# The Tail that Keeps the Riskless Rate Low

Julian Kozlowski  $^1$   $\,$  Laura Veldkamp  $^2$   $\,$  Venky Venkateswaran  $^2$ 

<sup>1</sup>NYU <sup>2</sup>NYU Stern

Government bond yields have fallen since 2008-09 and have remained low

Our story:

Great Recession ↓ Change in beliefs about tail risk ↓ Persistent fall in returns on safe, liquid assets

# **Key Ingredients**

• Main idea:

No one knows the true distribution of aggregate shocks

 $\rightarrow$  Re-estimate beliefs as new data arrives

## • Estimation of beliefs:

- $\rightarrow$  Non-parametric approach: tail risk vs uncertainty
- $\rightarrow$  Use observed macro data, empirical discipline
- Tail events: (e.g. the Great Recession)
  - $\rightarrow$  Large changes in beliefs, in tail probabilities
  - $\rightarrow$  Changes are long-lived, even if the underlying shocks are iid

# • Economic environment:

Neoclassical production economy with liquidity constraints

# • Quantitative results:

- $\rightarrow$  Large and persistent drop in riskless rates (1.45%)
- $\rightarrow$  Consistent with evidence from option markets

# **Belief formation**

- Consider an iid shock,  $\phi_t$ , with unknown distribution g
- Information set: finite history of shock realizations  $\{\phi_{t-s}\}_{s=0}^{n_t-1}$
- Goal: a flexible specification that can capture tail risk
- We use a non-parametric estimator: the Gaussian kernel density

$$\hat{g}_{t}\left(x\right) = rac{1}{n_{t}\kappa}\sum_{s=0}^{n_{t}-1}\Omega\left(rac{x-\phi_{t-s}}{\kappa}
ight)$$

#### Tail events and beliefs: An example

Before Tail Event After Tail Event Histogram (observations) 30 30 -Kernel density 20 20 10 10 0 0 0.8 0.9 1.1 0.8 0.9 1.1 1 1

Tail events  $\rightarrow$  large changes in tail risk (hump on left)

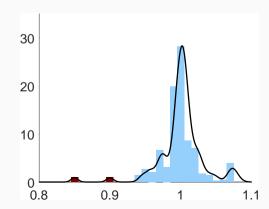
## Persistence of belief changes

Exercise I: Simulate future time paths drawing from updated distribution,  $\hat{g}_t$ 

• Beliefs are martingales:  $\mathbb{E}_t[\hat{g}_{t+j}|\mathcal{I}_t] \approx \hat{g}_t \rightarrow \text{Persistence}$ 

Exercise II: Simulate future time paths without tail events, re-estimate beliefs

• Beliefs eventually revert, but the pace is very slow



# **Economic Model**

## Model

- Production:  $Y_t = K_t^{\alpha} N_t^{1-\alpha}$ 
  - Aggregate shocks to capital 'quality':  $K_t = \phi_t \hat{K}_t$
  - Law of motion  $\hat{K}_{t+1} = K_t(1-\delta) + I_t$
- Preferences:
  - Representative HH with stochastic discount factor  $M_t$

 $\phi_t \sim g(\cdot)$ 

## Model

- Production:  $Y_t = K_t^{\alpha} N_t^{1-\alpha}$ 
  - Aggregate shocks to capital 'quality':  $K_t = \phi_t \hat{K}_t$
  - Law of motion  $\hat{K}_{t+1} = K_t(1-\delta) + I_t$
- Preferences:
  - Representative HH with stochastic discount factor  $M_t$
- Role of Liquidity:
  - Opportunity to invest in an intra-period project: payoff  $H(X_t) X_t$
  - Liquidity constraint:  $X_t \leq B_t + \eta \phi_t \hat{K}_t$ , where  $B_t \equiv$  riskfree bonds

$$\Rightarrow \qquad rac{1}{R_t^f} = \mathbb{E}_t \left[ M_{t+1} (1 + Liq_{t+1}) 
ight]$$

 $\phi_t \sim g(\cdot)$ 

- Beliefs:
  - Distribution g unknown to all agents
  - At each t, observe  $\{\phi_1, \ldots, \phi_t\}$
  - Gaussian kernel density estimator  $~
    ightarrow~\hat{g}_t$

# **Quantitative Results**

Aggregate shock:

 $\phi_t = \frac{K_t}{\hat{K}_t} = \frac{\text{Effective capital}}{\text{Yesterday's effective capital} + \text{Investment}}$ 

Data: Non-financial assets of US Corporate Business (Flow of Funds)

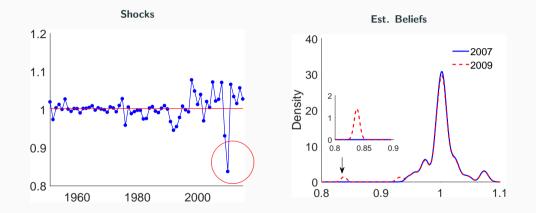
- Commercial real estate ( $\sim$  55%), equipment and software
- Market value  $\rightarrow$  Effective capital
- Historical cost  $\rightarrow$  Investment

$$\Rightarrow$$
 Direct measure of  $\phi$ 

$$\phi_t = \frac{\kappa_t}{\hat{\kappa}_t} = \left(\frac{P_t^k \kappa_t}{P_{t-1}^k \hat{\kappa}_t}\right) \left(\frac{PINDX_{t-1}^k}{PINDX_t^k}\right)$$

#### Calibration:

- Preferences: Risk aversion = 0.5, Frisch = 2
- Liquidity:  $R^{f} = 0.02$ , pledgability of capital = 0.16,  $H'(X) = \zeta/\sqrt{X}$



Large negative shocks  $\rightarrow$  Large (and persistent) increase in tail risk

#### **Beliefs:**

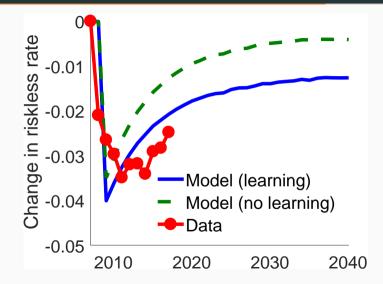
- 1. Start at 'steady state' of  $\hat{g}_{2007}$  (estimated using 1950-2007 data)
- 2. Feed in the actual shocks from 2008-09 and estimate  $\hat{g}_{2009}$

$$(\phi_{2008}, \phi_{2009}) = (0.93, 0.84)$$

#### **Exercises:**

- 1. Baseline: simulate time paths drawing from  $\hat{g}_{2009}$ , plot mean responses
- 2. No more crisis: simulate paths drawing from  $\hat{g}_{2007}$ , plot mean responses

# Tail event + Learning $\rightarrow$ Persistent Fall $R^f$



# Model vs Data: Long-run changes

| Riskless rate                                 | Change, % |
|-----------------------------------------------|-----------|
| Model                                         | -1.45     |
| Data:                                         |           |
| 1-year real rate                              | -2.48     |
| 5-year real rate, 5 years forward             | -1.57     |
| Natural real rate (from Del Negro et al. '17) | -0.66     |

Model: Average in stochastic steady states under  $\hat{g}_{2009}$  minus the one under  $\hat{g}_{2007}$ Data: Average in 2013-2017 minus average in 2005-2007

#### Model vs Data: Long-run changes

| Riskless rate                                 | Change, % |
|-----------------------------------------------|-----------|
| Model                                         | -1.45     |
| Data:                                         |           |
| 1-year real rate                              | -2.48     |
| 5-year real rate, 5 years forward             | -1.57     |
| Natural real rate (from Del Negro et al. '17) | -0.66     |

Model: Average in stochastic steady states under  $\hat{g}_{2009}$  minus the one under  $\hat{g}_{2007}$ Data: Average in 2013-2017 minus average in 2005-2007

#### **Role of Liquidity:**

| Liquidity premium                | Change, % |
|----------------------------------|-----------|
| Model                            | -1.43     |
| Data (from Del Negro et al. '17) | -0.52     |

## Almost all of the drop in $R^{f}$ comes from the interaction of tail risk and liquidity

Increase in tail risk  $\Rightarrow$  Liquidity from capital lower and riskier  $\Rightarrow$  bonds become more valuable

Interpret equity as a levered claim on the value of the representative firm

## Returns and valuations:

| Changes in                                       | Model | Data  |
|--------------------------------------------------|-------|-------|
| Expected return on equity, $\mathbb{E}(R^e)$ (%) | -0.07 | -0.18 |
| Equity premium, $\mathbb{E}(R^e - R^f)$ (%)      | 1.39  | 3.83  |
| In Equity/Capital                                | 0.01  | 0.22  |

Higher tail risk does not imply a large fall in equity valuations

Interpret equity as a levered claim on the value of the representative firm

#### **Returns and valuations:**

| Changes in                                       | Model | Data  |
|--------------------------------------------------|-------|-------|
| Expected return on equity, $\mathbb{E}(R^e)$ (%) | -0.07 | -0.18 |
| Equity premium, $\mathbb{E}(R^e - R^f)$ (%)      | 1.39  | 3.83  |
| In Equity/Capital                                | 0.01  | 0.22  |

Higher tail risk does not imply a large fall in equity valuations

#### Tail risk indicators:

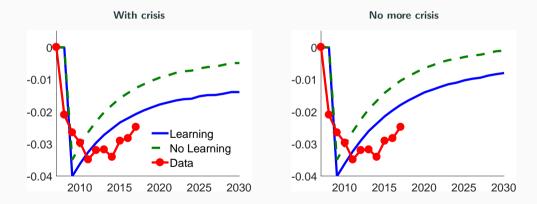
| Changes in                                   | Model  | Data   |
|----------------------------------------------|--------|--------|
| Third moment $\mathbb{E}^Q(R^e-ar{R^e})^3$   | -0.002 | -0.002 |
| $Pr^{Q}\left(R^{e}-ar{R^{e}}\leq-0.30 ight)$ | 0.022  | 0.015  |

Expectations and probabilities are under the risk-neutral measure.

#### Option prices show increase in tail risk

#### What if there are no more crisis?

- With crises: Draw future shocks from  $\hat{g}_{2009}$  (benchmark)
- No more crises: Draw future shocks from  $\hat{g}_{2007}$



Long-lived effects even if crises never occur again

- Obviously, no one knows the true distribution of shocks
- New data permanently reshapes our assessment of macro risks
- Tail events have long-lived effects on beliefs as data on tail events is scarce
- A new perspective on the persistent drop of riskless rates

# Appendix

## **Contribution to the Literature**

#### Low interest rates:

- Hall (2017), Barro et al. (2014), Bernanke et al. (2011), Carvalho et al. (2016), Caballero et al. (2016), Bigio (2015) and Del Negro et al. (2017)
  - We add : new mechanism, acting through belief revisions

#### Belief-driven business cycles

- Tail risk: Kozlowski, Veldkamp and Venkateswaran (2017)
  - We add: riskless rate, liquidity
- Belief shocks: Gourio (2012), Angeletos and La'O (2013), Bloom (2009)...
  - We add: endogenous belief revisions, persistence
- Learning models: Johannes et. al. (2012), Cogley and Sargent (2005)...
  - We add: production, non-parametric learning
- Endogenous uncertainty: Fajgelbaum et.al. (2014), Straub and Ulbricht (2013)...
  - We add: empirical discipline on beliefs, larger effects

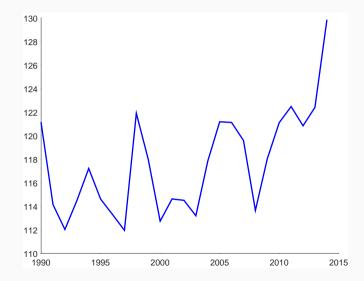
$$V(K_{t}, B_{t}, S_{t}) = \max_{X_{t}, N_{t}, B_{t+1}, \hat{K}_{t+1}} H(X_{t}) - X_{t} + F(K_{t}, N_{t}) - W_{t}N_{t} + K_{t}(1 - \delta) + B_{t} - P_{t}B_{t+1} - \hat{K}_{t+1} + \beta \mathbb{E}_{t}M_{t+1}V(K_{t+1}, B_{t+1}, S_{t+1})$$

s.t. 
$$X_t \leq B_t + \eta K_t,$$
  
 $K_{t+1} = \phi_{t+1} \hat{K}_{t+1}$ 

**Optimality conditions:** 

$$1 = \beta \mathbb{E}_{t} \{ M_{t+1}\phi_{t+1} [F_{1}(K_{t+1}, N_{t+1}) + 1 - \delta + \eta \mu_{t+1}] \}$$
$$P_{t} = \beta \mathbb{E}_{t} \{ M_{t+1} (1 + \mu_{t+1}) \}$$
$$\mu_{t} = H'(X_{t}) - 1$$

# The SKEW Index



Source: CBOE. Constructed from out-of-the-money put options on S&P 500. A level > 100 indicates negative skewness.

# Long-run analysis

|                                          | <b>ĝ</b> 2007   | $\hat{g}_{2009}$ | Change |
|------------------------------------------|-----------------|------------------|--------|
| Model with liqui                         | dity ( $\eta$ : | > 0)             |        |
| $\ln F(K,N)$                             | 2.39            | 2.36             | -0.03  |
| In X                                     | 2.68            | 2.65             | -0.03  |
| In K                                     | 4.10            | 4.06             | -0.04  |
| Riskless rate ( $R^{f}$ ), in %          | 2.31            | 0.86             | -1.45  |
| Return on capital ( $R^{ m v}$ ) in $\%$ | 5.30            | 5.29             | -0.01  |
| Premium $(R^{v} - R^{f})$ in %           | 2.99            | 4.43             | 1.44   |

| Model without liquidity ( $\eta=$ 0) |      |      |       |  |
|--------------------------------------|------|------|-------|--|
| $\ln F(K,N)$                         | 2.27 | 2.19 | -0.09 |  |
| In X                                 | 1.29 | 1.29 | 0.00  |  |
| In K                                 | 3.93 | 3.80 | -0.13 |  |
| Riskless rate $(R^{f})$ in %         | 2.31 | 2.29 | -0.02 |  |
| Risky return $(R^{ m v})$ in $\%$    | 5.28 | 5.27 | -0.01 |  |
| Risk premium $(R^{v} - R^{f})$ in %  | 2.97 | 2.98 | 0.01  |  |

#### Interest rates in the long-run, without liquidity effects:

| $\sigma$ |    | $\hat{g}_{2007}$ | $\hat{g}_{2009}$ | Change |
|----------|----|------------------|------------------|--------|
| 0        | .5 | 2.31             | 2.29             | -0.02  |
| 2        |    | 2.31             | 2.23             | -0.08  |
| 1        | 0  | 2.31             | 1.67             | -0.64  |

# Calibration

| Parameter       | Value                       | Description                            | Target                 | Value |
|-----------------|-----------------------------|----------------------------------------|------------------------|-------|
| Preferences:    |                             |                                        |                        |       |
| $\beta$         | 0.95                        | Discount factor                        |                        |       |
| $\gamma$        | 0.50                        | 1/Frisch elasticity                    |                        |       |
| $\pi$           | 1                           | Labor disutility                       |                        |       |
| $\sigma$        | 0.5                         | Risk aversion                          |                        |       |
| Technology:     |                             |                                        |                        |       |
| $\alpha$        | 0.40                        | Capital share                          |                        |       |
| $\delta$        | 0.06                        | Depreciation rate                      |                        |       |
| Liquidity: H(   | $X) = 2\zeta\sqrt{X} - \xi$ |                                        |                        |       |
| $\eta$          | 0.16                        | Pledgability of capital                | Short term obligations | 16%   |
| $\eta \\ ar{B}$ | 4.93                        | Supply of liquid assets                | Liquid assets          | 9%    |
| ζ               | 3.93                        | Investment technology Riskless rate 2% |                        | 2%    |
| ξ               | 9.00                        | Investment fixed cost                  | Capital-output ratio   | 3.5   |

• 5-year rate, 5 years forward:

Nominal 5y rate, 5 years forward from Treasury yield curve Expected 5y inflation, 5y forward, from Cleveland Fed 5y and 10y exp inflation

• **Expected returns**  $\mathbb{E}(R^e)$ : Follow Cochrane (2011) and Hall (2015)

Regress 1y S&P return to log of the ratio of the S&P to its dividends and log of the ratio of consumption to disposable income forecast model

• Third moment:

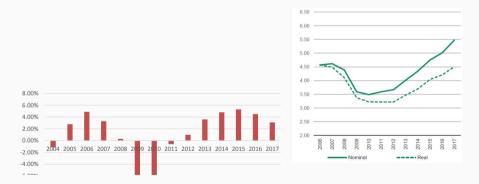
$${\it SKEW}_t = 100 - 10 rac{\mathbb{E}(R^e - ar{R^e})^3}{({\it VIX}_t/100)^3} \; .$$

• Tail probabilities: Approximate distribution for  $\omega = \frac{x-\mu}{\sigma}$ :

$$f(\omega) = \varphi(\omega) \left[ 1 - \gamma \frac{(3\omega - \omega^3)}{6} \right]$$
 where  $\gamma = E \left[ \frac{x - \mu}{\sigma} \right]^3$ 

## Why shocks to capital 'quality'?

- Most direct way to generate large, negative capital returns + transparent measurement
- Price changes tied to productive value  $\rightarrow$  without persistence, countercyclical investment
  - E.g. discount factor induced price changes ruled out



Source: Prologis Research

#### Measurement

- Concern: Methodological changes in the FoF for valuing non-financial assets
- Issue: Consistently measured data series available only for shorter samples
- Strategy: Use NCREIF Property Index for comparison



## What if the learning sample includes pre-1950 data?

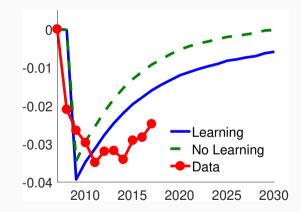
- Concern: Effect of new observations with a longer sample? Great Depression?
- Issues: Data availability? Discounting of old data?
- Strategy: Use the 1950-2009 sample as a proxy for 1890-1949
  - Great Depression:  $\{\phi_{1929}, \phi_{1930}\} = \{\phi_{2008}, \phi_{2009}\}^{\varepsilon}, \qquad \varepsilon \in \{1, 2\}$
  - Weights: Observation in t s is given a weight  $\lambda^s$ ,
- Exercise I: Simulate by drawing from  $\hat{g}_{2009}$

| Pa         | arameters | Long-r        | un Average       |       |
|------------|-----------|---------------|------------------|-------|
| $\epsilon$ | $\lambda$ | <i>ĝ</i> 2007 | $\hat{g}_{2009}$ | Chg   |
| 1          | 1         | 1.68          | 0.87             | -0.81 |
| 1          | 0.99      | 2.35          | 0.90             | -1.44 |
| 2          | 1         | 1.22          | 0.37             | -0.85 |
| 2          | 0.99      | 2.08          | 0.63             | -1.45 |

 $\lambda < 1$ 

More data (+ modest discounting) yields similar results

• Exercise II: Simulate by drawing from  $\hat{g}_{2007}$ 



Similar patterns even with discounting and no more tail events