Accounting for Factorless Income

Loukas Karabarbounis
University of Minnesota

Brent Neiman
University of Chicago

April 2018

What is Factorless Income?

Factorless Income = $Y - WL - \sum_{i} R^{j} K^{j}$

How to Allocate and Interpet Factorless Income?

- Three polar cases (among other possibilities):
 - 1 Maybe it's all economic profits ($Case \Pi$)
 - 2 Maybe we are "missing" investment (Case K)
 - 3 Maybe our imputation of rental rate isn't good (Case R)

How to Allocate and Interpet Factorless Income?

- Three polar cases (among other possibilities):
 - 1 Maybe it's all economic profits ($Case \Pi$)
 - 2 Maybe we are "missing" investment (Case K)
 - 3 Maybe our imputation of rental rate isn't good (Case R)
- Variants of threse three strategies are common in literature:
 - ① Case Π : Rotemberg-Woodford (1995), Basu-Fernald (1997), Karabarbounis-Neiman (2014), Rognlie (2016), Barkai (2017), + others
 - Case K: Hall (2001), McGrattan-Prescott (2005), Corrado-Hulten-Sichel (2009), Eisfeldt-Papanikolaou (2013), + others
 - 3 Case R: KLEMS Project, Gomme-Ravikumar-Rupert (2011), Koh-Santaelalia-Llopis-Zheng (2016), Caballero-Farhi-Gourinchas (2017)
- We explore these interpretations and their implications

Constructing Factorless Income $(Y - WL - \sum_{i} R^{j}K^{j})$

- Data from US NIPA and FAT, excludes government, 1960-2016
- Y is GDP and WL is raw compensation (robust to common alternatives)
- We aggregate to three capital stocks K^j :
 - j = I: IT capital (used by business sector)
 - j = N: Non-IT capital (used by business sector)
 - j = H: Housing (used by households)
- Rental rate (ala Hall-Jorgenson (1967), from model, taxes removed):

$$R_t^j = \xi_t^j \left[\left(rac{\xi_{t-1}^j}{\xi_t^j}
ight) (1+r_t) - \left(1-\delta_t^j
ight)
ight]$$

Factor Shares Before Allocating Factorless Income

(Note: All plots throughout are 5-year moving averages.)

Case Π

- Increase in s_{Π} since 1980 related to s_L decline
- Referenced by view that monopoly power ↑ or call for antitrust

Case Π

• But s_{Π} remains below average levels from 1960s/1970s

Case Π

- Correlation $(r, s_{\Pi}) = -0.91$: Not a change in markups alone!
- Cost share variation has implications for technology

Case K

- Unmeasured investment spending $\xi^U X^U$ and income $R^U K^U$
- "Revised" GDP \tilde{Y} related to measured income Y as:

$$\tilde{Y} = Y + \xi^{U}X^{U} = WL + \sum_{j \in I, N, H} R^{j}K^{j} + \Pi + R^{U}K^{U}$$

• We rearrange so RHS is all known or assumed:

$$R^{U}K^{U} - \xi^{U}X^{U} = Y - WL - \sum_{i \in I, N, H} R^{j}K^{j} - \Pi^{Q} - \Pi^{H}$$

- Find $\{\xi_t^U, X_t^U, R_t^U, K_t^U\}$ for $t \in (1960, 2016)$ which satisfy:
 - Above equation
 - $R_{t+1}^U = R(\xi_t^U, \xi_{t+1}^U, \delta^U, r_t)$
 - $K_{t+1}^U = (1 \delta^U) K_t^U + X_t^U$

Case K

Case R

• Idea is lots of factors omitted from our rental-rate calculation (risk premium, adjustment costs, etc.)

• Solve for revised opportunity cost of capital \tilde{r} such that:

$$P^{Q}Q - WN - \tilde{R}^{I}K^{I} - \tilde{R}^{N}K^{N} - \Pi^{Q} = 0,$$

where $\tilde{R}^j = R(\tilde{r}, \cdot)$ and where Π^Q as in Case K.

Case R

Case R

Model

- Business and housing sectors, multiple capital types, capitalists and hand-to-mouth workers, perfect foresight, and exogenous interest rate path
- Intermediates produced with CES technology:

$$Q_{t} = \left(\alpha \left(A_{t}^{K} K_{t}^{Q}\right)^{\frac{\sigma-1}{\sigma}} + (1 - \alpha) \left(A_{t}^{L} L_{t}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Business capital bundle:

$$\mathcal{K}_{t}^{Q} = \left(\sum_{j
eq H} \left(
u_{t}^{j}
ight)^{rac{1}{ heta}} \left(\mathcal{K}_{t}^{j}
ight)^{rac{ heta-1}{ heta}}
ight)^{rac{ heta}{ heta-1}}$$

 Input/extract exogenous processes to match endogenous variables during 1960-2016 under each of the three cases

Extracted Labor-Augmenting Technology (Detrended)

$$A_t^L = (1 - \alpha)^{\frac{\sigma}{1 - \sigma}} \left(s_{L,t}^Q \right)^{\frac{1}{\sigma - 1}} \left(\mu_t^Q \right)^{\frac{\sigma}{\sigma - 1}} W_t$$

$$\sigma = 1.25$$
 $\sigma = 0.75$

Counterfactuals

Changes (1986-1990 vs. 2011-2015) in s_L^Q

	Elasticity $\sigma=1.25$			Elasticity $\sigma = 0.75$			
	Case П	Case K	Case R	Case П	Case K	Case R	
Baseline	-0.030	-0.029	-0.030	-0.030	-0.029	-0.030	
$\mu^{oldsymbol{Q}}$	-0.071	0.000	0.000	-0.083	0.000	0.000	
(A^K, ν^I)	0.041	-0.056	-0.048	0.063	0.025	-0.003	

Changes (1961-1965 vs. 2011-2015) in In Q

	Elasticity $\sigma=1.25$			Elasticity $\sigma = 0.75$			
	Case П	Case K	Case R	Case П	Case K	Case R	
Baseline	-0.068	-0.087	-0.068	-0.068	-0.087	-0.068	
ξ^I	0.177	0.183	0.215	0.129	0.125	0.151	

Conclusions

- For many questions including cause of s_L decline, but also much more interpretation of factorless income matters!
- Skeptical of *Case* Π:
 - Not a change in markups alone!
 - Requires longer view than just early-1980s onward
- A bit less skeptical of Case K: Our version requires too much K^U early-on, but other versions might do better
- Most optimistic about Case R: But what is source of wedge?
- Hope to see explorations of factorless income around the world

EXTRA SLIDES

Case Π

• What about with (hypothetical) flat real interest rate?

What About De Loecker and Eeckhout (2017)?

- But rise in Sales/COGS due to fall in COGS/(COGS+SG&A)!
 - First showed by Traina (2018)
 - Consistent with Gutierrez and Philippon (2017)

What About De Loecker and Eeckhout (2017)?

	Trend (per 10 years)		Years Covered		Firms	Firms Included	
Country	Sales COGS	Sales COGS+SG&A	Start	End	Min	Max	
Brazil	-0.04	-0.00	1996	2016	128	284	
China	-0.01	-0.02***	1993	2016	314	3683	
France	-0.07*	-0.01	1999	2016	111	631	
Germany	0.00	0.03***	1998	2016	119	668	
India	0.12***	0.06**	1995	2016	630	2890	
Italy	0.00	-0.06***	2005	2016	202	264	
Japan	0.06***	0.03***	1987	2016	2128	3894	
Korea	0.00	-0.03***	1987	2016	419	1682	
Russia	-0.13	-0.01	2004	2016	127	245	
Spain	0.27**	-0.03	2005	2016	102	128	
Taiwan	-0.05**	-0.02	1997	2016	160	1789	
United Kingdom	0.28***	0.07***	1988	2016	183	1489	
United States	0.09***	0.02***	1981	2016	3136	8403	

Simple Average

0.04

0.00

Case Π

