases and acquisitions.15 The survey was administered on a stratified sample of 4,826 

households between April 2012 and January 2013. The FoodAPS sample was drawn from three 

population groups: SNAP households, low-income households not participating in SNAP, and higher 

income households. Each household participated in the survey for one seven-day week. 

FoodAPS captures detailed information about purchases and acquisitions of food items 

intended for consumption at home and away from home, including items acquired through USDA’s 

food assistance programs, as well as the amount and source of payment for food. The survey also 

collects information about household and personal attributes, including conventional demographic 

and socioeconomic characteristics, health status, diet and nutrition knowledge, non-food 

expenditures, income, receipt of SNAP benefits (current, last 12 months, and the date of last receipt), 

confirmation of SNAP receipt through an administrative match, and self-reported WIC receipt along 

with information to determine WIC eligibility. 

Notably, households also filled out a 10-item food security questionnaire (referenced to the 

last 30 days), which is the basis for calculating raw food security scores and assigning households to 

categories of food security. Using the USDA’s 30-day adult food security scale, “food insecure” 

households are those with the raw score of 3 or more. Such households can be further categorized as 

having “low food security” (score of 3-5) or “very low food security” (6-10). Those with scores of 0, 

1, or 2 are labeled as “food secure.” 

Through its Geography Component (FoodAPS-GC), FoodAPS provides information about 

the local food environments of its participants, including the location of different types of food 

retailers, measures of access to these retailers, measures of food prices and prices of food categories 

by retailers, and food-related public policies. We employ FoodAPS-GC to construct variables that 

can be used as MIVs. In particular, we calculate population-based densities of supermarkets and of 

all food stores in a household’s county of residence. Also, we use food price data to construct 

                                                 
15 FoodAPS was co-sponsored by ERS and FNS and was conducted in the field by Mathematica Policy Research, a 
private research firm with experience in large-scale surveys. 
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measures of the cost of TFP consistent with each household’s size and composition. The TFP 

measures vary with respect to the geographic level of price aggregation, say, county vs. stores 

located within 20 miles of the household. We then construct a food expenditure MIV by dividing 

actual household expenditures on food at home by a calculated TFP cost. 

For confidentiality reasons, the (complete) FoodAPS data release is restricted-use. We access 

it through a secure data enclave of the National Opinion Research Center (NORC).16 

3.2. Supplementary Data Sources 

We employ an extract from the SNAP Policy Database (ERS, 2017b) and selected administrative 

data on SNAP caseloads (namely, the rates of erroneous over- and underpayment of benefits) from 

FNS covering 2012–2013 to supplement the information in FoodAPS-GC on food-related public 

policies. Variables constructed from these supplementary data are state- and month-specific and 

pertain to state-level SNAP policies and design features, such as the magnitude of outreach 

expenditures, length of recertification periods, exemption of vehicles from the household asset test, 

reduced reporting requirements, fingerprinting of program applicants, among others. These variables 

are commonly employed as IVs in the literature studying the effects of SNAP participation (e.g., 

Gregory and Deb, 2015; Ratcliffe et al., 2011; Yen et al., 2008). 

3.3. Analytical Sample 

We focus on FoodAPS households that would be eligible to concurrently participate in SNAP and 

WIC. Given the restrictions associated with these two food programs, our analytical sample is 

comprised of households with income below 130% of the poverty threshold and containing a 

pregnant woman, or a child aged less than five years. Our analytical sample includes 460 households. 

In what follows, all sample statistics and estimates incorporate FoodAPS household weights. 

Table 1 provides the joint distribution of the analytical sample by self-reported, current 

household participation in SNAP and WIC.17 The table shows that concurrent participation in the two 

programs is empirically relevant: 36.7% of the households report being on both SNAP and WIC. 

Also, 16.6% are reportedly on WIC but not SNAP, and 31.4% are on SNAP but not WIC. The 

remaining 15.3% indicate no participation in either program. 

                                                 
16 ERS also has created public-use FoodAPS files by purging identifying variables. For details, see ERS (2017a). 
17 In FoodAPS, questions about SNAP and WIC refer to current participation. 
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To ascertain SNAP participation, Mathematica Policy Research devised an algorithm to 

match FoodAPS households to SNAP administrative records (namely, SNAP caseload data and 

ALERT system transactions data). Not all households could be matched, however. Among the 

households in our analytical sample, 57.6% are matched and confirmed SNAP participants, 2.6% are 

matched and confirmed nonparticipants, 37.5% could not be matched, and 2.3% withheld consent to 

be matched. While many unmatched households are likely to be SNAP nonparticipants, we choose to 

treat all unmatched households (as well as those who withheld consent) as “not verified,” because the 

failure to match to administrative records may, in part, be due to the specifics of Mathematica’s 

algorithm and data imperfections, rather than solely due to genuine absence from the records. In a 

sense, we prefer to be agnostic as to whether unmatched households tell us the truth about their 

SNAP participation. It should be noted that FoodAPS contains no administrative data on WIC. Thus, 

all households are “not verified” with respect to WIC participation. 

Table 2 is similar to Table 1, except that the SNAP participation indicator now incorporates 

administrative data in FoodAPS. In particular, for households that are matched to administrative 

records, SNAP status comes from the administrative record. In all other instances, SNAP 

participation is self-reported. Compared to the distribution in Table 1, the incorporation of 

administrative data about SNAP leads to an increase in the prevalence of SNAP participation by 

about 5 percentage points overall. More specifically, the prevalence of households on SNAP but not 

on WIC increases by 2.2 percentage points (from 31.4% to 33.6%), while the prevalence of 

households on both SNAP and WIC rises by 3 percentage points (from 36.7% to 39.7%). Apparently, 

SNAP participation is underreported in FoodAPS. 

Table 3 presents the weighted prevalence of food security in each of four subsamples defined 

according to self-reported household participation in SNAP and WIC. The rate of food security 

exceeds 50% throughout, but somewhat varies across the subsamples. (The rate of food security in 

the analytical sample overall is 55.04%.18) Given no WIC receipt, self-reported SNAP participation 

is associated with a decrease in the prevalence of food security from 53.2% to 52.2%, which is in line 

with a negative association between food security and SNAP found in the literature (see Gundersen 

                                                 
18 The corresponding rate of not very low food security (i.e., the absence of very low food security) is 83.21%. 
Appendix A provides details on the prevalence of not very low food security in the four subsamples defined 
according to the program participation status. 
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et al., 2011). When WIC is in place, however, SNAP is associated with an increase in the food 

security rate from 54.5% to 58.5%. Perhaps the process of selecting into SNAP differs depending on 

whether the household participates in WIC, or perhaps there are considerable synergies between the 

two programs in promoting food security. Also, the table shows that self-reported WIC participation 

is associated with more food security regardless of the self-reported SNAP status. 

Table 4, which replaces the self-reported SNAP participation indicator with the 

administratively matched one, likewise shows food security rates in excess of 50% and varying 

somewhat across the four subsamples. With one exception, the table indicates similar, if only more 

pronounced, associations between the participation indicators and food security to those implied by 

Table 3. The only exception is that given no SNAP receipt, self-reported WIC participation is now 

associated with less (rather than more) food security. Perhaps when underreported instances of SNAP 

receipt are removed from the equation, the process of selecting into WIC (as the only program) is 

actually similar to that of selecting into SNAP (as the only program) in the sense that households 

with unobservables that are unfavorable to food security are more likely to participate. 

Table 5 provides descriptive statistics for selected characteristics of the analytical sample. On 

average, the sample households contain 4.5 members (of all ages), 2.3 children (aged < 18 years), 

and 1.6 young children (aged 0–6 years). Average monthly household income is almost $1,607, 

income-to-poverty ratio is 0.75, and weekly expenditure on food at home is about $113. Twenty-one 

percent of the households live in rural areas, 78% rent their residence, 26% do not own or lease a 

vehicle, and 11% have used a food pantry in the past 30 days. Primary respondents in these 

households are predominantly female (88%) and about 33.7 years old on average. Thirty-three 

percent are Hispanic, 55% are White, 29% are Black, 32% have no high school degree, 32% have a 

high school degree or GED, 28% have some college education but no bachelor’s degree, and 7% 

have a bachelor’s degree. Also, 44% are single (never married), 29% are married, 25% are divorced 

or separated, and 2% are widowed; 43% are employed, 17% are looking for work, and 40% are not 

working. 

4. Further sensitivity analysis 

This section provides an additional set of empirical results under a different set of assumptions about 

reporting errors.  First, we drop the assumption that SNAP verification in FoodAPS is sufficient to 
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identify whether a household belongs to treatment 1 or 3 (SNAP alone or SNAP plus WIC) vs. 

treatment 0 or 2 (neither program or WIC alone).  In exchange, the no false positives assumption is 

replaced with a stronger assumption that any household willing to acknowledge participation in 

either SNAP or WIC is a reliable reporter for both programs (not only for the program for which 

participation is acknowledged). 19   

Figure 1 plots the bounds on the average treatment effect of participating in both SNAP and 

WIC vs. in SNAP alone, ATE31, when we impose no assumptions on the selection process (i.e., the 

case of endogenous selection).  The values of ATE31 are on the vertical axis. On the two horizontal 

axes, we list possible values of underreporting true participation – specifically, by how many 

percentage points the true treatment probability exceeds the self-reported rate. The axis on the left 

shows possible values of underreporting of joint participation in SNAP and WIC. The axis on the 

right shows analogous values for participation in SNAP alone. The figure utilizes a heat map. The 

blue surface is the lower bound on ATE31. The yellow surface is the upper bound. We also insert the 

zero plane to more clearly show that we cannot sign the ATE (without imposing restrictions on the 

selection process). 

Figure 2 shows that, compared to the endogenous selection bounds in Figure 1, the bounds 

under exogenous selection are very tight. In fact, under no misreporting they collapse to a point 

above the zero plane (indicated by a small red circle in the figure). Under misreporting, however, the 

lower bound can still fall below the zero plane. 

Table 6 presents point estimates of the bounds under exogenous selection, along with the 

95% Imbens and Manski (2004) confidence intervals around them, for selected values of the program 

participation underreporting.20 As seen in the table, we are able to sign the ATE as positive for 

underreporting values of less than 3 percentage points, but we no longer can do so when 

underreporting reaches 3 percentage points in both directions (even before accounting for the 

uncertainty associated with the sampling variability of our estimators of the bounds). Moreover, we 

observe that identification deteriorates rapidly with misreporting. For example, it only takes a one 

percentage point of underreporting in each direction to result in an expansion of the width of the ATE 

bounds from 0 to 0.054. 

                                                 
19 We are agnostic about the reliability of responses for households that report no participation. 
20 The confidence intervals account for the sampling variability of our estimators of the bounds. 
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Figure 3 indicates that incorporating the MTS assumption leads to narrower bounds on ATE31 

compared to the worst-case bounds under endogenous selection (Figure 1). Yet, we are unable to sign 

the ATE as the lower bound is still below the zero plane. 

Figure 4 shows that we can narrow the bounds further by adding the MTR assumption and 

using an MIV.21 In fact, if there is very little or a lot of misreporting, it is possible to sign ATE31 as 

strictly positive. However, under moderate amounts of misreporting, the lower bound is zero and we 

can only claim that the ATE is nonnegative.   

 

5. Conclusion 

Low-income households in the United States often receive benefits from more than one food 

assistance program administered by USDA, which raises the question of how these programs interact 

in creating a food safety net. We investigate the issue by focusing on two popular programs, SNAP 

and WIC, and develop a novel nonparametric bounding methodology to handle a multinomial, 

partially ordered treatment, endogenous selection into assistance programs, and misreporting of 

program participation (i.e., nonclassical measurement error) in a unifying framework. The literature 

has shown that even small amounts of misreporting in surveys can lead to much identification decay. 

However, the availability of validation data may help to offset it and sharpen inferences.  

In the empirical analysis, we draw on a unique aspect of FoodAPS in that it provides 

auxiliary administrative data on SNAP participation, which allows us to partially validate the 

treatment variable. As is typical of nonparametric bounding analyses, under endogenous selection 

into the programs and few assumptions, bounds on ATEs are wide and contain zero, which makes it 

impossible to sign the causal effects. However, we are able to substantially narrow the bounds by 

combining conventional monotonicity assumptions.  We layer successively stronger combinations of 

assumptions in order to investigate how they shape inference and also provide successively tighter 

bounds on the causal impact of participation in SNAP and WIC.   

Our key finding is that we can identify the ATE as strictly positive and statistically 

significant under relatively weak assumptions on the selection process combined with a food 

expenditure monotone instrumental variable.  Monotone instrumental variables are weaker than 

                                                 
21 For this figure, we employ the income-to-poverty MIV. The food expenditure MIVs lead to similar results. 
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standard IVs in that they require no a priori exclusion restriction.  We find that participating in both 

SNAP and WIC compared with participating in SNAP alone is estimated to increase the food 

security rate among low-income households in our sample by at least 24 percentage points.  

Accounting for sampling variability reflected in the 95 percent confidence interval, food security 

would rise by at least 1.9 percentage points.  Our empirical results have direct policy relevance in 

that they inform policy makers about the existence of complementarities (or redundancies) between 

SNAP and WIC and will help contribute to designing more efficient food assistance programs. 
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Tables and Figures 

Table 1. Sample Distribution by Reported Program Participation (Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 15.3% 16.6% 

Yes 31.4% 36.7% 

Notes: This table provides the joint distribution of the analytical sample (N = 460) by self-reported 
household participation in SNAP and WIC. Observations are weighted using FoodAPS household 
weights. 
 

Table 2. Sample Distribution by Reported WIC Participation and Administratively Matched SNAP 
Participation (Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 13.0% 13.6% 

Yes 33.6% 39.7% 

Notes: This table provides the joint distribution of the analytical sample (N = 460) by household 
participation in SNAP and WIC. WIC participation is self-reported. SNAP participation incorporates 
administrative data. In particular, for households that can be matched to administrative records, 
SNAP participation status reflects the administrative record. For households that cannot be matched, 
SNAP participation is self-reported. Observations are weighted using FoodAPS household weights. 
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Table 3. Prevalence of Food Security in Subsamples by Self-Reported Program Participation 
(Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 53.2% 54.5% 

Yes 52.2% 58.5% 

Notes: This table shows the prevalence of food security (in percent, weighted) in each of the four 
subsamples defined according to self-reported participation in SNAP and WIC. Observations are 
weighted using FoodAPS household weights. 
 

Table 4. Prevalence of Food Security in Subsamples by Self-Reported WIC Participation and 
Administratively Matched SNAP Participation (Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 55.1% 50.5% 

Yes 51.6% 59.5% 

Notes: This table shows the prevalence of food security (in percent, weighted) in each of the four 
subsamples defined according to self-reported participation in WIC and administratively matched 
participation in SNAP (see the notes to Table 2 for details). Observations are weighted using 
FoodAPS household weights. 
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Table 5. Selected Characteristics of Analytical Sample (Weighted) 

Characteristic Mean Std.Dev. Min Max 

Household characteristics:     

Number of household members 4.48 1.76 1 ≥ 10 
a 

Number of children 2.34 1.31 0 ≥ 7 
a 

Number of children aged 0–6 years 1.57 0.93 0 ≥ 5 
a 

Household monthly income, $ 1,606.69 954.32 0 ≥ 4,000 
a 

Income-to-poverty ratio 0.75 0.36 0 1.30 
Weekly expenditure on food at 
home, $ 112.92 126.00 0 ≥ 1,000 

a 
Rural household 0.21 0.41 0 1 
Household rents its residence 0.78 0.41 0 1 
No household member owns or 
leases a vehicle 0.26 0.44 0 1 
Household has used food pantry 
(past 30 days) 0.11 0.31 0 1 

Primary respondent’s characteristics:    

Female 0.88 0.32 0 1 
Age, years 33.71 10.75 17 ≥ 70 

a 
Hispanic (ethnicity) 0.33 0.47 0 1 
White (race) 0.55 0.50 0 1 
Black (race) 0.29 0.45 0 1 
All other races 0.16 0.37 0 1 
Less than high school degree 0.32 0.47 0 1 
High school degree 0.24 0.43 0 1 
GED 0.08 0.27 0 1 
Some college education 0.20 0.40 0 1 
Associate’s degree 0.08 0.27 0 1 
Bachelor’s or higher degree 0.07 0.26 0 1 
Single (never married) 0.44 0.50 0 1 
Married 0.29 0.45 0 1 
Divorced 0.17 0.38 0 1 
Separated 0.08 0.27 0 1 
Widowed 0.02 0.17 0 1 
Employed 0.43 0.50 0 1 
Looking for work 0.17 0.38 0 1 
Not working 0.40 0.49 0 1 

Note: This table shows descriptive statistics for selected characteristics of the analytical sample. 
Observations are weighted using FoodAPS household weights. 
a

 An exact maximum value is suppressed due to confidentiality concerns. 
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Table 6. Identification Decay due to Misreporting under Exogenous Selection 
 
SNAP: Δ1 = 0  Δ1 = 0.01  Δ1 = 0.03  
both:  LB         UB width LB         UB width LB         UB width 
Δ3  = 0 p.e. [0.070, 0.070] 0.000 [0.056, 0.085] 0.029 [0.030, 0.113] 0.083 
 CI [-0.066, 0.206]  [-0.065, 0.206]  [-0.074, 0.217]  
        
Δ3  = 0.01 p.e. [0.056, 0.080] 0.024 [0.042, 0.095] 0.054 [0.016, 0.123] 0.107 
 CI [-0.068, 0.204]  [-0.071, 0.208]  [-0.085, 0.224]  
        
Δ3  = 0.03 p.e. [0.029, 0.099] 0.069 [0.015, 0.114] 0.099 [-0.011, 0.142] 0.152 
 CI [-0.081, 0.208]  [-0.089, 0.217]  [-0.109, 0.239]  

 
Note: This table presents estimates of the bounds on ATE31 under exogenous selection for selected 
values of program participation underreporting. “LB” and “UB” stand for lower and upper bounds, 
respectively. “P.e.” refers to a point estimate. “CI” represents the Imbens and Manski (2004) 95% 
confidence interval around the bounds. 
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Figure 1. Bounds on ATE31 under Endogenous Selection 
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Figure 2. Bounds on ATE31 under Exogenous Selection 
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Figure 3. Bounds on ATE31 under Endogenous Selection with MTS Assumption 
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Figure 4. Bounds on ATE31 under Endogenous Selection with MTS, MTR, and MIV 
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Appendix A 

Table A1. Prevalence of Not Very Low Food Security in Subsamples by Self-Reported Program 
Participation (Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 74.6% 83.7% 

Yes 78.7% 90.4% 

Notes: This table shows the prevalence of not very low food security (in percent, weighted) in each 
of the four subsamples defined according to self-reported participation in SNAP and WIC. 
Observations are weighted using FoodAPS household weights. 
 

Table A2. Prevalence of Not Very Low Food Security in Subsamples by Self-Reported WIC 
Participation and Administratively Matched SNAP Participation (Weighted) 
  

WIC 

  No Yes 

SN
A

P 

No 73.4% 81.3% 

Yes 78.9% 90.7% 

Notes: This table shows the prevalence of not very low food security (in percent, weighted) in each 
of the four subsamples defined according to self-reported participation in WIC and administratively 
matched participation in SNAP (see the notes to Table 2 for details). Observations are weighted 
using FoodAPS household weights. 
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Proofs of propositions: 

 

Proposition 1A. Worst-case ATE3,1 bounds under FoodAPS validation: 

Lower bound: Set 1,3
1 0θ =  and 1,3

0 ( 0, 1),P Y Sθ = = =  its largest feasible value, to obtain 

( 0, 1)LB P Y S= − = ≠ ( 0, 1).P Y S− = =  We can then simplify as follows:

( 0)LB P Y= − = ( 1, 3)P Y S− = ≠ 1 ( 1)P Y= − + = ( 1, 3)P Y S− = ≠ 1 ( 1, 3).P Y S= − + = =   

Upper bound: Set 3
0
1, 0θ =  and 1,3

1 ( 1, 1),P Y Sθ = = =  its largest feasible value, to obtain 

( 0, 3)UB P Y S= = ≠ ( 1, 1)P Y S+ = ≠ ( 1, 1).P Y S+ = =  We can then simplify as follows: 

( 1)P Y+ = ( 0, 3)P Y S= = ≠ 1 ( 0)P Y+ − =  1 ( 0, 3).P Y S= − = =    

 

Proposition 1B. Worst-case ATE3,1 bounds under FoodAPS validation with nondifferential 

errors: 

Lower bound: If 1,κ > set 1,3
1 ( 1, 1),θ == =Y SP its largest feasible value.  If 1,κ ≤  set 1,3

1 0.θ =  Then 

the lower bound is given by  

1 ( 1, 3) ( 0, 1) if 1 ( 0, 1) ( 1, 1)

1 ( 1, 3) ( 0, 1)
if 1 ( 1, 1) ( 0, 1)( 1, 1) ( 0, 1) ( 1, 1)

( 1, 1)

κ

κ

− + = = + = = ≤ ⇔ = = ≤ = =

− + = = + = == 
 > ⇔ = = < = = = = − = =

+ = =  = =  

P Y S P Y S P Y S P Y S

P Y S P Y SLB
P Y S P Y SP Y S P Y S P Y S

P Y S
or 

1 ( 1, 3) ( 0, 1) if 1 ( 0, 1) ( 1, 1)

1 ( 1, 3) ( 1, 1) if 1 ( 1, 1) ( 0, 1).

κ

κ

− + = = + = = ≤ ⇔ = = ≤ = == 
− + = = + = = > ⇔ = = < = =

P Y S P Y S P Y S P Y S
LB

P Y S P Y S P Y S P Y S
Rewriting, { }1 ( 1, 3) min ( 0, 1), ( 1, 1) .= − + = = + = = = =LB P Y S P Y S P Y S     

                 

Upper bound: If 1,κ < set 1,3
1 ( 1, 1),θ == =Y SP  its largest feasible value.  If 1,κ ≥  set 1,3

1 0.θ =  Then 

the upper bound is given by  

( 1, 3)P Y S− = ≠

( 0, 3)UB P Y S= = ≠
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1 ( 0, 3) ( 1, 1) if 1 ( 1, 1) ( 0, 1)

1 ( 0, 3) ( 1, 1)
if 1 ( 0, 1) ( 1, 1)( 1, 1) ( 0, 1) ( 1, 1)

( 1, 1)

κ

κ

− = = − = = ≥ ⇔ = = ≤ = =

 − = = − = == 
 < ⇔ = = < = = = = − = =

+ = =  = =  

P Y S P Y S P Y S P Y S

P Y S P Y SUB
P Y S P Y SP Y S P Y S P Y S

P Y S
or 

1 ( 0, 3) ( 1, 1) if 1 ( 1, 1) ( 0, 1)

1 ( 0, 3) ( 0, 1) if 1 ( 0, 1) ( 1, 1).

κ

κ

− = = − = = ≥ ⇔ = = ≤ = == 
 − = = − = = < ⇔ = = < = =

P Y S P Y S P Y S P Y S
UB

P Y S P Y S P Y S P Y S
 

Rewriting, { }1 ( 0, 3) min ( 0, 1), ( 1, 1) .= − = = − = = = =UB P Y S P Y S P Y S       

 

Proposition 2A.  Exogenous selection: 

Under exogenous selection, we can write *[ (3) 1] [ (3) 1| 3]P Y P Y S= = = =  *( 1 | 3)P Y S= = =

3,3 3, 3
1 1

3,3 3,3 3, 3 3, 3
1 0 1 0

( 1, 3) .
( 3)

P Y S
P S

θ θ
θ θ θ θ

− −

− − − −
= = + −

=
= + + − −

 Similarly, we can write *[ (1) 1] [ (1) 1| 1]P Y P Y S= = = =  

*( 1 | 1)P Y S= = =
1,1 1, 1

1 1
1,1 1,1 1, 1 1, 1

1 0 1 0

( 1, 1) .
( 1)

P Y S
P S

θ θ
θ θ θ θ

− −

− − − −
= = + −

=
= + + − −

 Under no false positives, we have 

1,3
1

1,3 1,3
1 0

( 1, 3)[ (3) 1]
( 3)

P Y SP Y
P S

θ
θ θ

= = +
= =

= + +
 and 

1,3
1

1,3 1,3
1 0

( 1, 1)[ (1) 1] .
( 1)

P Y SP Y
P S

θ
θ θ

= = −
= =

= − −
   

For the lower bound, set 1,3
1 0θ =  and 1,3

0 ( 0, 1).P Y Sθ = = =  Then 

3,1
( 1, 3) ( 1, 1)

( 3) ( 0, 1) ( 1) ( 0, 1)
P Y S P Y SATE

P S P Y S P S P Y S
= = = =

≥ −
= + = = = − = =

( 1, 3) ( 1, 1)
( 3) ( 0, 1) ( 1, 1)

P Y S P Y S
P S P Y S P Y S

= = = =
= −

= + = = = =
( 1, 3) ( 1, 1)

( 3) ( 0, 1) ( 1, 1)
P Y S P Y S

P S P Y S P Y S
= = = =

= −
= + = = = =

( 1, 3) 1
( 3) ( 0, 1)

P Y S
P S P Y S

= =
= −

= + = =
( 1, 3) ( 3) ( 0, 1)

( 3) ( 0, 1)
P Y S P S P Y S

P S P Y S
= = − = − = =

=
= + = =

( 0, 3) ( 0, 1) .
( 3) ( 0, 1)

P Y S P Y S
P S P Y S

− = = − = =
=

= + = =
 

For the upper bound, set 1,3
1 ( 1, 1)P Y Sθ = = =  and 1,3

0 0.θ =  Then 
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3,1
( 1, 3) ( 1, 1) .

( 3) ( 1, 1)
P Y S P Y SATE

P S P Y S
= = + = =

≤
= + = =

      

 

Proposition 2B. Exogenous selection and nondifferential errors: 

From the preceding proof, the average treatment effect is given by 

1,3 1,3
1 1

3,1 1,3 1,3 1,3 1,3
1 0 1 0

( 1, 3) ( 1, 1) .
( 3) ( 1)

P Y S P Y SATE
P S P S

θ θ
θ θ θ θ

= = + = = −
= −

= + + = − −
 Under nondifferential errors, set 1,3 1,3

0 1θ κθ=  

such that 
1,3 1,3
1 1

3,1 1,3 1,3
1 1

( 1, 3) ( 1, 1) .
( 3) (1 ) ( 1) (1 )

P Y S P Y SATE
P S k P S k

θ θ
θ θ

= = + = = −
= −

= + + = − +
 

For the lower bound, set 1,3
1 0.θ =  Then 3,1

( 1, 3) ( 1, 1)
( 3) ( 1)

P Y S P Y SATE
P S P S
= = = =

≥ −
= =

( 1| 3) ( 1| 1)P Y S P Y S= = = − = = . 

For the upper bound, set 1,3
1 ( 1, 1).P Y Sθ = = =  Using ( 0, 1) ,

( 1, 1)
P Y S
P Y S

κ = =
=

= =
 we have

3,1
( 1, 3) ( 1, 1)

( 3) ( 1, 1) ( 1, 1)
P Y S P Y SATE

P S P Y S kP Y S
= = + = =

=
= + = = + = =

( 1, 3) ( 1, 1) .
( 3) ( 1)

P Y S P Y S
P S P S
= = + = =

=
= + =

    

Proposition 3A. ATE3,1 LB under FoodAPS validation and MTS: 

Using the law of total probability, 

{ }
{ }

3,1

* * * * * * * *
3 2 1 0

* * * * * * * *
3 2 1 0

[ (3) 1] [ (1) 1]

[ (3) 1| 3] [ (3) 1| 2] [ (3) 1| 1] [ (3) 1| 0]

[ (1) 1| 3] [ (1) 1| 2] [ (1) 1| 1] [ (1) 1| 0]

ATE P Y P Y

P Y S P P Y S P P Y S P P Y S P

P Y S P P Y S P P Y S P P Y S P

= = − =

= = = + = = + = = + = =

− = = + = = + = = + = =

 

             
{ }
{ }

* * * * * * * *
3 2 1 0

* * * * * *
3 2 1 0

[ (3) 1| 3] [ (3) 1| 3] [ (3) 1| 3] [ (3) 1| 3]

[ (1) 1| 1] [ (1) 1| 1]

P Y S P P Y S P P Y S P P Y S P

P Y S P P P Y S P P

≥ = = + = = + = = + = =

− = = + + = = +
 

              { } { }* * * * * * *
3 1 3 1( 1 | 3) ( 1| 1) ( 1| 1) 1P Y S P Y S P P Y S P P P= = = − = = + = = + − −  

where the inequality follows from the MTS assumption.  Rewriting, we have 



42 
 

* *
* * * *

3,1 3 1 3 1* *

( 1, 3) ( 1, 1) ( ) 1 ( )
( 3) ( 1)

P Y S P Y SATE P P P P
P S P S

 = = = =
≥ − + + − + = = 

 

             
* *

* *
3 1* *

( 1, 3) ( 1, 1) 1 ( ) 1
( 3) ( 1)

P Y S P Y S P P
P S P S

  = = = = = − − + +  = =   
 

   
* * *

* *
3 1* *

( 1, 3) ( 1, 1) ( 1) ( ) 1
( 3) ( 1)

P Y S P Y S P S P P
P S P S

  = = = = − = = − + +  = =   
 

  
* *

* *
3 1* *

( 1, 3) ( 0, 1)1 ( )
( 3) ( 1)

P Y S P Y S P P
P S P S

 = = = =
= − − + = = 

 

  
* *

* *
3 1* *

( 1, 3) ( 0, 1)1 ( ).
( 3) ( 1)

P Y S P Y S P P
P S P S
= = = =

= − + + +
= =

 

Decomposing into observed and unobserved components,  

1,1 1, 13,3 3, 3
0 01 1

3,1 3,3 3,3 3, 3 3, 3 1,1 1,1 1, 1 1, 1
1 0 1 0 1 0 1 0

3,3 3,3 3, 3 3, 3 1,1 1,1 1, 1 1, 1
1 0 1 0 1 0 1 0

( 0, 1)( 1, 3)1
( 3) ( 1)

( 3) ( 1)

P Y SP Y SATE
P S P S

P S P S

θ θθ θ
θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

− −− −

− − − − − − − −

− − − − − − − −

= = + −= = + −
≥ − + +

= + + − − = + + − −

 × = + = + + − − + + − − 

 

3,1 1,31,3 3,1
0 01 1

1,3 1,3 3,1 3,1 3,1 3,1 1,3 1,3
1 0 1 0 1 0 1 0

1,3 1,3 3,1 3,1 3,1 3,1 1,3 1,3
1 0 1 0 1 0 1 0

( 0, 1)( 1, 3)1
( 3) ( 1)

( 3) ( 1) .

P Y SP Y S
P S P S

P S P S

θ θθ θ
θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= = + −= = + −
= − + +

= + + − − = + + − −

 × = + = + + − − + + − − 

 

[ ]
3,1 1,31,3 3,1
0 01 1

1,3 1,3 3,1 3,1 3,1 3,1 1,3 1,3
1 0 1 0 1 0 1 0

( 0, 1)( 1, 3)1 ( 3) ( 1) .
( 3) ( 1)

P Y SP Y S P S P S
P S P S

θ θθ θ
θ θ θ θ θ θ θ θ

= = + −= = + −
= − + + = + =

= + + − − = + + − −
 

Under no false positives, 

     [ ]
1,31,3
01

3,1 1,3 1,3 1,3 1,3
1 0 1 0

( 0, 1)( 1, 3)1 ( 3) ( 1) .
( 3) ( 1)

P Y SP Y SATE P S P S
P S P S

θθ
θ θ θ θ

= = −= = +
≥ − + + = + =

= + + = − −
  (A1)  

Recall that 1,3
1 [0, ( 1, 1)]P Y Sθ ∈ = =  and 1,3

0 [0, ( 0, 1)].P Y Sθ ∈ = =  To minimize the preceding 
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expression, set 1,3
1 0θ =  and 1,3

1 ( 1, 1).P Y Sθ = = =  Hence, the 3,1ATE  lower bound is given by

,
3,1

( 1, 3)1 .
( 3) ( 0, 1)

MTS LB P Y SATE
P S P Y S

= =
= − +

= + = =
    

Using the same approach, it can be shown that the upper bound is not improved.     

 

 
Proposition 3B.  ATE3,1 LB under FoodAPS validation and MTS with nondifferential errors: 

Under the nondifferential errors assumption, set 1,3 1,3
0 1θ κθ= in Equation (A1) above to obtain

[ ]
1,3 1,3
1 1

3,1 1,3 1,3
1 1

( 1, 3) ( 0, 1)1 ( 3) ( 1)
( 3) (1 ) ( 1) (1 )

MTS P Y S P Y S P S P S
P S P

AT
S

E θ κθ
κ θ κ θ

= = + = = −
≥ − + + = + =

= + + = − +
 

where ( 0, 1) / ( 0, 1).P Y S P Y Sκ ≡ = = = =  First, it is straightforward to show that 

1,3
1
1,3
1

( 0, 1) ( 0, 1)
( 1) (1 ) ( 1)

P Y S P Y S
P S P S

κθ
κ θ

= = − = =
=

= − + =
( 0 | 1).P Y S= = =  Next, the derivative of 

1,3
1
1,3
1

( 1, 3)
( 3) (1 )

P Y S
P S

θ
κ θ

= = +
= + +

 with respect to 1,3
1θ  has the same sign as ( 3) (1 ) ( 1, 3)P Y P Y Sκ= − + = =

( 1)( 3) ( 1, 3),
( 1, 1)

P SP S P Y S
P Y S

=
= = − = =

= =
 which in turn has the same sign as 

( 1, 1) ( 1, 3) .
( 1) ( 3)

P Y S P Y S
P S P S
= = = =

= −
= =

 For the lower bound, we therefore set 

1,3
1

( 1, 3) ( 1, 1)0 if 
( 3) ( 1)

( 1, 3) ( 1, 1)( 1, 1) if ,
( 3) ( 1)

P Y S P Y S
P S P S

P Y S P Y SP Y S
P S P S

θ

= = = = ≥ = ==  = = = = = = <
 = =

 

or 
1,3
1
1,3
1

( 1, 3) ( 1, 3) ( 1, 1)if 
( 3) ( 3) ( 1)( 1, 3)

( 1, 3) ( 1, 1) ( 1, 3) ( 1, 1)( 3) (1 ) if .
( 3) ( 1) ( 3) ( 1)

P Y S P Y S P Y S
P S P S P SP Y S

P Y S P Y S P Y S P Y SP S
P S P S P S P S

θ
κ θ

= = = = = = ≥ = = == = + =  = = + = = = = = == + +  <
 = + = = =

 

It is straightforward to show that ( 1, 3) ( 1, 3) ( 1, 1)
( 3) ( 3) ( 1)

P Y S P Y S P Y S
P S P S P S
= = = = + = =

≥
= = + =

 is equivalent to 



44 
 

( 1, 3) ( 1, 1) .
( 3) ( 1)

P Y S P Y S
P S P S
= = = =

≥
= =

 Therefore, we set 
1,3
1
1,3
1

( 1, 3)
( 3) (1 )

P Y S
P S

θ
κ θ

= = +
= + +

 equal to 

( 1, 3) ( 1, 3) ( 1, 1)max , .
( 3) ( 3) ( 1)

P Y S P Y S P Y S
P S P S P S

 = = = = + = =
 = = + = 

 

Using the same approach, it can be shown that the upper bound is not improved.     

 

 

 


