# The Impact of Free Secondary Education: Experimental Evidence from Ghana<sup>1</sup>

Esther Duflo (MIT)

Pascaline Dupas (Stanford)

Michael Kremer (Harvard)

April 13, 2017

#### Abstract

In 2008, 682 secondary school scholarships were awarded by lottery among 2,064 Ghanaian students (aged 17 on average) who were admitted to a specific school and track but could not immediately enroll, in most cases due to lack of funds. We use follow-up data collected until 2016 to document downstream impacts by age 25. For the whole sample, scholarship winners were 26 percentage points (55%) more likely to complete secondary school, obtained 1.26 more years of secondary education, scored an average of 0.15 standard deviations greater on a reading and math test, and adopted more preventative health behavior. Women who received a scholarship had 0.217 fewer children by age 25. Scholarship winners were also 3 percentage points (30%) more likely to have ever enrolled in tertiary education. Despite the fact that they were 2.5 percentage points more likely to be enrolled in school at the time of the last survey, they were 5.5 percentage points (10%) more likely to have positive earnings and had significantly higher (hyperbolic sine) earnings. For students admitted to vocational tracks (comprising 60% of the sample) scholarships did not increase tertiary education, which simplifies the interpretation of labor market outcomes. In this subsample, scholarships increased the likelihood of earning money by 8.8 percentage points (16%) and increased total earnings by 19%. The estimated financial rate of return to education in this subsample is 13%. For students admitted to academic majors, scholarships increased the chance of having enrolled in tertiary education by 5.3 percentage points on a base of 11 percent. This effect is driven overwhelmingly by women, who nearly double their rate of tertiary enrollment and fully catch up with men. We cannot reject the hypothesis that among those admitted to academic tracks, scholarships did not affect average labor market participation and earnings by age 25, but since more scholarship winners than non-winners were still in school as of 2016, it is too early to definitively assess labor market impacts in this population.

<sup>&</sup>lt;sup>1</sup> This randomized trial is registered in the The American Economic Association's registry for randomized controlled trials under RCT ID AEARCTR-0000015. The study protocol was approved by the IRBs of UCLA, Stanford, MIT and IPA. We thank the Ghana Education Service and IPA Ghana for their collaboration, and Jonathan Addie for outstanding project management. We are grateful to Ishita Ahmed, Madeline Duhon, Jinu Kola, Ryan Knight, Mark Walsh, Victor Pouliquen and Nicolas Studer for outstanding research assistance. The funding for this study was provided by the NIH (Grant #R01 HD039922), the IGC, 3ie, the Partnership for Child Development and the Nike Foundation. We thank them, without implicating them, for making this study possible. Dupas also gratefully acknowledges the support of the NSF (award number 1254167).

Duflo: MIT Economics Department and NBER: eduflo@mit.edu; Dupas: Stanford Economics Department and NBER, pdupas@stanford.edu; Kremer: Harvard Economics Department and NBER, mkremer@fas.harvard.edu.

# 1 Introduction

As more and more children in developing countries enroll in primary school and gender gaps in primary enrollment shrink, policymakers' attention has shifted to secondary school. For instance, the first target under education for the U.N's new "Sustainable Development Goals" is "by 2030, ensure that all girls and boys complete free, equitable and quality primary *and secondary education* leading to relevant and effective learning outcomes." In Ghana, the setting of this study, the incoming government has promised to make secondary education free.<sup>2</sup>

Many see secondary education as having potentially transformative economic and social impacts, particularly for girls. Yet others have more negative views; some experts believe that rapidly expanding access to secondary education will produce little additional learning, given weaknesses in the school system (e.g., Pritchett, 2001). Another hypothesis is that young people see secondary education as promising access to tertiary education and ultimately a government job, with associated rents, and that since such jobs are inherently limited, rapidly expanding education may lead to a cohort of "over-educated" young people, frustrated in their aspirations, and to associated social and political tensions (e.g. Krueger and Maleckova 2003; Heckman, 1991). A third hypothesis is that expanding access to secondary school in developing countries will require curricular changes to prepare students for the labor market. When the United States moved from a system of secondary schools designed to prepare elites for tertiary education to a system of mass secondary education, many secondary curricula dropped Greek and Latin and incorporated vocational education (Goldin, 1999).

This debate is surprisingly uninformed by high quality evidence from the developing world. Many studies in the developed world have used natural experiments to estimate the rates of return to education (e.g., Angrist and Krueger, 1990). However, it is not clear if the results generalize to developing countries which have vastly greater levels of education than did developed countries when they had comparable income levels (Pritchett, 2001). While many studies document the positive correlation between education and other outcomes, there are surprisingly few well-identified studies from lower income countries on the causal impacts of education.<sup>3</sup> We are aware of no randomized

<sup>&</sup>lt;sup>2</sup> See for example the BBC article dated 9 December 2016, "Ghana election: Opposition leader Akufo-Addo declared winner". The second sentence reads: "Mr Akufo-Addo has promised free high-school education and more factories [...]." See <u>http://www.bbc.com/news/world-africa-38270956</u>, accessed Jan 13, 2017.

<sup>&</sup>lt;sup>3</sup> Most natural experiments in the developing world have focused on the effect of expanding access to primary (grades 1-5) or junior secondary (grades 6-8) education on earnings (Duflo, 2001, 2003), fertility (Osili, 2008; Duflo, Dupas, Kremer, 2015), child health (Chou et al, 2010), religiosity and empowerment (Gulesci and Meyersson, 2015). Ozier

controlled trial (RCT) and only one study based on regression discontinuities in admission test scores on the labor market impact of secondary education (Ozier, 2016). Although there are strong claims about the effects of secondary education for girls, especially on reproductive health, fertility, and empowerment (UNGEI, 2010; Warner, Malhotra and McGonagle, 2012; Ackerman, 2015), wellidentified studies are scarce. A number of studies examine the impact of purely vocational education, but fewer compare more or less vocational tracks within regular secondary schools.<sup>4</sup>

Senior high school in Ghana, like British A-levels, has historically been selective. Admission is based on a gateway exam administered at the end of grade 8, which only roughly 40% of junior high school entrants pass.<sup>5</sup> Students apply not only to a particular school, but also to a particular major (track). Two majors (General Arts and General Science) are academically focused, while the other majors incorporate vocational education alongside traditional academic subjects.

Secondary school enrollment is also limited by tuition fees, which amounted to about 20% of GDP per capita in Ghana annually during our scholarship period.<sup>6</sup> Ghana has had a system of limited partial scholarships for certain select populations and, as mentioned, a recurring election promise over the past two presidential elections was to make secondary education free.

This paper provides experimental evidence on the impacts of free secondary school on the lives of young adults, and disaggregates these effects by gender and between academic and vocational tracks. In 2008, full scholarships were awarded to 682 adolescents, randomly selected among a sample of 2,064 rural youth who had gained admission to a particular track in a public high school but did not immediately enroll, 95% of whom cited lack of funds as the reason. Follow-up data were regularly collected until 2016, when these youth were on average 25.

<sup>5</sup> Around 70% of JHS entrants go on to take the BECE (see

<u>http://www.moe.gov.gh/assets/media/docs/FinalEducationSectorReport-2013.pdf</u>) and 60% of BECE takers pass (see for example http://www.ghanaweb.com/GhanaHomePage/economy/artikel.php?ID=149100 or <u>http://citifmonline.com/2014/06/16/only-60-of-bece-candidates-make-it-to-shs-ges/</u>).

<sup>(2016)</sup> uses a regression discontinuity approach to find that Kenyan students who barely got admitted to secondary school acquire more years of schooling, have higher cognitive scores, and a lower probability of low skill self-employment later in life if male, and fewer teen pregnancies if female. Friedman et al., (2016) exploit a randomized scholarship competition in Kenya to estimate effects of education on attitudes and values by age 17. Neither paper reports earnings information

<sup>&</sup>lt;sup>4</sup> Attanasio, Kugler, and Meghir, 2011; Blundell et. al, 2000; Chevalier and Walker, 2001; O'Leary and Sloane, 2005; Bettinger, Kremer and Saavedra, 2010; Kugler, Saavedra, and Prada, 2015; Walker and Zhu, 2011; Bettinger et. al, 2016; Britton, Shephard and Vignoles, 2016)

<sup>&</sup>lt;sup>6</sup> A complete senior high school education, currently three years, would cost about 70% of GDP per capita, when additional clothing, exam and material fees are included.

Given our design, we examine impacts on those who would be affected were secondary education to become free, if other admission criteria did not change -- the relevant population for a discussion of making education free without changing selection criteria. As noted by Lang (1993) and Card (1999), treatment effects from relieving financial constraints to education may well differ from returns to education for those with test scores near the cutoff for satisfying academic criteria for admission, which are measured in regression discontinuity studies, such as Ozier (2016).

Consistent with the large literature suggesting that direct costs of education are an important determinant of schooling,<sup>7</sup> the scholarship increased educational attainment, although many students who did not win the lottery eventually enrolled. On average, winners were 30 percentage points (50%) more likely to enroll in secondary school and spent 1.26 more years in secondary education than non-winners.

Inconsistent with the most pessimistic expectations, this increase in educational attainment translated into an increase in cognitive skills. Five years into the study, scholarship winners scored on average 0.15 standard deviations higher on a math and reading comprehension test and were more knowledgeable about national politics and modern technologies.

The scholarship also significantly affected life outcomes. As of 2016, when most participants were around age 25, women who received a scholarship were 10.7 percentage points (or 18%) less likely to have ever been pregnant, significantly less likely to have ever lived or cohabited with a partner, and had .217 fewer children. Both men and women engaged in more preventative health behaviors and men reported engaging in less risky sexual behavior.

Across the full sample, access to free secondary education increased the chance of having ever enrolled in tertiary education by 3 percentage points on a base of 9 percent, and increased the probability that they were still enrolled in any form of schooling (mostly, tertiary) at the time of the survey by 2.5

<sup>&</sup>lt;sup>7</sup> The adoption of Free Primary Education (FPE) was associated with a large increase in enrollment in sub-Saharan Africa (Lucas and Mbiti 2012; Keats 2014). Even under FPE, purchasing uniforms remained a substantial schooling expense and two studies in Kenya find that the provision of free uniforms increase schooling (Duflo, Dupas, Kremer 2015; Evans, Kremer and Ngathia 2009). In the 1990s, the Bangladeshi Female Secondary School Assistance project, which paid for tuition and provided a small cash stipend to families with a girl enrolled in grades 6 through 10, led to a large increase in secondary school enrollment for girls in the areas where it was implemented: the number of girls enrolled in school doubled in 10 years in those areas (Khandker, Pitt and Fuwa, 2003).

percentage points. Turning to labor market effects, they were 5.5 percentage points (10%) more likely to have positive earnings and had significantly higher (hyperbolic sine) earnings.

The tertiary education results complicate the interpretation of these labor market findings, since more of the treatment group youth are still in school. Treatment effects on tertiary education and on labor market outcomes differ substantially, however, by the track in which students were admitted before entering the scholarship lottery, which allows us to gain some traction on labor market impacts. For students who had been admitted to vocational tracks, whether female or male, scholarships had insignificant effects on tertiary enrollment. In this subsample, the scholarships increased labor hours by 17% (15 hours per month on a base of 87 hours) and total earnings by 19%. These gains are accounted for by the extensive margin of increased employment, not by higher hourly earnings or higher hours for those who are observed as working. Winning a scholarship increased the probability of having positive earnings by 8.8 percentage points and the probability of having worked at least 10 hours per month by 11.6 percentage points.

Among students admitted to academic tracks, there is a 5.3 percentage point increase in the chance of ever enrolling in tertiary education on a base of 11.0 percent, with much of this accounted for by a near doubling of enrollment in universities, the most prestigious type of tertiary education. The tertiary effects are driven primarily by women. For women, winning a scholarship almost doubled the chance of ever enrolling in tertiary education (9.5% to 18.8%).

Since among those admitted to academic tracks, scholarship winners were 5.3 percentage points more likely to be enrolled in an education or training program at the time of the survey, it is too early to definitively assess long-term labor market outcomes, but we can report some information. Estimated labor market effects in the full sample of academic admits, are small and statistically insignificant, and they are statistically different from the effects for vocational admits. This may reflect compositional issues if academic admits who were induced to stay in school by the program would have had better than average labor market outcomes. For women, bounds on labor market impacts on those who were not induced to stay in school by the program include everything from insignificant to strongly positive labor market effects. Among males admitted to academic majors, bounds on labor market effects on those not induced to be in school range from substantially negative to close to zero, making it impossible to reject either the hypothesis of no effect or that of an effect close to that on women. The upper bounds of the effects for academic admits are also not statistically different from the upper bounds of the effects for vocational admits.

Setting aside any valuation of the utility effects of schooling, of changes in fertility, and of changes in work hours, a purely financial calculation based on our estimates suggests an internal rate of return to investments in vocational education of 13 percent. It is too early to compute the return to academic secondary education. This rate of return calculation is of course based on the partial, rather than general equilibrium impact of education. However, our study also took place in a challenging macroeconomic context in Ghana, and in an environment where, as we describe below, the market was flooded with new graduates: due to a change in the length of secondary school, two cohorts graduated at the same time.

The impact of free secondary school access for those who qualify is of independent interest, but this setting also allows us to shed light on the causal impact of extra years of education, to the extent that we believe the scholarship's impacts on final outcomes through channels other than education is minimal. While scholarships created positive income effects for infra-marginal families who would have eventually paid for their children's education, these effects are largely offset by reductions in earnings during the additional time children were in school, so it seems plausible that the learning, tertiary education, labor market, and fertility outcomes we observe are primarily due to increased secondary education rather than income effects. It is thus of interest to compare the IV estimates implied by our experimental results to the ordinary least squares (OLS) estimates of the impact of education's effect on learning gains, reductions in fertility and reductions in risky sexual behavior but are lower than IV estimates of impacts on labor market outcomes and preventative health behavior. Even with controls for junior high school finishing exam scores, OLS estimates of impacts on labor market returns and preventative health behavior.

The paper proceeds as follows. Section  $\underline{2}$  describes the context and study design. Section  $\underline{3}$  describes the data. Section  $\underline{4}$  presents the impacts on educational attainment. Section  $\underline{5}$  presents the reduced form impacts on fertility, marriage, health behavior, technology adoption, and civic awareness. Section 6 discusses labor market outcomes. Finally, section  $\underline{7}$  concludes.

# 2 Context and Study Design

This section provides background: section 2.1 and 2.2 describe Ghana's education system and the macroeconomic and labor market context. Section 2.3 and 2.4 explain the sampling frame and randomization process. Section 2.5 describes the scholarship program; and section 2.6 explains how the sample was maintained over time.

## 2.1 Background on Ghana's Education System

Formal education in Ghana begins with two years of kindergarten, six years of primary school, and three years of junior high school (JHS). Primary and junior high school are free and enrolment rates are close to 95% in primary school and around 75% in junior high. At the end of JHS, students take the Basic Education Certification Examination (BECE) and those with high enough grades qualify for senior high school (SHS). Passing rates are low. As mentioned above, around 70% of JHS entrants go on to take the BECE and 60% of BECE takers pass. About 20% of those admitted do not enroll in SHS the following year (Ajayi 2014) and many cite costs as the reason. In 2011, government-approved tuition fees for day (non-boarding) students in senior high school were around 500 Ghana cedis.<sup>8</sup> Many students do not have a day school within easy access, and must attend a more expensive boarding school, since there are only around 700 SHS for the entire country compared to over 9,000 JHS. As of 2010, girls were 6 percentage points (20%) less likely to ever reach SHS. Some of those who do not enroll in SHS enroll in Technical and Vocational Institutes (TVIs).<sup>9</sup> SHS enrollment in Ghana increased by more than 2.5 fold in the decade prior to 2015-6.

Students who complete SHS and do well on the SHS finishing exam (the West African Senior School Certificate Examination or WASSCE) may be admitted to tertiary programs, including degree programs at universities, less prestigious diploma programs, and government training programs, for example for teachers and nurses. There is a one-year gap between completion of SHS and admission into university or training colleges. Students who do not score well enough on the exam to secure

<sup>&</sup>lt;sup>8</sup> See http://www.statsghana.gov.gh/docfiles/GDP/GDP\_2014.pdf

<sup>&</sup>lt;sup>9</sup> TVI students do not have to take any core academic classes and cannot go on to universities, teacher training programs or nurse training programs. However TVIs are a relatively minor part of Ghana's education system, with less than 10% the enrollment of SHS. In 2008, there were 43,592 full-time TVI students compared to the 486,085 SHS students (MoE Ghana, 2008).

tertiary admission can retake the SHS finishing exam an unlimited amount of times. Tertiary education is expensive, but many tertiary students received stipends prior to a 2014 policy change.

All SHS students must take a core of English language, mathematics, integrated science and social studies, but they choose electives from one of the seven majors or tracks of study. Majors can be broadly grouped into the two academically oriented majors, General Arts and General Science, and the five vocationally oriented majors: Home Economics, Visual Arts, Agriculture, Technology, and Business. General Arts is by far the most popular track, and it includes elective subjects such as French and social science. General Science includes advanced mathematics, chemistry, biology and physics, but in our population of interest a very small share of students (less than 5%) gains admission in that track.

When students apply to SHS, they apply not only to a particular school, but also to a particular major or track. They are then admitted to that track. Table 1, based on the comparison group in our study sample, shows the percentage of students admitted across the two types of majors. The split is about 40%-60% between academic and vocational majors, and there is no significant difference by gender. Within each major type, the specific track does vary by gender however – within vocational tracks, boys are more likely to be admitted in Technology, Agriculture and Visual Arts, while girls are far more likely to major in Home Economics. Within academic tracks, boys are more likely to gain admission to General Science than girls.

Switching majors upon enrolling is common, especially in rural areas where admission is less competitive. Table 1 shows that in the comparison group, among those who managed to enroll on their own, over a third of those admitted into a vocational track switched into an academic track (typically General Arts), and a quarter of those admitted in an academic track switched to a vocational track. This makes the pre-enrollment admission track an imperfect indicator of eventual track.

# 2.2 Background on Macroeconomic and Labor Market Context

The effects we measure should be interpreted as conditional on the macro-economic context at the time, as emphasized by Rosenzweig and Udry (2016). Our study participants began SHS in the 2008/2009 academic year at the earliest. Most participants who completed SHS did so and entered the labor market in July of 2012, and our latest follow-up survey was administered in 2016. Ghana had strong macro-economic performance through the first quarter of 2012, when GDP growth reached

an all-time high of 25.0%, but since 2012, GDP growth has fallen each year, reaching a fifteen-year low of 3.92% in 2015.

Government policies affecting the labor market also began to shift in 2012. In 2008, the government wage bill was 11.3% of GDP, which was the highest of the 12 West African countries surveyed by the World Bank. The Ghanaian government enacted a new salary scale for government employees in 2012, which raised government wage bill by 38% in one year (IMF, 2012). In 2015, the ballooning wage bill forced the Ghanaian government to impose a net hiring freeze on government employment.

The government also changed their secondary and tertiary education policy during our study period. For the school year 2009/2010, the government shortened the length of senior high school from 4 years to 3 years. The study participants were thus the last cohort enrolled in the four-year program. As a result, most of our participants graduated in a double cohort with the students who had enrolled a year later. In 2014, the government also changed their policy in nursing and teacher training programs. Between the 1980s and 2014, the government paid allowances large enough to cover all fees to all students enrolled in such programs, making them effectively fully subsidized for those admitted, and admissions in the programs were capped via a quota system. Both the allowances and the quotas were removed in 2014, taking into effect for the school year starting in September 2014. This was a year after the earliest date at which our study cohort could have applied for tertiary education-- they graduated from SHS in June 2012 and the earliest they could have applied for tertiary was Fall 2012 for a September 2013 start – but given the quotas, having to wait at least two years before getting admission was common, and so de facto the reform directly affected our study cohort. The incoming government elected in December of 2016 has vowed to bring back the allowances and quota system.

Overall, it seems plausible that the macro-economic conditions at the time the study cohort entered the labor market, and the government policy changes since the baseline, led both to lower overall labor-market performance for youth, and to lower treatment effects of education, than would have been present for a typical cohort, or would have been expected by participants at baseline.

#### 2.3 Sampling Frame

The sample frame for the study was constructed as follows. First, 5 out of the 10 regions in Ghana

were included in the study.<sup>10</sup> Across these 5 regions, 54 out of the 170 districts in Ghana were selected because they had a high ratio of day students to boarding students (according to statistics from earlier years), and did not include the regional capital. We focused on day students for budget reasons and because as SHS becomes more common we expect more students to be attending day schools. Across these 54 districts, we selected a total of 177 publicly funded SHS that accept day students. These SHS represented about 60% of all SHS in the selected districts as of 2008. They are all co-ed, and typically have over 1,500 students, with an average pupil-teacher ratio of 22. Within each selected SHS, all students officially admitted into the SHS as of October 2008 were considered for eligibility.

To be considered eligible for the study, students needed to satisfy the following criteria: (1) To have been placed into one of the 177 study SHS by the Computerized School Selection and Placement System (CSSPS)<sup>11</sup>; (2) To have attended a Junior High School (JHS) in the same district (referred to as "in-district students") as the SHS they were admitted to; (3) To have not yet enrolled in any SHS by October 2008 (the school year had started in September).

Through visits to both senior and junior high schools, and various interviews with headmasters, teachers and other students conducted in October 2008, we identified 2,246 students eligible for the study. We also asked students why they did not enroll. 95% cited financial difficulties as the main reason, 2% cited pregnancies and 3% cited a variety of other reasons such as being injured, having a job or not liking the school they were placed in. Because students, headmasters and surveyors were unaware of the availability of scholarship at the time of initial surveying, we avoid problems of self-selection into the study sample. Each year fewer girls are admitted into SHS than boys, so, in order to ensure we had enough eligible girls in the sample, we had to include girls who had graduated from JHS in July 2007 (that is, one year prior to the rest of the sample) and had gained admission into one of the 177 sampled SHSs but had not enrolled.<sup>12</sup>

In early January, 2009, the 2,246 eligible students were called back to assess whether the student had enrolled or intended to enroll in an SHS for the second term of the 2008-2009 school year. A total of 182 students who either had enrolled or intended to enroll in SHS in the immediate term were dropped

<sup>&</sup>lt;sup>10</sup> The three Northern regions and the Volta region were not selected because the Government of Ghana already ran a scholarship program in those regions at the time. Greater Accra was excluded given our focus on poorer areas.

<sup>&</sup>lt;sup>11</sup> The CSSPS is a centralized, merit-based admission system, which is based on the deferred-acceptance algorithm of Gayle and Shapley (1962) (Ajayi, 2013).

<sup>&</sup>lt;sup>12</sup> Estimated treatment effects on reported outcomes do not differ significantly between girls who graduated JHS in 2007 and those who graduated JHS in 2008.

from the sample prior to randomization. The final study sample is thus composed of 2,064 individuals (1,028 males and 1,036 females). Among the females, 746 had taken the JHS finishing exam in 2008 only and 290 had first taken it in 2007.

# 2.4 Scholarship Program

The scholarship program was implemented by Innovations for Poverty Action (IPA) in Ghana, in partnership with the Ghana Education Services (GES), the implementing arm of Ghana's Ministry of Education, and Senior High School staff.

The scholarship covered the full tuition and fees for a "day" student for four years. The scholarship was paid directly to the school and covered the entire school bill. A typical SHS bill for a day student is comprised of three items: government approved fees which are applied for all schools, PTA (Parents-Teachers Association) dues, and other levies and supplies, including exam fees. The latter two costs are school-specific. In addition to paying school fees, the scholarship also included payment for the final secondary school exam fee (WASSCE). Students who received the scholarship were only responsible for the cost of school materials, the cost of transportation to the SHS and feeding costs (plus boarding costs if they chose to board). The total amount paid by the scholarship program varied slightly across courses and school, but averaged approximately 1921 Ghana cedis (in 2016 GHX terms) per student who completed SHS.

Winners were notified by phone in January 2009 and encouraged to immediately report to their placement SHS (the SHS where they had been placed into based on their performance on the junior high school finishing exam). SHS Headmasters were informed of the names of scholarship winners by phone and they also received an official letter from the Director-General of the Ghana Education Service and IPA with details on the scholarship scheme (all schools agreed to participate). Each SHS received only few scholarship students (the median is 3 and the mean is 4, compared to cohort sizes of over 400 students on average).

# 2.5 Randomization

We stratified the final study sample of 2,064 youths by District, SHS, JHS, gender and BECE year, and a third of students within each strata (682 in total) were assigned to the "treatment group" (a scholarship) while the rest (1,382 students) was assigned to the "comparison group" (no scholarship).

Note that the randomization was not stratified by track, but as discussed below, it was nevertheless fairly balanced.

#### 2.6 Sample Maintenance and Attrition

To generate high follow-up rates, mobile phones were distributed at the onset of the study to every youth, and study participants were (and still are) sent mobile phone credit twice a year, as an incentive for them to keep the phone number we have on file active. Once a year, we attempt to reach all respondents in order to update their contact information. If they cannot be reached over the phone, we attempt to find them in person by going to their home area. In 2016, 8 years after the start of the study, we were able to reach and interview over 91% of our study sample by phone. 82% of those who could not be found by phone were then identified in home visits (in total 98% of the study sample were surveyed in just a few months, see Table A1). This is remarkably low attrition for a longitudinal tracking of this kind. Other examples of longitudinal tracking in developing countries have achieved 81% retention over three years (South Africa; Lam, Ardington and Leibbrandt, 2011), 95% (at the household-level) over five years (Indonesian Family Life Survey; Thomas, Frankenburg and Smith, 2002), 91% over seven years (Kenya; Duflo, Dupas and Kremer, 2015) and 84% over ten years (Kenya; Baird et. al 2011).

# **3** Data and Sample Characteristics

This section describes how we gathered data and the characteristics of our sample. Section 3.1 details the administration of the baseline survey, the detailed in-person follow-up survey in 2013 and the callback surveys in 2015 and 2016. Section 3.2 presents information on the baseline characteristics of the sample.

#### 3.1 Data

We use three main data sources: a baseline survey, a follow-up survey administered after 5 years, and callback surveys (short status update surveys administered over the phone).

#### 3.1.1 Baseline Survey

In November and December of 2008, prior to selecting the students for the scholarship, a baseline survey was administered to the youth him/herself as well as to one of the youth's guardians, usually female. The surveys included questions on perceptions of education, guardian literacy, values and beliefs, as well as modules on members of the household, household living conditions, and assets. After the survey, each student received a mobile phone.

# 3.1.2 Detailed In-Person Follow-up Survey (2013)

A detailed in-person follow-up survey was conducted from April 2013 to August 2013. For many study participants, this follow-up survey falls in the gap year between the end of secondary high school in July 2012 and the possibility of enrollment in tertiary education in September 2013. The survey included modules on schooling, occupation, cognitive skills, labor market expectations, reproductive health and fertility, as well as attitudes and values, among other things. Most of these modules were fairly standard modules adapted from well-known surveys such as the Demographic and Health Surveys or the World Value Survey.

The only module we had to develop is the cognitive skills module. It included reading comprehension questions, as well as applied math questions (e.g. profit calculations, reading and interpreting a bar chart etc.). There were 17 questions, modeled on the OECD PISA (Program for International Student Assessment) exam, tailored to the Ghana context by the research team with inputs from the Assessment Services Unit (ASU) of the Ghana Ministry of Education.

### 3.1.3 Callback Surveys (2015 and 2016)

A yearly callback survey is conducted to update respondents' contact information. Starting in 2015, the callback survey included about 30-minutes of questions on major life outcomes.

The labor market section of the callback survey was substantially improved in the 2016 callback. In the 2013 in-person survey and the 2015 callback survey, surveyors asked respondents what their primary occupation/activity was (and if they had one, what their secondary and tertiary activities were) and then asked how much they earned from each of these activities. In the 2013 survey, 56.5% of respondents reported no earnings. In the 2015 survey, 51.7% of respondents reported no earnings. These are primarily respondents who answered "Nothing" as their primary activity, and hence were not asked about secondary activities nor asked about earnings. In follow-up qualitative interviews, respondents revealed that they earn money in ways that they do not consider an "activity" or "occupation". In the 2016 survey, surveyors asked respondents explicitly if they had any earnings over the past four weeks and how much they earned. In this survey, 43.0% of respondents reported no earnings. The difference in the amount of respondents reporting no earnings between the 2015 data and the 2016 data was greater in the treatment group than in the control group. This may be because secondary school graduates searching for wage employment are less likely to report casual jobs they do here and there as an "activity". This would suggest that the 2016 data are more accurate, and so most labor market outcomes are analyzed using this data, though we report outcomes from the 2013 and 2015 surveys in Table A3 Panel C.

Since many respondents have zero earnings at endline, even in the 2016 survey, we cannot rely solely on log earnings as an indicator of returns to education. We report total earnings in Ghana cedis (GHX) earned per month, inverse hyperbolic sine of cedis earned per month (following Burbidge, Magee and Robb, 1988), the fraction of respondents with positive earnings, and log earnings conditional on earnings being positive.

Between these three surveys, we have data on many outcomes, which raises the issue of multiple inferences. We deal with this by constructing summary indices (Table A7 presents each variable in the composite indices along with their comparison mean and the treatment effects) and by presenting in Table A8 the sharpened q-values controlling for the false discovery rate (the expected proportion of rejections that are Type I errors) for p-values below the 0.1 threshold (Benjamini, Krieger, and Yekutieli, 2006).

## 3.3 Characteristics of Study Sample

Table 2 presents some summary statistics on the study sample. This data comes from baseline surveys administered to the respondents, as well as their guardians, in Fall 2008. As balance test, we show mean differences across groups for a battery of outcomes. Specifically, we run regressions of the form:

$$Y_i = \alpha_i + \beta T_i + \varepsilon_i \tag{1}$$

where Y is the outcome of interest and T is whether or not the student won a scholarship. Since randomization was at the individual level, we do not cluster the standard errors. For each variable of interest, we show  $\hat{\beta}$ , the difference between the treatment and control group and its standard errors. We also present the mean outcome in the control group. We show the means and estimate the regressions overall in column 1, then separately by major-gender group in columns 2-9. We show the results with only regional fixed effects and a control for JHS finishing exam (BECE) score, but controlling for the stratification variables (district, SHS of admission, and student type dummies) and/or other important baseline characteristics does not change the results (those results are shown in Table A9).

While randomization typically achieves balance, there are a few cases of unbalance measures. For females admitted to academic tracks, the treatment group was 7.1 percentage points more likely to have completed the BECE in 2007 rather than 2008 and had higher perceived returns to education (Table 2). For males admitted to vocational majors, the treatment group was 8.7 percentage points (significant at the 5% level) less likely to ever have had sex. These imbalances are not overly concerning, because we looked at 13 variables across four subgroups and thus, would expect a few variables to be significant by chance.

Students were on average 17 years old at the onset of the study. The mean score on the JHS finishing exam (BECE) was 62% for girls and 63% for boys; it was 63% for academic majors and 62% for vocational majors (Table 2).<sup>14</sup> Over 30% of students in the sample were experienced sexually at the start of the study, although with an important gender gap: over 45% of the girls reported having had sex, whereas only 18.5% of boys did.<sup>15</sup> Not surprisingly given that they are drawn from the more financially constrained, our study participants come from poor households. Over 40% of the students lived in households with no male head. Approximately 9% of household heads in the sample had only some primary education, about 40% had been to junior high, and about 13% had some secondary education (Table 2). Under 4% reported having any higher education, like university or vocational school.

Respondents had optimistic beliefs about the returns to secondary education at baseline: the average perceived percentage increase in earnings if one completes SHS compared to not completing SHS was 276% in the control group (Table 2). Academic major admits had higher expectations for the returns to SHS than vocational major admits (313% vs. 251%). These high expected average returns are not driven by outliers: 46% thought the returns would be at least 100%. Figure A1 shows that these

<sup>&</sup>lt;sup>14</sup> Mean BECE performance on four core subjects: Math, English, Science and Social Studies. We rescaled the score on a 0-100% scale, 100% being a perfect score.

<sup>&</sup>lt;sup>15</sup> This gender gap is driven only in part by the presence of "older" girls in the sample (girls who had completed junior high school a year earlier, in 2007). For these older girls, the share sexually active at baseline is 60%, whereas for girls in the 2008 cohort, it is 39%, still twice that of boys.

expectations are largely driven by the belief that a secondary school degree is the gateway to a government job. Over 70% thought they would be a government employee or in a profession dominated by government employees, especially teaching or being a nurse, by the age of 25 if they completed SHS (81% of females and 65% of males). This may be because these are the most ubiquitous types of permanent wage employees with which our rural sample interacts.

# 4 Impacts on Educational Attainment and Learning

This section presents the results on educational attainment and skills. Section 4.1 shows the effects on secondary and vocational education. Section 4.2 discusses the extent to which the experiment can be interpreted as approximating the impact of additional education. Sections 4.3 and 4.4 present the effects of the scholarship on learning and on tertiary education.

## 4.1 Secondary and Vocational Education

Considerable evidence suggests that participation in primary school is responsive to school fees, but less is known about how secondary school participation respond to fees, although the conditional cash transfer literature touches upon elasticity with respect to opportunity cost.<sup>16</sup>

We estimate the impact of the scholarship on educational attainment using regressions similar to equation <u>1</u>. In the specifications reported in the text, we include regional fixed effects, a mean JHS finishing exam score and whether the JHS finishing exam score is missing, though all our results are robust to the inclusion of baseline controls (for all outcomes significant at the 10% level, we show the results with controls in Table A9). The results are presented in Figures 1 and 2 and in Table 3.

Seventy-five percent of scholarship winners enrolled in SHS immediately upon learning about the scholarship, almost four times the enrollment rate in the comparison group (Figure 1). By 2016, 74%

<sup>&</sup>lt;sup>16</sup> Cardoso and de Souza (2008), Glewwe and Olinto (2004), Gertler (2004), Ferreira, Filmer and Schady (2009) find fee reductions or conditional cash transfers (CCTs) increase primary enrollment. Barrera-Osorio, Linden, and Urquiola (2007) find fee reductions increased primary enrollment but find no effect on secondary enrollment. Angrist, Bettinger and Kremer (2006) find that vouchers for private secondary school increased completion rates. Barrera-Osorio et al. (2011) find effects of CCTs on secondary enrollment. Khandker, Pitt and Fuwa (2013) find that a stipend for secondary education increased enrollment among girls but had no effect among boys.

of the scholarship winners had completed SHS, compared to 47% of the non-winners (Table 3). Thus, while a substantial share of those in the control group was able to put together, over time, the funding necessary to enroll, the scholarship program generates a large gap in educational attainment between winners and non-winners. Winning a scholarship increases the total time spent in SHS by 62% for men and 76% for women (Table 3). Note that repetition is extremely rare, affecting only 1% of students.

While the scholarship increased attendance in SHS, it led to a small reduction in attendance in technical and vocational institutes (TVI). In the comparison group, 4.6% of the women and 8.0% of the men had ever attended a TVI as of the 2015 survey. In the treatment group, only 2.6% of women, and 1.8% of men had attended TVI (Table A3).

Below we break down the increase in secondary school by gender, initial major, and score on the JHS test. The magnitude of the treatment effect is similar in percentage terms by gender, but greater in percentage terms among women, who have lower completion rates in the comparison group: the scholarship increased SHS completion rate from 42 to 68 percent among women (a 63% increase) and from 53 to 79 percent among men (a 49% increase) (see Table 3). The lower completion rate among women was primarily driven by the fact that about 28% of the women in the sample had completed junior high school one year *prior* to the scholarship program (the BECE'07 girls). Among those, take-up of the scholarship was significantly lower, at 56%, compared to 72% among women who had graduated in 2008 and 79% among men who had graduate in 2008 (see Figure 1). The gap in take-up with women from the 2008 cohort (56% vs 70%, see Figure 2, Panel A) suggests that the opportunity cost of schooling increases rapidly once out of school. Indeed an important predictor of *not* enrolling in SHS despite the scholarship among women in the treatment group is having started childbearing (results available upon request).

Turning to secondary schooling outcomes by major of admission, the scholarship increased the SHS completion rate from 49% to 79% (61% increase) for academic majors and from 48% to 72% (50% increase) for other majors (Table 3). The difference in treatment effects between the two groups is not statistically significant (the p-value testing for the equality between coefficient estimates in columns 4 and 7 is 0.19).

As can be seen on Figure 2 Panel B, the effect of the scholarship on SHS completion was seen throughout the distribution of initial performance – even students who had barely gained admission (in the lowest quartile of the performance on the JHS finishing exam) overwhelmingly took up the scholarship; at the other end of the spectrum, almost half of the students who did very well on the exam did not attend secondary school in the control group, although the probability of attending school absent a scholarship does increase with achievement. The treatment effect is statistically significant at the 1% level at all quantiles of the test score distribution. A regression of SHS completion on JHS test score, treatment, and an interaction between JHS test score and treatment implies that being 10 percentiles higher in the national JHS test score distribution lowers the treatment effect on SHS completion by a statistically insignificant .003 percentage points (standard error .312), which suggests that these benefits were spread evenly throughout the distribution.

Knowing the responsiveness of secondary school participation to school fees sheds light on the fiscal cost per additional year of enrollment from making secondary education free. Given the findings above, and the distribution of junior high school exit exam scores, we estimate that in the absence of incentive effects on primary school students, making secondary education free could require paying for 15 years of secondary school for every additional year of education generated by marginal students. To see the logic, note that on average, scholarship winners spent 3.09 years in SHS, while non-scholarship winners spent 1.83 years in SHS. Therefore, the scholarship paid for 3.09 years of education for each 1.26 additional years of education. With a few assumptions, we can estimate the effect of a nation-wide free SHS policy using these results. We assume the 80% of qualified students who enroll in SHS nationwide in Ghana (Ajayi, 2014) would complete SHS with or without financial help and the 20% of qualified students who do not enroll in SHS behave like our sample.<sup>17</sup> With these assumptions, we calculate that a free SHS policy would pay for 15.13 years of schooling for each additional year of schooling attained and the fiscal cost per additional secondary school graduate would be approximately \$7,600.<sup>18</sup>

<sup>&</sup>lt;sup>17</sup> Since SHS in Ghana now lasts three years instead of four, we also assume that the 20% of qualified students who do not enroll would attend 75% of the years spent in SHS of our sample with the same ratio of infra-marginal to marginal years, and that full scholarships have the same effect on SHS completion rates irrespective of how long SHS is.

<sup>&</sup>lt;sup>18</sup> Cost of the scholarship (\$400) divided by expected additional graduates from one scholarship (which is the estimated treatment effect of a 26.3% increase in graduates multiplied by 20% of qualified students who do not enroll).

Note, however, that the promise of free secondary school for students who pass the JHS finishing exam may incentivize more financially constrained students to study harder, allowing more of them to pass the exam and qualify for SHS (see Kremer, Miguel and Thornton (2009) for some evidence of such incentive effects.) In Ghana this is an important margin, since as of 2014 only about 40% of those who start JHS pass the finishing exam (see footnote 5). However, even if one makes quite generous assumptions about the extent to which primary school students would be incentivized to work harder to pass exams, the ratio of infra-marginal to marginal students is likely to be fairly high. For example, if one assumes that the promise of free primary education would lead one quarter of students who currently do not pass the primary school leaving exam to pass the exam, the ratio of years of education paid for to marginal years of education would fall from 15 to 6.

Targeting scholarships to students with lower SHS attendance, and lower incomes, and targeting females could increase the ratio of marginal to infra-marginal expenditure and reduce any regressive effects of scholarships for SHS. In the 2015-2016 academic year, the government operated a targeted scholarship program, which benefited around 38% of SHS students (Cann, 2016).

# 4.2 Using Scholarship Assignment as an Instrument for Education?

The effects of free education are of considerable interest in their own right, but they may also shed light on more general issues of the impact of education. In this subsection, we argue that noneducational channels of scholarship effects are likely to be small, and that while exclusion restrictions are probably not literally satisfied, instrumental variable estimates of the effect of education based on using random assignment of scholarship receipt are likely to be reasonable approximations of the causal effect of education.

In particular, while the scholarship represented a wealth transfer to infra-marginal families who would have paid for SHS in the absence of the scholarship, it also reduced earnings by children induced to attend SHS by the scholarship during the period of SHS enrollment. We estimate that these effects roughly offset each other in our context, so while we cannot rule out other channels of impact, treating later tertiary education, fertility and labor market effects as due to the effects of the scholarship on education is probably a reasonable approximation. To see this, note that for those who would have paid for SHS themselves in the absence of a scholarship ("always takers"), the scholarship is akin to GHX<sup>19</sup> 1921 cash transfer to the family of the student. As they make up about 50% of the scholarship winners (based on the control group, 56% would have enrolled anyway and 48% would have completed all four years absent the scholarship), this makes the wealth transfer GHX 960.5 on average for the treatment group as a whole.

In contrast, those who go to secondary school due to the scholarship ("compliers"), forego labor market earnings while in school and incur extra expenditure on school materials. Our estimates show that foregone earnings while in SHS (Table 3) and extra schooling expenditure over the lifetime of the scholarship (Table A3) totaled GHX 1204. Reductions in unpaid household labor by students induced to attend SHS by the scholarship presumably increase this amount, but unfortunately, we do not have data on this outcome.

Overall, the positive and negative effects on household income are comparable in size and seem to offset each other (though obviously the gains and losses are experienced by different households).

Even if the scholarship created some wealth transfer to treatment households, it is unclear how much this would affect participants' tertiary education, labor supply, fertility, or health behavior years later since any changes in wealth would presumably be shared among household members and the typical household had 5.6 members (Table 2). Moreover, due to credit constraints, many inframarginal households may have simply increased current consumption in response to scholarship receipt, rather than increasing investment, and thus potentially increasing future resources for scholarship winners.

Table A2 presents evidence on the impacts of the scholarship on the educational attainment of siblings, and we find no such effect, consistent with the hypothesis that wealth effects on household investments due to the scholarship are small.

Hypothetically, there could be psychological effects of winning a lottery that are different from the effects of a scholarship per se. However, as noted in Appendix Table A3, we do not see large effects on risk or time preferences. We also see no evidence that the scholarship affected confidence levels (see Figure A3).

<sup>&</sup>lt;sup>19</sup> All numbers reported in 2016 GHX

Overall the non-education impacts of the scholarship appear modest, suggesting that using the scholarship as an instrument for years of education may provide a reasonable approximation of the true effect.

One other potential channel through which the exclusion restriction could be violated is if the scholarships affected later outcomes such as tertiary education, fertility, or labor market outcomes, not only by increasing the chance that marginal students ("compliers") would attend secondary school, but also by affecting effort in school, or other determinants of academic success, by infra-marginal students ("always takers"). Hypothetically, scholarships could have increased effort for these infra-marginal students by making them less likely to have been temporarily kicked out of school for failure to pay school fees, or to have experienced stress around this possibility, or by making them more certain that they would be able to afford to complete school. Of course it is also possible that scholarships reduced effort among these students because they no longer had to fear withdrawal of financial support if they did not maintain high academic performance.

In the absence of any evidence on this issue, we will assume that net non-educational effects and effects on infra-marginal applicants can be neglected, and estimate:

$$y_i = a_i + \beta S_i + \varepsilon_i \tag{2}$$

where  $S_i$  is the number of years of education for individual *i* and  $y_i$  is the outcome of interest. We use winning the scholarship as an instrument for years of education. In the remaining sections of the paper, we will typically compare the experimental estimates, interpreting those as effects of education, with OLS estimates for the effect on education based on variation in the comparison group. We also present IV estimates for most of the outcomes in Table A5.

One further complication is whether to interpret S<sub>i</sub> as the number of years of total education or the number of years of secondary and tertiary education. The distinction arises because the scholarship prompted some substitution away from technical and vocational institute (TVI) education. Receiving a scholarship decreased the number of years of TVI education by .086 (Table 3). This means that the scholarship effect is likely due in some part to its effect on the type of education, as well as on the total number of years of education. If TVI education is of lower quality than regular secondary and tertiary education, then IV estimates of the impact of years of education will overestimate the impact of year of education, since the reduced form will conflate the impact of extra years of education and

the change in education quality. IV estimates of the impacts of years of secondary and tertiary education, on the other hand, will underestimate the impact of secondary and tertiary education as long as TVI has some positive effects. In Table A6, we present IV estimates using years of total education and using years of secondary and tertiary education. These can be interpreted as bounds on the bias from changes in TVI participation under the assumption that the effect of TVI is positive but less than the effect of regular secondary and tertiary education.

From an IV perspective, we will be estimating the local treatment effect of education on compliers. It is therefore of interest to know how compliers compare to always takers in background characteristics. Table A4 shows the difference in background characteristics between treatment and control groups, *among those who completed SHS*. Interestingly, we find no difference in the junior high school exit exam score, suggesting that compliers and always takers were performing equally, and confirming the premise that ability to pay fees is the key barrier to enrollment for compliers.

## 4.3 Learning Outcomes

Some have expressed concern about whether increases in access to education will lead to increases in learning, given the quality of schools (Pritchett, 2001). Knowledge and education may be correlated in non-experimental data, but perhaps those who could benefit from more education are already obtaining it.

Table 3 presents impacts on cognitive skills and learning outcomes. These results are based on oral tests administered as part of the 2013 in-person survey. Thus, these tests provide the effect after most study participants had completed or stopped going to SHS but before participants had a chance to enroll in tertiary education.

Overall, scholarship winners score 0.14 standard deviations higher on the reading test, 0.12 standard deviations higher on math tests and 0.15 standard deviations higher overall. Male and female vocational major admits had similar learning gains on the test (0.13 standard deviations increase for men; 0.16 standard deviations increase for women). Treatment effects on male and female academic major admits differed substantially however: for females, the scholarship increased test scores by .25 standard deviations, while for males scholarships increased test scores by only .05 standard deviations (the p-value on the test of equality is .19) (Table 3). Note that there are very large differences in scores

by gender in the control group, with men vastly outperforming women. Thus despite very large gains among women in both types of majors, female scholarship winners are barely on par with male nonwinners and far behind male winners in learning outcomes.

Learning gains are not simply due to winners trying harder on the test. We can show this in two ways. First, we find no differences between winners and non-winners on measures of IQ (Raven's matrices and digit span), which are supposed to not depend on education but obviously depends on effort or concentration (Table A3 Panel A). Second, at the time of the survey we had surveyors assess whether the respondent gave full effort on the test. Winners were 5.0 percentage points more likely to give full effort than non-winners (Figure A2). Within the comparison group, giving full effort is associated with a .69 standard deviations higher test score than not providing full effort. Since cognitive ability and effort on a test are likely to be positively correlated, this should be an overestimate of the effect of effort. Even if we assume this estimate is unbiased, it would imply that only 23% of the treatment effect comes from differences in effort. Interestingly, Figure A2 also shows a significant gender gap in effort (it was often harder for them to concentrate due to the presence of small children). Under the assumption above, only 21% of the very large (0.35 std. dev.) gender gap in performance in the control group would come from differential effort, however.

Besides impacts on cognitive skills, we also find significant impacts on general knowledge: scholarship winners scored higher on a series of questions related to current political affairs (both national and international). We also find that scholarship winners are more likely to know how to use the internet.<sup>20</sup>

While we find that scholarships increase learning levels, an ordinary least squares (OLS) estimate of the effect of education on knowledge among the comparison group appears to overstate the impact of education on learning relative to our experimental estimate. The OLS estimate implies that a year of additional SHS would result in .213 standard deviations higher test scores, while the IV approach discussed above leads to a point estimate of .124 standard deviations for an additional year of SHS (Table A5). When we include years of TVI, the OLS estimate is a .211 standard deviations increase

<sup>&</sup>lt;sup>20</sup> We show more results on technology adoption in Panel G of Table A3 as well as on financial inclusion in Table WA1. Education appears to be particularly important in inducing women to adopt modern technology. Female scholarship winners are more likely than non-winners to have a bank account by age 22 to have an email account by age 24 (significant at the 10% level) and to have a Facebook account. Female winners are also significantly more likely to follow the media. In contrast, the effect on these outcomes is insignificant for men.

from an additional year of education and the IV estimate is a .135 standard deviations increase from an additional year of education. One natural hypothesis is that OLS overstates the causal impact of education on learning because students with greater academic ability complete more education and do better in technical skill, although this is partially accounted for since these results control for JHS finishing exam.

## 4.4 Tertiary Education

Gaps of multiple years between SHS and tertiary education are not uncommon in Ghana, so we may not yet be able to observe the long-run effect of scholarships on tertiary education, but as of 2016, 9.1% of the comparison group had ever enrolled in tertiary education. The treatment effect of the scholarship was an increase of 3.0 percentage points (33%) (Table 4). The treatment effect was particularly strong in percentage terms, in the subcategory of university education, where point estimates suggest that the scholarships nearly doubled enrollment as of 2016, albeit from a low base.

The overall increase in tertiary enrollment also conceals important heterogeneity. Treatment effects on tertiary education are concentrated among those admitted to academic tracks. Among this group, scholarship winners are 5.3 percentage points more likely to have ever enrolled in a tertiary institution on a base of 11.9%, for a percentage gain of 48%, while the effect on vocational majors is small and insignificant (Table 4).

Within the group of students admitted to academic tracks, the treatment effect is heavily concentrated among women. The scholarship nearly doubled the likelihood of women in academic tracks ever enrolling in tertiary education (increase of 9.3 percentage points or 98% of the control mean; s.e. = .033 percentage points) (Table 4). In contrast, the scholarship increased the likelihood of men ever enrolling in tertiary education by a statistically insignificant 1.3 percentage points (10.3% of 12.6% control mean; s.e. = .033). The differences in point estimates is significant at the 10% level. Note that the effect on women in the academic track is large enough that provision of free secondary education led to equalization of the rates of tertiary attendance by gender within our full sample. We do not see this full equalization for other outcomes, such as SHS completion.

Overall, as of 2016 the scholarship had led to a 1.25 year increase in total years of education on average (Table 4). Years spent in SHS increased by 1.26 (Table 3), years spent in tertiary education increased by .075 (Table 4) and years spent in TVI decreased by .086 (Table 3). The change in total years of education is similar for women and men and for academic majors and vocational majors.

Quantitatively, the change is mainly concentrated in secondary school. Our reduced form and IV estimate thus likely pick up to a large extent the change in time spent in secondary school (Angrist and Imbens, 1995).

Despite this sizeable treatment effect, marginal students (those induced to complete SHS by the scholarship) struggle to move from SHS completion to tertiary enrollment relative to infra-marginal students (those who could finish SHS without a scholarship). Even if we assume that the entire treatment effect on tertiary enrollment is concentrated among marginal students, we find that only 11.4%<sup>21</sup> of those induced to complete secondary school by the scholarship went on to tertiary education compared to 19.1% of the inframarginal students.<sup>22,23</sup> The gap is particularly pronounced for vocational admits: 6.1% continuation to tertiary among marginals vs. 16.6% among inframarginals (17.6% vs. 22.5% for academic admits). This is not because marginal students are drawn from a lower part of the initial score distribution (recall the finding in Table A4 that compliers have similar BECE scores than always takers). One natural hypothesis is that since tertiary education costs more than secondary education, and subsidies for tertiary education (especially vocational teaching and nursing colleges) were cut back during our study period, students who were financially constrained at the SHS level were financially constrained at the tertiary level.

There is however important heterogeneity by gender. The point estimates imply that the males induced to enroll in SHS by the scholarship were negatively selected relative to males who would have gone to SHS in any case, whereas marginal females induced to graduate from secondary school by scholarships were just as likely to go on tertiary education as infra-marginal females who would have graduated from secondary anyway. In particular, the continuation rate to tertiary is 20.2% among infra-marginal males, but only 4.2% among marginal males. In contrast the ratios are 17.8% among control females (infra-marginal students) and a virtually identical 18.7% for the treatment effects on females (marginal students) (Table 3 and Table 4). This discrepancy could be read as supporting the hypothesis that most males who could make it to tertiary education are already being supported to enter SHS by their

<sup>&</sup>lt;sup>21</sup> Ratio of treatment effect on SHS completion and ever enrolled in tertiary

<sup>&</sup>lt;sup>22</sup> Ratio of comparison means of SHS completion and ever enrolled in tertiary

<sup>&</sup>lt;sup>23</sup> If scholarships increased the chance that infra-marginal students went on to tertiary education, for example through income effects, the implied rate at which marginal students enrolled in tertiary education would be even lower.

families, but that the same is not true for females. Ghana has some gender quotas at the tertiary level, so all these results should be interpreted in that context.

# 5 Impacts on Marriage, Fertility, and Health Behavior

## 5.1 Fertility and Marriage

Scholarships lead to lasting drops in women's fertility and marriage rates. While there are some impacts on men, they are insignificant by age 25 (Table 5).

Scholarships dramatically changed women's fertility and marriage outcomes. At age 25, treatment women are 9.1 percentage points (26% of the control mean) less likely to have ever lived with a partner. They are 10.7 percentage points (18%) less likely to have ever been pregnant, 11.5 percentage points (18%) less likely to have had an unwanted pregnancy and have had .217 (27%) fewer children. The effects are seen across the two types of major.

We cannot reject the hypothesis that IV and OLS estimates for the fertility impact of education are equal. Using treatment as an instrumental variable for years of education, we find that increasing combined years of SHS and tertiary education by one year leads to 0.16 fewer births before age 25 and increasing total years of education by one year leads to .17 fewer births (Table A5). While the OLS estimate is slightly higher (0.19 for secondary/tertiary; .19 for total education), they are not significantly different. Osili and Long (2008) estimate that one year of primary education in Nigeria leads to a reduction of 0.26 births before the age of 25. The base birth rate in the Nigerian study was significantly higher, however, at 2.35 births before age 25, against only 0.8 births before age 25 in our context, thus in percentage terms our effect is larger (20-21% vs. 11%). Appendix table A6, which looks at other years, show that these substantial effects have been persistent and significant since 2013 and the point estimates have generally grown over time. These fertility and marriage results are consistent with the results of a randomized experiment that reduced the cost of access upper primary school in Kenya, and found that the onset of childbearing was also delayed, with no-catch up in the two or three years following school exit (Duflo, Dupas and Kremer, 2015).

Because the great majority of first pregnancies are reported to be unwanted, the decline we see in women is almost exclusively a decline in unplanned, out-of-wedlock pregnancies. The finding that the

hazard of childbearing in the treatment group remains lower for scholarship winners once they are out of school suggests that this is not simply due to an "incarceration effect," postponing fertility for a few years as in Black, Devereux and Salvanes (2008). It is also not simply due to the fact that reducing the cost of secondary education increases the opportunity cost of pregnancy while of school-age.

Point estimates suggest treatment also reduces fertility and marriage for boys but by a smaller amount than for girls. By age 25, the estimates on all the fertility outcomes (number of children, ever lived with partner, ever had a pregnant partner and unwanted pregnancy) are negative but insignificant for boys, and significantly smaller than for girls. In previous years, some significant negative effects were only observed in one year, at age 24.

The more likely potential mechanisms posited by the literature for the effects of education on fertility are: (1) increase in the opportunity cost of bearing and raising children (Becker, 1991); (2) the ability to make better choices thanks to better decoding of information (Rosenzweig and Schultz, 1989); and (3) the fact that education may shape/ change preferences for children. Consistent with channel (1), we find that women winners earn more than women non-winners, which presumably increases the opportunity cost of a child. And consistent with channel (2), we find large increases in learning for both men and women, and we also see that scholarship winners are more likely to report adopting other preventative behavior such as bed net use, handwashing with soap and use of mosquito repellent (Table 5). There is some evidence for channel (3) in our sample, but only for females in academic majors, for whom the scholarship reduced desired fertility by age 50 by 0.21 children (a 5.8% decrease) (Table 5). We note, however, that the q-value for the desired fertility result among female academic admits is above 0.10, at 0.11 (see Table A8).

### 5.2 Health Behavior

Winning a scholarship leads to safer health choices (Table 5). Overall, scholarship winners adopt significantly less risky (self-reported) sexual behavior (-0.052 SD on an index of 9 questions, presented in table A7), have a lower index of STI exposure (-0.074 SD), and more preventative health behaviors (0.116 increase on an index questions on three behavior, hand-washing with soap, bednet use,

mosquito repellent use). The impacts on self-reported sexual behavior (riskiness index and exposure to STI index) are significant only for men, but for women we observe actual decline in pregnancies and unwanted pregnancies.

# 6 Impacts on Labor Market Outcomes

Labor market effects are presented in Table 6. Before presenting treatment effects, it is worth noting the bleakness of labor market outcomes in this group. Only 44% of women and 68% of men in the control group earned any money in the month preceding the survey in 2016. In this section, we first report reduced form treatment effects on labor market effects across the entire sample. We then discuss labor market impacts of scholarships for students who had been admitted to vocational tracks (section 6.2). In section 6.3, we analyze scholarship effects among those who had been admitted to academic tracks. This analysis is complicated by the higher rate at which the treatment group is still in school, and we develop bounds for those who are not currently enrolled in formal education. Finally, we compare the experimental estimates to OLS estimates in the comparison group (section 6.4).

### 6.1 Overall Labor Market Effects

Despite the fact that scholarship winners were still more likely to be enrolled in tertiary education by the time they were surveyed in 2016, they were more likely to earn positive income in the last month. Scholarship winners are 5.5 percentage points (s.e. = 2.5 percentage points) more likely to have had any earnings in the past month on a base of 56 percent (Table 6). They are 6.4 percentage points more likely to either have positive earnings or be in school on a base of 63 percent. Overall, they worked 9.97 more hours per month (significant at the 10% level) on a base of 82.7 hours. As a result, they appear to have larger earnings on average, although this result is sensitive to functional form. Winning a scholarship increased the inverse hyperbolic sine of Ghana cedi earnings (a transformation that reduces the weight put on outlying values) by a significant .308 (s.e. = .145), and the raw average earnings by an insignificant 7.7 Ghana cedis (se: 10.933).

There is no evidence of gains on the intensive margin: point estimates suggest that scholarship winners earn a statistically insignificant 1.9% less conditional on having any earnings (of course this cannot be interpreted causally since more winners have positive earnings).

Note that all these effects may underestimate the causal impact on labor market outcomes for students who were not induced to go on to additional formal study/training to the extent that the additional 2.5 percent of students in the treatment group who were in formal study/training due to winning the scholarship would have had more positive labor outcomes than average had they not been in school. Below, we construct bounds for these effects.

Scholarship winners are more likely to report actively searching for a job. Conditional on not having a job they are 14.2 percentage points more likely to report searching for job and conditional on already having a job they are 5.7 percentage points more likely to report searching (Table 6 panel D).

In general, these overall effects mask disparities between academic tracks and genders, which we turn to below.

### 6.2 Labor Market Effects for Students Admitted to Vocational Majors

For students admitted to vocational majors, there was virtually no impact of scholarships on the likelihood that students admitted would be enrolled in formal study/training at the time of the survey. This makes the interpretation of labor market impacts for this group fairly straightforward. We also find no differences by gender, so below we discuss the results for males and females combined.

Scholarships increased earnings for this group, with this accounted for by increased hours rather than increased earnings per hour. Scholarships cause a .505 increase in inverse hyperbolic sine earnings. In absolute terms, vocational winners have 25.9 GHX more earnings in the past month than non-winners, a 19 percent increase -- significant at the 10% level in Table 6 but note that the q-value in Table A8 is 0.11 for this result.

Scholarship winners' greater earnings are entirely accounted for by additional work hours: scholarship winners work 14.9 more hours per month on a base of 87.0 hours (Table 6, panel B). In turn, the increase in work hours is accounted for by the probability of doing any work – the extensive margin. Winners are 8.8 percentage points (16%) more likely to have any earnings on a base of 56.4% and 11.6 percentage points (22%) more likely to have worked over 10 hours in the past month on a base of 53.8%. Winners do not work significantly more hours conditional on working, they do not earn more conditional on working, and they do not earn more per hour (of course, these differences are not causal estimates of the effect on earnings or hours for those who work, since there is selection on who

works; but this underscores that, as a matter of accounting, the earnings increase is driven by the increased probability of being employed). Estimates of quantile treatment effects on earnings show no consistently significant impacts at higher quantiles, suggesting no clear effect on the intensive margin of earnings as of 2016, though the estimates are noisy and we cannot reject potentially large effects (Table A3).

The increases in employment due to winning a scholarship are concentrated in particular sectors of employment. Winners are 8.5 percentage points more likely to work for a wage. Male winners are much more likely to work as a day or seasonal laborer. Winners are no more likely to work in their own or their family's business.

We calculate the financial rate of return to SHS for vocational majors by finding the internal rate of return that equates the initial costs of SHS with the subsequent benefits. On the cost side of the financial return calculation, there are additional SHS fees paid, additional school costs, and foregone earnings per scholarship winner. The cost of SHS school fees for four years in nominal terms was GHX 915. If we assume the real cost of school fees is constant across the four years and adjust for inflation using the CPI (World Bank, 2016), then the average yearly school fees would be 480.36 in 2016 GHX. Thus, the additional 1.19 years that vocational admits spent attending SHS in the treatment group (Table 3) cost approximately GHX 142 yearly. For additional school costs, we add up the in-kind expenses, transportation costs, and other school fees (school materials etc.) from the respondent's last term in SHS as of the 2013 survey. Assuming that these costs apply to all other terms that the respondent was in school, we adjust for inflation and the number of terms the respondent attended. We find that scholarship winners paid GHX 94.75 more yearly (153.01 in 2016 GHX) (Panel F; Table A3). In terms of foregone earnings during their 42 months of SHS, we find that scholarship recipients earned 9.15 less GHX monthly in 2009, 7.71 less in 2010, 4.35 less in 2011 and 1.14 less in the first six months of 2012 (Panel F; Table A3). Adjusting for inflation, scholarship winners had GHX 296.66 (in 2016 GHX) in foregone earnings in 2009, 201.86 in 2010, 101.70 in 2011 and 12.21 in the first six months of 2012. Assuming the school fees and additional school costs are spread evenly across the 4 years of school, the cost of schooling in 2016 GHX was 592.54 in 2009, 497.74 in 2010, 397.58 in 2011 and 308.09 in 2012. (This will slightly overestimate costs, since respondents presumably saved on TVI fees.) On the benefit side, scholarship winners earn GHX 25.92 more per month (Table 6), so GHX 311.05 yearly. We assume these benefits persist throughout a 30-year working career (2013-2042). With these assumptions we find that there is 13% return to SHS for vocational major

admits.<sup>24</sup> If we assume scholarship winners did not begin earning more until 2016, then the return is 10%. With a 3% discount rate, an SHS education would be worth GHX 3,417,. With a 5% discount rate, an SHS education would be worth GHX 2,090.

#### 6.3 Labor Market Impacts for Students Admitted to Academic Majors

Among students admitted to academic majors more scholarship winners are still in school. It is thus too early to draw strong conclusions about the labor market impact of scholarships on these students. Nonetheless, we can report some preliminary results. Table 6 columns 4-6 present raw (regression adjusted) differences between labor markets outcomes between winners and non-winners. One variable that is easy to interpret is the effect on having positive earnings or being in school. For the sample as a whole, the point estimate is an insignificant 4 percentage point increase (on a basis of 63%). For females, winning a scholarship increased this by 8.7 percentage points on a base of 50.5% (significant at the 10% level) (Table 6; Panel C); for males the point estimate is negative and insignificant.

For the other outcomes, we do have labor market outcomes for everyone (including zeros if they are not working while in school), and the estimates in the entire sample are unbiased estimates of the labor market impact as of the date of the survey, but for those who are still studying, they are not indicative of what they will earn in the long run. The estimates suggest effects on earnings, hours, and participation that are insignificantly different from zero, and significantly smaller from the impact for those admitted in the vocational tracks. Because the treatment group is more likely to be enrolled in formal study or training, this estimate could however be a downwardly biased estimate of the effects on labor market impacts for those who are not enrolled (the difference between academic and vocational admits for the non-selected outcome, "earning or in school", is not significant). But if we focus on those whom the scholarship did not induce still being in school in 2016, we need to take sample selection into account.

<sup>24</sup>The equation with costs on the left and benefits on the right:

 $\frac{593}{(1+ROR)} + \frac{498}{(1-ROR)^2} + \frac{398}{(1-ROR)^3} + \frac{308}{(1-ROR)^4} = \frac{311}{(1-ROR)^5} + \dots + \frac{311}{(1-ROR)^{34}}$ 

If one assumes that the correlation between being induced to attend formal education/training by the scholarship and potential labor market outcomes (if not enrolled) is between 0 and 1, then we can construct an upper bound and lower bound for the treatment effect on the workers who would not be induced to attend further education regardless of whether or not they receive a SHS scholarship (Angrist, Bettinger, and Kremer 2006). The lower bound is simply the point estimate, excluding those who are currently enrolled in formal study or training. The upper bound excludes in addition the top 8.0 percentiles of the labor market distribution in the control for women and the top 2.6 percentiles for men, because those are the percentiles we assume would have been induced to still be in formal school/training by a scholarship, had they been in the control group.<sup>25</sup>

We report these bounds in Table 7. The point estimates go in opposite direction for women and men, so the average is not particularly illuminating. Note however that the upper bounds of the impacts are no longer significantly different between the vocational and general admits.

We consider the results for men and women separately. Using the lower bound on the correction for the scholarship's effect on formal study/training, point estimates of treatment effects on labor market outcomes for females admitted to academic majors are typically positive, although not statistically significantly different from zero. Winners have .337 greater (inverse hyperbolic sine) earnings, are 5.3 percentage points more likely to have positive earnings in the past month (Table 7; Panel A) and worked 19.7 more hours in the past month (Table 7; Panel B), though these differences are not statistically significant, and the lower bound on raw earnings is GHX -6.6 per month (with a standard error of 27).

The upper bounds on treatment effects for female academic majors who were not induced to still be in formal study/training by the scholarship are strongly positive and often statistically significant. The upper bound suggests that winners experience a large increase in inverse hyperbolic sine earnings (.802). (Table 7; Panel A).

For men in academic majors, there is still some concern about difficulties of interpretation, since the point estimate of the treatment effect on being enrolled in formal study/training at the time of the study is non-trivial at 2.6 percentage points (although it is not statistically significantly different from

<sup>&</sup>lt;sup>25</sup> Note that this "formal study/training" variable report in the first row of panel C (slightly) differs from the current enrollment in tertiary variable reported in Table 4 because it also includes a few students still enrolled in secondary education.

zero) (Table 6; Panel C). Both the upper and lower bounds indicate that labor market effects are negative for those who do not attend study/training, though generally statistically insignificant. The decrease in their inverse hyperbolic sine earnings ranges from .199 to .315 (Table 7; Panel A), the decrease in the likelihood of positive earnings ranges from 1.8 percentage points to 2.7 percentage points (Table 7; Panel A) and the decrease in hours worked in the past month ranges from 5.1 to 14.1 (Table 7; Panel B), but almost all of these bounds are not statistically significantly different from zero. Lower bounds indicate decreases in total earnings in the past month (54.57 cedis; 25% of the comparison mean) and log earnings if any earnings (23.9%) which are significant at the 10% level.

One natural hypothesis for scholarship winners' low hours worked and likelihood of positive earnings is that completing senior high school raises the quality of the reservation job that winners will accept. Male academic major scholarship winners are 8.1 percentage points less likely to be day or seasonal laborers (Table 6; Panel C), which supports this hypothesis, although their stated reservation wage does not change (Table 6; Panel D). Winners are 17.9 percentage points (57%) more likely to be searching for a job conditional on earning money, which may reflect their reluctance to fully commit to the low wage employment opportunities currently available to them (Table 6; Panel D).

An alternative explanation is that men in academic majors are still attempting to be admitted into tertiary education – they may be re-sitting the WASSCE exams or studying to qualify for diploma programs that require entry tests.

### 6.4 Comparison between OLS and IV Estimates

OLS estimates within the comparison group are consistently lower than the IV estimates of the labor market impact of education (Table A5). The IV estimates understate the effect of a year of education on labor market outcomes because of the higher amount of treatment individuals studying or training, but they can be used as a lower bound on the true effect. For earnings, the OLS estimates imply that an additional year of education (excluding TVI education) would decrease inverse hyperbolic sine earnings by .105, while the IV estimates implies a .231 increase. The OLS estimates implies that an additional year of education would decrease the likelihood of earning money in the past month by 2.0 percentage points, while the IV estimate is a 4.1 percentage increase. These disparities widen slightly when we include years of TVI education in our definition of years of education.<sup>26</sup>

For vocational majors (where there are no significant confounding effects from studying or training), IV estimates exceed OLS estimates by more than in the full sample. The IV approach estimates that an additional year of education (excluding TVI education) increased inverse hyperbolic earnings by .487 and the likelihood of positive earnings by 8.5 percentage points, while the OLS estimates are only a .064 increase in inverse hyperbolic sine earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings and a 1.2 percentage point increase in likelihood of positive earnings to education. These results are robust to including TVI education. One interpretation is that this difference supports Lang (1993)'s hypothesis that the labor market returns to education for financially constrained students may be larger than for the average student.

## **6.5 Satisfaction**

Skeptics of secondary education warn of a potentially large cohort of disaffected students, disappointed by the contrast between their expectations going into education and their outcomes coming out. Given their high initial hopes, the relatively low proportion of SHS graduates who went on to tertiary programs, and the difficulties faced by others in finding a higher-paying job that requires a secondary education, a concern is that the scholarship raised hopes and aspirations, and thereby could have generated disappointment and frustration in the years that followed secondary school graduation. This does not appear to be true in general, although the evidence does not point towards a large positive effect either: a satisfaction index (covering life satisfaction, financial satisfaction and a comparison of their life to others) shows a small insignificant positive treatment effect, as does a mental health index (Table 8). Scholarship winners are as likely as losers to think that they can change their life, and that their life is as good as that of others. The only striking result is that among those who have a job, scholarship winners are much less satisfied with it (a decline of -0.279 on a scale that ranges from 1 to 5, SE: 0.081), but also more confident they can get a better one (an increase of 0.059 on an index that ranges from 1 to 5, SE; 0.034). This increased dissatisfaction is present both among academic admits winners (who, in fact, are searching on the job), but also for vocational admits

<sup>&</sup>lt;sup>26</sup> If a year of TVI is more efficacious than a year of regular education in increasing earnings, an IV for earnings will underestimate the impact of years of education, and this will further strengthen the finding that OLS estimates of the impact of years of education on earnings are less than suggested by IV estimates.

winners (who are more likely to have a job, and not significantly more likely to be searching on the job).

How to interpret these satisfaction questions is not entirely clear, especially since education itself may affect how respondents understand the questions. There is only a limited overlap between treatment effects estimated for objective outcomes discussed in prior sections and treatment effects on reported satisfaction. Women, who overall benefitted more from the scholarship on most dimensions, appear to be more satisfied (0.104, SE: 0.057), especially with their finances, and the difference between male and female treatment effects are significantly positive. The only group with a positive treatment effect on satisfaction index (0.188, SE 0.074) is the group of vocational-admit women, who also experienced the largest positive earnings treatment effect. In contrast, the academic admit women tend to experience reductions in satisfaction from treatment comparable to that of males. Indeed, for males, the point estimates for males on the satisfaction variables are all negative (though not significant) and very similar in the vocational and general admit tracks, despite very different labor market treatment effects.

Overall, access to free SHS does not appear to be associated either with deep frustration or significantly happier lives. The jobs graduates have found so far have not met the high expectations they had for education at baseline, but their hopes appear to be still alive.

One potential policy implication of the huge discrepancy between stated expectations of the effect of secondary education and the estimated actual effect is that governments or others may wish to provide more accurate information. In particular, it may be appropriate to inform students that within general arts, those with low scores on the JHS exam have a low probability of entering tertiary education. In some ways, our finding of a large gap between the expectations of returns to education and actual returns is the logical converse of Jensen's (2010) finding that students in the Dominican Republic underestimate the returns to education. These seem like mirror image findings, but in fact they have similar implications. When people have inaccurate expectations about a given impact of education, there may be a case for providing more accurate information.

# 7 Conclusion

With primary school enrollment rates getting close to 100% in most countries, policy attention has shifted to secondary school. Ghana is a case in point, with the newly elected government promising to make senior high school free. Yet very little is known on the causal impact of secondary education in developing countries.

Using a randomized controlled trial in which a random subset of qualified but financially constrained students in rural Ghana were awarded secondary school scholarships, and detailed outcomes data collected after 5, 7, and 8 years, we find that scholarships increase secondary school completion rates by 30 percentage points, and that secondary education does impart significant learning gains, enable healthier behaviors, and delays fertility and marriage, in particular for women.

The scholarship also significantly increased enrollment in tertiary education at the time of our endline (after 8 years) from 8% to 11%. Despite the fact that the scholarship winners were more likely to still be enrolled in school at the time of the survey, they were also 5 percentage points more likely to be earning a positive income, and their (hyperbolic sine) earnings were higher.

The medium run impacts on tertiary education and labor market outcomes depend upon the type of track or major. For academic major admits, for the time being at least, the impact is felt primarily in terms of access to tertiary education, which increases from 11% to 16%. By age 25, we cannot reject the hypothesis of no impact on labor market participation or earnings, either in the full sample of those admits (including those still enrolled, who naturally earn very little), or for those who are not currently enrolled in tertiary education (even with the most optimistic bounds). Understanding the full impact on labor market outcomes will, however, require waiting until the tertiary students have entered the labor market. What's more, it is possible that the types of jobs that academic track secondary school graduates obtain have a steeper wage profile than for others, in which case the full impact on labor market outcomes will require waiting even longer.

Among students admitted to vocational majors, the results are already much clearer. Scholarship winners are no more likely to attend tertiary education, but they are much more likely to have positive income around age 25. For these students, winning a scholarship increases total earnings by 19%, with effects driven by scholarship winners' increased probability of having work, rather than by either greater earnings per hour or greater hours conditional on working. For vocational admits, assuming a constant treatment effect on earnings over time, we estimate that the financial rate of return of going

to SHS is 13%. While this is a partial equilibrium estimate, this is likely to be an underestimate due to some special features of the time period, namely a challenging macroeconomic climate and a double-cohort of graduates.

One important thing to note is that we cannot currently determine whether the differing effects in academic vs. vocational majors are due to the different curricula in these majors or due to the characteristics of the students who are admitted to these majors.

We find more positive treatment effects for women relative to men along a number of dimensions, although given our small sample size these differences are not always significant on a variable-by-variable basis. Treatment effects for women are greater on learning, on tertiary enrollment, on fertility and marriage, and on labor market outcomes. One possible hypothesis is that households are more inclined to send their sons to senior high school than their daughters, and therefore at the margin there are more girls who could benefit from senior high school but will not go in the absence of a scholarship than there are boys. Consistent with this, women have lower rates of senior high school secondary attendance in Ghana.

By age 25, treatment effects on labor market outcomes are also (significantly) larger for the vocational track students than for the academic track students, although this is to some extent driven by larger tertiary school enrollment among scholarship winners admitted into academic tracks (the upper bound effects for those not enrolled are not significantly different in the two groups). While the confidence intervals are consistent with a wide range of estimates, the low point estimates contrast with the enthusiastic expectations of our students and their parents at baseline, and with our own priors as well.

For students and parents, these high expectations seemed to have a lot to do with the hope that secondary school would open the way to tertiary education and high paying government jobs. While this is true for a minority, the overall fraction of secondary school graduates attending tertiary education remains fairly low in this sample (14% among scholarship winners). Few of these secondary school graduates will meet their ambition of becoming teachers or entering other occupations requiring tertiary education and commanding high rents. To the extent that government jobs are in fixed supply, there will be excessive entry into competing for these jobs since entry creates a negative

externality for other applicants. This implies that there may be socially excessive entry into academic majors.

In the traditional human capital model, education imparts skills that should increase productivity in the labor market. Although we find an increase in a cognitive skill test scores for scholarship winners within the group of academic admits, our labor market results are consistent with the hypothesis that these skills have not improved labor market prospects for the academic admit scholarship winners who were not induced to enroll in tertiary education, at least not yet. One possibility is that scholarships increased their employability (as it did for the vocational admits), but for academic admits senior high school education may have discouraged males from taking up jobs as day or seasonal laborers, though this is not reflected in lower (elicited) reservation wages.

In this view, the (partial equilibrium) distributional implications may thus be very different in different subsamples. Vocational education seems to have improved labor market outcomes at the bottom of the distribution, helping those who did not have jobs obtain them, but not necessarily helping those who would have had jobs anyway earn more per hour or obtain more hours. In contrast, among academic track admits, scholarships might eventually improve the upper tail of outcomes, particularly for women, by helping more of them go on to tertiary education. However, the data are consistent with the possibility that the bottom tail of the distribution for males in particular was not helped, at least by 2016.

Currently, students enrolled in general arts, by far the most common academic major pay less for education than either students to vocational subjects or students in general science. Our results so far would support correcting this imbalance and perhaps even doing more to encourage matriculation in vocational or scientific tracks, especially if one puts more weight on welfare at the bottom of the distribution.

These results will change over time: those who have gone to tertiary will graduate and enter the labor market. Employment rates will likely rise in the rest of the sample. This will both increase all wages, and give us a larger and more representative sample to estimate any productivity impacts of education. The scholarship winners from academic tracks who are neither enrolled nor working may find the job they are looking for, or stop searching. Estimating the long-run returns to free secondary education, overall as well as by gender and track, will require surveying our study sample in future years. This underscores the importance of very long-term longitudinal follow up. We are planning to continue interviewing this cohort for as long as possible.

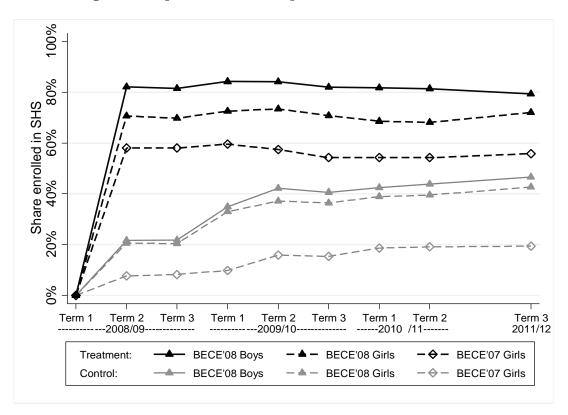
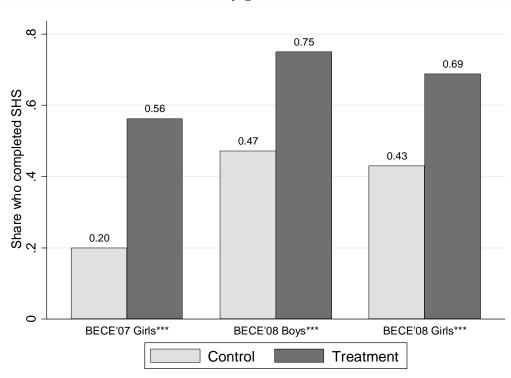
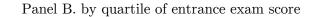
# References

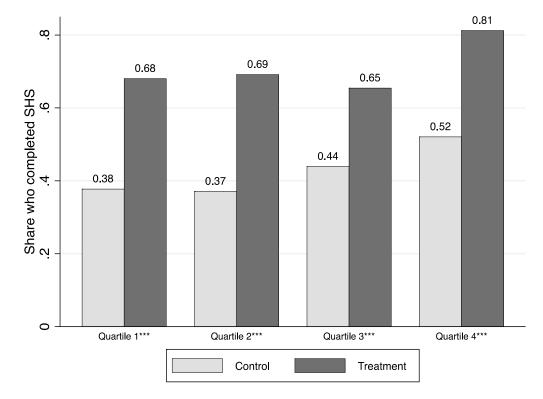
- Ajayi, Kehinde (2013). "School Choice and Educational Mobility: Lessons from Secondary School Applications in Ghana". IED Discussion Paper 259,
- Ajayi, Kehinde (2014). "Does School Quality Improve Student Performance? New Evidence from Ghana." IED Discussion Paper 260.
- Anderson, Michael L (2008). "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects." *Journal of the American Statistical Association* 103 (484): 1481–95.
- Angrist, Joshua, Eric Bettinger, and Michael Kremer. "Long-term educational consequences of secondary school vouchers: Evidence from administrative records in Colombia." *The American Economic Review* 96, no. 3 (2006): 847-862.
- Angrist, Joshua D., and Guido W. Imbens (1995). "Two-stage least squares estimation of average causal effects in models with variable treatment intensity." *Journal of the American statistical Association* 90.430: 431-442.
- Angrist, Joshua, and Alan Krueger (1990). "Does compulsory school attendance affect schooling and earnings?" (No. w3572). *National Bureau of Economic Research*.
- Attanasio, Orazio, Adriana Kugler, and Costas Meghir (2011). "Subsidizing Vocational Training for Disadvantaged Youth in Colombia: Evidence from a Randomized Trial." *American Economic Journal: Applied Economics* 3.3: 188-220.
- Baird, Sarah, Joan Hamory Hicks, Edward Miguel and Michael Kremer (2011). "Worms
- at Work: Long-run Impacts of Child Health Gains". Mimeo.
- Barrera-Osorio, Felipe, Leigh L. Linden, and Miguel Urquiola (2007). "The effects of user fee reductions on enrollment: Evidence from a quasi-experiment." *Columbia University*.
- Barrera-Osorio, Felipe, Marianne Bertrand, Leigh Linden and Francisco Perez (2011). "Improving the Design of Conditional Transfer Programs: Evidence from a Randomized Education Experiment in Colombia." *American Economic Journal: Applied Economics.* 3(2): 167-95.
- Becker, Gary S. (1991), "An economic analysis of fertility," *Demographic and Economic Change in Developed Countries*, Gary S. Becker, ed., Princeton: Princeton University Press.
- Benjamini, Yoav, Abba M. Krieger, and Daniel Yekutieli. 2006. "Adaptive Linear Step-Up Procedures That Control the False Discovery Rate." *Biometrika* 93(3): 491–507.

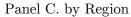
- Black, Sandra, Paul Devereux and Kjell Silvanes. (2008). "Staying in the classroom and out of the maternity ward? The effect of compulsory schooling laws on teenage births". *Economic Journal* 118 (539): 1025-1054.
- Britton, Jack, Lorraine Dearden, Neil Shephard and Anna Vignoles (2016) "How English domiciled graduate earnings vary with gender, institution attended, subject and socio-economic background." No. W16/06. *Institute for Fiscal Studies*.
- Burbidge, John B., Lonnie Magee, and A. Leslie Robb (1988). "Alternative transformations to handle extreme values of the dependent variable." *Journal of the American Statistical Association* 83.401: 123-127.
- Cann, Darling Maame Efua (2016). "Making Gentle Strides Towards Progressively Free Education." <u>http://www.ghana.gov.gh/index.php/media-center/features/2462-making-gentle-strides-</u> <u>towards-a-progressively-free-education</u>.
- Cardoso, Eliana, and André Portela F. de Souza (2009). "The Impact of Cash Transfers on Child Labor and School Enrollment in Brazil." *Child Labor and Education in Latin America*. Palgrave Macmillan US. 133-146.
- Chevalier, A., & Walker, I. (2001). "Further Results on the Returns to Education in the UK." *E. Elgar Pub.I*: 302-330.
- Ministry of Education (MoE) Ghana (2008). "EMIS Basic Educational Data."
- Duflo, Esther, Pascaline Dupas and Michael Kremer (2015). "Education, HIV, and Early Fertility: Experimental Evidence from Kenya". American Economic Review 2015, 105(9).
- Evans, David, Michael Kremer, Muthoni Ngatia (2009). "The Impact of Distributing School Uniforms on Children's Education in Kenya", mimeo, World Bank.
- Ferreira, Francisco HG, Deon Filmer, and Norbert Schady (2009). "Own and sibling effects of conditional cash transfer programs: Theory and evidence from Cambodia." World Bank Policy Research Working Paper Series, Vol
- Friedman, Willa, Edward Miguel, Michael Kremer and Rebecca Thornton (2016). "Education as Liberation?" *Economica*, 83(329): 1-30, 10.1111/ecca.12168.
- Gertler, Paul (2004). "Do conditional cash transfers improve child health? Evidence from PROGRESA's control randomized experiment." *The American Economic Review* 94, no. 2: 336-341.

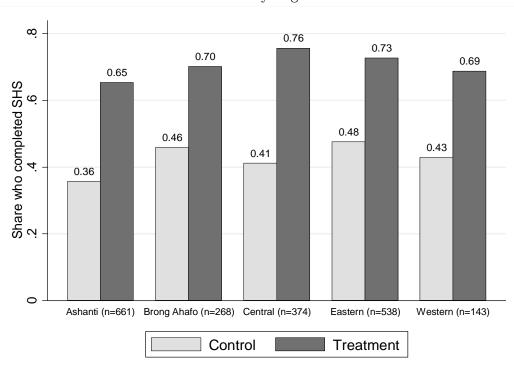
- Ghana Statistical Service (2014). "Ghana Living Standards Survey (GLSS 6): Main Report." <u>http://www.statsghana.gov.gh/docfiles/glss6/GLSS6\_Main%20Report.pdf</u> accessed January 14<sup>th</sup>, 2017.
- Glewwe, Paul, and Pedro Olinto (2004). "Evaluating the impact of conditional cash transfers on schooling: An experimental analysis of Honduras' PRAF program." Unpublished manuscript, University of Minnesota.
- Goldin, Claudia (1998). "America's graduation from high school: The evolution and spread of secondary schooling in the twentieth century." *The Journal of Economic History*, *58*(02), 345-374.
- Gulesci, Selim and Erik Meyersson (2015). "For the Love of the Republic': Education, Secularism, and Empowerment." Working paper.
- Jensen, Robert (2010). "The (perceived) returns to education and the demand for schooling." *Quarterly Journal of Economics*, 125(2).
- Keats, Anthony (2014). "Women's Schooling, Fertility, and Child Health Outcomes: Evidence from Uganda's Free Primary Education Program". Mimeo, Wesleyan University.
- Kremer, Michael, Edward Miguel and Rebecca Thornton (2009) "Incentives to Learn". Review of Economics and Statistics (91)3: 437-456.
- Krueger, Alan, and Jitka Maleckova (2003). "Education, Poverty, Political Violence, and Terrorism: Is There a Causal Connection?" *Journal of Economic Perspectives*, vol. 17, Fall 2003, no. 4, pp.119-144
- Kugler, Adriana, Maurice Kugler, Juan Saavedra, and Luis Omar Herrera Prada (2015). "Long-term Direct and Spillover Effects of Job Training: Experimental Evidence from Colombia." NBER Working Paper # 21607.
- Lam, David, Cally Ardington, and Murray Leibbrandt (2011). "Schooling as a lottery: Racial differences in school advancement in urban South Africa." *Journal of Development Economics*, 95(2): 121-136.
- Lang, Kevin. (1993). "Ability Bias, Discount Rate Bias, and the Return to Education." Manuscript. Boston: Boston University, Deptartment of Economics.
- Lucas, Adrienne M., and Isaac M. Mbiti. 2012. "Access, Sorting, and Achievement: the Short-Run Effects of Free Primary Education in Kenya" *American Economic Journal: Applied Economics* 4(4): 226-253.
- O'Leary, Nigel C., and Peter J. Sloane (2005). "The return to a university education in Great Britain." *National Institute Economic Review* 193.1: 75-89.

- Osili, Una Okonkwo and Long, Bridget T. (2008) "Does Female Schooling Reduce Fertility? Evidence from Nigeria." *Journal of Development Economics* 87(1): 57-75.
- Ozier, Owen (2016). "The Impact of Secondary Schooling in Kenya: A Regression Discontinuity Analysis," *Journal of Human Resources*, forthcoming.
- Pitt, Mark, Shahidur Khandker, and Nubuhiko Fuwa (2003). "Subsidy to Promote Girls' Education: The Female Stipend Program in Bangladesh." *MPRA Paper* 23688 (2003).
- Pritchett, Lant (2001). Where has all the education gone?. *The World Bank Economic Review*, 15(3), 367-391.
- Rosenzweig, Mark, and T. Paul Schultz (1989). "Schooling, information and nonmarket productivity: contraceptive use and its effectiveness." *International Economic Review* 30:457-477.
- Rosenzweig, Mark, and Christopher Udry (2016). "External validity in a stochastic world." (No. w22449). National Bureau of Economic Research.
- United Nations Girls Initiative (UNGEI) (2010). "UNGEI at 10: A Journey to Gender Equality in Education."
- Walker, Ian, and Yu Zhu (2011). "Differences by degree: Evidence of the net financial rates of return to undergraduate study for England and Wales." *Economics of Education Review* 30.6 (2011): 1177-1186.
- Warner, A., A. Malhotra, and A. McGonagle (2012). "Girls education empowerment and transitions to adulthood: The case for a shared agenda." *International Center for Research on Women*
- The World Bank, World Development Indicators (2016). Inflation, consumer prices (annual %) [Data file]. http://data.worldbank.org/indicator/NY.GNP.MKTP.CN?locations=GH
- The World Bank, World Development Indicators (2012). GNI (current LCU) [Data file]. http://data.worldbank.org/indicator/NY.GNP.MKTP.CN?locations=GH
- The World Bank, World Development Indicators (2012). *Population, total* [Data file]. http://data.worldbank.org/indicator/SP.POP.TOTL?locations=GH
- The World Bank, World Development Indicators (2012). *GDP growth (annual %)* [Data\_file].http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=GH

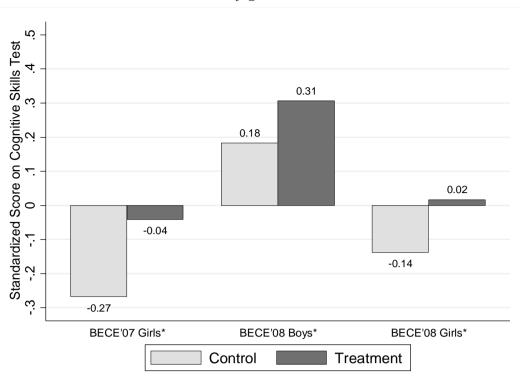


Figure 1: Impact of Scholarship on Share Enrolled in SHS


Notes: Data from yearly phone surveys. The scholarships were awarded at the beginning of Term 2 of the 2008/2009 academic year. We split the sample into three types of students: boys who sat for the BECE in May 2008, girls who sat for the BECE in May 2008, and girls who sat for the BECE in May 2007. See text for details.

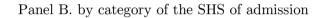



Panel A. by gender and cohort







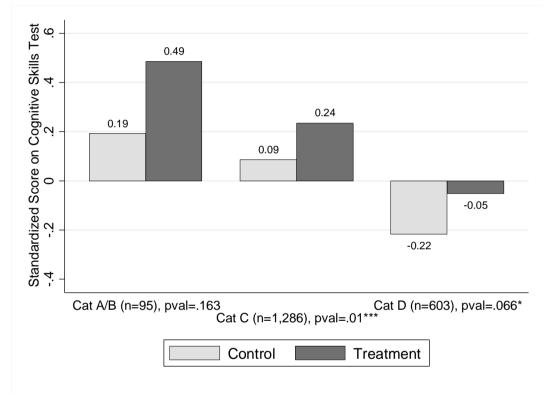
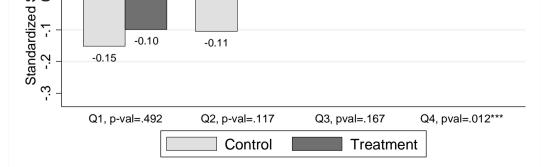
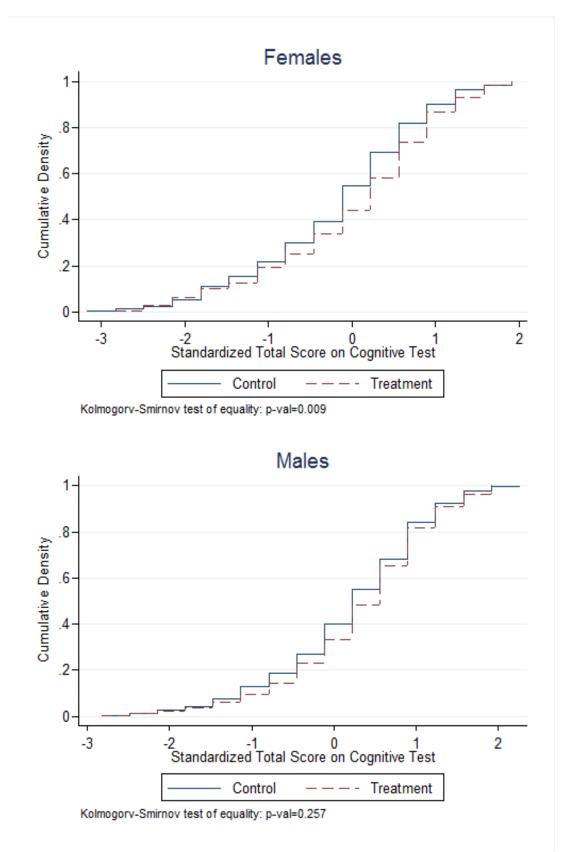


Notes: The difference between the Treatment and Control bars represents the effect of the scholarship treatment. \*\*\* indicates significance at the 1% level. All differences in Panel C are significant at 1% level, stars omitted due to space constraints.

Figure 3: Effect of Scholarship Treatment on Cognitive Skills after 5 years (2013)



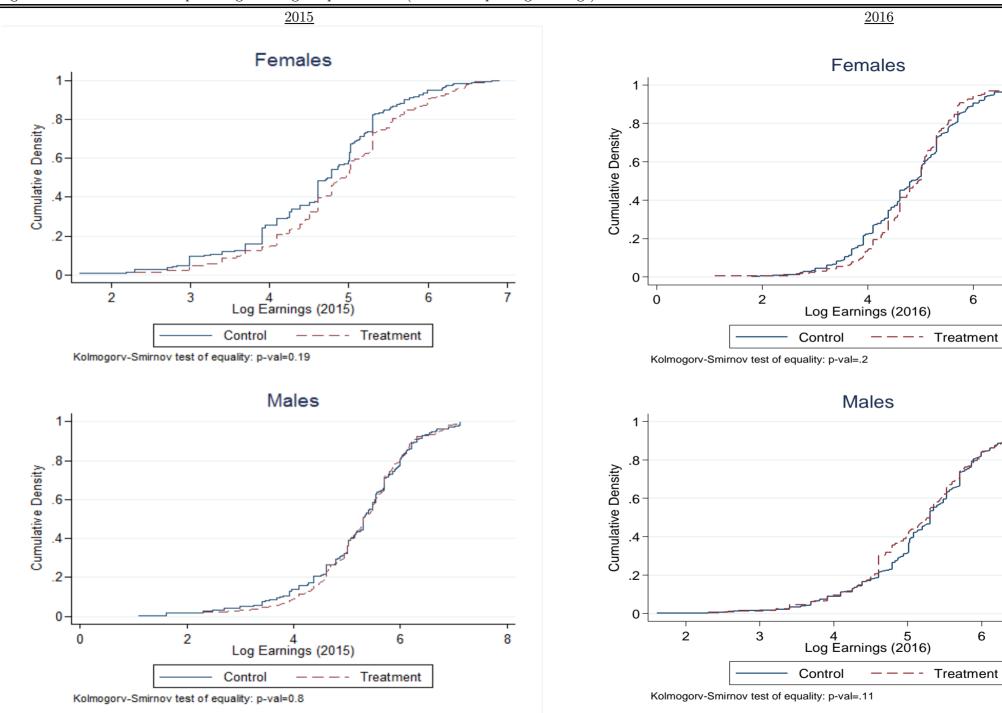

Panel A. by gender and cohort






0.57 0.57 0.30 0.30 0.30 0.30 0.23 0.30 0.23 0.57 0.30 0.57 0.30 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

Panel C. by quartile of entrance exam score




Notes: Data from 2013 in-person follow-up. The difference between the Treatment and Control bars represents the effect of the scholarship treatment. The p-value for a test of equality between the two bars is presented in the x-axis label. \*\*\*,\*\*,\* indicate significance at the 1%, 5% and 10% level respectively.



Notes: Data from 2013 in-person follow-up survey. The cognitive test included 17 questions designed to gauge literacy, reading comprehension, basic math skills and more advanced math skills. See Table 5 for details. Total score shown was normalized to mean 0 and standard deviation 1 in the control group. Test included 17 questions, each weighed equally.

# Figure 5. Effect of Scholarship on Log Earnings in past month (for those reporting earnings)



8

7

Notes: Data from 2015 (left) and 2016 (right).

| Table 1: Initial | Majors | and | Switching | (Control | Group) |
|------------------|--------|-----|-----------|----------|--------|
|------------------|--------|-----|-----------|----------|--------|

|                                                        | All         | Female      | Male        | P-val    |
|--------------------------------------------------------|-------------|-------------|-------------|----------|
|                                                        | Mean        | Mean        | Mean        | Male =   |
|                                                        | (Std. Dev.) | (Std. Dev.) | (Std. Dev.) | Female   |
|                                                        | (1)         | (2)         | (3)         | (4)      |
| Panel A. Academic Majors                               |             |             |             |          |
| Admitted to Academic Major                             | 0.405       | 0.417       | 0.393       | .383     |
|                                                        | (0.491)     | (0.493)     | (0.489)     |          |
| Admitted to General Arts                               | 0.373       | 0.392       | 0.353       | .131     |
|                                                        | (0.484)     | (0.488)     | (0.478)     |          |
| Admitted to General Science                            | 0.033       | 0.026       | 0.040       | .091*    |
|                                                        | (0.178)     | (0.158)     | (0.195)     |          |
| Ever Enrolled in SHS (% of admitted to academic)       | 0.570       | 0.532       | 0.610       | .066*    |
|                                                        | (0.496)     | (0.500)     | (0.489)     |          |
| Switched to Vocational Major (% of ever enrolled)      | 0.258       | 0.221       | 0.291       | .242     |
|                                                        | (0.438)     | (0.417)     | (0.456)     |          |
| Panel B. Vocational Majors                             |             |             |             |          |
| Admitted to Vocational Major                           | 0.595       | 0.583       | 0.607       | .383     |
|                                                        | (0.491)     | (0.493)     | (0.489)     |          |
| Admitted to Business                                   | 0.214       | 0.171       | 0.259       | 0.000*** |
|                                                        | (0.410)     | (0.377)     | (0.438)     |          |
| Admitted to Home Economics                             | 0.156       | 0.289       | 0.019       | 0.000*** |
|                                                        | (0.363)     | (0.454)     | (0.137)     |          |
| Admitted to Agriculture                                | 0.114       | 0.083       | 0.147       | 0.000*** |
|                                                        | (0.318)     | (0.276)     | (0.354)     |          |
| Admitted to Technology                                 | 0.062       | 0.013       | 0.112       | 0.000*** |
|                                                        | (0.240)     | (0.113)     | (0.315)     |          |
| Admitted to Visual Arts                                | 0.048       | 0.027       | 0.071       | 0.000*** |
|                                                        | (0.215)     | (0.162)     | (0.256)     |          |
| Ever Enrolled in SHS ( $\%$ of admitted to vocational) | 0.544       | 0.477       | 0.610       | 0.000*** |
|                                                        | (0.498)     | (0.500)     | (0.488)     |          |
| Switched to Academic Major (% of ever enrolled)        | 0.385       | 0.436       | 0.345       | .056*    |
|                                                        | (0.487)     | (0.497)     | (0.477)     |          |
| Observations                                           | 1382        | 702         | 680         |          |

Notes: Data for "Admitted to..." from 2008 baseline survey. "Switching to..." variables constructed by comparing 2008 baseline track with track recorded in 2013 follow-up. Data for "Ever Enrolled in SHS..." from 2016 follow-up. Columns 1, 2, and 3: control group means with standard errors presented below in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.; Column 4: the p-value on a test of whether control group means for females and males are equal.

#### Table 2: Sample Characteristics

|                                 |                  | Combined |          | Acad           | emic Major A   | dmits    | Vocati   | ional Major . | Admits        |
|---------------------------------|------------------|----------|----------|----------------|----------------|----------|----------|---------------|---------------|
|                                 | All              | Female   | Male     | All            | Female         | Male     | All      | Female        | Male          |
|                                 | (1)              | (2)      | (3)      | (4)            | (5)            | (6)      | (7)      | (8)           | (9)           |
| Age in 2008                     |                  | _        |          |                |                |          |          |               |               |
| Treatment-control differenc     | -0.064           | -0.048   | -0.084   | -0.179         | -0.168         | -0.199   | 0.012    | 0.022         | 0.003         |
| Standard error                  | (0.072)          | (0.103)  | (0.102)  | (0.114)        | (0.163)        | (0.160)  | (0.094)  | (0.133)       | (0.132)       |
| Comparison mean                 | 17.369           | 17.314   | 17.426   | 17.297         | 17.260         | 17.337   | 17.418   | 17.353        | 17.483        |
| Completed BECE in 2007          |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | 0.005            | 0.020    | 0.000    | 0.021          | 0.071          | -0.001   | -0.006   | -0.015        | 0.000         |
| Standard error                  | (0.016)          | (0.021)  | (0.021)  | (0.026)        | $(0.033)^{**}$ | (0.033)  | (0.021)  | (0.027)       | (0.027)       |
| Comparison mean                 | 0.139            | 0.274    | 0.000    | 0.130          | 0.249          | 0.000    | 0.145    | 0.291         | 0.000         |
| BECE exam performance           |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | 0.002            | -0.001   | 0.004    | 0.002          | -0.002         | 0.004    | 0.002    | -0.000        | 0.004         |
| Standard error                  | (0.004)          | (0.005)  | (0.005)  | (0.006)        | (0.008)        | (0.008)  | (0.005)  | (0.007)       | (0.007)       |
| Comparison mean                 | 0.623            | 0.618    | 0.628    | 0.629          | 0.624          | 0.634    | 0.620    | 0.614         | 0.625         |
| No male head in the household   |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | 0.009            | -0.029   | 0.047    | -0.004         | -0.034         | 0.026    | 0.017    | -0.029        | 0.062         |
| Standard error                  | (0.023)          | (0.033)  | (0.033)  | (0.037)        | (0.052)        | (0.051)  | (0.030)  | (0.042)       | (0.042)       |
| Comparison mean                 | 0.425            | 0.455    | 0.395    | 0.409          | 0.418          | 0.398    | 0.437    | 0.481         | 0.393         |
| Number of HH members            |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | -0.099           | -0.148   | -0.054   | -0.154         | -0.173         | -0.141   | -0.061   | -0.121        | 0.001         |
| Standard error                  | (0.107)          | (0.153)  | (0.152)  | (0.170)        | (0.242)        | (0.238)  | (0.139)  | (0.197)       | (0.197)       |
| Comparison mean                 | 5.659            | 5.617    | 5.703    | 5.758          | 5.719          | 5.801    | 5.592    | 5.544         | 5.639         |
| Highest education of HH head: p |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | -0.005           | -0.014   | 0.003    | -0.016         | -0.023         | -0.009   | 0.002    | -0.008        | 0.012         |
| Standard error                  | (0.009)          | (0.013)  | (0.013)  | (0.015)        | (0.021)        | (0.021)  | (0.012)  | (0.017)       | (0.017)       |
| Comparison mean                 | 0.042            | 0.047    | 0.037    | 0.047          | 0.055          | 0.038    | 0.039    | 0.042         | 0.037         |
| Highest education of HH head:   |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | -0.009           | -0.017   | -0.000   | 0.027          | -0.004         | 0.057    | -0.032   | -0.024        | -0.040        |
| Standard error                  | (0.022)          | (0.032)  | (0.032)  | (0.035)        | (0.050)        | (0.050)  | (0.029)  | (0.041)       | (0.041)       |
| Comparison mean                 | 0.353            | 0.356    | 0.350    | 0.364          | 0.377          | 0.351    | 0.345    | 0.342         | 0.349         |
| Highest education of HH head: S |                  |          |          |                |                |          |          |               |               |
| Treatment-control differenc     | 0.007            | 0.014    | 0.001    | 0.009          | 0.039          | -0.022   | 0.006    | -0.003        | 0.015         |
| Standard error                  | (0.015)          | (0.021)  | (0.021)  | (0.023)        | (0.033)        | (0.033)  | (0.019)  | (0.027)       | (0.027)       |
| Comparison mean                 | 0.111            | 0.106    | 0.116    | 0.117          | 0.092          | 0.143    | 0.107    | 0.116         | 0.098         |
| Highest education of HH head:   |                  |          |          |                |                |          |          |               |               |
| Treatment effect                | -0.009           | -0.013   | -0.005   | -0.018         | -0.016         | -0.018   | -0.003   | -0.010        | 0.004         |
| standard error                  | (0.008)          | (0.012)  | (0.012)  | (0.013)        | (0.019)        | (0.019)  | (0.011)  | (0.015)       | (0.015)       |
| Comparison mean                 | 0.036            | 0.040    | 0.031    | 0.041          | 0.048          | 0.034    | 0.032    | 0.035         | 0.029         |
| Highest education of HH head: t | <u>tertiary</u>  |          |          |                |                |          |          |               |               |
| Treatment effect                | -0.009           | -0.021   | 0.002    | -0.031         | -0.031         | -0.029   | 0.005    | -0.013        | 0.023         |
| standard error                  | (0.010)          | (0.014)  | (0.014)  | $(0.016)^{**}$ | (0.022)        | (0.022)  | (0.013)  | (0.018)       | (0.018)       |
| Comparison mean                 | 0.050            | 0.057    | 0.041    | 0.059          | 0.072          | 0.045    | 0.043    | 0.047         | 0.039         |
| Perceived returns to SHS $(\%)$ |                  |          |          |                |                |          |          |               |               |
| Treatment effect                | 14.639           | 32.581   | -1.955   | 28.345         | 127.740        | -63.218  | 9.162    | -21.081       | 37.407        |
| standard error                  | (27.590)         | (39.666) | (38.439) | (44.181)       | (63.396)**     | (61.584) | (35.285) | (50.742)      | (49.043)      |
| Comparison mean                 | 276.102          | 272.429  | 279.719  | 313.141        | 293.534        | 334.161  | 250.519  | 256.771       | 244.710       |
| Perceived returns to SHS educat |                  |          |          |                |                |          |          |               |               |
| Treatment effect                | 0.008            | 0.000    | 0.017    | 0.041          | 0.083          | 0.008    | -0.010   | -0.046        | 0.023         |
| standard error                  | (0.008)          | (0.036)  | (0.035)  | (0.041)        | (0.058)        | (0.056)  | (0.032)  | (0.046)       | (0.025)       |
|                                 | (0.023)<br>0.463 | · · ·    | · /      | · /            | · /            | · · · ·  | · · · ·  | ( )           | · · · · ·     |
| Comparison mean                 | 0.405            | 0.478    | 0.448    | 0.485          | 0.502          | 0.466    | 0.448    | 0.460         | 0.436         |
| Ever had sex                    | 0.007            | 0.001    | 0.044    | 0.000          | 0.000          | 0.000    | 0.041    | 0.001         | 0.00-         |
| Treatment effect                | -0.027           | 0.001    | -0.044   | -0.006         | -0.009         | 0.020    | -0.041   | 0.004         | -0.087        |
| standard error                  | (0.022)          | (0.030)  | (0.029)  | (0.034)        | (0.047)        | (0.046)  | (0.028)  | (0.038)       | $(0.038)^{*}$ |
| Comparison mean                 | 0.328            | 0.454    | 0.199    | 0.304          | 0.420          | 0.176    | 0.345    | 0.478         | 0.214         |
| Observations                    | 2060             | 1033     | 1027     | 833            | 422            | 411      | 1227     | 611           | 616           |

Notes: Data from 2008 baseline. The estimated treatment effects for the full sample (Col. 1), female admits (Col. 2), male admits (Col. 3), academic major admits (Col. 4), female academic major admits (Col. 5.), male academic major admits (Col. 6), vocational major admits (Col. 7), female vocational major admits (Col. 8), male vocational major admits (Col. 9) are in the first cell row; standard errors are in the second cell row in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; comparison group means are in the third cell row; all regressions control for region fixed effects. Mean of BECE exam is mean of performance on four core subjects: Math, English, Science and Social Studies. We rescaled the score on a 0-100% scale, 100% being top performance.

|                                                                  |                                  | Combined              |                 |                 | emic Major A    |                   |                        | onal Major A    |                  |
|------------------------------------------------------------------|----------------------------------|-----------------------|-----------------|-----------------|-----------------|-------------------|------------------------|-----------------|------------------|
|                                                                  | All                              | Female                | Male            | All             | Female          | Male              | All                    | Female          | Male             |
|                                                                  | (1)                              | (2)                   | (3)             | (4)             | (5)             | (6)               | (7)                    | (8)             | (9)              |
| Ever enrolled in SHS (2016)                                      |                                  |                       |                 |                 | 0.01.4          |                   |                        |                 |                  |
| Treatment effect                                                 | 0.302                            | 0.292                 | 0.309           | 0.324           | 0.314           | 0.329             | 0.287                  | 0.277           | 0.296            |
| Standard error                                                   | (0.022)***                       | $(0.031)^{***}$       | $(0.031)^{***}$ | $(0.035)^{***}$ | $(0.049)^{***}$ | $(0.048)^{***}$   | $(0.028)^{***}$        | (0.040)***      | $(0.040)^{**}$   |
| Comparison mean                                                  | 0.558                            | 0.504                 | 0.615           | 0.574           | 0.540           | 0.610             | 0.548                  | 0.478           | 0.618            |
| p-value on equality of effect<br>If enrolled, enrolled in acader |                                  | (2)=(2)               | 5): .093        |                 | (3)=(6          | 3): .825          | (4)=(7): .413          | (8)=(9)         | : .740           |
| Treatment effect                                                 | -0.036                           | -0.030                | -0.041          | 0.071           | 0.100           | 0.046             | -0.130                 | -0.145          | -0.119           |
| Standard error                                                   | (0.030)                          | (0.044)               | (0.041)         | $(0.041)^*$     | $(0.060)^*$     | (0.056)           | $(0.035)^{***}$        | $(0.053)^{***}$ | $(0.047)^{*}$    |
| Comparison mean                                                  | 0.533                            | (0.044)<br>0.584      | 0.491           | 0.742           | 0.779           | 0.709             | 0.385                  | 0.436           | (0.041)<br>0.345 |
| p-value on equality of effect                                    |                                  |                       |                 | 0.142           |                 |                   | $(4) = (7): .000^{**}$ |                 |                  |
| Completed SHS (2016)                                             |                                  | )                     | .)              |                 | (0) (0          | (                 | 1) (1)11000            |                 |                  |
| Treatment effect                                                 | 0.263                            | 0.263                 | 0.261           | 0.302           | 0.261           | 0.341             | 0.236                  | 0.265           | 0.208            |
| Standard error                                                   | $(0.023)^{***}$                  | $(0.033)^{***}$       | $(0.033)^{***}$ | $(0.037)^{***}$ | $(0.052)^{***}$ | $(0.051)^{***}$   | (0.030)***             | $(0.043)^{***}$ | (0.042)**        |
| Comparison mean                                                  | 0.475                            | 0.418                 | 0.533           | 0.489           | 0.478           | 0.502             | 0.465                  | 0.376           | 0.552            |
| p-value on equality of effect                                    | ct(5) = (6) = (8) = (9)          | ): .264 (2)=(3        |                 |                 | (5) = (6)       | 3): .275          | (4)=(7): .164          | (8) = (9)       |                  |
| Years spent attending SHS (2                                     |                                  |                       | -               |                 |                 | /                 |                        |                 |                  |
| Treatment effect                                                 | 1.261                            | 1.236                 | 1.272           | 1.379           | 1.298           | 1.448             | 1.181                  | 1.198           | 1.154            |
| Standard error                                                   | $(0.086)^{***}$                  | $(0.121)^{***}$       | $(0.120)^{***}$ | $(0.135)^{***}$ | $(0.190)^{***}$ | $(0.190)^{***}$   | $(0.111)^{***}$        | $(0.157)^{***}$ | (0.156)**        |
| Comparison mean                                                  | 1.827                            | 1.622                 | 2.041           | 1.897           | 1.813           | 1.988             | 1.778                  | 1.486           | 2.077            |
| p-value on equality of effect                                    | ct (5)=(6)=(8)=(9                | ): .651 (2)=(3        | 3): .835        |                 | $(5) = (\ell$   | 3): .576          | (4)=(7): .256          | (8) = (9)       | ): .843          |
| Average monthly earnings be                                      | etween Jan 2009 a                | and July 2012         | (2013)          |                 |                 |                   |                        |                 |                  |
| Treatment effect                                                 | -8.775                           | -5.943                | -11.752         | -12.051         | -8.504          | -16.008           | -6.534                 | -4.161          | -8.934           |
| Standard error                                                   | $(1.655)^{***}$                  | (2.336)**             | $(2.324)^{***}$ | $(2.584)^{***}$ | $(3.643)^{**}$  | $(3.632)^{***}$   | $(2.155)^{***}$        | (3.044)         | (3.025)**        |
| Comparison mean                                                  | 13.741                           | 9.968                 | 17.670          | 15.248          | 10.225          | 20.638            | 12.712                 | 9.788           | 15.696           |
| p-value on equality of effec                                     | ct (5)=(6)=(8)=(9                | )): .099*(2)=(3       | '): .078*       |                 | (5) = (6)       | <i>5): .144</i>   | (4)=(7): .101          | (8) = (9)       | ): .266          |
| Years spent attending TVI (2                                     |                                  |                       |                 |                 |                 |                   |                        |                 |                  |
| Treatment effect                                                 | -0.086                           | -0.046                | -0.131          | -0.099          | -0.024          | -0.178            | -0.078                 | -0.060          | -0.098           |
| Standard error                                                   | $(0.031)^{***}$                  | (0.043)               | $(0.043)^{***}$ | $(0.048)^{**}$  | (0.068)         | $(0.068)^{***}$   | · /                    | (0.056)         | $(0.056)^{*}$    |
| Comparison mean                                                  | 0.170                            | 0.104                 | 0.238           | 0.145           | 0.067           | 0.231             | 0.186                  | 0.130           | 0.243            |
| p-value on equality of effec                                     |                                  | 9): .406 (2)=(3       | 3): .163        |                 | $(5)=(\ell$     | <i>6): .110</i>   | (4) = (7):.741         | (8) = (9)       | ): .632          |
| Standardized score, Reading                                      | test $(2013)$                    |                       |                 |                 |                 |                   |                        |                 |                  |
| Treatment effect                                                 | 0.140                            | 0.158                 | 0.116           | 0.136           | 0.179           | 0.090             | 0.139                  | 0.142           | 0.133            |
| Standard error                                                   | $(0.047)^{***}$                  | (0.067)**             | $(0.067)^*$     | $(0.074)^{*}$   | (0.104)*        | (0.104)           | $(0.062)^{**}$         | (0.087)         | (0.086)          |
| Comparison mean                                                  | -0.000                           | -0.096                | 0.100           | 0.102           | 0.029           | 0.181             | -0.070                 | -0.184          | 0.046            |
| p-value on equality of effec                                     |                                  | 0): .945 (2) = (3)    | 3): .656        |                 | (5) = (6)       | 5): .543          | (4) = (7):.974         | (8) = (9)       | ): .944          |
| Standardized score, Math tes                                     |                                  | 0.1-0                 |                 | 0.100           | 0.000           | 0.000             | 0.110                  | 0.100           |                  |
| Treatment effect                                                 | 0.119                            | 0.173                 | 0.055           | 0.128           | 0.233           | 0.008             | 0.112                  | 0.130           | 0.088            |
| Standard error                                                   | (0.048)**                        | $(0.068)^{**}$        | (0.067)         | $(0.076)^*$     | $(0.106)^{**}$  | (0.105)           | $(0.063)^*$            | (0.088)         | (0.088)          |
| Comparison mean                                                  | -0.000                           | -0.191                | 0.199           | 0.019           | -0.179          | 0.233             | -0.013                 | -0.199          | 0.177            |
| p-value on equality of effect                                    |                                  | 0): .491 (2) = (3)    | 3): .214        |                 | (5) = (6)       | <i>5): .131</i>   | (4)=(7):.868           | (8) = (9)       | ): .732          |
| Total standardized score (201                                    |                                  |                       |                 |                 |                 |                   |                        |                 |                  |
| Treatment effect                                                 | 0.151                            | 0.196                 | 0.097           | 0.155           | 0.247           | 0.053             | 0.146                  | 0.160           | 0.127            |
| Standard error                                                   | $(0.048)^{***}$                  | $(0.068)^{***}$       | (0.067)         | (0.075)**       | $(0.105)^{**}$  | (0.105)           | $(0.063)^{**}$         | $(0.088)^*$     | (0.087)          |
| Comparison mean                                                  | -0.000                           | -0.175                | 0.183           | 0.066           | -0.102          | 0.247             | -0.045                 | -0.227          | 0.140            |
| p-value on equality of effect                                    |                                  |                       | 3): .296        |                 | (5)=(t)         | 5): .191          | (4)=(7): .926          | (8) = (9)       | : .794           |
| National political knowledge                                     |                                  |                       | 0.040           | 0.000           | 0 1 1 1         | 0.007             | 0.004                  | 0.070           | 0.104            |
| Treatment effect                                                 | 0.083                            | 0.104                 | 0.048           | 0.063           | 0.141           | -0.037            | 0.094                  | 0.078           | 0.104            |
| Standard error                                                   | (0.048)*                         | (0.067)               | (0.066)         | (0.076)         | (0.104)         | (0.104)           | (0.063)                | (0.087)         | (0.087)          |
| Comparison mean                                                  | 0.000                            | -0.239                | 0.250           | 0.068           | -0.179          | 0.332             | -0.046                 | -0.281          | 0.194            |
| p-value on equality of effect                                    |                                  | , , , ,               | 3): .551        |                 | (5)=(t)         | 3): .227          | (4)=(7): .750          | (8) = (9)       | : .831           |
| International political knowle                                   |                                  |                       | 0.110           | 0.100           | 0.001           | 0.100             | 0.000                  | 0.004           | 0 100            |
| Treatment effect                                                 | 0.080                            | 0.016                 | 0.119           | 0.106           | 0.031           | 0.139             | 0.060                  | 0.004           | 0.103            |
| standard error                                                   | (0.048)*                         | (0.062)               | $(0.062)^*$     | (0.076)         | (0.097)         | (0.096)           | (0.063)                | (0.081)         | (0.080)          |
| Comparison mean                                                  | 0.000                            | -0.402                | 0.419           | 0.057           | -0.317          | 0.458             | -0.039                 | -0.461          | 0.393            |
| p-value on equality of effect                                    |                                  | (2)=(3)               | 3): .239        |                 | (3)=(6          | 5): .429          | (4)=(7): .641          | (8) = (9)       | : .380           |
| Knows how to use the internet<br>Treatment effect                | $\frac{\text{et} (2015)}{0.073}$ | 0.099                 | 0.040           | 0.092           | 0.135           | 0.033             | 0.061                  | 0.074           | 0.046            |
|                                                                  |                                  |                       |                 |                 |                 |                   |                        |                 |                  |
| standard error                                                   | (0.023)***                       | $(0.031)^{***}$       | (0.031)         | $(0.037)^{**}$  | $(0.049)^{***}$ | (0.049)           | $(0.030)^{**}$         | $(0.040)^*$     | (0.040)          |
| Comparison mean                                                  | 0.592                            | 0.417                 | 0.775           | 0.599           | 0.451           | 0.760             | 0.588                  | 0.392           | 0.785            |
| p-value on equality of effec                                     |                                  | <i>): .434 (2)=(3</i> | 3): .180        |                 | $(5)=(\ell$     | 5): .1 <b>3</b> 7 | (4)=(7): .523          | (8) = (9)       | : .621           |
| Knows how to use the internet                                    | · · · ·                          |                       |                 |                 |                 |                   |                        |                 |                  |
| Treatment effect                                                 | 0.049                            | 0.066                 | 0.020           | 0.013           | 0.040           | -0.031            | 0.074                  | 0.085           | 0.056            |
| standard error                                                   | $(0.023)^{**}$                   | $(0.031)^{**}$        | (0.030)         | (0.036)         | (0.048)         | (0.048)           | $(0.030)^{**}$         | $(0.040)^{**}$  | (0.039)          |
| Comparison mean                                                  | 0.639                            | 0.475                 | 0.811           | 0.665           | 0.519           | 0.823             | 0.622                  | 0.444           | 0.803            |
| p-value on equality of effect                                    | ct(5) = (6) = (8) = (9)          | )): .309 (2)=(3       | 3): .286        |                 | (5)=(6          | 5): .295          | (4)=(7): .193          | (8) = (9)       | ): .598          |
| 1                                                                |                                  |                       |                 |                 |                 |                   |                        | /               |                  |

Notes: Year of survey in parentheses. Col. 1 shows results for the full sample, Col. 2 for females, Col. 3 for males, Col. 4 for academic major admits, Col. 5 for female academic major admits, Col. 6 for male academic major admits, Col. 7 for vocational major admits, Col. 8 for female vocational majors and Col. 9 for male vocational major admits. The estimated treatment effects are in the first cell row; standard errors are in the second cell row in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; comparison group means are in the third cell row; the fourth cell row reports p-values of tests of hypotheses of equality of treatment effects between the columns specified in parentheses; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 4: Tertiary Education    |                             |                 | Acade           | emic Major A   | dmits           | Vocational Major Admits |                 |                               |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|-----------------|-----------------|----------------|-----------------|-------------------------|-----------------|-------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 | Male            |                | •               |                         |                 | ů.                            |                                         |
| $ \begin{array}{c} \begin{array}{c}                                      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ever enrolled in tertiary educ |                             | (-)             | (-)             |                | (-)             | (-)                     |                 | (-)                           | (-)                                     |
| $ \begin{array}{c} \mbox{Comparison mean} & 0.091 & 0.075 & 0.107 & 0.110 & 0.016 & 0.128 & 0.077 & 0.026 & 0.026 \\ \mbox{Comparison mean} & 0.028 & 0.046 & 0.020 & 0.033 & 0.075 & 0.090 & 0.011 & 0.027 & 0.091 \\ \mbox{Stendard error} & (0.014)^{**} & (0.029)^{**} & (0.29) & 0.023 & 0.075 & 0.090 & 0.011 & 0.028 & 0.028 \\ \mbox{Comparison mean} & 0.080 & 0.028 & 0.046 & 0.046 & 0.048 & 0.013 & 0.017 & 0.018 & 0.028 \\ \mbox{Comparison mean} & 0.028 & 0.046 & 0.030 & 0.046 & 0.044 & 0.048 & 0.033 & 0.016 & 0.028 & 0.028 \\ \mbox{Comparison mean} & 0.028 & 0.013 & 0.034 & 0.033 & 0.016 & 0.028 & 0.010 & 0.028 & 0.013 \\ \mbox{Comparison mean} & 0.028 & 0.013 & 0.034 & 0.033 & 0.016 & 0.024 & 0.010 & 0.038 \\ \mbox{Comparison mean} & 0.028 & 0.013 & 0.034 & 0.033 & 0.016 & 0.024 & 0.010 & 0.038 \\ \mbox{Comparison mean} & 0.028 & 0.014 & 0.038 & 0.033 & 0.038 & 0.054 & 0.044 & 0.001 & 0.0018 & 0.056 \\ \mbox{Transmit} (2016) & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.020 & 0.001 & 0.015 & 0.056 \\ \mbox{Transmit} (2016) & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 & 0.015 & 0.056 \\ \mbox{Transmit} (2016) & 0.007 & 0.022 & 0.011 & 0.022 & 0.017 & 0.033 & 0.064 & 0.001 & 0.001 & 0.001 \\ \mbox{Transmit} (2016) & 0.007 & 0.022 & 0.011 & 0.022 & 0.017 & 0.033 & 0.064 & 0.001 & 0.000 & 0.000 & 0.000 & 0.000 & 0.002 & 0.022 & 0.012 & 0.011 & 0.015 & 0.035 \\ \mbox{Transmit} (2016) & 0.077 & 0.023 & 0.021 & 0.013 & 0.051 & 0.047 & 0.051 & 0.048 \\ \mbox{Transmit} (2016) & 0.077 & 0.022 & 0.011 & 0.022 & 0.017 & 0.033 & 0.064 & 0.003 & 0.022 & 0.027 & 0.025 & 0.015 & 0.038 \\ \mbox{Transmit} (2016) & 0.077 & 0.022 & 0.011 & 0.022 & 0.017 & 0.033 & 0.044 & 0.003 & 0.030 & 0.029 & 0.022 & 0.027 & 0.025 & 0.017 & 0.028 & 0.027 & 0.025 & 0.018 & 0.0107 & 0.028 & 0.027 & 0.025 & 0.018 & 0.0107 & 0.028 & 0.027 & 0.025 & 0.018 & 0.029 & 0.022 & 0.027 & 0.025 & 0.018 & 0.018 & 0.018 & 0.018 & 0.018 & 0.018 & 0.028 & 0.021 & 0.029 & 0.022 & 0.021 & 0.020 & 0.022 & 0.021 & 0.020 & 0.022 & 0.021 & 0.020 & 0.022 & 0.021 & 0.020 & 0.023 & 0.021$                                                                                                                       |                                |                             | 0.049           | 0.011           | 0.053          | 0.093           | 0.013                   | 0.015           | 0.019                         | 0.009                                   |
| $ \begin{array}{c} produces on equality of effect (3)=(d)=(d)=(d)=(d)=(d)=(d)=(d)=(d)=(d)=(d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | (0.015)**                   | $(0.021)^{**}$  | (0.021)         | $(0.023)^{**}$ | $(0.033)^{***}$ | (0.033)                 | (0.019)         | (0.027)                       | (0.027)                                 |
| $ \begin{array}{c} \underline{Currently annulled in terting reason (2016)}{ Transment fields} & 0.028 & 0.046 & 0.010 & 0.033 & 0.075 & 0.030 & 0.011 & 0.027 & 0.061 \\ \underline{Standard error} & (0.026)^{-1} & (0.229)^{-2} & (0.22)^{-1} & 1.02 & (0.229)^{-1} & (0.031)^{+1} & (0.031) & (0.018) & 0.028 & 0.092 \\ Pralies on equality of field (-) - (-) - (S - (-) - (S$                                                                                                                    | Comparison mean                | 0.091                       | 0.075           | 0.107           | 0.110          |                 |                         | 0.077           | 0.060                         | 0.095                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                             | ·.191 (2)=(3    | 3): .196        |                | (5) = (6)       | ): .084*                | (4)=(7): .194   | (8)=(9)                       | ): .787                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | ( )                         | · · · ·         | ( )             | · · · ·        | · · · ·         | · · · ·                 | · /             | ( )                           | · · · ·                                 |
| $ \begin{array}{c} \mbox{Linearly (200)} \\ \mbox{Treatment effect} & 0.020 & 0.036 & 0.036 & 0.036 & 0.048 & 0.043 & 0.016 & 0.029 & 0.017 \\ \mbox{Standard error} & (0.009)^{**} & (0.013)^{***} & (0.03) & (0.014^{**} & (0.029)^{**} & (0.020) & (0.017)^{**} & (0.07) \\ \mbox{Comparison mean} & 0.028 & 0.013 & 0.043 & 0.038 & 0.033 & 0.018 & 0.050 & 0.024 & 0.010 & 0.038 \\ \mbox{P-calue on equality of effect} & (-6)^{-}(-6)^{-}(-9)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**} & (-2)^{**}$                                                                                                                                  | -                              |                             |                 |                 | 0.094          |                 |                         |                 |                               |                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | (5) = (6) = (8) = (9)       | 267 (2) = (3)   | 3): .191        |                | (5) = (6)       | ): .301                 | (4)=(7):.145    | (8)=(9)                       | ): .391                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 0.020                       | 0.026           | 0.002           | 0.096          | 0.049           | 0.002                   | 0.016           | 0.020                         | 0.009                                   |
| $ \begin{array}{c} \mbox{Comparison mean} & 0.021 & 0.013 & 0.003 & 0.033 & 0.018 & 0.000 & 0.004 & 0.004 & 0.0074 & 0.014 & 0.014 & 0.008 \\ \hline \begin{tabular}{c} \end{tabular} & 0.006 & 0.007 & 0.009 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 &$                                                                                                                                |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | ( )                         |                 | ( )             | · · · ·        | ( )             | ( )                     | · · · ·         | · /                           | . ,                                     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                              |                             |                 |                 | 0.055          |                 |                         |                 |                               |                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | (0) - (0) - (0) - (0) - (0) | .204 (2)-(0)    |                 |                | (0)-(0          | )110                    | (4)-(7)000      | (0)-(0)                       | 200                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 0.006                       | 0.004           | 0.008           | 0.007          | 0.020           | -0.004                  | 0.004           | -0.007                        | 0.015                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                             | · /             | · · · ·         |                | · /             | · · · ·                 |                 |                               | · /                                     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                              |                             |                 |                 | 0.022          |                 |                         |                 |                               |                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                             |                 |                 |                | (-) (           | )**==*                  | (-) (-)         | (-) (-)                       |                                         |
| $ \begin{array}{c} \mbox{Comparison mean} & 0.027 & 0.023 & 0.031 & 0.029 & 0.032 & 0.025 & 0.035 & 0.035 & 0.033 \\ \mbox{(b)} = \mbox{Value} of equality of effect (b) = (b)$                                                                                                                                     |                                | 0.007                       | 0.002           | 0.011           | 0.022          | 0.007           | 0.035                   | -0.004          | -0.001                        | -0.006                                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standard error                 | (0.008)                     | (0.012)         | (0.012)         | (0.013)        | (0.019)         | $(0.019)^*$             | (0.011)         | (0.015)                       | (0.015)                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comparison mean                | 0.027                       | 0.023           | 0.031           | 0.029          | 0.032           | 0.027                   | 0.025           | 0.018                         | 0.033                                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-value on equality of effec   | t (5)=(6)=(8)=(9):          | ·.346 (2)=(3    | 3): .613        |                | (5) = (6)       | 5): .290                | (4)=(7): .143   | (8) = (9)                     | ): .822                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Years spent attending tertiar  | y education (2016)          | <u> </u>        |                 |                |                 | ·                       |                 |                               |                                         |
| $ \begin{array}{c} \text{Comparison mean} & 0.144 & 0.119 & 0.171 & 0.188 & 0.145 & 0.235 & 0.114 & 0.100 & 0.128 \\ \text{p-value on equality of effect } (5)=(6)=(8)=(9): .471 & (2)=(3): .474 & (5)=(6): .143 & (4)=(7): .563 & (8)=(9): .800 \\ \text{Treatment effect} & 1.250 & 1.286 & 1.196 & 1.376 & 1.433 & 1.298 & 1.164 & 1.189 & 1.126 \\ \text{Standard error} & (0.095)^{***} & (0.134)^{***} & (0.130)^{***} & (0.211)^{***} & (0.211)^{***} & (0.174)^{***} & (0.173)^{***} \\ \text{Comparison mean} & 11.140 & 10.845 & 11.450 & 11.230 & 11.025 & 11.454 & 11.078 & 10.717 & 11.448 \\ \text{p-value on equality of effect } (5)=(6)=(8)=(9): .698 & (2)=(3): .633 & (5)=(6): .651 & (4)=(7): .276 & (8)=(9): .797 \\ \hline \text{Plans to continue to tertiary (2113) \\ \text{Treatment effect} & 0.249 & 0.274 & 0.220 & 0.264 & 0.275 & 0.249 & 0.237 & 0.274 & 0.199 \\ \hline \text{Standard error} & 0.0421^{***} & (0.034)^{***} & (0.037)^{***} & (0.053)^{***} & (0.053)^{***} & (0.053)^{***} & (0.041)^{***} & (0.044)^{***} \\ \text{Comparison mean} & 0.430 & 0.363 & 0.500 & 0.448 & 0.394 & 0.506 & 0.418 & 0.341 & 0.496 \\ \text{p-value on equality of effect } (5)=(6)=(8)=(9): .611 & (2)=(3): .257 & (5)=(6): .733 & (4)=(7): .579 & (8)=(9): .233 \\ \hline \text{Standard error} & (0.024)^{***} & (0.33)^{***} & (0.337)^{***} & (0.052)^{***} & (0.052)^{***} & (0.051)^{***} & (0.043)^{***} \\ \text{Comparison mean} & 0.426 & 0.373 & 0.482 & 0.445 & 0.420 & 0.473 & 0.413 & 0.340 & 0.437 \\ \text{P-value on equality of effect } (5)=(6)=(8)=(9): .760 & (2)=(3): .715 & (3)=(6): .747 & (4)=(7): .660 & (1.23) \\ \hline \text{Treatment effect} & 0.164 & 0.181 & 0.146 & 0.163 & 0.145 & 0.179 & 0.165 & 0.206 & 0.123 \\ \hline \text{Standard error} & (0.024)^{***} & (0.334)^{***} & (0.333)^{***} & (0.337)^{***} & (0.054)^{***} & (0.042)^{***} & (0.44)^{***} \\ \text{Comparison mean} & 0.414 & 0.356 & 0.474 & 0.431 & 0.399 & 0.466 & 0.402 & 0.325 & 0.489 \\ \hline \text{Paus to apply to tertiary 2015} & \text{Treatment effect} & 0.061 & 0.132 & 0.146 & 0.163 & 0.145 & 0.179 & 0.165 & 0.206 & 0.123 \\ \hline \text{Treatment effect} & 0.061 & 0.121 & 0.049 & 0.094 & 0.032 & 0.561 & (4)=($ | Treatment effect               | 0.075                       | 0.095           | 0.054           | 0.095          | 0.160           | 0.029                   | 0.062           | 0.052                         | 0.071                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standard error                 | $(0.028)^{***}$             | $(0.040)^{**}$  | (0.040)         | $(0.045)^{**}$ | $(0.063)^{**}$  | (0.063)                 | $(0.037)^{*}$   | (0.052)                       | (0.052)                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comparison mean                | 0.144                       | 0.119           | 0.171           | 0.188          | 0.145           | 0.235                   | 0.114           | 0.100                         | 0.128                                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-value on equality of effec   | t (5)=(6)=(8)=(9):          | •.471 (2)=(3    | 3): .474        |                | (5) = (6)       | 5): .14 <b>3</b>        | (4)=(7): .563   | (8) = (9)                     | ): .800                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | <u>ate (2016)</u>           |                 |                 |                |                 |                         |                 |                               |                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | · · · ·                     | · /             | · ,             |                | ```             | · /                     | · · · ·         |                               | · /                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                              |                             |                 |                 | 11.230         |                 |                         |                 |                               |                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                              |                             | ·.698 (2)=(3    | 3): .633        |                | (5) = (6)       | 6): .651                | (4)=(7):.276    | (8) = (9)                     | ): .797                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             | 0.0-1           | 0.000           | 0.004          |                 | 0.040                   |                 |                               | 0.100                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | ( /                         | ( )             | · · · ·         | · /            |                 | · /                     | · · · ·         |                               | < / / / / / / / / / / / / / / / / / / / |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                              |                             |                 |                 | 0.448          |                 |                         |                 |                               |                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                             | 611(2) = (3)    | 3): .257        |                | (5) = (6)       | ): .733                 | (4)=(7):.579    | (8)=(9)                       | ): .233                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             | 0.994           | 0.967           | 0.907          | 0.994           | 0 200                   | 0.969           | 0.994                         | 0.920                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             |                 | · /             | · /            | · /             | · /                     | · · · ·         | · /                           | · /                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                              |                             |                 |                 | 0.445          |                 |                         |                 |                               |                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                             | (2)=(3)         | ): .710         |                | (D)=(D)         | ): .747                 | (4)=(7): .400   | $(\mathcal{O})=(\mathcal{O})$ | 1: .400                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                             | 0 181           | 0.146           | 0 163          | 0.145           | 0 179                   | 0 165           | 0.206                         | 0 123                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             | × /             | ( /             | · · · ·        | · /             | ```                     | · · · ·         |                               | · /                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                              |                             |                 |                 | 01101          |                 |                         |                 |                               |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             | (-) (-)         | /               |                |                 | )                       | (-) (-)         |                               |                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                             | 0.112           | 0.049           | 0.094          | 0.132           | 0.056                   | 0.072           | 0.098                         | 0.046                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | standard error                 | $(0.019)^{***}$             | $(0.027)^{***}$ | $(0.027)^*$     | (0.030)***     | $(0.042)^{***}$ | (0.042)                 | $(0.025)^{***}$ | $(0.035)^{***}$               | (0.035)                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                             | · · · ·         | · /             | \[             | × /             | · /                     | · ,             | · /                           | ( /                                     |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                              | t (5)=(6)=(8)=(9):          | .373 (2)=(3     |                 |                |                 |                         |                 |                               |                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | if applied: number of prog     | grams applied to (2         | 2015)           |                 |                |                 |                         |                 |                               |                                         |
| Comparison mean1.6531.4951.7721.6741.4471.8961.6361.5431.693p-value on equality of effect $(5)=(6)=(8)=(9): .889$ $(2)=(3): .609$ $(5)=(6): .438$ $(4)=(7): .926$ $(8)=(9): .985$ Admitted to a tertiary program (2015)Treatment effect $0.032$ $0.055$ $0.009$ $0.026$ $0.060$ $-0.009$ $0.036$ $0.053$ $0.020$ standard error $(0.014)^{**}$ $(0.020)^{***}$ $(0.020)$ $(0.023)$ $(0.032)^{*}$ $(0.032)$ $(0.019)^{*}$ $(0.026)^{**}$ $(0.026)$ Comparison mean $0.081$ $0.060$ $0.103$ $0.093$ $0.070$ $0.118$ $0.072$ $0.052$ $0.092$ p-value on equality of effect $(5)=(6)=(8)=(9): .360$ $(2)=(3): .101$ $(5)=(6): .130$ $(4)=(7): .730$ $(8)=(9): .374$ Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Treatment effect               | -0.056                      | 0.025           | -0.089          | -0.045         | 0.107           | -0.153                  | -0.065          | -0.059                        | -0.054                                  |
| Image: Provide on equality of effect $(5)=(6)=(8)=(9)$ : .889 $(2)=(3)$ : .609 $(5)=(6)$ : .438 $(4)=(7)$ : .926 $(8)=(9)$ : .985Admitted to a tertiary program (2015)Treatment effect0.0320.0550.0090.0260.060-0.0090.0360.0530.020standard error $(0.014)^{**}$ $(0.020)^{***}$ $(0.020)$ $(0.023)$ $(0.032)^{*}$ $(0.032)$ $(0.019)^{*}$ $(0.026)^{**}$ $(0.026)$ Comparison mean0.0810.0600.1030.0930.0700.1180.0720.0520.092p-value on equality of effect $(5)=(6)=(8)=(9)$ : .360 $(2)=(3)$ : .101 $(5)=(6)$ : .130 $(4)=(7)$ : .730 $(8)=(9)$ : .374Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | standard error                 | (0.111)                     | (0.163)         | (0.152)         | (0.168)        | (0.233)         | (0.241)                 | (0.148)         | (0.227)                       | (0.196)                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comparison mean                | 1.653                       | 1.495           | 1.772           | 1.674          | 1.447           | 1.896                   | 1.636           | 1.543                         | 1.693                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p-value on equality of effec   | t (5)=(6)=(8)=(9):          | .889 (2)=(3     | <i>3): .609</i> |                | (5) = (6)       | 5): .438                | (4)=(7): .926   | (8) = (9)                     | ): .985                                 |
| standard error $(0.014)^{**}$ $(0.020)^{***}$ $(0.020)$ $(0.023)$ $(0.032)^{*}$ $(0.032)$ $(0.019)^{*}$ $(0.026)^{**}$ $(0.026)$ Comparison mean $0.081$ $0.060$ $0.103$ $0.093$ $0.070$ $0.118$ $0.072$ $0.052$ $0.092$ p-value on equality of effect $(5)=(6)=(8)=(9)$ : .360 $(2)=(3)$ : .101 $(5)=(6)$ : .130 $(4)=(7)$ : .730 $(8)=(9)$ : .374Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                             |                 |                 |                |                 |                         |                 | /                             |                                         |
| standard error $(0.014)^{**}$ $(0.020)^{***}$ $(0.020)$ $(0.023)$ $(0.032)^{*}$ $(0.032)$ $(0.019)^{*}$ $(0.026)^{**}$ $(0.026)$ Comparison mean $0.081$ $0.060$ $0.103$ $0.093$ $0.070$ $0.118$ $0.072$ $0.052$ $0.092$ p-value on equality of effect $(5)=(6)=(8)=(9)$ : .360 $(2)=(3)$ : .101 $(5)=(6)$ : .130 $(4)=(7)$ : .730 $(8)=(9)$ : .374Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Treatment effect               | 0.032                       | 0.055           | 0.009           | 0.026          | 0.060           | -0.009                  | 0.036           | 0.053                         | 0.020                                   |
| Comparison mean $0.081$ $0.060$ $0.103$ $0.093$ $0.070$ $0.118$ $0.072$ $0.052$ $0.092$ p-value on equality of effect (5)=(6)=(8)=(9): .360(2)=(3): .101(5)=(6): .130(4)=(7): .730(8)=(9): .374Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |
| p-value on equality of effect $(5)=(6)=(8)=(9)$ : .360 $(2)=(3)$ : .101 $(5)=(6)$ : .130 $(4)=(7)$ : .730 $(8)=(9)$ : .374Observations199810099898124124001186597589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                             | · /             | · · · ·         | · · · ·        | · /             | · · · ·                 | ( )             | · /                           | · /                                     |
| Observations         1998         1009         989         812         412         400         1186         597         589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                              |                             |                 |                 | 2.300          |                 |                         |                 |                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 |                 | 812            |                 |                         |                 |                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                 |                 |                |                 |                         |                 |                               |                                         |

Notes: Year of survey in parentheses. See Table 3 notes for description of columns and rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.

#### Table 5: Marriage, Reproductive Health and Health Behaviors

|                                     | (                         | Combined        |                 | Acade           | emic Major A   | dmits           | Vocatio        | onal Major A    | dmits       |
|-------------------------------------|---------------------------|-----------------|-----------------|-----------------|----------------|-----------------|----------------|-----------------|-------------|
|                                     | All                       | Female          | Male            | All             | Female         | Male            | All            | Female          | Male        |
|                                     | (1)                       | (2)             | (3)             | (4)             | (5)            | (6)             | (7)            | (8)             | (9)         |
| Ever lived with $partner(201)$      | <u>(6)</u>                |                 |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.063                    | -0.091          | -0.027          | -0.060          | -0.093         | -0.015          | -0.065         | -0.091          | -0.036      |
| Standard error                      | (0.020)***                | $(0.028)^{***}$ | (0.028)         | $(0.032)^*$     | $(0.044)^{**}$ | (0.044)         | (0.026)**      | $(0.036)^{**}$  | (0.036)     |
| Comparison mean                     | 0.241                     | 0.344           | 0.134           | 0.227           | 0.309          | 0.137           | 0.251          | 0.369           | 0.132       |
| p-value on equality of effe         | ect (5) = (6) = (8) = (9) | ): .426 (2)=(3  | <i>3): .106</i> |                 | (5) = (6)      | <i>3): .210</i> | (4)=(7): .891  | (8) = (9)       | ): .281     |
| Ever pregnant/had a pregna          | ant partner (2016)        |                 |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.071                    | -0.107          | -0.023          | -0.077          | -0.114         | -0.024          | -0.067         | -0.103          | -0.025      |
| Standard error                      | $(0.024)^{***}$           | $(0.032)^{***}$ | (0.031)         | $(0.038)^{**}$  | (0.050)**      | (0.049)         | (0.031)**      | $(0.041)^{**}$  | (0.041)     |
| Comparison mean                     | 0.403                     | 0.582           | 0.213           | 0.396           | 0.537          | 0.242           | 0.407          | 0.614           | 0.194       |
| p-value on equality of effe         |                           | ): .317 (2)=(3) | ): .061*        |                 | (5) = (6)      | <i>6): .197</i> | (4)=(7): .839  | (8) = (9)       | ): .173     |
| Number of children ever ha          |                           |                 |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.130                    | -0.217          | -0.030          | -0.131          | -0.186         | -0.054          | -0.129         | -0.239          | -0.014      |
| Standard error                      | (0.040)***                | $(0.054)^{***}$ | (0.054)         | $(0.064)^{**}$  | $(0.085)^{**}$ | (0.085)         | $(0.052)^{**}$ | $(0.070)^{***}$ | (0.069)     |
| Comparison mean                     | 0.519                     | 0.814           | 0.212           | 0.504           | 0.738          | 0.249           | 0.530          | 0.868           | 0.188       |
| p-value on equality of effe         |                           |                 | : .014**        |                 | (5) = (6)      | 5): .271        | (4)=(7): .988  | (8) = (9):      | .022**      |
| Had unwanted first pregnar          | ncy (full sample) (20     | <u>016)</u>     |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.071                    | -0.115          | -0.019          | -0.058          | -0.097         | -0.009          | -0.080         | -0.127          | -0.027      |
| Standard error                      | $(0.024)^{***}$           | $(0.032)^{***}$ | (0.031)         | (0.038)         | (0.050)**      | (0.049)         | (0.031)**      | $(0.041)^{***}$ | (0.040)     |
| Comparison mean                     | 0.375                     | 0.566           | 0.181           | 0.373           | 0.526          | 0.209           | 0.376          | 0.594           | 0.163       |
| p-value on equality of effe         | ect (5) = (6) = (8) = (9) | ): .183(2)=(3)  | : .032**        |                 | (5) = (6)      | s): .205        | (4)=(7): .656  | (8) = (9)       | : .083*     |
| Desired fertility: $\#$ of children | ren by age 50 (2013)      | <u>)</u>        |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.041                    | -0.078          | -0.005          | -0.146          | -0.210         | -0.086          | 0.031          | 0.014           | 0.049       |
| Standard error                      | (0.052)                   | (0.073)         | (0.073)         | $(0.081)^*$     | (0.115)*       | (0.114)         | (0.067)        | (0.096)         | (0.095)     |
| Comparison mean                     | 3.629                     | 3.639           | 3.619           | 3.651           | 3.644          | 3.658           | 3.615          | 3.636           | 3.594       |
| p-value on equality of effe         | ect (5) = (6) = (8) = (9) | ): .316 (2)=(3  | 3): .482        |                 | (5) = (6)      | 5): .443        | (4)=(7):.091*  | (8)=(9)         | ): .792     |
| Index of risky sexual behavi        | ior(safe>risky)(20)       | <u>13)</u>      |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.052                    | -0.014          | -0.084          | -0.045          | -0.025         | -0.056          | -0.058         | -0.007          | -0.105      |
| Standard error                      | (0.030)*                  | (0.041)         | $(0.041)^{**}$  | (0.046)         | (0.064)        | (0.064)         | (0.039)        | (0.054)         | $(0.053)^*$ |
| Comparison mean                     | 0.000                     | 0.096           | -0.099          | 0.013           | 0.110          | -0.092          | -0.008         | 0.086           | -0.104      |
| p-value on equality of effe         | ect (5) = (6) = (8) = (9) | ):.601 (2)=(3   | 3): .229        |                 | (5) = (6)      | 5): .732        | (4)=(7): .835  | (8) = (9)       | ): .195     |
| Index of STI risk exposure (        | (2013)                    |                 |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | -0.074                    | -0.062          | -0.080          | -0.109          | -0.116         | -0.092          | -0.051         | -0.025          | -0.075      |
| Standard error                      | (0.029)**                 | (0.041)         | $(0.041)^{**}$  | $(0.046)^{**}$  | $(0.064)^*$    | (0.063)         | (0.038)        | (0.053)         | (0.053)     |
| Comparison mean                     | -0.000                    | 0.092           | -0.096          | 0.037           | 0.132          | -0.065          | -0.025         | 0.064           | -0.116      |
| p-value on equality of effe         |                           |                 | 8): .748        |                 | (5) = (6)      | 5): .783        | (4)=(7): .333  | (8) = (9)       | ): .506     |
| Preventative health behavior        | or (3 questions) (201     |                 |                 |                 |                |                 |                |                 |             |
| Treatment effect                    | 0.116                     | 0.124           | 0.114           | 0.171           | 0.183          | 0.170           | 0.078          | 0.082           | 0.076       |
| Standard error                      | (0.038)***                | $(0.054)^{**}$  | $(0.054)^{**}$  | $(0.060)^{***}$ | $(0.084)^{**}$ | (0.084)**       |                | (0.070)         | (0.070)     |
| Comparison mean                     | 1.624                     | 1.691           | 1.555           | 1.633           | 1.721          | 1.538           | 1.618          | 1.669           | 1.566       |
| p-value on equality of effe         | ect (5) = (6) = (8) = (9) | ):.658 (2)=(3   |                 |                 | (5)=(6         | 5): .919        | (4)=(7): .235  | (8) = (9)       | ): .947     |
| Observations                        | 2032                      | 1023            | 1009            | 821             | 417            | 404             | 1211           | 606             | 605         |

Notes: Year of survey in parentheses. See Table 3 notes for description of columns and rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) and a dummy for missing JHS finishing exam score; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1. 5 and 10%. Refer to Table A1 for components of index of risky sexual behavior and index of STI exposure.

#### Table 6: Labor Market Outcomes

|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Combined              |                     |                     | emic Major A                  |                                         |                         | nal Major A          |                                         |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------------|-------------------------------|-----------------------------------------|-------------------------|----------------------|-----------------------------------------|
|                                                   | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Female                | Male                | All                 | Female                        | Male                                    | All                     | Female               | Male                                    |
|                                                   | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                   | (3)                 | (4)                 | (5)                           | (6)                                     | (7)                     | (8)                  | (9)                                     |
| Panel A. Earnings                                 | 010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Inv. hyperbolic sine earnings (2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.999                 | 0 177               | 0.010               | 0.012                         | 0.960                                   | 0 505                   | 0.400                | 0.409                                   |
| Treatment effect                                  | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.383                 | 0.177               | 0.019               | 0.213                         | -0.269                                  | 0.505                   | 0.498                | 0.482                                   |
| Standard error                                    | $(0.145)^{**}$<br>3.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(0.198)^*$<br>2.413  | (0.197)             | (0.227)             | (0.311)                       | (0.310)                                 | $(0.187)^{***}$         | $(0.257)^*$<br>2.484 | $(0.255)^*$<br>4.059                    |
| Comparison mean<br>p-value on equality of effects |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 4.054               | 3.143               | 2.313                         | 4.047<br>6): .273                       | 3.263<br>(4)=(7): .099* |                      | 4.059<br>9): .965                       |
| Log earnings last month if posi                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): .211 $(2)=(3)$     | ): .400             |                     | $(\mathcal{D})=(\mathcal{D})$ | )): .213                                | $(4)=(7):.099^{\circ}$  | (8)=(8               | 1): .900                                |
| Treatment effect                                  | -0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.049                 | -0.064              | -0.059              | 0.109                         | -0.177                                  | 0.006                   | 0.012                | 0.005                                   |
| Standard error                                    | (0.060)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.049)               | (0.077)             | (0.099)             | (0.151)                       | (0.125)                                 | (0.077)                 | (0.117)              | (0.003)                                 |
| Comparison mean                                   | 5.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.093)<br>4.792      | (0.011)<br>5.251    | (0.033)<br>5.053    | (0.131)<br>4.761              | (0.125)<br>5.252                        | 5.074                   | 4.812                | (0.097)<br>5.250                        |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     | 0.000               |                               | 6): .144                                | (4)=(7):.603            |                      | 9): .964                                |
| Positive earnings (2016)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0)                   | ), 1010             |                     |                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         | (0) (0               | .), ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Treatment effect                                  | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.063                 | 0.039               | 0.007               | 0.028                         | -0.028                                  | 0.088                   | 0.087                | 0.085                                   |
| Standard error                                    | (0.025)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(0.034)^*$           | (0.034)             | (0.039)             | (0.053)                       | (0.053)                                 | $(0.032)^{***}$         | $(0.044)^{**}$       | $(0.044)^*$                             |
| Comparison mean                                   | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.441                 | 0.679               | 0.545               | 0.424                         | 0.678                                   | 0.564                   | 0.452                | 0.679                                   |
| p-value on equality of effects                    | (5) = (6) = (8) = (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ): .299 (2)=(3        | ?): .610            |                     | (5) = (6)                     | <i>6): .450</i>                         | (4)=(7): .105           | (8) = (9)            | 9): .980                                |
| Total earnings last month (GH                     | X) (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | -                   |                     |                               | *                                       |                         |                      | *                                       |
| Treatment effect                                  | 7.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.132                 | 6.216               | -19.199             | -6.732                        | -38.617                                 | 25.921                  | 13.097               | 36.492                                  |
| Standard error                                    | (10.993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (15.176)              | (15.068)            | (17.283)            | (23.815)                      | (23.722)                                | $(14.244)^*$            | (19.678)             | (19.501)*                               |
| Comparison mean                                   | 134.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.022                | 190.202             | 136.261             | 79.106                        | 198.471                                 | 133.887                 | 84.090               | 184.703                                 |
| p-value on equality of effects                    | (5) = (6) = (8) = (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ): .094*(2)=(3        | ?): .959            |                     | (5) = (t)                     | 6): .342                                | (4)=(7): .044**         | (8)=(9               | 9): .398                                |
| Panel B. Work Hours                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Total hours worked last month                     | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Treatment effect                                  | 9.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.497                | 1.567               | 2.762               | 15.558                        | -11.482                                 | 14.916                  | 18.706               | 10.706                                  |
| Standard error                                    | (5.383)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (7.560)**             | (7.555)             | (8.452)             | (11.850)                      | (11.883)                                | $(6.968)^{**}$          | (9.796)*             | (9.772)                                 |
| Comparison mean                                   | 82.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.354                | 99.899              | 76.366              | 60.569                        | 93.694                                  | 87.000                  | 70.467               | 104.047                                 |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): .233 (2)=(3        | e): .136            |                     | (5) = (t)                     | <i>6): .107</i>                         | (4) = (7):.267          | (8) = (9)            | 9): .563                                |
| Worked over 10 hours in the pa                    | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Treatment effect                                  | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.089                 | 0.024               | -0.023              | 0.038                         | -0.097                                  | 0.116                   | 0.122                | 0.107                                   |
| Standard error                                    | (0.025)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(0.034)^{***}$       | (0.034)             | (0.039)             | (0.053)                       | $(0.054)^*$                             | ( /                     | $(0.044)^{***}$      | $(0.044)^{**}$                          |
| Comparison mean                                   | 0.538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.424                 | 0.659               | 0.537               | 0.415                         | 0.671                                   | 0.538                   | 0.430                | 0.651                                   |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ?): .184            |                     | (5) = (6)                     | ): .074*                                | $(4) = (7): .005^{***}$ | * (8)=(9             | 9): .805                                |
| Total hours worked last month                     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Treatment effect                                  | 2.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.000                | -4.778              | 6.747               | 26.621                        | -7.396                                  | -0.642                  | 4.150                | -4.263                                  |
| Standard error                                    | (6.810)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10.560)              | (8.910)             | (11.142)            | (17.266)                      | (14.571)                                | (8.595)                 | (13.325)             | (11.253)                                |
| Comparison mean                                   | 147.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148.272               | 146.143             | 136.801             | 138.234                       | 135.803                                 | 153.959                 | 155.149              | 153.141                                 |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | <i>: .198</i>       |                     | (5) = (6)                     | 6): .132                                | (4)=(7): .599           | (8)=(9)              | 9): .629                                |
| Earnings per hour if worked ov                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                     | 0.400               | 0 =0 (              |                               |                                         | 0.001                   | 0.400                | 0.040                                   |
| Treatment effect                                  | -0.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.494                | -0.499              | -0.724              | -0.507                        | -0.783                                  | -0.364                  | -0.492               | -0.246                                  |
| Standard error                                    | (0.233)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.356)               | $(0.302)^*$         | $(0.385)^*$         | (0.581)                       | (0.502)                                 | (0.293)                 | (0.449)              | (0.378)                                 |
| Comparison mean                                   | 2.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.762                 | 2.941               | 2.765               | 1.687                         | 3.494                                   | 2.256                   | 1.814                | 2.559                                   |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): $.862 (2) = (3)$   | ): .990             |                     | (5) = (6)                     | 6): .718                                | (4)=(7): .457           | $(\delta)=(\delta)$  | 9): .675                                |
| Total hours helping family in p                   | ( )-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.449                 | 9 544               | 9 795               | 1 901                         | 5 404                                   | 9.914                   | 2 410                | 2 550                                   |
| Treatment effect<br>Standard error                | -3.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.443                | -3.544              | -3.735              | -1.201                        | -5.404                                  | -3.314                  | -3.410               | -2.550                                  |
| Comparison mean                                   | $(2.008)^*$<br>16.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(2.815) \\ 20.536$   | $(2.734) \\ 12.170$ | $(3.209) \\ 18.056$ | $(4.285) \\ 21.395$           | $(4.637) \\ 13.694$                     | $(2.567) \\ 15.388$     | $(3.754) \\ 19.840$  | $(3.390) \\ 11.303$                     |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     | 18.050              |                               | 6): .505                                |                         |                      | 9): .864                                |
|                                                   | (J) - (U) | ): $.924 (2) - (3)$   | ): .110             |                     | (J)-(U)                       | )): .000                                | (4)=(7): .918           | (0)-(8               | 9): .004                                |
| Panel C. Occupation                               | (201c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Enrolled in formal study/traini                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.050                 | 0.000               | 0.052               | 0.000                         | 0.000                                   | 0.007                   | 0.020                | 0.017                                   |
| Treatment effect                                  | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050                 | 0.000               | 0.053               | 0.080                         | 0.026                                   | 0.007                   | 0.030                | -0.017                                  |
| Standard error                                    | (0.015)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(0.021)^{**}$        | (0.021)             | $(0.023)^{**}$      | $(0.033)^{**}$                | (0.032)                                 | (0.019)                 | (0.027)              | (0.027)                                 |
| Comparison mean<br>p-value on equality of effects | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.072                 | 0.111               | 0.105               | 0.092                         | 0.119                                   | 0.081                   | 0.058                | 0.105                                   |
| Positive earnings or in school (1)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): .140 $(2)=(3)$     |                     |                     | $(\mathcal{D})=(\mathcal{U})$ | <i>6): .240</i>                         | (4)=(7): .119           | (0)=(8               | 9): .210                                |
| Treatment effect                                  | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.095                 | 0.025               | 0.040               | 0.087                         | -0.020                                  | 0.080                   | 0.101                | 0.055                                   |
| standard error                                    | $(0.023)^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(0.032)^{***}$       | (0.023)             | (0.040)             | $(0.051)^*$                   | (0.051)                                 | $(0.030)^{***}$         | $(0.042)^{**}$       | (0.033)                                 |
| Comparison mean                                   | 0.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.504                 | (0.032)<br>0.756    | (0.037)<br>0.632    | $(0.031)^{\circ}$<br>0.505    | (0.031)<br>0.769                        | 0.624                   | 0.504                | (0.042)<br>0.747                        |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     | 0.032               |                               | 6): .138                                | (4)=(7):.400            |                      | 9): .439                                |
| Wage worker (2016)                                | (0) - (0) - (0) - (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(2)^{-1}(3)$         |                     |                     | (0)-(0                        |                                         | (=)-(1)400              | (0)-(8               | ·/· ·+00                                |
| Treatment effect                                  | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.088                 | 0.011               | 0.001               | 0.071                         | -0.074                                  | 0.085                   | 0.100                | 0.069                                   |
| standard error                                    | $(0.022)^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0.031)^{***}$       | (0.030)             | (0.034)             | (0.048)                       | (0.048)                                 | $(0.028)^{***}$         | $(0.040)^{**}$       | $(0.039)^*$                             |
| Comparison mean                                   | (0.022)<br>0.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.031)<br>0.179      | (0.030)<br>0.305    | (0.034)<br>0.244    | 0.180                         | (0.048)<br>0.313                        | 0.239                   | (0.040)<br>0.178     | 0.300                                   |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     | 0.244               |                               | 0.313<br>): .032**                      | $(4)=(7):.056^*$        |                      | 9): .585                                |
| Day or seasonal laborer (2016)                    | (v) - (v) - (o) = (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,000 ( <i>2)=</i> (0) | 010                 |                     | (0)=(0)                       | 002                                     | (=)-(1):.000'           | (0)=(9               | 1                                       |
|                                                   | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                 | 0.000               | 0.004               | 0.000                         | 0.001                                   | 0.045                   | 0.001                | 0.000                                   |
| Treatment effect                                  | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008                 | 0.020               | -0.024              | 0.022                         | -0.081                                  | 0.045                   | -0.001               | 0.089                                   |
| standard error                                    | (0.017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.023)               | (0.023)             | (0.026)             | (0.036)                       | (0.036)**                               | , ,                     | (0.030)              | (0.030)***                              |
| Comparison mean                                   | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.047                 | 0.210               | 0.129               | 0.028                         | 0.240                                   | 0.124                   | 0.060                | 0.189                                   |
| p-value on equality of effects                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): .003**(2)=(3       | 9:.713              |                     | (5)=(6)                       | : .043**                                | (4)=(7): .045**         | (8)=(9)              | ): .031**                               |
| Working for own or family bus                     | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                     |                     |                               |                                         |                         |                      |                                         |
| Treatment effect                                  | -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.019                | -0.006              | -0.032              | -0.041                        | -0.028                                  | 0.001                   | -0.005               | 0.008                                   |
| standard error                                    | (0.023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.032)               | (0.032)             | (0.036)             | (0.050)                       | (0.050)                                 | (0.029)                 | (0.042)              | (0.041)                                 |
| Comparison mean                                   | 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.286                 | 0.326               | 0.292               | 0.254                         | 0.333                                   | 0.315                   | 0.309                | 0.321                                   |
| p-value on equality of effects                    | (5)=(6)=(8)=(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ): .878 (2)=(3        | e): .777            |                     | (5) = (6)                     | 5): . <i>853</i>                        | (4)=(7): .469           | (8) = (9)            | 9): .822                                |
| p value on equality of enecus                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / ( / ( -             |                     |                     | (-) (-                        | /                                       |                         |                      |                                         |

Table 6: Labor Market Outcomes cont.

|                               |                              | Combined              |                 | Acade           | emic Major A    | dmits           | Vocation       | nal Major . | Admits         |
|-------------------------------|------------------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------|-------------|----------------|
|                               | All                          | Female                | Male            | All             | Female          | Male            | All            | Female      | Male           |
|                               | (1)                          | (2)                   | (3)             | (4)             | (5)             | (6)             | (7)            | (8)         | (9)            |
| Panel D. Job Search/ Reserved | rvation Wage                 |                       |                 |                 |                 |                 |                |             |                |
| Actively searching for a job  | (2016)                       |                       |                 |                 |                 |                 |                |             |                |
| Treatment effect              | 0.071                        | 0.051                 | 0.088           | 0.136           | 0.108           | 0.157           | 0.027          | 0.012       | 0.040          |
| standard error                | $(0.022)^{***}$              | (0.032)               | $(0.032)^{***}$ | $(0.035)^{***}$ | $(0.050)^{**}$  | (0.050)***      | ć (0.029)      | (0.041)     | (0.041)        |
| Comparison mean               | 0.276                        | 0.235                 | 0.320           | 0.274           | 0.226           | 0.327           | 0.277          | 0.241       | 0.315          |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ):.105 (2)=(3         | 3): .415        |                 | $(5) = (\ell$   | <i>3): .491</i> | (4)=(7):.017** | (8) = (8)   | 9): .630       |
| If no earnings and no school  | : actively searching f       | <u>or a job (2016</u> |                 |                 |                 |                 |                |             |                |
| Treatment effect              | 0.142                        | 0.166                 | 0.074           | 0.253           | 0.295           | 0.145           | 0.059          | 0.078       | 0.015          |
| standard error                | $(0.041)^{***}$              | $(0.051)^{***}$       | (0.069)         | $(0.063)^{***}$ | $(0.079)^{***}$ | (0.102)         | (0.054)        | (0.066)     | (0.093)        |
| Comparison mean               | 0.322                        | 0.257                 | 0.459           | 0.305           | 0.243           | 0.450           | 0.333          | 0.268       | 0.465          |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ): .090*(2)=(3        | 3): .284        |                 | (5) = (6)       | <i>6): .245</i> | (4)=(7):.019** | (8) = (8)   | 9): .584       |
| If earnings: actively searchi | ng for a job (2016)          |                       |                 |                 |                 |                 |                |             |                |
| Treatment effect              | 0.057                        | -0.009                | 0.104           | 0.107           | 0.003           | 0.179           | 0.029          | -0.016      | 0.061          |
| standard error                | (0.029)*                     | (0.045)               | $(0.038)^{***}$ | $(0.048)^{**}$  | (0.074)         | $(0.062)^{***}$ | (0.037)        | (0.057)     | (0.048)        |
| Comparison mean               | 0.274                        | 0.237                 | 0.300           | 0.285           | 0.242           | 0.314           | 0.267          | 0.233       | 0.290          |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ): .109 (2)=(3        | e): .055*       |                 | (5) = (6)       | ): .068*        | (4)=(7): .194  | (8) = (8)   | 9): .301       |
| Lowest daily wage willing to  | o work for(GHX) (20          | <u>13)</u>            |                 |                 |                 |                 |                |             |                |
| Treatment effect              | -0.606                       | 0.770                 | -2.049          | -0.520          | 0.290           | -1.494          | -0.637         | 1.118       | -2.408         |
| standard error                | (0.578)                      | (0.814)               | $(0.806)^{**}$  | (0.904)         | (1.273)         | (1.260)         | (0.752)        | (1.058)     | $(1.049)^{**}$ |
| Comparison mean               | 9.949                        | 8.012                 | 11.959          | 9.291           | 7.163           | 11.550          | 10.396         | 8.599       | 12.230         |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ): .086*(2)=(3)       | ): .013**       |                 | $(5) = (\ell$   | 5): .319        | (4)=(7): .920  | (8) = (9)   | ): .018**      |
| Willing to move for wage en   | <u>nployment (2013)</u>      |                       |                 |                 |                 |                 |                |             |                |
| Treatment effect              | 0.009                        | 0.004                 | 0.013           | 0.003           | -0.016          | 0.020           | 0.014          | 0.018       | 0.010          |
| standard error                | (0.016)                      | (0.023)               | (0.023)         | (0.026)         | (0.036)         | (0.036)         | (0.021)        | (0.030)     | (0.030)        |
| Comparison mean               | 0.870                        | 0.854                 | 0.888           | 0.857           | 0.846           | 0.869           | 0.879          | 0.859       | 0.900          |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ): .884 (2)=(3        | 3): .775        |                 | $(5) = (\ell$   | 5): .486        | (4)=(7): .733  | (8) = (8)   | 9): .845       |
| Willing to do labor intensive | <u>e work (2013)</u>         |                       |                 |                 |                 |                 |                |             |                |
| Treatment effect              | 0.009                        | 0.027                 | -0.014          | 0.006           | 0.067           | -0.061          | 0.011          | -0.001      | 0.020          |
| standard error                | (0.024)                      | (0.033)               | (0.033)         | (0.037)         | (0.052)         | (0.052)         | (0.031)        | (0.043)     | (0.043)        |
| Comparison mean               | 0.640                        | 0.555                 | 0.729           | 0.645           | 0.570           | 0.726           | 0.637          | 0.545       | 0.731          |
| p-value on equality of effe   | ects $(5) = (6) = (8) = (9)$ | ): .357 (2)=(3        | 3): .377        |                 | (5) = (6)       | ): .078*        | (4) = (7):.919 | (8)=(8      | 9): .734       |

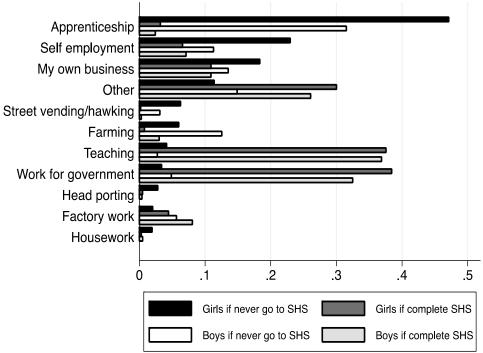
Notes: Data from 2016 callback. See Table 3 notes for description of columns and rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) and a dummy for missing JHS finishing exam score; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. 1984 observations in 2013 survey and 1996 observations in 2016 survey.

|                                                                        |                                   | Combined                 | 3.6.1                     | -                        | mic Major Admits                                                          | -                        | onal Major A              |                           |
|------------------------------------------------------------------------|-----------------------------------|--------------------------|---------------------------|--------------------------|---------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|
|                                                                        | <u>All</u> (1)                    | Female (2)               | $\frac{\text{Male}}{(3)}$ | $\frac{\text{All}}{(4)}$ | $\frac{\text{Female}}{(5)}  \frac{\text{Male}}{(6)}$                      | $\frac{\text{All}}{(7)}$ | Female (8)                | $\frac{\text{Male}}{(9)}$ |
| Panel A. Earnings                                                      | (1)                               | (2)                      | (3)                       | (4)                      | (5) (6)                                                                   | (7)                      | (8)                       | (9)                       |
| Inv. hyperbolic sine earnings (2016)                                   |                                   |                          |                           |                          |                                                                           |                          |                           |                           |
| Lower Bound on Treatment Effect                                        | 0.351                             | 0.460                    | 0.133                     | 0.089                    | 0.337 -0.315                                                              | 0.516                    | 0.533                     | 0.423                     |
| Standard error                                                         | $(0.151)^{**}$                    | $(0.205)^{**}$           | (0.204)                   | (0.242)                  | (0.331) $(0.326)$                                                         | $(0.193)^{***}$          | $(0.262)^{**}$            | (0.263)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  |                          |                           | 0.070                    | (3)=(4):.160                                                              | (4)=(7): .169            | (8)=(9)                   |                           |
| Upper Bound on Treatment Effect<br>Standard error                      | 0.477<br>$(0.150)^{***}$          | 0.746<br>$(0.203)^{***}$ | 0.180<br>(0.200)          | $0.370 \\ (0.242)$       | $\begin{array}{ccc} 0.802 & -0.199 \\ (0.329)^{**} & (0.321) \end{array}$ | $0.550 \\ (0.191)^{***}$ | 0.702<br>(0.258)***       | 0.422<br>(0.257)          |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ( )                      | ( )                       | (0.242)                  | (0.323) $(0.321)(3)=(4): .029^{**}$                                       | (4)=(7):.559             | (0.258)<br>(8)=(9)        | . ,                       |
| Log earnings last month if positive                                    |                                   |                          |                           |                          |                                                                           |                          |                           |                           |
| Lower Bound on Treatment Effect                                        | -0.028                            | 0.044                    | -0.080                    | -0.107                   | 0.079 - 0.239                                                             | 0.019                    | 0.023                     | 0.017                     |
| Standard error<br>p-value on equality of effects                       | (0.062)<br>(5)=(6)=(8)=(9):       | (0.095)                  | (0.079)                   | (0.102)                  | $(0.157)$ $(0.128)^*$<br>(3)=(4):.116                                     | (0.078)<br>(4)=(7):.328  | (0.120)<br>(8)=(9)        | (0.100)                   |
|                                                                        | 0.038                             | 0.150                    | -0.042                    | 0.023                    | 0.266 -0.175                                                              | 0.040                    | 0.102                     | 0.016                     |
| Upper Bound on Treatment Effect<br>Standard error                      | (0.058)                           | (0.092)                  | (0.042)                   | (0.023)                  | $(0.153)^*$ $(0.124)$                                                     | (0.075)                  | (0.102)                   | (0.016)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ( )                      | · /                       | (0.000)                  | $(3)=(4):.025^{**}$                                                       | (4)=(7):.890             | (8)=(9)                   | · /                       |
| Positive earnings (2016)                                               |                                   |                          |                           |                          |                                                                           |                          |                           |                           |
| Lower Bound on Treatment Effect                                        | 0.063<br>(0.026)**                | 0.078<br>(0.035)**       | 0.034<br>(0.035)          | $0.024 \\ (0.041)$       | $\begin{array}{ccc} 0.053 & -0.027 \\ (0.056) & (0.056) \end{array}$      | 0.088<br>$(0.033)^{***}$ | 0.092<br>$(0.045)^{**}$   | $0.074 \\ (0.045)^*$      |
| Standard error<br>p-value on equality of effects                       | (5)=(6)=(8)=(9):                  | ( )                      | · · · ·                   | (0.041)                  | (0.030) $(0.030)(3)=(4):.314$                                             | (4)=(7):.223             | $(0.043)^{++}$<br>(8)=(9) | · · · ·                   |
| Upper Bound on Treatment Effect                                        | 0.076                             | 0.110                    | 0.035                     | 0.049                    | 0.105 -0.020                                                              | 0.091                    | 0.109                     | 0.074                     |
| Standard error                                                         | $(0.026)^{***}$                   | $(0.035)^{***}$          | (0.035)                   | (0.043)                  | $(0.057)^*$ $(0.056)$                                                     | $(0.033)^{***}$          | $(0.045)^{**}$            | $(0.045)^*$               |
| p-value on equality of effects                                         | (5) = (6) = (8) = (9):            | .302 (2)=(3)             |                           | · · · ·                  | (3)=(4):.120                                                              | (4) = (7): .393          | (8) = (9)                 | ```                       |
| Total earnings last month (GHX) (                                      |                                   | = 104                    | 1 000                     | 94.040                   |                                                                           | 20, 220                  | 15 400                    | 20.004                    |
| Lower Bound on Treatment Effect<br>Standard error                      | 8.183<br>(11.992)                 | $7.164 \\ (16.466)$      | $1.636 \\ (16.407)$       | -24.840<br>(19.212)      | -6.567 -54.572<br>(26.512) (26.136)*                                      | $29.238 \\ (15.345)^*$   | 15.480<br>(20.989)        | 38.094<br>(21.049)*       |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ```                      | · · · ·                   | (13.212)                 | (20.312) $(20.130)(3)=(4):.197$                                           | $(4) = (7): .028^{**}$   |                           | ```                       |
| Upper Bound on Treatment Effect                                        | 36.353                            | 40.391                   | 18.306                    | 28.178                   | 39.599 -18.474                                                            | 38.949                   | 37.234                    | 37.850                    |
| Standard error                                                         | $(9.572)^{***}$                   | $(14.194)^{***}$         | (14.036)                  | $(15.955)^*$             | $(23.751)^*$ (23.181)                                                     | $12.623)^{***}$          | $(18.619)^{**}$           | (18.565)**                |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | .189 (2)=(3)             | ): .268                   | . ,                      | (3)=(4): .080*                                                            | (4)=(7): .596            | (8)=(9)                   | ): .981                   |
| Panel B. Work Hours                                                    |                                   |                          |                           |                          |                                                                           |                          |                           |                           |
| Total hours worked last month (20)                                     |                                   | 10 500                   | 0.007                     | 0.000                    | 10.000 14.051                                                             | 15 0.10                  | 10 (10                    | 10 151                    |
| Lower Bound on Treatment Effect                                        | 11.217<br>(5.807)*                | 19.709<br>$(8.122)^{**}$ | 0.807<br>(8.154)          | 3.936<br>(9.300)         | $\begin{array}{ccc} 19.692 & -14.051 \\ (13.073) & (12.990) \end{array}$  | 15.642<br>(7.427)**      | $19.413 \\ (10.354)^*$    | 10.471<br>(10.460)        |
| Standard error<br>p-value on equality of effects                       | $(5.807)^{*}$<br>(5)=(6)=(8)=(9): | · /                      | ( )                       | (9.500)                  | (13.073) $(12.990)(3)=(4):.067^*$                                         | (4)=(7):.325             | $(10.334)^{+}$<br>(8)=(9) | . ,                       |
| Upper Bound on Treatment Effect                                        | 22.297                            | 40.030                   | 2.391                     | 23.893                   | 46.226 -5.096                                                             | 18.379                   | 29.632                    | 10.022                    |
| Standard error                                                         | $(5.389)^{***}$                   | $(7.590)^{***}$          | (7.534)                   | $(8.851)^{**}$           | $(12.377)^{***}$ $(12.172)$                                               | $(6.988)^{***}$          | $(9.701)^{***}$           | (9.746)                   |
| p-value on equality of effects                                         | (5) = (6) = (8) = (9):            |                          |                           |                          | (3)=(4): .003***                                                          | (4) = (7): .625          | (8)=(9)                   | · /                       |
| Worked any hours in past month (2                                      |                                   | 0.000                    | 0.000                     | 0.000                    | 0.046 0.051                                                               | 0.100                    | 0.114                     | 0.020                     |
| Lower Bound on Treatment Effect<br>Standard error                      | $0.066 \\ (0.025)^{***}$          | 0.088<br>(0.035)**       | 0.029<br>(0.035)          | $0.008 \\ (0.041)$       | $\begin{array}{ccc} 0.046 & -0.051 \\ (0.056) & (0.056) \end{array}$      | $0.102 \\ (0.033)^{***}$ | 0.114<br>$(0.044)^{**}$   | $0.080 \\ (0.045)^*$      |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ( )                      | ( )                       | (0.041)                  | (3)=(4):.219                                                              | $(4)=(7):.072^*$         | ( )                       |                           |
| Upper Bound on Treatment Effect                                        | 0.076                             | 0.119                    | 0.029                     | 0.032                    | 0.099 -0.042                                                              | 0.105                    | 0.131                     | 0.080                     |
| Standard error                                                         | $(0.026)^{***}$                   | $(0.035)^{***}$          | (0.035)                   | (0.041)                  | $(0.057)^*$ $(0.056)$                                                     | $(0.033)^{***}$          | $(0.045)^{***}$           | $(0.045)^*$               |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | .107 (2)=(3)             | : .069*                   |                          | (3) = (4): .076*                                                          | (4)=(7): .166            | (8) = (9)                 | ): .421                   |
| Total hours worked last month if p                                     | ositive (2016)<br>2.441           | 12.193                   | -4.573                    | 4.598                    | 25.436 -9.947                                                             | 0.026                    | 3.680                     | -2.731                    |
| Lower Bound on Treatment Effect<br>Standard error                      | (7.014)                           | (10.869)                 | (9.189)                   | (11.526)                 | (17.932) $(15.034)$                                                       | (8.831)                  | (13.641)                  | (11.594)                  |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | · · · · ·                | . ,                       | (11:0-0)                 | (3)=(4):.130                                                              | (4)=(7):.753             | (8)=(9)                   | . ,                       |
| Upper Bound on Treatment Effect                                        | 9.617                             | 27.297                   | -4.204                    | 17.188                   | 51.725 $0.075$                                                            | 2.171                    | 12.483                    | -3.341                    |
| Standard error                                                         | (6.728)                           | (10.632)**               | (8.880)                   | (11.224)                 | $(17.513)^{***}$ (14.481)                                                 | (8.530)                  | (13.132)                  | (11.088)                  |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | $.055^{*}(2) = (3)$      | .023**                    |                          | (3)=(4): .023**                                                           | (4)=(7): .287            | (8) = (9)                 | ): .357                   |
| Earnings per hour if worked over 10<br>Lower Bound on Treatment Effect | 0 hours (2016)<br>-0.514          | -0.487                   | -0.503                    | -0.795                   | -0.535 -0.898                                                             | -0.303                   | -0.466                    | -0.169                    |
| Standard error                                                         | $(0.238)^{**}$                    | (0.363)                  | (0.309)                   | $(0.395)^{**}$           | $(0.597)$ $(0.514)^*$                                                     | (0.298)                  | (0.455)                   | (0.385)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ( )                      | ( )                       | ()                       | (3)=(4):.644                                                              | (4)=(7): .320            | (8)=(9)                   |                           |
| Upper Bound on Treatment Effect                                        | -0.058                            | -0.052                   | -0.319                    | 0.188                    | -0.022 0.123                                                              | -0.254                   | -0.086                    | -0.191                    |
| Standard error                                                         | (0.132)                           | (0.258)                  | (0.217)                   | (0.228)                  | (0.354) $(0.301)$                                                         | (0.170)                  | (0.267)                   | (0.224)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | .867 (2) = (3)           | ): .429                   |                          | (3)=(4): .754                                                             | (4)=(7): .120            | (8)=(9)                   | ): .761                   |
| Total hours helping family in past<br>Lower Bound on Treatment Effect  | week (2016)<br>-3.149             | -2.344                   | -2.581                    | -2.073                   | 0.074 -2.677                                                              | -3.483                   | -3.623                    | -2.443                    |
| Standard error                                                         | (2.175)                           | (3.064)                  | (2.942)                   | (3.652)                  | (4.915) $(5.193)$                                                         | (2.714)                  | (3.955)                   | (3.588)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | ( )                      | · · · ·                   | × /                      | (3)=(4):.700                                                              | (4)=(7):.756             | (8)=(9)                   | · /                       |
| Upper Bound on Treatment Effect                                        | -1.047                            | 1.769                    | -1.617                    | 3.105                    | 6.631 0.126                                                               | -2.568                   | -0.849                    | -2.468                    |
| Standard error                                                         | (1.796)                           | (2.475)                  | (2.357)                   | (2.960)                  | $(3.943)^*$ (4.124)                                                       | (2.184)                  | (3.155)                   | (2.842)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | .303 (2)=(3)             | ): .321                   |                          | (3)=(4):.253                                                              | (4)=(7): .123            | (8)=(9)                   | ): .703                   |
| Panel C. Occupation                                                    |                                   |                          |                           |                          |                                                                           |                          |                           |                           |
| Wage worker (2016)<br>Lower Bound on Treatment Effect                  | 0.057                             | 0.093                    | 0.013                     | 0.008                    | 0.081 -0.073                                                              | 0.088                    | 0.102                     | 0.068                     |
| Standard error                                                         | $(0.023)^{**}$                    | $(0.033)^{***}$          | (0.033)                   | (0.008)                  | (0.053) $(0.053)$                                                         | $(0.030)^{***}$          | $(0.042)^{**}$            | (0.042)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | · · · · ·                | $(2)=(3):.083^{*}$        | ( )                      | $(3)=(4):.040^{**}$                                                       | (4)=(7):.098*            |                           |                           |
| Upper Bound on Treatment Effect                                        | 0.078                             | 0.143                    | 0.014                     | 0.055                    | 0.157 -0.051                                                              | 0.094                    | 0.124                     | 0.067                     |
| Standard error                                                         | $(0.023)^{***}$                   | (0.032)***               | (0.032)                   | (0.037)                  | $(0.052)^{***}$ $(0.051)$                                                 | (0.029)***               | (0.041)***                | (0.041)                   |
| p-value on equality of effects                                         | (5)=(6)=(8)=(9):                  | .017** (                 | (2)=(3): .004*            | ***                      | (3)=(4): .004***                                                          | (4)=(7): .401            | (8) = (9)                 | ): .327                   |
|                                                                        | Table 7 cont. on I                |                          |                           |                          |                                                                           |                          |                           |                           |

Table 7: Bounds on Labor Market effects for those not currently in Formal Education cont.

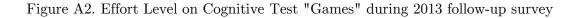
|                                                                                                                              | (                                                                                                 | Combined                                                                         |                                  |                         | mic Major A                       | Admits                                |                                                                          | onal Major A                                                               | dmits                           |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-------------------------|-----------------------------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|
|                                                                                                                              | All                                                                                               | Female                                                                           | Male                             | All                     | Female                            | Male                                  | All                                                                      | Female                                                                     | Male                            |
|                                                                                                                              | (1)                                                                                               | (2)                                                                              | (3)                              | (4)                     | (5)                               | (6)                                   | (7)                                                                      | (8)                                                                        | (9)                             |
| Day or seasonal laborer (2016)<br>Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects        | $0.024 \\ (0.019) \\ (5)=(6)=(8)=(9):$                                                            | 0.013<br>(0.025)<br>.005***(2)=(3                                                | 0.023<br>(0.025)<br>?): .783     | -0.019<br>(0.030)       | $0.030 \\ (0.041) \\ (3)=(4)$     | -0.087<br>(0.040)**<br>!): .041**     | 0.051<br>$(0.024)^{**}$<br>$(4)=(7):.068^{*}$                            | 0.002<br>(0.032)<br>(8)=(9).                                               | 0.094<br>(0.032)***<br>* .042** |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>Actively searching for a job (2016)   | $\begin{array}{c} 0.050 \\ (0.018)^{***} \\ (5) = (6) = (8) = (9): \end{array}$                   | 0.000<br>(0.000)<br>.008***(2)=(3                                                | 0.025<br>(0.029)<br>?): .425     | $0.038 \\ (0.028)$      | 0.000<br>(0.000)<br>(3)=(         | -0.070<br>(0.042)*<br>(4): .112       | 0.057<br>$(0.022)^{**}$<br>(4)=(7):.596                                  | 0.035<br>(0.033)<br>(8)=(9)                                                | 0.094<br>(0.033)***<br>): .202  |
| Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | 0.085<br>$(0.024)^{***}$<br>(5)=(6)=(8)=(9):                                                      | 0.072<br>$(0.034)^{**}$<br>$.085^{*}$ (2)=(3)                                    | 0.091<br>(0.034)***<br>?): .693  | 0.164<br>$(0.039)^{**}$ | . ,                               | 0.169<br>(0.054)**<br>(4): .795       | 0.035<br>(0.031)<br>(4)=(7): .009***                                     | 0.025<br>(0.044)<br>* (8)=(9)                                              | 0.040<br>(0.044)<br>): .800     |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>Panel D. Job Search/ Reservation V    | $0.104 \\ (0.024)^{***} \\ (5) = (6) = (8) = (9):$<br><u>Nage</u>                                 | $\begin{array}{c} 0.113 \\ (0.034)^{***} \\ .019^{**}(2) = (3) \end{array}$      | 0.092<br>(0.034)***<br>?): .667  | 0.202<br>$(0.039)^{**}$ | ( )                               | 0.184<br>\$ (0.054)**<br>\$ (4): .767 | 0.041<br>(0.031)<br>(4)=(7): .000***                                     | 0.047<br>(0.043)<br>* (8)=(9)                                              | 0.041<br>(0.043)<br>): .913     |
| If no earnings and no school: active<br>Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects  | ly searching for a je<br>0.142<br>$(0.041)^{***}$<br>(5)=(6)=(8)=(9):                             | $0.166 \\ (0.051)^{***}$                                                         | 0.074<br>(0.069)<br>?): .284     | 0.253<br>$(0.063)^{**}$ | $0.295 \ (0.079)^{***} \ (3)=($   | 0.145<br>(0.102)<br>(4): .245         | 0.059<br>(0.054)<br>(4)=(7): .019**                                      | 0.078<br>(0.066)<br>(8)=(9)                                                | 0.015<br>(0.093)<br>): .584     |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>If earnings: actively searching for a | $\begin{array}{c} 0.160\\ (0.041)^{***}\\ (5)=(6)=(8)=(9):\\ \text{iob} \ (2016) \end{array}$     | $\begin{array}{c} 0.207 \\ (0.050)^{***} \\ .016^{**}(2) = (3) \end{array}$      | 0.078<br>(0.067)<br>?): .124     | 0.291<br>$0.063)^{**}$  | $0.364 \\ (0.078)^{***} \\ (3)=($ |                                       | $\begin{array}{c} 0.063 \\ (0.054) \\ (4) = (7): .004^{***} \end{array}$ | 0.101<br>(0.064)<br>* (8)=(9)                                              | 0.014<br>(0.091)<br>): .428     |
| Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $\begin{array}{c} (0.062) \\ (0.030)^{**} \\ (5) = (6) = (8) = (9): \end{array}$                  | -0.001<br>(0.047)<br>. <i>172</i> (2)=(3)                                        | 0.105<br>(0.039)***<br>): .081*  | $0.111 \\ (0.049)^{**}$ | 0.014<br>(0.077)<br>(3)=(         | $0.175 \\ (0.064)^{**} \\ (4): .105$  | $0.035 \ (0.038) \ (4)=(7):.224$                                         | -0.008<br>(0.059)<br><i>(8)=(9</i>                                         | 0.066<br>(0.049)<br>): .332     |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $\begin{array}{c} 0.082\\ (0.030)^{***}\\ (5)=(6)=(8)=(9):\\ \text{For (CUV)} (2012) \end{array}$ | $\begin{array}{c} 0.042 \\ (0.046) \\ .199  (2) = (3) \end{array}$               | 0.107<br>(0.038)***<br>?): .277  | $0.156 \\ 0.049)^{**}$  | $0.089 \\ (0.077) \\ (3)=($       | 0.194<br>(0.063)**<br>(4): .271       | 0.040<br>(0.037)<br>(4)=(7): .064*                                       | 0.019<br>(0.058)<br>(8)=(9)                                                | 0.067<br>(0.048)<br>): .532     |
| Lowest daily wage willing to work f<br>Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects   | $(0.612)^{*}$<br>(5)=(6)=(8)=(9):                                                                 | $\begin{array}{c} 0.412\\ (0.856)\\ .096*(2) = (3). \end{array}$                 | -2.656<br>(0.854)***<br>: .011** | -1.061<br>(0.974)       |                                   | -2.774<br>(1.350)**<br>(4): .100      | -1.005<br>(0.786)<br>(4)=(7): .964                                       | $0.406 \\ (1.096) \\ (8)=(9)$                                              | -2.556<br>(1.103)**<br>: .057*  |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $0.863 \\ (0.379)^{**} \\ (5)=(6)=(8)=(9): \\ (2012)$                                             | $\begin{array}{c} 2.316 \\ (0.606)^{***} \\ 0.000(^{*2})^{*} = (3): \end{array}$ | -1.203<br>(0.598)**<br>.000***   | 1.773<br>(0.690)**      | $1.581 \\ (1.151) \\ (3)=($       | -0.513<br>(1.128)<br>(4): .193        | 0.331<br>(0.545)<br>(4)=(7): .101                                        | 2.754<br>$(0.922)^{***}$<br>(8)=(9):                                       | -2.491<br>(0.914)***<br>.000*** |
| Willing to move for wage employmed<br>Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects    | ent (2013)<br>0.023<br>(0.017)<br>(5)=(6)=(8)=(9):                                                | $\begin{array}{c} 0.021 \\ (0.024) \\ .980  (2) = (3) \end{array}$               | 0.024<br>(0.024)<br>?): .947     | 0.024<br>(0.027)        | $0.012 \\ (0.038) \\ (3)=($       | 0.033<br>(0.038)<br>(4): .707         | 0.023<br>(0.022)<br>(4)=(7): .981                                        | 0.027<br>(0.031)<br>(8)=(9)                                                | 0.018<br>(0.031)<br>): .839     |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>Willing to do labor intensive work (  | 0.027 (0.017) (5)=(6)=(8)=(9): (2013)                                                             | $\begin{array}{c} 0.029\\ (0.024)\\ .985  (2) = (3) \end{array}$                 | 0.024<br>(0.024)<br>?): .881     | 0.031<br>(0.027)        | $0.026 \\ (0.039) \\ (3)=($       | $0.036 \\ (0.039) \\ (4): .866$       | $\begin{array}{c} 0.024 \\ (0.022) \\ (4) = (7): .828 \end{array}$       | $0.032 \\ (0.031) \\ (8)=(9)$                                              | 0.018<br>(0.031)<br>): .756     |
| Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $\begin{array}{c} 0.012\\ (0.025)\\ (5)=(6)=(8)=(9): \end{array}$                                 | $\begin{array}{c} 0.020\\(0.035)\\.341(2)=(3)\end{array}$                        | -0.005<br>(0.035)<br>?): .610    | 0.008<br>(0.040)        | $0.068 \\ (0.055) \\ (3)=(4)$     | -0.063<br>(0.055)<br>4): .092*        | 0.014<br>(0.032)<br>(4)=(7): .905                                        | -0.011<br>(0.045)<br><i>(8)=(9</i> )                                       | 0.033<br>(0.045)<br>): .483     |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>0                                     | $\begin{array}{c} 0.021 \\ (0.025) \\ (5)=(6)=(8)=(9): \end{array}$                               | $\begin{array}{c} 0.038\\(0.035)\\.260(2)=(3)\end{array}$                        | -0.005<br>(0.035)<br>?): .382    | 0.026<br>(0.040)        | $0.099 \\ (0.056)^* \\ (3) = (4)$ | -0.056<br>(0.055)<br>4): .052*        | 0.016<br>(0.032)<br>(4)=(7): .828                                        | $0.002 \\ (0.045) \\ (8)=(9)$                                              | 0.033<br>(0.045)<br>): .619     |
| Lower Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $0 \\ 0 \\ (5)=(6)=(8)=(9):$                                                                      | $egin{array}{c} 0 \ 0 \ (2) = \end{array}$                                       | 0<br>0<br><i>(3):</i>            | 0<br>0                  | 0<br>0<br><i>(3)</i> =            | $0 \\ 0 = (4):$                       | $0 \\ 0 \\ (4)=(7):$                                                     | $egin{array}{c} 0 \ 0 \ (8) = \end{array}$                                 | 0<br>0<br>(9):                  |
| Upper Bound on Treatment Effect<br>Standard error<br>p-value on equality of effects                                          | $ \begin{array}{c} 0 \\ 0 \\ (5)=(6)=(8)=(9): \end{array} $                                       | . ,                                                                              |                                  | 0<br>0                  |                                   | $0 \\ 0 = (4):$                       | $0 \\ 0 \\ (4) = (7): $                                                  | $     \begin{array}{c}       0 \\       0 \\       (8) =     \end{array} $ | . ,                             |
| Lowe Bound Observations                                                                                                      | $\frac{1802}{1996}$                                                                               | 922<br>1008                                                                      | 880<br>988                       | 714<br>810              | $\frac{364}{411}$                 | 350<br>200                            | 1088<br>1186                                                             | 558<br>507                                                                 | $\frac{589}{530}$               |
| Upper Bound Observations                                                                                                     |                                                                                                   | 1008                                                                             |                                  | 810                     |                                   | 399                                   | 1186<br>l study. Upper b                                                 | 597                                                                        |                                 |

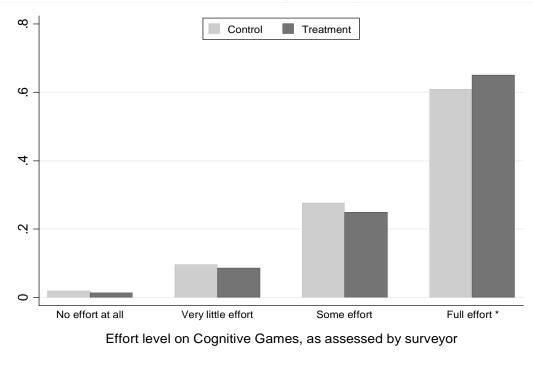
Notes: Year of survey in parentheses. See Table 3 for description of columns. Lower bound excludes those in formal study. Upper bound excludes those in formal study and the top percentiles of the distribution for a given outcome in the comparison group (the number of percentiles excluded is equal to the number of percentage points of the treatment effect on formal study/training for the sub-group if the treatment effect is positive). Cell rows 1 and 4 show the treatment effects for the lower bound and upper bound respectively; cell rows 2 and 5 show standard errors in parentheses with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; cell rows 3 and 6 report p-values of tests of hypotheses of equality of treatment effects between the columns specified in parentheses for the lower bound and upper bound respectively; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores.


### Table 8: Satisfaction and Mental Health

|                                      | (                         | Combined               |                  | Acade          | emic Major . | Admits          | Vocatio        | onal Major A   | Admits          |
|--------------------------------------|---------------------------|------------------------|------------------|----------------|--------------|-----------------|----------------|----------------|-----------------|
|                                      | All                       | Female                 | Male             | All            | Female       | Male            | All            | Female         | Male            |
|                                      | (1)                       | (2)                    | (3)              | (4)            | (5)          | (6)             | (7)            | (8)            | (9)             |
| Satisfaction Index(1-very uns        | satisfied>5-very          | satisfied)(20          | 13/2016)         |                |              |                 |                |                |                 |
| Treatment effect                     | 0.013                     | 0.104                  | -0.076           | -0.047         | -0.015       | -0.077          | 0.055          | 0.188          | -0.075          |
| Standard error                       | (0.040)                   | $(0.057)^*$            | (0.056)          | (0.062)        | (0.088)      | (0.088)         | (0.052)        | $(0.074)^{**}$ | (0.073)         |
| Comparison mean                      | 3.318                     | 3.310                  | 3.327            | 3.325          | 3.329        | 3.321           | 3.314          | 3.297          | 3.331           |
| p-value on equality of effect        | t(5) = (6) = (8) = (9)    | ): .04 <b>22)*</b> =(3 | ): .023**        |                | (5)=(        | 6): .614        | (4)=(7):.207   | (8) = (9)      | :.011**         |
| If employed: satisfaction with       | <u>n job(1-very unsat</u> | isfied>5-ve            | ery satisfied)(2 | <u>2016)</u>   |              |                 |                |                |                 |
| Treatment effect                     | -0.279                    | -0.154                 | -0.377           | -0.330         | -0.146       | -0.469          | -0.247         | -0.155         | -0.322          |
| Standard error                       | (0.081)***                | (0.124)                | $(0.107)^{***}$  | $(0.133)^{**}$ | (0.205)      | $(0.174)^{***}$ | $(0.102)^{**}$ | (0.156)        | $(0.136)^{**}$  |
| Comparison mean                      | 3.670                     | 3.735                  | 3.623            | 3.688          | 3.766        | 3.633           | 3.658          | 3.715          | 3.617           |
| p-value on equality of effect        | t(5) = (6) = (8) = (9)    | ): .503(2)=(           | 3): .172         |                | (5)=(        | 6): .229        | (4)=(7):.621   | (8) = (9)      | 9): .419        |
| <u>Confident can get a better jo</u> | b(1-not sure possi        | ble> 5-ver             | ry confident)(   | <u>2016)</u>   |              |                 |                |                |                 |
| Treatment effect                     | 0.059                     | 0.078                  | 0.045            | 0.088          | 0.142        | 0.049           | 0.040          | 0.041          | 0.040           |
| Standard error                       | $(0.034)^*$               | (0.053)                | (0.045)          | (0.056)        | (0.088)      | (0.074)         | (0.044)        | (0.067)        | (0.058)         |
| Comparison mean                      | 4.792                     | 4.783                  | 4.798            | 4.755          | 4.745        | 4.763           | 4.816          | 4.808          | 4.822           |
| p-value on equality of effect        | t(5) = (6) = (8) = (9)    | ): .778(2)=(           | 3): .630         |                | (5)=(        | 6): .416        | (4)=(7): .505  | (8) = (9)      | 9): .984        |
| Mental health index(1-depres         | ssed>5-positive)          | average over           | r 7 questions)   | (2013)         |              |                 |                |                |                 |
| Treatment effect                     | -0.001                    | -0.023                 | 0.020            | 0.016          | -0.002       | 0.031           | -0.012         | -0.038         | 0.013           |
| Standard error                       | (0.029)                   | (0.041)                | (0.041)          | (0.045)        | (0.064)      | (0.064)         | (0.038)        | (0.054)        | (0.053)         |
| Comparison mean                      | 3.981                     | 3.959                  | 4.003            | 3.963          | 3.948        | 3.979           | 3.993          | 3.967          | 4.020           |
| p-value on equality of effect        | t(5) = (6) = (8) = (9)    | ): .850(2)=(           | 3): .459         |                | (5)=(        | 6): .719        | (4)=(7):.640   | (8) = (9)      | 9): .499        |
| Feasibility of changing your         | life (1-no> 4-c           | ertainly) (20          | 13)              |                |              |                 |                |                |                 |
| Treatment effect                     | 0.016                     | 0.039                  | -0.007           | -0.055         | -0.029       | -0.080          | 0.067          | 0.087          | 0.046           |
| Standard error                       | (0.032)                   | (0.046)                | (0.045)          | (0.050)        | (0.071)      | (0.071)         | (0.042)        | (0.059)        | (0.059)         |
| Comparison mean                      | 3.421                     | 3.399                  | 3.444            | 3.434          | 3.444        | 3.423           | 3.412          | 3.367          | 3.458           |
| p-value on equality of effect        | t(5) = (6) = (8) = (9)    | ): .270(2)=(           | 3): .473         |                | (5)=(        | 6): .612        | (4)=(7): .062* | (8)=(9         | <i>)): .626</i> |
| Observations                         | 1981                      | 1001                   | 980              | 807            | 408          | 399             | 1174           | 593            | 581             |

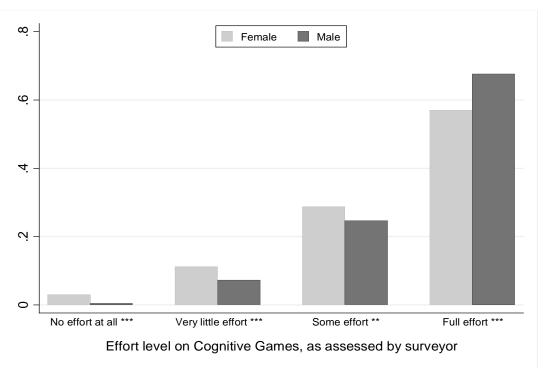
Notes: Year of survey in parentheses. See Table 3 notes for description of columns and cell rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. Satisfaction Index is composed of scores from "Satisfaction with finances", "Satisfaction with life" and" Life as good as others".


Figure A1. Expectations


Participant's beliefs about education and work at 2008 baseline



Likely type of work at age 25, by level of education


Note: Data from 2008 in-person baseline survey of participants





Panel A. By Scholarhip (Treatment) Status

Panel B. By Gender



Note: Data from 2013 in-person follow-up survey.

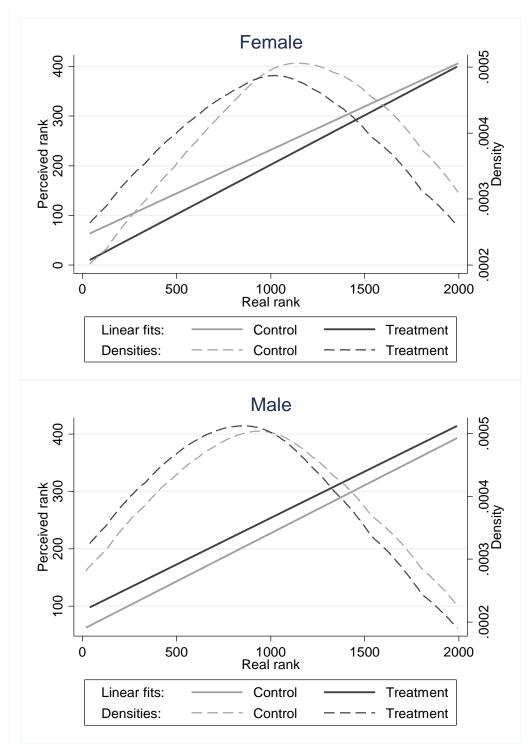



Figure A3. Effects of Scholarship on accuracy of beliefs about relative performance

Notes: "Real rank" is the rank on the math and reading comprehension test administered during the 2013 follow-up survey. "Perceived rank" is the rank that the respondent reported when asked, immediately after the test: "We are administering this survey to around 2,000 youths your age (1,000 boys and 1,000 girls). All of those we are interviewing completed JHS around the same time as you, in 2007 or 2008. Overall, how do you think your performance on the games will compare to that of the others? Try to guess your rank between 1 and 2,000, with 1 being the person with the highest/top score and 2000 being the person with the lowest score."

# Table A1: Survey Rates

| Table A1. Survey Mates      | (                 | Combined               |             | Acade   | emic Major A | Admits    | Vocatio        | nal Major   | Admits         |
|-----------------------------|-------------------|------------------------|-------------|---------|--------------|-----------|----------------|-------------|----------------|
|                             | All               | Female                 | Male        | All     | Female       | Male      | All            | Female      | Male           |
|                             | (1)               | (2)                    | (3)         | (4)     | (5)          | (6)       | (7)            | (8)         | (9)            |
| Surveyed in 2013            |                   |                        |             | ·       |              | i         |                |             |                |
| Treatment effect            | -0.011            | -0.004                 | -0.017      | 0.008   | 0.032        | -0.016    | -0.023         | -0.029      | -0.018         |
| Standard error              | (0.009)           | (0.013)                | (0.013)     | (0.015) | (0.021)      | (0.020)   | $(0.012)^{**}$ | $(0.017)^*$ | (0.017)        |
| Comparison mean             | 0.963             | 0.967                  | 0.959       | 0.964   | 0.956        | 0.974     | 0.962          | 0.976       | 0.949          |
| p-value on equality of effe | (5)=(6)=(8)=      | (9): .1 <b>3</b> 2)=(3 | 3): .495    |         | (5)=(0       | 6): .102  | (4)=(7): .094* | * (8)=(9    | 9): .670       |
| Surveyed in 2015            |                   |                        |             |         |              |           |                |             |                |
| Treatment effect            | -0.008            | 0.004                  | -0.019      | -0.004  | 0.017        | -0.024    | -0.011         | -0.006      | -0.015         |
| Standard error              | (0.008)           | (0.011)                | $(0.011)^*$ | (0.012) | (0.017)      | (0.017)   | (0.010)        | (0.014)     | (0.014)        |
| Comparison mean             | 0.978             | 0.981                  | 0.974       | 0.979   | 0.976        | 0.981     | 0.977          | 0.985       | 0.969          |
| p-value on equality of effe | (5)=(6)=(8)=      | (9): .332)=(3          | 3): .144    |         | (5) = (6)    | e): .084* | (4)=(7): .661  | (8) = (9)   | 9): .622       |
| Surveyed in 2016            |                   |                        |             |         |              |           |                |             |                |
| Treatment effect            | 0.006             | 0.006                  | 0.006       | -0.000  | 0.017        | -0.017    | 0.010          | -0.002      | 0.021          |
| Standard error              | (0.008)           | (0.012)                | (0.012)     | (0.013) | (0.019)      | (0.019)   | (0.011)        | (0.016)     | (0.015)        |
| Comparison mean             | 0.965             | 0.972                  | 0.957       | 0.970   | 0.966        | 0.974     | 0.961          | 0.976       | 0.947          |
| p-value on equality of effe |                   | (9): .3 <b>79</b> )=(3 | 3): .990    |         | (5)=(0       | 6): .200  | (4)=(7): .556  | (8) = (9)   | 9): .298       |
| Deceased as of 2015 survey  |                   |                        |             |         |              |           |                |             |                |
| Treatment effect            | -0.001            | 0.000                  | -0.002      | 0.006   | -0.003       | 0.015     | -0.005         | 0.003       | -0.012         |
| Standard error              | (0.004)           | (0.006)                | (0.006)     | (0.007) | (0.010)      | (0.010)   | (0.006)        | (0.008)     | (0.008)        |
| Comparison mean             | 0.009             | 0.003                  | 0.016       | 0.005   | 0.003        | 0.007     | 0.012          | 0.002       | 0.022          |
| p-value on equality of effe | (5) = (6) = (8) = | (9): .1 <b>92</b> )=(3 | 3): .827    |         | (5)=(0       | 6): .201  | (4)=(7): .223  | (8) = (9)   | 9): .199       |
| Deceased as of 2016 survey  |                   |                        |             |         |              |           |                |             |                |
| Treatment effect            | -0.002            | 0.000                  | -0.005      | 0.006   | -0.003       | 0.015     | -0.008         | 0.002       | -0.017         |
| Standard error              | (0.005)           | (0.007)                | (0.007)     | (0.007) | (0.010)      | (0.010)   | (0.006)        | (0.009)     | $(0.008)^{**}$ |
| Comparison mean             | 0.011             | 0.003                  | 0.019       | 0.005   | 0.003        | 0.007     | 0.015          | 0.002       | 0.027          |
| p-value on equality of effe | (5) = (6) = (8) = | (9): .1Ø2)=(3          | 3): .588    |         | (5)=(0       | 6): .230  | (4)=(7): .150  | (8) = (9)   | 9): .102       |
| Observations                | 2064              | 1036                   | 1028        | 834     | 423          | 411       | 1230           | 613         | 617            |

Notes: Year of survey in parentheses. See Table 2 notes for description of columns; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.

### Table A2: Education of Other Children from Baseline Household

|                                                                                          | C                                           | Combined                  |                            | Acad                   | demic Major A<br>Households | Admit                                       |                                             | onal Major<br>Households                     |                           |
|------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------------|------------------------|-----------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------|
| -                                                                                        | All (1)                                     | Female (2)                | Male (3)                   | All (4)                | Female (5)                  | Male (6)                                    | All (7)                                     | Female (8)                                   | $\frac{\text{Male}}{(9)}$ |
| –<br>Panel A. All children eating from                                                   |                                             |                           | (0)                        |                        |                             | ()                                          | (')                                         | (*)                                          | ()                        |
| Years of formal education to da                                                          |                                             |                           |                            |                        |                             |                                             |                                             |                                              |                           |
| Treatment effect                                                                         | -0.094                                      | -0.296                    | 0.101                      | -0.188                 | -0.404                      | 0.034                                       | -0.033                                      | -0.224                                       | 0.144                     |
| Standard error                                                                           | (0.103)                                     | $(0.149)^{**}$            | (0.144)                    | (0.162)                | (0.235)*                    | (0.223)                                     | (0.135)                                     | (0.193)                                      | (0.188)                   |
| Comparison mean                                                                          | 7.898                                       | 7.999                     | 7.793                      | 7.850                  | 8.031                       | 7.653                                       | 7.934                                       | 7.975                                        | 7.892                     |
| p-value on equality of effect (a                                                         | 5) = (6) = (8) = (9)                        | :.248 (2)=(3)             | :.054*                     |                        | $(5)=(\ell$                 | <i>3): .177</i>                             | (4)=(7): .459                               | (8) = (8)                                    | 9): .171                  |
| Currently enrolled in school                                                             | 0.000                                       | 0.010                     | 0.011                      | 0.000                  | 0.070                       | 0.010                                       | 0.01.4                                      | 0.000                                        | <b>-</b>                  |
| Treatment effect                                                                         | 0.002                                       | 0.019                     | -0.011                     | 0.026                  | 0.076                       | -0.018                                      | -0.014                                      | -0.020                                       | -0.007                    |
| Standard error<br>Comparison mean                                                        | $(0.016) \\ 0.507$                          | $(0.023) \\ 0.515$        | $(0.022) \\ 0.498$         | $(0.025) \\ 0.506$     | $(0.036)^{**}$<br>0.505     | $\begin{array}{c}(0.035)\\0.507\end{array}$ | $\begin{array}{c}(0.021)\\0.508\end{array}$ | $egin{array}{c} (0.030) \ 0.523 \end{array}$ | $(0.029) \\ 0.492$        |
| p-value on equality of effect (a                                                         |                                             |                           |                            | 0.000                  |                             | ): .061*                                    | (4)=(7):.219                                |                                              | 9): .760                  |
| Ever enrolled in SHS                                                                     | (0) - (0) - (0) - (0)                       | (2) - (3)                 | /040                       |                        | (b) - (b)                   | )001                                        | $(4) - (7) \cdot .213$                      | (0)-(0                                       | 9)700                     |
| Treatment effect                                                                         | -0.008                                      | -0.033                    | 0.018                      | -0.007                 | -0.022                      | 0.012                                       | -0.009                                      | -0.041                                       | 0.021                     |
| Standard error                                                                           | (0.015)                                     | (0.021)                   | (0.021)                    | (0.023)                | (0.034)                     | (0.032)                                     | (0.019)                                     | (0.028)                                      | (0.027)                   |
| Comparison mean                                                                          | 0.315                                       | 0.334                     | 0.296                      | 0.309                  | 0.340                       | 0.276                                       | 0.320                                       | 0.329                                        | 0.310                     |
| p-value on equality of effect (a                                                         |                                             |                           |                            | 0.000                  |                             | 6): .460                                    | (4)=(7):.953                                |                                              | 9): .109                  |
| Education costs financed by sam                                                          | , , , , , , ,                               |                           |                            |                        | (-) (-                      |                                             |                                             |                                              |                           |
| Treatment effect                                                                         | 15.489                                      | 18.093                    | 12.468                     | 13.946                 | 23.192                      | 4.368                                       | 16.530                                      | 14.547                                       | 18.164                    |
| Standard error                                                                           | $(4.715)^{***}$                             | $(6.750)^{***}$           | $(6.585)^*$                | (7.397)*               | (10.671)**                  | (10.280)                                    | $(6.126)^{***}$                             | $(8.740)^{*}$                                | $(8.581)^{*}$             |
| Comparison mean                                                                          | 35.286                                      | 29.898                    | 40.973                     | 34.050                 | 24.526                      | 44.414                                      | 36.187                                      | 33.913                                       | 38.534                    |
| p-value on equality of effect (a                                                         | (5) = (6) = (8) = (9)                       | :.615 (2)=(3)             | ): .550                    |                        | $(5) = (\ell$               | 5): .203                                    | (4)=(7): .787                               | (8) = (8)                                    | 9): .767                  |
| Panel B. Children younger than                                                           | sampled youth                               |                           |                            |                        |                             |                                             |                                             |                                              |                           |
| Years of formal education to da                                                          |                                             |                           |                            |                        |                             |                                             |                                             |                                              |                           |
| Treatment effect                                                                         | -0.184                                      | -0.432                    | 0.055                      | -0.246                 | -0.515                      | 0.014                                       | -0.142                                      | -0.383                                       | 0.092                     |
| Standard error                                                                           | $(0.110)^*$                                 | $(0.158)^{***}$           | (0.154)                    | (0.171)                | $(0.249)^{**}$              | (0.236)                                     | (0.144)                                     | $(0.205)^*$                                  | (0.203)                   |
| Comparison mean                                                                          | 7.296                                       | 7.405                     | 7.179                      | 7.169                  | 7.301                       | 7.023                                       | 7.387                                       | 7.481                                        | 7.288                     |
| p-value on equality of effect (a                                                         |                                             |                           |                            |                        |                             | <i>5): .123</i>                             | (4) = (7):.644                              |                                              | ): .098*                  |
| Currently enrolled in school                                                             | -/ (-/ (-/ (-/                              |                           |                            |                        | (-) (-                      |                                             |                                             |                                              |                           |
| Treatment effect                                                                         | 0.014                                       | 0.040                     | -0.009                     | 0.009                  | 0.071                       | -0.045                                      | 0.017                                       | 0.019                                        | 0.016                     |
| Standard error                                                                           | (0.018)                                     | (0.025)                   | (0.025)                    | (0.027)                | $(0.040)^{*}$               | (0.038)                                     | (0.023)                                     | (0.033)                                      | (0.033)                   |
| Comparison mean                                                                          | 0.633                                       | 0.639                     | 0.627                      | 0.647                  | 0.642                       | 0.651                                       | 0.624                                       | 0.637                                        | 0.610                     |
| p-value on equality of effect $(a)$                                                      | (5) = (6) = (8) = (9)                       | :.212 (2)=(3)             | ): .164                    |                        | (5) = (6)                   | :.034**                                     | (4)=(7): .822                               | (8) = (8)                                    | 9): .956                  |
| Ever enrolled in SHS                                                                     |                                             |                           |                            |                        |                             |                                             |                                             |                                              |                           |
| Treatment effect                                                                         | -0.016                                      | -0.051                    | 0.019                      | -0.016                 | -0.056                      | 0.026                                       | -0.017                                      | -0.048                                       | 0.014                     |
| Standard error                                                                           | (0.016)                                     | $(0.023)^{**}$            | (0.022)                    | (0.025)                | (0.036)                     | (0.034)                                     | (0.021)                                     | (0.030)                                      | (0.029)                   |
| Comparison mean                                                                          | 0.254                                       | 0.277                     | 0.230                      | 0.238                  | 0.270                       | 0.201                                       | 0.266                                       | 0.282                                        | 0.249                     |
| p-value on equality of effect (                                                          |                                             | : .177(2) = (3).          | • .029**                   |                        | (5) = (6)                   | <i>5): .100</i>                             | (4) = (7):.979                              | (8) = (8)                                    | 9): .137                  |
| Education costs financed by sam                                                          | - •                                         | 00.420                    | 00 701                     | 17.005                 | 00 454                      | 10 575                                      | 96.015                                      | 00.066                                       | 21 440                    |
| Treatment effect                                                                         | 22.847<br>$(5.841)^{***}$                   | 22.430                    | 22.721<br>(8.200)***       | 17.005                 | 22.454                      | 10.575                                      | 26.915<br>(7.615)***                        | 22.266                                       | 31.449                    |
| Standard error<br>Comparison mean                                                        | $(5.841)^{4444}$<br>42.360                  | $(8.323)^{***}$<br>37.738 | $(8.200)^{4444}$<br>47.333 | $(9.123)^*$<br>41.888  | $(13.165)^*$<br>32.144      | (12.687)<br>52.651                          | $(7.615)^{***}$<br>42.694                   | $(10.767)^{**}$<br>41.785                    | $(10.754)^{*}$<br>43.654  |
| p-value on equality of effect (a                                                         |                                             |                           |                            | 41.000                 |                             | 52.051<br>6): .515                          | (4)=(7):.404                                |                                              | 9): .545                  |
|                                                                                          |                                             | (2)-(3)                   | )900                       |                        | (J) = (U)                   | )010                                        | (4) - (7)404                                | (0)-(3                                       | 9]040                     |
| Panel C. Children older than sa                                                          |                                             |                           |                            |                        |                             |                                             |                                             |                                              |                           |
| Years of formal education to da                                                          |                                             |                           |                            |                        |                             |                                             |                                             |                                              | _                         |
| Treatment effect                                                                         | 0.089                                       | -0.053                    | 0.233                      | 0.166                  | 0.068                       | 0.316                                       | 0.048                                       | -0.073                                       | 0.157                     |
| Standard error                                                                           | (0.205)                                     | (0.295)                   | (0.284)                    | (0.324)                | (0.472)                     | (0.444)                                     | (0.264)                                     | (0.380)                                      | (0.369)                   |
| Comparison mean                                                                          | 9.868                                       | 10.045                    | 9.697                      | 9.962                  | 10.385                      | 9.526                                       | 9.795                                       | 9.764                                        | 9.824                     |
| p-value on equality of effect (a                                                         | 5) = (6) = (8) = (9)                        | :.925 (2) = (3)           | ): .484                    |                        | (5) = (6)                   | <i>6): .701</i>                             | (4)=(7): .778                               | (8) = (8)                                    | 9): .664                  |
| Currently enrolled in school<br>Treatment offset                                         | 0.001                                       | 0.000                     | 0.005                      | 0.059                  | 0.070                       | 0.000                                       | 0.027                                       | 0.067                                        | 0.000                     |
| Treatment effect<br>Standard error                                                       | -0.001                                      | -0.008                    | 0.005                      | 0.052                  | 0.079                       | 0.026                                       | -0.037                                      | -0.067<br>(0.034)**                          | -0.009                    |
| Standard error<br>Comparison mean                                                        | $\begin{array}{c}(0.018)\\0.081\end{array}$ | $(0.026) \\ 0.078$        | $(0.025) \\ 0.083$         | $(0.029)^{*}$<br>0.063 | $(0.042)^*$<br>0.056        | $\begin{array}{c}(0.039)\\0.070\end{array}$ | $(0.024) \\ 0.095$                          | $(0.034)^{**}$<br>0.097                      | $(0.033) \\ 0.093$        |
| p-value on equality of effect (a                                                         |                                             |                           |                            | 0.003                  |                             | 0.070<br>3): .355                           | $(4)=(7):.016^{**}$                         |                                              | 0.093<br>9): .223         |
| p-value on equality of effect (a<br>Ever enrolled in SHS                                 | 0) - (0) - (0) = (9)                        | 040 (2)=(3)               | /• •/14                    |                        | $(\partial)=(\partial$      | 1                                           | (4)-(1): .010                               | (0)=(0                                       | 9]420                     |
| Treatment effect                                                                         | 0.017                                       | 0.011                     | 0.024                      | 0.045                  | 0.113                       | -0.007                                      | 0.000                                       | -0.047                                       | 0.044                     |
| standard error                                                                           | (0.017)<br>(0.033)                          | (0.011) $(0.048)$         | (0.024)                    | (0.045)                | (0.076)                     | (0.007)                                     | (0.000)                                     | -0.047<br>(0.062)                            | (0.044)                   |
| Comparison mean                                                                          | (0.033)<br>0.516                            | (0.048)<br>0.529          | (0.046)<br>0.504           | (0.052)<br>0.533       | (0.076)<br>0.564            | (0.071)<br>0.500                            | (0.043)<br>0.504                            | (0.062)<br>0.500                             | (0.060)<br>0.507          |
| p-value on equality of effect (a                                                         |                                             |                           |                            | 0.000                  |                             | 0.500<br>6): .253                           | (4)=(7):.510                                |                                              | 0.507<br>9): .289         |
|                                                                                          |                                             | (2)-(3)                   |                            |                        | ()-(0                       | 1200                                        | (=)-(1)010                                  | (0)-(0                                       | 1209                      |
| Ulication costs tinenced by ear                                                          |                                             | <b>-</b> 0.04             | 16 560                     | 3.092                  | 25.360                      | -17.863                                     | -9.983                                      | -3.923                                       | -16.087                   |
|                                                                                          | _1 717                                      | 7 36/                     |                            |                        |                             |                                             |                                             |                                              | -10.001                   |
| Treatment effect                                                                         | -4.717<br>(6.137)                           | 7.364 (8.811)             | -16.569<br>(8.513)*        |                        |                             |                                             |                                             |                                              |                           |
| Education costs financed by sam<br>Treatment effect<br>standard error<br>Comparison mean | -4.717<br>(6.137)<br>11.639                 | 7.364<br>(8.811)<br>2.500 | $(8.513)^*$<br>20.778      | (9.699)<br>9.686       | $(14.014)^*$<br>0.000       | (13.367)<br>20.000                          | (7.926)<br>13.184                           | (11.392)<br>4.592                            | (11.016)<br>21.359        |

Table A2 continues on next page

#### Table A2: Education of Other Children from Baseline Household cont.

|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Combined                                |                  | Acad             | lemic Major .<br>Households | Admit            |                  | onal Major A<br>Households | Admit               |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------|-----------------------------|------------------|------------------|----------------------------|---------------------|
|                                                              | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Female                                  | Male             | All              | Female                      | Male             | All              | Female                     | Male                |
|                                                              | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                     | (3)              | (4)              | (5)                         | (6)              | (7)              | (8)                        | (9)                 |
| Panel D. Male children                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |                  |                             |                  |                  |                            |                     |
| Years of formal education to                                 | <u>o date</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                  |                  |                             |                  |                  |                            |                     |
| Treatment effect                                             | -0.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.455                                  | -0.098           | -0.338           | -0.512                      | -0.167           | -0.218           | -0.413                     | -0.065              |
| standard error                                               | $(0.149)^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(0.221)^{**}$                          | (0.202)          | (0.233)          | (0.343)                     | (0.319)          | (0.194)          | (0.289)                    | (0.262)             |
| Comparison mean                                              | 8.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.164                                   | 7.972            | 8.047            | 8.205                       | 7.888            | 8.085            | 8.134                      | 8.035               |
| p-value on equality of effe                                  | ect(5) = (6) = (8) = (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ):.690 (2)=(.                           | 3): .231         |                  | (5) = (6)                   | 6): .461         | (4)=(7): .691    | (8) = (9)                  | ): .371             |
| Currently enrolled in school                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |                  |                             |                  |                  |                            |                     |
| Treatment effect                                             | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.034                                   | 0.039            | 0.041            | 0.061                       | 0.028            | 0.029            | 0.015                      | 0.044               |
| standard error                                               | (0.022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.033)                                 | (0.030)          | (0.035)          | (0.051)                     | (0.048)          | (0.029)          | (0.043)                    | (0.039)             |
| Comparison mean                                              | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.517                                   | 0.469            | 0.481            | 0.513                       | 0.450            | 0.502            | 0.520                      | 0.484               |
| p-value on equality of effe                                  | ect(5) = (6) = (8) = (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ): .908 (2)=(.                          | 3): .904         |                  | (5) = (6)                   | 6): .643         | (4)=(7): .776    | (8) = (9)                  | ): .616             |
| Ever enrolled in SHS                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | /                |                  |                             | /                |                  |                            |                     |
| Treatment effect                                             | -0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.035                                  | 0.001            | -0.002           | -0.023                      | 0.020            | -0.027           | -0.043                     | -0.013              |
| standard error                                               | (0.021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.031)                                 | (0.029)          | (0.033)          | (0.049)                     | (0.045)          | (0.028)          | (0.041)                    | (0.037)             |
| Comparison mean                                              | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.371                                   | 0.329            | 0.342            | 0.374                       | 0.309            | 0.356            | 0.369                      | 0.343               |
| p-value on equality of effe                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |                  |                             | <i>6): .526</i>  | (4) = (7): .553  | (8) = (9)                  |                     |
| Education costs financed by                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |                  | (-) (-                      |                  | (-) (.)          | (-) (-)                    |                     |
| Treatment effect                                             | 16.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.347                                  | 9.247            | 8.123            | 12.171                      | 3.927            | 21.230           | 32.620                     | 12.021              |
| standard error                                               | (6.505)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (9.552)**                               | (8.907)          | (10.253)         | (14.854)                    | (14.189)         |                  | $(12.490)^{***}$           | (11.440)            |
| Comparison mean                                              | 37.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.959                                  | 40.593           | 29.382           | 22.813                      | 36.106           | 42.961           | 42.101                     | 43.830              |
| p-value on equality of effe                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | 201002           |                             | 6): .688         | (4) = (7): .323  | (8)=(9)                    |                     |
| Panel E. Female children                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /////////////////////////////////////// |                  |                  |                             | .)               | (-) (-)          |                            | ,                   |
| Years of formal education t                                  | o date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |                  |                             |                  |                  |                            |                     |
| Treatment effect                                             | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.136                                  | 0.347            | -0.039           | -0.322                      | 0.270            | 0.189            | -0.024                     | 0.425               |
| standard error                                               | (0.142)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.199)                                 | $(0.204)^*$      | (0.222)          | (0.319)                     | (0.310)          | (0.186)          | (0.255)                    | (0.271)             |
| Comparison mean                                              | 7.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.828                                   | 7.585            | 7.635            | 7.855                       | (0.310)<br>7.379 | 7.767            | 7.807                      | 7.726               |
| p-value on equality of effe                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | 1.000            |                             | 6): .183         | (4) = (7): .431  | (8)=(9)                    |                     |
| Currently enrolled in school                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )202 $(2) - (0)$                        |                  |                  | (0)-(0                      |                  | (4)-(7). 101     | (0)-(0)                    | )221                |
| Treatment effect                                             | -0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                   | -0.074           | 0.010            | 0.094                       | -0.073           | -0.064           | -0.052                     | -0.079              |
| standard error                                               | (0.023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.032)                                 | $(0.033)^{**}$   | (0.036)          | $(0.051)^*$                 | (0.050)          | $(0.030)^{**}$   | (0.042)                    | $(0.044)^*$         |
| Comparison mean                                              | (0.523)<br>0.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.052)<br>0.514                        | (0.033)<br>0.532 | (0.030)<br>0.533 | (0.031)<br>0.497            | (0.050)<br>0.574 | (0.050)<br>0.515 | (0.042)<br>0.526           | (0.044)<br>0.502    |
| p-value on equality of effe                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | 0.000            |                             | ): .020**        | (4)=(7):.113     | (8)=(9)                    |                     |
| Ever enrolled in SHS                                         | (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) - (0) | ). $.040 (2) - (3)$                     | )000             |                  | (0) - (0)                   | 020              | (4)-(7)110       | (8)–(9)                    | 001                 |
| Treatment effect                                             | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.030                                  | 0.036            | -0.013           | -0.023                      | 0.006            | 0.011            | -0.034                     | 0.062               |
| standard error                                               | (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.029)                                 | (0.030)          | (0.032)          | (0.046)                     | (0.045)          | (0.011)          | (0.034)                    | (0.040)             |
| Comparison mean                                              | (0.021)<br>0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.029)<br>0.295                        | (0.030)<br>0.258 | (0.032)<br>0.274 | (0.040)<br>0.306            | (0.043)<br>0.237 | (0.027)<br>0.280 | (0.037)<br>0.287           | (0.040)<br>0.273    |
| -                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | 0.274            |                             |                  |                  |                            |                     |
| p-value on equality of effective Education costs financed by |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)=(2)                                 | 5)108            |                  | $(\partial)=(\partial$      | 6): .652         | (4)=(7): .569    | (8) = (9)                  | 070                 |
|                                                              | 13.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                  | 15 169           | 20 020           | 25 067                      | 9 794            | 10 055           | 0.005                      | 09 117              |
| Treatment effect                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.220                                  | 15.163           | 20.020           | 35.067<br>(15.205)**        | 3.734            | 10.055           | -0.985                     | 23.117              |
| standard error                                               | $(6.851)^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (9.556)                                 | (9.800)          | $(10.660)^*$     | (15.305)**                  | (14.889)         | (8.921)          | (12.239)                   | $(12.983)^{*}$      |
| Comparison mean                                              | 33.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.705                                  | 41.455           | 39.039           | 26.249                      | 53.896           | 28.928           | 25.288                     | 32.782              |
| p-value on equality of effe                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  | 1000             | 1 / 1                       | <i>6): .142</i>  | (4)=(7): .473    | (8)=(9)                    |                     |
| Observations                                                 | 4613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2306                                    | 2307             | 1920             | 962                         | 958              | 2693             | 1344                       | 1349<br>S. finishin |

Notes: Data from 2015 follow-up. See Table 3 notes for description of columns and rows; all regressions control for region fixed effects, JHS finishing exam score (BECE), a dummy for missing JHS finishing exam score, individual age and gender; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.

|                                                                                      |                                         | Combined                 | <b>-</b> - ·              | -                       | emic Major A             |                  |                           | onal Major A                  |                           |
|--------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|---------------------------|-------------------------|--------------------------|------------------|---------------------------|-------------------------------|---------------------------|
|                                                                                      | All                                     | Female                   | Male                      | All                     | Female                   | Male             | All                       | Female                        | Male                      |
|                                                                                      | (1)                                     | (2)                      | (3)                       | (4)                     | (5)                      | (6)              | (7)                       | (8)                           | (9)                       |
| Panel A. Other Cognitive or                                                          | Academic Outcom                         | les                      |                           |                         |                          |                  |                           |                               |                           |
| Ever enrolled in TVI (2015)                                                          | 0.041                                   | 0.020                    | 0.069                     | 0.096                   | 0.000                    | 0.044            | 0.050                     | 0.007                         | 0.079                     |
| Treatment effect<br>Standard error                                                   | -0.041<br>(0.010)***                    | -0.020                   | -0.062<br>$(0.014)^{***}$ | -0.026                  | -0.009                   | -0.044           | -0.050<br>$(0.013)^{***}$ | -0.027                        | -0.073<br>$(0.019)^*$     |
| Comparison mean                                                                      | $(0.010)^{1-1}$                         | $(0.014) \\ 0.046$       | ( )                       | (0.016)                 | $(0.022) \\ 0.031$       | $(0.022)^*$      | $(0.013)^{4444}$<br>0.075 | $(0.019) \\ 0.057$            | . ,                       |
| p-value on equality of effect                                                        |                                         |                          | 0.080                     | 0.046                   |                          | 0.061            |                           |                               | 0.092<br>): .081*         |
| Memory for digit span (forwa                                                         |                                         | : .132(2) = (3)          | ): .039**                 |                         | (3)=(0)                  | 6): .276         | (4)=(7): .238             | $(\mathcal{O})=(\mathcal{O})$ | ): .081                   |
| Treatment effect                                                                     | 0.072                                   | 0.041                    | 0.092                     | -0.133                  | -0.256                   | -0.038           | 0.211                     | 0.248                         | 0.172                     |
| Standard error                                                                       | (0.124)                                 | (0.176)                  | (0.175)                   | (0.194)                 | (0.274)                  | (0.273)          | (0.162)                   | (0.248)                       | (0.228)                   |
| Comparison mean                                                                      | (0.124)<br>7.544                        | 7.381                    | (0.173)<br>7.714          | (0.194)<br>7.748        | (0.274)<br>7.511         | 8.004            | (0.102)<br>7.405          | (0.229)<br>7.291              | 7.522                     |
| p-value on equality of effect                                                        |                                         |                          |                           | 1.140                   |                          | 6): .572         | (4)=(7):.173              |                               | 9): .813                  |
| Memory for digit span (backy                                                         |                                         | (2) - (3)                |                           |                         | (0)-(1                   | 0)012            | (4)-(1): .110             | (0)-(3                        | )010                      |
| Treatment effect                                                                     | 0.072                                   | 0.017                    | 0.117                     | -0.006                  | -0.070                   | 0.039            | 0.124                     | 0.077                         | 0.166                     |
| Standard error                                                                       | (0.088)                                 | (0.124)                  | (0.124)                   | (0.138)                 | (0.194)                  | (0.194)          | (0.115)                   | (0.162)                       | (0.161                    |
| Comparison mean                                                                      | (0.000)<br>4.541                        | (0.124)<br>4.374         | (0.124)<br>4.714          | (0.130)<br>4.635        | (0.154)<br>4.457         | (0.134)<br>4.827 | 4.476                     | (0.102)<br>4.316              | 4.639                     |
| p-value on equality of effect                                                        |                                         |                          |                           | 4.055                   |                          | 4.821            | (4)=(7):.465              |                               | 4.039<br>9): .695         |
| Raven's progressive matrices                                                         |                                         | (2) - (3)                | 5)572                     |                         | (0) - (0)                | 0)091            | (4) - (7)400              | (0)-(8                        | 9): .090                  |
| Treatment effect                                                                     | -0.021                                  | -0.033                   | -0.035                    | -0.055                  | 0.049                    | -0.198           | -0.001                    | -0.092                        | 0.076                     |
| Standard error                                                                       | (0.126)                                 | (0.177)                  | (0.176)                   | (0.197)                 | (0.276)                  | (0.275)          | (0.165)                   | (0.231)                       | (0.229)                   |
| Comparison mean                                                                      | (0.120)<br>6.954                        | 6.558                    | 7.368                     | 7.046                   | 6.620                    | (0.210)<br>7.504 | (0.105)<br>6.891          | (0.251)<br>6.514              | 7.277                     |
| p-value on equality of effect                                                        |                                         |                          |                           | 1.040                   |                          | 6): .526         | (4)=(7):.830              |                               | 9): .603                  |
| Panel B. Migration Outcomes                                                          |                                         | (2) - (3)                | 5)                        |                         | (0)-(1                   | 0)020            | (4)-(1): .000             | (0)-(0                        | /)000                     |
| Ever migrated since 2008 (20)                                                        |                                         |                          |                           |                         |                          |                  |                           |                               |                           |
| Treatment effect                                                                     | -0.021                                  | -0.010                   | -0.030                    | -0.020                  | -0.000                   | -0.041           | -0.021                    | -0.017                        | -0.024                    |
| Standard error                                                                       | (0.021)                                 | (0.029)                  | (0.028)                   | (0.032)                 | (0.045)                  | (0.041)          | (0.021)                   | (0.037)                       | (0.037                    |
| Comparison mean                                                                      | (0.020)<br>0.791                        | (0.029)<br>0.806         | (0.028)<br>0.776          | (0.032)<br>0.805        | (0.043)<br>0.796         | (0.045)<br>0.815 | (0.020)<br>0.782          | (0.037)<br>0.813              | (0.037)<br>0.751          |
| p-value on equality of effect                                                        |                                         |                          |                           | 0.805                   |                          | 6): .519         | (4)=(7):.986              |                               | 9): .892                  |
| Lives in Greater Accra (2016)                                                        |                                         | (2)=(2)                  | 5): .025                  |                         | (3) = (0)                | 0): .519         | (4)=(7): .980             | (8)=(8                        | 9): .092                  |
| Treatment effect                                                                     | 0.014                                   | 0.023                    | 0.006                     | -0.008                  | 0.009                    | -0.026           | 0.029                     | 0.032                         | 0.027                     |
| Standard error                                                                       | (0.014)                                 | (0.025)                  | (0.026)                   | (0.029)                 | (0.003)                  | (0.040)          | (0.029)                   | (0.032)                       | (0.033)                   |
| Comparison mean                                                                      | 0.180                                   | (0.020)<br>0.174         | (0.020)<br>0.186          | (0.029)<br>0.192        | (0.041)<br>0.173         | (0.040)<br>0.212 | (0.024)<br>0.172          | (0.034)<br>0.175              | 0.169                     |
| -                                                                                    |                                         |                          |                           | 0.192                   |                          | 6): .542         |                           |                               | 9): .915                  |
| p-value on equality of effect                                                        |                                         | (2)=(3)                  | 5): .042                  |                         | (3) = (3)                | 0): .342         | (4)=(7): .311             | (8)=(8                        | 9): .915                  |
| <u>Lives in a town or city (2016)</u><br>Treatment effect                            | 0.019                                   | 0.044                    | 0.006                     | 0.010                   | 0.006                    | 0.024            | 0.019                     | 0.071                         | 0.024                     |
|                                                                                      |                                         | 0.044                    | -0.006                    | 0.019                   | 0.006                    | 0.034            | 0.018                     | 0.071                         | -0.034                    |
| Standard error                                                                       | (0.014)                                 | $(0.019)^{**}$           | (0.019)                   | (0.021)                 | (0.030)                  | (0.030)          | (0.018)                   | $(0.025)^{***}$               | (0.025                    |
| Comparison mean                                                                      | 0.912                                   | 0.902                    | 0.924                     | 0.925                   | 0.924                    | 0.926            | 0.904                     | 0.886                         | 0.922                     |
| p-value on equality of effect                                                        |                                         | ): $.025 + (2) = (3)$    | 3): .062*                 |                         | (5)=(0)                  | 6): .514         | (4)=(7): .962             | (8)=(9)                       | : .002***                 |
| Migrated to different district                                                       | · , , , , , , , , , , , , , , , , , , , | 0.020                    | 0.000                     | 0.027                   | 0.000                    | 0.017            | 0.000                     | 0.011                         | 0.000                     |
| Treatment effect                                                                     | -0.027                                  | -0.030                   | -0.023                    | -0.037                  | -0.060                   | -0.017           | -0.020                    | -0.011                        | -0.029                    |
| Standard error                                                                       | (0.024)                                 | (0.034)                  | (0.034)                   | (0.038)                 | (0.053)                  | (0.053)          | (0.031)                   | (0.044)                       | (0.043                    |
| Comparison mean                                                                      | 0.534                                   | 0.543                    | 0.525                     | 0.525                   | 0.512                    | 0.539            | 0.540                     | 0.565                         | 0.516                     |
| p-value on equality of effect                                                        | t(5) = (6) = (8) = (9)                  | ): $.908 (2) = (3)$      | 3): .884                  |                         | (5) = (6)                | 6): .569         | (4)=(7): .721             | (8) = (9)                     | 9): .770                  |
| Lives with guardians (2016)                                                          | 0.004                                   | 0.007                    | 0.077                     | 0.000                   | 0.000                    | 0.004            | 0.054                     | 0.007                         | 0 100                     |
| Treatment effect                                                                     | 0.034                                   | -0.007                   | 0.077                     | 0.006                   | 0.023                    | -0.004           | 0.054                     | -0.027                        | 0.133                     |
| Standard error                                                                       | (0.025)                                 | (0.035)                  | (0.035)**                 | (0.039)                 | (0.055)                  | (0.054)          | $(0.032)^*$               | (0.045)                       | $(0.045)^*$               |
| Comparison mean                                                                      | 0.454                                   | 0.496                    | 0.410                     | 0.459                   | 0.495                    | 0.419            | 0.451                     | 0.496                         | 0.404                     |
| p-value on equality of effect                                                        |                                         |                          | 3): .088*                 |                         | (5)=(0)                  | 6): .725         | (4) = (7): .345           | (8)=(9)                       | ): .012**                 |
| Panel C. 2013 and 2015 Labo                                                          |                                         | $\underline{es}$         |                           |                         |                          |                  |                           |                               |                           |
| Inv. hyperbolic sine earnings                                                        |                                         | 0.007                    | 0.011                     | 0.410                   |                          | 0.014            | 0.050                     | 0 500                         | 0.010                     |
| Treatment effect                                                                     | 0.325                                   | 0.627                    | -0.011                    | 0.416                   | 0.775                    | -0.016           | 0.258                     | 0.523                         | -0.019                    |
| standard error                                                                       | (0.136)**                               | $(0.187)^{***}$          | (0.186)                   | $(0.212)^{**}$          | $(0.291)^{***}$          | (0.290)          | (0.177)                   | $(0.243)^{**}$                | (0.242)                   |
| Comparison mean                                                                      | 2.225                                   | 1.494                    | 2.986                     | 2.301                   | 1.437                    | 3.228            | 2.173                     | 1.535                         | 2.825                     |
| p-value on equality of effect                                                        |                                         | ): .0937(2)=(3           | ): .015**                 |                         | (5)=(6)                  | <i>6): .054*</i> | (4) = (7):.567            | (8) = (8)                     | 9): .114                  |
| Inv. hyperbolic sine earnings                                                        | · · · ·                                 |                          |                           |                         |                          |                  |                           |                               |                           |
| Treatment effect                                                                     | 0.254                                   | 0.101                    | 0.377                     | 0.359                   | -0.024                   | 0.657            | 0.183                     | 0.183                         | 0.184                     |
| standard error                                                                       | (0.145)*                                | (0.200)                  | $(0.200)^{*}$             | (0.228)                 | (0.314)                  | $(0.315)^{**}$   | (0.188)                   | (0.260)                       | (0.258)                   |
| Comparison mean                                                                      | 2.692                                   | 2.064                    | 3.346                     | 2.567                   | 1.906                    | 3.293            | 2.777                     | 2.176                         | 3.381                     |
| p-value on equality of effect                                                        | t(5) = (6) = (8) = (9)                  | ): .465 (2)=(-           | 3): .329                  |                         | (5) = (5)                | 6): .125         | (4) = (7):.552            | (8) = (9)                     | 9): .997                  |
| Log earnings last month (201                                                         | <u>.3)</u>                              |                          |                           |                         |                          |                  |                           |                               |                           |
| Treatment effect                                                                     | -0.030                                  | -0.000                   | 0.008                     | -0.067                  | 0.120                    | -0.123           | -0.003                    | -0.081                        | 0.105                     |
| standard error                                                                       | (0.076)                                 | (0.117)                  | (0.097)                   | (0.117)                 | (0.182)                  | (0.146)          | (0.101)                   | (0.153)                       | (0.130)                   |
| Comparison mean                                                                      | 4.634                                   | 4.322                    | 4.813                     | 4.629                   | 4.194                    | 4.865            | 4.638                     | 4.409                         | 4.775                     |
| p-value on equality of effect                                                        |                                         |                          |                           |                         |                          | 6): .298         | (4)=(7):.678              |                               | 9): .353                  |
| Log earnings last month (201                                                         |                                         | ( <i>2</i> )-(           |                           |                         | (9)-(1                   |                  | (-) (.)010                | (0)-(0                        |                           |
| Treatment effect                                                                     | 0.159                                   | 0.201                    | 0.107                     | 0.057                   | 0.185                    | -0.081           | 0.220                     | 0.216                         | 0.224                     |
|                                                                                      |                                         |                          |                           |                         |                          |                  |                           |                               |                           |
| standard error                                                                       | (0.072)**                               | (0.112)*                 | (0.089)                   | (0.114)                 | (0.185)                  | (0.139)          | (0.092)**                 | (0.139)                       | (0.117)                   |
| a .                                                                                  | 4.941                                   | 4.625                    | 5.165                     | 5.074                   | 4.705                    | 5.336            | 4.860                     | 4.576                         | 5.061                     |
| Comparison mean                                                                      | t(5) = (6) = (8) = (9)                  | ): .335 (2)=(.           | 3): .511                  |                         | (5) = (6)                | 6): .251         | (4) = (7):.264            | (8) = (9)                     | 9): .966                  |
| p-value on equality of effect                                                        |                                         |                          |                           |                         |                          |                  |                           |                               |                           |
| p-value on equality of effect                                                        |                                         |                          |                           |                         |                          |                  |                           |                               |                           |
| p-value on equality of effect                                                        | 0.064                                   | 0.124                    | -0.001                    | 0.084                   | 0.145                    | 0.012            | 0.050                     | 0.110                         | -0.012                    |
| p-value on equality of effect<br>Positive earnings (2013)                            |                                         | 0.124<br>$(0.034)^{***}$ | -0.001<br>(0.034)         | 0.084<br>$(0.038)^{**}$ | 0.145<br>$(0.053)^{***}$ | 0.012<br>(0.053) | 0.050<br>(0.032)          | 0.110<br>$(0.045)^{**}$       |                           |
| p-value on equality of effect<br><u>Positive earnings (2013)</u><br>Treatment effect | 0.064                                   |                          |                           |                         |                          |                  |                           |                               | -0.012<br>(0.044<br>0.517 |

| Table A3: Other Impacts of t                                 |                            | nt.<br>Combined           |                      | Acad                 | emic Major A        | Admits              | Vocatio                    | onal Major A           | Admits               |
|--------------------------------------------------------------|----------------------------|---------------------------|----------------------|----------------------|---------------------|---------------------|----------------------------|------------------------|----------------------|
|                                                              | All                        | Female                    | Male                 | All                  | Female              | Male                | All                        | Female                 | Male                 |
|                                                              | (1)                        | (2)                       | (3)                  | (4)                  | (5)                 | (6)                 | (7)                        | (8)                    | (9)                  |
| Panel C. 2013 and 2015 Labo                                  | or Market outcome          | s cont.                   |                      |                      |                     |                     |                            |                        |                      |
| <u>Positive earnings (2015)</u><br>Treatment effect          | 0.031                      | 0.004                     | 0.054                | 0.057                | -0.016              | 0.118               | 0.013                      | 0.017                  | 0.010                |
| standard error                                               | (0.031)                    | (0.004)                   | (0.034)              | (0.037)              | (0.016)             | $(0.054)^{**}$      |                            | (0.017)                | (0.010)              |
| Comparison mean                                              | (0.023)<br>0.478           | (0.034)<br>0.388          | (0.034)<br>0.571     | (0.039)<br>0.445     | (0.054)<br>0.353    | 0.546               | (0.032)<br>0.500           | (0.043)<br>0.413       | (0.044)<br>0.588     |
| p-value on equality of effect                                |                            |                           |                      | 0.440                |                     | 0.540<br>?): .079*  | (4)=(7):.388               | (8)=(9)                |                      |
| Total earnings last month (C                                 |                            | (2) = (2)                 | <i></i>              |                      | (0)-(0)             | )013                | (4)-(1)                    | (0)-(0)                | )910                 |
| Treatment effect                                             | 2.070                      | 15.415                    | -13.024              | 1.765                | 21.440              | -21.590             | 2.209                      | 11.219                 | -7.502               |
| standard error                                               | (6.630)                    | $(9.105)^*$               | (9.059)              | (10.365)             | (14.209)            | (14.168)            | (8.642)                    | (11.873)               | (11.799)             |
| Comparison mean                                              | 69.166                     | 33.327                    | 106.490              | 70.397               | 28.305              | 115.565             | 68.325                     | 36.840                 | 100.455              |
| p-value on equality of effect                                | ct $(5) = (6) = (8) = (9)$ | ): .118 (2)=(3)           | : .026**             |                      | (5) = (6)           | ): .032**           | (4)=(7): .973              | (8) = (9)              | ): .263              |
| Total earnings last month (C                                 | <u>GHX) (2015)</u>         |                           |                      |                      |                     |                     |                            |                        |                      |
| Treatment effect                                             | 18.190                     | 12.262                    | 21.979               | 18.993               | 11.098              | 20.495              | 17.578                     | 13.011                 | 22.243               |
| standard error                                               | (9.324)*                   | (12.779)                  | $(12.756)^*$         | (14.671)             | (20.058)            | (20.107)            | (12.092)                   | (16.590)               | (16.512)             |
| Comparison mean                                              | 105.697                    | 58.760                    | 154.624              | 109.897              | 56.476              | 168.662             | 102.837                    | 60.386                 | 145.500              |
| p-value on equality of effec                                 | ct $(5) = (6) = (8) = (9)$ | ):.964 (2)=(3             | 3): .590             |                      | (5) = (t)           | 6): .740            | (4)=(7): .940              | (8) = (9)              | ): .693              |
| Total hours worked last mon                                  | ( )                        |                           |                      |                      |                     |                     |                            |                        |                      |
| Treatment effect                                             | -5.096                     | -12.446                   | 1.531                | -8.640               | -28.553             | 8.950               | -2.650                     | -1.616                 | -3.610               |
| standard error                                               | (6.197)                    | (8.706)                   | (8.690)              | (9.751)              | (13.659)**          | (13.692)            | (8.037)                    | (11.297)               | (11.244)             |
| Comparison mean                                              | 128.362                    | 113.605                   | 143.745              | 123.714              | 107.273             | 141.800             | 131.526                    | 118.109                | 145.010              |
| p-value on equality of effect                                |                            | ( ) (                     | 3): .255             |                      | (5) = (6)           | 3): .052*           | (4)=(7): .635              | (8) = (9)              | ): .900              |
| Worked over 10 hours in the                                  | ,                          | _                         |                      |                      |                     |                     |                            |                        |                      |
| Treatment effect                                             | -0.013                     | -0.057                    | 0.028                | 0.009                | -0.073              | 0.080               | -0.028                     | -0.046                 | -0.009               |
| standard error                                               | (0.024)                    | (0.034)*                  | (0.034)              | (0.038)              | (0.053)             | (0.053)             | (0.031)                    | (0.044)                | (0.044)              |
| Comparison mean                                              | 0.625                      | 0.573                     | 0.679                | 0.599                | 0.531               | 0.673               | 0.642                      | 0.602                  | 0.682                |
| p-value on equality of effect<br>Total hours worked last mon |                            |                           | ): .077*             |                      | (5)=(b)             | ): .040**           | (4)=(7): .458              | (8) = (9)              | ): .544              |
| Treatment effect                                             | -2.584                     | -0.702                    | -4.807               | -16.002              | -27.710             | 0.474               | 6.465                      | 15.076                 | -1.135               |
| standard error                                               | (6.159)                    | (9.352)                   | (8.202)              | (9.721)              | $(15.343)^*$        | -9.474<br>(12.639)  | (7.954)                    | (11.768)               | (10.790)             |
| Comparison mean                                              | (0.133)<br>204.288         | (9.552)<br>196.877        | (3.202)<br>210.827   | (9.721)<br>205.313   | (10.543)<br>200.523 | (12.033)<br>209.477 | (1.954)<br>203.637         | (11.708)<br>194.590    | (10.790)<br>211.693  |
| p-value on equality of effect                                |                            |                           |                      | 200.010              |                     | <i>5): .359</i>     | $(4)=(7):.073^*$           |                        |                      |
| Earnings per hour if worked                                  |                            |                           |                      |                      |                     |                     |                            |                        | / 1010               |
| Treatment effect                                             | 0.155                      | 0.100                     | 0.145                | 0.079                | 0.188               | -0.111              | 0.201                      | 0.053                  | 0.307                |
| standard error                                               | (0.100)                    | (0.148)                   | (0.130)              | (0.157)              | (0.243)             | (0.200)             | (0.129)                    | (0.187)                | $(0.171)^*$          |
| Comparison mean                                              | 0.999                      | 0.656                     | 1.301                | 1.152                | 0.667               | 1.573               | 0.902                      | 0.649                  | 1.127                |
| p-value on equality of effect                                | ct $(5) = (6) = (8) = (9)$ | ): .433 (2)=(3            | 3): .823             |                      | (5) = (0)           | 6): .342            | (4)=(7): .548              | (8) = (9)              | <i>): .314</i>       |
| Panel D. Earnings Quantiles                                  |                            |                           | ,                    |                      |                     | /                   |                            |                        |                      |
| <u>30th quantile of total earning</u>                        | gs last month (201         | <u>6)</u>                 |                      |                      |                     |                     |                            |                        |                      |
| Treatment effect                                             | 0.000                      | 0.000                     | 21.000               | 0.000                | 0.000               | -0.000              | 0.000                      | -0.000                 | 52.000               |
| standard error                                               | (2.251)                    | (2.643)                   | (29.518)             | (3.313)              | (3.837)             | (5.113)             | (3.070)                    | (3.397)                | $(27.343)^*$         |
| Comparison mean                                              | 0.000                      | 0.000                     | 0.000                | 0.000                | 0.000               | 0.000               | 0.000                      | 0.000                  | 0.000                |
| p-value on equality of effec                                 |                            |                           | 3): .477             |                      | (5) = (0, 0, 0)     | 6): .999            | (4) = (7): 1               | (8) = (9)              | ): .059*             |
| 40th quantile of total earning                               | - ,                        |                           |                      |                      |                     |                     |                            |                        |                      |
| Treatment effect                                             | 20.000                     | 0.000                     | 20.000               | 0.000                | 0.000               | -30.000             | 50.000                     | 0.000                  | 30.000               |
| standard error                                               | $(2.709)^{***}$            | (4.052)                   | (14.432)             | (2.965)              | (5.450)             | (33.909)            | $(14.432)^{***}$           | (4.829)                | (20.554)             |
| Comparison mean                                              | 0.000                      | 0.000                     | 0.000                | 0.000                | 0.000               | 0.000               | 0.000                      | 0.000                  | 0.000                |
| p-value on equality of effect                                |                            | . , .                     | 3): .182             |                      | (5) = (6)           | 6): .382            | (4)=(7): .000**            | * (8)=(9               | ): .155              |
| 50th quantile of total earning                               |                            | ,                         | 20,000               | 0.000                | 0.000               | 20.000              | 11.000                     | 25 000                 | 0.000                |
| Treatment effect                                             | 33.438                     | 12.000                    | -20.000              | -2.800               | 0.000               | -30.000             | 44.000                     | 35.000                 | -0.000               |
| standard error<br>Comparison mean                            | $(12.332)^{***}$<br>45.000 | $(4.076)^{***}$<br>45.000 | $(13.171) \\ 45.000$ | $(10.992) \\ 45.000$ | $(6.171) \\ 45.000$ | (23.109)<br>45.000  | $(12.843)^{***}$<br>45.000 | $(20.662)^*$<br>45.000 | $(16.010) \\ 45.000$ |
| p-value on equality of effect                                |                            |                           |                      | 45.000               |                     |                     | $(4)=(7):.005^{**}$        |                        |                      |
| <u>60th quantile of total earning</u>                        |                            |                           | 019                  |                      | (J)-(U)             | 9): .209            | (4) - (7)005               | (0)-(9                 | )100                 |
| Treatment effect                                             | 17.333                     | <u>34.500</u>             | -10.833              | 10.000               | 20.588              | -43.824             | 29.000                     | 41.235                 | 16.706               |
| standard error                                               | (11.845)                   | $(16.727)^{**}$           | (19.664)             | (21.002)             | (12.845)            | (34.985)            | $(15.531)^*$               | $(18.405)^{**}$        | (27.464)             |
| Comparison mean                                              | 100.000                    | 100.000                   | (19.004)<br>100.000  | (21.002)<br>100.000  | (12.843)<br>100.000 | (34.983)<br>100.000 | 100.000                    | 100.000                | (27.404)<br>100.000  |
| p-value on equality of effect                                |                            |                           |                      | 100.000              |                     | 3): .083*           | (4) = (7): .463            | (8)=(9)                |                      |
| <u>70th quantile of total earning</u>                        |                            | ( ) ( )                   | ,                    |                      | (0) - (0)           |                     | (=)-(1)400                 | (0)-(9                 | 1 400                |
| Treatment effect                                             | 6.667                      | 49.000                    | 2.500                | -7.692               | 31.250              | -18.750             | 18.462                     | 54.250                 | 14.500               |
| standard error                                               | (13.718)                   | $(15.589)^{***}$          | (17.186)             | (22.537)             | (24.031)            | (33.518)            | (18.194)                   | $(21.155)^{**}$        | (21.501)             |
| Comparison mean                                              | 152.000                    | 152.000                   | (11.100)<br>152.000  | (22.001)<br>152.000  | (24.001)<br>152.000 | (55.510)<br>152.000 | 152.000                    | 152.000                | (21.001)<br>152.000  |
| p-value on equality of effect                                |                            |                           |                      |                      |                     | <i>6): .205</i>     | (4)=(7):.372               | (8)=(9)                |                      |
| 80th quantile of total earning                               |                            |                           |                      |                      | (-) (*              | /                   |                            | (-) (0,                |                      |
| Transformer offerst                                          | 9.571                      | 15 000                    | 1 964                | 5 000                | 14 000              | 45 200              | 15 000                     | 22 400                 | 5 400                |

5.400

(27.190)

225.000

22.400

(26.512)

225.000

(8)=(9):.663

p-value on equality of effect (5)=(6)=(8)=(9):.637 (2)=(3):.596

2.571

(18.061)

225.000

Treatment effect

Comparison mean

standard error  $% \left( {{{\left( {{{\left( {{{\left( {{{\left( {{{\left( {{{{}}}}} \right)}} \right.}$ 

Table A3: Other Impacts of the Scholarship cont.

Table A3 continues on next page

15.909

(19.595)

225.000

-1.364

(24.843)

225.000

-5.000

(31.943)

225.000

14.000

(24.707)

225.000

-45.200

(45.367)

225.000

(5)=(6): .260

15.000

(20.174)225.000

(4)=(7):.594

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  | Combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                 | mic Major A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           | onal Major A                                                                                                                                       |                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                                                                                                                                                                                                              | Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Male                                                                                                                                                                                                            | All                                                                                                                             | Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                                                                                                                                                                       | Female                                                                                                                                             | Male                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)                                                                                                                                                                                                                                                              | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)                                                                                                                                                                                                             | (4)                                                                                                                             | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (7)                                                                                                                                                                       | (8)                                                                                                                                                | (9)                                                                                                                                                                                                         |
| Panel D. Earnings Quantiles of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| 90th quantile of total earnings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,000                                                                                                                                                                                                          | 41.000                                                                                                                          | 10,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 1 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,000                                                                                                                                                                    |                                                                                                                                                    | 75 149                                                                                                                                                                                                      |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.500                                                                                                                                                                                                                                                           | -1.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.000                                                                                                                                                                                                          | -41.000                                                                                                                         | 10.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -98.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.000                                                                                                                                                                    | -17.571                                                                                                                                            | 75.143                                                                                                                                                                                                      |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25.717)                                                                                                                                                                                                                                                         | (33.798)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (65.232)                                                                                                                                                                                                        | (48.375)                                                                                                                        | (49.543)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (123.420)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (37.391)                                                                                                                                                                  | (38.860)                                                                                                                                           | (50.430)                                                                                                                                                                                                    |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 352.000                                                                                                                                                                                                                                                          | 352.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 352.000                                                                                                                                                                                                         | 352.000                                                                                                                         | 352.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 352.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 352.000                                                                                                                                                                   | 352.000                                                                                                                                            | 352.000                                                                                                                                                                                                     |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  | . , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                               |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): .362                                                                                                                                                             | (8)=(9)                                                                                                                                            | 9): .138                                                                                                                                                                                                    |
| <u>30th quantile of inverse hyper</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·                                                                                                                                                                                                       | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                     | 0.000                                                                                                                                              |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.738                                                                                                                                                                                                           | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                     | -0.000                                                                                                                                             | 4.644                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.091)                                                                                                                                                                                                                                                          | (0.134)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(0.736)^{***}$                                                                                                                                                                                                 | (0.133)                                                                                                                         | (0.257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.349)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.125)                                                                                                                                                                   | (0.232)                                                                                                                                            | $(0.288)^{***}$                                                                                                                                                                                             |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                           | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                     | 0.000                                                                                                                                              | 0.000                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): 1                                                                                                                                                                | (8)=(9)                                                                                                                                            | : 5.78***                                                                                                                                                                                                   |
| 40th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.005                                                                                                                                                                     | 0.000                                                                                                                                              | 0.057                                                                                                                                                                                                       |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.690                                                                                                                                                                                                                                                            | -0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.288                                                                                                                                                                                                           | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.605                                                                                                                                                                     | 0.000                                                                                                                                              | 0.357                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0.738)^{***}$                                                                                                                                                                                                                                                  | (0.065)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.225)                                                                                                                                                                                                         | (0.182)                                                                                                                         | (0.094)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.873)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(0.223)^{***}$                                                                                                                                                           | (0.087)                                                                                                                                            | (0.246)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                           | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                     | 0.000                                                                                                                                              | 0.000                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  | 1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                               |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .429 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4)=(7): 5.99**                                                                                                                                                           | * (8)=(9                                                                                                                                           | 9): .171                                                                                                                                                                                                    |
| 50th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·                                                                                                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.499                                                                                                                                                                                                                                                            | 3.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.167                                                                                                                                                                                                          | 0.000                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.639                                                                                                                                                                     | 4.211                                                                                                                                              | 0.000                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0.199)^{**}$                                                                                                                                                                                                                                                   | (2.577)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.144)                                                                                                                                                                                                         | (0.463)                                                                                                                         | (0.088)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.278)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.215)***                                                                                                                                                                | (0.651)***                                                                                                                                         | (0.153)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.500                                                                                                                                                                                                                                                            | 4.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.500                                                                                                                                                                                                           | 4.500                                                                                                                           | 4.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.500                                                                                                                                                                     | 4.500                                                                                                                                              | 4.500                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  | 1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                               |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | '): .392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4)=(7): .209                                                                                                                                                             | (8)=(9):                                                                                                                                           | : 3.94***                                                                                                                                                                                                   |
| 60th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · ·                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.161                                                                                                                                                                                                                                                            | 0.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.052                                                                                                                                                                                                          | 0.105                                                                                                                           | 0.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.223                                                                                                                                                                     | 0.758                                                                                                                                              | 0.129                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.116)                                                                                                                                                                                                                                                          | $(0.306)^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.123)                                                                                                                                                                                                         | (0.206)                                                                                                                         | (0.908)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.238)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.132)*                                                                                                                                                                  | $(0.333)^{**}$                                                                                                                                     | (0.147)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.298                                                                                                                                                                                                                                                            | 5.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.298                                                                                                                                                                                                           | 5.298                                                                                                                           | 5.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.298                                                                                                                                                                     | 5.298                                                                                                                                              | 5.298                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): .629                                                                                                                                                             | (8) = (9)                                                                                                                                          | ): .084*                                                                                                                                                                                                    |
| 70th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bolic sine earning                                                                                                                                                                                                                                               | s last month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · ·                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.047                                                                                                                                                                                                                                                            | 0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.000                                                                                                                                                                                                          | -0.046                                                                                                                          | 0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.112                                                                                                                                                                     | 0.490                                                                                                                                              | 0.058                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.090)                                                                                                                                                                                                                                                          | $(0.176)^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.109)                                                                                                                                                                                                         | (0.157)                                                                                                                         | (0.303)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.199)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.109)                                                                                                                                                                   | $(0.215)^{**}$                                                                                                                                     | (0.137)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.717                                                                                                                                                                                                                                                            | 5.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.717                                                                                                                                                                                                           | 5.717                                                                                                                           | 5.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.717                                                                                                                                                                     | 5.717                                                                                                                                              | 5.717                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t (5)=(6)=(8)=(9)                                                                                                                                                                                                                                                | :.144 (2)=(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3): .055*                                                                                                                                                                                                       |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): .409                                                                                                                                                             | (8) = (9)                                                                                                                                          | ): .091*                                                                                                                                                                                                    |
| 80th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  | s last month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2016)                                                                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                                                                                                                                                                                                                            | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.000                                                                                                                                                                                                          | -0.025                                                                                                                          | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.039                                                                                                                                                                     | 0.137                                                                                                                                              | 0.031                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.084)                                                                                                                                                                                                                                                          | (0.136)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.105)                                                                                                                                                                                                         | (0.147)                                                                                                                         | (0.213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.180)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.103)                                                                                                                                                                   | (0.177)                                                                                                                                            | (0.134)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.109                                                                                                                                                                                                                                                            | 6.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.109                                                                                                                                                                                                           | 6.109                                                                                                                           | 6.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.109                                                                                                                                                                     | 6.109                                                                                                                                              | 6.109                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5) = (6) = (8) = (9)                                                                                                                                                                                                                                            | ):.767 (2)=(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3): .630                                                                                                                                                                                                        |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): .722                                                                                                                                                             | (8) = (9)                                                                                                                                          | 9): .635                                                                                                                                                                                                    |
| 90th quantile of inverse hyper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bolic sine earning                                                                                                                                                                                                                                               | s last month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2016)                                                                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.028                                                                                                                                                                                                                                                           | -0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.086                                                                                                                                                                                                           | -0.169                                                                                                                          | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.046                                                                                                                                                                     | -0.083                                                                                                                                             | 0.146                                                                                                                                                                                                       |
| standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.085)                                                                                                                                                                                                                                                          | (0.119)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.116)                                                                                                                                                                                                         | (0.140)                                                                                                                         | (0.198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.183)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.107)                                                                                                                                                                   | (0.152)                                                                                                                                            | (0.132)                                                                                                                                                                                                     |
| Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.557                                                                                                                                                                                                                                                            | 6.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.557                                                                                                                                                                                                           | 6.557                                                                                                                           | 6.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.557                                                                                                                                                                     | 6.557                                                                                                                                              | 6.557                                                                                                                                                                                                       |
| p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t $(5) = (6) = (8) = (9)$                                                                                                                                                                                                                                        | :.524 (2)=(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3): .418                                                                                                                                                                                                        |                                                                                                                                 | (5) = (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ): .465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)=(7): .223                                                                                                                                                             | (8) = (9)                                                                                                                                          | 9): .253                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Panel E. Economic Preference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1                                                                                                                                                                                                                                                              | w husiness ("                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2013)                                                                                                                                                                                                           |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Panel E. Economic Preference<br>Amount willing to invest in h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | igh payoff but ris.                                                                                                                                                                                                                                              | xy Dusiness (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>lign payoff but risi</u><br>1.099                                                                                                                                                                                                                             | 0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.886                                                                                                                                                                                                           | 1.200                                                                                                                           | -0.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.083                                                                                                                                                                     | 1.156                                                                                                                                              | 1.026                                                                                                                                                                                                       |
| Amount willing to invest in hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | 1.200<br>(2.268)                                                                                                                | -0.905<br>(3.213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.167<br>(3.204)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.083 \\ (1.891)$                                                                                                                                                        | 1.156 (2.685)                                                                                                                                      | $1.026 \\ (2.669)$                                                                                                                                                                                          |
| Amount willing to invest in hi<br>Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.099                                                                                                                                                                                                                                                            | 0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.886                                                                                                                                                                                                           |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                             |
| Amount willing to invest in hi<br>Treatment effect<br>standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     1.099 \\     (1.452) \\     51.077 $                                                                                                                                                                                                                       | 0.284<br>(2.060)<br>51.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     1.886 \\     (2.050) \\     51.015 $                                                                                                                                                                      | (2.268)                                                                                                                         | (3.213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3.204)<br>50.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.891)                                                                                                                                                                   | (2.685)<br>52.281                                                                                                                                  | (2.669)                                                                                                                                                                                                     |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     1.099 \\     (1.452) \\     51.077 $                                                                                                                                                                                                                       | 0.284<br>(2.060)<br>51.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     1.886 \\     (2.050) \\     51.015 $                                                                                                                                                                      | (2.268)                                                                                                                         | (3.213)<br>49.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3.204)<br>50.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(1.891) \\ 51.876$                                                                                                                                                       | (2.685)<br>52.281                                                                                                                                  | (2.669)<br>51.462                                                                                                                                                                                           |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     1.099 \\     (1.452) \\     51.077 $                                                                                                                                                                                                                       | 0.284<br>(2.060)<br>51.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     1.886 \\     (2.050) \\     51.015 $                                                                                                                                                                      | (2.268)                                                                                                                         | (3.213)<br>49.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3.204)<br>50.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(1.891) \\ 51.876$                                                                                                                                                       | (2.685)<br>52.281                                                                                                                                  | (2.669)<br>51.462                                                                                                                                                                                           |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.099 \\ (1.452) \\ 51.077 \\ t (5)=(6)=(8)=(9)$                                                                                                                                                                                                                | $\begin{array}{c} 0.284 \\ (2.060) \\ 51.136 \\ \vdots .847  (2) = (2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.886<br>(2.050)<br>51.015<br>3): .581                                                                                                                                                                          | (2.268)<br>49.907                                                                                                               | $(3.213) \\ 49.498 \\ (5) = (6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.204)<br>50.346<br>): .369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1.891)<br>51.876<br>(4)=(7):.968                                                                                                                                         | $(2.685) \\ 52.281 \\ (8) = (9)$                                                                                                                   | (2.669)<br>51.462<br>9): .972                                                                                                                                                                               |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u><br>Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.099 \\ (1.452) \\ 51.077 \\ t (5)=(6)=(8)=(9) \\ -0.014$                                                                                                                                                                                                      | $0.284 \\ (2.060) \\ 51.136 \\ 2 : .847  (2) = (100) \\ -0.019 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.886<br>(2.050)<br>51.015<br><i>3): .581</i><br>-0.010                                                                                                                                                         | (2.268)<br>49.907<br>-0.008                                                                                                     | $(3.213) \\ 49.498 \\ (5) = (6) \\ -0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.204)<br>50.346<br><i>:): .369</i><br>-0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891)<br>51.876<br>(4)=(7): .968<br>-0.019                                                                                                                              | (2.685)<br>52.281<br>(8)=(9)<br>-0.022                                                                                                             | (2.669)<br>51.462<br>9): .972<br>-0.015                                                                                                                                                                     |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u><br>Treatment effect<br>standard error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.099 \\ (1.452) \\ 51.077 \\ t (5)=(6)=(8)=(9) \\ -0.014 \\ (0.023) \\ 0.340 \\ \end{bmatrix}$                                                                                                                                                                 | 0.284 (2.060) 51.136 $:.847  (2) = (2)$ -0.019 (0.033) 0.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.886<br>(2.050)<br>51.015<br>3): .581<br>-0.010<br>(0.033)<br>0.336                                                                                                                                            | (2.268)<br>49.907<br>-0.008<br>(0.037)                                                                                          | $(3.213) \\ 49.498 \\ (5) = (6) \\ -0.014 \\ (0.052)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3.204)<br>50.346<br>): .369<br>-0.004<br>(0.052)<br>0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.891)<br>51.876<br>(4)=(7):.968<br>-0.019<br>(0.031)                                                                                                                    | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$                                                                                              | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)                                                                                                                                                          |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u><br>Treatment effect<br>standard error<br>Comparison mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.099 \\ (1.452) \\ 51.077 \\ t (5)=(6)=(8)=(9) \\ -0.014 \\ (0.023) \\ 0.340 \\ \end{bmatrix}$                                                                                                                                                                 | 0.284 (2.060) 51.136 $:.847  (2) = (2)$ -0.019 (0.033) 0.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.886<br>(2.050)<br>51.015<br>3): .581<br>-0.010<br>(0.033)<br>0.336                                                                                                                                            | (2.268)<br>49.907<br>-0.008<br>(0.037)                                                                                          | $(3.213) \\ 49.498 \\ (5) = (6) \\ -0.014 \\ (0.052) \\ 0.329$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.204)<br>50.346<br>): .369<br>-0.004<br>(0.052)<br>0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.891) 51.876 $(4) = (7): .968$ -0.019 $(0.031)$ 0.340                                                                                                                   | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$                                                                                              | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326                                                                                                                                                 |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u><br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.099 \\ (1.452) \\ 51.077 \\ t (5)=(6)=(8)=(9) \\ -0.014 \\ (0.023) \\ 0.340 \\ \end{bmatrix}$                                                                                                                                                                 | 0.284 (2.060) 51.136 $:.847  (2) = (2)$ -0.019 (0.033) 0.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.886<br>(2.050)<br>51.015<br>3): .581<br>-0.010<br>(0.033)<br>0.336                                                                                                                                            | (2.268)<br>49.907<br>-0.008<br>(0.037)                                                                                          | $(3.213) \\ 49.498 \\ (5) = (6) \\ -0.014 \\ (0.052) \\ 0.329$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.204)<br>50.346<br>): .369<br>-0.004<br>(0.052)<br>0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.891) 51.876 $(4) = (7): .968$ -0.019 $(0.031)$ 0.340                                                                                                                   | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$                                                                                              | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326                                                                                                                                                 |
| Amount willing to invest in hi<br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Time consistent (2013)</u><br>Treatment effect<br>standard error<br>Comparison mean<br>p-value on equality of effect<br><u>Present-bias (2013)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.099 (1.452)<br>51.077<br>t (5)=(6)=(8)=(9) -0.014<br>(0.023)<br>0.340<br>t (5)=(6)=(8)=(9)                                                                                                                                                                     | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(a_{1}, b_{2}, b_{3}, b_{3},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.886<br>(2.050)<br>51.015<br>3): .581<br>-0.010<br>(0.033)<br>0.336<br>3): .856                                                                                                                                | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340$                                                                               | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  (6)  (5) = (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)  (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3.204)<br>50.346<br>:): .369<br>-0.004<br>(0.052)<br>0.351<br>:): .895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1.891) 51.876 $(4)=(7):.968$ -0.019 $(0.031)$ 0.340 $(4)=(7):.823$                                                                                                       | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$                                                                                    | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913                                                                                                                                     |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.099 (1.452)<br>51.077<br>t (5)=(6)=(8)=(9) -0.014<br>(0.023)<br>0.340<br>t (5)=(6)=(8)=(9) 0.014                                                                                                                                                               | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(-0.019)\\ (0.033)\\ 0.344\\ \vdots .995  (2)=(-0.016)\\ 0.046\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\end{array}$                                                                                                | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340 \\ 0.038$                                                                      | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.204)<br>50.346<br>): .369<br>-0.004<br>(0.052)<br>0.351<br>): .895<br>0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891)<br>51.876<br>(4)=(7):.968<br>-0.019<br>(0.031)<br>0.340<br>(4)=(7):.823<br>-0.001                                                                                 | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$ $0.040$                                                                            | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042                                                                                                                           |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard error                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.099 (1.452)<br>51.077<br>t (5)=(6)=(8)=(9) -0.014<br>(0.023)<br>0.340<br>t (5)=(6)=(8)=(9) 0.014<br>(0.022)<br>0.250                                                                                                                                           | $0.284 \\ (2.060) \\ 51.136 \\ 2 \cdot .847  (2) = (4 - 0.019) \\ (0.033) \\ 0.344 \\ 2 \cdot .995  (2) = (4 - 0.046) \\ (0.031) \\ 0.244 \\ 0 \cdot .244 \\ 0 \cdot .$ | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\end{array}$                                                                              | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340 \\ 0.038 \\ (0.034) \\ (0.034)$                                                | $(3.213) \\ 49.498 \\ (5) = (6) \\ -0.014 \\ (0.052) \\ 0.329 \\ (5) = (6) \\ 0.055 \\ (0.048) \\ (0.048) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010) \\ (0.010$ | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891) 51.876 $(4)=(7):.968$ -0.019 $(0.031)$ 0.340 $(4)=(7):.823$ -0.001 $(0.028)$                                                                                      | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$ $0.040$ $(0.040)$ $0.246$                                                          | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)                                                                                                                |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectStandard errorComparison meanComparison meanTreatment effectstandard errorComparison mean                                                                                                                                                                                                                                                                                                                                                                                                              | 1.099 (1.452)<br>51.077<br>t (5)=(6)=(8)=(9) -0.014<br>(0.023)<br>0.340<br>t (5)=(6)=(8)=(9) 0.014<br>(0.022)<br>0.250                                                                                                                                           | $0.284 \\ (2.060) \\ 51.136 \\ 2 \cdot .847  (2) = (4 - 0.019) \\ (0.033) \\ 0.344 \\ 2 \cdot .995  (2) = (4 - 0.046) \\ (0.031) \\ 0.244 \\ 0 \cdot .244 \\ 0 \cdot .$ | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\end{array}$                                                                              | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340 \\ 0.038 \\ (0.034) \\ (0.034)$                                                | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891) 51.876 $(4)=(7):.968$ $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$                                                                        | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$ $0.040$ $(0.040)$ $0.246$                                                          | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279                                                                                                       |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectStandard errorComparison meanp-value on equality of effectstandard errorComparison meanp-value on equality of effect                                                                                                                                                                                                                                                                                                                                                                                   | 1.099 $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$                                                                                                                        | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(4,2,2)\\ 0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2)=(4,2,2)\\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2)=(4,2)\\ \vdots .36$                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\end{array}$                                                                              | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340 \\ 0.038 \\ (0.034) \\ (0.034)$                                                | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891) 51.876 $(4)=(7):.968$ $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$                                                                        | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$ $0.040$ $(0.040)$ $0.246$                                                          | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279                                                                                                       |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship Costs                                                                                                                                                                                                                                                                                                                                                                                | 1.099 $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$                                                                                                                        | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(4,2,2)\\ 0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2)=(4,2,2)\\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2)=(4,2)\\ \vdots .36$                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\end{array}$                                                                              | $(2.268) \\ 49.907 \\ -0.008 \\ (0.037) \\ 0.340 \\ 0.038 \\ (0.034) \\ (0.034)$                                                | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.891) 51.876 $(4)=(7):.968$ $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$                                                                        | (2.685) $52.281$ $(8)=(9)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(9)$ $0.040$ $(0.040)$ $0.246$                                                          | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279                                                                                                       |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings bet                                                                                                                                                                                                                                                                                                                                                    | 1.099 $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$ tween Jan 2009 an -10.439                                                                                              | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(4)\\ -0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2)=(4)\\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2)=(4)\\ ad \ Dec \ 2009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ & -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ & -0.016\\ (0.031)\\ 0.256\\ 3): .149\\ & -14.620\end{array}$                                                   | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358                                         | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  (5)=(6)  (5)=(6)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220<br>(): .634<br>-17.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1.891) 51.876<br>(4)=(7):.968 -0.019<br>(0.031) 0.340<br>(4)=(7):.823 -0.001<br>(0.028) 0.263<br>(4)=(7):.371 -9.147                                                     | (2.685) $52.281$ $(8)=(5)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(5)$ $0.040$ $(0.040)$ $0.246$ $(8)=(5)$                                                | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279<br>9): .147<br>-12.502                                                                                |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effect                                                                                                                                                                                                                                                                                                                                    | 1.099 $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$ tween Jan 2009 an                                                                                                      | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(3,3,3)\\ (0.033)\\ 0.344\\ \vdots .995  (2)=(3,3,3)\\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2)=(3,3,3)\\ 0.264\\ \vdots .366  (2)=(3,3,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\\ 3): .149\end{array}$                                                                   | $\begin{array}{c} (2.268) \\ 49.907 \\ \hline \\ -0.008 \\ (0.037) \\ 0.340 \\ \hline \\ 0.038 \\ (0.034) \\ 0.231 \end{array}$ | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  -7.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3.204)<br>50.346<br>50.346<br>(): .369<br>-0.004<br>(0.052)<br>0.351<br>(): .895<br>0.023<br>(0.048)<br>0.220<br>(): .634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.891) 51.876<br>(4)=(7):.968 -0.019<br>(0.031) 0.340<br>(4)=(7):.823 -0.001<br>(0.028) 0.263<br>(4)=(7):.371 -9.147                                                     | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(8)$ $0.040$ $(0.040)$ $0.246$ $(8)=(8)$ $-5.842$                                       | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279<br>9): .147<br>-12.502                                                                                |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effectstandard errorComparison mean                                                                                                                                                                                                                                                                                                       | $1.099$ $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$ tween Jan 2009 an -10.439 $(2.076)^{***}$ $17.374$                                                                   | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2) = (2) \\ -0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2) = (2) \\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2) = (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ (2) \\ 0.046\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ & -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ & -0.016\\ (0.031)\\ 0.256\\ 3): .149\\ & -14.620\\ (2.912)^{***}\\ 22.755\end{array}$                          | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358<br>$(3.244)^{***}$                      | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  -7.354  (4.568)  12.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.204)<br>50.346<br>50.346<br>50.346<br>50.346<br>(0.052)<br>0.351<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>51.634<br>-17.871<br>(4.555)****<br>25.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.891) 51.876<br>(4) = (7): .968 $-0.019$ $(0.031)$ $0.340$ $(4) = (7): .823$ $-0.001$ $(0.028)$ $0.263$ $(4) = (7): .371$ $-9.147$ $(2.705)***$ $16.580$                | (2.685) $52.281$ $(8)=(5)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(5)$ $0.040$ $(0.040)$ $0.246$ $(8)=(5)$ $-5.842$ $(3.817)$ $12.326$                    | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>0): .913<br>-0.042<br>(0.040)<br>0.279<br>0): .147<br>-12.502<br>$(3.793)^{***}$<br>20.921                                                   |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effectstandard errorComparison meanp-value on equality of effect                                                                                                                                                                                                                                                                          | $1.099$ $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$ tween Jan 2009 an -10.439 $(2.076)^{***}$ $17.374$ t $(5)=(6)=(8)=(9)$                                               | $0.284$ $(2.060)$ $51.136$ $2 \cdot .847  (2) = (2)$ $-0.019$ $(0.033)$ $0.344$ $2 \cdot .995  (2) = (2)$ $0.046$ $(0.031)$ $0.244$ $2 \cdot .366  (2) = (3)$ $(2.927)^{**}$ $12.208$ $2 \cdot .182  (2) = (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ -0.016\\ (0.031)\\ 0.256\\ 3): .149\\ -14.620\\ (2.912)^{***}\\ 22.755\end{array}$                                | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358<br>$(3.244)^{***}$                      | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  -7.354  (4.568)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.204)<br>50.346<br>50.346<br>50.346<br>50.346<br>(0.052)<br>0.351<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>51.634<br>-17.871<br>(4.555)****<br>25.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.891)<br>51.876<br>(4)=(7):.968<br>-0.019<br>(0.031)<br>0.340<br>(4)=(7):.823<br>-0.001<br>(0.028)<br>0.263<br>(4)=(7):.371<br>-9.147<br>(2.705)****                    | (2.685) $52.281$ $(8)=(5)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(5)$ $0.040$ $(0.040)$ $0.246$ $(8)=(5)$ $-5.842$ $(3.817)$ $12.326$                    | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279<br>9): .147<br>-12.502<br>(3.793)****                                                                 |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effectstandard errorComparison meanp-value on equality of effect                                                                                                                                                                                                                                                                          | 1.099<br>(1.452)<br>51.077<br>t $(5)=(6)=(8)=(9)$<br>-0.014<br>(0.023)<br>0.340<br>t $(5)=(6)=(8)=(9)$<br>0.014<br>(0.022)<br>0.250<br>t $(5)=(6)=(8)=(9)$<br>t ween Jan 2009 an<br>-10.439<br>(2.076)***<br>17.374<br>t $(5)=(6)=(8)=(9)$<br>t ween Jan 2010 an | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2) = (2) \\ -0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2) = (2) \\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2) = (2) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ &-0.010\\ (0.033)\\ 0.336\\ 3): .856\\ &-0.016\\ (0.031)\\ 0.256\\ 3): .149\\ &-14.620\\ (2.912)***\\ 22.755\\ ): .048**\end{array}$                    | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358<br>$(3.244)^{***}$<br>18.539            | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  -7.354  (4.568)  12.039  (5)=(6)  (5)=(6)  (5)=(6)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.204)<br>50.346<br>50.346<br>50.346<br>50.346<br>(0.052)<br>0.351<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.255<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0. | (1.891) 51.876<br>(4)=(7):.968 $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$ $(4)=(7):.371$ $-9.147$ $(2.705)***$ $16.580$ $(4)=(7):.447$          | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(8)$ $0.040$ $(0.040)$ $0.246$ $(8)=(8)$ $-5.842$ $(3.817)$ $12.326$ $(8)=(8)$          | $\begin{array}{c} (2.669) \\ 51.462 \\ 9): .972 \\ -0.015 \\ (0.043) \\ 0.326 \\ 9): .913 \\ -0.042 \\ (0.040) \\ 0.279 \\ 9): .147 \\ -12.502 \\ (3.793)**** \\ 20.921 \\ 9): .216 \end{array}$            |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effectstandard errorComparison meanp-value on equality of effectAverage monthly earnings betTreatment effectstandard errorComparison meanp-value on equality of effectAverage monthly earnings betTreatment effectIteratment effectStandard errorComparison meanp-value on equality of effectAverage monthly earnings betTreatment effect | $1.099$ $(1.452)$ $51.077$ t $(5)=(6)=(8)=(9)$ $-0.014$ $(0.023)$ $0.340$ t $(5)=(6)=(8)=(9)$ $0.014$ $(0.022)$ $0.250$ t $(5)=(6)=(8)=(9)$ tween Jan 2009 am -10.439 $(2.076)^{***}$ $17.374$ t $(5)=(6)=(8)=(9)$ tween Jan 2010 am -9.287                      | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2)=(1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ & -0.010\\ (0.033)\\ 0.336\\ 3): .856\\ & -0.016\\ (0.031)\\ 0.256\\ 3): .149\\ & -14.620\\ (2.912)^{***}\\ 22.755\\ ): .048^{**}\\ -12.569\end{array}$ | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358<br>$(3.244)^{***}$<br>18.539<br>-11.609 | (3.213) $49.498$ $(5)=(6)$ $-0.014$ $(0.052)$ $0.329$ $(5)=(6)$ $0.055$ $(0.048)$ $0.242$ $(5)=(6)$ $-7.354$ $(4.568)$ $12.039$ $(5)=(6)$ $-9.712$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.204)<br>50.346<br>50.346<br>50.346<br>50.346<br>(0.052)<br>0.351<br>50.023<br>(0.048)<br>0.220<br>50.634<br>-17.871<br>(4.555)***<br>25.514<br>50.7<br>-13.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.891) 51.876<br>(4)=(7):.968 $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$ $(4)=(7):.371$ $-9.147$ $(2.705)***$ $16.580$ $(4)=(7):.447$ $-7.708$ | (2.685) $52.281$ $(8)=(5)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(5)$ $0.040$ $(0.040)$ $0.246$ $(8)=(5)$ $-5.842$ $(3.817)$ $12.326$ $(8)=(5)$ $-3.679$ | $\begin{array}{c} (2.669) \\ 51.462 \\ 9): .972 \\ -0.015 \\ (0.043) \\ 0.326 \\ 0): .913 \\ -0.042 \\ (0.040) \\ 0.279 \\ 0): .147 \\ -12.502 \\ (3.793) *** \\ 20.921 \\ 0): .216 \\ -11.750 \end{array}$ |
| Amount willing to invest in hiTreatment effectstandard errorComparison meanp-value on equality of effectTime consistent (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPresent-bias (2013)Treatment effectstandard errorComparison meanp-value on equality of effectPanel F. Scholarship CostsAverage monthly earnings betTreatment effectstandard errorComparison meanp-value on equality of effect                                                                                                                                                                                                                                                                          | 1.099<br>(1.452)<br>51.077<br>t $(5)=(6)=(8)=(9)$<br>-0.014<br>(0.023)<br>0.340<br>t $(5)=(6)=(8)=(9)$<br>0.014<br>(0.022)<br>0.250<br>t $(5)=(6)=(8)=(9)$<br>t ween Jan 2009 an<br>-10.439<br>(2.076)***<br>17.374<br>t $(5)=(6)=(8)=(9)$<br>t ween Jan 2010 an | $\begin{array}{c} 0.284\\ (2.060)\\ 51.136\\ \vdots .847  (2) = (2) \\ -0.019\\ (0.033)\\ 0.344\\ \vdots .995  (2) = (2) \\ 0.046\\ (0.031)\\ 0.244\\ \vdots .366  (2) = (2) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ 12.208\\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ \vdots \\ .182  (2) = (3) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027) \\ 0.046\\ (2.027$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.886\\ (2.050)\\ 51.015\\ 3): .581\\ &-0.010\\ (0.033)\\ 0.336\\ 3): .856\\ &-0.016\\ (0.031)\\ 0.256\\ 3): .149\\ &-14.620\\ (2.912)***\\ 22.755\\ ): .048**\end{array}$                    | (2.268)<br>49.907<br>-0.008<br>(0.037)<br>0.340<br>0.038<br>(0.034)<br>0.231<br>-12.358<br>$(3.244)^{***}$<br>18.539            | (3.213)  49.498  (5)=(6)  -0.014  (0.052)  0.329  (5)=(6)  0.055  (0.048)  0.242  (5)=(6)  -7.354  (4.568)  12.039  (5)=(6)  (5)=(6)  (5)=(6)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)  (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.204)<br>50.346<br>50.346<br>50.346<br>50.346<br>(0.052)<br>0.351<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.220<br>50.023<br>(0.048)<br>0.255<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.023)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0.025)<br>(0. | (1.891) 51.876<br>(4)=(7):.968 $-0.019$ $(0.031)$ $0.340$ $(4)=(7):.823$ $-0.001$ $(0.028)$ $0.263$ $(4)=(7):.371$ $-9.147$ $(2.705)***$ $16.580$ $(4)=(7):.447$ $-7.708$ | (2.685) $52.281$ $(8)=(8)$ $-0.022$ $(0.044)$ $0.354$ $(8)=(8)$ $0.040$ $(0.040)$ $0.246$ $(8)=(8)$ $-5.842$ $(3.817)$ $12.326$ $(8)=(8)$          | (2.669)<br>51.462<br>9): .972<br>-0.015<br>(0.043)<br>0.326<br>9): .913<br>-0.042<br>(0.040)<br>0.279<br>9): .147<br>-12.502<br>(3.793)****<br>20.921<br>9): .216                                           |

Table A3 continues on next page

|                                          |                       | Combined          |                  | Acade            | emic Major A      | Admits                  | Vocatio                                 | onal Major A       | Admits            |
|------------------------------------------|-----------------------|-------------------|------------------|------------------|-------------------|-------------------------|-----------------------------------------|--------------------|-------------------|
|                                          | All                   | Female            | Male             | All              | Female            | Male                    | All                                     | Female             | Male              |
|                                          | (1)                   | (2)               | (3)              | (4)              | (5)               | (6)                     | (7)                                     | (8)                | (9)               |
| Panel F. Scholarship Costs con           | <u>nt.</u>            |                   |                  |                  |                   |                         |                                         |                    |                   |
| Average monthly earnings bet             | ween Jan 2011 a       | nd Dec 2011       |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | -6.383                | -5.075            | -7.767           | -9.301           | -7.038            | -11.835                 | -4.349                                  | -3.690             | -5.015            |
| standard error                           | $(1.718)^{***}$       | $(2.434)^{**}$    | $(2.422)^{***}$  | $(2.684)^{***}$  | $(3.798)^*$       | $(3.787)^{***}$         | $(2.238)^*$                             | (3.173)            | (3.153)           |
| Comparison mean                          | 10.548                | 8.450             | 12.734           | 10.786           | 7.321             | 14.505                  | 10.386                                  | 9.240              | 11.556            |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ):.390 (2)=(3     | ?): .433         |                  | (5) = (5)         | 6): .371                | (4)=(7): .156                           | (8) = (9)          | 9): .767          |
| Average monthly earnings bet             |                       |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | -2.316                | -2.295            | -2.382           | -3.998           | -3.264            | -4.846                  | -1.144                                  | -1.616             | -0.692            |
| standard error                           | $(0.822)^{***}$       | $(1.164)^{**}$    | $(1.158)^{**}$   | $(1.283)^{***}$  | $(1.816)^*$       | $(1.811)^{***}$         | (1.070)                                 | (1.518)            | (1.508)           |
| Comparison mean                          | 4.615                 | 3.810             | 5.454            | 5.021            | 3.757             | 6.377                   | 4.338                                   | 3.847              | 4.840             |
| p-value on equality of effect            |                       |                   | r                |                  | (5) = (6)         | 6): .537                | (4) = (7): .087*                        | (8) = (9)          | 9): .665          |
| Estimated yearly transportation          |                       |                   | · / ·            | <u>3)</u>        |                   |                         |                                         |                    |                   |
| Treatment effect                         | 84.483                | 73.653            | 94.039           | 69.444           | 62.643            | 73.625                  | 94.749                                  | 81.211             | 107.855           |
| standard error                           | $(11.739)^{***}$      | $(16.606)^{***}$  | $(16.492)^{***}$ | $(18.351)^{***}$ | (25.991)**        | $(25.761)^{***}$        | · /                                     | $(21.621)^{***}$   | $(21.513)^{**}$   |
| Comparison mean                          | 118.578               | 96.901            | 141.042          | 128.148          | 102.290           | 155.775                 | 112.087                                 | 93.152             | 131.307           |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ):.555 (2)=(3     | ?): .383         |                  | (5) = (6)         | 6): .764                | (4)=(7):.289                            | (8) = (9)          | 9): .382          |
| Panel G. Technology Adoption             | <u>n</u>              |                   |                  |                  |                   |                         |                                         |                    |                   |
| Knows how to use the interne             | t (2013)              |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | 0.044                 | 0.028             | 0.050            | 0.007            | -0.014            | 0.011                   | 0.069                                   | 0.058              | 0.077             |
| standard error                           | $(0.024)^*$           | (0.032)           | (0.031)          | (0.037)          | (0.049)           | (0.049)                 | $(0.031)^{**}$                          | (0.041)            | $(0.041)^*$       |
| Comparison mean                          | 0.386                 | 0.224             | 0.555            | 0.417            | 0.257             | 0.588                   | 0.366                                   | 0.201              | 0.533             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ): .464 (2)=(3    | 8): .623         |                  | (5) = (5)         | 6): .718                | (4)=(7): .196                           | (8)=(9             | 9): .746          |
| <u>Has an email address (2013)</u>       |                       |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | 0.021                 | 0.019             | 0.020            | 0.005            | 0.012             | -0.010                  | 0.033                                   | 0.023              | 0.040             |
| standard error                           | (0.018)               | (0.025)           | (0.025)          | (0.029)          | (0.040)           | (0.040)                 | (0.024)                                 | (0.033)            | (0.033)           |
| Comparison mean                          | 0.158                 | 0.078             | 0.242            | 0.171            | 0.082             | 0.267                   | 0.149                                   | 0.075              | 0.225             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ):.797 (2)=(3     | ?): .969         |                  | (5) = (6)         | 6): .690                | (4)=(7): .452                           | (8)=(9             | 9): .716          |
| Has a facebook account (2013)            | <u>)</u>              |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | 0.020                 | 0.016             | 0.017            | -0.009           | -0.016            | -0.014                  | 0.040                                   | 0.039              | 0.039             |
| standard error                           | (0.021)               | (0.029)           | (0.029)          | (0.033)          | (0.045)           | (0.045)                 | (0.028)                                 | (0.038)            | (0.037)           |
| Comparison mean                          | 0.245                 | 0.128             | 0.368            | 0.267            | 0.150             | 0.392                   | 0.231                                   | 0.113              | 0.351             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ): .634 (2)=(3    | e): .976         |                  | (5) = (6)         | 6): .979                | (4) = (7):.252                          | (8)=(9             | 9): .997          |
| <u>Owns computer <math>(2013)</math></u> |                       |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | -0.010                | 0.000             | -0.024           | 0.010            | 0.001             | 0.013                   | -0.024                                  | 0.000              | -0.049            |
| standard error                           | (0.013)               | (0.018)           | (0.018)          | (0.020)          | (0.028)           | (0.028)                 | (0.017)                                 | (0.023)            | (0.023)**         |
| Comparison mean                          | 0.078                 | 0.016             | 0.143            | 0.057            | 0.007             | 0.112                   | 0.092                                   | 0.023              | 0.163             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ): .276 (2)=(3    | ?): .338         |                  | (5) = (5)         | 6): .752                | (4)=(7): .197                           | (8)=(9             | 9): .135          |
| Has an email address (2015)              |                       |                   |                  |                  |                   |                         |                                         |                    |                   |
| Treatment effect                         | 0.043                 | 0.055             | 0.025            | 0.026            | 0.060             | -0.020                  | 0.055                                   | 0.051              | 0.057             |
| standard error                           | (0.021)**             | $(0.029)^*$       | (0.029)          | (0.033)          | (0.045)           | (0.045)                 | (0.027)**                               | (0.037)            | (0.037)           |
| Comparison mean                          | 0.240                 | 0.120             | 0.364            | 0.241            | 0.129             | 0.363                   | 0.239                                   | 0.114              | 0.365             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ): .519 (2)=(3    | ?): .460         |                  | (5) = (5)         | 6): .209                | (4)=(7): .498                           | (8)=(!             | 9): .919          |
| Has an email address (2016)              |                       |                   |                  |                  |                   | *                       |                                         |                    | ·                 |
| Treatment effect                         | 0.050                 | 0.040             | 0.051            | 0.013            | -0.013            | 0.025                   | 0.075                                   | 0.077              | 0.068             |
| standard error                           | $(0.023)^{**}$        | (0.032)           | (0.032)          | (0.036)          | (0.050)           | (0.050)                 | (0.030)**                               | $(0.041)^*$        | $(0.041)^*$       |
| Comparison mean                          | 0.341                 | 0.218             | 0.469            | 0.366            | 0.265             | 0.477                   | 0.323                                   | 0.185              | 0.463             |
| p-value on equality of effect            | (5) = (6) = (8) = (9) | ): .494 (2)=(3    | ?): .813         |                  |                   | 6): .589                | (4)=(7): .189                           | (8)=(!             | 9): .887          |
| Has a facebook account (2016)            |                       |                   | /                |                  |                   | /                       |                                         |                    | /                 |
| Treatment effect                         | 0.048                 | 0.082             | 0.004            | 0.028            | 0.101             | -0.060                  | 0.062                                   | 0.069              | 0.048             |
| standard error                           | $(0.024)^{**}$        | $(0.033)^{**}$    | (0.032)          | (0.038)          | (0.051)**         | (0.051)                 | (0.031)**                               | (0.042)            | (0.042)           |
| Comparison mean                          | 0.481                 | 0.320             | 0.650            | 0.494            | 0.343             | 0.658                   | 0.472                                   | 0.303              | 0.645             |
| p-value on equality of effect            |                       |                   |                  | J. 10 1          |                   | ): .025**               | (4)=(7):.500                            |                    | 9): .725          |
| Facebook on mobile (2016)                |                       | , (-) (0)         |                  |                  |                   | ,                       | ( ) ( ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |                    | ,                 |
| Treatment effect                         | 0.029                 | 0.061             | -0.011           | 0.026            | 0.099             | -0.058                  | 0.032                                   | 0.036              | 0.022             |
|                                          |                       |                   |                  |                  |                   | (0.050)                 | (0.032)                                 |                    | (0.041)           |
|                                          | (0.023)               | $(0.032)^*$       | (0.032)          | (U.U.3.())       | (U.Uati*          | 111.1.6.0.1.1           | [[].[].1.1.1.1.1.1                      | $(U_1U_4Z_1)$      | 10.0411           |
| standard error                           | $(0.023) \\ 0.347$    | (0.032)*<br>0.217 | (0.032)<br>0.484 | (0.037)<br>0.348 | (0.051)*<br>0.223 | · · · ·                 | · /                                     | $(0.042) \\ 0.213$ | · · · ·           |
|                                          | 0.347                 | 0.217             | 0.484            | (0.037)<br>0.348 | 0.223             | 0.485<br>0: <i>28**</i> | (0.030)<br>0.347<br>(4)=(7):.899        | 0.213              | 0.483<br>9): .809 |

Notes: Year of survey in parentheses. See Table 3 notes for description of columns and rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. "Estimated yearly transportation, in-kind and other SHS costs" is based off costs reported in the respondent's last semester of SHS as of 2013. The estimate adjusts for the number of terms of SHS the respondent attended to an estimated average yearly cost from 2009-2013.

|                                                         |                                       | Combined                                    |                           |                          | emic Major A             |                                             |                                             | onal Major              |                      |
|---------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------|--------------------------|--------------------------|---------------------------------------------|---------------------------------------------|-------------------------|----------------------|
| _                                                       | All                                   | Female                                      | Male                      | All                      | Female                   | Male                                        | All                                         | Female                  | Male                 |
| Age in 2008 (2008)                                      | (1)                                   | (2)                                         | (3)                       | (4)                      | (5)                      | (6)                                         | (7)                                         | (8)                     | (9)                  |
| Complier-Always Taker Difference                        | 0.160                                 | 0.272                                       | 0.064                     | -0.004                   | 0.086                    | -0.097                                      | 0.277                                       | 0.408                   | 0.178                |
| Standard error                                          | (0.081)**                             | $(0.121)^{**}$                              | (0.110)                   | (0.126)                  | (0.184)                  | (0.173)                                     | $(0.106)^{***}$                             | $(0.159)^{**}$          | (0.142)              |
| always Taker mean                                       | 17.075                                | 16.894                                      | 17.227                    | 17.088                   | 16.968                   | 17.202                                      | 17.065                                      | 16.836                  | 17.242               |
| Completed BECE in $2007 (2008)$                         |                                       |                                             |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference                        | 0.033                                 | 0.077                                       | -0.001                    | 0.030                    | 0.082                    | -0.001                                      | 0.036                                       | 0.076                   | -0.001               |
| standard error<br>Always Taker mean                     | $(0.016)^{**}$<br>0.084               | $(0.023)^{***}$<br>0.182                    | $(0.021) \\ 0.000$        | $(0.025) \\ 0.097$       | $(0.035)^{**}$<br>0.199  | $(0.032) \\ 0.000$                          | $(0.021)^*$<br>0.074                        | $(0.030)^{**}$<br>0.169 | (0.027)<br>0.000     |
| BECE exam performance (2008)                            | 0.084                                 | 0.182                                       | 0.000                     | 0.097                    | 0.199                    | 0.000                                       | 0.074                                       | 0.109                   | 0.000                |
| Complier-Always Taker Difference                        | -0.004                                | -0.010                                      | 0.002                     | -0.004                   | -0.015                   | 0.005                                       | -0.003                                      | -0.007                  | -0.001               |
| standard error                                          | (0.004)                               | $(0.006)^*$                                 | (0.006)                   | (0.007)                  | (0.009)                  | (0.009)                                     | (0.005)                                     | (0.008)                 | (0.007)              |
| Always Taker mean                                       | 0.630                                 | 0.628                                       | 0.632                     | 0.635                    | 0.635                    | 0.636                                       | 0.626                                       | 0.622                   | 0.629                |
| No male head in the household (200                      |                                       |                                             |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference<br>Standard error      | 0.006                                 | -0.039                                      | 0.045                     | 0.020                    | -0.026                   | 0.060                                       | -0.003                                      | -0.052                  | 0.035                |
| Always Taker mean                                       | (0.027)<br>0.421                      | $\begin{array}{c}(0.040)\\0.456\end{array}$ | $(0.037) \\ 0.391$        | $(0.042) \\ 0.390$       | $(0.062) \\ 0.404$       | $(0.058) \\ 0.377$                          | $\begin{array}{c}(0.036)\\0.443\end{array}$ | $(0.053) \\ 0.497$      | $(0.048 \\ 0.401$    |
| Number of HH members (2008)                             | 0.421                                 | 0.400                                       | 0.001                     | 0.000                    | 0.101                    | 0.011                                       | 0.110                                       | 0.451                   | 0.401                |
| Complier-Always Taker Difference                        | -0.075                                | -0.192                                      | 0.023                     | -0.241                   | -0.173                   | -0.301                                      | 0.042                                       | -0.197                  | 0.231                |
| Standard error                                          | (0.130)                               | (0.193)                                     | (0.176)                   | (0.202)                  | (0.294)                  | (0.278)                                     | (0.169)                                     | (0.255)                 | (0.227)              |
| Always Taker mean                                       | 5.660                                 | 5.692                                       | 5.633                     | 5.858                    | 5.801                    | 5.914                                       | 5.519                                       | 5.605                   | 5.452                |
| Years of education of HH head (200                      | ,                                     |                                             | 0.100                     | 0.000                    | 0 <b>F -</b> (           |                                             | 0.110                                       | 0.404                   | 0.100                |
| Complier-Always Taker Difference                        | -0.350                                | -0.547                                      | -0.186                    | -0.688                   | -0.574                   | -0.777                                      | -0.110                                      | -0.484                  | 0.193                |
| Standard error<br>Always Taker mean                     | $(0.296) \\ 5.953$                    | $\begin{array}{c}(0.438)\\6.069\end{array}$ | $(0.400) \\ 5.855$        | $(0.459) \\ 6.525$       | $(0.669) \\ 6.628$       | $(0.632) \\ 6.426$                          | $(0.385) \\ 5.545$                          | $(0.579) \\ 5.619$      | (0.517)<br>5.488     |
| lighest education of HH head: terti                     |                                       | 0.000                                       | 0.000                     | 0.020                    | 0.020                    | 0.420                                       | 0.040                                       | 0.013                   | 0.400                |
| Complier-Always Taker Difference                        | -0.016                                | -0.030                                      | -0.005                    | -0.045                   | -0.048                   | -0.041                                      | 0.004                                       | -0.015                  | 0.020                |
| Standard error                                          | (0.012)                               | (0.018)                                     | (0.017)                   | (0.019)**                | $(0.028)^*$              | (0.026)                                     | (0.016)                                     | (0.024)                 | (0.021               |
| Always Taker mean                                       | 0.060                                 | 0.071                                       | 0.051                     | 0.079                    | 0.096                    | 0.062                                       | 0.047                                       | 0.052                   | 0.044                |
| Perceived returns to SHS (%) (2008                      | · · · · · · · · · · · · · · · · · · · | <b>0</b> · · ·                              | <b>.</b> —.               |                          | <b></b>                  |                                             | 25 -                                        |                         |                      |
| Complier-Always Taker Difference                        | 27.931                                | 61.710                                      | 1.798                     | 43.089                   | 214.494                  | -103.758                                    | 20.530                                      | -46.676                 | 70.100               |
| Standard error                                          | (33.363)                              | (50.183)                                    | (44.628)                  | (52.342)                 | (76.463)***              | (71.226)                                    | (43.256)                                    | (66.081)                | (56.923)             |
| Always Taker mean<br>Perceived returns to SHS education | 276.679                               | 275.465                                     | 277.668                   | 308.901                  | 258.318                  | 356.366                                     | 252.993                                     | 289.877                 | 225.91               |
| Complier-Always Taker Difference                        | 0.029                                 | 0.030                                       | 0.028                     | 0.072                    | 0.147                    | 0.012                                       | 0.000                                       | -0.051                  | 0.038                |
| Standard error                                          | (0.030)                               | (0.045)                                     | (0.040)                   | (0.046)                  | $(0.068)^{**}$           | (0.063)                                     | (0.038)                                     | (0.059)                 | (0.051               |
| Always Taker mean                                       | 0.457                                 | 0.473                                       | 0.443                     | 0.466                    | 0.482                    | 0.452                                       | 0.449                                       | 0.466                   | 0.437                |
| Ever had sex $(2008)$                                   |                                       |                                             |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference                        | 0.002                                 | 0.034                                       | -0.022                    | -0.004                   | -0.005                   | 0.010                                       | 0.006                                       | 0.062                   | -0.043               |
| Standard error                                          | (0.024)                               | (0.035)                                     | (0.031)                   | (0.037)                  | (0.053)                  | (0.050)                                     | (0.031)                                     | (0.046)                 | (0.041)              |
| Always Taker mean                                       | 0.255                                 | 0.353                                       | 0.171                     | 0.260                    | 0.365                    | 0.160                                       | 0.251                                       | 0.344                   | 0.179                |
| Standardized score, Reading test (2                     |                                       |                                             |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference                        | -0.054                                | -0.097                                      | -0.018                    | -0.062                   | -0.030                   | -0.091                                      | -0.050                                      | -0.145                  | 0.030                |
| Standard error                                          | (0.044)                               | (0.066)                                     | (0.060)                   | (0.069)                  | (0.100)                  | (0.094)                                     | (0.058)                                     | $(0.087)^*$             | (0.078)              |
| Always Taker mean                                       | 0.340                                 | 0.348                                       | 0.334                     | 0.409                    | 0.390                    | 0.426                                       | 0.291                                       | 0.315                   | 0.273                |
| Standardized score, Math test (2013                     |                                       | 0.040                                       | 0.020                     | 0.049                    | 0.051                    | 0 100                                       | 0.007                                       | 0.000                   | 0.004                |
| Complier-Always Taker Difference                        | -0.002                                | 0.042                                       | -0.038                    | -0.043                   | 0.051                    | -0.130                                      | 0.027                                       | 0.036                   | 0.024                |
| Standard error<br>Always Taker mean                     | $(0.052) \\ 0.248$                    | $(0.076) \\ 0.111$                          | $(0.069) \\ 0.364$        | $(0.080) \\ 0.289$       | $(0.116) \\ 0.131$       | $\begin{array}{c}(0.108)\\0.433\end{array}$ | $(0.068) \\ 0.219$                          | $(0.100) \\ 0.096$      | (0.091)<br>0.318     |
| Fotal standardized score (2013)                         | 0.240                                 | 0.111                                       | 0.004                     | 0.289                    | 0.151                    | 0.455                                       | 0.219                                       | 0.090                   | 0.510                |
| Complier-Always Taker Difference                        | -0.030                                | -0.023                                      | -0.035                    | -0.061                   | 0.018                    | -0.133                                      | -0.009                                      | -0.053                  | 0.031                |
| Standard error                                          | (0.048)                               | (0.071)                                     | (0.065)                   | (0.074)                  | (0.108)                  | (0.101)                                     | (0.063)                                     | (0.093)                 | (0.085               |
| Always Taker mean                                       | 0.341                                 | 0.256                                       | 0.414                     | 0.404                    | 0.291                    | 0.506                                       | 0.297                                       | 0.229                   | 0.351                |
| •                                                       | (5)=(6)=(8)=(8)                       |                                             |                           | 0.101                    |                          | :): .309                                    | (4) = (7):.594                              |                         | (9): .505            |
| Yearly HH Expenditure (2008)                            |                                       | ): :::== (=) (::                            |                           |                          | (*) (*)                  | /                                           | (-) (.)                                     | (-) (                   | -)                   |
| Complier-Always Taker Difference                        | 95.374                                | 37.486                                      | 144.081                   | -115.684                 | 48.278                   | -258.785                                    | 243.656                                     | 29.299                  | 412.06               |
| Standard error                                          | (116.969)                             | (173.800)                                   | (158.238)                 | (182.037)                | (265.753)                | (250.064)                                   | (152.502)                                   | (229.593)               | (204.457)            |
| Always Taker mean                                       | 2605.765                              | 2635.796                                    | 2580.377                  | 2700.028                 | 2568.462                 | 2826.722                                    | 2538.555                                    | 2689.941                | 2422.01              |
| House walls made of mud, wood, pl                       | astic or iron (20                     | <u>)008)</u>                                |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference                        | -0.010                                | -0.014                                      | -0.009                    | 0.023                    | 0.068                    | -0.024                                      | -0.034                                      | -0.078                  | 0.002                |
| Standard error                                          | (0.027)                               | (0.040)                                     | (0.036)                   | (0.042)                  | (0.061)                  | (0.057)                                     | (0.035)                                     | (0.053)                 | (0.047)              |
| Always Taker mean                                       | 0.448                                 | 0.413                                       | 0.477                     | 0.421                    | 0.353                    | 0.488                                       | 0.466                                       | 0.462                   | 0.470                |
| Number of rooms in house $(2008)$                       |                                       |                                             |                           |                          |                          |                                             |                                             |                         |                      |
| Complier-Always Taker Difference                        | 0.061                                 | 0.031                                       | 0.086                     | -0.013                   | -0.004                   | -0.006                                      | 0.112                                       | 0.062                   | 0.153                |
| standard error                                          | (0.136)                               | (0.202)                                     | (0.185)                   | (0.213)                  | (0.309)                  | (0.293)                                     | (0.178)                                     | (0.267)                 | (0.239)              |
| Always Taker mean                                       | 3.005                                 | 3.049                                       | 2.968                     | 2.978                    | 3.123                    | 2.834                                       | 3.025                                       | 2.990                   | 3.053                |
| <u>Coilet in house (2008)</u>                           | 0.015                                 | 0.077                                       | 0 0                       | 0.05                     | 0.017                    | 0.077                                       | 6 6 7 7                                     | 0.0                     | - ·                  |
| Complier-Always Taker Difference                        | -0.013                                | 0.037                                       | -0.055                    | 0.001                    | 0.012                    | 0.000                                       | -0.023                                      | 0.065                   | -0.092               |
| Standard error                                          | (0.028)                               | (0.041)                                     | (0.038)                   | (0.043)                  | (0.063)                  | (0.059)                                     | (0.036)                                     | (0.054)                 | (0.049)              |
| Always Taker mean                                       | 0.404                                 | 0.381                                       | 0.425                     | 0.433                    | 0.463                    | 0.403                                       | 0.384                                       | 0.313                   | 0.439                |
| Member of HH went to bed hungry                         | in last month (<br>0.054              |                                             | 0.000                     | 0.001                    | 0 109                    | 0.069                                       | 0.025                                       | 0.094                   | 0.001                |
| Complier-Always Taker Difference<br>Standard error      | $(0.054)$ $(0.018)^{***}$             | 0.024<br>(0.027)                            | 0.080<br>$(0.025)^{***}$  | 0.081<br>$(0.028)^{***}$ | 0.103<br>$(0.041)^{**}$  | 0.062<br>(0.039)                            | 0.035<br>(0.024)                            | -0.034<br>(0.036)       | 0.091<br>$(0.032)^*$ |
| Always Taker mean                                       | 0.101                                 | (0.027)<br>0.105                            | $(0.025)^{4000}$<br>0.097 | 0.098                    | $(0.041)^{444}$<br>0.090 | (0.039)<br>0.106                            | (0.024)<br>0.103                            | (0.036)<br>0.118        | (0.032)* 0.091       |
| Meal with no meat or fish because i                     |                                       |                                             |                           | 0.090                    | 0.090                    | 0.100                                       | 0.109                                       | 0.110                   | 0.091                |
| Complier-Always Taker Difference                        | <u>no money in las</u><br>0.019       | 0.046                                       | <u>8)</u><br>-0.004       | -0.023                   | 0.060                    | -0.101                                      | 0.048                                       | 0.034                   | 0.060                |
| Standard error                                          | (0.019)                               | (0.046)                                     | -0.004<br>(0.030)         | (0.023)                  | (0.050)                  | $(0.047)^{**}$                              | (0.048)<br>$(0.029)^*$                      | (0.034)                 | (0.038)              |
| Always Taker mean                                       | (0.022)<br>0.186                      | (0.032)<br>0.147                            | (0.030)<br>0.218          | (0.034)<br>0.190         | (0.050)<br>0.123         | $(0.047)^{++}$<br>0.255                     | $(0.029)^{+}$<br>0.182                      | (0.043)<br>0.166        | 0.194                |
| Self-reported financial situation (1-)                  |                                       |                                             |                           | 0.130                    | 0.120                    | 0.200                                       | 0.104                                       | 0.100                   | 0.194                |
| Complier-Always Taker Difference                        | 0.074                                 | 0.070                                       | 0.077                     | 0.063                    | 0.060                    | 0.052                                       | 0.082                                       | 0.074                   | 0.090                |
| Standard error                                          | $(0.074)$ $(0.038)^{**}$              | (0.070)                                     | (0.077)                   | (0.003)                  | (0.085)                  | (0.052)                                     | (0.082)                                     | (0.074)                 | (0.090)              |
|                                                         | · /                                   | ```                                         | · /                       | · /                      | · /                      | · · · ·                                     | · /                                         | · · · ·                 | 3.852                |
| Always Taker mean                                       | 3.845                                 | 3.783                                       | 3.898                     | 3.861                    | 3.750                    | 3.969                                       | 3.834                                       | 3.810                   | 3 857                |

Notes: Year of survey in parentheses. Sample restricted to those who completed SHS. Always Takers defined as those in the control group who completed SHS. Compliers defined as those in the treatment group who completed SHS. Cell row 1 shows the Complier mean minus the Always Taker mean; standard errors are in the second cell row in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; Always taker means are in the third cell row; all regressions control for region fixed effects. See Table 2 notes for description of columns.

|                                 |                    |                      | Comb               |                                         |                               | _                | ·                  |                     | Academic N               | v                    |                      |            |                             |                                                 | Vocational 1    |                                    |                     |                  |
|---------------------------------|--------------------|----------------------|--------------------|-----------------------------------------|-------------------------------|------------------|--------------------|---------------------|--------------------------|----------------------|----------------------|------------|-----------------------------|-------------------------------------------------|-----------------|------------------------------------|---------------------|------------------|
|                                 | -                  |                      | Fen                |                                         | Ma                            |                  |                    | All                 |                          | nale                 | Mal                  |            |                             | All                                             |                 | nale                               |                     | lale IV          |
|                                 | OLS (1)            | $\frac{IV}{(2)}$     | OLS (3)            | $\frac{IV}{(4)}$                        | OLS<br>(5)                    | $\frac{IV}{(6)}$ | OLS (7)            | <u> </u>            | $\frac{\text{OLS}}{(9)}$ | $\frac{IV}{(10)}$    | OLS (11)             | IV<br>(12) | $- \frac{\text{OLS}}{(13)}$ | $\frac{IV}{(14)}$                               | OLS (15)        | IV<br>(16)                         | OLS<br>(17)         | IV<br>(18)       |
| Total standardized score (201)  | <u>`</u>           | (2)                  | (0)                | (4)                                     | (0)                           | (0)              | <u>    (1)    </u> | (0)                 | (3)                      | (10)                 | (11)                 | (12)       | (15)                        | (14)                                            | (10)            | (10)                               | (17)                | (10)             |
| Secondary (Lower Bound)         | <u>.</u>           |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education     | 0.213              | 0.124                | 0.253              | 0.155                                   | 0.160                         | 0.088            | 0.218              | 0.111               | 0.244                    | 0.179                | 0.181                | 0.036      | 0.210                       | 0.132                                           | 0.258           | 0.137                              | 0.148               | 0.125            |
| Standard error                  | (0.014)***         |                      |                    | (0.048)***                              | * (0.019)***                  | $(0.047)^*$      | (0.021)***         | (0.052)**           | (0.030)***               |                      | (0.030)***           | (0.073)    | (0.018)***                  |                                                 | (0.026)***      | (0.064)**                          | (0.024)***          | (0.062)**        |
| p-value on equality of effect   | · /                | ): .014**            | (3)=(4)            | · /                                     | , ,                           | <i>(): .158</i>  | ( )                | c): .057*           | · /                      | 0): .407             | (11)=(12)            | ` /        | · /                         | ( <i>e</i> . <i>e</i> 1 <i>6</i> )<br>14): .109 | , ,             | 6): .078*                          | (17) = (17)         | · /              |
| Secondary $+$ TVI (Upper Bou    | ( ) ( )            |                      | (0) (1)            | 000                                     |                               | )100             |                    | )007                | (0) (1                   | 0) 107               | (11) (12)            |            | (10) (1                     |                                                 | (10) (1         | 0)010                              | (17) (1             | 0)               |
| Effect of year of education     | 0.211              | 0.135                | 0.246              | 0.162                                   | 0.157                         | 0.102            | 0.225              | 0.118               | 0.246                    | 0.182                | 0.190                | 0.040      | 0.202                       | 0.147                                           | 0.245           | 0.144                              | 0.136               | 0.147            |
| Standard error                  | (0.014)***         |                      |                    | (0.050)***                              |                               | $(0.054)^*$      | (0.022)***         | (0.055)**           | (0.030)***               |                      | (0.031)***           | (0.081)    | (0.018)***                  |                                                 |                 | (0.068)**                          | (0.025)***          | $(0.073)^{**}$   |
| p-value on equality of effect   | < <i>/</i>         | ?): .055*            | (3)=(4)            | ( /                                     | ( )                           | <i>(): .339</i>  | · · ·              | c): .069*           | ( )                      | 0): .424             | (11)=(12)            | · /        | × ,                         | (0.000)<br>14): .304                            | · /             | <i>(6.666)</i><br><i>16): .163</i> | (17)=(1)            | ( )              |
| Ever enrolled in tertiary educ  | . , . ,            | /                    |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (0) (0)                       | )000             | (•) (•)            |                     | (0) (1                   | 0)                   | (11) (12)            |            | (10) (1                     |                                                 | (10) (1         |                                    | (17) (1             | 0)000            |
| Secondary (Lower Bound)         | <u>ation (2010</u> | <u>/</u>             |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education     | 0.050              | 0.022                | 0.050              | 0.035                                   | 0.049                         | 0.010            | 0.059              | 0.037               | 0.057                    | 0.064                | 0.060                | 0.011      | 0.044                       | 0.012                                           | 0.044           | 0.015                              | 0.043               | 0.008            |
| Standard error                  | (0.004)***         |                      | (0.006)***         | (0.016)**                               |                               | (0.015)          | (0.007)***         |                     | $(0.009)^{***}$          |                      |                      | (0.023)    | $(0.005)^{***}$             |                                                 | (0.008)***      | (0.021)                            | (0.007)***          | (0.020)          |
| p-value on equality of effect   | ( /                | ): .017**            | (3)=(4)            | ( /                                     | (5)=(6).                      | ( )              | · · · ·            | 8): .228            | < / /                    | 0): .775             | (11)=(12)            | · /        | · /                         | 4): .036**                                      | <pre> /</pre>   | (0.021)<br>16): .188               | (17)=(1)            | · · · ·          |
| Secondary $+$ TVI (Upper Bou    |                    |                      | (0)-(4)            | )000                                    | (0)-(0).                      | 014              | (*)=(*             | )220                | (0)=(1                   | 0)110                | (11)-(12)            | 002        | (10)-(1-                    | 1)000                                           | (10)-(1         |                                    | (17)-(1             | 0)107            |
| Effect of year of education     | 0.050              | 0.024                | 0.047              | 0.037                                   | 0.052                         | 0.011            | 0.059              | 0.039               | 0.054                    | 0.066                | 0.063                | 0.012      | 0.043                       | 0.013                                           | 0.041           | 0.016                              | 0.045               | 0.010            |
| Standard error                  | $(0.004)^{***}$    |                      | $(0.006)^{***}$    | $(0.001)^{**}$                          |                               | (0.011)          | $(0.007)^{***}$    |                     | $(0.009)^{***}$          |                      |                      | (0.012)    | $(0.005)^{***}$             |                                                 | $(0.008)^{***}$ | (0.022)                            | (0.008)***          | (0.024)          |
| p-value on equality of effect   | < <i>/</i>         | (0.012)<br>): .045** | (0.000)<br>(3)=(4) | < <i>/</i>                              | (0.000)<br>(5)=(6).           | · · · ·          | · · · ·            | (0.018)<br>8): .294 | · /                      | (0.023)<br>(0): .672 | (0.010)<br>(11)=(12) | · /        | · · · ·                     | (0.010)<br>(4): .077*                           | . ,             | (0.022)<br>16): .282               | (0.008)<br>(17)=(1) | · · · ·          |
| Number of children ever had     |                    | 040                  | (0) - (4)          | )000                                    | (0) - (0)                     | 021              | (7)-(2             | 5)234               | (3)-(1                   | 0)012                | (11)-(12)            | 002        | (15)–(1                     | 4)011                                           | (10)-(1         | 10)202                             | (17)-(1             | 0)104            |
| Secondary + Tertiary (Lower     | . ,.               |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education $E$ | -0.136             | -0.096               | -0.187             | -0.164                                  | -0.062                        | -0.022           | -0.126             | -0.087              | -0.177                   | -0.127               | -0.067               | -0.034     | -0.143                      | -0.103                                          | -0.192          | -0.193                             | -0.058              | -0.014           |
| Standard error                  | $(0.011)^{***}$    |                      |                    | $(0.038)^{***}$                         |                               | (0.036)          | $(0.017)^{***}$    |                     |                          |                      | $(0.022)^{***}$      | (0.053)    | $(0.015)^{***}$             |                                                 |                 |                                    |                     | (0.050)          |
|                                 | . ,                |                      |                    | (                                       | · /                           | . ,              | · · · ·            | ( )                 | . ,                      | ,                    | ` '                  | · /        | · /                         | ,                                               | ( )             | · /                                | · ,                 | · · · ·          |
| p-value on equality of effect   | . , .              | 2): .186             | (3) = (4)          | ): .075                                 | (b)=(b)                       | 3): .315         | (7) = (2)          | 8): .367            | (9)=(1                   | 0): .398             | (11)=(12)            | ): .000    | (13)=(1                     | 14): .337                                       | (10)=(10)       | 16): .975                          | (17)=(1             | <i>0): .</i> 415 |
| Secondary + Tertiary + TVI (    | -0.151             | -0.103               | -0.193             | -0.170                                  | -0.074                        | -0.025           | -0.139             | -0.093              | -0.184                   | -0.129               | -0.079               | -0.038     | -0.159                      | -0.111                                          | -0.198          | -0.204                             | -0.070              | -0.016           |
| Effect of year of education     |                    |                      |                    |                                         |                               | (0.040)          | $(0.016)^{***}$    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Standard error                  | < <i>/</i>         | · /                  | . ,                | . ,                                     | . ,                           | ( /              | · · · ·            |                     | $(0.022)^{***}$          | ````                 | $(0.021)^{***}$      | (0.059)    | $(0.014)^{***}$             | ,                                               |                 | · /                                |                     | (0.054)          |
| p-value on equality of effect   |                    | 2): .135             | (3) = (4)          | ): .309                                 | $(\mathcal{I})=(\mathcal{I})$ | 3): .252         | (7)=(8             | 8): .313            | (9)=(1)                  | 0): .356             | (11)=(12)            | ):.317     | (13)=(1                     | 14): .271                                       | (13)=(1         | 16): .930                          | (17)=(1             | 8): .340         |
| Inv. hyperbolic sine earnings ( |                    |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Secondary + Tertiary (Lower     | ,                  | 0.921                | 0.071              | 0.200                                   | 0.916                         | 0 1 2 4          | 0.159              | 0.007               | 0.064                    | 0 1 4 9              | 0.909                | 0 100      | 0.064                       | 0.405                                           | 0.079           | 0.200                              | 0.159               | 0.200            |
| Effect of year of education     | -0.105             | 0.231                | -0.071             | 0.289                                   | -0.216                        | 0.134            | -0.158             | 0.007               | -0.064                   | 0.143                | -0.292               | -0.190     | -0.064                      | 0.405                                           | -0.072          | 0.399                              | -0.158              | 0.389            |
| Standard error                  | $(0.041)^{**}$     | $(0.110)^{**}$       | (0.056)            | $(0.152)^*$                             | $(0.055)^{***}$               | (0.150)          | $(0.062)^{**}$     | (0.160)             | (0.085)                  | (0.223)              | $(0.083)^{***}$      | (0.218)    | (0.054)                     | $(0.153)^{***}$                                 | (0.074)         | $(0.211)^*$                        | $(0.073)^{**}$      | $(0.209)^*$      |
| p-value on equality of effect   |                    |                      | (3)=(4).           | :.026**                                 | (5) = (6)                     | : .028**         | (7) = (8)          | 8): .336            | (9)=(1)                  | 0): .385             | (11)=(12)            | ): .661    | (13)=(14)                   | !): .003***                                     | (15)=(10        | 6): .035**                         | (17)=(18)           | ?): .013**       |
| Secondary + Tertiary + TVI (    |                    | <i>,</i>             | 0.059              | 0.000                                   | 0.000                         | 0 1 40           | 0.190              | 0.007               | 0.070                    | 0 1 4 6              | 0.067                | 0.01.0     | 0.040                       | 0.499                                           | 0.000           | 0.400                              | 0.001               | 0.400            |
| Effect of year of education     | -0.088             | 0.246                | -0.053             | 0.299                                   | -0.230                        | 0.149            | -0.138             | 0.007               | -0.079                   | 0.146                | -0.267               | -0.216     | -0.048                      | 0.432                                           | -0.029          | 0.420                              | -0.201              | 0.422            |
| Standard error                  | $(0.041)^{**}$     | $(0.118)^{**}$       | (0.056)            | $(0.158)^*$                             | $(0.056)^{***}$               | (0.167)          | $(0.062)^{**}$     | (0.171)             | (0.084)                  | (0.228)              | $(0.083)^{***}$      | (0.248)    | (0.054)                     | $(0.163)^{***}$                                 | (0.074)         | $(0.223)^*$                        | $(0.074)^{***}$     | $(0.227)^*$      |
| p-value on equality of effect   | . , . ,            |                      | (3)=(4).           | :.035**                                 | (5)=(6).                      | : .031**         | (7)=(8             | 8): .425            | (9)=(1                   | 0): .353             | (11)=(12)            | ): .847    | (13)=(14)                   | !): .005***                                     | (15)=(1         | 6): .055*                          | (17)=(18)           | ): .009***       |
| Log earnings last month if pos  |                    | <u>)</u>             |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Secondary + Tertiary (Lower     | ,                  | 0.010                | 0.000              | 0.000                                   | 0.000                         | 0.040            | 0.000              | 0.007               | 0.107                    | 0.071                | 0.000                | 0.107      | 0.010                       | 0.004                                           | 0.000           | 0.000                              | 0.014               | 0.004            |
| Effect of year of education     | 0.025              | -0.013               | 0.068              | 0.032                                   | -0.020                        | -0.043           | 0.039              | -0.037              | 0.127                    | 0.071                | -0.029               | -0.107     | 0.016                       | 0.004                                           | 0.028           | 0.008                              | -0.014              | 0.004            |
| Standard error                  | (0.019)            | (0.041)              | $(0.030)^{**}$     | (0.061)                                 | (0.024)                       | (0.052)          | (0.030)            | (0.061)             | $(0.046)^{***}$          | <pre> /</pre>        | (0.038)              | (0.075)    | (0.025)                     | (0.054)                                         | (0.039)         | (0.078)                            | (0.030)             | (0.071)          |
| p-value on equality of effect   |                    | 2): .400             | (3) = (4)          | ): .595                                 | (5) = (6)                     | 6): .682         | (7)=(8             | 8): .264            | (9)=(1)                  | 0): .605             | (11) = (12)          | ): .348    | (13)=(13)                   | 14): .846                                       | (15)=(1)        | 16): .811                          | (17)=(1             | 8): .818         |
| Secondary + Tertiary + TVI (    |                    |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education     | 0.037              | -0.014               | 0.077              | 0.034                                   | -0.012                        | -0.047           | 0.047              | -0.040              | 0.119                    | 0.071                | -0.018               | -0.121     | 0.029                       | 0.004                                           | 0.048           | 0.008                              | -0.007              | 0.004            |
| Standard error                  | (0.019)*           | (0.043)              | $(0.029)^{***}$    | (0.063)                                 | (0.024)                       | (0.056)          | (0.029)            | (0.066)             | $(0.045)^{***}$          | ( )                  | (0.036)              | (0.085)    | (0.025)                     | (0.058)                                         | (0.039)         | (0.084)                            | (0.031)             | (0.075)          |
| p-value on equality of effect   | (1) = (2)          | 2): .289             | (3) = (4)          | ): .530                                 | (5) = (6)                     | 3): .564         | (7)=(8             | 8): .227            | (9)=(1                   | 0): .650             | (11) = (12)          | P): .262   | (13)=(13)                   | 14): .694                                       | (15)=(1)        | 16): .668                          | (17)=(1             | 8): .892         |
| Positive earnings (2016)        |                    |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Secondary + Tertiary (Lower     |                    |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education     | -0.020             | 0.041                | -0.018             | 0.048                                   | -0.033                        | 0.030            | -0.029             | 0.004               | -0.020                   | 0.019                | -0.045               | -0.021     | -0.012                      | 0.071                                           | -0.016          | 0.070                              | -0.025              | 0.070            |
| Standard error                  | $(0.007)^{***}$    | · · · ·              | $(0.010)^*$        | $(0.026)^*$                             | $(0.009)^{***}$               | (0.026)          | $(0.010)^{***}$    | (0.027)             | (0.014)                  | (0.038)              | $(0.014)^{***}$      | (0.038)    | (0.009)                     | $(0.026)^{***}$                                 | (0.013)         | $(0.036)^*$                        | $(0.012)^{**}$      | $(0.037)^{*}$    |
| p-value on equality of effect   |                    |                      | (3)=(4).           | : .018**                                | (5) = (6)                     | : .023**         | (7)=(8             | 8): .259            | (9) = (1                 | 0): .338             | (11) = (12)          | ): .547    | (13) = (14)                 | !): .002***                                     | (15)=(10        | 6): .025**                         | (17)=(18            | 8): .014**       |
| Secondary + Tertiary + TVI (    | Upper Bou          | nd)                  |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |
| Effect of year of education     | -0.018             | 0.044                | -0.016             | 0.049                                   | -0.037                        | 0.033            | -0.027             | 0.004               | -0.023                   | 0.019                | -0.042               | -0.024     | -0.011                      | 0.076                                           | -0.009          | 0.073                              | -0.033              | 0.076            |
| Standard error                  | $(0.007)^{***}$    | $(0.020)^{**}$       | (0.009)            | $(0.027)^{*}$                           | $(0.010)^{***}$               | (0.029)          | $(0.010)^{***}$    | (0.029)             | (0.014)                  | (0.039)              | $(0.014)^{***}$      | (0.044)    | (0.009)                     | $(0.028)^{***}$                                 | (0.013)         | $(0.038)^{*}$                      | $(0.013)^{**}$      | $(0.040)^{*}$    |
| p-value on equality of effect   | (1) = (2).         | : .003***            | (3)=(4).           | : .023**                                | (5) = (6)                     | : .022**         | (7)=(8             | 8): .326            | (9) = (1                 | 0): .311             | (11) = (12)          | ): .695    | (13) = (14)                 | !): .003***                                     | (15)=(16        | 6): .040**                         | (17)=(18)           | ): .009***       |
|                                 |                    |                      |                    |                                         |                               |                  |                    |                     |                          |                      |                      |            |                             |                                                 |                 |                                    |                     |                  |

Table A5: OLS IV Comparison cont.

|                                  |                 |                  | Comb            | oined          |                 |                 |                 | 1               | Academic N     | lajor Admi     | ts              |                | _               |                      | Vocational      | Major Adm | nits            |                |
|----------------------------------|-----------------|------------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|-----------------|----------------------|-----------------|-----------|-----------------|----------------|
|                                  | А               | .11              | Ferr            | ale            | М               | ale             | A               | <u>, 11</u>     | Fer            | nale           | Ma              | ale            |                 | All                  | Fer             | nale      | N               | fale           |
|                                  | OLS             | IV               | OLS             | IV             | OLS             | IV              | OLS             | IV              | OLS            | IV             | OLS             | IV             | OLS             | IV                   | OLS             | IV        | OLS             | IV             |
|                                  | (1)             | (2)              | (3)             | (4)            | (5)             | (6)             | (7)             | (8)             | (9)            | (10)           | (11)            | (12)           | (13)            | (14)                 | (15)            | (16)      | (17)            | (18)           |
| Total earnings last month (GH2   | X) (2016)       |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Secondary + Tertiary (Lower E    | Bound)          |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | -4.074          | 5.729            | 0.419           | 3.849          | -13.534         | 4.683           | -6.423          | -13.543         | 3.402          | -4.871         | -19.113         | -26.708        | -2.405          | 20.696               | -1.627          | 10.560    | -9.349          | 29.091         |
| Standard error                   | (3.076)         | (8.229)          | (4.239)         | (11.460)       | $(4.152)^{***}$ | (11.310)        | (4.642)         | (12.000)        | (6.392)        | (16.884)       | $(6.288)^{***}$ | (16.453)       | (4.042)         | $(11.501)^*$         | (5.621)         | (15.951)  | $(5.502)^*$     | $(15.776)^*$   |
| p-value on equality of effects   | (1) = (2)       | ?): .264         | (3) = (4)       | ): .778        | (5) = (6)       | 3): .130        | (7)=(8          | 3): .579        | (9) = (1       | 0): .646       | (11) = (11)     | 2): .666       | (13) = (13)     | 14): .058*           | (15) = (15)     | 16): .471 | (17)=(18        | 8): .021**     |
| Secondary + Tertiary + TVI (U    | Ipper Bour      | nd)              |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | -2.750          | 6.125            | 1.510           | 3.984          | -14.037         | 5.192           | -5.026          | -14.516         | 2.505          | -4.900         | -17.587         | -30.401        | -1.072          | 22.073               | 0.986           | 11.098    | -11.213         | 31.488         |
| Standard error                   | (3.081)         | (8.795)          | (4.216)         | (11.870)       | $(4.209)^{***}$ | (12.538)        | (4.615)         | (12.862)        | (6.353)        | (17.192)       | $(6.285)^{***}$ | (18.772)       | (4.063)         | $(12.269)^*$         | (5.597)         | (16.824)  | $(5.636)^{**}$  | $(17.121)^*$   |
| p-value on equality of effects   | (1) = (2)       | 2): .340         | (3) = (4)       | ): .844        | (5) = (6)       | <i>3): .145</i> | (7)=(8          | 3): .487        | (9) = (1       | 0): .686       | (11) = (11)     | 2): .517       | (13) = (13)     | 14): .073*           | (15) = (15)     | 16): .568 | (17)=(18        | 8): .017**     |
| Index of risky sexual behavior(s | safe>risk       | (2013)           |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Secondary (Lower Bound)          |                 |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | -0.065          | -0.042           | -0.065          | -0.012         | -0.055          | -0.068          | -0.055          | -0.036          | -0.049         | -0.022         | -0.054          | -0.044         | -0.073          | -0.047               | -0.078          | -0.004    | -0.056          | -0.086         |
| Standard error (                 | (0.009)***      | $(0.022)^*$      | $(0.013)^{***}$ | (0.031)        | $(0.013)^{***}$ | $(0.031)^{**}$  | $(0.014)^{***}$ | (0.034)         | $(0.020)^{**}$ | (0.048)        | $(0.020)^{***}$ | (0.048)        | $(0.012)^{***}$ | <sup>c</sup> (0.029) | $(0.017)^{***}$ | (0.042)   | $(0.016)^{***}$ | $(0.041)^{**}$ |
| p-value on equality of effects   | (1) = (2)       | 2): .325         | (3) = (4)       | ): .112        | $(5) = (\ell$   | <i>6): .706</i> | (7)=(8          | 3): .608        | (9)=(1         | 0): .607       | (11)=(1         | 2): .850       | (13)=(          | (14): .413           | (15) = (15)     | 16): .102 | (17)=(1         | 18): .492      |
| Secondary + TVI (Upper Boun      | d)              |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | -0.071          | -0.046           | -0.062          | -0.012         | -0.068          | -0.078          | -0.058          | -0.038          | -0.047         | -0.023         | -0.060          | -0.049         | -0.080          | -0.052               | -0.073          | -0.004    | -0.073          | -0.101         |
| Standard error (                 | $(0.009)^{***}$ | $(0.024)^*$      | $(0.013)^{***}$ | (0.032)        | $(0.013)^{***}$ | $(0.036)^{**}$  | $(0.014)^{***}$ | (0.036)         | $(0.020)^{**}$ | (0.049)        | $(0.021)^{***}$ | (0.053)        | $(0.012)^{***}$ | ć (0.033)            | $(0.017)^{***}$ | (0.044)   | $(0.017)^{***}$ | $(0.048)^{**}$ |
| p-value on equality of effects   | (1) = (2)       | ?): .320         | (3) = (4)       | ): .153        | $(5) = (\ell$   | <i>6): .790</i> | (7)=(8          | 3): .611        | (9) = (1       | 0): .646       | (11) = (11)     | 2): .842       | (13)=(          | (14): .413           | (15) = (15)     | 16): .143 | (17) = (1)      | 18): .572      |
| Preventative health behavior (3  | 3 questions     | <u>s) (2013)</u> |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Secondary (Lower Bound)          |                 |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | 0.002           | 0.090            | -0.002          | 0.102          | 0.014           | 0.081           | -0.002          | 0.128           | -0.007         | 0.138          | 0.014           | 0.127          | 0.004           | 0.062                | 0.002           | 0.076     | 0.014           | 0.050          |
| Standard error                   | (0.012)         | $(0.030)^{***}$  | (0.017)         | $(0.042)^{**}$ | (0.017)         | $(0.042)^*$     | (0.019)         | $(0.045)^{***}$ | (0.026)        | $(0.064)^{**}$ | (0.027)         | $(0.064)^{**}$ | (0.015)         | (0.040)              | (0.022)         | (0.056)   | (0.021)         | (0.055)        |
| p-value on equality of effects   | (1)=(2):        | •.005***         | (3) = (4):      | .021**         | $(5) = (\ell$   | <i>6): .133</i> | (7)=(8).        | .008***         | (9) = (10)     | 9): .035**     | (11) = (11)     | 2): .104       | (13)=(          | (14): .172           | (15) = (15)     | 16): .218 | (17)=(1         | 18): .544      |
| Secondary + TVI (Upper Boun      | d)              |                  |                 |                |                 |                 |                 |                 |                |                |                 |                |                 |                      |                 |           |                 |                |
| Effect of year of education      | 0.001           | 0.098            | -0.003          | 0.107          | 0.016           | 0.093           | 0.004           | 0.136           | -0.004         | 0.140          | 0.027           | 0.141          | -0.002          | 0.069                | -0.003          | 0.080     | 0.008           | 0.058          |
| Standard error                   | (0.012)         | $(0.032)^{***}$  | (0.017)         | $(0.044)^{**}$ | (0.017)         | $(0.048)^{*}$   | (0.019)         | $(0.048)^{***}$ | (0.026)        | $(0.066)^{**}$ | (0.027)         | $(0.072)^{**}$ | (0.016)         | (0.044)              | (0.022)         | (0.060)   | (0.022)         | (0.064)        |
| p-value on equality of effects   | (1)=(2):        | .004***          | (3) = (4):      | .019**         | (5)=(6          | <i>6): .129</i> | (7)=(8)         | : .011**        | (9) = (10)     | ): .039**      | (11)=(1         | 2): .136       | (13)=(          | (14): .128           | (15) = (15)     | 16): .189 | (17)=(1         | 18): .462      |

Notes: Year of survey in parentheses. Col. 1, 3, 5, 7, 9, 11 show results from an OLS regression with years of education as the dependent variable. Col. 2, 4, 6, 8, 10, 12, 14, 16 and 18 show results from IV regressions using years of education as an instrument for treatment; cell row 1-3 show results excluding technical and vocational institute education (TVI), cell row 4-6 show the results including TVI education; cell row 1 and 4 show the treatment effect; cell row 2 and 5 show standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; cell row 3 and 6 show the p-value from a test of equality between the OLS and the IV estimates; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores. Years of education are as of 2015 if 2013 was the survey year and as of 2016 if 2016 was the survey year. In 2016, 1,333 observations for OLS and 1,996 for

Table A6: Marriage, Reproductive Health and Health Behaviors from 2013 and 2015

|                                   |                                           | Combined        |                 | Acade           | emic Major A   | dmits           | Vocatio         | onal Major A    | dmits   |
|-----------------------------------|-------------------------------------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|---------|
|                                   | All                                       | Female          | Male            | All             | Female         | Male            | All             | Female          | Male    |
|                                   | (1)                                       | (2)             | (3)             | (4)             | (5)            | (6)             | (7)             | (8)             | (9)     |
| Ever lived with partner (mai      | rried/cohabiting) (:                      | 2013)           |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.043                                    | -0.050          | -0.033          | -0.041          | -0.047         | -0.029          | -0.045          | -0.051          | -0.037  |
| Standard error                    | (0.016)***                                | (0.023)**       | (0.023)         | (0.026)         | (0.035)        | (0.035)         | (0.021)**       | $(0.030)^*$     | (0.029) |
| Comparison mean                   | 0.137                                     | 0.211           | 0.060           | 0.139           | 0.204          | 0.069           | 0.136           | 0.216           | 0.054   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ): .963 (2)=(3  | 3): .607        |                 | $(5) = (\ell$  | 3): .712        | (4)=(7):.903    | (8) = (9)       | : .738  |
| <u>Ever pregnant/had a pregna</u> | <u>nt partner (2013)</u>                  |                 |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.050                                    | -0.070          | -0.020          | -0.048          | -0.055         | -0.026          | -0.052          | -0.081          | -0.018  |
| Standard error                    | $(0.022)^{**}$                            | (0.028)**       | (0.028)         | (0.034)         | (0.044)        | (0.044)         | $(0.028)^*$     | (0.037)**       | (0.037) |
| Comparison mean                   | 0.275                                     | 0.454           | 0.088           | 0.278           | 0.437          | 0.108           | 0.272           | 0.466           | 0.074   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ):.629 (2)=(3   | <i>3): .210</i> |                 | (5)=(6         | <i>6): .646</i> | (4)=(7): .935   | (8) = (9)       | : .224  |
| Had unwanted first pregnand       | cy (full sample) (20                      | 013)            |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.046                                    | -0.065          | -0.018          | -0.039          | -0.047         | -0.017          | -0.052          | -0.078          | -0.019  |
| Standard error                    | (0.021)**                                 | (0.027)**       | (0.027)         | (0.032)         | (0.043)        | (0.042)         | $(0.027)^*$     | (0.036)**       | (0.035) |
| Comparison mean                   | 0.235                                     | 0.390           | 0.075           | 0.249           | 0.405          | 0.085           | 0.225           | 0.379           | 0.069   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ): .612 (2)=(3  | <i>3): .219</i> |                 | (5) = (6)      | <i>6): .617</i> | (4)=(7):.761    | (8)=(9)         | : .238  |
| Ever lived with partner(2015      | <u>5)</u>                                 |                 |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.091                                    | -0.115          | -0.061          | -0.094          | -0.075         | -0.099          | -0.089          | -0.143          | -0.037  |
| Standard error                    | (0.021)***                                | (0.030)***      | (0.029)**       | $(0.034)^{***}$ | (0.046)        | $(0.046)^{**}$  | $(0.028)^{***}$ | $(0.038)^{***}$ | (0.038) |
| Comparison mean                   | 0.292                                     | 0.405           | 0.176           | 0.300           | 0.378          | 0.215           | 0.287           | 0.425           | 0.151   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ): .259 (2)=(3  | 3): .193        |                 | $(5) = (\ell$  | 3): .708        | (4)=(7): .921   | (8)=(9):        | .048**  |
| Number of children ever had       | (2015)                                    |                 |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.101                                    | -0.166          | -0.027          | -0.118          | -0.168         | -0.046          | -0.090          | -0.165          | -0.016  |
| Standard error                    | $(0.035)^{***}$                           | $(0.046)^{***}$ | (0.046)         | $(0.055)^{**}$  | $(0.073)^{**}$ | (0.073)         | $(0.045)^{**}$  | $(0.060)^{***}$ | (0.060  |
| Comparison mean                   | 0.434                                     | 0.690           | 0.168           | 0.422           | 0.629          | 0.195           | 0.442           | 0.733           | 0.151   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ): .208 (2)=(3) | : .035**        |                 | $(5) = (\ell$  | 3): .235        | (4)=(7):.696    | (8)=(9).        | .079*   |
| Had unwanted first pregnand       | <u>cy (full sample) (20</u>               | 015)            |                 |                 |                |                 |                 |                 |         |
| Treatment effect                  | -0.064                                    | -0.104          | -0.018          | -0.059          | -0.074         | -0.032          | -0.067          | -0.125          | -0.010  |
| standard error                    | $(0.023)^{***}$                           | $(0.030)^{***}$ | (0.030)         | $(0.036)^*$     | (0.047)        | (0.047)         | (0.029)**       | $(0.039)^{***}$ | (0.039) |
| Comparison mean                   | 0.328                                     | 0.504           | 0.144           | 0.327           | 0.469          | 0.172           | 0.328           | 0.529           | 0.126   |
| p-value on equality of effe       | $\operatorname{cts}(5) = (6) = (8) = (9)$ | ): .180 (2)=(3) | : .043**        |                 | (5)=(6         | 3): .528        | (4)=(7): .863   | (8)=(9):        | .036**  |
|                                   |                                           | · / · /         |                 |                 | ( / (          | /               | · / · /         | · / · /         |         |

Notes: Year of survey in parentheses. See Table 2 notes for description of columns; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.

Table A7: Components of Indices

|                                                                                                                                   |                                               | Combined                                         |                            |                    | emic Major A                                |                    |                    | onal Major A                     |                                             |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------|--------------------|---------------------------------------------|--------------------|--------------------|----------------------------------|---------------------------------------------|
| _                                                                                                                                 | All                                           | Female                                           | Male                       | All                | Female                                      | Male               | All                | Female                           | Male                                        |
| $D_{\text{anal}} \wedge D_{\text{anal}} \stackrel{\text{\tiny (a)}}{\longrightarrow} (2010)$                                      | (1)                                           | (2)                                              | (3)                        | (4)                | (5)                                         | (6)                | (7)                | (8)                              | (9)                                         |
| Panel A. Reading Test (2013)<br>Able to read first sentence alou-                                                                 | d when simon d                                | our out to noo                                   | 4                          |                    |                                             |                    |                    |                                  |                                             |
| Treatment effect                                                                                                                  | 0.039                                         | 0.039                                            | 0.037                      | 0.040              | 0.047                                       | 0.031              | 0.028              | 0.026                            | 0.030                                       |
| Standard error                                                                                                                    | $(0.016)^{**}$                                | $(0.022)^*$                                      | $(0.022)^*$                | $(0.024)^*$        | (0.041)                                     | (0.031)            | (0.020)            | (0.029)                          | (0.028)                                     |
| Comparison mean                                                                                                                   | 0.876                                         | 0.851                                            | 0.902                      | (0.024)<br>0.904   | (0.054)<br>0.885                            | (0.034)<br>0.925   | 0.871              | (0.029)<br>0.850                 | 0.892                                       |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.304              |                                             | 6): .738           | (4) = (7):.718     | (8)=(9)                          |                                             |
| Read first paragraph aloud well                                                                                                   | , , , , , , ,                                 | .,.,                                             |                            |                    | (0)-(0                                      | <i>)</i>           | (4)-(1): .110      | (0)-(0)                          | )010                                        |
| Treatment effect                                                                                                                  | 0.063                                         | 0.073                                            | 0.050                      | 0.029              | 0.040                                       | 0.010              | 0.082              | 0.088                            | 0.071                                       |
| Standard error                                                                                                                    | $(0.024)^{***}$                               | $(0.034)^{**}$                                   | (0.034)                    | (0.038)            | (0.054)                                     | (0.053)            | $(0.032)^{**}$     | $(0.046)^*$                      | (0.044)                                     |
| Comparison mean                                                                                                                   | 0.503                                         | 0.432                                            | 0.577                      | 0.579              | 0.502                                       | 0.660              | 0.464              | 0.397                            | 0.531                                       |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.010              |                                             | 6): .688           | (4)=(7):.284       | (8) = (9)                        |                                             |
| Basic comprehension                                                                                                               |                                               | (0)                                              | )                          |                    | (0) (0                                      | .)                 |                    |                                  | // //01                                     |
| Treatment effect                                                                                                                  | 0.046                                         | 0.046                                            | 0.044                      | 0.043              | 0.055                                       | 0.029              | 0.042              | 0.037                            | 0.044                                       |
| Standard error                                                                                                                    | (0.021)**                                     | (0.030)                                          | (0.030)                    | (0.033)            | (0.047)                                     | (0.047)            | (0.028)            | (0.040)                          | (0.039)                                     |
| Comparison mean                                                                                                                   | 0.728                                         | 0.686                                            | 0.771                      | 0.768              | 0.736                                       | 0.802              | 0.716              | 0.668                            | 0.765                                       |
| p-value on equality of effect (                                                                                                   | (5) = (6) = (8) = (9)                         | ): .983 (2)=(3                                   |                            |                    | (5) = (0)                                   | <i>6): .700</i>    | (4)=(7): .996      | (8) = (9)                        |                                             |
| Fact identification                                                                                                               | -                                             |                                                  |                            |                    | (-) (-                                      |                    |                    | (-) (-)                          | /                                           |
| Treatment effect                                                                                                                  | 0.042                                         | 0.041                                            | 0.041                      | 0.039              | 0.084                                       | -0.005             | 0.032              | 0.003                            | 0.057                                       |
| Standard error                                                                                                                    | (0.021)**                                     | (0.030)                                          | (0.030)                    | (0.033)            | $(0.047)^{*}$                               | (0.047)            | (0.028)            | (0.040)                          | (0.039)                                     |
| Comparison mean                                                                                                                   | 0.740                                         | 0.719                                            | 0.762                      | 0.766              | 0.747                                       | 0.787              | 0.735              | 0.718                            | 0.751                                       |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            |                    |                                             | <i>5): .180</i>    | (4)=(7):.871       | (8)=(9)                          |                                             |
| Intermediate comprehension                                                                                                        |                                               |                                                  |                            |                    | (-) (-                                      | /                  |                    |                                  | ,                                           |
| Treatment effect                                                                                                                  | -0.008                                        | 0.014                                            | -0.030                     | 0.003              | 0.015                                       | -0.008             | -0.022             | 0.009                            | -0.051                                      |
| Standard error                                                                                                                    | (0.017)                                       | (0.024)                                          | (0.023)                    | (0.026)            | (0.037)                                     | (0.037)            | (0.022)            | (0.032)                          | $(0.031)^*$                                 |
| Comparison mean                                                                                                                   | 0.128                                         | 0.116                                            | 0.140                      | 0.125              | 0.119                                       | 0.130              | 0.133              | 0.116                            | 0.151                                       |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.120              |                                             | 6): .658           | (4)=(7):.462       | (8)=(9)                          |                                             |
| Advanced comprehension                                                                                                            |                                               |                                                  | )                          |                    | (0) (0                                      |                    | (1) (1) 102        |                                  | // 11/0                                     |
| Treatment effect                                                                                                                  | 0.047                                         | 0.051                                            | 0.044                      | 0.037              | 0.047                                       | 0.032              | 0.049              | 0.047                            | 0.051                                       |
| Standard error                                                                                                                    | $(0.024)^{**}$                                | (0.033)                                          | (0.033)                    | (0.037)            | (0.053)                                     | (0.053)            | (0.031)            | (0.045)                          | (0.044)                                     |
| Comparison mean                                                                                                                   | 0.333                                         | 0.349                                            | 0.316                      | 0.364              | 0.394                                       | 0.332              | 0.314              | 0.321                            | 0.307                                       |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.001              |                                             | 6): .836           | (4)=(7):.805       | (8)=(9)                          |                                             |
| Panel B. Math Test (2013)                                                                                                         | (0) - (0) - (0) - (0)                         |                                                  | )                          |                    | (0)-(0                                      |                    | (1)-(1): .000      | $(\mathcal{O})^{-}(\mathcal{O})$ | /001                                        |
| Basic Computation 1                                                                                                               |                                               |                                                  |                            |                    |                                             |                    |                    |                                  |                                             |
| Treatment effect                                                                                                                  | 0.013                                         | 0.036                                            | -0.010                     | 0.032              | 0.042                                       | 0.023              | 0.000              | 0.035                            | -0.033                                      |
| Standard error                                                                                                                    | (0.013)                                       | $(0.019)^*$                                      | (0.010)                    | (0.021)            | (0.030)                                     | (0.030)            | (0.018)            | (0.025)                          | (0.025)                                     |
| Comparison mean                                                                                                                   | 0.919                                         | 0.907                                            | (0.013)<br>0.932           | (0.021)<br>0.923   | (0.030)<br>0.914                            | (0.030)<br>0.933   | 0.918              | 0.903                            | (0.023)<br>0.934                            |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.925              |                                             | 6): .660           | (4)=(7):.237       | (8)=(9)                          |                                             |
| Basic Computation 2                                                                                                               | (0) - (0) - (0) - (0)                         | )140 $(2) = (0)$                                 | 070                        |                    | (0)-(0                                      | /)000              | (4)-(1): .201      | (0)-(0)                          | 002                                         |
| Treatment effect                                                                                                                  | -0.007                                        | -0.005                                           | -0.008                     | -0.009             | -0.023                                      | 0.005              | -0.011             | 0.000                            | -0.021                                      |
| Standard error                                                                                                                    | (0.012)                                       | (0.017)                                          | (0.017)                    | (0.019)            | (0.026)                                     | (0.005)            | (0.016)            | (0.022)                          | (0.022)                                     |
| Comparison mean                                                                                                                   | (0.012)<br>0.944                              | (0.017)<br>0.948                                 | (0.017)<br>0.939           | (0.019)<br>0.939   | (0.020)<br>0.948                            | (0.020)<br>0.929   | 0.950              | (0.022)<br>0.953                 | (0.022)<br>0.947                            |
| p-value on equality of effect (                                                                                                   |                                               |                                                  |                            | 0.959              |                                             | 6): .444           | (4)=(7):.943       | (8)=(9)                          |                                             |
| Basic Calculator Computation (                                                                                                    |                                               | )704 $(2) - (3)$                                 | )917                       |                    | (J) = (U)                                   | )                  | (4) - (7). 343     | $(\mathcal{O}) - (\mathcal{O})$  | )400                                        |
| Treatment effect                                                                                                                  | 0.017                                         | 0.031                                            | 0.001                      | 0.033              | 0.067                                       | -0.001             | -0.003             | -0.003                           | -0.006                                      |
| Standard error                                                                                                                    | (0.017)                                       | (0.031)                                          | (0.001)                    | (0.033)            | (0.046)                                     | (0.046)            | (0.027)            | (0.039)                          | (0.038)                                     |
| Comparison mean                                                                                                                   | (0.021)<br>0.777                              | (0.029)<br>0.726                                 | (0.029)<br>0.829           | (0.033)<br>0.764   | (0.040)<br>0.732                            | (0.040)<br>0.798   | (0.027)<br>0.793   | (0.039)<br>0.732                 | (0.038)<br>0.854                            |
| -                                                                                                                                 |                                               |                                                  |                            | 0.704              |                                             |                    |                    |                                  |                                             |
| p-value on equality of effect (<br>Numeracy (2013)                                                                                | (0) = (0) = (0) = (0) = (0)                   | (2)=(3)                                          | ): .400                    |                    | (0) = (0)                                   | 6): .295           | (4)=(7): .395      | (8) = (9)                        | ): .945                                     |
| Treatment effect                                                                                                                  | 0.023                                         | 0.019                                            | 0.024                      | 0.015              | 0.020                                       | 0.005              | 0.029              | 0.012                            | 0.042                                       |
|                                                                                                                                   |                                               |                                                  |                            |                    |                                             |                    |                    |                                  |                                             |
| Standard error                                                                                                                    | $(0.017) \\ 0.850$                            | $(0.024) \\ 0.806$                               | $(0.024) \\ 0.897$         | $(0.027) \\ 0.870$ | $\begin{array}{c}(0.038)\\0.818\end{array}$ | $(0.038) \\ 0.925$ | $(0.022) \\ 0.845$ | $(0.032) \\ 0.811$               | $\begin{array}{c}(0.031)\\0.881\end{array}$ |
| Comparison mean                                                                                                                   |                                               |                                                  |                            | 0.870              |                                             |                    |                    |                                  |                                             |
| p-value on equality of effect (<br>Profit calculation (easy)                                                                      | J = (0) = (8) = (9)                           | (2)=(3)                                          | ): .0/1                    |                    | (3)=(0                                      | 6): .781           | (4)=(7): .698      | (8) = (9)                        | ): .499                                     |
|                                                                                                                                   | 0.006                                         | 0.091                                            | 0.010                      | 0.024              | 0.070                                       | 0.009              | 0.019              | 0.011                            | 0.096                                       |
| Treatment effect                                                                                                                  | 0.006                                         | 0.021                                            | -0.010                     | 0.034              | 0.070                                       | -0.002             | -0.018             | -0.011                           | -0.026                                      |
| standard error                                                                                                                    | (0.023)                                       | (0.033)                                          | (0.033)                    | (0.037)            | (0.053)                                     | (0.052)            | (0.031)            | (0.045)                          | (0.043)                                     |
| Comparison mean                                                                                                                   | 0.650                                         | 0.622                                            | 0.680                      | 0.667              | 0.636                                       | 0.700              | 0.648              | 0.618                            | 0.677                                       |
| p-value on equality of effect (                                                                                                   | b) = (b) = (8) = (9)                          | ): .334 $(2)=(3)$                                | ): .309                    |                    | $(\partial)=(\partial$                      | 5): .328           | (4)=(7): .285      | (8) = (9)                        | ): .807                                     |
| Profit calculation (difficult)                                                                                                    | 0.004                                         | 0.040                                            | 0.040                      | 0.010              | 0.000                                       | 0.005              | 0.019              | 0.055                            | 0.000                                       |
| Treatment effect                                                                                                                  | 0.004                                         | 0.046                                            | -0.040                     | -0.019             | 0.022                                       | -0.065             | 0.013              | 0.055                            | -0.028                                      |
| standard error                                                                                                                    | (0.018)                                       | (0.025)*                                         | (0.025)                    | (0.029)            | (0.040)                                     | (0.040)            | (0.024)            | (0.034)                          | (0.033)                                     |
| Comparison mean                                                                                                                   | 0.151                                         | 0.108                                            | 0.196                      | 0.165              | 0.112                                       | 0.222              | 0.144              | 0.108                            | 0.181                                       |
| p-value on equality of effect (                                                                                                   | (5)=(6)=(8)=(9)                               | ): .104 (2)=(3).                                 | : .016**                   |                    | (5) = (0)                                   | 6): .129           | (4)=(7): .392      | (8) = (9)                        | 1:.081*                                     |
| <u>Identifying mode</u>                                                                                                           |                                               |                                                  |                            |                    |                                             |                    |                    |                                  |                                             |
| Treatment effect                                                                                                                  | 0.032                                         | 0.033                                            | 0.029                      | 0.035              | 0.043                                       | 0.024              | 0.027              | 0.030                            | 0.023                                       |
|                                                                                                                                   | (0.014)**                                     | $(0.019)^*$                                      | (0.019)                    | (0.021)            | (0.030)                                     | (0.030)            | (0.018)            | (0.026)                          | (0.025)                                     |
| standard error                                                                                                                    |                                               | · · · ·                                          | · /                        | 0.918              | 0.896                                       | 0.941              | 0.906              | 0.887                            | 0.926                                       |
| standard error<br>Comparison mean                                                                                                 | 0.907                                         | 0.887                                            | 0.928                      |                    |                                             |                    |                    |                                  |                                             |
| Comparison mean                                                                                                                   |                                               |                                                  |                            |                    | (5) = (t)                                   | <i>6): .650</i>    | (4)=(7): .784      | (8)=(9                           | ): .854                                     |
| Comparison mean<br>p-value on equality of effect (                                                                                | (5)=(6)=(8)=(9)                               |                                                  |                            |                    | (5)=(6                                      | 6): .650           | (4)=(7): .784      | (8)=(9)                          | <i>)): .854</i>                             |
| Comparison mean<br>p-value on equality of effect (<br><u>Calculating sums (without help</u>                                       | (5) = (6) = (8) = (9)                         | ): .959 (2)=(3                                   | ?): .871                   |                    |                                             |                    | .,.,               |                                  |                                             |
| Comparison mean<br>p-value on equality of effect (<br><u>Calculating sums (without help</u><br>Treatment effect                   | (5)=(6)=(8)=(9)<br>-0.000                     | ): .959 (2)=(3)<br>0.011                         | ?): .871<br>-0.013         | -0.030             | -0.036                                      | -0.027             | 0.021              | 0.044                            | -0.003                                      |
| Comparison mean<br>p-value on equality of effect (<br><u>Calculating sums (without help</u><br>Treatment effect<br>standard error | (5)=(6)=(8)=(9)<br>-0.000<br>(0.018)          | ): $.959 (2) = (3)$<br>0.011<br>(0.026)          | -0.013<br>(0.026)          | -0.030<br>(0.029)  | -0.036<br>(0.041)                           | -0.027<br>(0.041)  | 0.021<br>(0.024)   | 0.044<br>(0.035)                 | -0.003 $(0.034)$                            |
| Comparison mean<br>p-value on equality of effect (<br><u>Calculating sums (without help</u><br>Treatment effect                   | (5)=(6)=(8)=(9)<br>-0.000<br>(0.018)<br>0.168 | ): $.959 (2) = (3)$<br>0.011<br>(0.026)<br>0.135 | -0.013<br>(0.026)<br>0.202 | -0.030             | -0.036<br>(0.041)<br>0.149                  | -0.027             | 0.021              | 0.044                            | -0.003<br>(0.034)<br>0.199                  |

Table A7: Components of Indices cont.

|                                                  |                                          | Combined         |                  |                            | emic Major A           |                  |                  | onal Major .     |                  |
|--------------------------------------------------|------------------------------------------|------------------|------------------|----------------------------|------------------------|------------------|------------------|------------------|------------------|
|                                                  | All                                      | Female           | Male             | All                        | Female                 | Male             | All              | Female           | Male             |
|                                                  | (1)                                      | (2)              | (3)              | (4)                        | (5)                    | (6)              | (7)              | (8)              | (9)              |
| Panel A. Math Test (2013) of                     |                                          |                  |                  |                            |                        |                  |                  |                  |                  |
| Calculating sums (with expla<br>Treatment effect | <u>anation)</u><br>0.035                 | 0.036            | 0.033            | 0.075                      | 0 107                  | 0.049            | 0.000            | -0.017           | 0.014            |
| standard error                                   | (0.035)                                  | (0.036)          | (0.033)          | 0.075<br>$(0.039)^*$       | 0.107<br>(0.055)*      | 0.042<br>(0.055) | (0.033)          | (0.017)          | (0.014)          |
| Comparison mean                                  | (0.025)<br>0.556                         | (0.033)<br>0.538 | (0.033)<br>0.576 | $(0.039)^{\circ}$<br>0.548 | $(0.053)^{+}$<br>0.532 | (0.055)<br>0.565 | (0.033)<br>0.567 | (0.047)<br>0.547 | (0.040)<br>0.587 |
| p-value on equality of effe                      |                                          |                  |                  | 0.040                      |                        | 6): .406         | (4) = (7): .141  |                  | 9): .645         |
| <u>Calculating percentage</u>                    | (0) - (0) - (0) - (0)                    |                  | 0)900            |                            | (0)-(1                 | 0)400            | (4)-(1)141       | (0)-(0           | )040             |
| Treatment effect                                 | 0.058                                    | 0.058            | 0.056            | 0.032                      | 0.066                  | -0.006           | 0.079            | 0.051            | 0.102            |
| standard error                                   | $(0.020)^{***}$                          | $(0.028)^{**}$   | (0.028)**        | (0.031)                    | (0.044)                | (0.044)          | $(0.026)^{***}$  | (0.031)          | $(0.036)^{**}$   |
| Comparison mean                                  | 0.192                                    | 0.149            | 0.237            | 0.198                      | 0.138                  | 0.261            | 0.194            | 0.163            | 0.225            |
| p-value on equality of effe                      |                                          |                  |                  | 0.100                      |                        | 6): .246         | (4)=(7):.248     |                  | 9): .324         |
| Applied Math Skills: Exchan                      |                                          |                  |                  |                            |                        |                  |                  | (-) (-           | .)               |
| Treatment effect                                 | 0.064                                    | 0.080            | 0.043            | 0.057                      | 0.086                  | 0.016            | 0.074            | 0.085            | 0.057            |
| standard error                                   | $(0.024)^{***}$                          | (0.034)**        | (0.034)          | (0.039)                    | (0.054)                | (0.054)          | $(0.033)^{**}$   | $(0.046)^*$      | (0.045)          |
| Comparison mean                                  | 0.477                                    | 0.385            | 0.573            | 0.476                      | 0.366                  | 0.593            | 0.484            | 0.403            | 0.566            |
| p-value on equality of effe                      | $\operatorname{ct}(5) = (6) = (8) = (9)$ | :.757 (2)=(      | (3): .440        |                            | (5) = (5)              | 6): .358         | (4)=(7): .737    | (8) = (8)        | 9): .667         |
| Panel C. Index of Risky Sexu                     |                                          |                  | ,<br>,           |                            |                        | /                |                  |                  | /                |
| Ever had sex                                     | х , , , , , , , , , , , , , , , , , , ,  |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | -0.037                                   | 0.003            | -0.072           | -0.033                     | 0.010                  | -0.066           | -0.047           | -0.003           | -0.083           |
| standard error                                   | (0.021)*                                 | (0.030)          | (0.029)**        | (0.034)                    | (0.047)                | (0.047)          | $(0.028)^*$      | (0.040)          | $(0.039)^{*}$    |
| Comparison mean                                  | 0.766                                    | 0.845            | 0.685            | 0.763                      | 0.828                  | 0.696            | 0.766            | 0.853            | 0.679            |
| p-value on equality of effe                      | ct $(5) = (6) = (8) = (9)$               | :.319 (2)=(3     | 3): .071*        |                            | (5) = (5)              | 6): .255         | (4)=(7): .737    | (8) = (8)        | 9): .149         |
| Age when first had sex                           |                                          |                  | *                |                            |                        | ,                |                  |                  | /                |
| Treatment effect                                 | -0.039                                   | -0.063           | 0.011            | -0.104                     | -0.175                 | -0.014           | 0.052            | 0.109            | 0.001            |
| standard error                                   | (0.115)                                  | (0.151)          | (0.174)          | (0.183)                    | (0.243)                | (0.274)          | (0.153)          | (0.202)          | (0.231)          |
| Comparison mean                                  | 18.305                                   | 18.110           | 18.555           | 18.255                     | 18.159                 | 18.375           | 18.341           | 18.080           | 18.672           |
| p-value on equality of effe                      | ct $(5) = (6) = (8) = (9)$               | :.847 (2)=(      | (3): .745        |                            | (5) = (6)              | 6): .660         | (4)=(7): .512    | (8) = (3)        | 9): .725         |
| Number of sexual partners in                     | n last 6 months                          |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | -0.091                                   | -0.095           | -0.086           | -0.130                     | -0.174                 | -0.074           | -0.064           | -0.047           | -0.089           |
| standard error                                   | $(0.041)^{**}$                           | $(0.054)^*$      | (0.063)          | $(0.065)^{**}$             | (0.087)**              | (0.099)          | (0.055)          | (0.073)          | (0.083)          |
| Comparison mean                                  | 0.699                                    | 0.708            | 0.688            | 0.725                      | 0.729                  | 0.722            | 0.693            | 0.719            | 0.660            |
| p-value on equality of effe                      | ct $(5) = (6) = (8) = (9)$               | :.734 (2)=(      | (3): .912        |                            | (5) = (6)              | 6): .448         | (4)=(7): .442    | (8) = (8)        | 9): .709         |
| Number of sexual partners in                     | <u>n lifetime</u>                        |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | -0.364                                   | -0.312           | -0.415           | -0.579                     | -0.685                 | -0.446           | -0.271           | -0.147           | -0.413           |
| standard error                                   | $(0.149)^{**}$                           | (0.196)          | $(0.226)^*$      | $(0.240)^{**}$             | $(0.319)^{**}$         | (0.361)          | (0.201)          | (0.266)          | (0.304)          |
| Comparison mean                                  | 2.282                                    | 2.070            | 2.554            | 2.551                      | 2.371                  | 2.777            | 2.138            | 1.898            | 2.441            |
| p-value on equality of effe                      | ct(5) = (6) = (8) = (9)                  | :.633 (2)=(-     | (3): .731        |                            | (5) = (6)              | 6): .620         | (4)=(7): .324    | (8) = (8)        | 9): .509         |
| Ever in a relationship with a                    | a partner > 20 years                     | older            |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | -0.013                                   | -0.030           | 0.005            | -0.019                     | -0.062                 | 0.030            | -0.016           | -0.017           | -0.012           |
| standard error                                   | (0.013)                                  | (0.018)          | (0.018)          | (0.021)                    | (0.029)**              | (0.029)          | (0.017)          | (0.025)          | (0.024)          |
| Comparison mean                                  | 0.081                                    | 0.127            | 0.032            | 0.091                      | 0.150                  | 0.028            | 0.074            | 0.113            | 0.034            |
| p-value on equality of effe                      | $\operatorname{ct}(5) = (6) = (8) = (9)$ | :.164 (2)=(-     | 3): .174         |                            | (5) = (6)              | ): .024**        | (4)=(7): .912    | (8) = (3)        | 9): .877         |
| Ever in a relationship for gif                   | ts or money                              |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | 0.007                                    | 0.031            | -0.011           | -0.014                     | 0.029                  | -0.049           | 0.002            | 0.000            | 0.009            |
| standard error                                   | (0.020)                                  | (0.027)          | (0.027)          | (0.031)                    | (0.043)                | (0.043)          | (0.026)          | (0.037)          | (0.036)          |
| Comparison mean                                  | 0.200                                    | 0.285            | 0.111            | 0.213                      | 0.281                  | 0.142            | 0.190            | 0.287            | 0.093            |
| p-value on equality of effe                      | $\operatorname{ct}(5) = (6) = (8) = (9)$ | :.616 (2)=(-     | (3): .281        |                            | (5) = (5)              | 6): .201         | (4)=(7): .700    | (8) = (8)        | 9): .862         |
| Panel C. Risky Sexual Behav                      | <u>vior (2013)</u>                       |                  |                  |                            |                        |                  |                  |                  |                  |
| Ever had sex with a commer                       | <u>cial sex worker</u>                   |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | -0.006                                   | -0.000           | -0.013           | -0.006                     | 0.000                  | -0.013           | -0.007           | -0.000           | -0.014           |
| standard error                                   | (0.004)                                  | (0.005)          | $(0.005)^{**}$   | (0.006)                    | (0.009)                | (0.009)          | (0.005)          | (0.007)          | $(0.007)^*$      |
| Comparison mean                                  | 0.009                                    | 0.000            | 0.019            | 0.010                      | 0.000                  | 0.020            | 0.008            | 0.000            | 0.016            |
| p-value on equality of effe                      | ct(5) = (6) = (8) = (9)                  | :.412 (2)=(3     | 3): .093*        |                            | (5) = (6)              | 6): .296         | (4)=(7): .881    | (8) = (8)        | 9): .184         |
| Contraception last time had                      | sex if ever had sex                      |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | 0.077                                    | 0.041            | 0.128            | 0.112                      | 0.039                  | 0.204            | 0.033            | 0.013            | 0.064            |
| standard error                                   | $(0.027)^{***}$                          | (0.035)          | $(0.040)^{***}$  | $(0.042)^{***}$            | (0.056)                | $(0.063)^{***}$  | (0.035)          | (0.047)          | (0.053)          |
| Comparison mean                                  | 0.652                                    | 0.609            | 0.706            | 0.662                      | 0.655                  | 0.670            | 0.653            | 0.586            | 0.738            |
| p-value on equality of effe                      | $\operatorname{ct}(5) = (6) = (8) = (9)$ | :.100 (2)=(-     | (3): .106        |                            | $(5) = (\ell$          | 3): .051*        | (4)=(7): .153    | (8) = (8)        | 9): .475         |
| Ever used contraception if ev                    | ver had sex                              |                  |                  |                            |                        |                  |                  |                  |                  |
| Treatment effect                                 | 0.037                                    | 0.020            | 0.061            | 0.028                      | -0.043                 | 0.120            | 0.031            | 0.046            | 0.014            |
| standard error                                   | (0.023)                                  | (0.031)          | (0.036)*         | (0.037)                    | (0.049)                | $(0.056)^{**}$   | (0.031)          | (0.041)          | (0.047)          |
| Comparison mean                                  | 0.776                                    | 0.766            | 0.789            | 0.796                      | 0.824                  | 0.761            | 0.766            | 0.728            | 0.812            |
| p-value on equality of effe                      |                                          | :.170 (2)=(      | (3): .385        |                            | (5) = (6)              | ): .029**        | (4)=(7): .959    | (8) = (8)        | 9): .611         |
| Panel D. Index of STI Expos                      | <u>sure (2013)</u>                       |                  |                  |                            |                        |                  |                  |                  |                  |
| Do you do anything to prote                      |                                          | -                | ,                | IDs?                       |                        |                  |                  |                  |                  |
| Treatment effect                                 | 0.029                                    | 0.021            | 0.033            | 0.023                      | 0.003                  | 0.033            | 0.034            | 0.030            | 0.036            |
| standard error                                   | (0.018)                                  | (0.025)          | (0.025)          | (0.029)                    | (0.040)                | (0.040)          | (0.024)          | (0.034)          | (0.033)          |
| ~                                                | 0.836                                    | 0.783            | 0.892            | 0.823                      | 0.753                  | 0.897            | 0.840            | 0.797            | 0.883            |
| Comparison mean                                  | 0.830                                    | 0.165            | 0.892            | 0.020                      | 0.100                  | 0.001            |                  |                  |                  |

|                                                                        |                                             | Combined            |                    |                    | emic Major A       |                    |                       | nal Major A        |                    |
|------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|--------------------|
|                                                                        | All                                         | Female              | Male (2)           | All                | Female             | Male               | <u>All</u> (7)        | Female             | Male               |
| Panel D. Index of STI Exposu                                           | $\frac{(1)}{ro(2013) \text{ cont}}$         | (2)                 | (3)                | (4)                | (5)                | (6)                | (7)                   | (8)                | (9)                |
| Have you had a sexually trans                                          | × ,                                         | in past 12 mo       | nths?              |                    |                    |                    |                       |                    |                    |
| Treatment effect                                                       | -0.024                                      | -0.023              | -0.024             | -0.044             | -0.074             | -0.011             | -0.018                | 0.002              | -0.034             |
| standard error                                                         | (0.014)*                                    | (0.020)             | (0.020)            | (0.023)*           | (0.032)**          | (0.032)            | (0.019)               | (0.027)            | (0.026)            |
| Comparison mean                                                        | 0.096                                       | 0.129               | 0.062              | 0.104              | 0.142              | 0.063              | 0.094                 | 0.124              | 0.064              |
| p-value on equality of effect                                          | (5) = (6) = (8) = (9)                       | 0): .296 (2)=(3     | 3): .982           |                    | (5) = (0)          | 6): .159           | (4)=(7): .374         | (8)=(9             | )): .331           |
| Has partner ever told you they                                         | y had a sexually                            | transmitted in      | nfection?          |                    |                    |                    |                       |                    |                    |
| Treatment effect                                                       | -0.009                                      | 0.000               | -0.019             | -0.021             | -0.006             | -0.038             | -0.002                | 0.005              | -0.008             |
| standard error                                                         | (0.007)                                     | (0.010)             | $(0.010)^*$        | $(0.012)^*$        | (0.017)            | $(0.016)^{**}$     | (0.010)               | (0.014)            | (0.014)            |
| Comparison mean                                                        | 0.023                                       | 0.016               | 0.031              | 0.033              | 0.015              | 0.051              | 0.018                 | 0.018              | 0.019              |
| p-value on equality of effect                                          |                                             | , , , ,             | ,                  |                    |                    | 6): .179           | (4)=(7):.200          | (8)=(9             | ): .504            |
| Did you change how often you                                           |                                             | -                   |                    | ·                  |                    | -                  |                       | _ ,_               | 0.001              |
| Treatment effect<br>standard error                                     | -0.020                                      | -0.113              | -0.235             | 0.297              | 0.892              | -0.258             | -0.220                | -0.301             | -0.221             |
| Comparison mean                                                        | $(0.309) \\ 1.548$                          | $(0.419) \\ 1.909$  | $(0.427) \\ 1.350$ | $(0.510) \\ 1.471$ | $(0.861) \\ 2.250$ | $(0.567) \\ 1.231$ | $(0.419) \\ 1.643$    | (0.482)<br>1.714   | (0.703)<br>1.571   |
| p-value on equality of effect                                          |                                             |                     |                    | 1.4(1              |                    | 6): .276           | (4)=(7):.443          |                    | ): .926            |
| Did you start using a condom                                           |                                             | , , , ,             | ,                  | =Stopped co        | ( ) (              | ,                  |                       | (0)-(9             | )920               |
| Treatment effect                                                       | 0.112                                       | 0.221               | 0.000              | 0.391              | 1.419              | 0.000              | -0.220                | -0.596             | 0.000              |
| standard error                                                         | (0.520)                                     | (0.582)             | (0.000)            | (0.790)            | (0.864)            | (0.000)            | (0.585)               | (0.596)            | (0.000)            |
| Comparison mean                                                        | 2.000                                       | 2.000               | 2.000              | 1.500              | 1.333              | 1.667              | 2.500                 | 2.500              | 2.500              |
| p-value on equality of effect                                          | (5) = (6) = (8) = (9)                       | )): .295 (2)=(3     | 3): .714           |                    | (5) = (0)          | 6): .161           | (4) = (7): .559       | (8)=(9             | ): .363            |
| <u>Did you stop having sex last t</u>                                  |                                             |                     | <i>,</i>           | ompletely, 2=      | Less often, 3      |                    |                       |                    | ×                  |
| Treatment effect                                                       | -0.235                                      | -0.304              | -0.103             | -0.367             | -0.605             | 0.067              | -0.175                | -0.172             | -0.258             |
| standard error                                                         | $(0.129)^*$                                 | (0.157)*            | (0.228)            | $(0.213)^*$        | (0.290)**          | (0.314)            | (0.170)               | (0.199)            | (0.329)            |
| Comparison mean                                                        | 1.542                                       | 1.630               | 1.359              | 1.574              | 1.711              | 1.250              | 1.516                 | 1.561              | 1.435              |
| p-value on equality of effect                                          |                                             | , , , ,             |                    |                    |                    | 6): .119           | (4)=(7): .481         | (8)=(9             | 9): .825           |
| Did you use a condom when h                                            |                                             |                     |                    |                    |                    |                    | ,                     |                    |                    |
| Treatment effect                                                       | -0.093                                      | -0.169              | -0.068             | -0.279             | 0.211              | -0.504             | 0.052                 | -0.075             | 0.000              |
| standard error                                                         | (0.306)                                     | (0.331)             | (0.946)            | (0.616)            | (0.854)            | , ,                | (0.358)               | (0.381)            | (0.000)            |
| Comparison mean                                                        | 2.312                                       | 2.472               | 1.833              | 2.739              | 2.789              | 2.500              | 1.917                 | 2.125              | 1.500              |
| p-value on equality of effect                                          |                                             | 9):.940 (2)=(3)     | 3): .921           |                    | (5) = (0)          | 6): .577           | (4) = (7):.649        | (8)=(9             | ): .845            |
| <u>Panel E. Preventative Health</u><br>Sleeps under an insecticide-tre |                                             | ot                  |                    |                    |                    |                    |                       |                    |                    |
| Treatment effect                                                       | 0.032                                       | 0.045               | 0.021              | 0.046              | 0.087              | 0.015              | 0.023                 | 0.017              | 0.030              |
| standard error                                                         | (0.032)                                     | (0.045) $(0.035)$   | (0.021)            | (0.040)            | (0.057)            | (0.013)            | (0.023)               | (0.017)            | (0.045)            |
| Comparison mean                                                        | (0.023)<br>0.472                            | (0.000)<br>0.516    | (0.034)<br>0.428   | (0.055)<br>0.466   | (0.035)<br>0.535   | (0.094)<br>0.391   | 0.470                 | (0.040)<br>0.497   | (0.043)<br>0.443   |
| p-value on equality of effect                                          |                                             |                     |                    | 0.400              |                    | 6): .351           | (4)=(7):.647          | (8)=(9)            |                    |
| Panel E. Preventative Health                                           |                                             | )                   | )                  |                    |                    |                    |                       | (0) (0             | /                  |
| Use any other method to prot                                           |                                             | mosquitos           |                    |                    |                    |                    |                       |                    |                    |
| Treatment effect                                                       | 0.055                                       | 0.042               | 0.068              | 0.050              | 0.025              | 0.076              | 0.054                 | 0.052              | 0.054              |
| standard error                                                         | $(0.024)^{**}$                              | (0.035)             | (0.035)**          | (0.039)            | (0.055)            | (0.055)            | $(0.033)^*$           | (0.047)            | (0.045)            |
| Comparison mean                                                        | 0.457                                       | 0.439               | 0.475              | 0.454              | 0.446              | 0.462              | 0.455                 | 0.429              | 0.480              |
| p-value on equality of effect                                          | (5) = (6) = (8) = (9)                       | 9): .932 (2)=(3     | 3): .593           |                    | (5) = (0)          | 6): .510           | (4)=(7): .943         | (8)=(9             | 9): .973           |
| Jsed soap and water last time                                          | washed hands                                |                     |                    |                    |                    |                    |                       |                    |                    |
| Treatment effect                                                       | 0.031                                       | 0.031               | 0.034              | 0.076              | 0.064              | 0.091              | -0.002                | 0.003              | -0.005             |
| standard error                                                         | (0.022)                                     | (0.032)             | (0.032)            | $(0.036)^{**}$     | (0.050)            | (0.050)*           | (0.030)               | (0.043)            | (0.042)            |
| Comparison mean                                                        | 0.699                                       | 0.742               | 0.653              | 0.702              | 0.724              | 0.680              | 0.693                 | 0.756              | 0.631              |
| p-value on equality of effect                                          | (5) = (6) = (8) = (9)                       | 9): .387 (2)=(3     | 3): .945           |                    | (5) = (0)          | 6): .706           | (4)=(7): .094*        | (8) = (9)          | 9): .903           |
| Panel F. Mental Health Index                                           |                                             |                     |                    |                    |                    |                    |                       |                    |                    |
| In the past few days did you e                                         |                                             | <i>(</i> , )        |                    |                    |                    |                    |                       |                    |                    |
| Scale 1 to 5 $(1=all of the time)$                                     |                                             |                     |                    |                    |                    |                    |                       |                    |                    |
| eel bothered by things that us<br>Treatment effect                     | <u>sually do not bo</u><br>0.015            | <u>-0.015</u>       | 0.045              | -0.013             | -0.105             | 0.080              | 0.064                 | 0.083              | 0.044              |
| standard error                                                         |                                             |                     |                    |                    |                    |                    |                       |                    |                    |
| standard error<br>Comparison mean                                      | $\begin{array}{c}(0.054)\\3.838\end{array}$ | $(0.077) \\ 3.847$  | $(0.076) \\ 3.829$ | $(0.086) \\ 3.869$ | $(0.122) \\ 3.929$ | $(0.121) \\ 3.806$ | $(0.072) \\ 3.811$    | $(0.103) \\ 3.792$ | $(0.100) \\ 3.830$ |
| p-value on equality of effect                                          |                                             |                     |                    | 0.009              |                    | 5.800<br>6): .281  | (4)=(7):.495          |                    | 3.830<br>)): .789  |
| ave trouble keeping your mir                                           |                                             | , , , , ,           |                    |                    | (0)-(0             |                    | (-) -(-), .+00        | (0)-(3             |                    |
| Treatment effect                                                       | 0.032                                       | -0.050              | 0.112              | -0.005             | -0.074             | 0.062              | 0.076                 | -0.002             | 0.149              |
| standard error                                                         | (0.052)                                     | (0.078)             | (0.078)            | (0.088)            | (0.125)            | (0.124)            | (0.074)               | (0.106)            | (0.143)            |
| Comparison mean                                                        | 3.833                                       | 3.833               | 3.832              | 3.831              | 3.836              | (0.124)<br>3.826   | 3.839                 | 3.839              | 3.838              |
| p-value on equality of effect                                          |                                             |                     |                    |                    |                    | 6): .438           | (4)=(7):.480          | (8)=(9             |                    |
| <u>ceel depressed?</u>                                                 |                                             | / · ( <b>-</b> / (e | ,                  |                    |                    | ,                  | ( / ( ) / 100         |                    | ,                  |
| Treatment effect                                                       | -0.017                                      | -0.096              | 0.059              | -0.032             | -0.108             | 0.038              | 0.002                 | -0.051             | 0.049              |
|                                                                        | (0.051)                                     | (0.072)             | (0.072)            | (0.081)            | (0.114)            | (0.114)            | (0.062)               | (0.097)            | (0.094)            |
| standard error                                                         | (0.001)                                     | 10.0121             |                    |                    |                    | · · · /            | · · /                 | · · · · /          | ()                 |
| standard error<br>Comparison mean                                      | 3.983                                       | 3.965               | 4.003              | 3.942              | 3.937              | 3.949              | 4.030                 | 4.005              | 4.056              |
|                                                                        | 3.983                                       | 3.965               | 4.003              | × /                | 3.937              | · /                | 4.030<br>(4)=(7):.746 |                    | 4.056<br>9): .457  |

Table A7: Components of Indices cont.

| Table A7: Components of    | Indices cont.                  |                |           |           |                   |          |               |            |           |
|----------------------------|--------------------------------|----------------|-----------|-----------|-------------------|----------|---------------|------------|-----------|
|                            |                                | Combined       |           | Acad      | emic Major A      | Admits   | Vocatio       | onal Major | Admits    |
|                            | All                            | Female         | Male      | All       | Female            | Male     | All           | Female     | Male      |
|                            | (1)                            | (2)            | (3)       | (4)       | (5)               | (6)      | (7)           | (8)        | (9)       |
| Panel F. Mental Health I   | ndex cont.                     |                |           |           |                   |          |               |            |           |
| feel that everything you d | lid was an effort?             |                |           |           |                   |          |               |            |           |
| Treatment effect           | -0.062                         | -0.019         | -0.103    | -0.029    | 0.104             | -0.149   | -0.076        | -0.069     | -0.083    |
| standard error             | (0.067)                        | (0.095)        | (0.094)   | (0.106)   | (0.150)           | (0.150)  | (0.089)       | (0.128)    | (0.124)   |
| Comparison mean            | 3.156                          | 3.188          | 3.122     | 3.108     | 3.179             | 3.032    | 3.191         | 3.198      | 3.184     |
| p-value on equality of e   | effect $(5) = (6) = (8) = (8)$ | 9): .663 (2)=( | (3): .527 |           | (5) = (5)         | 6): .232 | (4)=(7): .732 | (8)=(.     | 9): .936  |
| feel hopeful about the fut | ure? (reverse scored           | in index)      |           |           |                   |          |               |            |           |
| Treatment effect           | -0.052                         | -0.027         | -0.075    | -0.134    | -0.210            | -0.054   | -0.000        | 0.091      | -0.083    |
| standard error             | (0.039)                        | (0.056)        | (0.056)   | (0.063)** | (0.089)**         | (0.088)  | (0.052)       | (0.075)    | (0.073)   |
| Comparison mean            | 1.488                          | 1.521          | 1.454     | 1.504     | 1.566             | 1.439    | 1.474         | 1.495      | 1.453     |
| p-value on equality of e   | effect $(5) = (6) = (8) = (8)$ | 9): .073*(2)=( | (3): .544 |           | (5) = (5)         | 6): .214 | (4)=(7): .102 | (8)=(9     | 9): .096* |
| feel fearful?              |                                |                |           |           |                   |          |               |            |           |
| Treatment effect           | -0.009                         | -0.010         | -0.015    | 0.079     | -0.000            | 0.142    | -0.084        | -0.039     | -0.132    |
| standard error             | (0.050)                        | (0.070)        | (0.070)   | (0.079)   | (0.112)           | (0.111)  | (0.066)       | (0.095)    | (0.092)   |
| Comparison mean            | 4.238                          | 4.143          | 4.337     | 4.219     | 4.116             | 4.328    | 4.258         | 4.171      | 4.347     |
| p-value on equality of e   | effect $(5) = (6) = (8) = (8)$ | 9): .297 (2)=( | (3): .962 |           | (5) = (5)         | 6): .364 | (4)=(7): .114 | (8)=(.     | 9): .481  |
| have restless sleep?       |                                |                |           |           |                   |          |               |            |           |
| Treatment effect           | -0.018                         | 0.002          | -0.040    | 0.006     | 0.053             | -0.042   | -0.032        | -0.015     | -0.052    |
| standard error             | (0.048)                        | (0.067)        | (0.067)   | (0.075)   | (0.107)           | (0.106)  | (0.063)       | (0.091)    | (0.088)   |
| Comparison mean            | 4.307                          | 4.261          | 4.355     | 4.299     | 4.280             | 4.320    | 4.318         | 4.250      | 4.387     |
| p-value on equality of e   | effect $(5) = (6) = (8) = (8)$ | 9): .888 (2)=( | (3): .655 |           | $(5) = (-1)^{-1}$ | 6): .532 | (4)=(7): .695 | (8) = (8)  | 9): .771  |
| Observations               | 1982                           | 1001           | 981       | 779       | 391               | 388      | 1127          | 561        | 566       |

Notes: Year of survey in parentheses. See Table 3 notes for description of columns and cell rows; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%.

Table A8: P-values and Sharpened q-values

|      |                                         | (                      | Combined                      | -           | Acad        | lemic Adı   | nits     | Vocational Admits |                      |          |
|------|-----------------------------------------|------------------------|-------------------------------|-------------|-------------|-------------|----------|-------------------|----------------------|----------|
|      |                                         | All                    | Female                        | Male        | All         | Female      | Male     | All               | Female               | Male     |
| Tabl | • Variable                              | (1)                    | (2)                           | (3)         | (4)         | (5)         | (6)      | (7)               | (8)                  | (9)      |
| 3    | Standardized scor                       | re Readin              | g test (20                    | )13)        |             |             |          |                   |                      |          |
|      | p-value                                 | 0.003***               | 0.018**                       | 0.081*      | $0.065^{*}$ | $0.085^{*}$ | 0.386    | 0.024**           | 0.104                | 0.124    |
|      | sharpened q-value                       | 0.008***               | 0.046**                       | 0.143       | 0.108       | 0.210       | 0.568    | $0.061^{*}$       | 0.240                | 0.269    |
| 3    | Standardized scor                       | <u>re Math t</u>       | est (2013                     | )           |             |             |          |                   |                      |          |
|      | p-value                                 | 0.014**                | 0.011**                       | 0.417       | 0.091*      | 0.027**     | 0.937    | $0.077^{*}$       | 0.140                | 0.318    |
|      | sharpened q-value                       | 0.025**                | 0.031**                       | 0.487       | 0.130       | 0.092*      | 0.929    | 0.120             | 0.300                | 0.526    |
| 3    | <u>Total standardize</u>                | ed score (2            | <u>2013)</u>                  |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.002***               | 0.004***                      | 0.150       | 0.040**     | 0.019**     | 0.615    | 0.020**           | $0.070^{*}$          | 0.146    |
|      | sharpened q-value                       | 0.007***               | 0.015**                       | 0.239       | $0.080^{*}$ | 0.072*      | 0.725    | $0.056^{*}$       | 0.182                | 0.304    |
| 3    | National political                      | knowled                | <u>ge standa</u>              | rdized sco  | ore (2013)  | <u>)</u>    |          |                   |                      |          |
|      | p-value                                 | $0.087^{*}$            | 0.118                         | 0.468       | 0.404       | 0.177       | 0.721    | 0.134             | 0.371                | 0.230    |
|      | sharpened q-value                       | 0.071*                 | 0.192                         | 0.538       | 0.327       | 0.339       | 0.797    | 0.161             | 0.562                | 0.422    |
| 3    | International poli                      | tical know             | wledge sta                    | andardize   | d score (2  | 2013)       |          |                   |                      |          |
|      | p-value                                 | $0.099^{*}$            | 0.799                         | $0.054^{*}$ | 0.162       | 0.746       | 0.149    | 0.341             | 0.963                | 0.201    |
|      | sharpened q-value                       | 0.078*                 | 0.683                         | 0.103       | 0.181       | 0.815       | 0.306    | 0.299             | 0.929                | 0.368    |
| 3    | Knows how to us                         |                        | ernet (201                    | 5)          |             |             |          |                   |                      |          |
|      | p-value                                 | 0.002***               | 0.002***                      | 0.199       | 0.013**     | 0.006***    | 0.501    | 0.046**           | $0.066^{*}$          | 0.250    |
|      | sharpened q-value                       | 0.007***               | 0.008***                      | 0.299       | 0.043**     | 0.032**     | 0.653    | 0.087*            | 0.178                | 0.441    |
| 3    | Knows how to use                        |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.032**                |                               | 0.500       | 0.717       | 0.402       | 0.522    | 0.013**           | 0.032**              | 0.158    |
|      | sharpened q-value                       |                        |                               | 0.555       | 0.528       | 0.577       | 0.664    | 0.043**           | 0.102                | 0.316    |
| 3    | Belief in tradition                     |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.211                  | 0.365                         | 0.374       | 0.093*      | 0.949       | 0.014**  | 0.824             | 0.215                | 0.367    |
|      | sharpened q-value                       |                        | 0.473                         | 0.473       | 0.130       | 0.929       | 0.060*   | 0.568             | 0.393                | 0.561    |
| 4    | Ever enrolled in t                      |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.040**                |                               | 0.592       | 0.021**     | 0.004***    | 0.680    | 0.446             | 0.473                | 0.733    |
|      | sharpened q-value                       |                        |                               | 0.597       | 0.056*      |             | 0.774    | 0.362             | 0.640                | 0.807    |
| 4    | <u>Currently enrolled</u>               |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.043**                | 0.020**                       | 0.617       | 0.016**     | 0.015**     | 0.328    | 0.525             | 0.297                | 0.868    |
|      | sharpened q-value                       |                        |                               |             | 0.049**     | 0.063*      | 0.534    | 0.418             | 0.500                | 0.909    |
| 4    | University (20                          |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.031**                | 0.005***                      | 0.839       | 0.075*      | 0.019**     | 0.901    | 0.185             | 0.087*               | 0.881    |
|      | sharpened q-value                       |                        |                               | 0.696       | 0.118       | 0.072*      | 0.909    | 0.198             | 0.212                | 0.909    |
| 4    | Nurses trainir                          |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.371                  | 0.661                         | 0.381       | 0.455       | 0.144       | 0.782    | 0.591             | 0.537                | 0.170    |
|      | sharpened q-value                       |                        | 0.643                         | 0.473       | 0.362       | 0.304       | 0.834    | 0.449             | 0.665                | 0.333    |
| 4    | Teachers train                          |                        |                               |             |             |             |          |                   |                      |          |
| -    | p-value                                 | 0.430                  | 0.852                         | 0.366       | 0.103       | 0.691       | 0.058*   | 0.746             | 0.940                | 0.693    |
|      | sharpened q-value                       |                        | 0.701                         | 0.473       | 0.139       | 0.785       | 0.162    | 0.530             | 0.929                | 0.785    |
| 4    | Years spent atten                       |                        |                               |             |             |             |          |                   |                      |          |
|      | p-value                                 | 0.008***               |                               | 0.175       | 0.034**     | 0.012**     | 0.651    | 0.095*            | 0.322                | 0.175    |
|      | -                                       |                        |                               |             | 0.076*      | 0.054*      | 0.742    | 0.132             | 0.531                | 0.337    |
|      | sharpened a-value                       | . 0.010                |                               |             | •           | · · -       |          |                   |                      |          |
| 4    | sharpened q-value<br>Total years of edu |                        |                               | (16)        |             |             |          |                   |                      |          |
| 4    | Total years of edu                      | ucation to             | o date (20                    |             | 0.000***    | 0.000***    | 0.000*** | 0.000***          | 0.000***             | 0.000*** |
| 4    |                                         | ucation to<br>0.000*** | <u>o date (20</u><br>0.000*** | 0.000***    |             |             |          |                   | 0.000***<br>0.001*** |          |

Table A8: P-values and Sharpened q-values cont.

|      |                              | (           | Combined      |             | Acad         | lemic Adı    | mits     | Vocational Admits |                    |        |
|------|------------------------------|-------------|---------------|-------------|--------------|--------------|----------|-------------------|--------------------|--------|
|      |                              | All         | Female        | Male        | All          | Female       | Male     | All               | Female             | Male   |
| able | Variable                     | (1)         | (2)           | (3)         | (4)          | (5)          | (6)      | (7)               | (8)                | (9)    |
| 4    | Plans to continue            |             | - ( )         |             |              |              |          |                   |                    |        |
|      | p-value                      |             |               |             |              | 0.000***     |          |                   |                    |        |
|      | sharpened q-value            | 0.001***    | 0.001***      | 0.001***    | 0.001***     | 0.001***     | 0.001*** | 0.001***          | 0.001***           | 0.001* |
| 4    | Sat for WASSCE               | exam (20    | 015)          |             |              |              |          |                   |                    |        |
|      | p-value                      |             |               |             |              | 0.000***     |          |                   |                    |        |
|      | sharpened q-value            | 0.001***    | 0.001***      | 0.001***    | 0.001***     | 0.001***     | 0.001*** | 0.001***          | 0.001***           | 0.001  |
| 4    | Plans to apply to            | tertiary    | (2015)        |             |              |              |          |                   |                    |        |
|      | p-value                      | 0.000***    | 0.000***      | 0.000***    | 0.000***     | 0.007***     | 0.001*** | 0.000***          | 0.000***           | 0.005  |
|      | sharpened q-value            | 0.001***    | 0.001***      | 0.001***    | 0.001***     | $0.037^{**}$ | 0.007*** | 0.001***          | 0.001***           | 0.032  |
| 4    | Applied for tertia           | ry educat   | ion (2015     |             |              |              |          |                   |                    |        |
|      | p-value                      | 0.000***    | 0.000***      | 0.064*      | 0.002***     | 0.002***     | 0.186    | 0.004***          | 0.005***           | 0.187  |
|      | sharpened q-value            | 0.001***    | 0.001***      | 0.117       | 0.010***     | 0.012**      | 0.352    | 0.017**           | 0.031**            | 0.352  |
| 4    | if applied: nu               |             |               |             | o (2015)     |              |          |                   |                    |        |
|      | p-value                      | 0.612       | 0.880         | 0.557       | 0.790        | 0.646        | 0.526    | 0.660             | 0.794              | 0.783  |
|      | sharpened q-value            | 0.274       | 0.701         | 0.595       | 0.557        | 0.737        | 0.664    | 0.493             | 0.842              | 0.834  |
| 1    | Admitted to a ter            |             |               |             |              |              |          |                   |                    |        |
| -    | p-value                      |             | 0.006***      | ,           | 0.245        | 0.062*       | 0.787    | 0.052*            | 0.046**            | 0.451  |
|      | sharpened q-value            |             |               |             | 0.244        | 0.168        | 0.836    | 0.094*            | 0.139              | 0.630  |
| 5    | Ever lived with p            |             |               | 0.010       | 0.211        | 0.100        | 0.000    | 0.001             | 0.100              | 0.000  |
| ,    | p-value                      | ,           | 0.001***      | 0 323       | 0.063*       | 0.035**      | 0.729    | 0.013**           | 0.012**            | 0.313  |
|      | sharpened q-value            |             |               |             | 0.107        | 0.109        | 0.806    | 0.013             | 0.012<br>$0.054^*$ | 0.515  |
| 5    |                              |             |               |             |              | 0.103        | 0.800    | 0.045             | 0.004              | 0.020  |
| 9    | Ever pregnant/ha             | -           | $0.001^{***}$ |             | 2<br>0.040** | 0.022**      | 0.630    | 0.030**           | 0.012**            | 0.546  |
|      | p-value<br>sharpened q-value |             |               |             | 0.040*       | 0.022**      | 0.030    | 0.030**           | 0.012**            | 0.540  |
| -    |                              |             |               | 0.000       | 0.080*       | 0.077        | 0.731    | 0.070*            | 0.034              | 0.070  |
| 5    | Number of childre            |             | . ,           | 0 509       | 0.041**      | 0.000**      | 0 505    | 0.019**           | 0 001***           | 0.090  |
|      | p-value                      |             | 0.000***      |             | 0.041**      | 0.028**      | 0.525    | 0.013**           | 0.001***           |        |
| _    | sharpened q-value            |             |               |             | 0.080*       | $0.094^{*}$  | 0.664    | 0.043**           | 0.006***           | 0.903  |
| 5    | Had unwanted fir             |             |               | ,           | . ,          |              |          | o ozoluli         |                    |        |
|      | p-value                      |             | 0.000***      |             | 0.124        | 0.050**      | 0.863    | 0.010**           | 0.002***           |        |
|      | sharpened q-value            |             |               |             | 0.151        | 0.146        | 0.909    | 0.039**           | 0.016**            | 0.653  |
| 5    | Desired fertility:           |             |               | - · · ·     |              |              |          |                   |                    |        |
|      | p-value                      | 0.425       | 0.287         | 0.941       | $0.071^{*}$  | 0.068*       | 0.453    | 0.643             | 0.888              | 0.607  |
|      | sharpened q-value            |             | 0.404         | 0.778       | 0.112        | 0.178        | 0.630    | 0.481             | 0.909              | 0.721  |
| 5    | Index of risky sex           |             | vior(safe     | - , (       | <u>2013)</u> |              |          |                   |                    |        |
|      | p-value                      | $0.077^{*}$ | 0.732         | 0.041**     | 0.327        | 0.699        | 0.383    | 0.134             | 0.902              | 0.050  |
|      | sharpened q-value            | $0.070^{*}$ | 0.662         | $0.082^{*}$ | 0.293        | 0.785        | 0.568    | 0.161             | 0.909              | 0.146  |
| õ    | Index of STI risk            | exposure    | (2013)        |             |              |              |          |                   |                    |        |
|      | p-value                      | 0.011**     | 0.129         | 0.048**     | 0.017**      | 0.068*       | 0.149    | 0.177             | 0.642              | 0.159  |
|      | sharpened q-value            | 0.021**     | 0.209         | $0.095^{*}$ | $0.051^{*}$  | 0.178        | 0.306    | 0.194             | 0.737              | 0.316  |
| 5    | Preventative heal            | th behavi   | or (3 que     | stions) (2  | <u>2013)</u> |              |          |                   |                    |        |
|      | p-value                      | 0.002***    | 0.022**       | 0.034**     | 0.004***     | 0.030**      | 0.043**  | 0.117             | 0.244              | 0.280  |
|      | sharpened q-value            | 0.008***    | 0.050*        | 0.071*      | 0.020**      | 0.098*       | 0.131    | 0.149             | 0.431              | 0.473  |
|      |                              | Table A     | 8 continu     | es next 2   | pages        |              |          |                   |                    |        |

Table A8: P-values and Sharpened q-values cont.

|      |                    | (                 | Combined         | l                | Acad         | lemic Ad | mits     | Vocational Admits |             |             |
|------|--------------------|-------------------|------------------|------------------|--------------|----------|----------|-------------------|-------------|-------------|
|      |                    | All               | Female           | Male             | All          | Female   | Male     | All               | Female      | Male        |
| able | Variable           | (1)               | (2)              | (3)              | (4)          | (5)      | (6)      | (7)               | (8)         | (9)         |
| 6    | Inv. hyperbolic si | ne earnin         | gs (2016)        |                  |              |          |          |                   |             |             |
|      | p-value            | $0.033^{**}$      | $0.054^{*}$      | 0.370            | 0.934        | 0.495    | 0.386    | 0.007***          | $0.053^{*}$ | $0.059^{*}$ |
|      | sharpened q-value  | 0.040**           | 0.103            | 0.473            | 0.625        | 0.653    | 0.568    | 0.030**           | 0.151       | 0.163       |
| 6    | Log earnings last  | month if          | positive         | (2016)           |              |          |          |                   |             |             |
|      | p-value            | 0.755             | 0.598            | 0.404            | 0.549        | 0.471    | 0.156    | 0.941             | 0.917       | 0.956       |
|      | sharpened q-value  | 0.323             | 0.597            | 0.481            | 0.427        | 0.640    | 0.316    | 0.625             | 0.913       | 0.929       |
| 6    | Positive earnings  | (2016)            |                  |                  |              |          |          |                   |             |             |
|      | p-value            | 0.025**           | $0.061^{*}$      | 0.249            | 0.860        | 0.593    | 0.595    | 0.006***          | 0.048**     | 0.052*      |
|      | sharpened q-value  | 0.036**           | 0.114            | 0.352            | 0.600        | 0.710    | 0.710    | 0.025**           | 0.144       | 0.149       |
| 6    | Total earnings las | st month          | (GHX) (2         | <u>2016)</u>     |              |          |          |                   |             |             |
|      | p-value            | 0.486             | 0.735            | 0.680            | 0.267        | 0.777    | 0.104    | 0.069*            | 0.506       | 0.061*      |
|      | sharpened q-value  | 0.225             | 0.662            | 0.643            | 0.261        | 0.834    | 0.240    | 0.111             | 0.657       | 0.168       |
| 6    | Total hours work   | ed last m         | onth (201        | 6)               |              |          |          |                   |             |             |
|      | p-value            | $0.064^{*}$       | 0.021**          | 0.836            | 0.744        | 0.189    | 0.334    | 0.032**           | $0.056^{*}$ | 0.273       |
|      | sharpened q-value  | 0.063*            | 0.048**          | 0.696            | 0.530        | 0.354    | 0.542    | $0.075^{*}$       | 0.159       | 0.465       |
| 6    | Worked over 10 h   | <u>iours in t</u> | <u>he past n</u> | <u>nonth (20</u> | <u>16)</u>   |          |          |                   |             |             |
|      | p-value            | 0.015**           | 0.009***         | 0.473            | 0.545        | 0.473    | 0.072*   | 0.000***          | 0.006***    | 0.015*      |
|      | sharpened q-value  | 0.025**           | 0.029**          | 0.538            | 0.427        | 0.640    | 0.185    | 0.002***          | 0.032**     | 0.063*      |
| 6    | Total hours work   | ed last m         | onth if po       | ositive (20      | <u>)16)</u>  |          |          |                   |             |             |
|      | p-value            | 0.693             | 0.219            | 0.592            | 0.545        | 0.123    | 0.612    | 0.940             | 0.756       | 0.705       |
|      | sharpened q-value  | 0.308             | 0.307            | 0.597            | 0.427        | 0.269    | 0.725    | 0.625             | 0.821       | 0.785       |
| 6    | Earnings per hour  | r if worke        | ed over 10       | ) hours (2       | 016 <u>)</u> |          |          |                   |             |             |
|      | p-value            | 0.025**           | 0.166            | 0.099*           | 0.061*       | 0.383    | 0.119    | 0.215             | 0.273       | 0.516       |
|      | sharpened q-value  | 0.036**           | 0.258            | 0.169            | 0.105        | 0.568    | 0.267    | 0.227             | 0.465       | 0.661       |
| 6    | Total hours helpin |                   | in past v        | week (201        | 6)           |          |          |                   |             |             |
|      | p-value            | 0.083*            | 0.386            | 0.195            | 0.245        | 0.779    | 0.245    | 0.197             | 0.364       | 0.452       |
|      | sharpened q-value  | 0.070*            | 0.475            | 0.298            | 0.244        | 0.834    | 0.431    | 0.211             | 0.561       | 0.630       |
| 6    | Enrolled in forma  |                   |                  | 2016)            |              |          |          |                   |             |             |
|      | p-value            | 0.083*            | 0.016**          | ,-               | 0.021**      | 0.014**  | 0.422    | 0.731             | 0.263       | 0.516       |
|      | sharpened q-value  | 0.070*            | 0.042**          | 0.835            | $0.056^{*}$  | 0.060*   | 0.589    | 0.528             | 0.460       | 0.661       |
| 6    | Positive earnings  |                   |                  |                  |              |          |          |                   |             |             |
|      | p-value            |                   | • 0.003***       |                  | 0.279        | 0.088*   | 0.699    | 0.008***          | 0.016**     | 0.186       |
|      | sharpened q-value  |                   |                  |                  | 0.267        | 0.212    | 0.785    | 0.034**           |             | 0.352       |
| 6    | Wage worker (201   |                   |                  |                  |              |          |          |                   |             |             |
|      | p-value            | 0.018**           | 0.004***         | 0.711            | 0.979        | 0.139    | 0.121    | 0.002***          | 0.012**     | 0.078*      |
|      | sharpened q-value  |                   |                  | 0.654            | 0.640        | 0.300    | 0.269    | 0.013**           |             | 0.198       |
| 6    | Day or seasonal la |                   |                  |                  |              |          |          |                   |             |             |
|      | p-value            | 0.305             | 0.715            | 0.376            | 0.373        | 0.538    | 0.025**  | 0.039**           | 0.961       | 0.003*      |
|      | sharpened q-value  |                   | 0.654            | 0.473            | 0.315        | 0.665    | 0.087*   | 0.080*            | 0.929       | 0.019*      |
| 6    | Working for own    |                   |                  |                  |              |          | •        |                   |             | = •         |
| -    | p-value            | 0.589             | 0.549            | 0.841            | 0.368        | 0.417    | 0.583    | 0.963             | 0.899       | 0.849       |
|      | sharpened q-value  |                   | 0.592            | 0.696            | 0.315        | 0.589    | 0.707    | 0.639             | 0.909       | 0.909       |
| 6    | Actively searching |                   |                  |                  |              |          |          |                   |             |             |
| -    | p-value            | $0.002^{***}$     | . ,-             | 0.005***         | 0.000***     | 0.030**  | 0.002*** | 0.349             | 0.765       | 0.324       |
|      | sharpened q-value  |                   |                  |                  | 0.001***     |          | 0.002    |                   | 0.832       | 0.531       |
|      | r show q , where   |                   |                  |                  |              |          |          |                   |             |             |

Table A8: P-values and Sharpened q-values cont.

|       | e A8: P-values and                |                   | Combined         |            | Acad         | lemic Adı   | nits        | Voca        | ational Ac  | lmits        |
|-------|-----------------------------------|-------------------|------------------|------------|--------------|-------------|-------------|-------------|-------------|--------------|
|       |                                   | All               | Female           | Male       | All          | Female      | Male        | All         | Female      | Male         |
| Table | Variable                          | (1)               | (2)              | (3)        | (4)          | (5)         | (6)         | (7)         | (8)         | (9)          |
| 6     | If no earnings and                | d no scho         | ol: activel      | y searchi  | ng for a j   | ob (2016)   |             |             |             |              |
|       | p-value                           | 0.001***          | 0.001***         | 0.279      | 0.000***     | 0.000***    | 0.157       | 0.281       | 0.238       | 0.869        |
|       | sharpened q-value                 | e0.004***         | 0.006***         | 0.396      | 0.001***     | 0.002***    | 0.316       | 0.267       | 0.424       | 0.909        |
| 6     | If earnings: activ                | ely search        | hing for a       | job (201   | <u>6)</u>    |             |             |             |             |              |
|       | p-value                           | $0.050^{*}$       | 0.839            | 0.006***   | $0.025^{**}$ | 0.969       | 0.004***    | 0.435       | 0.780       | 0.201        |
|       | sharpened q-value                 | $0.055^*$         | 0.696            | 0.021**    | $0.062^{*}$  | 0.929       | 0.024**     | 0.355       | 0.834       | 0.368        |
| 6     | Lowest daily wag                  | e willing         | to work f        | or(GHX)    | (2013)       |             |             |             |             |              |
|       | p-value                           | 0.295             | 0.344            | 0.011**    | 0.565        | 0.820       | 0.236       | 0.397       | 0.291       | $0.022^{**}$ |
|       | sharpened q-value                 | 0.157             | 0.456            | 0.031**    | 0.439        | 0.880       | 0.424       | 0.324       | 0.490       | $0.077^{*}$  |
| 6     | Willing to move f                 | for wage e        | employme         | ent (2013) | <u>_</u>     |             |             |             |             |              |
|       | p-value                           | 0.588             | 0.873            | 0.572      | 0.922        | 0.656       | 0.590       | 0.516       | 0.557       | 0.753        |
|       | sharpened q-value                 | 0.273             | 0.701            | 0.597      | 0.625        | 0.745       | 0.710       | 0.415       | 0.684       | 0.821        |
| 6     | Willing to do lab                 | or intensi        | <u>ve work (</u> | 2013)      |              |             |             |             |             |              |
|       | p-value                           | 0.706             | 0.410            | 0.672      | 0.870        | 0.195       | 0.234       | 0.723       | 0.985       | 0.644        |
|       | sharpened q-value                 | 0.308             | 0.483            | 0.643      | 0.602        | 0.363       | 0.424       | 0.528       | 0.942       | 0.737        |
| 8     | Satisfaction Index                | <u>κ(1-very</u> ι | insatisfied      | l>5-ver    | y satisfied  | d)(2013/2)  | <u>016)</u> |             |             |              |
|       | p-value                           | 0.744             | $0.065^{*}$      | 0.176      | 0.451        | 0.867       | 0.379       | 0.287       | 0.011**     | 0.308        |
|       | sharpened q-value                 | $\pm 0.323$       | 0.117            | 0.266      | 0.362        | 0.909       | 0.568       | 0.270       | $0.052^{*}$ | 0.522        |
| 8     | $\underline{Satisfaction \ with}$ | finances(         | 1-complet        | ely disag  | ree> 5-      | complete    | ly agree)   |             |             |              |
|       | p-value                           | 0.107             | 0.004***         | 0.598      | 0.876        | 0.705       | 0.929       | $0.050^{*}$ | 0.001***    | 0.538        |
|       | sharpened q-value                 | $0.081^{*}$       | $0.016^{**}$     | 0.597      | 0.602        | 0.785       | 0.929       | $0.092^{*}$ | 0.006***    | 0.665        |
| 8     | Satisfied with life               | (1-very u         | nsatisfied       | >5-very    | v satisfied  | )(2013)     |             |             |             |              |
|       | p-value                           | 0.237             | 0.681            | 0.207      | $0.055^{*}$  | $0.084^{*}$ | 0.317       | 0.943       | 0.361       | 0.421        |
|       | sharpened q-value                 | 0.152             | 0.643            | 0.305      | $0.098^{*}$  | 0.210       | 0.526       | 0.625       | 0.559       | 0.589        |
| 8     | Life as good as ot                | hers(1-co         | mpletely         | disagree-  | ->5-comp     | letely agr  | ree)(2013)  |             |             |              |
|       | p-value                           | 0.932             | 0.167            | 0.208      | 0.907        | 0.453       | 0.354       | 0.815       | 0.236       | 0.398        |
|       | sharpened q-value                 | e 0.421           | 0.258            | 0.305      | 0.625        | 0.630       | 0.554       | 0.566       | 0.424       | 0.577        |
| 8     | If employed: satis                |                   |                  |            |              |             | , ,         |             |             |              |
|       | p-value                           | 0.001***          |                  |            | 0.013**      |             | 0.007***    |             | 0.318       | 0.018**      |
|       | sharpened q-value                 |                   |                  | 0.003***   |              | 0.640       | 0.037**     |             | 0.526       | 0.068*       |
| 8     | Confident can get                 |                   | -                |            |              |             | , ,         |             |             |              |
|       | p-value                           | $0.089^{*}$       | 0.140            | 0.326      | 0.121        | 0.106       | 0.510       | 0.360       | 0.536       | 0.493        |
|       | sharpened q-value                 |                   | 0.225            | 0.438      | 0.151        | 0.244       | 0.659       | 0.311       | 0.665       | 0.653        |
| 8     | Self-reported heal                |                   | -                |            |              |             |             |             |             |              |
|       | p-value                           | 0.704             | 0.879            | 0.643      | 0.978        | 0.670       | 0.719       | 0.623       | 0.862       | 0.371        |
|       | sharpened q-value                 | 0.308             | 0.701            | 0.641      | 0.640        | 0.767       | 0.797       | 0.466       | 0.909       | 0.562        |
| 8     | Mental health inc                 | · -               |                  | -          |              | -           | · /         |             |             |              |
|       | p-value                           | 0.981             | 0.574            | 0.629      | 0.727        | 0.980       | 0.629       | 0.757       | 0.479       | 0.805        |
|       | sharpened q-value                 |                   | 0.597            | 0.628      | 0.528        | 0.940       | 0.731       | 0.535       | 0.644       | 0.857        |
| 8     | Feasibility of cha                |                   |                  |            |              |             |             |             |             |              |
|       | p-value                           | 0.612             | 0.393            | 0.875      | 0.272        | 0.679       | 0.257       | 0.111       | 0.145       | 0.437        |
|       | sharpened q-value                 | $\pm 0.274$       | 0.479            | 0.701      | 0.263        | 0.774       | 0.454       | 0.144       | 0.304       | 0.619        |

Notes: Year of survey in parentheses. See Table 3 notes for description of columns; Cell row 1 shows the p-value for the sharpened form estimate of the treatment effect; cell row 2 shows the sharpened q values, which account for false discovery rate (Benjamini, Krieger, and Yekutieli, 2006; \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores:

Table A9: Comparing Results Across Control Specifications

|                                                                            |                                    | Combined                        |                            | Acade                  | mic Major A              | dmits                                                | Vocati                         | ional Major A             | Admits                    |
|----------------------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------|------------------------|--------------------------|------------------------------------------------------|--------------------------------|---------------------------|---------------------------|
|                                                                            | All                                | Female                          | Male                       | All                    | Female                   | Male                                                 | All                            | Female                    | Male                      |
|                                                                            | (1)                                | (2)                             | (3)                        | (4)                    | (5)                      | (6)                                                  | (7)                            | (8)                       | (9)                       |
| Panel A. Secondary Education and L                                         | earning Outcomes                   |                                 |                            |                        |                          |                                                      |                                |                           |                           |
| Ever enrolled in SHS (2016)                                                | 0.007                              | 0.005                           | 0.000                      | 0.905                  | 0.000                    | 0.000                                                | 0.070                          | 0.075                     | 0.000                     |
| Light Controls on Treatment Effect                                         | 0.297<br>$(0.022)^{***}$           | 0.295<br>$(0.031)^{***}$        | 0.299<br>$(0.031)^{***}$   | $0.325 \\ 0.035)**$    | 0.323<br>$(0.049)^{***}$ | 0.330                                                | 0.278<br>$(0.028)^{***}$       | 0.275<br>$(0.041)^{***}$  | 0.280<br>$(0.040)^{**}$   |
| Standard error<br>p-value on equality of effects                           | (5)=(6)=(8)=(9)                    | ( )                             |                            | $(0.035)^{++}$         | ( )                      | (0.030)<br>4): .923                                  | (4)=(7):.291                   | . ,                       | 0.040)**<br>0): .934      |
| Heavy Controls on Treatment Effect                                         | 0.294                              | 0.292                           | 0.296                      | 0.326                  | 0.324                    | 0.331                                                | 0.272                          | 0.270                     | 0.273                     |
| Standard error                                                             | (0.022)***                         | $(0.031)^{***}$                 | (0.031)***                 | 0.035)**               | (0.049)***               |                                                      | $(0.028)^{***}$                | $(0.041)^{***}$           | (0.040)**                 |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ): .672 (2)=(3)                 | : .937                     |                        | (3)=(-                   | 4): .916                                             | (4)=(7): .227                  | (8)=(9                    | ): .954                   |
| If enrolled, enrolled in academic majo                                     |                                    | a aa <b>-</b>                   |                            | 0.0 <b>-</b>           | 0.110                    | 0.044                                                | 0.100                          | 0.100                     | 0.100                     |
| Light Controls on Treatment Effect                                         | -0.043                             | -0.027                          | -0.056                     | 0.075                  | 0.110                    | 0.044                                                | -0.129<br>$(0.036)^{***}$      | -0.136<br>(0.055)**       | -0.123                    |
| Standard error<br>p-value on equality of effects                           | $(0.027) \\ (5) = (6) = (8) = (9)$ | (0.041)<br>). $003^{*/2}(-(3))$ | (0.037)                    | $(0.042)^*$            | $(0.063)^*$              | (0.059)<br>(4): .447                                 | $(4)=(7):.000^{**}$            |                           | (0.048)**<br>9): .862     |
| Heavy Controls on Treatment Effect                                         | -0.043                             | -0.029                          | -0.054                     | 0.077                  | 0.109                    | 0.047                                                | -0.130                         | -0.140                    | -0.122                    |
| Standard error                                                             | (0.027)                            | (0.042)                         | (0.037)                    | $(0.042)^*$            | $(0.063)^*$              | (0.059)                                              | $(0.036)^{***}$                | $(0.055)^{**}$            | $(0.048)^{**}$            |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | · · · ·                         | ( )                        |                        | ( )                      |                                                      | (4)=(7): .000**                | ( )                       | ): .812                   |
| Completed SHS (2016)                                                       |                                    |                                 |                            |                        |                          |                                                      |                                |                           |                           |
| Light Controls on Treatment Effect                                         | 0.259                              | 0.264                           | 0.254                      | 0.305                  | 0.264                    | 0.349                                                | 0.228                          | 0.263                     | 0.193                     |
| Standard error                                                             | $(0.023)^{***}$                    | $(0.033)^{***}$                 | (0.033)***                 | 0.037)**               | $(0.052)^{***}$          |                                                      | $(0.030)^{***}$                | $(0.043)^{***}$           | $(0.043)^{**}$            |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    |                                 |                            | 0.900                  |                          | 4): .257                                             | (4)=(7): .109                  |                           | <i>0): .257</i>           |
| Heavy Controls on Treatment Effect<br>Standard error                       | 0.257<br>$(0.023)^{***}$           | 0.264<br>(0.033)***             | 0.250<br>$(0.033)^{***}$   | $0.306 \\ 0.037)^{**}$ | 0.268<br>$(0.052)^{***}$ | 0.349                                                | 0.224<br>(0.030)***            | $0.262 \\ (0.044)^{***}$  | 0.187<br>$(0.043)^{**}$   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ( )                             | · · ·                      | 0.001)                 | · · · ·                  | (0.000)<br>(4): .278                                 | $(4)=(7):.089^*$               |                           | 0): .224                  |
| Average monthly earnings between Ja                                        |                                    |                                 |                            |                        | (-) (                    |                                                      | (-) ())                        | (                         | )                         |
| Light Controls on Treatment Effect                                         | -8.383                             | -5.095                          | -11.673                    | -12.234                | -8.190                   | -16.557                                              | -5.707                         | -2.838                    | -8.431                    |
| Standard error                                                             | $(1.664)^{***}$                    | (2.386)**                       | (2.388)***                 | 2.627)**               | (3.723)**                | · ,                                                  | (2.182)***                     | (3.139)                   | (3.108)**                 |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    |                                 |                            | 10.000                 |                          | 4): .118                                             | (4)=(7): .058*                 |                           | <i>)): .211</i>           |
| Heavy Controls on Treatment Effect                                         | -8.486<br>$(1.675)^{***}$          | -5.196<br>(2.400)**             | -11.793<br>$(2.406)^{***}$ | -12.298                | -8.177<br>(3.734)**      | -16.729                                              | -5.837<br>(2.196)***           | -2.993                    | -8.528                    |
| Standard error<br>p-value on equality of effects                           | (1.075) = (6) = (8) = (9)          | ( )                             |                            | 2.643)**               | . ,                      | (3.810)<br>4): .113                                  | $(4)=(7):.062^*$               | (3.161)                   | (3.126)**<br>)): .219     |
| Years spent attending TVI (2016)                                           | (0)-(0)-(0)-(0)                    | )004(2)-(0).                    | .000                       |                        | (0)-(-                   | +/110                                                | (4)-(7)002                     | (0)-(0                    |                           |
| Light Controls on Treatment Effect                                         | -0.086                             | -0.051                          | -0.122                     | -0.106                 | -0.042                   | -0.172                                               | -0.073                         | -0.057                    | -0.088                    |
| Standard error                                                             | $(0.031)^{***}$                    | (0.045)                         | $(0.045)^{***}$            | $(0.050)^{**}$         | (0.070)                  | $(0.071)^{*}$                                        | $(0.041)^*$                    | (0.059)                   | (0.058)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    |                                 |                            |                        |                          | 4): .197                                             | (4)=(7): .603                  |                           | 9): .711                  |
| Heavy Controls on Treatment Effect                                         | -0.085                             | -0.050                          | -0.120                     | -0.102                 | -0.041                   | -0.165                                               | -0.073                         | -0.056                    | -0.090                    |
| Standard error                                                             | $(0.031)^{***}$<br>(5)=(6)=(8)=(9) | (0.045)                         | $(0.045)^{***}$            | $(0.050)^{**}$         | (0.071)                  | (0.072)**<br>(4): .222                               | $(0.041)^*$<br>(4)=(7):.651    | (0.059)                   | (0.058)<br>0): .689       |
| p-value on equality of effects<br>Standardized score, Reading test (201    |                                    | ). $.003(2) - (3)$              | 278                        |                        | (J)-(V)                  | 4)222                                                | (4)-(7)001                     | (8)—(9                    | /)009                     |
| Light Controls on Treatment Effect                                         | 0.127                              | 0.160                           | 0.094                      | 0.116                  | 0.137                    | 0.095                                                | 0.135                          | 0.176                     | 0.094                     |
| Standard error                                                             | $(0.045)^{***}$                    | $(0.064)^{**}$                  | (0.064)                    | (0.071)                | (0.100)                  | (0.102)                                              | (0.059)**                      | $(0.085)^{**}$            | (0.084)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ): .898 (2)=(3)                 |                            |                        | . , .                    | 4): .770                                             | (4)=(7): .843                  |                           | <i>)): .494</i>           |
| Heavy Controls on Treatment Effect                                         | 0.131                              | 0.163                           | 0.098                      | 0.121                  | 0.139                    | 0.102                                                | 0.137                          | 0.181                     | 0.095                     |
| Standard error                                                             | $(0.045)^{***}$                    | $(0.065)^{**}$                  | (0.065)                    | $(0.071)^*$            | (0.101)                  | (0.103)                                              | $(0.059)^{**}$                 | $(0.085)^{**}$            | (0.084)                   |
| p-value on equality of effects<br>Standardized score, Math test (2012)     | (5)=(6)=(8)=(9)                    | ): .898 (2)=(3)                 | : .482                     |                        | (3)=(-                   | 4): .801                                             | (4)=(7): .860                  | (8)=(9                    | ): .481                   |
| Standardized score, Math test (2013)<br>Light Controls on Treatment Effect | 0.117                              | 0.191                           | 0.043                      | 0.112                  | 0.215                    | 0.006                                                | 0.120                          | 0.174                     | 0.068                     |
| Standard error                                                             | $(0.047)^{**}$                     | $(0.067)^{***}$                 | (0.067)                    | (0.074)                | $(0.105)^{**}$           | (0.107)                                              | $(0.061)^*$                    | $(0.089)^*$               | (0.088)                   |
| p-value on equality of effects                                             | (5) = (6) = (8) = (9)              |                                 | : .125                     | . ,                    | (3)=(-                   | 4): .167                                             | (4)=(7): .934                  |                           | ): .404                   |
| Heavy Controls on Treatment Effect                                         | 0.115                              | 0.193                           | 0.037                      | 0.114                  | 0.219                    | 0.004                                                | 0.116                          | 0.175                     | 0.059                     |
| Standard error                                                             | $(0.047)^{**}$                     | $(0.067)^{***}$                 | (0.068)                    | (0.074)                | (0.105)**                | (0.107)                                              | $(0.062)^*$                    | $(0.089)^{**}$            | (0.088)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ): .414 (2)=(3)                 | :.106                      |                        | (3)=(-                   | 4): .157                                             | (4)=(7): .980                  | (8)=(9)                   | 9): .359                  |
| Total standardized score (2013)                                            | 0.143                              | 0.209                           | 0.078                      | 0.135                  | 0.213                    | 0.054                                                | 0.149                          | 0.206                     | 0.094                     |
| Light Controls on Treatment Effect<br>Standard error                       | $(0.046)^{***}$                    | $(0.209)$ $(0.065)^{***}$       | (0.078)                    | (0.135)<br>$(0.072)^*$ | $(0.102)^{**}$           | (0.034)                                              | $(0.060)^{**}$                 | $(0.086)^{**}$            | (0.094)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ( )                             | . ,                        | (0.012)                | · · · ·                  | (0.104)                                              | (4)=(7):.874                   | ( )                       | . ,                       |
| Heavy Controls on Treatment Effect                                         | 0.144                              | 0.212                           | 0.076                      | 0.138                  | 0.216                    | 0.056                                                | 0.148                          | 0.209                     | 0.089                     |
| Standard error                                                             | $(0.046)^{***}$                    | $(0.065)^{***}$                 | (0.066)                    | $(0.072)^{*}$          | (0.102)**                | (0.104)                                              | (0.060)**                      | $(0.086)^{**}$            | (0.085)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | ): .540 (2)=(3)                 | : .147                     |                        | (3)=(-                   | 4): .279                                             | (4)=(7): .914                  | (8)=(9                    | 9): .326                  |
| National political knowledge standard                                      |                                    | 0 100                           | 0.050                      | 0.040                  | 0.000                    | 0.010                                                | 0.104                          | 0 1 4 9                   | 0.105                     |
| Light Controls on Treatment Effect                                         | 0.091<br>$(0.047)^*$               | $0.123 \\ (0.068)^*$            | 0.059                      | 0.042                  | 0.096                    | -0.012                                               | $0.124 \\ (0.062)^{**}$        | 0.142<br>(0.089)          | 0.107                     |
| Standard error<br>p-value on equality of effects                           | $(0.047)^{*}$<br>(5)=(6)=(8)=(9)   | ( )                             | (0.068)                    | (0.075)                | (0.106)                  | (0.108)<br>(4): .482                                 | $(0.062)^{**}$<br>(4)=(7):.404 | ( )                       | (0.089)<br><i>): .782</i> |
|                                                                            | (5)=(6)=(8)=(9)<br>0.092           | 0.122                           | 0.061                      | 0.046                  | (3)=(3)=(3)              | -0.003                                               | (4)=(7): .404<br>0.123         | $(\delta) = (S)$<br>0.142 | 0.104                     |
| Heavy Controls on Treatment Effect<br>Standard error                       | (0.092)<br>$(0.047)^*$             | (0.122)<br>(0.068)*             | (0.061)                    | $0.046 \\ (0.075)$     | (0.094)                  | (0.103)                                              | (0.123)<br>(0.062)**           | (0.142)<br>(0.090)        | (0.104)                   |
| p-value on equality of effects                                             | (5)=(6)=(8)=(9)                    | · · · ·                         |                            | (0.010)                |                          | <i>(</i> 0.103 <i>)</i><br><i>(</i> 4 <i>): .524</i> | (4)=(7):.435                   | · /                       | (0.003)<br>): .767        |
| International political knowledge star                                     |                                    | . , . ,                         |                            |                        |                          |                                                      |                                |                           | -                         |
| Light Controls on Treatment Effect                                         | 0.061                              | 0.028                           | 0.095                      | 0.070                  | 0.018                    | 0.122                                                | 0.056                          | 0.034                     | 0.077                     |
| Standard array                                                             | (0, 0, 42)                         | (0.061)                         | (0.061)                    | (0, 068)               | (0,006)                  | (0, 007)                                             | (0.056)                        | (0.001)                   | (0, 0.00)                 |

| Standard error                     | (0.043)               | (0.061)          | (0.061) | (0.068) | (0.096)   | (0.097)  | (0.056)       | (0.081)   | (0.080) |
|------------------------------------|-----------------------|------------------|---------|---------|-----------|----------|---------------|-----------|---------|
| p-value on equality of effects     | (5) = (6) = (8) = (8) | 9): .866 (2)=(3) | ): .442 |         | (3) = (4) | 4): .451 | (4)=(7): .875 | (8) = (9) | :.714   |
| Heavy Controls on Treatment Effect | 0.060                 | 0.025            | 0.096   | 0.068   | 0.016     | 0.122    | 0.055         | 0.031     | 0.078   |
| Standard error                     | (0.043)               | (0.062)          | (0.062) | (0.068) | (0.096)   | (0.098)  | (0.056)       | (0.081)   | (0.080) |
| p-value on equality of effects     | (5) = (6) = (8) = (8) | 0): .854 (2)=(3) | ): .419 |         | (3) = (4) | 4): .443 | (4)=(7): .880 | (8) = (9) | : .684  |

Table A9 continues on next page

Table A9: Comparing Results Across Control Specifications cont.  $\boxtimes$ 

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                 | Combined           |         | Acader         | nic Major Admits    | Vocati         | onal Major Admits        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------|--------------------|---------|----------------|---------------------|----------------|--------------------------|
| Exact Port to use the internet (2012)<br>Exact Controls on Treatment Effect (0.002) <sup>+++</sup> (0.032) <sup>+++</sup> (0.032) <sup>+++</sup> (0.033) <sup>+++</sup> (0.033) <sup>+++</sup> (0.033) <sup>++++</sup> (0.034) <sup>++++++++++++++++++++++++++++++++++++</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        | All             | Female             | Male    | All            | Female Male         | All            | Female Male              |
| $ \begin{array}{c} Lebt Correls on Treatment Life to  0.065 & 0.00 & 0.08 \\ Sandard error \\ (0.021^{++0} & 0.031^{++0} & 0.025 \\ (0.021^{++0} & 0.031^{++0} & 0.025 \\ (0.021^{++0} & 0.031^{++0} & 0.025 \\ (0.022^{++0} & 0.031^{++0} & 0.025 \\ (0.022^{++0} & 0.031^{++0} & 0.025 \\ (0.022^{++0} & 0.021^{++0} & 0.025 \\ (0.022^{++0} & 0.022^{++0} & 0.025 \\ (0.022^{++0} & 0.021^{++0} & 0.025 \\ (0.022^{++0} & 0.021^{++0} & 0.025 \\ (0.022^{++0} & 0.021^{++0} & 0.025 \\ (0.022^{++0} & 0.021^{++0} & 0.025 \\ (0.021^{++0} & 0.021^{++0} & 0.025 \\ (0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021 \\ (0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0} & 0.021^{++0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                 | (2)                | (3)     | (4)            | (5) (6)             | (7)            | (8) (9)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · ·                                                                | -               |                    |         |                |                     |                |                          |
| $ \begin{aligned} & \text{p-value on equality of effects} & (\beta) e(\theta) = (\beta) = $ |                                                                        |                 |                    |         |                |                     |                |                          |
| Heavy Controls on Treatment Effect0.0170.1030.0000.0850.0310.0310.0070.0230.025Standard error(3)=(d)=(s)=(g): 350 (2)=(s): 100(3)=(d): 1.57(4)=(c): 5.50(s)=(g): 5.50(s)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 | · /                | · /     | $(0.035)^{**}$ |                     | × /            |                          |
| $ \begin{array}{c} \text{Sandard error} & (0.029)^{***} & (0.039)^{***} & (0.049)^{***} & (0.041) \\ \text{pradue on equality of effects} & (0.042)^{***} & (0.043) \\ \text{Sandard error} & (0.042)^{***} & (0.043) \\ \text{Sandard error} & (0.042)^{***} & (0.043) \\ \text{(0.043)} & (0.043) & (0.043) & (0.043) \\ (0.043) & (0.043) & (0.043) & (0.043) \\ (0.043) & (0.043) & (0.043) & (0.043) & (0.043) \\ (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043) & (0.043)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                      |                 |                    |         |                |                     |                |                          |
| produce on equality of effects $(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=(\beta)=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                      |                 |                    |         |                |                     |                |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 | × /                | · /     | $(0.035)^{**}$ |                     | × /            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 | 9): .350 (2)=(3)   | :.107   |                | (3)=(4):.157        | (4)=(7):.504   | (8)=(9): .386            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 | 0.079              | 0.011   | 0.000          | 0.021 0.015         | 0.064          | 0 101 0 020              |
| $ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                 |                    |         |                |                     |                |                          |
| Heave Controls on Treatment Effect         0.044         0.074         0.013         0.011         0.033         0.010         0.008         0.0103         0.010         0.0081         0.0103         0.010         0.0081         0.0103         0.010         0.0081         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0028         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0011         0.0010         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | ( )             | ( )                | . ,     | (0.004)        | , , , ,             | ( )            |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         | 0.011          |                     |                |                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                 | ( /                | ( )     | (0.034)        | (0.048) $(0.049)$   | $(0.028)^{**}$ | $(0.040)^{**}$ $(0.039)$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    | : .162  |                | (3)=(4):.506        | (4)=(7): .213  | (8)=(9): .197            |
| $ \begin{array}{c} \text{Standard error} \\ (0.112) \\ \text{p-value on equality of effects} \\ (0.126) \\ (0.127) \\ \text{p-value on equality of effects} \\ (0.128) \\ (0.128) \\ (0.129) \\ (0.112) \\ (0.112) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.112) \\ (0.111) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112) \\ (0.112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                 |                    | 0 1 9 9 | 0.991          | 0 191 0 690         | 0.040          | 0.959 0.167              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         |                |                     |                |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | ( /             | ( /                | · · · · | (0.110)        | , , , ,             | ( )            |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 | , , , , ,          |         | -0.279         |                     |                |                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | (0.112)         | (0.161)            | (0.161) | (0.177)        |                     | s (0.147)      |                          |
| $ \begin{array}{c} \mbox{Ever enrolled in tertiarv education (2016) \\ \mbox{Light Controls on Treatment Effect } 0.030 0.055 0.005 0.0061 0.019 0.013 0.009 0.018 0.001 (0.027) \\ \mbox{Light Controls on Treatment Effect } 0.029 0.057 0.001 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.029 0.057 0.001 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.029 0.057 0.001 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.029 0.057 0.001 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.449 0.006 0.0022 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.049 0.006 0.002 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.051 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.051 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.051 0.000 \\ \mbox{Light Controls on Treatment Effect } 0.028 0.051 0.002 \\ \mbox{Light Controls on Treatment Effect } 0.021 0.037 0.005 \\ \mbox{Light Controls on Treatment Effect } 0.021 0.037 0.005 \\ \mbox{Light Controls on Treatment Effect } 0.021 0.037 0.005 \\ \mbox{Light Controls on Treatment Effect } 0.021 0.037 0.005 \\ \mbox{Light Controls on Treatment Effect } 0.020 0.036 0.005 0.005 0.0022 \\ \mbox{Light Controls on Treatment Effect } 0.020 0.037 0.005 0.032 0.054 0.009 0.014 0.024 0.003 \\ \mbox{Light Controls on Treatment Effect } 0.020 0.036 0.005 0.005 0.009 0.014 0.024 0.002 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.005 0.005 0.009 0.012 0.023 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.005 0.005 0.009 0.014 0.024 0.002 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.005 0.005 0.009 0.012 0.012 0.017 (0.017) \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.005 0.000 0.015 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.005 0.000 0.011 0.015 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.000 0.011 0.015 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.000 0.017 (0.017) (0.017) (0.017) 0.0017 \\ \mbox{Light Controls on Treatment Effect } 0.000 0.005 0.000 0.011 0.015 \\ Light$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 | 0): .054*(2)=(3)   | : .674  |                | $(3)=(4):.025^{**}$ | (4)=(7): .334  | (8)=(9): .187            |
| Ight Controls on Treatment Effect (0.005)** (0.021)*** (0.021) (0.021)** (0.033)*** (0.033) (0.019) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Panel B. Tertiary Education Outcome                                    | es              |                    |         |                |                     |                |                          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    | 0.005   | 0.001          | 0.100 0.010         | 0.000          | 0.010 0.001              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         |                |                     |                |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | ( )             | , ,                | . ,     | 0.023)         | , , , ,             | . ,            |                          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         | 0.060          |                     |                |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 |                    |         | 0.023)**       | , , , ,             | (0.019)        | (0.027) $(0.027)$        |
| Light Controls on Treatment Effect $0.028$ $0.049$ $0.006$ $0.020$ $0.091$ $0.034$ $0.004$ $0.020$ $0.021$ Standard error $(0.01)^{***}$ $(0.02)^{***}$ $(0.03)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.03)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.031)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{***}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ $(0.02)^{**}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 | 0): .041*2)=(3):   | • .060* |                | $(3)=(4):.027^{**}$ | (4)=(7): .080* | (8)=(9): .565            |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 | 0.040              | 0.006   | 0.062          | 0.001 0.034         | 0.004          | 0.020 0.012              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         |                |                     |                |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | . ,             |                    | · · · · | 0.022)         |                     | · · · · · ·    |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 0.026           |                    | 0.002   | 0.061          |                     | 0.003          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 |                    |         | 0.022)***      | . , , , , ,         |                |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | (5)=(6)=(8)=(9) | 0): .061*2)=(3):   | : .082* |                | (3)=(4):.140        | (4)=(7):.041** | (8)=(9):.328             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 0 021           | 0.037              | 0.005   | 0.032          | 0.054 0.009         | 0.014          | 0.024 0.003              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 |                    |         |                |                     |                |                          |
| Standard error $(0.009)^{**}$ $(0.013)^{***}$ $(0.013)$ $(0.015)^{**}$ $(0.021)^{***}$ $(0.012)$ $(0.017)$ $(0.017)$ p-value on equality of effects $(3)=(6)=(8)=(9):.242(2)=(3):.095^{*}$ $(3)=(4):.127$ $(4)=(7):.300$ $(8)=(9):.382$ Teachers training (2016)1.2050.0050.0040.0200.0150.025-0.006-0.002-0.010Standard error $(0.008)$ $(0.012)$ $(0.012)$ $(0.013)$ $(0.019)$ $(0.019)$ $(0.011)$ $(0.016)$ $(0.015)$ p-value on equality of effects $(5)=(6)=(8)=(9):.485(2)=(3):.693$ $(3)=(4):.733$ $(4)=(7):.136$ $(8)=(9):.725$ Heavy Controls on Treatment Effect $0.003$ $0.006$ 0.000 $0.017$ $0.017$ $0.016$ -0.006-0.001Standard error $(0.008)$ $(0.012)$ $(0.012)$ $(0.013)$ $(0.019)$ $(0.019)$ $(0.011)$ $(0.016)$ $(0.015)$ p-value on equality of effects $(5)=(6)=(8)=(9):.605(2)=(3):.736$ $(3)=(4):.732$ $(4)=(7):.191$ $(8)=(9):.683$ Years spent attending tertiary education (2016)1.014 $0.044$ $0.115$ $0.181$ $0.046$ $0.050$ $0.042$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.063)^{***}$ $(0.063)^{***}$ $(0.043)^{***}$ $(0.52)$ $(0.52)$ p-value on equality of effects $(5)=(6)=(8)=(9):.294$ $(2)=(3):.192$ $(3)=(4):.132$ $(4)=(7):.261$ $(8)=(9):.572$ Total vears of education to date (2016)1.236 </td <td></td> <td></td> <td></td> <td></td> <td>( )</td> <td>( ) ( )</td> <td>( )</td> <td>, , ,</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |                 |                    |         | ( )            | ( ) ( )             | ( )            | , , ,                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heavy Controls on Treatment Effect                                     |                 |                    |         |                |                     |                | 0.023 0.002              |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | ( )             |                    |         | $(0.015)^{**}$ |                     | . ,            | . ,                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | (5)=(6)=(8)=(9) | 0): .242(2) = (3): | · .095* |                | (3)=(4):.127        | (4)=(7):.300   | (8)=(9):.382             |
| Standard error $(0.008)$ $(0.012)$ $(0.012)$ $(0.013)$ $(0.019)$ $(0.019)$ $(0.011)$ $(0.016)$ $(0.015)$ p-value on equality of effects $(5)=(6)=(8)=(9): .485$ $(2)=(3): .963$ $(3)=(4): .703$ $(4)=(7): .136$ $(8)=(9): .725$ Heavy Controls on Treatment Effect $0.003$ $0.006$ $0.000$ $0.017$ $0.017$ $0.016$ $-0.006$ $-0.001$ $-0.010$ Standard error $(0.008)$ $(0.012)$ $(0.012)$ $(0.013)$ $(0.019)$ $(0.019)$ $(0.011)$ $(0.016)$ $(0.015)$ p-value on equality of effects $(5)=(6)=(8)=(9): .605$ $(2)=(3): .736$ $(3)=(4): .996$ $(4)=(7): .191$ $(8)=(9): .683$ Years spent attending tertiary education2016) $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)$ $0.044^{***}$ $(0.063)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298$ $(2)=(3): .293$ $(3)=(4): .132$ $(4)=(7): .229$ $(8)=(9): .919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.044)^{***}$ $(0.662)^{***}$ $(4)=(7): .261$ $(8)=(9): .372$ Total vears of education to date (2016) $(2)=(3): .294$ $(2)=(3): .192$ $(3)=(4): .662$ $(4)=(7): .261$ $(8)=(9): .872$ Light Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        | 0.005           | 0.005              | 0.004   | 0.020          | 0.015 0.025         | -0.006         | -0.002 -0.010            |
| Heavy Controls on Treatment Effect0.0030.0060.0000.0170.0170.016-0.006-0.001-0.010Standard error(0.008)(0.012)(0.012)(0.013)(0.019)(0.019)(0.011)(0.016)(0.015)p-value on equality of effects $(5)=(6)=(8)=(9):.605(2)=(3):.736$ $(3)=(4):.996$ $(4)=(7):.191$ $(8)=(9):.683$ Years spent attending tertiary education(2016) $(3)=(4):.996$ $(4)=(7):.191$ $(8)=(9):.683$ Light Controls on Treatment Effect0.0740.1040.0440.1150.1810.0460.0460.0500.042Standard error(0.028)*** $(0.040)^{***}$ $(0.040)$ $0.041^{***}$ $(0.063)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9):.298$ $(2)=(3):.293$ $(3)=(4):.132$ $(4)=(7):.229$ $(8)=(9):.919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.37$ p-value on equality of effects $(5)=(6)=(8)=(9):.204$ $(2)=(3):.192$ $(3)=(4):.667^{*}$ $(4)=(7):.261$ $(8)=(9):.872$ Total years of education to date (2016)Ising the controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.622$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{***}$ $(3)=(4):.642$ $(4)=(7):.169$ $(8)=(9):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                 |                    |         |                |                     |                |                          |
| Standard error $(0.008)$ $(0.012)$ $(0.012)$ $(0.013)$ $(0.019)$ $(0.019)$ $(0.011)$ $(0.016)$ $(0.015)$ p-value on equality of effects $(5)=(6)=(8)=(9):.605$ $(2)=(3):.736$ $(3)=(4):.996$ $(4)=(7):.191$ $(8)=(9):.683$ Years spent attending tertiary education (2016)Light Controls on Treatment Effect $0.074$ $0.104$ $0.044$ $0.115$ $0.181$ $0.046$ $0.046$ $0.050$ $0.042$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)$ $0.044)^{**}$ $(0.063)^{***}$ $(0.036)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9):.298$ $(2)=(3):.293$ $(3)=(4):.132$ $(4)=(7):.229$ $(8)=(9):.919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)$ $(0.044)^{***}$ $(0.662)^{***}$ $(0.63)$ $(0.036)$ $(0.052)$ $(0.51)$ p-value on equality of effects $(5)=(6)=(8)=(9):.294$ $(2)=(3):.192$ $(3)=(4):.067^*$ $(4)=(7):.261$ $(8)=(9):.872$ Total vears of education to date (2016)I.1236 $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.34)^{***}$ $(0.134)^{***}$ $(0.149)^{***}$ $(0.211)^{***}(0.214)^{***}$ $(0.176)^{***}$ $(0.776)^{***}$ Heavy Controls on Treatment Effect <td>p-value on equality of effects</td> <td>(5)=(6)=(8)=(9)</td> <td>0): .485 (2)=(3)</td> <td>: .963</td> <td></td> <td>(3)=(4): .703</td> <td>(4)=(7): .136</td> <td>(8)=(9): .725</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p-value on equality of effects                                         | (5)=(6)=(8)=(9) | 0): .485 (2)=(3)   | : .963  |                | (3)=(4): .703       | (4)=(7): .136  | (8)=(9): .725            |
| p-value on equality of effects $(5)=(6)=(8)=(9): .605 (2)=(3): .736$ $(3)=(4): .996$ $(4)=(7): .191$ $(8)=(9): .683$ Years spent attending tertiary education (2016)Light Controls on Treatment Effect $0.074$ $0.104$ $0.044$ $0.115$ $0.181$ $0.046$ $0.046$ $0.050$ $0.042$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)$ $0.044^{***}$ $(0.63)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298 (2)=(3): .293$ $(3)=(4): .132$ $(4)=(7): .229$ $(8)=(9): .919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)$ $(0.044)^{**}$ $(0.663)$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298 (2)=(3): .192$ $(0.044)^{**}$ $(0.042)^{***}$ $(0.063)$ $(0.036)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .204 (2)=(3): .192$ $(3)=(4): .067^*$ $(4)=(7): .261$ $(8)=(9): .872$ Total years of education to date (2016)I1236 $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{***}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}(0.174)^{***}$ P-value on equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heavy Controls on Treatment Effect                                     |                 |                    |         |                |                     |                |                          |
| Years spent attending tertiary education (2016)Light Controls on Treatment Effect $0.074$ $0.104$ $0.044$ $0.115$ $0.181$ $0.046$ $0.046$ $0.050$ $0.042$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)$ $0.044)^{***}$ $(0.063)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298$ $(2)=(3): .293$ $(3)=(4): .132$ $(4)=(7): .229$ $(8)=(9): .919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)$ $(0.044)^{**}$ $(0.062)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .204$ $(2)=(3): .192$ $(3)=(4): .067^*$ $(4)=(7): .261$ $(8)=(9): .872$ Total vears of education to date (2016)Isight Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{***}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487$ $(0.134)^{***}$ $(0.148)^{***}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ for our equality of effects $(5)=(6)=(8)=(9): .396$ $(2)=(3): .407$ $(3)=(4): .578$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        | ( /             | ( )                | ( )     | (0.013)        |                     | ( )            | . ,                      |
| Light Controls on Treatment Effect $0.074$ $0.104$ $0.044$ $0.115$ $0.181$ $0.046$ $0.046$ $0.050$ $0.042$ Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.063)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298$ $(2)=(3): .293$ $(3)=(4): .132$ $(4)=(7): .229$ $(8)=(9): .919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)$ $(0.044)^{**}$ $(0.062)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .294$ $(2)=(3): .192$ $(3)=(4): .067^*$ $(4)=(7): .261$ $(8)=(9): .872$ Total years of education to date (2016)Itaght Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $0.149)^{***}$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.148)^{***}$ $(0.148)^{**}$ $(0.211)^{***}(0.214)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ <td></td> <td></td> <td>0): .003 (2)=(3)</td> <td>:.730</td> <td></td> <td>(3)=(4):.990</td> <td>(4)=(7):.191</td> <td>(8)=(9):.083</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                 | 0): .003 (2)=(3)   | :.730   |                | (3)=(4):.990        | (4)=(7):.191   | (8)=(9):.083             |
| Standard error $(0.028)^{***}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.044)^{**}$ $(0.063)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.052)$ p-value on equality of effects $(5)=(6)=(8)=(9): .298$ $(2)=(3): .293$ $(3)=(4): .132$ $(4)=(7): .229$ $(8)=(9): .919$ Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)$ $(0.041)^{**}$ $(0.062)^{***}$ $(0.063)$ $(0.052)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .204$ $(2)=(3): .192$ $(3)=(4): .067^{*}$ $(4)=(7): .261$ $(8)=(9): .872$ Total years of education to date (2016)Itaght Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396$ $(2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                 | 0.104              | 0.044   | 0.115          | 0.181 0.046         | 0.046          | 0.050 0.042              |
| Heavy Controls on Treatment Effect $0.069$ $0.106$ $0.032$ $0.107$ $0.187$ $0.023$ $0.043$ $0.049$ $0.037$ Standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)^{***}$ $(0.044)^{**}$ $(0.062)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .204$ $(2)=(3): .192$ $(3)=(4): .067^{*}$ $(4)=(7): .261$ $(8)=(9): .872$ Total vears of education to date (2016)1.2361.3051.1661.3941.4661.3251.1271.1911.062Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487$ $(2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect1.2201.3001.1411.3941.4791.3111.1011.1731.030Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396$ $(2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                 |                    |         |                |                     |                |                          |
| Standard error $(0.028)^{**}$ $(0.040)^{***}$ $(0.040)$ $(0.044)^{**}$ $(0.062)^{***}$ $(0.063)$ $(0.036)$ $(0.052)$ $(0.051)$ p-value on equality of effects $(5)=(6)=(8)=(9): .204 (2)=(3): .192$ $(3)=(4): .067^{*}$ $(4)=(7): .261$ $(8)=(9): .872$ Total years of education to date (2016)Light Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487 (2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396 (2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p-value on equality of effects                                         | (5)=(6)=(8)=(9) | 0): .298 (2)=(3)   | : .293  |                | (3)=(4):.132        | (4)=(7): .229  | (8)=(9): .919            |
| p-value on equality of effects $(5)=(6)=(8)=(9): .204 (2)=(3): .192$ $(3)=(4): .067^*$ $(4)=(7): .261$ $(8)=(9): .872$ Total years of education to date (2016)Light Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487 (2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396 (2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heavy Controls on Treatment Effect                                     |                 |                    |         |                |                     |                |                          |
| Total years of education to date (2016)Light Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487 (2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396 (2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |                 |                    |         | $(0.044)^{**}$ | ( ) ( )             | ( )            |                          |
| Light Controls on Treatment Effect $1.236$ $1.305$ $1.166$ $1.394$ $1.466$ $1.325$ $1.127$ $1.191$ $1.062$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487 (2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396 (2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                 | 1): .204 (2)=(3)   | :.192   |                | $(3)=(4):.067^*$    | (4)=(7):.261   | (8)=(9): .872            |
| Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.149)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .487 (2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396 (2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                 | 1 305              | 1 166   | 1 394          | 1.466 1.325         | 1 127          | 1.191 1.069              |
| p-value on equality of effects $(5)=(6)=(8)=(9): .487(2)=(3): .469$ $(3)=(4): .642$ $(4)=(7): .169$ $(8)=(9): .605$ Heavy Controls on Treatment Effect $1.220$ $1.300$ $1.141$ $1.394$ $1.479$ $1.311$ $1.101$ $1.173$ $1.030$ Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .396(2)=(3): .407$ $(3)=(4): .578$ $(4)=(7): .131$ $(8)=(9): .568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                 |                    |         |                |                     |                |                          |
| Standard error $(0.094)^{***}$ $(0.134)^{***}$ $(0.134)^{***}$ $(0.148)^{**}$ $(0.211)^{***}(0.214)^{**}$ $(0.122)^{***}$ $(0.176)^{***}$ $(0.174)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9):$ .396 $(2)=(3):$ .407 $(3)=(4):$ .578 $(4)=(7):$ .131 $(8)=(9):$ .568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        | ( )             | · /                | ( )     | ,              | ( ) ( )             | ( )            | . , . ,                  |
| p-value on equality of effects $(5)=(6)=(8)=(9):.396(2)=(3):.407$ $(3)=(4):.578$ $(4)=(7):.131$ $(8)=(9):.568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heavy Controls on Treatment Effect                                     |                 |                    |         |                |                     |                |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        | ( )             | ( )                | ( )     | $0.148)^{**}$  |                     | · · · · ·      | . , , , , , ,            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p-value on equality of effects<br>Plans to continue to tertiary (2013) | (3)=(6)=(8)=(9  | v): .396 (2)=(3)   | : .407  |                | (3)=(4):.578        | (4)=(7): .131  | (8)=(9):.568             |

Plans to continue to tertiary (2013) 0.2410.2760.2060.2580.2750.2400.2300.2770.184Light Controls on Treatment Effect (0.024)\*\*\*  $(0.034)^{***}$  $(0.034)^{***}$ (0.031)\*\*\*  $(0.045)^{***}$   $(0.045)^{***}$ Standard error 0.038)\*\*  $(0.053)^{***}(0.054)^{**}$ (5)=(6)=(8)=(9):.448(2)=(3):.155(3)=(4):.653 (4)=(7):.574 (8)=(9):.145 p-value on equality of effects 0.2410.2770.2630.2760.2490.2260.277Heavy Controls on Treatment Effect 0.2050.176 $(0.034)^{***}$  $(0.034)^{***}$  $(0.031)^{***}$   $(0.045)^{***}$   $(0.045)^{***}$  $(0.024)^{***}$ 0.038)\*\*  $(0.053)^{***}(0.054)^{**}$ Standard error (5)=(6)=(8)=(9):.363(2)=(3):.145(3)=(4):.720 (4)=(7):.449 (8)=(9):.114 p-value on equality of effects

Table A9 cont. on next page

| Table A9: Comparing Results Across Control Specifications cont. |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{c} \text{Sundard error} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.03)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{**} \\ (0.04)^{***} \\ (0.04)^{**} \\ (0.04)^{***} \\ (0.04)^{***} \\ (0.04)^{**} \\ (0.04)^{***}$ |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Heavy Controls on Treatment Effect $0.271$ $0.286$ $0.236$ $0.302$ $0.292$ $0.314$ $0.250$ $0.251$ $0.241$ $0.47$<br>Standard error $0.033^{+++} (0.033^{+++} (0.033^{+++} (0.033^{+++} (0.043^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.44)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.45)^{+++} (0.4$                                                                                                                                                      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Plans to apply to tertiary (2015)<br>Light Controls on Treatment Effect $(0.023)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.033)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.046)^{**}$ $(0.027)^{**}$ $(0.03)^{**}$ $(0.042)^{**}$ $(0.043)^{*}$ $(0.046)^{**}$ $(0.051)^{**}$ $(0.051)^{**}$ $(0.027)^{**}$ $(0.03)^{**}$ $(0.042)^{**}$ $(0.043)^{**}$ $(0.045)^{***}$ $(0.035)^{**}$ $(0.05)^{***}$ $(0.035)^{***}$ $(0.035)^{***}$ $(0.035)^{***}$ $(0.035)^{***}$ $(0.037)^{**}$ $(0.047)^{**}$ $(0.16)^{**}$ $(0.027)^{**}$ $(0.027)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.021)^{**}$ $(0.022)^{**}$ $(0.033)^{**}$ $(0.027)^{**}$ $(0.033)^{**}$ $(0.027)^{**}$ $(0.027)^{**}$ $(0.021)^{**}$ $(0.022)^{**}$ $(0.023)^{**}$ $(0.022)^{**}$ $(0.023)^{**}$ $(0.022)^{**}$ $(0.023)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{**}$ $(0.022)^{$                                                                                                                                                     |
| Light Controls on Treatment Effect $0.161 0.068 0.035$ $0.164 0.035$ $0.133 0.199 0.158 0.032^{+++} (0.055)^{+++} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.057)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-} (0.027)^{++-}$                                                                                                                                                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Light Controls on Treatment Effect $0.80$ $0.123$ $0.035$ $0.099$ $0.158$ $0.037$ $0.067$ $0.099$ $0.05$ Standard error $(0.019)^{++*}$ $(0.027)^{++*}$ $(0.027)^{++*}$ $(0.021)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++*}$ $(0.031)^{++$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ever lived with partner(2016)Light Controls on Treatment Effect $-0.055 - 0.093 - 0.018 - 0.053 - 0.095 - 0.011 - 0.057 - 0.092 - 0.0053 - 0.010 - 0.057 - 0.092 - 0.0053 - 0.010 - 0.057 - 0.092 - 0.0053 - 0.010 - 0.026)** (0.045) (0.045) (0.045) (0.045) (0.045) (0.026)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)** (0.037)**$                                                                                                                                                                                                              |
| Light Controls on Treatment Effect $-0.055$ $-0.093$ $-0.018$ $-0.053$ $-0.095$ $-0.011$ $-0.057$ $-0.092$ $-0.002$ Standard error $(0.020)^{***}$ $(0.028)^{***}$ $(0.028)^{***}$ $(0.028)^{**}$ $(0.032)^{*}$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.026)^{**}$ $(0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standard error $(0.020)^{***}$ $(0.028)^{***}$ $(0.028)^{***}$ $(0.028)^{**}$ $(0.032)^{**}$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.07)^{**}$ p-value on equality of effects $(5)=(6)=(8)=(9):.327(2)=(3):.063^{*}$ $(3)=(4):.193$ $(4)=(7):.914$ $(8)=(9):.187$ Heavy Controls on Treatment Effect $-0.057$ $-0.095$ $-0.020$ $-0.054$ $-0.095$ $-0.014$ $-0.060$ $-0.095$ $-0.095$ y-value on equality of effects $(5)=(6)=(8)=(9):.341(2)=(3):.067^{*}$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.020)^{**}$ p-value on equality of effects $(5)=(6)=(8)=(9):.341(2)=(3):.067^{*}$ $(3)=(4):.209$ $(4)=(7):.892$ $(8)=(9):.188$ Ever pregnant/had a pregnant partner $(2016)$ $(0.022)^{***}$ $(0.032)^{**}$ $(0.035)^{**}$ $(0.045)^{**}$ $(0.042)^{***}$ $(0.020)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9):.1672)=(3):.033^{**}$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)^{*}$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.020)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9):.1672)=(3):.033^{**}$ $(3)=(4):.411$ $(4)=(7):.757$ $(8)=(9):.039^{**}$ Heavy Controls on Treatment Effect $-0.072$ $-0.119$ $-0.024$ $-0.077$ $-0.105$ $-0.050$ $-0.068$ $-0.128$ $-0.00$ y-value on equality of effects $(5)=(6)=(8)=(9):.182(2)=(3):.036^{**}$ $(3)=(4):.442$ $(4)=(7):.850$ $(8)=(9):.040^{**}$ Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| p-value on equality of effects $(5)=(6)=(8)=(9): .327(2)=(3): .063^*$ $(3)=(4): .193$ $(4)=(7): .914$ $(8)=(9): .187$ Heavy Controls on Treatment Effect $-0.057$ $-0.095$ $-0.020$ $-0.054$ $-0.095$ $-0.014$ $-0.060$ $-0.095$ $-0.095$ Standard error $(0.020)^{***}$ $(0.028)^{***}$ $(0.028)$ $(0.032)^*$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.026)^{***}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Standard error $(0.020)^{**}$ $(0.028)^{***}$ $(0.028)^{*}$ $(0.032)^{*}$ $(0.045)^{**}$ $(0.045)^{**}$ $(0.026)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.037)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.032)^{**}$ $(0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| p-value on equality of effects $(5)=(6)=(8)=(9): .341(2)=(3): .067^*$ $(3)=(4): .209$ $(4)=(7): .892$ $(8)=(9): .188$ Ever pregnant/had a pregnant partner(2016)Light Controls on Treatment Effect $-0.070$ $-0.118$ $-0.021$ $-0.078$ $-0.108$ $-0.049$ $-0.064$ $-0.125$ $-0.070$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.050)^{**}$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .167(2)=(3): .033^{**}$ $(3)=(4): .411$ $(4)=(7): .757$ $(8)=(9): .039^{**}$ Heavy Controls on Treatment Effect $-0.072$ $-0.119$ $-0.024$ $-0.077$ $-0.105$ $-0.050$ $-0.068$ $-0.128$ $-0.064$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)^{***}$ $(0.032)^{***}$ $(0.032)^{***}$ $(0.032)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .182(2)=(3): .036^{**}$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)^{*}$ $(0.042)^{***}$ $(0.042)^{***}$ Number of children ever had $(2016)$ Ising Controls on Treatment Effect $-0.127$ $-0.226$ $-0.027$ $-0.138$ $-0.184$ $-0.089$ $-0.120$ $-0.255$ $0.07$ Standard error $(0.038)^{***}$ $(0.051)^{**}$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)^{*}$ $(0.071)^{***}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052^{*}2)=(3): .010^{**$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ever pregnant/had a pregnant partner (2016)Light Controls on Treatment Effect $-0.070$ $-0.118$ $-0.021$ $-0.078$ $-0.108$ $-0.049$ $-0.064$ $-0.125$ $-0.076$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .167(2)=(3): .033^{**}$ $(3)=(4): .411$ $(4)=(7): .757$ $(8)=(9): .039^{**}$ Heavy Controls on Treatment Effect $-0.072$ $-0.119$ $-0.024$ $-0.077$ $-0.105$ $-0.050$ $-0.068$ $-0.128$ $-0.076$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .182(2)=(3): .036^{**}$ $(3)=(4): .442$ $(4)=(7): .850$ $(8)=(9): .040^{**}$ Number of children ever had (2016)Iight Controls on Treatment Effect $-0.127$ $-0.226$ $-0.027$ $-0.138$ $-0.184$ $-0.089$ $-0.120$ $-0.255$ $0.017$ Standard error $(0.038)^{***}$ $(0.054)^{***}$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ $(0.071)^{***}$ up of equality of effects $(5)=(6)=(8)=(9): .052^{*}2)=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Light Controls on Treatment Effect $-0.070$ $-0.118$ $-0.021$ $-0.078$ $-0.108$ $-0.049$ $-0.064$ $-0.125$ $-0.076$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| p-value on equality of effects $(5)=(6)=(8)=(9): .167(2)=(3): .033^{**}$ $(3)=(4): .411$ $(4)=(7): .757$ $(8)=(9): .039^{**}$ Heavy Controls on Treatment Effect $-0.072$ $-0.119$ $-0.024$ $-0.077$ $-0.105$ $-0.050$ $-0.068$ $-0.128$ $-0.079$ Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .182(2)=(3): .036^{**}$ $(3)=(4): .442$ $(4)=(7): .850$ $(8)=(9): .040^{**}$ Number of children ever had (2016) $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ Standard error $(0.038)^{***}$ $(0.54)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052(2)=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ Heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$ $-0.133$ $-0.178$ $-0.086$ $-0.124$ $-0.256$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{**}$ $(0.050)^{**}$ $(0.051)$ $(0.029)^{**}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ $(0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p-value on equality of effects $(5)=(6)=(8)=(9): .182(2)=(3): .036^{**}$ $(3)=(4): .442$ $(4)=(7): .850$ $(8)=(9): .040^{**}$ Number of children ever had (2016)Light Controls on Treatment Effect $-0.127$ $-0.226$ $-0.027$ $-0.138$ $-0.184$ $-0.089$ $-0.120$ $-0.255$ $0.07$ Standard error $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052(2)=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ Heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$ $-0.133$ $-0.178$ $-0.086$ $-0.124$ $-0.256$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of children ever had (2016)Light Controls on Treatment Effect $-0.127$ $-0.226$ $-0.027$ $-0.138$ $-0.184$ $-0.089$ $-0.120$ $-0.255$ $0.07$ Standard error $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052/2)=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ Heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$ $-0.133$ $-0.178$ $-0.086$ $-0.124$ $-0.256$ $0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Light Controls on Treatment Effect $-0.127$ $-0.226$ $-0.027$ $-0.138$ $-0.184$ $-0.089$ $-0.120$ $-0.255$ $0.0120$ Standard error $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052^{*2})=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ Heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$ $-0.133$ $-0.178$ $-0.086$ $-0.124$ $-0.256$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard error $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.085)^{**}$ $(0.087)$ $(0.050)^{**}$ $(0.071)^{***}$ $(0.071)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .052^{*}2)=(3): .010^{**}$ $(3)=(4): .443$ $(4)=(7): .814$ $(8)=(9): .007^{**}$ Heavy Controls on Treatment Effect $-0.127$ $-0.224$ $-0.030$ $-0.133$ $-0.178$ $-0.086$ $-0.124$ $-0.256$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Heavy Controls on Treatment Effect -0.127 -0.224 -0.030 -0.133 -0.178 -0.086 -0.124 -0.256 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standard or $(0.038)^{***}$ $(0.054)^{***}$ $(0.055)$ $(0.060)^{**}$ $(0.086)^{**}$ $(0.087)$ $(0.040)^{**}$ $(0.071)^{***}$ $(0.071)^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| p-value on equality of effects $(5)=(6)=(8)=(9):.060(2)=(3):.012^{**}$ $(3)=(4):.458$ $(4)=(7):.903$ $(8)=(9):.009^{**}$ Had unwanted first pregnancy (full sample) (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Light Controls on Treatment Effect -0.070 -0.121 -0.021 -0.060 -0.083 -0.036 -0.077 -0.147 -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{*}$ $(0.050)^{*}$ $(0.051)$ $(0.029)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| p-value on equality of effects $(5)=(6)=(8)=(9):.119(2)=(3):.028^{**}$ $(3)=(4):.513$ $(4)=(7):.712$ $(8)=(9):.021^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heavy Controls on Treatment Effect $-0.073$ $-0.123$ $-0.024$ $-0.059$ $-0.081$ $-0.037$ $-0.082$ $-0.152$ $-0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Standard error $(0.022)^{***}$ $(0.032)^{***}$ $(0.032)$ $(0.035)^{*}$ $(0.050)$ $(0.051)$ $(0.029)^{***}$ $(0.042)^{***}$ $(0.042)^{***}$ p-value on equality of effects $(5)=(6)=(8)=(9): .113(2)=(3): .029^{**}$ $(3)=(4): .546$ $(4)=(7): .615$ $(8)=(9): .020^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| p-value on equality of effects $(5)=(6)=(8)=(9):.113(2)=(3):.029^{**}$ $(3)=(4):.546$ $(4)=(7):.615$ $(8)=(9):.020^{**}$<br>Desired fertility: # of children by age 50 (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Light Controls on Treatment Effect -0.054 -0.045 -0.063 -0.154 -0.179 -0.129 0.016 0.052 -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standard error $(0.053)$ $(0.075)$ $(0.076)$ $(0.083)^*$ $(0.118)$ $(0.120)$ $(0.069)$ $(0.100)$ $(0.09)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| p-value on equality of effects $(5)=(6)=(8)=(9):.426\;(2)=(3):.872$ $(3)=(4):.769\;(4)=(7):.119\;(8)=(9):.619$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heavy Controls on Treatment Effect $-0.046$ $-0.038$ $-0.055$ $-0.145$ $-0.178$ $-0.114$ $0.022$ $0.063$ $-0.063$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Standard error $(0.052)$ $(0.075)$ $(0.075)$ $(0.083)^*$ $(0.117)$ $(0.119)$ $(0.069)$ $(0.099)$ $(0.099)$ p-value on equality of effects $(5)=(6)=(8)=(9):$ .409 $(2)=(3):$ .875 $(3)=(4):$ .703 $(4)=(7):$ .121 $(8)=(9):$ .576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (3)-(3)-(3)-(3)-(3)-(3)-(3)-(3)-(3)-(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

index of risky sexual behavior(sale-2013Ky /(2013) -0.088 (0.042)\*\* -0.011 -0.012 -0.090 Light Controls on Treatment Effect -0.049 -0.051 $(0.029)^*$ (0.042)(0.046)(0.065) $Standard\ error$ (5)=(6)=(8)=(9):.655(2)=(3):.201p-value on equality of effects

-0.012

(0.042)

-0.048-0.010 -0.086 (0.038)(0.067)(0.055)(0.055)(8)=(9): .336 (3)=(4):.409 (4)=(7):.971 -0.011 -0.091 -0.050-0.085-0.014 (0.038)(0.065)(0.066)(0.055)(0.054)(8)=(9): .362 (3)=(4):.395 (4)=(7): .985

Table A9 continues on next page

(5)=(6)=(8)=(9):.667(2)=(3):.209

-0.050

 $(0.029)^{*}$ 

Heavy Controls on Treatment Effect

p-value on equality of effects

Standard error

-0.088

 $(0.042)^{**}$ 

-0.051

(0.046)

Table A9: Comparing Results Across Control Specifications cont.

| Table A9: Comparing Results Across C                                                                                                                                                                                                                                              |                                                                           | <u>ions cont.⊠</u><br>Combined             |                                     | Acader                 | mic Major Admits                                                                                 | Vocatio                                 | onal Major Admits                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                   | All                                                                       | Female                                     | Male                                | All                    | Female Male                                                                                      | All                                     | Female Ma                                                                                   |
|                                                                                                                                                                                                                                                                                   | (1)                                                                       | (2)                                        | (3)                                 | (4)                    | (5) (6)                                                                                          | (7)                                     | (8) (9)                                                                                     |
| Index of STI risk exposure (2013)<br>Light Controls on Treatment Effect                                                                                                                                                                                                           | -0.069                                                                    | -0.050                                     | -0.087                              | -0.094                 | -0.086 -0.102                                                                                    | -0.051                                  | -0.026 -0.0                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | $(0.028)^{**}$                                                            | (0.041)                                    | $(0.041)^{**}$                      | $(0.045)^{**}$         | (0.063) $(0.065)$                                                                                | (0.037)                                 | (0.053) $(0.053)$                                                                           |
| p-value on equality of effects                                                                                                                                                                                                                                                    | (5) = (6) = (8) = (9)                                                     |                                            | · · ·                               | ( )                    | (3)=(4): .857                                                                                    | (4)=(7): .460                           | (8)=(9): .503                                                                               |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | -0.071                                                                    | -0.056                                     | -0.086                              | -0.095                 | -0.089 -0.100                                                                                    | -0.054                                  | -0.034 -0.0                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | $(0.028)^{**}$                                                            | (0.040)                                    | $(0.040)^{**}$                      | $(0.044)^{**}$         | (0.063) $(0.064)$                                                                                | (0.037)                                 | (0.053) $(0.053)$                                                                           |
| p-value on equality of effects<br>Preventative health behavior (3 question                                                                                                                                                                                                        | (5)=(6)=(8)=(9)                                                           | ): .834 (2)=(3)                            | : .000                              |                        | (3)=(4): .902                                                                                    | (4)=(7): .480                           | (8)=(9): .580                                                                               |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.118                                                                     | 0.121                                      | 0.116                               | 0.187                  | 0.210 0.165                                                                                      | 0.071                                   | 0.055 0.08                                                                                  |
| Standard error                                                                                                                                                                                                                                                                    | $(0.039)^{***}$                                                           | (0.055)**                                  | (0.055)**                           | 0.061)**               | $(0.086)^{**}$ $(0.088)^{*}$                                                                     | (0.051)                                 | (0.073) $(0.073)$                                                                           |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           |                                            |                                     |                        | (3)=(4):.715                                                                                     | (4)=(7): .147                           | (8)=(9): .774                                                                               |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.118<br>$(0.038)^{***}$                                                  | 0.118<br>$(0.055)^{**}$                    | 0.118<br>(0.055)**                  | $0.185 \\ 0.061)^{**}$ | $\begin{array}{ccc} 0.211 & 0.162 \\ (0.086)^{**} & (0.087)^{*} \end{array}$                     | 0.071<br>(0.050)                        | $\begin{array}{ccc} 0.050 & 0.09 \\ (0.073) & (0.073) \end{array}$                          |
| Standard error<br>p-value on equality of effects                                                                                                                                                                                                                                  | $(0.038)^{+++}$<br>(5)=(6)=(8)=(9)                                        | ( )                                        | · /                                 | 0.001)**               | $(0.080)^{++} (0.087)^{+} (3) = (4):.689$                                                        | (0.050)<br>(4)=(7):.152                 | (0.073) $(0.073)(8)=(9):.702$                                                               |
| Panel D. Primary Occupation and Tot                                                                                                                                                                                                                                               |                                                                           | (-)                                        |                                     |                        | (0) (0)                                                                                          | (-) ())                                 | (0) (0)                                                                                     |
| Inv. hyperbolic sine earnings (2016)                                                                                                                                                                                                                                              |                                                                           |                                            |                                     |                        |                                                                                                  |                                         |                                                                                             |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | $0.305 \\ (0.141)^{**}$                                                   | 0.425<br>$(0.203)^{**}$                    | 0.185<br>(0.203)                    | 0.022<br>(0.224)       | $\begin{array}{ccc} 0.308 & -0.281 \\ (0.318) & (0.324) \end{array}$                             | (0.499)<br>$(0.185)^{***}$              | $\begin{array}{ccc} 0.510 & 0.49 \\ (0.266)^* & (0.26) \end{array}$                         |
| Standard error<br>p-value on equality of effects                                                                                                                                                                                                                                  | (5)=(6)=(8)=(9)                                                           | ( )                                        | · · · ·                             | (0.224)                | (0.318) $(0.324)(3)=(4):.199$                                                                    | (4)=(7):.104                            | $(0.200)^{+}$ $(0.20)^{+}$ $(0.20)^{+}$ $(0.20)^{+}$ $(0.20)^{+}$ $(0.20)^{+}$ $(0.20)^{+}$ |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.293                                                                     | 0.417                                      | 0.169                               | -0.008                 | 0.299 -0.329                                                                                     | 0.498                                   | 0.502 0.49                                                                                  |
| Standard error                                                                                                                                                                                                                                                                    | $(0.141)^{**}$                                                            | $(0.202)^{**}$                             | (0.202)                             | (0.224)                | (0.318) $(0.322)$                                                                                | $(0.184)^{***}$                         | $(0.265)^*$ $(0.26)^*$                                                                      |
| o-value on equality of effects                                                                                                                                                                                                                                                    | (5)=(6)=(8)=(9)                                                           | ): .176 (2)=(3)                            | : .392                              |                        | (3)=(4): .169                                                                                    | (4)=(7): .083*                          | (8)=(9): .991                                                                               |
| Positive earnings (2016)                                                                                                                                                                                                                                                          | 0.055                                                                     | 0.066                                      | 0.044                               | 0.007                  | 0.041 -0.029                                                                                     | 0.088                                   | 0.085 0.09                                                                                  |
| Light Controls on Treatment Effect<br>Standard error                                                                                                                                                                                                                              | (0.033)<br>$(0.024)^{**}$                                                 | $(0.035)^*$                                | (0.044)                             | (0.007)                | (0.054) $(0.056)$                                                                                | $(0.032)^{***}$                         | $(0.045)^*$ $(0.045)^*$                                                                     |
| p-value on equality of effects                                                                                                                                                                                                                                                    | (5)=(6)=(8)=(9)                                                           |                                            |                                     | /                      | (3)=(4):.373                                                                                     | (4)=(7):.104                            | (8)=(9):.906                                                                                |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.053                                                                     | 0.065                                      | 0.040                               | 0.002                  | 0.040 -0.037                                                                                     | 0.087                                   | 0.083 0.09                                                                                  |
| Standard error                                                                                                                                                                                                                                                                    | $(0.024)^{**}$                                                            | $(0.034)^*$                                | (0.035)                             | (0.038)                | (0.054) $(0.055)$                                                                                | $(0.032)^{***}$                         | $(0.045)^*$ $(0.045)^*$                                                                     |
| p-value on equality of effects<br>Total earnings last month (GHX) (201                                                                                                                                                                                                            | (5)=(6)=(8)=(9)                                                           | ): .275 (2)=(3)                            | :.615                               |                        | (3)=(4): .328                                                                                    | (4)=(7): .090*                          | (8)=(9): .901                                                                               |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | 7.731                                                                     | 8.161                                      | 7.301                               | -17.794                | 0.076 -36.834                                                                                    | 25.168                                  | 14.108 36.3                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | (10.805)                                                                  | (15.504)                                   | (15.506)                            | (17.136)               | (24.289) $(24.702)$                                                                              | $(14.114)^*$                            | (20.331) $(20.05)$                                                                          |
| o-value on equality of effects                                                                                                                                                                                                                                                    | (5)=(6)=(8)=(9)                                                           |                                            |                                     |                        | (3)=(4): .291                                                                                    | (4)=(7):.055*                           |                                                                                             |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | 7.225                                                                     | 7.501                                      | 6.950                               | -20.249                | -0.506 $-41.054$                                                                                 | 25.949                                  | 13.324 $38.6$                                                                               |
| Standard error<br>p-value on equality of effects                                                                                                                                                                                                                                  | (10.780)<br>(5)=(6)=(8)=(9)                                               | (15.468)<br>). $091\%2)-(3)$               | (15.463)                            | (17.110)               | (24.293) $(24.602)$ ;<br>(3)=(4):.245                                                            | $(14.074)^*$<br>$(4)=(7):.038^{**}$     | (20.259) (20.00<br>(8)=(9):.379                                                             |
| Fotal hours worked last month (2016)                                                                                                                                                                                                                                              |                                                                           | 001 (2)-(0)                                |                                     |                        | (0)-(1): .210                                                                                    | (1)-(1)::000                            |                                                                                             |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | 9.582                                                                     | 18.784                                     | 0.267                               | 2.927                  | 17.829 -12.794                                                                                   | 14.134                                  | 19.498 8.90                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | $(5.407)^*$                                                               | $(7.725)^{**}$                             | (7.774)                             | (8.581)                | (12.116) $(12.407)$                                                                              | $(7.072)^{**}$                          | $(10.147)^*$ (10.0                                                                          |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           |                                            |                                     | 1 796                  | (3)=(4):.080*<br>17.193 -14.413                                                                  | (4) = (7): .318                         | (8)=(9):.464<br>18.674 9.77                                                                 |
| Heavy Controls on Treatment Effect<br>Standard error                                                                                                                                                                                                                              | $9.130 (5.408)^*$                                                         | 18.046<br>(7.727)**                        | $0.116 \\ (7.771)$                  | 1.726<br>(8.590)       | $\begin{array}{rrr} 17.193 & -14.413 \\ (12.151) & (12.391) \end{array}$                         | $14.182 (7.070)^{**}$                   | $\begin{array}{rrr} 18.674 & 9.77 \\ (10.139)^* & (10.0) \end{array}$                       |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           | ( )                                        |                                     | (0.000)                | (3)=(4):.071*                                                                                    | (4)=(7):.267                            | (8)=(9):.538                                                                                |
| Worked over 10 hours in the past mon                                                                                                                                                                                                                                              | th (2016)                                                                 |                                            |                                     |                        |                                                                                                  |                                         |                                                                                             |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.061                                                                     | 0.087                                      | 0.033                               | -0.019                 | 0.052 - 0.095                                                                                    | 0.115<br>(0.032)***                     | 0.113 0.11                                                                                  |
| Standard error<br>p-value on equality of effects                                                                                                                                                                                                                                  | $(0.024)^{**}$<br>(5)=(6)=(8)=(9)                                         | $(0.035)^{**}$<br>) $\cdot 014^{**} = (3)$ | (0.035)<br>• 279                    | (0.039)                | $(0.055)$ $(0.056)^*$<br>$(3)=(4):.064^*$                                                        |                                         | $(0.046)^{**}$ (0.046<br>* (8)=(9): .946                                                    |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.058                                                                     | 0.087                                      | 0.029                               | -0.024                 | 0.050 -0.102                                                                                     | 0.115                                   | 0.113 $0.11$                                                                                |
| Standard error                                                                                                                                                                                                                                                                    | $(0.024)^{**}$                                                            | $(0.035)^{**}$                             | (0.035)                             | (0.039)                | $(0.055)$ $(0.056)^*$                                                                            |                                         | $(0.045)^{**}$ (0.045)                                                                      |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           | ): .010*(2)=(3)                            | : .249                              |                        | (3)=(4): .054*                                                                                   | (4)=(7): .006***                        | * (8)=(9): .960                                                                             |
| Earnings per hour if worked over 10 ho                                                                                                                                                                                                                                            |                                                                           | 0.000                                      | 0 5 41                              | 0 509                  | 0.000                                                                                            | 0.204                                   | 0.010 0.0                                                                                   |
| Light Controls on Treatment Effect<br>Standard error                                                                                                                                                                                                                              | -0.410<br>(0.253)                                                         | -0.228<br>(0.396)                          | -0.541<br>(0.335)                   | -0.593<br>(0.421)      | -0.286 -0.805<br>(0.643) (0.561)                                                                 | -0.304<br>(0.319)                       | -0.212 -0.3'<br>(0.505) (0.41                                                               |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           | . ,                                        | . ,                                 | (0.121)                | (3)=(4):.545                                                                                     | (4)=(7):.586                            | (8)=(9):.807                                                                                |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | -0.414                                                                    | -0.237                                     | -0.541                              | -0.605                 | -0.299 -0.812                                                                                    | -0.305                                  | -0.219 -0.3                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | (0.252)                                                                   | (0.395)                                    | (0.333)                             | (0.420)                | (0.642) $(0.559)$                                                                                | (0.317)                                 | (0.503) $(0.41)$                                                                            |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           | ): .872 (2)=(3)                            | : .559                              |                        | (3)=(4): .548                                                                                    | (4)=(7): .570                           | (8)=(9): .819                                                                               |
| Fotal hours helping family in past wee<br>Light Controls on Treatment Effect                                                                                                                                                                                                      | -2.535                                                                    | -2.413                                     | -2.650                              | -1.285                 | 0.584 -3.330                                                                                     | -3.390                                  | -4.880 -2.22                                                                                |
| Standard error                                                                                                                                                                                                                                                                    | (2.176)                                                                   | (3.183)                                    | (3.097)                             | (3.451)                | (4.808) $(5.153)$                                                                                | (2.846)                                 | (4.324) $(3.87)$                                                                            |
|                                                                                                                                                                                                                                                                                   | (5)=(6)=(8)=(9)                                                           | ): .865 (2)=(3)                            | : .958                              |                        | (3)=(4): .584                                                                                    | (4)=(7): .640                           | (8)=(9): .651                                                                               |
| Heavy Controls on Treatment Effect                                                                                                                                                                                                                                                | -2.167                                                                    | -2.151                                     | -2.183                              | -0.903                 | 1.047 -3.071                                                                                     | -3.035                                  | -4.832 -1.6                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | (2.163)<br>(5)-(6)-(8)-(9)                                                | (3.164)                                    | (3.073)                             | (3.437)                | (4.775) $(5.150)(3)-(4):$ 563                                                                    | (2.836)                                 | (4.321) $(3.84)$                                                                            |
| p-value on equality of effects<br>Enrolled in formal study/training (201                                                                                                                                                                                                          | (5)=(6)=(8)=(9)                                                           | 1034 (2)=(3)                               | 994                                 |                        | (3)=(4): .563                                                                                    | (4)=(7): .636                           | (8)=(9): .584                                                                               |
| Light Controls on Treatment Effect                                                                                                                                                                                                                                                | 0.022                                                                     | 0.057                                      | -0.012                              | 0.056                  | 0.099 0.013                                                                                      | -0.001                                  | 0.028 -0.02                                                                                 |
| Standard error                                                                                                                                                                                                                                                                    | (0.014)                                                                   | $(0.021)^{***}$                            | (0.021)                             | $(0.023)^{**}$         | $(0.032)^{***}$ (0.033)                                                                          | (0.019)                                 | (0.027) $(0.02)$                                                                            |
| o-value on equality of effects                                                                                                                                                                                                                                                    | (5)=(6)=(8)=(9)                                                           |                                            |                                     |                        | (3)=(4): .065*                                                                                   | $(4) = (7): .057^*$                     |                                                                                             |
|                                                                                                                                                                                                                                                                                   | 0.024                                                                     | 0.055                                      | -0.008<br>(0.021)                   | 0.058<br>(0.023)**     | $\begin{array}{ccc} 0.096 & 0.019 \\ (0.033)^{***} & (0.033) \end{array}$                        | 0.001                                   | 0.027 -0.027                                                                                |
|                                                                                                                                                                                                                                                                                   |                                                                           | ())))))))                                  |                                     | (0.023)**              | (0.033)**** (0.033)                                                                              | (0.019)                                 | (0.027) $(0.027)$                                                                           |
| Standard error                                                                                                                                                                                                                                                                    | (0.014)                                                                   | $(0.021)^{***}$                            |                                     | . ,                    | $(3) = (4) \cdot 100$                                                                            | $(4) = (7) \cdot 057^*$                 | $(8) = (0) \cdot 171$                                                                       |
| Standard error<br>p-value on equality of effects                                                                                                                                                                                                                                  |                                                                           |                                            |                                     |                        | (3)=(4): .100                                                                                    | (4)=(7): .057*                          | (8)=(9): .171                                                                               |
| Standard error<br>o-value on equality of effects<br>Positive earnings or in school (2016)                                                                                                                                                                                         | $(0.014) \\ (5)=(6)=(8)=(9) \\ 0.061$                                     | ): .040(2)=(3):<br>0.101                   | .032**<br>0.020                     | 0.044                  | 0.112 -0.027                                                                                     | 0.072                                   | 0.094 0.05                                                                                  |
| Standard error<br>p-value on equality of effects<br>Positive earnings or in school (2016)<br>Light Controls on Treatment Effect<br>Standard error                                                                                                                                 | $(0.014) \\ (5)=(6)=(8)=(9) \\ 0.061 \\ (0.023)^{***}$                    | ): .040(2)=(3):<br>0.101<br>(0.033)***     | .032**<br>0.020<br>(0.033)          | 0.044<br>(0.037)       | $\begin{array}{ccc} 0.112 & -0.027 \\ (0.052)^{**} & (0.053) \end{array}$                        | 0.072<br>(0.030)**                      | 0.094 0.05<br>(0.044)** (0.04                                                               |
| Standard error<br>p-value on equality of effects<br>Positive earnings or in school (2016)<br>Light Controls on Treatment Effect<br>Standard error<br>p-value on equality of effects                                                                                               | $(0.014) \\ (5)=(6)=(8)=(9) \\ 0.061 \\ (0.023)^{***} \\ (5)=(6)=(8)=(9)$ | 0.101<br>(0.033)***<br>): .238(2)=(3):     | .032**<br>0.020<br>(0.033)<br>.089* | (0.037)                | $\begin{array}{ccc} 0.112 & -0.027 \\ (0.052)^{**} & (0.053) \\ (3) = (4): .066^{*} \end{array}$ | 0.072<br>$(0.030)^{**}$<br>(4)=(7):.561 | $\begin{array}{ccc} 0.094 & 0.05\\ (0.044)^{**} & (0.04)\\ (8) = (9): .489 \end{array}$     |
| Heavy Controls on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>Positive earnings or in school (2016)<br>Light Controls on Treatment Effect<br>Standard error<br>p-value on equality of effects<br>Heavy Controls on Treatment Effect<br>Standard error | $(0.014) \\ (5)=(6)=(8)=(9) \\ 0.061 \\ (0.023)^{***}$                    | ): .040(2)=(3):<br>0.101<br>(0.033)***     | .032**<br>0.020<br>(0.033)          |                        | $\begin{array}{ccc} 0.112 & -0.027 \\ (0.052)^{**} & (0.053) \end{array}$                        | 0.072<br>(0.030)**                      | 0.094 0.05<br>(0.044)** (0.04                                                               |

Table A9: Comparing Results Across Control Specifications cont.

|                                                                             |                                                | Combined                 |                  |                   | nic Major Admits                                                                                                              | -                                          | onal Major A     |                      |
|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|----------------------|
|                                                                             | All                                            | Female                   | Male             | All               | Female Male                                                                                                                   | All                                        | Female           | Male                 |
| Wage worker (2016)                                                          | (1)                                            | (2)                      | (3)              | (4)               | (5) (6)                                                                                                                       | (7)                                        | (8)              | (9)                  |
| Light Controls on Treatment Effect                                          | 0.051                                          | 0.098                    | 0.004            | 0.002             | 0.085 -0.085                                                                                                                  | 0.084                                      | 0.107            | 0.062                |
| Standard error                                                              | (0.022)**                                      | $(0.031)^{***}$          | (0.031)          | (0.035)           | $(0.049)^*$ $(0.050)^*$                                                                                                       | $(0.029)^{***}$                            | $(0.041)^{***}$  | (0.041)              |
| p-value on equality of effects                                              | (5) = (6) = (8) = (9)                          | ): .022(2) = (3):        | .037**           | . ,               | (3)=(4): .017**                                                                                                               | (4)=(7): .068*                             | (8)=(9)          | : .443               |
| Heavy Controls on Treatment Effect                                          | 0.051                                          | 0.096                    | 0.006            | -0.001            | 0.082 -0.087                                                                                                                  | 0.087                                      | 0.106            | 0.067                |
| Standard error                                                              | $(0.022)^{**}$                                 | $(0.031)^{***}$          | (0.031)          | (0.035)           | $(0.049)^*$ $(0.050)^*$                                                                                                       | $(0.029)^{***}$                            | $(0.041)^{***}$  | (0.040)              |
| o-value on equality of effects                                              | (5)=(6)=(8)=(9)                                | )): .019(2)=(3):         | .043**           |                   | (3)=(4): .017**                                                                                                               | (4)=(7): .053*                             | (8) = (9)        | : .499               |
| Day or seasonal laborer (2016)                                              |                                                |                          |                  |                   |                                                                                                                               |                                            |                  |                      |
| Light Controls on Treatment Effect                                          | 0.020                                          | 0.010                    | 0.029            | -0.027            | 0.022 -0.080                                                                                                                  | 0.052                                      | 0.002            | 0.101                |
| standard error                                                              | $(0.017) \\ (5)=(6)=(8)=(9)$                   | (0.024)                  | (0.024)          | (0.026)           | $(0.037)$ $(0.038)^{*};$<br>$(3)=(4):.056^{*}$                                                                                | $(0.022)^{**}$<br>$(4)=(7):.021^{**}$      |                  | $(0.031)^*$          |
| -value on equality of effects                                               |                                                |                          |                  | 0.000             |                                                                                                                               |                                            |                  |                      |
| Heavy Controls on Treatment Effect                                          | 0.018<br>(0.017)                               | 0.010<br>(0.024)         | 0.026<br>(0.024) | -0.028<br>(0.026) | $\begin{array}{ccc} 0.023 & -0.082 \\ (0.037) & (0.038)^{*} \end{array}$                                                      | 0.050<br>$(0.022)^{**}$                    | 0.002<br>(0.031) | 0.097<br>$(0.031)^*$ |
| Standard error<br>-value on equality of effects                             | (5)=(6)=(8)=(9)                                | . ,                      | · · ·            | (0.020)           | $(0.037)$ $(0.038)$ $(3)=(4): .049^{**}$                                                                                      | $(0.022)^{(0.022)}$<br>$(4)=(7):.023^{**}$ |                  |                      |
| f no earnings and no school: actively                                       |                                                |                          | 040              |                   | $(J) - (4) \cdot \cdot$ | (4) - (7)025                               | (0) - (9).       | .000                 |
| ight Controls on Treatment Effect                                           | 0.118                                          | 0.161                    | 0.040            | 0.196             | 0.243 0.125                                                                                                                   | 0.062                                      | 0.103            | -0.019               |
| Standard error                                                              | $(0.044)^{***}$                                | (0.055)***               | (0.074)          | 0.067)**          | $(0.085)^{***}$ (0.112)                                                                                                       | (0.057)                                    | (0.071)          | (0.101               |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                | ): .249 (2)=(3)          | : .196           |                   | (3)=(4): .404                                                                                                                 | (4)=(7): .128                              | (8)=(9)          | : .325               |
| Heavy Controls on Treatment Effect                                          | 0.118                                          | 0.164                    | 0.033            | 0.195             | 0.241 0.126                                                                                                                   | 0.061                                      | 0.109            | -0.034               |
| Standard error                                                              | $(0.044)^{***}$                                | $(0.054)^{***}$          | (0.074)          | 0.067)**          | $(0.085)^{***}$ (0.112)                                                                                                       | (0.057)                                    | (0.070)          | (0.100)              |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                | )): .214 (2)=(3)         | : .160           |                   | (3)=(4): .418                                                                                                                 | (4)=(7): .126                              | (8) = (9)        | : .243               |
| If earnings: actively searching for a j                                     |                                                |                          |                  |                   |                                                                                                                               |                                            |                  |                      |
| Light Controls on Treatment Effect                                          | 0.066                                          | 0.006                    | 0.107            | 0.110             | -0.013 0.197                                                                                                                  | 0.039                                      | 0.017            | 0.055                |
| standard error                                                              | $(0.031)^{**}$                                 | (0.049)                  | $(0.040)^{***}$  | $(0.051)^{**}$    | $(0.079)$ $(0.067)^{**}$                                                                                                      | (0.039)                                    | (0.062)          | (0.051               |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                |                          |                  |                   | (3)=(4): .044**                                                                                                               | (4)=(7): .269                              | (8)=(9)          |                      |
| Heavy Controls on Treatment Effect                                          | 0.066                                          | 0.009                    | 0.105            | 0.112             | -0.012 0.200                                                                                                                  | 0.038                                      | 0.022            | 0.050                |
| Standard error                                                              | $(0.031)^{**}$                                 | (0.049)                  | (0.040)***       | $(0.051)^{**}$    | $(0.079)$ $(0.067)^{**}$                                                                                                      | (0.039)                                    | (0.062)          | (0.051               |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                | (2)=(3)                  | :.134            |                   | (3)=(4): .042**                                                                                                               | (4)=(7): .249                              | (8)=(9)          | :.730                |
| Lowest daily wage willing to work for<br>Light Controls on Treatment Effect | -0.737                                         | 0.816                    | -2.284           | -0.698            | 0.164 -1.608                                                                                                                  | -0.764                                     | 1.287            | -2.749               |
| Standard error                                                              | (0.574)                                        | (0.825)                  | $(0.823)^{***}$  | (0.910)           | (1.291) $(1.307)$                                                                                                             | (0.753)                                    | (1.085)          | (1.070)              |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                | . ,                      |                  | (0.0 - 0)         | (3)=(4):.339                                                                                                                  | (4)=(7):.955                               | (8)=(9): .       |                      |
| Heavy Controls on Treatment Effect                                          | -0.586                                         | 0.796                    | -1.958           | -0.543            | 0.108 -1.236                                                                                                                  | -0.616                                     | 1.289            | -2.463               |
| Standard error                                                              | (0.574)                                        | (0.825)                  | $(0.821)^{**}$   | (0.910)           | (1.296) $(1.301)$                                                                                                             | (0.753)                                    | (1.084)          | (1.071)              |
| -value on equality of effects                                               | (5) = (6) = (8) = (9)                          | 0): .091(2)=(3):         | .019**           |                   | (3)=(4): .468                                                                                                                 | (4)=(7): .950                              | (8)=(9):         | .015**               |
| atisfaction Index(1-very unsatisfied-                                       | ->5-very satisfied                             | )(2013/2016)             |                  |                   |                                                                                                                               |                                            |                  |                      |
| Light Controls on Treatment Effect                                          | 0.015                                          | 0.099                    | -0.069           | -0.047            | -0.028 -0.068                                                                                                                 | 0.058                                      | 0.190            | -0.07                |
| tandard error                                                               | (0.040)                                        | $(0.058)^*$              | (0.058)          | (0.064)           | (0.090) $(0.092)$                                                                                                             | (0.053)                                    | $(0.076)^{**}$   | (0.075               |
| -value on equality of effects                                               | (5) = (6) = (8) = (9)                          |                          |                  |                   | (3)=(4): .759                                                                                                                 | (4)=(7):.209                               | (8)=(9):         |                      |
| Heavy Controls on Treatment Effect                                          | 0.015                                          | 0.096                    | -0.067           | -0.050            | -0.029 -0.073                                                                                                                 | 0.060                                      | 0.186            | -0.064               |
| Standard error                                                              | (0.040)                                        | $(0.057)^{*}$            | (0.057)          | (0.063)           | (0.090) $(0.091)$                                                                                                             | (0.053)                                    | $(0.076)^{**}$   | (0.075               |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                |                          |                  |                   | (3)=(4): .730                                                                                                                 | (4)=(7): .186                              | (8)=(9):         | .020**               |
| Satisfaction with finances(1-complete                                       | $1y \text{ disagree} \rightarrow 5-0$<br>0.084 | completely agre<br>0.226 | -0.059           | 0.022             | 0.049 -0.005                                                                                                                  | 0.127                                      | 0.353            | -0.094               |
| Light Controls on Treatment Effect                                          | (0.057)                                        | $(0.082)^{***}$          | (0.039)          | (0.022)           | (0.128) $(0.131)$                                                                                                             | $(0.075)^*$                                | $(0.108)^{***}$  | (0.107)              |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                |                          |                  | (0.051)           | (3)=(4):.770                                                                                                                  | (4)=(7):.378                               | (8)=(9):         |                      |
| Heavy Controls on Treatment Effect                                          | 0.085                                          | 0.221                    | -0.052           | 0.020             | 0.047 -0.007                                                                                                                  | 0.130                                      | 0.345            | -0.08                |
| Standard error                                                              | (0.057)                                        | $(0.082)^{***}$          | (0.082)          | (0.020)           | (0.128) $(0.130)$                                                                                                             | $(0.075)^*$                                | $(0.107)^{***}$  | (0.106               |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                |                          |                  | (0.000)           | (3)=(4):.768                                                                                                                  | (4)=(7):.352                               | (8)=(9): .       |                      |
| atisfied with life(1-very unsatisfied                                       |                                                |                          |                  |                   |                                                                                                                               |                                            |                  |                      |
| Light Controls on Treatment Effect                                          | -0.052                                         | -0.041                   | -0.063           | -0.158            | -0.235 -0.080                                                                                                                 | 0.021                                      | 0.100            | -0.05                |
| standard error                                                              | (0.052)                                        | (0.075)                  | (0.075)          | $(0.082)^{*}$     | $(0.116)^{**}$ (0.119)                                                                                                        | (0.068)                                    | (0.098)          | (0.097)              |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                | 9): .184 (2)=(3)         | : .836           |                   | (3)=(4): .356                                                                                                                 | (4)=(7): .097*                             | (8) = (9)        | : .274               |
| Ieavy Controls on Treatment Effect                                          | -0.056                                         | -0.047                   | -0.065           | -0.166            | -0.237 -0.098                                                                                                                 | 0.021                                      | 0.090            | -0.04                |
| Standard error                                                              | (0.052)                                        | (0.074)                  | (0.074)          | $(0.082)^{**}$    | $(0.116)^{**}$ (0.118)                                                                                                        | (0.068)                                    | (0.098)          | (0.097)              |
| -value on equality of effects                                               | (5)=(6)=(8)=(9)                                |                          |                  |                   | (3)=(4):.406                                                                                                                  | (4)=(7): .081*                             | (8) = (9)        | : .334               |
| f employed: satisfaction with job(1-v                                       |                                                |                          |                  | 0.007             | 0.070                                                                                                                         | o o <b>-</b>                               | 0.100            | 0.07                 |
| Light Controls on Treatment Effect                                          | -0.271                                         | -0.204                   | -0.320           | -0.267            | -0.272 -0.264                                                                                                                 | -0.273                                     | -0.163           | -0.35                |
| tandard error                                                               | $(0.084)^{***}$                                | (0.131)                  | $(0.112)^{***}$  | $(0.137)^*$       | (0.214) $(0.183)$                                                                                                             | $(0.106)^{**}$                             | (0.167)          | (0.142)              |
| o-value on equality of effects                                              | (5)=(6)=(8)=(9)                                |                          |                  | 0.050             | (3)=(4):.978                                                                                                                  | (4)=(7):.973                               | <i>(8)=(9)</i>   |                      |
| Heavy Controls on Treatment Effect                                          | -0.274                                         | -0.216                   | -0.317           | -0.270            | -0.272 $-0.269$                                                                                                               | -0.277                                     | -0.182           | -0.346               |
| Standard error                                                              | $(0.083)^{***}$                                | $(0.130)^*$              | (0.111)***       | $(0.137)^{**}$    | $\begin{array}{c} (0.213) & (0.182) \\ (3)=(4): .991 \end{array}$                                                             | $(0.106)^{***}$                            | (0.166)          | (0.141)              |
| p-value on equality of effects                                              | (5)=(6)=(8)=(9)                                | ・)・ ・シロト (ム)=(3)         |                  |                   | (J)—(4): .991                                                                                                                 | (4)=(7): .970                              | (8)=(9)          | .401                 |

Notes: Year of survey in parentheses. Refer Table 2 for meaning of columns. Light Controls has controls for district, year student took the BECE, gender, initial major, BECE score and whether BECE score is missing. Heavy Controls has the controls in Light Controls and a control for the highest level of education of household head. Standard errors in parentheses with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. 1996 observations in 2016 survey. 1,984 observations in 2013 survey.

## Table A10: Outcomes for Bottom Half of JHS Exam Scores

|                                                                       | Combined                           |                          |                           | Acade                     | emic Major A              |                           | Vocational Major Admits   |                           |                        |  |
|-----------------------------------------------------------------------|------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|--|
|                                                                       | All                                | Female                   | Male                      | All                       | Female                    | Male                      | All                       | Female                    | Male                   |  |
|                                                                       | (1)                                | (2)                      | (3)                       | (4)                       | (5)                       | (6)                       | (7)                       | (8)                       | (9)                    |  |
| Total standardized score (2013)                                       | 0.040                              | 0.090                    | 0.001                     | 0.070                     | 0.040                     | 0 117                     | 0.025                     | 0.057                     | 0.070                  |  |
| Treatment effect<br>Standard error                                    | 0.049<br>(0.076)                   | 0.036<br>(0.101)         | 0.091<br>(0.111)          | 0.076<br>(0.123)          | 0.046<br>(0.163)          | 0.117<br>(0.180)          | $0.035 \\ (0.096)$        | 0.057<br>(0.128)          | 0.079<br>(0.140)       |  |
| Comparison mean                                                       | -0.000                             | (0.101)<br>-0.175        | (0.111)<br>0.183          | (0.123)<br>0.066          | (0.103)<br>-0.102         | (0.180)<br>0.247          | (0.090)<br>-0.045         | (0.128)<br>-0.227         | (0.140)<br>0.140       |  |
| p-value on equality of effect (a                                      |                                    |                          |                           | 0.000                     |                           | 6.247<br>6): .769         | (4) = (7):.792            | (8)=(9)                   |                        |  |
| Ever enrolled in tertiary educati                                     |                                    | .001 (2)-(0              | )/10                      |                           | (0)-(0                    |                           | (4)-(1): .102             | (0)-(0)                   |                        |  |
| Treatment effect                                                      | 0.005                              | 0.013                    | -0.003                    | 0.021                     | 0.055                     | -0.022                    | -0.005                    | -0.013                    | 0.009                  |  |
| Standard error                                                        | (0.020)                            | (0.027)                  | (0.029)                   | (0.032)                   | (0.044)                   | (0.048)                   | (0.025)                   | (0.034)                   | (0.037)                |  |
| Comparison mean                                                       | 0.091                              | 0.075                    | 0.107                     | 0.110                     | 0.095                     | 0.126                     | 0.077                     | 0.060                     | 0.095                  |  |
| p-value on equality of effect (a                                      | , , , , , , ,                      | .588 (2)=(3              | 3): .686                  |                           | $(5) = (\ell$             | 3): .236                  | (4)=(7): .525             | (8) = (9)                 |                        |  |
| Currently enrolled in tertiary pr<br>Treatment effect                 | $\frac{\text{ogram}(2016)}{0.004}$ | 0.017                    | -0.009                    | 0.040                     | 0.063                     | 0.012                     | -0.018                    | -0.012                    | -0.020                 |  |
| Standard error                                                        | (0.018)                            | (0.017)                  | (0.027)                   | (0.029)                   | (0.003)                   | (0.012)                   | (0.018)                   | (0.012)                   | (0.034)                |  |
| Comparison mean                                                       | 0.080                              | (0.023)<br>0.062         | 0.098                     | (0.023)<br>0.094          | (0.040)<br>0.081          | (0.044)<br>0.108          | (0.023)<br>0.070          | (0.031)<br>0.048          | (0.034)<br>0.092       |  |
| p-value on equality of effect (a                                      |                                    |                          |                           | 0.034                     |                           | <i>3): .393</i>           | (4)=(7):.122              | (8)=(9)                   |                        |  |
| University (2016)                                                     |                                    |                          |                           |                           |                           |                           |                           |                           |                        |  |
| Treatment effect                                                      | 0.022                              | 0.037                    | 0.006                     | 0.044                     | 0.060                     | 0.024                     | 0.010                     | 0.023                     | -0.005                 |  |
| Standard error                                                        | (0.010)**                          | $(0.014)^{***}$          | (0.015)                   | $(0.017)^{***}$           | $(0.022)^{***}$           | (0.025)                   | (0.013)                   | (0.018)                   | (0.019)                |  |
| Comparison mean                                                       | 0.028                              | 0.013                    | 0.043                     | 0.033                     | 0.018                     | 0.050                     | 0.024                     | 0.010                     | 0.038                  |  |
| p-value on equality of effect (a<br>Nurses training (2016)            | 5) = (6) = (8) = (9):              | .171 (2) = (3)           | 3): .132                  |                           | $(5) = (\ell$             | 3): .277                  | (4)=(7): .098*            | (8)=(9)                   | : .273                 |  |
| Treatment effect                                                      | -0.010                             | -0.015                   | -0.004                    | -0.010                    | -0.008                    | -0.013                    | -0.010                    | -0.020                    | 0.002                  |  |
| Standard error                                                        | (0.008)                            | (0.011)                  | (0.012)                   | (0.013)                   | (0.018)                   | (0.019)                   | (0.010)                   | (0.014)                   | (0.015)                |  |
| Comparison mean                                                       | 0.015                              | 0.022                    | 0.008                     | 0.022                     | 0.032                     | 0.012                     | 0.010                     | 0.015                     | 0.005                  |  |
| p-value on equality of effect (a                                      | 5)=(6)=(8)=(9):                    | .768 (2)=(3              |                           |                           |                           | <i>5): .860</i>           | (4)=(7): .992             | (8) = (9)                 |                        |  |
| Teachers training (2016)                                              |                                    |                          |                           |                           |                           |                           |                           |                           |                        |  |
| Treatment effect                                                      | 0.002                              | -0.001                   | 0.006                     | 0.000                     | 0.010                     | -0.012                    | 0.003                     | -0.008                    | 0.017                  |  |
| Standard error                                                        | (0.011)                            | (0.014)                  | (0.016)                   | (0.017)                   | (0.023)                   | (0.026)                   | (0.013)                   | (0.018)                   | (0.020)                |  |
| Comparison mean                                                       | 0.027                              | 0.023                    | 0.031                     | 0.029                     | 0.032                     | 0.027                     | 0.025                     | 0.018                     | 0.033                  |  |
| p-value on equality of effect $(a)$                                   |                                    | .725 (2)=(3              | 3): .748                  |                           | $(5) = (\ell$             | 3): .521                  | (4)=(7): .906             | (8) = (9)                 | : .345                 |  |
| Years spent attending tertiary e                                      | · · · · ·                          |                          |                           |                           |                           |                           |                           |                           |                        |  |
| Treatment effect                                                      | 0.018                              | 0.001                    | 0.039                     | 0.071                     | 0.100                     | 0.036                     | -0.016                    | -0.061                    | 0.042                  |  |
| Standard error                                                        | (0.036)                            | (0.049)                  | (0.053)                   | (0.058)                   | (0.079)                   | (0.087)                   | (0.046)                   | (0.062)                   | (0.068)                |  |
| Comparison mean                                                       | 0.144                              | 0.119                    | 0.171                     | 0.188                     | 0.145                     | 0.235                     | 0.114                     | 0.100                     | 0.128                  |  |
| p-value on equality of effect (a                                      | , , , , , , ,                      | .415 (2) = (3)           | 3): .596                  |                           | (5) = (t)                 | <i>3): .587</i>           | (4)=(7): .243             | (8)=(9)                   | : .261                 |  |
| <u>Total years of education to date</u><br>Treatment effect           | $\frac{(2016)}{1.145}$             | 1.225                    | 1.083                     | 1.302                     | 1.508                     | 1.039                     | 1.052                     | 1.065                     | 1.110                  |  |
| Standard error                                                        | $(0.149)^{***}$                    | $(0.200)^{***}$          | $(0.219)^{***}$           | $(0.242)^{***}$           | $(0.325)^{***}$           | $(0.357)^{***}$           |                           |                           | $(0.278)^{***}$        |  |
| Comparison mean                                                       | $(0.149)^{+++}$<br>11.140          | $(0.200)^{10.00}$ 10.845 | $(0.219)^{+++}$<br>11.450 | $(0.242)^{+++}$<br>11.230 | $(0.325)^{+++}$<br>11.025 | $(0.357)^{+++}$<br>11.454 | $(0.189)^{+++}$<br>11.078 | $(0.255)^{+++}$<br>10.717 | 11.448                 |  |
| p-value on equality of effect (a                                      |                                    |                          |                           | 11.250                    |                           | <i>332</i> 332            | (4) = (7): .416           | (8)=(9)                   |                        |  |
| Plans to continue to tertiary $(20)$                                  | , , , , , , ,                      | .000 (2)-(0              | )020                      |                           | (0)-(0                    | 002                       | (4)-(1): 1410             | (0)-(0)                   |                        |  |
| Treatment effect                                                      | 0.242                              | 0.258                    | 0.233                     | 0.258                     | 0.299                     | 0.207                     | 0.234                     | 0.237                     | 0.248                  |  |
| Standard error                                                        | $(0.038)^{***}$                    | $(0.051)^{***}$          | $(0.056)^{***}$           | $(0.061)^{***}$           | $(0.082)^{***}$           | $(0.091)^{**}$            | $(0.048)^{***}$           | $(0.065)^{***}$           | $(0.070)^{***}$        |  |
| Comparison mean                                                       | 0.430                              | 0.363                    | 0.500                     | 0.448                     | 0.394                     | 0.506                     | 0.418                     | 0.341                     | 0.496                  |  |
| p-value on equality of effect (a                                      |                                    |                          |                           | 0.110                     |                           | <i>3): .456</i>           | (4) = (7):.751            | (8)=(9)                   |                        |  |
| Sat for WASSCE exam (2015)                                            |                                    |                          |                           |                           |                           |                           |                           |                           |                        |  |
| Treatment effect                                                      | 0.285                              | 0.287                    | 0.289                     | 0.322                     | 0.325                     | 0.316                     | 0.263                     | 0.268                     | 0.273                  |  |
| Standard error                                                        | (0.037)***                         | $(0.050)^{***}$          | $(0.055)^{***}$           | (0.061)***                | $(0.081)^{***}$           | $(0.090)^{***}$           | · /                       | · ,                       | (0.069)***             |  |
| Comparison mean                                                       | 0.426                              | 0.373                    | 0.482                     | 0.445                     | 0.420                     | 0.473                     | 0.413                     | 0.340                     | 0.487                  |  |
| p-value on equality of effect (a                                      | , , , , , , ,                      | .928 (2) = (3)           | 3): .977                  |                           | (5) = (b)                 | 5): .939                  | (4)=(7): .440             | (8) = (9)                 | : .955                 |  |
| <u>Plans to apply to tertiary (2015)</u><br>Treatment effect          | 0.183                              | 0.226                    | 0.137                     | 0.172                     | 0.182                     | 0.157                     | 0.191                     | 0.255                     | 0.124                  |  |
| standard error                                                        | $(0.038)^{***}$                    | $(0.051)^{***}$          | (0.157)<br>$(0.056)^{**}$ | $(0.062)^{***}$           | $(0.083)^{**}$            | (0.137)<br>$(0.092)^*$    | $(0.048)^{***}$           | (0.255)<br>(0.065)***     | $(0.124)(0.071)^*$     |  |
|                                                                       | 0.414                              | $(0.051)^{+++}$<br>0.356 | $(0.056)^{++}$<br>0.474   | $(0.062)^{+++}$<br>0.431  | $(0.083)^{++}$<br>0.399   | $(0.092)^{+}$<br>0.466    | $(0.048)^{+++}$<br>0.402  | $(0.065)^{+++}$<br>0.325  | $(0.071)^{+}$<br>0.480 |  |
| Comparison mean                                                       |                                    |                          |                           | 0.431                     |                           |                           |                           |                           |                        |  |
| p-value on equality of effect (a<br>Applied for tertiary education (2 | , , , , , , ,                      | .010 (2)=(2              | <i></i>                   |                           | ()=(0                     | 3): .835                  | (4)=(7): .812             | (8) = (9)                 | 114                    |  |
| Treatment effect                                                      | 0.066                              | 0.098                    | 0.032                     | 0.074                     | 0.075                     | 0.074                     | 0.060                     | 0.111                     | 0.009                  |  |
| standard error                                                        | (0.028)**                          | $(0.037)^{***}$          | (0.032)                   | $(0.045)^*$               | (0.073)                   | (0.074)                   | $(0.035)^*$               | $(0.048)^{**}$            | (0.051)                |  |
| Comparison mean                                                       | 0.160                              | (0.037)<br>0.135         | (0.041)<br>0.186          | (0.043)<br>0.173          | (0.000)<br>0.164          | (0.007)<br>0.183          | (0.055)<br>0.151          | 0.114                     | (0.031)<br>0.188       |  |
| p-value on equality of effect (a                                      |                                    |                          |                           | 0.110                     |                           | 6.185<br>6): .996         | (4) = (7):.798            | (8)=(9)                   |                        |  |
| if applied: number of progra                                          | , , , , , , ,                      | . , .                    | <i></i>                   |                           | (0)-(0                    |                           | (=)=(1)                   | (0)-(9)                   | 140                    |  |
| Treatment effect                                                      | -0.184                             | -0.024                   | -0.294                    | -0.145                    | -0.132                    | -0.177                    | -0.194                    | 7                         | -0.307                 |  |
|                                                                       |                                    |                          |                           |                           |                           |                           |                           | Z (0.261)                 |                        |  |
| standard error                                                        | (0.130)                            | (0.200)                  | (0.177)                   | (0.236)                   | (0.337)                   | (0.333)                   | (0.158)                   | (0.261)                   | (0.216)                |  |
| Comparison mean                                                       | 1.653                              | 1.495                    | 1.772                     | 1.674                     | 1.447                     | 1.896                     | 1.636                     | 1.543                     | 1.693                  |  |
| p-value on equality of effect (a                                      |                                    | .792 (2) = (3)           | 3): .313                  |                           | $(5) = (\ell$             | <i>5): .924</i>           | (4)=(7): .862             | (8)=(9)                   | : .314                 |  |
| Admitted to a tertiary program                                        | . ,                                | 0.010                    | 0.001                     | 0.000                     | 0.000                     | 0.005                     | 0.000                     | 0.000                     | 0.015                  |  |
| Treatment effect                                                      | 0.008                              | 0.013                    | 0.004                     | 0.009                     | 0.023                     | -0.009                    | 0.006                     | 0.006                     | 0.013                  |  |
| standard error                                                        | (0.020)                            | (0.027)                  | (0.030)                   | (0.033)                   | (0.044)                   | (0.049)                   | (0.025)                   | (0.035)                   | (0.038)                |  |
|                                                                       |                                    |                          |                           |                           |                           | 0 1 1 0                   | 0 0 - 0                   |                           | 0.000                  |  |
| Comparison mean<br>p-value on equality of effect (a                   | 0.081                              | 0.060                    | 0.103                     | 0.093                     | 0.070                     | 0.118<br>6): .631         | 0.072<br>(4)=(7): .948    | 0.052<br>(8)=(9)          | 0.092                  |  |

## Table A10: Outcomes for Bottom Half of JHS Exam Scores cont.

|                                    |                             | Combined           |                    |                    | emic Major A       |                    |                                                         | onal Major A                    |                         |
|------------------------------------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------------------------------|---------------------------------|-------------------------|
|                                    | All                         | Female             | Male               | All                | Female             | Male               | All                                                     | Female                          | Male                    |
|                                    | (1)                         | (2)                | (3)                | (4)                | (5)                | (6)                | (7)                                                     | (8)                             | (9)                     |
| Inv. hyperbolic sine earnings      |                             | 0.490              | 0.495              | 0.079              | 0.005              | 0.000              | 0.720                                                   | 0 709                           | 0.025                   |
| Treatment effect<br>standard error | $0.430 \\ (0.227)^*$        | 0.489              | 0.435              | -0.073             | 0.005              | -0.226             | 0.730<br>$(0.287)^{**}$                                 | 0.763<br>$(0.380)^{**}$         | 0.835<br>$(0.414)^{**}$ |
| Comparison mean                    | $(0.227)^+$<br>3.214        | $(0.299) \\ 2.413$ | (0.327)<br>4.054   | $(0.368) \\ 3.143$ | $(0.485) \\ 2.313$ | $(0.532) \\ 4.047$ | $(0.287)^{44}$<br>3.263                                 | $(0.380)^{++}$<br>2.484         | $(0.414)^{++}$<br>4.059 |
| p-value on equality of effect      |                             |                    |                    | 0.140              |                    | 4.047<br>6): .748  | $(4)=(7):.085^*$                                        |                                 |                         |
| Log earnings last month if po      | ., ., ., .,                 | )202 $(2) - (3)$   | )902               |                    | (0)-(0             | ))140              | (4) - (7)000                                            | $(\mathcal{O}) - (\mathcal{O})$ | 030                     |
| Treatment effect                   | -0.062                      | -0.167             | 0.066              | -0.063             | -0.022             | -0.108             | -0.067                                                  | -0.256                          | 0.165                   |
| standard error                     | (0.095)                     | (0.136)            | (0.127)            | (0.161)            | (0.236)            | (0.211)            | (0.119)                                                 | (0.169)                         | (0.160)                 |
| Comparison mean                    | 5.066                       | 4.792              | 5.251              | 5.053              | 4.761              | 5.252              | 5.074                                                   | 4.812                           | 5.250                   |
| p-value on equality of effect      |                             |                    |                    | 0.000              |                    | 6): .787           | (4) = (7):.986                                          | (8)=(9)                         |                         |
| Positive earnings (2016)           |                             | (-) (-)            |                    |                    | (-) (-             |                    |                                                         | (-) (-)                         |                         |
| Treatment effect                   | 0.081                       | 0.101              | 0.068              | -0.007             | 0.001              | -0.025             | 0.135                                                   | 0.159                           | 0.125                   |
| standard error                     | (0.038)**                   | $(0.051)^{**}$     | (0.056)            | (0.062)            | (0.083)            | (0.091)            | $(0.049)^{***}$                                         | (0.065)**                       | $(0.071)^*$             |
| Comparison mean                    | 0.556                       | 0.441              | 0.679              | 0.545              | 0.424              | 0.678              | 0.564                                                   | 0.452                           | 0.679                   |
| p-value on equality of effect      | ct $(5) = (6) = (8) = (9)$  | ): .248 (2)=(3     | ?): .660           |                    | (5) = (6)          | 6): .832           | (4)=(7): .072*                                          | (8) = (9)                       | ): .719                 |
| Total earnings last month (C       | HX) (2016)                  |                    |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 7.848                       | -0.062             | 23.004             | -19.314            | -13.876            | -30.017            | 24.029                                                  | 6.970                           | 55.064                  |
| standard error                     | (17.686)                    | (23.383)           | (25.564)           | (28.731)           | (37.979)           | (41.722)           | (22.439)                                                | (29.782)                        | $(32.441)^*$            |
| Comparison mean                    | 134.854                     | 82.022             | 190.202            | 136.261            | 79.106             | 198.471            | 133.887                                                 | 84.090                          | 184.703                 |
| p-value on equality of effec       | ct $(5) = (6) = (8) = (9)$  | ): .354 (2)=(3     | 8): .505           |                    | $(5) = (\ell$      | 6): .775           | (4)=(7): .234                                           | (8) = (9)                       | ): .275                 |
| Total hours worked last mon        | <u>th (2016)</u>            |                    |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 14.612                      | 20.422             | 8.688              | -2.401             | 4.578              | -11.771            | 24.518                                                  | 28.768                          | 21.273                  |
| standard error                     | (8.593)*                    | $(11.605)^*$       | (12.696)           | (13.921)           | (18.816)           | (20.672)           | $(10.889)^{**}$                                         | (14.770)*                       | (16.108)                |
| Comparison mean                    | 82.658                      | 66.354             | 99.899             | 76.366             | 60.569             | 93.694             | 87.000                                                  | 70.467                          | 104.047                 |
| p-value on equality of effec       | $\cot(5) = (6) = (8) = (9)$ | ): .390 (2)=(3     | ?): .495           |                    | $(5) = (\ell$      | 5): .559           | (4)=(7): .128                                           | (8) = (9)                       | ): .731                 |
| Worked over 10 hours in the        |                             | -                  |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 0.089                       | 0.137              | 0.041              | -0.028             | 0.025              | -0.096             | 0.158                                                   | 0.202                           | 0.123                   |
| standard error                     | (0.039)**                   | $(0.051)^{***}$    | (0.056)            | (0.063)            | (0.083)            | (0.092)            | $(0.049)^{***}$                                         | $(0.065)^{***}$                 | $(0.071)^*$             |
| Comparison mean                    | 0.538                       | 0.424              | 0.659              | 0.537              | 0.415              | 0.671              | 0.538                                                   | 0.430                           | 0.651                   |
| p-value on equality of effec       |                             |                    | ?): .205           |                    | $(5) = (\ell$      | 6): .329           | $(4) = (7): .019^{**}$                                  | * (8)=(9)                       | ): .414                 |
| Total hours worked last mon        |                             |                    |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 2.319                       | 3.674              | -0.002             | -2.621             | 3.746              | -8.074             | 3.066                                                   | -0.048                          | 3.862                   |
| standard error                     | (10.848)                    | (15.710)           | (15.005)           | (18.299)           | (27.087)           | (25.015)           | · · · ·                                                 | (19.503)                        | (18.830)                |
| Comparison mean                    | 147.013                     | 148.272            | 146.143            | 136.801            | 138.234            | 135.803            | 153.959                                                 | 155.149                         | 153.141                 |
| p-value on equality of effect      |                             |                    | (): .865           |                    | (5) = (6)          | 6): .748           | (4)=(7): .802                                           | (8) = (9)                       | ): .885                 |
| Earnings per hour if worked        |                             |                    | 0 774              | O OFF              | 0.921              | 1 906              | 0.007                                                   | 1.050                           | 0.495                   |
| Treatment effect<br>standard error | -0.835 $(0.433)*$           | -0.730             | -0.774             | -0.855             | -0.231             | -1.306             | -0.807                                                  | -1.050                          | -0.435                  |
| Comparison mean                    | $(0.433)^{+}$<br>2.464      | $(0.620) \\ 1.762$ | $(0.598) \\ 2.941$ | $(0.750) \\ 2.765$ | $(1.079) \\ 1.687$ | $(1.032) \\ 3.494$ | $(0.533) \\ 2.256$                                      | $(0.767) \\ 1.814$              | $(0.738) \\ 2.559$      |
| p-value on equality of effect      |                             |                    |                    | 2.705              |                    | 5.494<br>6): .472  | (4)=(7):.958                                            | (8)=(9)                         |                         |
| Total hours helping family in      |                             |                    | )300               |                    | (0)-(0             | ))472              | (4)-(1)300                                              | $(\mathcal{O}) - (\mathcal{O})$ |                         |
| Treatment effect                   | 2.192                       | 1.065              | 4.384              | 1.686              | 3.342              | 4.352              | 2.552                                                   | -0.488                          | 4.558                   |
| standard error                     | (3.102)                     | (4.159)            | (4.292)            | (4.801)            | (6.656)            | (6.696)            | (4.147)                                                 | (5.592)                         | (5.765)                 |
| Comparison mean                    | 16.472                      | 20.536             | (1.202)<br>12.170  | 18.056             | (0.000)<br>21.395  | 13.694             | 15.388                                                  | 19.840                          | 11.303                  |
| p-value on equality of effect      |                             |                    |                    | 10.000             |                    | <i>5): .915</i>    | (4)=(7):.892                                            | (8)=(9)                         |                         |
| Enrolled in formal study/trai      |                             | (-) (-)            | )                  |                    | (-) (-             | .)                 | (-) (.)                                                 |                                 | ,                       |
| Treatment effect                   | 0.006                       | 0.021              | -0.011             | 0.048              | 0.065              | 0.028              | -0.021                                                  | -0.005                          | -0.034                  |
| standard error                     | (0.020)                     | (0.027)            | (0.029)            | (0.032)            | (0.044)            | (0.048)            | (0.025)                                                 | (0.034)                         | (0.037)                 |
| Comparison mean                    | 0.091                       | 0.072              | 0.111              | 0.105              | 0.092              | 0.119              | 0.081                                                   | 0.058                           | 0.105                   |
| p-value on equality of effect      | tt(5) = (6) = (8) = (9)     | ): .348 (2)=(3     | ?): .417           |                    | (5) = (6)          | 6): .564           | (4)=(7): .092*                                          | (8) = (9)                       | ): .571                 |
| Positive earnings or in school     |                             |                    |                    |                    |                    | /                  |                                                         |                                 |                         |
| Treatment effect                   | 0.069                       | 0.105              | 0.037              | 0.016              | 0.065              | -0.050             | 0.099                                                   | 0.127                           | 0.090                   |
| standard error                     | $(0.037)^{*}$               | $(0.049)^{**}$     | (0.054)            | (0.061)            | (0.080)            | (0.088)            | $(0.047)^{**}$                                          | (0.063)**                       | (0.069)                 |
| Comparison mean                    | 0.627                       | 0.504              | 0.756              | 0.632              | 0.505              | 0.769              | 0.624                                                   | 0.504                           | 0.747                   |
| p-value on equality of effec       | et $(5) = (6) = (8) = (9)$  | ): .434 (2)=(3     | ?): .354           |                    | $(5) = (\ell$      | 6): .337           | (4)=(7): .281                                           | (8) = (9)                       | ): .690                 |
| Wage worker (2016)                 |                             |                    |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 0.041                       | 0.065              | 0.015              | -0.081             | -0.001             | -0.182             | 0.115                                                   | 0.106                           | 0.133                   |
| standard error                     | (0.034)                     | (0.047)            | (0.051)            | (0.056)            | (0.075)            | $(0.083)^{**}$     | (0.044)***                                              | (0.059)*                        | (0.064)**               |
| Comparison mean                    | 0.241                       | 0.179              | 0.305              | 0.244              | 0.180              | 0.313              | 0.239                                                   | 0.178                           | 0.300                   |
| p-value on equality of effec       | et $(5) = (6) = (8) = (9)$  | ): .012**(2)=(3    | 8): .467           |                    | $(5) = (\ell$      | 6): .107           | (4)=(7): .005***                                        | * (8)=(9)                       | ): .756                 |
| Day or seasonal laborer (201       | <u>6)</u>                   |                    |                    |                    |                    |                    |                                                         |                                 |                         |
| Treatment effect                   | 0.037                       | 0.044              | 0.037              | 0.031              | 0.077              | -0.030             | 0.040                                                   | 0.023                           | 0.079                   |
| . 1 1                              | (0.027)                     | (0.035)            | (0.039)            | (0.044)            | (0.058)            | (0.063)            | (0.034)                                                 | (0.045)                         | (0.049)                 |
| standard error                     |                             |                    |                    |                    |                    |                    |                                                         |                                 | 0.100                   |
| standard error<br>Comparison mean  | 0.126                       | 0.047              | 0.210              | 0.129              | 0.028              | 0.240              | 0.124                                                   | 0.060                           | 0.189                   |
|                                    |                             |                    |                    | 0.129              |                    | 0.240<br>6): .211  | $\begin{array}{c} 0.124 \\ (4) = (7): .873 \end{array}$ | 0.060<br>(8)=(9)                |                         |

## Table A10: Outcomes for Bottom Half of JHS Exam Scores cont.

|                              |                           | Combined            |                 | Acade           | emic Major A    | dmits    | Vocational Major Admits |                 |                   |
|------------------------------|---------------------------|---------------------|-----------------|-----------------|-----------------|----------|-------------------------|-----------------|-------------------|
|                              | All                       | Female              | Male            | All             | Female          | Male     | All                     | Female          | Male              |
|                              | (1)                       | (2)                 | (3)             | (4)             | (5)             | (6)      | (7)                     | (8)             | (9)               |
| Farming (2016)               |                           |                     |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | -0.019                    | -0.023              | -0.011          | 0.003           | 0.025           | -0.027   | -0.032                  | -0.054          | -0.002            |
| standard error               | (0.018)                   | (0.024)             | (0.026)         | (0.029)         | (0.039)         | (0.042)  | (0.022)                 | $(0.030)^*$     | (0.033)           |
| Comparison mean              | 0.046                     | 0.022               | 0.071           | 0.044           | 0.018           | 0.074    | 0.047                   | 0.025           | 0.070             |
| p-value on equality of eff   | ect(5) = (6) = (8) = (9)  | ):.400 (2)=(3       | 8): .741        |                 | (5) = (6)       | '): .360 | (4)=(7): .338           | (8) = (9)       | 9): .245          |
| Working for own or family    | <u>business (2016)</u>    |                     |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | 0.028                     | 0.045               | 0.009           | 0.034           | -0.011          | 0.087    | 0.021                   | 0.074           | -0.036            |
| standard error               | (0.036)                   | (0.049)             | (0.054)         | (0.059)         | (0.080)         | (0.088)  | (0.046)                 | (0.063)         | (0.068)           |
| Comparison mean              | 0.306                     | 0.286               | 0.326           | 0.292           | 0.254           | 0.333    | 0.315                   | 0.309           | 0.321             |
| p-value on equality of eff   | ect(5) = (6) = (8) = (9)  | ):.550 (2)=(3       | <i>3): .627</i> |                 | (5) = (6)       | '): .409 | (4)=(7): .867           | (8) = (9)       | <i>)): .233</i>   |
| Actively searching for a job | (2016)                    |                     |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | 0.104                     | 0.130               | 0.078           | 0.145           | 0.161           | 0.122    | 0.081                   | 0.116           | 0.051             |
| standard error               | $(0.035)^{***}$           | $(0.048)^{***}$     | (0.052)         | $(0.058)^{**}$  | $(0.078)^{**}$  | (0.085)  | (0.045)*                | $(0.061)^*$     | (0.066)           |
| Comparison mean              | 0.276                     | 0.235               | 0.320           | 0.274           | 0.226           | 0.327    | 0.277                   | 0.241           | 0.315             |
| p-value on equality of eff   | ect(5) = (6) = (8) = (9)  | ):.739 (2)=(3       | 8): .461        |                 | (5) = (6)       | :): .733 | (4)=(7): .377           | (8) = (9)       | )): .471          |
| If no earnings and no school | l: actively searching     | for a job (201)     | .6)             |                 |                 |          |                         |                 |                   |
| Treatment effect             | 0.227                     | 0.308               | 0.050           | 0.267           | 0.347           | 0.062    | 0.193                   | 0.282           | 0.005             |
| standard error               | $(0.064)^{***}$           | $(0.076)^{***}$     | (0.112)         | $(0.098)^{***}$ | $(0.119)^{***}$ | (0.170)  | $(0.084)^{**}$          | $(0.099)^{***}$ | (0.153)           |
| Comparison mean              | 0.322                     | 0.257               | 0.459           | 0.305           | 0.243           | 0.450    | 0.333                   | 0.268           | 0.465             |
| p-value on equality of eff   | ect (5) = (6) = (8) = (9) | ): .226 (2)=(3      | ): .057*        |                 | (5) = (6)       | ): .171  | (4) = (7):.568          | (8) = (9)       | 9): .1 <b>3</b> 0 |
| If earnings: actively search | ing for a job (2016)      |                     |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | 0.039                     | 0.013               | 0.075           | 0.074           | 0.012           | 0.119    | 0.023                   | 0.014           | 0.053             |
| standard error               | (0.045)                   | (0.065)             | (0.061)         | (0.076)         | (0.112)         | (0.100)  | (0.056)                 | (0.080)         | (0.076)           |
| Comparison mean              | 0.274                     | 0.237               | 0.300           | 0.285           | 0.242           | 0.314    | 0.267                   | 0.233           | 0.290             |
| p-value on equality of eff   |                           |                     | 8): .477        |                 | (5) = (6)       | '): .480 | (4)=(7):.592            | (8) = (9)       | 9): .730          |
| Lowest daily wage willing t  | , , ,                     | ,                   |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | -1.442                    | 0.110               | -2.993          | -0.059          | 0.686           | -1.124   | -2.346                  | -0.448          | -4.080            |
| standard error               | (0.976)                   | (1.303)             | $(1.418)^{**}$  | (1.590)         | (2.130)         | (2.318)  | (1.231)*                | (1.651)         | $(1.794)^{**}$    |
| Comparison mean              | 9.949                     | 8.012               | 11.959          | 9.291           | 7.163           | 11.550   | 10.396                  | 8.599           | 12.230            |
| p-value on equality of eff   |                           | ): $.315 (2) = (3)$ | 3): .107        |                 | (5) = (6)       | ?): .566 | (4) = (7):.255          | (8) = (9)       | 9): .1 <b>36</b>  |
| Willing to move for wage en  |                           |                     |                 |                 |                 |          |                         |                 |                   |
| Treatment effect             | 0.041                     | 0.030               | 0.056           | 0.039           | 0.021           | 0.060    | 0.042                   | 0.033           | 0.054             |
| standard error               | (0.026)                   | (0.035)             | (0.039)         | (0.042)         | (0.057)         | (0.063)  | (0.033)                 | (0.045)         | (0.049)           |
| Comparison mean              | 0.870                     | 0.854               | 0.888           | 0.857           | 0.846           | 0.869    | 0.879                   | 0.859           | 0.900             |
| p-value on equality of effe  | ect (5) = (6) = (8) = (9) | 1 , 1               | -               |                 | (5) = (6)       |          | (4) = (7): .958         |                 | 9): .748          |
| Observations                 | 1983                      | 1002                | 981             | 808             | 409             | 399      | 1175                    | 593             | 582               |

Notes: Year of survey in parentheses. Regressions estimate the effect on those below the 50th percentile of each subgroup's JHS exam score distribution. See Table 3 notes for description of columns; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. 1984 observations in 2013 survey, 2011 observations in 2015 survey and 1996 observations in 2016 survey.

Table A11: Female Tertiary and Labor Market Outcomes by JHS Completion Year

|                                                                                            | Combined                                                     | Academic Major Admits    | Vocational Major Admit   |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|--------------------------|--|--|
|                                                                                            | Female                                                       | Female                   | Female                   |  |  |
| Tetel star ler l' (2012)                                                                   | (1)                                                          | (2)                      | (3)                      |  |  |
| Total standardized score (2013)                                                            | 0.176                                                        | 0.964                    | 0 194                    |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $0.176 \\ (0.084)^{**}$                                      | $0.264 \\ (0.134)^{**}$  | 0.124<br>(0.109)         |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Ever enrolled in tertiary education (2 | $0.256 \\ (0.139)^* \\ 2016)$                                | $0.148 \\ (0.205)$       | 0.272<br>(0.186)         |  |  |
| 2008 Females' Treatment Effect                                                             | 0.055                                                        | 0.103                    | 0.026                    |  |  |
| Standard error                                                                             | (0.024)**                                                    | (0.038)***               | (0.031)                  |  |  |
| 2007 Females' Treatment Effect<br>Standard error                                           | 0.038<br>(0.029)                                             | $0.057 \\ (0.045)$       | 0.015<br>(0.039)         |  |  |
| Currently enrolled in tertiary program                                                     | . ,.                                                         | 0.000                    | 0.020                    |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | 0.056<br>(0.023)**                                           | $0.090 \\ (0.036)^{**}$  | $0.038 \\ (0.029)$       |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>University (2016)                      | 0.027<br>(0.028)                                             | $0.029 \\ (0.043)$       | $0.017 \\ (0.037)$       |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | 0.043<br>$(0.014)^{***}$                                     | $0.062 \\ (0.022)^{***}$ | $0.031 \\ (0.018)^*$     |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Nurses training (2016)                 | 0.020<br>(0.014)                                             | 0.012<br>(0.022)         | $0.025 \\ (0.019)$       |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $0.003 \\ (0.012)$                                           | $0.017 \\ (0.019)$       | -0.005<br>(0.015)        |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br><u>Teachers training (2016)</u>        | 0.011<br>(0.019)                                             | 0.023<br>(0.028)         | -0.002<br>(0.025)        |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $0.005 \\ (0.014)$                                           | 0.011<br>(0.022)         | 0.003<br>(0.018)         |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Years spent attending tertiary educa:  | -0.004<br>(0.017)<br>tion (2016)                             | -0.007<br>(0.026)        | -0.006<br>(0.023)        |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $0.120 \\ (0.046)^{***}$                                     | $0.195 \\ (0.073)^{***}$ | $0.075 \\ (0.059)$       |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Total years of education to date (201  | $\begin{array}{c} 0.040 \\ (0.063) \\ \hline 6) \end{array}$ | 0.040<br>(0.097)         | 0.024<br>(0.084)         |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $1.184 \\ (0.161)^{***}$                                     | $1.421 \\ (0.255)^{***}$ | $1.043 \\ (0.208)^{***}$ |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Plans to continue to tertiary (2013)   | 1.589<br>(0.250)***                                          | $1.510 \\ (0.383)^{***}$ | 1.576<br>(0.332)***      |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | $0.251 \\ (0.040)^{***}$                                     | $0.275 \ (0.064)^{***}$  | 0.237<br>$(0.052)^{***}$ |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Sat for WASSCE exam (2015)             | $0.338 \\ (0.059)^{***}$                                     | $0.293 \\ (0.088)^{***}$ | $0.358 \\ (0.080)^{***}$ |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | 0.252<br>$(0.040)^{***}$                                     | $0.260 \ (0.063)^{***}$  | 0.250<br>$(0.051)^{***}$ |  |  |
| 2007 Females' Treatment Effect                                                             | 0.368                                                        | 0.349                    | 0.364                    |  |  |
| Standard error<br><u>Plans to apply to tertiary (2015)</u>                                 | $(0.058)^{***}$                                              | (0.088)***               | (0.078)***               |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | 0.146<br>$(0.041)^{***}$                                     | $0.109 \\ (0.065)^*$     | 0.172<br>(0.052)***      |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Applied for tertiary education (2015)  | 0.261<br>(0.061)***                                          | 0.239<br>$(0.092)^{***}$ | 0.259<br>$(0.082)^{***}$ |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                           | 0.102<br>(0.032)***                                          | $0.113 \\ (0.050)^{**}$  | $0.099 \\ (0.041)^{**}$  |  |  |
|                                                                                            | 0.45-                                                        | 0.177                    |                          |  |  |

 2007 Females' Treatment Effect
 0.136
 0.183
 0.093

 Standard error
 (0.041)\*\*\*
 (0.062)\*\*\*
 (0.055)\*

Table A11 continues on next page

Table A11: Female Tertiary and Labor Market Outcomes by JHS Completion Year cont.⊠

| _                                                                                             | Combined                                                                             | Academic Major Admits                           | Vocational Major Admi                          |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|--|--|
|                                                                                               | Female                                                                               | Female                                          | Female                                         |  |  |
| _                                                                                             | (1)                                                                                  | (2)                                             | (3)                                            |  |  |
| if applied: number of programs a                                                              | · ,                                                                                  |                                                 |                                                |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | $0.059 \\ (0.163)$                                                                   | 0.096<br>(0.236)                                | $0.015 \\ (0.225)$                             |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Admitted to a tertiary program (201       | -0.067<br>(0.233)<br>5)                                                              | $0.262 \\ (0.302)$                              | -0.493<br>(0.347)                              |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | 0.068<br>$(0.024)^{***}$                                                             | $0.064 \\ (0.038)^*$                            | $0.071 \\ (0.031)^{**}$                        |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Inv. hyperbolic sine earnings (2016)      | $0.030 \\ (0.026)$                                                                   | $\begin{array}{c} 0.046 \\ (0.040) \end{array}$ | $\begin{array}{c} 0.013 \ (0.036) \end{array}$ |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | $0.393 \\ (0.231)^*$                                                                 | $0.321 \\ (0.367)$                              | $0.431 \\ (0.298)$                             |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Log earnings last month if positive (     | 0.390<br>(0.384)<br>2016)                                                            | -0.133<br>(0.589)                               | $0.832 \\ (0.511)$                             |  |  |
| 2008 Females' Treatment Effect<br>Standard error<br>p-value on equality of effects            | 0.040<br>(0.115)                                                                     | 0.154<br>(0.189)                                | -0.023<br>(0.146)                              |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br><u>Positive earnings (2016)</u>           | 0.043<br>(0.177)                                                                     | 0.020<br>(0.287)                                | $0.076 \\ (0.227)$                             |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | $0.066 \\ (0.041)$                                                                   | $0.045 \\ (0.065)$                              | $0.078 \\ (0.053)$                             |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br><u>Total earnings last month (GHX) (2</u> | $\begin{array}{c} 0.062 \\ (0.068) \\ 016) \end{array}$                              | -0.035<br>(0.104)                               | $0.139 \\ (0.091)$                             |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | 5.494<br>(12.512)                                                                    | -1.336<br>(19.896)                              | $9.960 \ (16.170)$                             |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Total hours worked last month (2010       | $ \begin{array}{c} 6.910 \\ (21.273) \\ \underline{6} \end{array} $                  | -15.412<br>(32.652)                             | 27.079<br>(28.339)                             |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | 19.792<br>(8.826)**                                                                  | 22.496<br>(14.027)                              | $17.594 \\ (11.405)$                           |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Worked over 10 hours in the past ma       | 12.706<br>(14.003)<br>onth (2016)                                                    | -4.414<br>(21.459)                              | 28.189<br>(18.625)                             |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | 0.095<br>(0.041)**                                                                   | $0.055 \\ (0.065)$                              | $0.120 \\ (0.053)^{**}$                        |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>Fotal hours worked last month if po       | 0.077<br>(0.068)<br>sitive (2016)                                                    | -0.012<br>(0.104)                               | $0.153 \\ (0.090)^*$                           |  |  |
| 2008 Females' Treatment Effect<br>Standard error                                              | 14.108<br>(13.041)                                                                   | 35.949<br>(21.381)*                             | $0.428 \\ (16.506)$                            |  |  |
| 2007 Females' Treatment Effect<br>Standard error<br>2008 Observations                         | $     \begin{array}{r}       11.145 \\       (20.034) \\       723     \end{array} $ | -3.535<br>(32.596)<br>297                       | $22.367 \\ (25.772) \\ 426$                    |  |  |
| 2007 Observations                                                                             | 279                                                                                  | 112                                             | 167                                            |  |  |

Notes: Year of survey in parentheses. See Table 3 for description of columns. 2008 Females are females who graduated from JHS in 2008. 2007 females are females who graduated from JHS in 2007. Cell rows 1 and 4 show the treatment effects; cell rows 2 and 5 show standard errors in parentheses with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; cell rows 3 and 6 report p-values of tests of hypotheses of equality of treatment effects between the columns specified in parentheses; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores.

## Table A12: Composition of Those in Formal Education/Training in 2016

|                                   | Co                        | ombined        |                  | Acad           | emic Major A   | dmits          | Vocati        | onal Major A | Admits   |
|-----------------------------------|---------------------------|----------------|------------------|----------------|----------------|----------------|---------------|--------------|----------|
|                                   | All                       | Female         | Male             | All            | Female         | Male           | All           | Female       | Male     |
|                                   | (1)                       | (2)            | (3)              | (4)            | (5)            | (6)            | (7)           | (8)          | (9)      |
| <u>Age in 2008</u>                |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | 0.065                     | 0.176          | -0.146           | 0.053          | 0.176          | -0.038         | 0.132         | 0.645        | -0.195   |
| Standard error                    | (0.210)                   | (0.308)        | (0.291)          | (0.297)        | (0.413)        | (0.425)        | (0.299)       | (0.463)      | (0.398)  |
| Control mean                      | 16.686                    | 16.408         | 16.875           | 16.509         | 16.385         | 16.613         | 16.844        | 16.435       | 17.073   |
| Completed BECE in 2007            |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | 0.006                     | -0.032         | 0.001            | -0.008         | -0.049         | -0.013         | 0.014         | -0.016       | 0.012    |
| Standard error                    | (0.039)                   | (0.055)        | (0.052)          | (0.056)        | (0.074)        | (0.076)        | (0.056)       | (0.083)      | (0.071)  |
| Control mean                      | 0.074                     | 0.184          | 0.000            | 0.105          | 0.231          | 0.000          | 0.047         | 0.130        | 0.000    |
| BECE exam performance             |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | 0.007                     | -0.005         | 0.020            | -0.002         | -0.025         | 0.023          | 0.014         | 0.017        | 0.015    |
| Standard error                    | (0.012)                   | (0.018)        | (0.017)          | (0.017)        | (0.024)        | (0.025)        | (0.018)       | (0.028)      | (0.024)  |
| Control mean                      | 0.654                     | · · · ·        | 0.652            | 0.669          | 0.679          | 0.660          | 0.640         | 0.630        | 0.646    |
| No male head in the household     |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | -0.048                    | 0.059          | -0.149           | -0.016         | 0.127          | -0.167         | -0.064        | -0.003       | -0.132   |
| Standard error                    | (0.074)                   | (0.108)        | (0.103)          | (0.105)        | (0.145)        | (0.152)        | (0.105)       | (0.162)      | (0.140)  |
| Control mean                      | 0.438                     | 0.408          | 0.458            | 0.368          | 0.269          | 0.452          | 0.500         | 0.565        | 0.463    |
| Number of HH members              |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | -0.084                    | -0.302         | 0.098            | -0.363         | -0.205         | -0.630         | 0.167         | -0.499       | 0.753    |
| Standard error                    | (0.328)                   | (0.481)        | (0.459)          | (0.468)        | (0.644)        | (0.677)        | (0.467)       | (0.721)      | (0.621)  |
| Control mean                      | 5.570                     | 5.714          | 5.472            | 5.789          | 5.962          | 5.645          | 5.375         | 5.435        | 5.341    |
| Years of education of HH head     | 0.010                     | 0.114          | 0.412            | 0.105          | 0.002          | 0.040          | 0.010         | 0.400        | 0.041    |
| Treatment-Control Difference      | -1.008                    | -2.961         | 0.567            | -1.282         | -3.774         | 1.147          | -0.862        | -2.106       | 0.057    |
| Standard error                    | (0.820)                   | $(1.185)^{**}$ | (1.132)          | (1.168)        | $(1.596)^{**}$ | (1.678)        | (1.164)       | (1.787)      | (1.539)  |
| Control mean                      | 7.256                     | 8.612          | (1.132)<br>6.333 | 7.982          | 9.769          | 6.484          | 6.609         | 7.304        | 6.220    |
| Highest education of HH head: te  |                           | 0.012          | 0.555            | 1.962          | 9.709          | 0.404          | 0.009         | 1.304        | 0.220    |
| Treatment-Control Difference      | -0.058                    | -0.099         | -0.035           | -0.052         | -0.135         | 0.020          | -0.066        | -0.056       | -0.083   |
|                                   |                           |                |                  |                |                |                |               |              |          |
| Standard error                    | (0.041)                   | $(0.060)^*$    | (0.057)          | (0.059)        | $(0.081)^*$    | (0.085)        | (0.058)       | (0.090)      | (0.078)  |
| Control mean                      | 0.107                     | 0.163          | 0.069            | 0.123          | 0.192          | 0.065          | 0.094         | 0.130        | 0.073    |
| Perceived returns to SHS (%)      | 04 011                    | 110.000        | 100 200          | 011 050        | 155 100        | 057 040        | 179.005       | 410.059      | 00.074   |
| Treatment-Control Difference      | 24.811                    | -112.863       | 122.308          | 211.950        | 155.106        | 257.949        | -172.085      | -419.058     | -26.074  |
| Standard error                    | (112.019)                 | (163.110)      | (156.271)        | (159.296)      | (223.419)      | (226.346)      | (158.311)     | (238.339)*   | (217.463 |
| Control mean                      | 387.854                   | 516.368        | 295.484          | 357.306        | 417.333        | 299.588        | 414.259       | 634.267      | 292.675  |
| Perceived returns to SHS educati  |                           |                |                  |                | 0.011          |                |               |              |          |
| Treatment-Control Difference      | 0.011                     | -0.047         | 0.047            | 0.061          | -0.011         | 0.125          | -0.050        | -0.087       | -0.051   |
| Standard error                    | (0.079)                   | (0.115)        | (0.110)          | (0.113)        | (0.159)        | (0.161)        | (0.112)       | (0.169)      | (0.155)  |
| Control mean                      | 0.518                     | 0.587          | 0.469            | 0.549          | 0.600          | 0.500          | 0.492         | 0.571        | 0.447    |
| Ever had sex                      |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | -0.089                    | -0.130         | -0.085           | -0.083         | -0.054         | -0.132         | -0.090        | -0.209       | -0.051   |
| Standard error                    | (0.057)                   | (0.082)        | (0.078)          | (0.081)        | (0.110)        | (0.113)        | (0.081)       | $(0.123)^*$  | (0.106)  |
| Control mean                      | 0.215                     | 0.306          | 0.153            | 0.193          | 0.192          | 0.194          | 0.234         | 0.435        | 0.122    |
| Standardized score, Reading test  |                           |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | 0.192                     | 0.144          | 0.222            | 0.233          | 0.339          | 0.138          | 0.124         | -0.111       | 0.271    |
|                                   |                           |                |                  |                |                |                |               |              |          |
| Standard error                    | (0.081)**                 | (0.122)        | (0.112)**        | (0.115)**      | (0.162)**      | (0.161)        | (0.115)       | (0.179)      | (0.151)* |
| Control mean                      | 0.502                     | 0.553          | 0.468            | 0.570          | 0.486          | 0.635          | 0.443         | 0.624        | 0.342    |
| p-value on equality of effects    | (5)=(6)=(8)=(9):.2        | (2)=(3)        | 3): .641         |                | (5) = (0)      | 6): .377       | (4)=(7):.502  | (8)=(9)      | 9): .107 |
| Standardized score, Math test (2) | ,                         |                |                  |                |                |                |               |              |          |
| Treatment-Control Difference      | 0.175                     | -0.053         | 0.426            | 0.391          | 0.244          | 0.622          | -0.063        | -0.446       | 0.250    |
| Standard error                    | (0.138)                   | (0.203)        | $(0.187)^{**}$   | $(0.196)^{**}$ | (0.273)        | $(0.273)^{**}$ | (0.196)       | (0.303)      | (0.256)  |
| Control mean                      | 0.576                     | 0.519          | 0.614            | 0.547          | 0.460          | 0.614          | 0.601         | 0.580        | 0.613    |
| p-value on equality of effects    | (5) = (6) = (8) = (9): .0 | 78* (2)=(3     | e): .084*        |                | (5)=(0         | 6): .326       | (4)=(7): .104 | (8) = (9)    | ): .082* |
| Total standardized score (2013)   |                           | () ()          | ~                |                |                | /              |               |              |          |
| Treatment-Control Difference      | 0.215                     | 0.041          | 0.395            | 0.378          | 0.338          | 0.478          | 0.024         | -0.349       | 0.306    |
|                                   |                           |                |                  |                |                |                |               |              |          |
| Standard error                    | (0.115)*                  | (0.171)        | (0.157)**        | (0.163)**      | (0.229)        | (0.228)**      | (0.163)       | (0.253)      | (0.214)  |
| Control mean                      | 0.640                     | 0.630          | 0.647            | 0.657          | 0.556          | 0.735          | 0.626         | 0.707        | 0.580    |
| p-value on equality of effects    | (5) = (6) = (8) = (9): .0 | $87^*$ (2)=(3  | 3): .130         |                | $(5) = (\ell$  | 6): .660       | (4)=(7): .127 | (8) = (9)    | ): .050* |
| Observations                      | 194                       | 86             | 108              | 96             | 47             | 49             | 98            | 39           | 59       |

Notes: Year of survey in parentheses. Sample restricted to those who were in formal education/training as of 2016. Cell row 1 shows the Treatment mean minus the Control mean; standard errors are in the second cell row in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%; Control means are in the third cell row; all regressions control for region fixed effects. See Table 2 notes for description of columns.

|                                                                                     |                                       | Combined                             |                   |                        | emic Major A                                |                    |                        | onal Major A                    |                    |
|-------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------|------------------------|---------------------------------------------|--------------------|------------------------|---------------------------------|--------------------|
|                                                                                     | All                                   | Female                               | Male              | All                    | Female                                      | Male               | All                    | Female                          | Male               |
|                                                                                     | (1)                                   | (2)                                  | (3)               | (4)                    | (5)                                         | (6)                | (7)                    | (8)                             | (9)                |
| Main source of income is own                                                        | · /                                   |                                      |                   |                        |                                             |                    |                        |                                 |                    |
| Treatment effect                                                                    | 0.030                                 | 0.052                                | -0.003            | 0.034                  | 0.051                                       | -0.005             | 0.027                  | 0.051                           | -0.002             |
| Standard error                                                                      | (0.024)                               | (0.033)                              | (0.032)           | (0.038)                | (0.051)                                     | (0.051)            | (0.031)                | (0.042)                         | (0.042)            |
| Comparison mean                                                                     | 0.581                                 | 0.416                                | 0.754             | 0.556                  | 0.375                                       | 0.754              | 0.599                  | 0.446                           | 0.754              |
| p-value on equality of effect                                                       |                                       |                                      | ): .236           |                        | (5) = (6)                                   | ): .438            | (4)=(7): .893          | (8) = (9)                       | ): .375            |
| Main source of income is spou                                                       | ,                                     | -                                    | 0.001             | 0.001                  | 0.001                                       | 0.001              | 0.010                  | 0.005                           | 0.000              |
| Treatment effect                                                                    | -0.020                                | -0.033                               | -0.001            | -0.021                 | -0.031                                      | -0.001             | -0.019                 | -0.035                          | -0.000             |
| Standard error                                                                      | (0.014)                               | $(0.018)^*$                          | (0.018)           | (0.021)                | (0.029)                                     | (0.029)            | (0.018)                | (0.024)                         | (0.024)            |
| Comparison mean                                                                     | 0.086                                 | 0.166                                | 0.003             | 0.077                  | 0.148                                       | 0.000              | 0.092                  | 0.178                           | 0.005              |
| p-value on equality of effect                                                       |                                       | ( ) ( )                              | ): .208           |                        | (5) = (6)                                   | ): .471            | (4)=(7): .964          | (8) = (9)                       | ): .294            |
| <u>Main source of income is guar</u><br>Treatment effect                            | 1000000000000000000000000000000000000 | 0.002                                | 0.017             | 0.005                  | 0.000                                       | 0.017              | 0.009                  | 0.003                           | 0.016              |
| Standard error                                                                      | (0.020)                               |                                      | (0.017)           |                        |                                             |                    |                        | (0.003)                         |                    |
|                                                                                     | (0.020)<br>0.203                      | $(0.028) \\ 0.261$                   | (0.028)<br>0.141  | (0.031)                | $\begin{array}{c}(0.044)\\0.283\end{array}$ | $(0.044) \\ 0.158$ | $(0.026) \\ 0.189$     | (0.036)<br>0.246                | $(0.036) \\ 0.130$ |
| Comparison mean<br>p-value on equality of effect                                    |                                       |                                      |                   | 0.223                  | 0.283<br>(5)=(6)                            |                    |                        |                                 |                    |
| Has a bank account (2013)                                                           | (5) = (6) = (8) = (9)                 | (2)=(3)                              | ): .710           |                        | (D)=(D)                                     | ): .780            | (4)=(7): .928          | (8) = (9)                       | ): .810            |
| Treatment effect                                                                    | 0.060                                 | 0.109                                | 0.008             | 0.071                  | 0.129                                       | 0.006              | 0.053                  | 0.095                           | 0.009              |
| Standard error                                                                      | $(0.023)^{***}$                       | $(0.033)^{***}$                      | (0.008)           | $(0.036)^*$            | $(0.051)^{**}$                              | (0.000)            | $(0.033)^*$            | (0.095)<br>$(0.043)^{**}$       | (0.009)            |
| Comparison mean                                                                     | $(0.023)^{++++}$<br>0.314             | $(0.033)^{+++}$<br>0.236             | (0.033)<br>0.396  | $(0.036)^{+}$<br>0.315 | $(0.051)^{44}$<br>0.232                     | (0.051)<br>0.404   | $(0.030)^{+}$<br>0.314 | $(0.043)^{44}$<br>0.238         | (0.042)<br>0.390   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.919                  | (5)=(6)                                     |                    | (4)=(7):.698           | (8)=(9)                         |                    |
| Has a bank account (2016)                                                           | (0) - (0) = (0) = (0) = (0)           | <i></i>                              | .020              |                        | (0)=(0)                                     | 000                | (4)-(7):.098           | (0) = (9)                       | 100                |
| Treatment effect                                                                    | 0.018                                 | 0.050                                | -0.020            | 0.023                  | 0.079                                       | -0.046             | 0.014                  | 0.030                           | -0.003             |
| Standard error                                                                      | (0.024)                               | (0.030)                              | (0.034)           | (0.023)                | (0.079)                                     | (0.054)            | (0.014)                | (0.045)                         | (0.044)            |
| Comparison mean                                                                     | (0.024)<br>0.434                      | (0.034)<br>0.350                     | (0.034)<br>0.521  | (0.038)<br>0.431       | (0.034)<br>0.318                            | (0.054)<br>0.554   | (0.032)<br>0.435       | (0.043)<br>0.373                | (0.044)<br>0.499   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.431                  | (5)=(6)                                     |                    | (4)=(7):.868           | (8)=(9)                         |                    |
| Would not be able to cope wi                                                        |                                       | ( ) ( )                              |                   |                        | (D)=(D)                                     | ): .101            | $(4)=(7)^{2}.808$      | $(\mathcal{O})=(\mathcal{O})$   | ): .099            |
| Treatment effect                                                                    | -0.008                                | -0.032                               | 0.017             | -0.007                 | -0.026                                      | 0.014              | -0.008                 | -0.036                          | 0.019              |
| Standard error                                                                      | (0.010)                               | $(0.015)^{**}$                       | (0.017)           | (0.016)                | (0.023)                                     |                    | (0.013)                | $(0.019)^*$                     | (0.019)            |
|                                                                                     | (0.010)<br>0.050                      | · /                                  | (0.013)<br>0.032  | · · · ·                | (0.023)<br>0.068                            | $(0.023) \\ 0.027$ | (0.013)<br>0.051       | $(0.019)^{+}$<br>0.065          | (0.019)<br>0.036   |
| Comparison mean<br>p-value on equality of effect                                    |                                       | 0.066                                |                   | 0.048                  | (5)=(6)                                     |                    |                        | (8)=(9)                         |                    |
| Would use savings to deal wit                                                       |                                       |                                      |                   |                        | (J) = (U)                                   | )210               | (4) = (7):.965         | (0) - (9).                      |                    |
| Treatment effect                                                                    | -0.010                                | $\frac{\text{ergency}(2013)}{0.002}$ | -0.023            | 0.004                  | 0.029                                       | -0.026             | -0.019                 | -0.016                          | -0.022             |
| Standard error                                                                      | (0.019)                               | (0.002)                              | (0.023)           | (0.004)                | (0.029)                                     | (0.042)            | (0.019)                | (0.035)                         | (0.035)            |
| Comparison mean                                                                     | (0.019)<br>0.186                      | (0.027)<br>0.147                     | (0.027)<br>0.225  | (0.030)<br>0.185       | (0.042)<br>0.129                            | (0.042)<br>0.246   | (0.023)<br>0.186       | (0.035)<br>0.160                | (0.033)<br>0.212   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.185                  | (5)=(6)                                     |                    | (4)=(7):.557           | (8)=(9)                         |                    |
| Would borrow from network                                                           |                                       |                                      |                   |                        | (D)=(D)                                     | ): .504            | (4)=(7): .557          | $(\mathcal{O})=(\mathcal{O})$   | ): .099            |
| Treatment effect                                                                    | 0.013                                 | 0.028                                | -0.003            | 0.002                  | 0.013                                       | -0.010             | 0.020                  | 0.038                           | 0.002              |
| Standard error                                                                      | (0.025)                               | (0.028)                              | (0.035)           | (0.039)                | (0.013)                                     | (0.055)            | (0.020)                | (0.038)                         | (0.002)            |
| Comparison mean                                                                     | (0.023)<br>0.540                      | (0.035)<br>0.526                     | (0.035)<br>0.555  | (0.039)<br>0.530       | (0.033)<br>0.511                            | (0.055)<br>0.550   | (0.032)<br>0.547       | (0.040)<br>0.536                | (0.043)<br>0.559   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.550                  | (5)=(6)                                     |                    | (4)=(7):.719           | (8)=(9)                         |                    |
| Would rely on donations from                                                        |                                       |                                      |                   | y (2013)               | (D)=(D)                                     | ): .705            | (4) = (7): .719        | $(\mathcal{O})=(\mathcal{O})$   | ): .074            |
| Treatment effect                                                                    | -0.026                                | -0.041                               | -0.008            | -0.039                 | -0.073                                      | -0.000             | -0.016                 | -0.019                          | -0.012             |
| Standard error                                                                      | (0.025)                               | (0.035)                              | (0.035)           | (0.038)                | (0.054)                                     | (0.054)            | (0.032)                | (0.045)                         | (0.045)            |
| Comparison mean                                                                     | (0.023)<br>0.461                      | (0.033)<br>0.502                     | (0.035)<br>0.419  | (0.038)<br>0.450       | (0.054)<br>0.511                            | (0.034)<br>0.385   | (0.032)<br>0.469       | (0.045)<br>0.496                | (0.043)<br>0.441   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.450                  | (5)=(6)                                     |                    | (4)=(7):.646           | (8)=(9)                         |                    |
| Borrowed from a formal finan                                                        |                                       |                                      |                   |                        | (J) = (U)                                   | /040               | (4)-(7)040             | (0)-(9)                         | )911               |
| Treatment effect                                                                    | -0.034                                | -0.052                               | -0.019            | -0.058                 | -0.074                                      | -0.049             | -0.017                 | -0.037                          | 0.001              |
| Standard error                                                                      | (0.023)                               | (0.032)                              | (0.032)           | (0.036)                | (0.051)                                     | (0.050)            | (0.030)                | (0.042)                         | (0.001)            |
| Comparison mean                                                                     | (0.023)<br>0.318                      | (0.032)<br>0.280                     | (0.052)<br>0.358  | (0.030)<br>0.306       | (0.051)<br>0.257                            | (0.050)<br>0.359   | (0.030)<br>0.326       | (0.042)<br>0.296                | (0.042)<br>0.357   |
| p-value on equality of effect                                                       |                                       |                                      |                   | 0.500                  | (5)=(6)                                     |                    | (4)=(7):.382           | (8)=(9)                         |                    |
| Personal (non-food) in last 30                                                      |                                       |                                      | )400              |                        | (J) = (U)                                   | )129               | (4) - (7). 302         | $(\mathcal{O}) - (\mathcal{O})$ | )910               |
| Treatment effect                                                                    | 0.764                                 | 5.843                                | -4.248            | 5.029                  | 7.850                                       | 2.247              | -2.220                 | 4.442                           | -8.787             |
| standard error                                                                      | (2.595)                               | (3.677)                              | (3.659)           | (4.053)                | (5.737)                                     | (5.724)            | (3.381)                | (4.797)                         | $(4.767)^*$        |
| Comparison mean                                                                     | (2.093)<br>72.013                     | (3.077)<br>70.611                    | (3.059)<br>73.472 | (4.033)<br>70.120      | (5.757)<br>68.471                           | (3.724)<br>71.896  | (3.301)<br>73.305      | (4.797)<br>72.113               | (4.707)<br>74.518  |
| p-value on equality of effect                                                       |                                       |                                      |                   | 70.120                 |                                             |                    |                        | (8)=(9)                         |                    |
|                                                                                     |                                       | 7103 (2)=(3)                         | 001               |                        | (5) = (6)                                   | 1409               | (4)=(7): .170          | (0)=(9)                         | 000                |
| Current stock of savings (2013                                                      | ,                                     | 07 0 4 7                             | 01 050            | 0.010                  | 00.000                                      | 07.000             |                        | OF 070                          | 10 001             |
| Treatment effect                                                                    | 3.522                                 | 27.347                               | -21.356           | -2.618                 | 29.698                                      | -37.938            | 7.605                  | 25.676                          | -10.661            |
| standard error                                                                      | (11.063)                              | (15.600)*                            | (15.525)          | (17.282)               | (24.327)                                    | (24.273)           | (14.422)               | (20.349)                        | (20.221)           |
| Comparison mean                                                                     | 102.817                               | 72.721                               | 134.161           | 110.017                | 69.211                                      | 153.962            | 97.890                 | 75.191                          | 120.995            |
| -                                                                                   | t $(5) = (6) = (8) = (9)$             | ): .124 (2)=(3).                     | : .027**          |                        | (5)=(6).                                    | • .049**           | (4)=(7): .649          | (8) = (9)                       | ): .205            |
| p-value on equality of effect                                                       |                                       |                                      |                   |                        |                                             |                    |                        |                                 |                    |
| p-value on equality of effect<br>Ever registered for National H                     |                                       | Scheme (2013)                        |                   |                        |                                             |                    |                        |                                 |                    |
| p-value on equality of effect                                                       |                                       | <u>Scheme (2013)</u><br>0.031        | -0.003            | 0.009                  | 0.055                                       | -0.025             | 0.011                  | 0.014                           | 0.013              |
| p-value on equality of effect<br>Ever registered for National H                     | Health Insurance S                    | . ,                                  | -0.003 $(0.032)$  | 0.009<br>(0.037)       | 0.055 $(0.050)$                             | -0.025 $(0.050)$   | 0.011<br>(0.031)       | 0.014<br>(0.042)                | 0.013<br>(0.042)   |
| p-value on equality of effect<br>Ever registered for National H<br>Treatment effect | Health Insurance S<br>0.010           | 0.031                                |                   |                        |                                             |                    |                        |                                 |                    |

Notes: Year of survey in parentheses. See Table 2 notes for description of columns; all regressions control for region fixed effects, JHS finishing exam score (BECE) and missing JHS finishing exam scores; standard errors in parentheses, with \*\*\*, \*\*, \* indicating significance at 1, 5 and 10%. 1996 observations in 2016 survey. 1,984 observations in 2013 survey.