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1 Introduction

Why are �rms large or small? Even within narrowly de�ned industries, there is evidence

of massive dispersion in �rm outcomes such as revenue, employment, labor productivity or

measured total factor productivity (see Syverson (2011) for a recent overview). In Belgium,

a �rm at the 90th percentile of the size distribution has turnover more than 35 times greater

than a �rm at the 10th percentile in the same industry.1 Understanding the origins of �rm

heterogeneity has important micro- and macro-economic implications. At the micro level,

bigger �rms perform systematically better along many dimensions, such as survival rate,

innovation activity, and participation in international trade (e.g., (Bernard et al., 2012)). At

the macro level, the skewness and granularity of the �rm size distribution a�ect aggregate

productivity, the welfare gains from trade, and the impact of idiosyncratic and systemic

shocks (e.g., Melitz and Redding (2015), Pavcnik (2002), Gabaix (2011), di Giovanni et al.

(2014), Gaubert and Itskhoki (2016)).

While the literature has made progress in identifying underlying �rm-speci�c supply- and

demand side factors driving �rm size (e.g., Hottman et al., 2016), much less is known about

the role of �rm-to-�rm linkages in production networks. In particular, the focus has been

on one-sided heterogeneity in either �rm productivity on the supply side (e.g., Jovanovic

(1982), Hopenhayn (1992), Melitz (2003), Luttmer (2007)) or �nal-consumer preferences on

the demand side (e.g., Foster et al. (2016), Fitzgerald et al. (2016)). To the extent that the

literature has considered �rm-to-�rm trade, it has typically remained anchored in one-sided

heterogeneity by assuming that �rms source inputs from anonymous upstream suppliers or

sell to anonymous downstream buyers, without accounting for the heterogeneity of all trade

partners in the production network.

This paper examines how buyer-supplier connections in a complete production network

shape the �rm size distribution in the cross-section and its evolution over time.2 The basic

premise of the analysis is intuitive: �rms can become large because they have inherently

attractive capabilities such as productivity or product quality, because they interact with

better and larger buyers and suppliers, and/or because they are particularly well matched

to their buyers and suppliers. Alternatively, �rms can improve their product quality or

reduce their marginal costs if they enhance their own capabilities or if they buy more inputs

from high-quality, e�cient suppliers. Firms can expand sales if they appeal to more �nal

consumers or if they match with more and with bigger downstream producers. There may be

higher-order e�ects in a production network as well, because the customers of the customers

1Estimates based on authors' calculations for the average NACE 4-digit industry in Belgium in 2012.
2Throughout the paper, �rm size, sales, revenues and turnover are used interchangeably.
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(and so on) of any one �rm may ultimately also matter for that �rm's economic performance.

The paper makes four main contributions. First, we document new stylized facts about

a complete production network using 2002-2014 panel data on the universe of �rm-to-�rm

domestic transactions in Belgium. Second, we provide a theoretical framework with minimal

assumptions on production and demand that relates �rm size to �rm-speci�c characteristics,

buyer and supplier characteristics, and buyer-supplier match characteristics. This allows the

development of a new methodology for structurally estimating the primitives of the model

from production network data. Third, we implement this methodology to decompose the

Belgian �rm size distribution into downstream and upstream components and to quantify

the role of di�erent �rm-, buyer- and supplier characteristics. Finally, we simulate the model

based on those estimated primitives and assess the welfare impact of policy-relevant shocks

to the production network.

We �rst document three stylized facts about the incidence, magnitude and two-sided

heterogeneity of �rm-to-�rm transactions in a complete domestic production network, using

comprehensive value-added tax (VAT) records for Belgium during 2002-2014. First, the

distributions of �rms' total sales, number of buyer- and supplier connections, and value of

buyer-supplier bilateral sales exhibit high dispersion and skewness. Second, bigger �rms

have more upstream suppliers and downstream buyers. Third, the distribution of a �rm's

sales across its buyers does not vary with its number of buyers, while the distribution of

its purchases across its suppliers widens with the number of its suppliers. Together, these

patterns suggest that the network of buyer-supplier links is key to understanding the �rm

size distribution.

Motivated by the stylized facts, we develop a theoretical framework that features two-

sided �rm heterogeneity in an input-output production network. This allows us to decompose

�rm sales into economically meaningful demand- and supply-side fundamentals. In the

model, �rms use a constant elasticity of substitution production technology that combines

labor and inputs from upstream suppliers. Firms sell their output to �nal consumers, as

well as to downstream domestic producers. Since we want to examine how the network

contributes to size dispersion, we take the observed production network as given and do

not model the �rm-to-�rm matching decision. Note, however, that key �rm metrics such as

marginal costs, employment, prices, and sales are nevertheless endogenous outcomes because

they depend on the outcomes of all other �rms in the economy.

In the framework, �rms di�er in production capability (a combination of e�ciency and

quality), as well as in sourcing capability (an input price aggregate that re�ects the number

and production capabilities of input suppliers). The value of a given �rm-to-�rm transaction

depends on the production capability of the seller, the sourcing capability of the buyer,
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and the match quality of the speci�c seller-buyer pair. A new connection between two �rms

increases the total sales of both the seller and the buyer; for the seller this occurs mechanically

because it gains a customer, while for the buyer this arises because a larger supplier base

implies greater opportunities to source cheaper or higher-quality inputs.

At the �rm level, total �rm sales can thus be decomposed into two overall margins:

upstream and downstream. The upstream margin can be further decomposed into own

production capability and network supply (i.e. input costs), where the latter comprises the

number of upstream suppliers, average production capability across suppliers, and the covari-

ance of production capability and match quality across suppliers. Likewise, the downstream

margin can be further decomposed into �nal demand and sales in the production network,

where the latter comprises the number of downstream buyers, average sourcing capability

across buyers, and the covariance of sourcing capability and match quality across buyers.3

We develop a three-step methodology to perform the exact model-based decomposition

of �rm size using the uniquely rich Belgian data. In the �rst step, we regress the value

of bilateral �rm-to-�rm transactions on seller and buyer �xed e�ects, where the residual

represents the bilateral match-speci�c component of the transactions. In the second step,

we back out primitives of the model from these three terms. Intuitively, the seller and buyer

�xed e�ects are related to �rms' production and sourcing capability respectively, while the

residual isolates �rm-pair match quality. We also use balance sheet data to incorporate

information on �rms' activity outside the domestic production network (i.e. labor on the

production side; sales to �nal consumers on the sales side). In the last step, we construct

all components of the �rm size decomposition, and regress each one on total �rm sales.

The coe�cient estimates from this regression isolate the contribution of each upstream- and

downstream margin to the overall variation in �rm size.4

This methodology has several appealing features. It provides an agnostic decomposition

of �rm size as it imposes no restrictions on the relative magnitude of di�erent margins. The

decomposition is conceptually valid under alternative assumptions about market structure

(e.g. with or without monopolistic competition; with or without constant mark-ups). Finally,

although we treat the production network as pre-determined, the approach produces unbiased

estimates even if �rms endogenously match based on �rm-speci�c attributes or �rm-pair

speci�c matching shocks, so long as these shocks are not correlated with a pairwise sales

residual. We perform exogenous mobility tests to rule out the latter.

We establish three main empirical results about the sources of �rm size heterogeneity.

3While the �rm size decomposition explicitly accounts only for direct linkages to �rms' immediate buyers
and suppliers, the complete network of �rm-to-�rm links is implicitly captured by the sourcing capability of
all participants in the network.

4This variance decomposition is similar in spirit to Redding and Weinstein (2017).
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We report results for 2014 but all of these results hold both in the cross-section of �rms

at a given point in time and in the evolution of �rm size within �rms over time. First,

downstream factors explain the vast majority of �rm size dispersion (81%), while upstream

factors contribute signi�cantly less (19%). Second, most of the variation on the downstream

side is driven by network sales to other �rms rather than �nal demand. On the upstream side

by contrast, the variation is dominated by own production capability rather than network

purchases from input suppliers. Overall, �rm-to-�rm linkages in the production network

account for fully 82.5% of the �rm size dispersion in the data. Together, these two results

imply that trade in intermediate goods and �rm-to-�rm connections are essential to under-

standing �rm-level performance and consequently aggregate outcomes. Models that feature

only supply-side factors such as �rm productivity or that ignore the input-output structure

of the economy would thus fail to capture the vast majority of �rm size heterogeneity.

Third, most of the variance in the upstream and downstream network components is

determined by the number of buyers and suppliers (extensive margin) and the allocation

of activity towards well-matched partners of high quality (covariance term), rather than by

average partner capability (intensive margin). The main reason why the production network

enables �rms to sell more downstream is because they can sell to more buyers, and not

because their buyers tend to purchase more intermediates. Firms also sell more when their

products are especially well suited to the production needs of highly capable buyers. On the

upstream side, the production network helps �rms reduce marginal cost or improve quality

because they can match with many suppliers, and not because their suppliers are much

better on average. Firms also bene�t more when their production needs are especially well

served by highly capable suppliers.

This paper contributes to several strands of literature. Most directly, the paper adds to

the vast literature on the extent, causes and consequences of �rm size heterogeneity. The vast

dispersion in �rm size has long been documented, with a recent emphasis on the skewness

and granularity of �rms at the top end of the size distribution (e.g., Gibrat (1931), Syverson

(2011)). This interest is motivated by the superior growth and pro�t performance of larger

�rms at the micro level, as well as by the implications of �rm heterogeneity and superstar

�rms for aggregate productivity, growth, international trade, and adjustment to various

shocks (e.g., Bernard et al. (2012), Gabaix (2011), Freund and Pierola (2015), Gaubert and

Itskhoki (2016)).

Traditionally, this literature has looked to own-�rm characteristics on the supply side

as the driver of �rm size heterogeneity. The evidence indicates an important role for �rms'

production e�ciency, management ability, and capacity for quality products (e.g., Jovanovic

(1982), Hopenhayn (1992), Melitz (2003), Sutton 2007, Bender et al. (2016)). Recent work
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has built on this by also considering the role of either upstream suppliers or downstream

demand heterogeneity, but not both. Results suggest that access to inputs from domestic

and foreign suppliers matters for �rms' marginal costs and product quality, and thereby

performance (e.g., Goldberg et al. (2010), Manova et al. (2015), Fieler et al. (ming), Bernard

et al. (2015), Antràs et al. (2017)), while �nal-consumer preferences a�ect sales on the

demand side (e.g., Foster et al. (2016), Fitzgerald et al. (2016)).

By contrast, we provide a comprehensive treatment of both own �rm characteristics and

production network features, on both the upstream and downstream sides. The paper is

thus related to Hottman et al. (2016) who also �nd that demand rather than supply is the

primary factor driving �rm size dispersion. However, as they do not observe the production

network, they cannot distinguish between the impact of serving more customers, attracting

better customers, and selling large amounts to (potentially few) customers. Since they have

no information on the supplier margin, they also cannot compare own vs. network supply

factors.

The paper also adds to a growing literature on buyer-supplier production networks (see

Bernard et al. (2017) for a recent survey). On the empirical side, Bernard et al. (2015)

study the impact of domestic supplier connections on �rms' marginal costs and performance

in Japan, whereas Bernard et al. (ming) and Eaton et al. (2016) examine the matching

of exporters and importers using data on �rm-to-�rm trade transactions for Norway and

US-Colombia, respectively. While we con�rm some of the �ndings in these papers about

the distributions of buyers and suppliers, we examine transaction-level data on a complete

domestic production network and focus on the implications of two-sided heterogeneity and

production networks for the �rm size distribution. Using the Belgian production network

data, De Bruyne et al. (2016) and Dhyne et al. (2017) examine shock propagation and the

link between domestic and imported inputs in �rms' production process.

Finally, the methodology in this paper is related to the econometrics of two-sided het-

erogeneity in other economic contexts (see Arellano and Bonhomme (2017) for a review).

In particular, we estimate seller �xed e�ects, buyer �xed e�ects, and residual seller-buyer

match e�ects from data on seller-buyer sales. This is similar in spirit to gravity models of

international trade �ows by exporting country - importing country pair, where exporter, im-

porter and bilateral characteristics play a role (e.g., Helpman et al. (2008)). Another recent

contribution is Kramarz et al. (2016), who estimate buyer and seller e�ects in a bipartite

trade network. It also builds on employer-employee matching models in the labor literature

(e.g., Abowd et al. (1999), Card et al. (2013)). However, each economic agent plays a unique

role in the labor market - either a �rm or a worker - such that both panel data and worker

transitions across �rms are necessary to identify the employer, employee and match e�ects.
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By contrast, each �rm can in principle be both a buyer and a supplier in a production

network, such that cross-sectional data is su�cient to identify the e�ects of interest.

The rest of the paper is organized as follows. Section 2 introduces the data and presents

novel stylized facts. Section 3 outlines the theoretical framework. Section 4 operationalizes

the �rst two steps of the estimation strategy to construct all necessary �rm size components

from the data. Section 5 presents the results of the �rm size decomposition. Section 6

provides a general equilibrium formulation of the model which enables counterfactual welfare

exercises in Section 7. The last section concludes.

2 The Belgian Production Network

2.1 Data

We exploit several comprehensive data sources on annual �rm operations in Belgium over

the 2002-2014 period. We match these data based on unique �rm-level value-added tax

identi�cation numbers (VAT ID) that arew common across datasets. This allows us to

examine the complete domestic network of buyers and suppliers in Belgium using information

on �rm sales and production activity.

The primary data source is the NBB B2B Transactions Dataset, administered by the

National Bank of Belgium (NBB).5 This dataset reports the sales relationships between

any two VAT-liable enterprises across all economic activities in Belgium.6 In particular, an

observation is the sum mij of sales invoices (in euro and excluding any value-added tax due)

from enterprise i to enterprise j in a given calendar year. Coverage is almost universal, as all

annual sales worth at least 250 euros must be reported, and administrative sanctions on late

and erroneous reporting ensure high data quality.7 The NBB B2B data thus documents both

the extensive and the intensive margins of domestic buyer-supplier relationships in Belgium.8

We obtain information on �rm-level characteristics from several other datasets. We use

5See Dhyne, Magerman and Rubinova (2015) for details on the construction of the NBB B2B Transactions
Dataset.

6We use �enterprise� and ��rm� interchangeably in this paper. The unit of observation is the VAT ID
number, which corresponds to the legal entity of the �rm. In other words, we take the VAT ID as the
identi�cation of the �rm, and do not consider plants, establishments, or groups of �rms that might be
(in)directly owned through �nancial participations. The VAT ID is common and unique for all �rms across
all the datasets used, providing an unambiguous merge across all datasets.

7While it is impossible to compare aggregated micro data to the national accounts of economic activity
due to the di�erent data construction methodologies used by these data sources, the two aggregates are very
close to each other and have similar growth rates (see Dhyne et al. (2015) for details).

8While we do not observe the speci�c product content of each transaction, our analysis does not require
such information. Our theoretical and empirical approach builds on the premise that �rms assemble multiple
inputs potentially sourced from multiple suppliers into a single product that they sell to other �rms and to
�nal consumers.
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data on total sales (turnover), total input purchases, employment and labor costs from �rm

annual accounts maintained by the Central Balance Sheet O�ce (CBSO) at the NBB.9

Annual accounts are collected by �scal year and have been annualized to match the calendar

year in the NBB B2B data. Since there is a �rm-size threshold for reporting turnover and

input purchases to CBSO, we access data on these two variables for small �rms below the

threshold from a separate source, namely �rms' VAT declarations. We keep only �rms with

at least one full-time equivalent employee. We observe the main economic activity of each

�rm at the NACE 2-digit level (harmonized over time to the NACE Rev. 2 (2008) version)

and its geographic location at the zip-code level from the Crossroads Bank of Enterprises at

the NBB.

We combine these three data sources to construct several variables necessary for the �rm

size decomposition. We construct �rms' sales to �nal demand as the di�erence between

their turnover and the sum of all their B2B sales to other enterprises in the domestic pro-

duction network. Final demand thus contains sales to �nal consumers at home, potentially

unobserved links in B2B with small transaction values, and exports. We likewise measure

�rms' purchases from outside the observed production network (including imports) as the

di�erence between their total input costs and the sum of all their B2B purchases.

Finally, we compute the labor share in production at the NACE 2-digit level as the sum

of total employment expenses across all �rms in a sector, divided by total turnover in that

sector.10 Similarly, we calculate average wages by sector as the sum of total labor costs

divided by total employment in a sector. We use information on �rms' zip codes to calculate

the bilateral distance between any two enterprises in Belgium.11

2.2 Stylized Facts

We document three stylized facts about �rm size and �rm linkages in the Belgian domestic

production network.12 These facts provide evidence that buyer-supplier relationships are

key to understanding the �rm size dispersion in an economy, and motivate the subsequent

theoretical and empirical analysis. We present cross-sectional evidence for the most recent

year in our sample, 2014, but the patterns we establish are stable over the 2002-2014 period.

9Total input purchases are the sum of material and service inputs, and include both new inputs and net
changes in input stocks. Total labor costs include wages, social security, and pension contributions.

10Our assumption on the Cobb-Douglas upper tier of the production function implies that these shares
are also the elasticity of output with respect to employment at the �rm level.

11We provide further details on data coverage and cleaning in Appendix B.
12These stylized facts echo patterns established for the extensive margin of �rm-to-�rm linkages in the

domestic production network in Japan (Bernard et al. (2015)) and for both the extensive and the intensive
margins of �rm-to-�rm export transactions in Norway (?).
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Figure 1: Firm sales distribution (2014).
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Fact 1. The distributions of �rms' total sales, buyer-supplier connections, and buyer-supplier

bilateral sales exhibit high dispersion and skewness.

Firm size varies dramatically in Belgium, as in other countries. Table 1 provides sum-

mary statistics for �rm sales in 2014, both overall and within six broad industries (primary

and extraction, manufacturing, utilities, construction, market services, and non-market ser-

vices).13 Across the 109,908 �rms with both balance-sheet and production network data

in the matched CBSO-B2B data, average �rm turnover was ¿6.7 million with a standard

deviation of ¿145 million. The cross-sectional distribution is, however, extremely skewed.

Firms at the 90th percentile generate turnover over 33 times higher than �rms at the 10th

percentile. Overall, the top 10% of �rms account for fully 84% of aggregate sales. The kernel

density graphs in Figure 1 illustrate the full distribution of �rm sales in the raw data, as

well as demeaned across �rms within NACE 2-digit sectors.

Similar patterns hold within each broad industry category, although there is substantial

heterogeneity across industries. The biggest number of �rms is active in market services,

while there are few �rms in utilities. At the same time, �rms in utilities are on average much

larger than those in market services or other industries.

Turning to �rm-to-�rm connections in the domestic production network, we �nd that

the number of downstream customers per seller (out-degree) and the number of upstream

suppliers per buyer (in-degree) are also very skewed. In 2014, we observe 17.3 million sales

relationships among 859,733 �rms within Belgium.14 Of these, 590,271 enterprises sell to

13See Table 12 in Appendix B for the classi�cation of industry groups at the 2-digit NACE level.
14The number of �rms we observe in the B2B production network is much larger than the number of �rms

in the matched B2B-CBSO sample above with turnover data, because B2B contains many small �rms that
do not have to submit complete balance sheets to CBSO.
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Figure 2: Distribution of �rm buyer and supplier connections (2014).

(a) Number of downstream buyers, within NACE
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(b) Number of upstream suppliers, within NACE
2-digit industries.
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other �rms in the network, while 840,607 buy from other �rms in the network. Hence 31.5%

of �rms sell only to �nal demand, while a small minority of 2.2% do not purchase inputs

from the domestic production network (or do so in an amount less than ¿250). Conditional

on trading with others in the network, 74% of producers have more than one supplier and

88% have more than one buyer.

Table 2 summarizes the distribution of buyer and supplier connections in the full data,

as well as by broad industry. Across all sellers, the average number of customers is 29.3,

with a standard deviation of 394. Across all buyers, the average number of suppliers is 20.6,

with a standard deviation of 49.5. The average �rm thus has more buyers than suppliers,

and the distribution of buyers per seller is more dispersed than that of suppliers per buyer.

Firm-to-�rm links in the network are also highly concentrated among a few very connected

participants: The median number of customers and suppliers is only 4 and 9, respectively,

while the top 1 percent of �rms transact with more than 400 buyers and 177 sellers. The

dispersion and skewness across �rms within NACE 2-digit industries is also evident in the

histograms in Figure 2. These patterns are consistent with those observed by Bernard et al.

(2015) and ? respectively for domestic �rm-to-�rm linkages in Japan and for Norwegian

�rms' export partners.

Of note, the in-degree and out-degree distributions have similar features within di�erent

broad industries, but they also display some heterogeneity in line with priors. For example,

the number of buyers and suppliers is highest for �rms in utilities, which are followed closely

by manufacturing �rms. These numbers are intermediate for producers in primary materials

and extraction, and lowest among service providers.

The intensive margin of �rm-to-�rm bilateral sales is also very dispersed and skewed,

10



Table 2: Number of �rm buyers and suppliers (2014).

(a) Number of downstream buyers.

Industry N Mean St Dev 10th 25th 50th 75th 90th 95th 99th

Primary and Extraction (NACE 01-09) 50,706 12.1 60.1 1 2 4 8 18 40 154

Manufacturing (NACE 10-33) 57,976 47.5 284.9 1 2 7 26 98 192 603

Utilities (NACE 35-39) 2,734 192.7 3,305 1 2 6.5 36 154 336 1,514

Construction (NACE 41-43) 104,566 14.6 107.9 1 2 4 10 24 45 174

Market Services (NACE 45-82) 351,773 32.9 394.6 1 1 3 11 48 112 453

Non-Market Services (NACE 84-96) 22,516 14.1 183.1 1 1 2 6 19 38 153

All 590,271 29.3 394 1 1 4 11 42 98 400

(b) Number of upstream suppliers.

Industry N Mean St Dev 10th 25th 50th 75th 90th 95th 99th

Primary and Extraction (NACE 01-09) 60,508 20.5 29.6 2 5 13 27 44 57 117

Manufacturing (NACE 10-33) 72,698 38 89.5 2 5 15 38 89 148 348

Utilities (NACE 35-39) 3,401 62.8 180.7 2 4 14 55 146 235 757

Construction (NACE 41-43) 130,358 24.5 48.3 2 5 13 29 52 77 178

Market Services (NACE 45-82) 506,145 18.3 41.5 1 3 8 19 42 64 150

Non-Market Services (NACE 84-96) 67,497 9.7 37.1 1 2 4 9 19 30 90

All 840,607 20.6 49.5 1 3 9 22 46 71 177

Note: Summary statistics for the B2B data. 10th, 25th, etc. refers to values at
the 10th, 25th, etc. percentile of the distribution.
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Table 3: Firm-to-�rm transaction values (¿, 2014).

Industry N Mean St Dev 10th 25th 50th 75th 90th 95th 99th

Primary and Extraction 613,868 39,898 5,409,863 419 840 2,490 9,150 33,789 81,626 387,573

Manufacturing 2,755,457 44,303 2,007,421 359 613 1,661 6,185 25,436 63,467 411,379

Utilities 526,932 59,953 7,410,682 366 615 1,388 3,744 11,560 28,382 281,181

Construction 1,529,078 24,500 386,201 375 676 1,926 7,000 27,186 64,585 339,523

Market Services 11,562,445 24,373 2,886,213 341 546 1,266 4,060 15,579 37,960 224,363

Non-Market Services 316,628 8,036 318,863 315 472 996 2,736 8,396 18,920 92,732

All 17,304,408 28,893 2,988,881 348 571 1,392 4,669 18,280 44,770 269,153

Note: Summary statistics for the B2B data. 10th, 25th, etc. refers values at
the 10th, 25th, etc. percentile of the distribution. Industry refers to the main
industry of activity of the seller.

with the vast share of economic activity concentrated in a small number of buyer-supplier

transactions, as demonstrated in Table 3. The mean transaction across the 17,304,408 buyer-

supplier links in 2014 amounts to ¿28,893. At the same time, the median purchase totals

only ¿1,392, while the standard deviation reaches nearly ¿3 million and the top 10% of

relationships account for 92% of all domestic �rm-to-�rm sales by value. This dispersion

in transaction values in a buyer-supplier production network was �rst documented in the

Belgian data by Dhyne et al. (2015). As with �rm size and the extensive margin of �rm

connections, the intensive margin of �rm linkages exhibits qualitatively similar properties

within broad industries, with notable variation in magnitudes across industries.

Fact 2. Bigger �rms have more buyers and suppliers.

A sharp pattern in the data is that bigger �rms interact with more buyers and suppliers in

the production network. Figure 3a plots the �tted line and 95% con�dence interval based on

a local polynomial regression of �rm turnover on the number of �rm downstream customers,

on a log-log scale. Both variables have been demeaned by their NACE 2-digit sector average,

such that the latter corresponds to the point with coordinates (1,1) in the graph. Figure

3b repeats the exercise for the relationship between �rm sales and number of upstream

suppliers. Both �gures display tightly estimated upward-sloping lines. Implied elasticities

and R-squared from linear OLS regressions with NACE 2-digit industry �xed e�ects are also

reported in the lower left corner of each graph. The estimates indicate that relative to the

industry mean, a �rm with 10 times more customers has approximately 4.3 times higher

sales, while a producer with 10 times more suppliers attains 12.3 times higher sales.

12



Figure 3: Firm size and number of buyers and suppliers (2014).

(a) Firm sales and number of buyers, within NACE
2-digit industries.
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(b) Firm sales and number of suppliers, within
NACE 2-digit industries.
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Fact 3. The distribution of sales across buyers does not vary with the number of buyers.

The distribution of purchases across suppliers widens with the number of suppliers.

Facts 1 and 2 reveal broadly symmetric patterns in the extensive margin of �rms' in-

teractions with upstream suppliers and with downstream buyers in the production network.

In contrast, Fact 3 uncovers asymmetry between the input and output sides along the in-

tensive margin of �rm-to-�rm transactions: While the distribution of a �rm's bilateral sales

across customers does not vary with the number of customers, the distribution of its input

purchases across suppliers widens monotonically with the number of suppliers.

Figure 4a illustrates the dispersion of downstream sales across buyers within a seller. For

each �rm with at least 10 customers, we take the 10th, 50th and 90th percentile values of its

bilateral sales, and demean these by NACE 2-digit industry. We plot the �tted lines from

local polynomial regressions of these percentile values against �rms' out-degree, including

95% con�dence interval bands. The three lines we obtain are almost parallel and slightly

declining. In other words, sales to the bottom, median and top customer are essentially the

same, or somewhat smaller, for �rms with 100 customers and for �rms with 10 customers.

Together with Fact 2, this suggests that larger sellers have higher sales primarily because

they serve more customers, but they neither sell more to their buyers nor vary their sales

more across buyers.

Figure 4b demonstrates the distribution of input purchases across upstream suppliers

within a buyer. For each �rm with at least 10 input providers, we obtain the 10th, 50th and

90th percentile values of its bilateral purchases, and demean by its NACE 2-digit industry.

We graph the �tted lines from local polynomial regressions of these percentile values against

13



�rms' in-degree, with 95% con�dence interval bands. While purchases from the median sup-

plier are once again unchanged across �rms with broad and narrow supplier bases, however,

�rms that source inputs from more suppliers systematically buy more from their largest

suppliers and less from their smallest. Together with Fact 2, this pattern implies that larger

buyers have higher purchases both because they transact with more suppliers and because

they vary their purchases more across suppliers.

Figure 4: Sales distribution across buyers and suppliers within �rms.

(a) Number of buyers and bilateral sales..
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(b) Number of suppliers and bilateral purchases.
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Note: Firm-to-�rm sales have been demeaned by the NACE 2-digit industry
of the seller. Local polynomial regressions for the the value of �rm-to-�rm
transactions at the 10th, 50th and 90th percentile of the distribution.

Summary. We have documented three stylized facts which suggest that buyer-supplier link-

ages in a production network are key to understanding the origins of the �rm size distribution.

In particular, they signal an important role for (i) downstream input demand relative to �-

nal output demand, (ii) the number of buyers and suppliers of a �rm, (iii) seller and buyer

�rm characteristics, and (iv) seller-buyer match characteristics. Motivated by these stylized

facts, we next develop a uni�ed theoretical framework that accommodates them by introduc-

ing two-sided �rm heterogeneity in an input-output production network. Importantly, this

model allows us to decompose the variation in the �rm size distribution into economically

meaningful components related to both own-�rm characteristics and the production network.

Of note, existing models of one-sided �rm heterogeneity such as di�erentiated �rms produc-

ing only for �nal consumers cannot account for (ii)-(iv), while existing models of two-sided

�rm heterogeneity have so far ignored either (i) or (iv).

14



3 Theoretical Framework

This section develops a theoretical framework that serves several purposes. First, the model

allows for various sources of �rm heterogeneity both on the demand size (e.g., being connected

to many or large customers) and the supply side (e.g., having access to cheap intermediate

inputs). Second, the framework gives a clear mapping between model parameters and �rm-

level estimated coe�cients from production network data. Section 4 below describes the

identi�cation and estimation of those coe�cients. Third, the framework allows a decom-

position of �rm sales into various downstream and upstream side margins (a model-based

decomposition). And �nally, the model can be used for counterfactual analyses (Section 6).

Our starting point is a model where �rms are heterogeneous in productivity or quality,

as in Melitz (2003). Firms sell to other �rms and to �nal demand, and how many and which

buyers they meet will a�ect �rm size. In addition, �rms source inputs from one or more

suppliers, and those input prices will determine output prices and consequently also �rm

sales. Since the main aim of the paper is to understand the role of the network in generating

heterogeneity, we take the observed production network as given, i.e. we do not model the

�rm-to-�rm matching decision itself.

3.1 Technology

To implement our approach, we start with the following production function of �rm i:

yi = κzil
α
i v

1−α
i ,

where yi is output, zi is productivity, li is labor, α is the labor share and κ > 0 is a

normalization constant.15 vi is a constant elasticity of substitution (CES) input bundle:

vi =

(∑
k∈Si

(φkiνki)
(σ−1)/σ

)σ/(σ−1)

,

where νki is the quantity purchased from �rm k, Si is the set of suppliers to �rm i and σ > 1

is the elasticity of substitution across suppliers. φki is a demand shifter that captures the

idea that �rms (and industries) may have very di�erent production technologies, and that

their purchases from a given supplier may vary greatly. We allow for heterogeneity in α and

σ across industries, however for ease of notation we drop industry subscripts for now. The

corresponding input price index is P 1−σ
i =

∑
k∈Si (pki/φki)

1−σ , where pki is the price charged

by supplier k to �rm i. The marginal cost of the �rm is then

ci =
wαP 1−α

i

zi
. (1)

15κ = α−α (1− α)
α−1
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3.2 Firm-to-Firm Sales, Total Sales and Purchases

Each �rm is facing demand from other �rms as well as from �nal demand. Given the

assumptions about technology, sales from �rm i to j are

mij =

(
φij
pij

)σ−1
P σ−1
j Mj, (2)

where Mj is total intermediate purchases of �rm j. In the baseline decomposition, �nal

demand is directly observed as the di�erence between total sales Si (including exports) and

�rm-to-�rm sales, and as such it is unnecessary to model it explicitly, see Section 2.1. In

this part of the paper, we therefore take �nal demand as given, while Section 6 extends the

model with endogenous �nal demand. We de�ne βci as the ratio between total sales and sales

to the network,

βci ≡
Si∑

j∈Ci mij

≥ 1 (3)

where Ci is the set of network customers of �rm i. In our data, we only observe �rm-to-�rm

links in the domestic economy. Hence, demand from foreign �rms (exports) will be part of

Si but not
∑

j∈Ci mij. In a similar manner, we de�ne βsi as the ratio between total purchases

and purchases from the network,

βsi ≡
Mi∑

k∈Si mki

≥ 1, (4)

where Si is the set of network suppliers of �rm i.

In the following, it will be useful to collapse parameters that are related to either the

buyer, the seller, or the match. We assume that the match quality term φij can be written

as φij = φiφ̃ij, where φi captures the average quality of �rm i and φ̃ij is an idiosyncratic

match term. In a similar fashion, we assume that the price pij can be written as pij = τiτ̃ijci,

where ci is marginal cost, τi captures the average mark-up and trade cost of i, and τ̃ij is the

match-speci�c trade cost/mark-up term.16 τ̃ij can re�ect any type of price variation, e.g.

heterogeneity in mark-ups across customers. Equation (2) can therefore be rewritten to

mij = ψiθjωij, (5)

where ψi ≡ (φi/ (τici))
σ−1 is a seller e�ect, θj ≡ P σ−1

j Mj is a buyer e�ect and ωij ≡(
φ̃ij/τ̃ij

)σ−1
is a match e�ect.

16In the empirical application, φ̃ij and τ̃ij will be normalized such that (1/nci )
∑
j∈Ci φ̃ij = 1 and

(1/nci )
∑
j∈Ci τ̃ij = 1, where nci is the number of customers of �rm i. Intuitively, this normalization sep-

arates the systematic variation across �rms from the variation across buyers and suppliers within �rms, such
that the former is fully loaded on φi and τi.
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The exact decomposition in Section 3.4 only requires the assumptions described so far

(the production function and the functional forms of pij and φij). In particular, there is no

need to assume anything about market structure, �rms' pricing behaviour or the elasticity of

substitution. However, a few additional elements are required to solve the general equilibrium

and to perform counterfactuals. We therefore introduce those assumptions when needed in

Section 6.

3.3 Mapping Buyer and Seller E�ects to Model Parameters

Section 4 describes how we can estimate the �rm-level parameters ψi, θi and ωij from pro-

duction network data. Given knowledge about those parameters and total input spending

Mi, we can invert the expressions for ψi, θi and ωij and back out structural parameters.

Using equation (1) and rearranging yields:

P σ−1
j =

θj
Mj

(6)(
φizi
τiwα

)σ−1
= ψi

(
θi
Mi

)1−α

(7)(
φ̃ij
τ̃ij

)σ−1

= ωij. (8)

Loosely speaking, the buyer e�ect θj re�ects the magnitude of average purchases con-

trolling for the size of suppliers. We refer to θj as sourcing capability. Intuitively, it is an

input price aggregate that implicitly re�ects the number and production capabilities of input

suppliers. Hence, if the buyer e�ect is small and total purchases Mj are large, it must mean

that purchases are spread out over many suppliers such that the input price index Pj in

equation (6) is small.

Conversely, the seller e�ect ψi re�ects the magnitude of average sales controlling for the

size of customers. After adjusting for input costs P 1−α
i , ψi thus identi�es the productivity

(zi) or average attractiveness (φi/τi) of the seller in equation (7). In the following, it will

become useful to de�ne the left hand side of equation (7) as z̃i ≡ (φizi/ (τiw
α))σ−1. We refer

to z̃i as production capability.

Note that according to our model, the seller and buyer e�ects for a �rm i are negatively

related. Rearranging equation (7), we get ψi = z̃i (Mi/θi)
1−α. Hence, a marginal increase in

the buyer e�ect is associated with a reduction in the seller e�ect of 1−α (holding total input

purchases constant). This occurs because a higher buyer e�ect, all else constant, implies

higher input costs. This translates into higher output prices and therefore lower sales. We
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test this prediction in Section 3.3.17

Finally the match-speci�c component ωij jointly captures the demand (taste) shifter φ̃ij

and the supply (mark-up, trade cost) shifter τ̃ij in equation (8).

3.4 An Exact Firm Sales Decomposition

In this section, we develop an exact decomposition of �rm sales into di�erent margins relating

to the downstream and upstream factors. Combining equations (3) and (5) above, log total

sales are

lnSi = lnψi + ln ξi + ln βci , (9)

where ξi ≡
∑

j∈Ci θjωij.

The components ψi and ξi represent upstream and downstream fundamentals in explain-

ing �rm size, respectively, while βci represents the importance of �nal demand. As we show

below, we can identify lnψi, ln θi and lnωij from the production network data. Furthermore,

lnSi and ln βci are directly observed in our data. Hence, all components of equation (9) are

known.

In order to assess the role of each margin, we follow the literature (Eaton et al. (2004),

Hottman et al. (2016)) and regress each component (ln βci , lnψi and ln ξi) on log sales. By the

properties of ordinary least squares, the sum of those three coe�cients will sum to unity, and

the coe�cient magnitudes will represent the share of overall variation in �rm size explained

by each margin.

We can further decompose the upstream and downstream margins into various sub-

margins. Starting with the downstream side, the parameter ln ξi can be rewritten as

ln ξi = lnnci + ln θ̄i + ln Ωc
i , (10)

where nci is the number of customers and θ̄i ≡
(∏

j∈Ci θj

)1/nc
i

.18 The covariance term Ωc
i is

de�ned as

Ωc
i ≡

1

nci

∑
j∈Ci

ωij
θj
θ̄i
.

Each of these components has an intuitive economic interpretation, First, �rms face high

demand if they are linked to many customers (high nci). Second, they face high demand if

17While the model predicts a relationship between the buyer and seller e�ects, it has no prediction about the
relationship between productivity/quality φizi and the input price index Pi. In frameworks with endogenous
network formation, the correlation between the two will generally depend on the matching model and the
market structure.

18By the properties of ordinary least squares, the average term (1/nci )
∑
j∈Ci lnωij = (1/nsi )

∑
k∈Si lnωki =

0 and therefore omitted from the expression.
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the average customer has high sourcing capability (high θ̄i). Third, they face high demand

if the covariance term Ωc
i is large. This would be the case if large customers (high θj) also

happen to be a good match (high ωij). As with the overall decomposition, we will regress

each component in equation (10) on ln ξi.

Next, we turn to the upstream decomposition. A �rm may be large because it has high

production capability (high z̃i), or because it bene�ts from cheap or high-quality inputs (low

Pi). Just as above, the input price index can be decomposed into components for the number

of suppliers, average supplier capability and a covariance term. This can be shown in three

steps. First, from the inversion in equation (7), the production capability of a �rm, z̃i, is a

function of the estimated buyer and seller e�ects. Second, combining equations (4) and (5)

above, log total purchases are

lnMj = ln θj + ln
∑
i∈Sj

ψiωij + ln βsj . (11)

Third, solving equation (7) for lnψi and substituting ln (Mi/θi) using equation (11) yields

lnψi = ln z̃i + (1− α)
[
lnnsi + ln ψ̄i + ln Ωs

i + ln βsi
]
, (12)

where nsi is the number of suppliers, ψ̄i ≡
(∏

k∈Si ψk
)1/ns

i and the covariance term Ωs
i is

Ωs
i ≡

1

nsi

∑
k∈Si

ωki
ψk
ψ̄i
.

Detailed derivations are found in Appendix A.1. Again, each component of this expression

is either observed directly (α, βsi and n
s
i ) or can be estimated from the production network

data (z̃i, ψi, ψ̄i and Ωs
i ).

The interpretation of each element is as follows. A �rm has a large market share among

customers (high ψi) because it is inherently productive or is high quality (high z̃i), because

it has many suppliers (large nsi ), because those suppliers are on average attractive suppliers

(high ψ̄i), or because attractive suppliers also happen to be a good match (high Ωs
i ). As

with the overall decomposition, we regress each component in equation (12) on lnψi. The

coe�cient estimates will mechanically sum to one because the left and right hand side of

equation (12) are by construction identical.19

We summarize the overall decomposition of �rm size in the equation below to faciliate

the economic interpretation of each component and for ease of reference in the empirical

analysis. Firm size is determined by an upstream factor and a downstream factor. The

19This holds for any α. A change in α, e.g. due to measurement error, would lead to di�erent coe�cient
estimates of each component, but the components would still sum to one.
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upstream factor comprises own production capability and network supply, where the latter

constitutes the number of input suppliers, average production capability across suppliers,

and a covariance term. The downstream factor includes �nal demand and network demand,

where the latter contains number of customers, average sourcing capability across customers,

and a covariance term.

Size

lnSi=
Upstream

lnψi︷ ︸︸ ︷
ProdCapability

ln z̃i +

NetworkSupply︷ ︸︸ ︷
(1− α)

[
lnnsi

#Suppliers

+ ln ψ̄i
AvgSupProdCapab

+ ln Ωs
i

Covariance

+ ln βsi
NetworkInputShare

]

+
Downstream

ln ξi + ln βci︷ ︸︸ ︷
NetworkDemand︷ ︸︸ ︷

lnnci
#Customers

+ ln θ̄i
AvgCustSourceCapab

+ ln Ωc
i

Covariance

+
FinalDemand

ln βci .

(13)

The limited assumptions we have placed on the economic environment imply that this is

an agnostic �rm size decomposition that allows us to evaluate the contribution of di�erent

margins to the overall variation in �rm size. Our approach imposes no restrictions on the

absolute and relative contribution of these margins. In particular, we have not explicitly

modeled the endogenous formation of the production network, and we do not aim to explain

why some �rms match with more or with more capable buyers and suppliers. Instead, our

goal is to understand how these implicit �rm decisions account for the observed �rm size

distribution.

4 Estimation

The exact �rm size decomposition consists of three steps. In Step One, we estimate seller,

buyer and match e�ects from the production network data (lnψi, ln θj and lnωij). In Step

Two, we use the �rst-stage estimates and observed �rm outcomes to calculate unobserved

�rm outcomes (ln ξi, ln z̃i, ln θ̄i, ln ψ̄i, ln Ωc
i and ln Ωs

i ). In Step Three, we perform the

variance decomposition itself, regressing each component of �rm size on total sales lnSi, the

downstream (demand-side) factor ln ξi and the upstream (supply-side) factor lnψi, using

equations (9), (10) and (12), respectively.

We discuss the �rst two steps of the econometric analysis in this section and present the

�rm size decomposition in Section 5. Our ultimate goal is to understand the cross-sectional

variation in �rm size at a given point in time, as well as the relative importance of di�erent

20



margins to changes in �rm size over time. Since the production network continuously evolves,

we therefore perform Step One and Step Two separately for each year in the 2002-2014 sample

period. We report detailed results for these two steps for the most recent year in the data,

2014. The patterns for other years are not systematically di�erent and are available upon

request.

4.1 Step One: Buyer, Seller and Match E�ects

Our �rst step is to estimate the buyer, seller and buyer-seller match e�ects from the B2B

data on the Belgian domestic production network. This step exploits the granularity of

�rm-to-�rm transanctions to inform the microfoundations of �rm size in a way that would

be impossible without such rich data.

We estimate a two-way �xed e�ects speci�cation for �rm-to-�rm sales based on equation

(5):

lnmij = lnψi + ln θj + lnωij. (14)

In this OLS regression, the seller e�ect lnψi is identi�ed from the variation in input purchases

across the suppliers of an average buyer. Intuitively, attractive suppliers account for a

large share of input expenditures for all their downstream customers and receive a high

lnψi. Analogously, the buyer e�ect ln θj is identi�ed from the variation in sales across the

customers of an average producer. Intuitively, attractive buyers purchase a disproportionate

share of upstream suppliers' sales and receive a high ln θj. The estimated residual lnωij is by

construction orthogonal to the �xed e�ects. It thus re�ects match-speci�c characteristics that

induce a given �rm pair to trade more with each other, even if they are not fundamentally

attractive trade partners. In the model, lnωij combines bilateral trade costs, demand shocks

(e.g. how well the seller's product �ts the production needs of the buyer), and variable

mark-ups.

In order to estimate the two-way �xed e�ects model, �rms must have multiple connec-

tions. Speci�cally, identi�cation of a seller �xed e�ect requires a �rm to have at least two

customers, and identi�cation of a buyer �xed e�ect requires a �rm to have at least two

suppliers. Furthermore, dropping customer A might result in supplier B having only one

customer left. Supplier B would then also be dropped from the sample. This avalanching

process reduces the sample even further.20 In practice, the estimation sample retains a sub-

stantial portion of the production network. For the baseline year, 2014, we are able to use

20We have to drop some small �rms whose location is unobserved because we have no information on the
bilateral distance to their trade partners. Our results are however robust to including them in the analysis
by estimating equation (5) without including distance as a covariate.
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Table 4: Full sample vs. �rst-stage estimation sample (2014).

Full Sample Estimation Sample

# Links # Sellers # Buyers Links Value Sellers Buyers

17,304,408 590,271 840,607 99% 95% 74% 88%

Note: Summary statistics for �rm-to-�rm transactions in the raw B2B data
and in the estimation sample in Step One.

17,054,274 �rm-to-�rm transactions which capture 99% of all links in the data and 95% of

their sales value. We thus obtain seller �xed e�ects for 436,715 �rms and buyer �xed e�ects

for 743,326 �rms. We report the characteristics of the initial and estimation samples in Table

4.

Figure 5 summarizes the estimation results for 2014. Three patterns stand out. First, the

variation in the seller e�ect lnψi is large compared to that in the buyer e�ect ln θj (standard

deviations of 1.05 and 0.50 respectively). Second, the R2 from the regression is 0.43, and the

dispersion in the residual lnωij (standard deviation of XXX) exceeds that in the buyer and

seller e�ects. This signals the importance of buyer-supplier match quality to the value of

�rm-to-�rm sales. Finally, while the estimation imposes no constraints on the relationship

between the buyer and seller �xed e�ects for a given �rm i, the theoretical framework implies

that they should be negatively correlated (see Section 3.3). In the model, this occurs because

�rms that have higher input purchases and more suppliers can better allocate inputs towards

more capable suppliers. By reducing their quality-adjusted production costs, this makes such

�rms more attractive suppliers to other �rms in the network and thereby increases their

sales. Our results con�rm that this is borne out in practice: The correlation between lnψi

and ln (θi/Mi) is -0.13 and signi�cant at 1%.

4.2 Conditional Exogenous Mobility

Equation (14) is a two-way �xed e�ects model similar to the models that are used in the

employer-employee literature following Abowd et al. (1999). The identifying assumptions

needed for ordinary least squares to identify the parameters lnψi and ln θj are also similar:

E [lnψiωij] =E [ln θjωij] = 0.

Hence, both the seller and the buyer �xed e�ects must be orthogonal to the match-speci�c

error term ωij. As is well known from the employer-employee literature, the key identi�cation
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Figure 5: Distribution of seller and buyer e�ects (demeaned by NACE-2 sector, 2014).
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assumption is that the assignment of suppliers to customers is exogenous with respect to ωij,

so-called conditional exogenous mobility. Hence, the identi�cation assumption is violated if

a positive shock both increases the likelihood of matching and raises ωij. It is instructive to

review some cases where this assumption holds. First, the identifying assumption holds if

�rms match based on supplier and customer capability, i.e. they match based on their buyer

and seller e�ect. Second, it holds if �rms match based on unobserved �xed costs that do not

matter for sales, such as �xed search-and-match costs. The models of Bernard et al. (2017)

and Lim (2017) are examples of the �rst and second cases. Third, the assumption holds if

�rms match based on idiosyncratic pair-wise shocks that are unrelated to ωij. Eaton et al

(2015) develop a quasi-random matching model which would be consistent with this third

case.

However, we cannot completely rule out the possibility that matching shocks are also

correlated with sales shocks. We therefore also test for conditional exogenous mobility, using

a methodology inspired by Card et al. (2016). The key idea is to check whether a switch

from a small to a large customer increases sales, while a switch from a large to a small lowers

sales, and that these changes are of equal magnitude in absolute value. Under the exogenous

mobility assumption, the expected change in sales when moving from a customer k to j is

identical to the change when moving from j to k (in absolute value):

E [lnmij − lnmik] = −E [lnmik − lnmij] = ln θj − ln θk.

Intuitively, if exogenous mobility fails, then a switch from large to small may not result in a

large sales decline because both matching and sales are driven by positive unobserved shocks.

The methodology in Card et al. (2016) cannot be adopted directly to our setting, because

�rms have many connections both upstream and downstream, while in employer-employee

data a worker is typically linked to one employer at a time. We therefore proceed as follows.

First, we estimate the �xed e�ects model from equation (14) for the 2005 cross-section

(t = 0). We group �rms into quartiles based on the magnitude of their estimated buyer

e�ect. The quartiles are denoted by qk, k = 1, 2, 3, 4. Second, we consider the set of �rms

that have at least one q1 buyer in t = 0 and add at least one q4 buyer in t = 1 (year 2006),

i.e. upgraders. For each upgrading �rm, we calculate the change in sales when moving from

a q1 to a q4 customer, lnmij(q4),t=1− lnmij(q1),t=0, where j (qk) denotes a customer in quartile

qk. Since �rms may add many q4 buyers in t = 1 (and potentially have many q1 buyers in

t = 0), we form the average of all possible combinations and denote it ∆̄Up
i . Third, we take

the average of ∆̄Up
i across all upgraders. In a similar way, we calculate the outcomes among

�rms that have a q4 buyer in t = 0 and add a q1 buyer in t = 1, i.e. downgraders, and denote

the �rm-level change ∆̄Down
i . We �nd that the mean of ∆̄Up

i is 0.49 and the mean of ∆̄Down
i
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is -1.46. Hence, the results suggest that there is assymmetry in upgrading and downgrading.

However, this assymmetry goes in the opposite direction to what one would expect under

endogenous mobility. Speci�cally, endeogenous mobility would imply that downgrading leads

to a smaller change in sales compared to upgrading (in absolute value).

4.3 Step Two: Firm Size Components

In the �rst step of the econometric analysis, we estimated equation (5). In the second step,

we now interpret the buyer, seller and match e�ects from the �rst step through the lens of the

model. The only assumption required for this interpretaion is on the production technology

available to �rms, and we do not need additional restrictions on consumer demand or the

market structure. In particular, we combine the estimates from the �rst stage (lnψi, ln θj

and lnωij) with observed measures of �rm activity (lnSi, lnMi, ln βci , ln βsi , lnnci , lnnsi , Ci
and Si) to back out model-consistent measures for unobserved �rm attributes necessary for

the �rm size decomposition (ln ξi, ln z̃i, ln ψ̄i, ln θ̄i, ln Ωs
i and ln Ωc

i).

To construct the observed �rm metrics we combine Business-to-Business (B2B) network

data with data from the Central Balance Sheet O�ce (CBSO) in Belgium. Firms below

a certain size threshold submit abbreviated annual accounts to CBSO and do not have to

report turnover. We therefore perform the decomposition for the 94,357 �rms with complete

data for the purpose. Importantly, excluded �rms with missing annual accounts are still

part of the �rst step and thus included in the buyer and supplier margins of �rms in the

decomposition sample.

We measure �rm sales Si with total reported turnover from CBSO. The network sales

ratio, βci , is calculated as total sales divided by the sum of all sales to other �rms in the

domestic network from B2B. Since we observe �rm-to-�rm links only within Belgium, sales

to foreign �rms (exports) are classi�ed as part of �nal demand.21 We measure �rm purchases

Mi with total input expenditures from CBSO.22 The network input ratio, βsj , is then total

input purchases divided by the cost of inputs from suppliers in the domestic network . We

obtain directly from B2B the number nci and the set Ci of �rms' domestic customers, as well
as the number nsi and the set Si of �rms' suppliers.

Using the �rst-stage estimates, the observed variables just described, and equations (1),

(6), (7) and (8), we solve for �rms' unobserved production capability ln z̃i, input price index

21This assumption reduces the importance of �rm-to-�rm sales as almost all international trade is between
�rms. Using the BEC classi�cation, around 2/3 of Belgian exports are in intermediate goods.

22We consider all import transactions to be purchases of foreign inputs to production. For the purposes,
even if a �rm imports �nal rather than intermediate goods and services to sell alongside its own-manufactured
products, such imports are part of its overall expenses in serving downstream buyers and �nal consumers.
Their contribution to the �rm size decomposition will therefore be the same as that of other production
inputs. See Bernard et al (2017) on the role of carry-along trade.
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Table 5: Firm size components (demeaned by NACE-2 sector, 2014).

Firm Size Component Estimated? N Mean Median St Dev

Total Sales, lnSi 94,357 0.000 -0.141 1.377

Overall Decomposition of lnSi
Usptream Supply, lnψi Y 94,357 0.000 -0.147 1.052
Downstream Network Demand, ln ξi Y 94,357 0.000 0.001 1.710
Final Demand, ln βci 94,357 0.000 -0.359 1.285

Upstream Decomposition of lnψi
Production Capability, ln z̃i Y 94,357 0.000 -0.113 1.346
# Suppliers, lnnsi 94,357 0.000 -0.007 0.797
Avg Supplier Capability, ln ψ̄i Y 94,357 0.000 -0.022 0.237
Supplier Covariance, ln Ωs

i Y 94,357 0.000 -0.089 0.684
Outside-Network Supply, ln βsi 94,357 0.000 -0.146 0.557

Downstream Decomposition of ln ξi
# Customers, lnnci 94,357 0.000 -0.040 1.446
Avg Customer Capability, ln θ̄i Y 94,357 0.000 -0.037 0.334
Customer Covariance, ln Ωc

i Y 94,357 0.000 -0.142 0.761

lnPi and marginal production costs ln ci. This requires three parameter values: the labor

share α in the Cobb-Douglas production technology, the wage rate w, and the elasticity of

substitution σ. To accommodate the variation in production technologies and factor costs

across industries, we proxy α with the ratio of the total wage bill across all �rms operating

in a NACE-2 industry to the total production costs of all �rms in that industry. We likewise

measure w with the total wage bill in an industry, divided by total employment in that

industry. We take a standard value for σ from the literature and set it equal to 4. This

choice is however not consequential given the log-linear speci�cation of the OLS regression

in Step One and the fact that we demean all �rm size components by industry after Step

Two.

Finally, we back out each �rm's network demand ln ξi, the average production capability

of its suppliers ln ψ̄i, the average sourcing capability of its buyers ln θ̄i, its supply and demand

covariance terms ln Ωs
i and ln Ωc

i . This completes the second step of the econometric analysis,

as we now have measures for all �rm size components. Table 5 provides summary statistics for

these components, while Table 13 in Appendix B reports all two-way correlation coe�cients

among them.
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5 Results

In the last step of the econometric analysis, we perform the �rm size decomposition according

to equation (13). In Section 5.1, we begin by analyzing the contribution of di�erent upstream

and downstream margins to the cross-sectional variation in �rm size in the baseline year,

2014. In Section 5.2, we repeat this cross-sectional decomposition separately for each year

to examine time trends in the 2002-2014 panel. In Section 5.3, we turn to the evolution

of �rm size within �rms over time and evaluate how changes along di�erent upstream and

downstream margins shape �rm growth. Finally, in Section 5.4 we subject the results to

sensitivity analysis and explore the variation in patterns across sectors and di�erent segments

of the size distribution.

A potential concern is that industries are inherently di�erent, and those di�erences may

be systematically related to upstream or downstream characteristics. We therefore demean

all observed and constructed variables by their NACE 2-digit industry average after the

second step. For example, the overall decomposition from (9) becomes

∆S lnSi = ∆S lnψi + ∆S ln ξi + ∆S ln βci ,

where ∆S denotes the di�erence between the outcome of �rm i and the average outcome

in that sector. We then regress each component, e.g. ∆S lnψi, on ∆S lnSi. The baseline

variance decomposition therefore estimates the importance of each margin in explaining

within-industry size heterogeneity.

5.1 Baseline Results

5.1.1 Top-tier Decomposition

We �rst examine the origins of �rm size heterogeneity in the cross-section for 2014, the most

recent year in the data. We start with the top-tier decomposition of �rm sales lnSi into

�nal demand lnβci , the upstream factor lnψi and the downstream factor ln ξi, from equation

(9), by regressing each factor on lnSi. Recall that by the properties of OLS, the coe�cient

estimates from these two regressions sum to 1 by construction, and indicate what fraction

of the total variation in �rm sales can be attributed to each factor. We report the results in

Table 6. The downstream side accounts for fully 80% of the size dispersion across �rms, the

upstream fundamentals explain 19%, while �nal demand explains only 1%.

What is the interpretation of these results? The upstream factor lnψi represents, loosely

speaking, the average market share of i among its customers. Hence, the relatively small

role for upstream fundamentals means that average market share is not strongly correlated

with total �rm sales. In other words, being an important supplier to your customers is only
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Table 6: Overall Decomposition (2014).

N Upstream Downstream Final Demand
lnψi lnξi lnβci

lnSi 94,357 .19∗∗∗ .80∗∗∗ .01∗∗

(.00) (.00) (.00)

Note: The table reports coe�cient estimates from OLS regressions of a
�rm size margin (as indicated in the column heading) on total �rm sales
(all variables in logs). Standard errors in parentheses. Signi�cance: * <
5%, ** < 1%, *** <0.1%.

weakly related to overall �rm success. This does not mean, however, that supply-side factors

in general are unimportant in explaining �rm size. Rather, the results suggest that supply-

side factors that are othogonal to average market share might be important. Examples of

such factors are e�ciency in marketing or skills in �nding and attracting a customer base.

Di�erences in �nal demand across �rms, as captured by the ratio of total �rm sales to sales to

�nal consumers (ln βci ), account for an economically negligible 1% of the overall variation in

�rm size. Hence, practically the entire downstream factor is governed by demand from other

�rms in the production network, rather than from �nal demand. The small and insigni�cant

e�ect of �nal demand lnβci means that large �rms are not systematically selling relatively

more (or less) to �nal demand than small �rms.

We can also visualize the importance of each component using a binned scatterplot. In

Figure 6, we group log sales into 20 equal-sized bins and compute the mean of log sales

and the components lnψi, ln ξi and ln βci within each bin, and then create a scatterplot of

these data points. The result is a non-parametric visualization of the conditional expectation

function, and because the components sum to log sales, the sum of the components on the

vertical axis equals log sales on the horizontal axis. Again, we observe the dominance of the

downstream component, and furthermore that the relationship is close to linear across the

whole distribution of �rm sales.

These �ndings suggest that the key to understanding the vast �rm size heterogeneity

observed in modern economies is in how �rms manage their sales activities, and speci�cally

how they match and transact with buyers in the production network. This does not imply

that the production side is irrelevant: models of the production process within �rms inform

various important aspects of �rm operations beyond �rm sales, such as value added and

pro�ts. In addition, the evidence lends support to the large class of models that focus on a

single �rm attribute on the production side (e.g. productivity), such as Melitz (2003).
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Figure 6: Overall Decomposition (2014).
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Note: The binned scatterplot groups the log sales into 20 equal-sized bins, computes
the mean of log sales and the components lnψi, ln ξi and lnβci within each bin,
then creates a scatterplot of these data points. The result is a non-parametric
visualization of the conditional expectation function.
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Table 7: Downstream Decomposition (2014).

# Customers Avg Customer Capability Customer Covariance

lnnci ln θ̄i ln Ωc
i

ln ξi .72∗∗∗ .03∗∗∗ .25∗∗∗

(.00) (.00) (.00)

Note: The table reports coe�cient estimates from OLS regressions of a �rm size
margin (as indicated in the column heading) on the downstream factor, ln ξi.
Standard errors in parentheses. Signi�cance: * < 5%, ** < 1%, *** <0.1%.

Finally, this top-tier �rm size decomposition speaks to the stylized facts we presented in

Section 2. At a basic level, the evidence here suggests that there is an intimate relationship

between the skewed distributions of �rms' total sales and various aspects of their production

network activity, as summarized in Fact 1. In turn, the important role we uncover for the

upstream and downstream factors of the �rm size suggests that the other facts also implicitly

re�ect how the production network shapes the �rm size distribution.

5.1.2 Downstream Decomposition

We next decompose the downstream component into its consituent parts, from equation (10),

to assess the speci�c channels through which the production network shapes �rm sales. Ta-

ble 7 reports the results from regressing each downstream subcomponent against ln ξi, such

that the coe�cient estimates quantify the relative importance of each component. An over-

whelming 72% of the variation in the downstream component across �rms can be attributed

to the extensive margin, i.e. the number of (domestic) buyers lnnci that producers sell to.

On the other hand, the average sourcing capability across a �rm's customers ln θ̄i and the

customer covariance term ln Ωc
i contribute a much more modest 3% and 25%, respectively.

As above, we also report the results using a binned scatterplot in Figure 7.

We conclude that on the sales side, the single most important advantage of large �rms

is that they successfully match with many buyers. The covariance term is also substantial,

suggesting that bigger �rms also tend to have more skewed sales to large buyers, relative to

smaller �rms. On the other hand, large �rms are not matching with more capable buyers,

on average.

The downstream decomposition also sheds light on several stylized facts in Section 2. It

powerfully illustrates Fact 2 that bigger �rms have more downstream buyers. The limited

role of ln θ̄i reinforces Fact 3 that the distribution of a �rm's sales across customers is
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Figure 7: Downstream decomposition (2014).

10
−

1
10

0
10

1

10−1 100 101 102

ξ

 nc
i

 θbari

 Ωc
i

Note: The binned scatterplot groups the log sales into 20 equal-sized bins, computes
the mean of log sales and the components lnnci , ln θ̄i and ln Ωci within each bin,
then creates a scatterplot of these data points. The result is a non-parametric
visualization of the conditional expectation function.

31



Table 8: Upstream Decomposition (2014).

Own Prod Capability # Suppliers Avg Supplier Capability Supplier Covariance Outside-NetworkSupply

ln z̃i lnns∗i ln ψ̄∗i ln Ωs∗
i ln βs∗i

lnψi .82∗∗∗ -.01∗∗∗ .05∗∗∗ .10∗∗∗ .04∗∗∗

(.00) (.00) (.00) (.00) (.00)

Note: The table reports coe�cient estimates from OLS regressions of a �rm size margin (as indicated in the column
heading) on the upstream factor, lnψi. ∗ denotes that the variable is multiplied by (1− α). Standard errors in
parentheses. Signi�cance: * < 5%, ** < 1%, *** <0.1%.

generally invariant with the number of its customers.

5.1.3 Upstream Decomposition

We complete the �rm size decomposition by unbundling the upstream margin of �rm sales,

lnψi, from equation (12). Table 8 reports the results from regressing each subcomponent

against the upstream factor lnψi. As above, we also report the results using a binned

scatterplot in Figure 8.

The seller-speci�c production capability ln z̃i drives the overwhelming majority of the

upstream factor (82%). The remaining factors are loaded on average supplier capability

(5%), the covariance term (10%) and the non-network input share (4%). Di�erently from

the downstream side, the number of suppliers does not explain variation in the �rm size.

These results shed light on how successful �rms are able to increase their market shares

among customers. First and foremost, inherent �rm characteristics, such as productivity or

quality (the ln z̃i term), explain di�erences in market shares. According to our results, �rms

that have good suppliers (the ln ψ̄i term), or that tend to source relatively more from good

suppliers (the ln Ωs
i term), are also more successful in terms of sales, although the economic

magnitude is less pronounced.

These patterns would be consistent with the combination of search frictions and asym-

metric information in the production network. In particular, producers may have to pay

�xed search costs in order to meet input suppliers, while also facing ex-ante uncertainty

about the primitive production capability of these suppliers and their buyer-supplier, pair-

wise match quality (e.g. how well suited the widget produced by a given supplier is to my

own production process). In such an environment, exogenously more capable �rms would be

able to invest in meeting more suppliers on the extensive margin (but with a similar average

supplier capability) than less capable �rms. On the intensive margin, more capable �rms
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Figure 8: Upstream Decomposition (2014).
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Note: The binned scatterplot groups the log sales into 20 equal-sized bins, computes
the mean of log sales and the components ln z̃i, lnns∗i , ln ψ̄∗i , ln Ωs∗i and lnβs∗i , where
∗ denotes that the variable is multiplied by (1− α), then creates a scatterplot of
these data points. The result is a non-parametric visualization of the conditional
expectation function.
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Table 9: Firm Size Decomposition by Year (2002-2014).

Year N Upstream Downstream Final Demand
lnψi lnξi lnβci

2002 81,410 .19∗∗∗ .78∗∗∗ .04∗∗∗

2003 83,817 .19∗∗∗ .78∗∗∗ .03∗∗∗

2004 85,174 .20∗∗∗ .77∗∗∗ .03∗∗∗

2005 86,617 .19∗∗∗ .78∗∗∗ .03∗∗∗

2006 88,714 .19∗∗∗ .79∗∗∗ .03∗∗∗

2007 91,172 .19∗∗∗ .79∗∗∗ .02∗∗∗

2008 92,465 .19∗∗∗ .79∗∗∗ .02∗∗∗

2009 92,528 .18∗∗∗ .79∗∗∗ .03∗∗∗

2010 92,903 .19∗∗∗ .79∗∗∗ .02∗∗∗

2011 94,282 .19∗∗∗ .79∗∗∗ .02∗∗∗

2012 95,558 .19∗∗∗ .79∗∗∗ .02∗∗∗

2013 94,324 .19∗∗∗ .79∗∗∗ .01∗∗∗

2014 94,357 .19∗∗∗ .80∗∗∗ .01∗∗

Note: The table reports coe�cient estimates from OLS regressions of a �rm size
margin (as indicated in the column heading) on total �rm sales (all variables in
logs). Signi�cance: * < 5%, ** < 1%, *** <0.1%.

could also more e�ectively allocate their input purchases towards suppliers with both higher

production capability and match quality.

5.2 Results by Year

In this subsection, we next explore the evolution of the �rm size distribution in Belgium over

the 2002-2014 period in the sample. We �nd that despite the increase in the number of �rms

and in their sales dispersion over time, the sources of �rm size heterogeneity have remained

remarkably stable.

We perform the three-step �rm size analysis separately for each year in the data, and list

the results for the top-tier decomposition in Table 9. The importance of the upstream side

has hovered around 18-20%. The downstream side has gradually risen from 78% to 80%,

closely following a decline in �nal demand from 4% to 1%.

We observe similarly stable patterns when we consider the lower-tier decomposition of

downstream and upstream sub-components.23 These �ndings suggest that there may be

inherent drivers of the �rm size distribution whose relative importance remains stable despite

23Results available upon request.
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the rise in production fragmentation across �rm and country boundaries over the last 15

years.

5.3 Firm Growth

The baseline decomposition relates variance of sales across �rms to variance of the various

margins. A related question is what explains the variance of �rm growth. We proceed

as follows. First, we estimate equation (14) on two cross-sections, the baseline year 2014

(t = 1) and year 2002 (t = 0). We then calculate the change in every demeaned variable in

the decomposition. For example, the overall decomposition from (9) becomes

∆T lnSi = ∆T lnψi + ∆T ln ξi + ∆T ln βci ,

where ∆T denotes the change from t = 0 to t = 1, e.g. ∆T lnSi = ∆S lnSi1 − ∆S lnSi0.

We then regress each component, e.g. ∆T lnψi, on ∆T lnSi. This decomposition allows us

to assess the importance of the network in explaining �rm-level growth. Note that long

di�erencing is only feasible for �rms that are observed with non-missing sales as well as

buyer and seller e�ects in both years, i.e. we cannot perform the decomposition on �rms

that enter or exit during the sample period. However, the decomposition allows for adding

and dropping of customers and suppliers, i.e. the terms ∆T lnψi and ∆T ln ξi may change

because of extensive margin adjustments.

The results are summarized in Table 10. Interestingly, the contribution of each component

is very close to what we found in the cross-sectional analysis in Section 5.1. For example,

the downstream component dominates in the overall decomposition (column 3), whereas the

number of customers explains most of the variation in ξi (column 4), and own production

capability explains most of the variation in ψi (column 4).

5.4 Variation Across Industries

Finally, we explore the stability of our results across di�erent industries. Table 11 reports

separate results for six broad industry groups. Across all of these groups, the estimated

coe�cients are relatively close to the baseline results reported in Section 5.1, underscoring

the robustness of our results. One exception is construction (NACE 41 to 43), where the

�nal demand term βci enters with a coe�cient of -0.10. However, this is as expected, as large

construction �rms typically sell relatively less to �nal demand compared to small construction

�rms. We have also performed the decomposition separately for every 2-digit NACE industry.

For the large majority of industries, we �nd that the overall decomposition looks strikingly

similar to the baseline results.
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Table 10: Firm Growth Decomposition (2002-2014).

Firm Size Component Sales Downstream Upstream
Si ξi ψi

Upstream Network Supply ψi .09∗∗∗

Downstream Network Demand ξi .81∗∗∗

Final Demand βci .10∗∗∗

# Customers nci .62∗∗∗

Avg Customer Capability θ̄i .01∗∗∗

Customer Covariance Ωc
i .37∗∗∗

Production Capability z̃i .98∗∗∗

# Suppliers nsi -.03∗∗∗

Avg Supplier Capability ψ̄i .01∗∗∗

Supplier Covariance Ωc
i .03∗∗∗

Outside-Network Supply βsi .01∗∗∗

N 41,185 41,185 41,185

Note: The table reports coe�cient estimates from OLS regressions of a �rm size
margin (as indicated in the row heading) on total �rm sales (column 3) or lnξi
(column 4) or lnψi (column 5). All variables in logs. Signi�cance: * < 5%, ** <
1%, *** <0.1%.

Table 11: Firm Size Decomposition by Industry (2014).

NACE Industry N Upstream Downstream Final Demand

ψi ξi βci
01-09 Primary and Extraction 2,838 .24∗∗∗ .79∗∗∗ -.03∗∗

10-33 Manufacturing 16,905 .26∗∗∗ .75∗∗∗ -.01∗∗

35-39 Utilities 852 .15∗∗∗ .81∗∗∗ .04∗∗

41-43 Construction 19,008 .11∗∗∗ .99∗∗∗ -.10∗∗

45-82 Market Services 53,604 .18∗∗∗ .77∗∗∗ .04∗∗

84-96 Non-Market Services 1,150 .12∗∗∗ .84∗∗∗ .04

Note: The table reports coe�cient estimates from OLS regressions of a �rm size margin (as indicated
in the column heading) on total �rm sales. All variables in logs. Signi�cance: * < 5%, ** < 1%,
*** <0.1%.
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6 General Equilibrium

The estimation and decomposition presented in Sections 3 and 4 provide parameter values

for �rm-level fundamentals. What remains is to close the model and solve for the general

equilibrium. This will become useful in the counterfactual experiments presented below.

Final Demand. To close the model, two additional assumptions are required. First, we

need an assumption about �nal demand. We choose the simplest possible case and assume

CES utility with the same elasticity of substitution σ across �rms:

U =

(∑
k

(φkνk)
(σ−1)/σ

)σ/(σ−1)

.

Using the same functional form for �nal demand and �rm demand enables us to utilize the

estimates for production also for �nal demand. We consider the �nal consumer as an average

input consumer, so that the terms φ̃ki and τ̃ij do not appear in �nal demand.24 The value

of �nal demand is Fi =
(

φi
τipi

)σ−1
Pσ−1X, where X is overall income. P is the CES price

index:

P1−σ =
∑
i

(τipi/φi)
1−σ

=
∑
i

P̃ 1−α
i z̃i, (15)

where P̃j ≡ P 1−σ
j .

Mark-ups. Second, we need an assumption about mark-ups. So far, we have been com-

pletely agnostic about market structure and price determination. To allow for maximum

�exibility, we assume that the mark-up potentially varies across �rms, but that it is constant

across equilibria.25 As a consequence, a �rm's purchases relative to total sales, µi ≡ Mi/Si

is constant.26 We therefore use data on µi when simulating the model. The set of �rms is

�xed and there is no free entry. We assume that the �nal consumer is the shareholder of the

�rms, so that aggregate pro�ts Π become part of consumer income. Income X is forefore

the sum of labor income and aggregate pro�ts, X = wL + Π, where w is the wage and L

is inelastically supplied labor. It can be shown that in equilibrium, X = ρwL, where ρ is a

constant term.

24Since �nal demand is modeled as a representative consumer, there is by construction no match speci�c
component φki. Since φki = φkφ̃ki and (1/nci )

∑
i φ̃ki = 1, this implies that the perceived quality of a �rm k

is identical for the �nal consumer and the average �rm i.
25An alterantive, and in our opinion less �exible, approach would be to add more assumptions about

market structure and pricing behavior.
26Mi

Si
= 1−α

Si/TotalCostsi
= 1−α

Markupi
, which is constant given that Markupi is constant.
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Backward �xed point. We need to determine how the input costs of �rm j depend on the

input costs of the suppliers of j. This can be solved by iterating on a backward �xed point

problem. The backward �xed point relates the price index of �rm j to the price indices of

its suppliers, using equations (1) and (8):

P̃j =
∑
i∈Sj

(
pij
φij

)1−σ

(16)

=
∑
i∈Sj

P̃ 1−α
i z̃iωij.

Firm j's input costs depend on the production capability of its suppliers, z̃i, the suppliers'

input costs, P̃i, as well as the match terms ωij. We solve for the backward �xed point using

data on α and our estimates of z̃i and ωij from above.

Forward �xed point. We also need to characterize how the sales of �rm i relate to the

sales of the customers of i. Total �rm sales are Si = Fi +
∑

j∈Ci mij. Using equations (1),

(8) and (2) and de�ning P̃ ≡ P1−σ, the forward �xed point is then:

Si = z̃iP̃
1−α
i

(
X

P̃
+
∑
j∈Ci

µjSj

P̃j
ωij

)
. (17)

A detailed derivation is found in Appendix A.2. Firm i's sales depend on �nal demand,

X/P̃ , the production and sourcing capability of the �rm itself, z̃i and P̃i, as well as the sales,

sourcing capabilities and match e�ects of its customers, Sj, P̃j and ωij. We solve for the

forward �xed point using (i) data on α, �nal demand X and µj, (ii) our estimates of z̃i and

ωij, and (iii) P̃i and P̃ using the solution to the backward �xed point in equation (16). Note

that we can solve for the equilibrium distribution of sales without imposing any assumption

on the elasticity of substitution σ.

Welfare. Indirect utility equals the inverse of the �nal demand price index P . Hence,

welfare can be evaluated with equation (15), using estimates of production capability z̃i and

match e�ects ωij as well as the solution to P̃i from the backward �xed point.

7 Conclusions

This paper quanti�es the origins of �rm size heterogeneity when �rms are interconnected in

a production network. We �rst document new stylized facts about a complete production

network using data on the universe of buyer-supplier relationships among all �rms in Belgium

during 2002-2014. These stylized facts suggest that the network of buyer-supplier links is

key to understanding the �rm size distribution. Speci�cally, they signal the important roles
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played by downstream input demand as distinct from �nal demand, by both seller- and

buyer-speci�c �rm characteristics, and by seller-buyer match characteristics.

Morivated by these facts, we outline a model in which �rms buy inputs from upstream

suppliers and sell to downstream buyers and �nal demand. In the model, �rms can be

large for the standard reason that they have high production capability (i.e. productivity

or product quality). However, �rms can also be large because they interact with more,

better and larger buyers and suppliers and because they are better matched to their buyers

and suppliers. This framework delivers an exact decomposition of �rm size into supply and

demand margins with �rm, buyer/supplier and match components. We design a three-stage

estimation methodology that makes it possible to back out these �rm size components from

data on �rm-level balance sheets and �rm-to-�rm transactions in a production network. We

implement the methodology using detailed data for Belgium, and quantify the contribuion

of each component to the overall dispersion in �rm size in the economy.

We establish three empirical results for the origins of �rm size heterogeneity. These pat-

terns hold in the cross-section of �rms in each year of the panel, as well as in the evolution

of �rm size within �rms over time. First, demand factors explain 81% of �rm size hetero-

geneity, while supply factors only 19%. Second, nearly all the variation on the demand side

is driven by network sales to other �rms rather than by �nal demand. By contrast, most of

the variation on the supply side re�ects heterogeneity in own production capability rather

than network purchases from input suppliers. Third, most of the variance in the network

components of �rm size is determined by the number of buyers and suppliers and the al-

location of activity towards well-matched partners of high quality, rather than by average

partner capability.

These theoretical, methodological and empirical contributions open interesting avenues

for future research. We have taken the production network as given in order to assess its

role in shaping the �rm size distribution. Our results nevertheless shed light on the various

challenges and opportunities that �rms face in the presence of input-output linkages in the

economy. Future work can examine how �rm-speci�c characteristics determine the matching

of buyers and suppliers in the production network in light of our �ndings. Separately, we

have dissected the origins of �rm size heterogeneity, but not explored its implications for the

aggregate economy. Future studies can analyze whether di�erent sources of the dispersion

in �rm size have di�erent implications for aggregate outcomes such as growth or income

inequality. Finally, we have focused on the relationship between the production network

and �rm size heterogeneity in steady state. Future analyses can explore how this relation-

ship a�ects the propagation process and aggregate welfare impact of both �rm-speci�c and

macroeconomic shocks.
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Appendix

A The Model

A.1 The Supply Side Decomposition

From equation (7), we get

lnψi = ln z̃i + (1− α) (lnMi − ln θi) ,

where z̃i ≡ (φizi/ (τiw
α))σ−1. Substituting for lnMi from equation (11) and using equation

(5) yields

lnψi = ln z̃i + (1− α)

(
ln
∑
k∈Si

ψkωki + ln βsi

)
.

The term
∑

k∈Si ψkωki can be further decomposed into

ln
∑
k∈Si

ψkωki = lnnsi + ln ψ̄i + ln

(
1

nsi

∑
k∈Si

ωki
ψk
ψ̄i

)
,

where ψ̄i =
(∏

k∈Si ψk
)1/ns

i . Combining the last two equations yields equation (12) in the

main text.

A.2 Forward Fixed Point

Total �rm sales are Si = Fi +
∑

j∈Ci mij. We �rst derive expressions for �nal demand and

then demand from other �rms.

Final demand. Using equation (1) and de�ning P̃i ≡ P 1−σ
i and P̃ ≡ P1−σ, the �nal

demand price index is

P̃ =
∑
i

(
τipi
φi

)1−σ

=
∑
i

P̃ 1−α
i z̃i.

Using equation (1), �nal demand is

Fi =

(
φi
τipi

)σ−1
Pσ−1wL

= z̃iP̃
1−α
i

wL

P̃
.
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Firm Demand. Using (1), (8) and (2), �rm demand is

∑
j∈Ci

mij =
∑
j∈Ci

(
φij
pij

)σ−1
P σ−1
j Mj

= z̃iP̃
1−α
i

∑
j∈Ci

µjSj

P̃j
ωij.

Combining the two sources of demand, we get total sales:

Si = z̃iP̃
1−α
i

(
wL

P̃
+
∑
j∈Ci

µjSj

P̃j
ωij

)
.

A.3 Variance Decompositions

This section derives statistical properties of the baseline variance decomposition. Consider

the following identity:

s ≡
∑
k

ak.

The variance of s is

var (s) =
∑
k

σkk +
∑
k

∑
i 6=k

σki, (18)

where σki = cov (ak, ai). In the baseline decomposition, we regress each element ak on s. By

the properties of OLS, the estimate is

βk =
cov (ak, s)

var (s)
=

1

var (s)

(
σkk +

∑
i 6=k

σki

)
. (19)

Note that the sum of all βk's equals one,

∑
k

βk =
1

var (s)

(∑
k

σkk +
∑
k

∑
i 6=k

σki

)
= 1.

Also note that in the case with only two components, the covariance term in equation (19)

is split equally among components:

β1 = (σ11 + σ12) /var (s)

β2 = (σ22 + σ12) /var (s) .

45



B Data sources and construction

B.1 The Belgian VAT system and VAT �lings

The Belgian value-added tax (VAT) system requires that the vast majority of �rms located

in Belgium and across all economic activities charge VAT on top of the delivery of their goods

and services. This also includes foreign companies with a branch in Belgium and �rms whose

securities are o�cially listed in Belgium. Firms that only perform �nancial transactions,

medical or socio-cultural activities are exempt. The tax is levied in successive stages of the

production and distribution process: At each purchase transaction, �rms pay their input

suppliers VAT on top of the value of the inputs sourced. At each sales transaction, �rms

charge their buyers VAT on top of the sales value, and in e�ect transfer to the tax authorities

only taxes due on the valueadded at that stage. The tax is neutral to the �rm (other than

potentially through its e�ect on �rms' pre-tax pricing strategy), and the full burden of the

tax ultimately lies with the �nal consumer. The standard VAT rate in Belgium is 21%, but

for some goods a reduced rate of 12% or 6% applies.27

VAT-liable �rms have to �le periodic VAT declarations and VAT listings with the tax

administration.28 The VAT declaration contains the total sales value, the VAT amount

charged on those sales (both to other �rms and to �nal consumers), the total amounts paid

on inputs sourced and the VAT paid on those inputs. This declaration is due monthly or

quarterly depending on �rm size, and it is the basis for the balance of VAT due to the tax

authorities every period. Additionally, at the end of every calendar year, all VAT-liable

�rms have to �le a complete listing of their Belgian VAT-liable customers over that year. An

observation in this listing refers to the yearly values of total sales from �rm i to �rm j. The

reported value is the sum of the value of all invoices from i to j. Whenever this aggregate

value is larger than or equal to 250 euro, the relationship has to be reported. Sanctions for

incomplete and erroneously reporting guarantee the high quality of the data.

B.2 Data sources

The empirical analysis draws on three main data sources administered by the National Bank

of Belgium (NBB): (i) the NBB B2B Transactions Dataset, (ii) annual accounts from the

Central Balance Sheet O�ce at the NBB, (iii) and the Crossroads Bank at the NBB. Firms

are identi�ed by their VAT number, which is unique and common across these databases

27See ec.europa.eu/taxation_customs for a complete list of rates. These rates did not change over our
sample period.

28Sample VAT declaration forms can be found at here (French) and here (Dutch). Sample VAT listings
forms can be found at here (French) and here (Dutch).
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and allows for straightforward merging across datasets.

Firm-to-�rm relationships The con�dential NBB B2B Transactions Dataset contains the

values of yearly sales relationships among all VAT-liable Belgian �rms for the years 2002

to 2014, and is based on the VAT listings collected by the tax authorities. An observation

in this dataset refers to the sales value in euro of �rm i selling to �rm j within Belgium,

excluding the VAT amount due on these sales. This value is the sum of invoices from i to j

in a given calendar year. Note that the relationship is directed, as the observation from i to

j is di�erent from the observation from j to i. A detailed description of the collection and

cleaning of this dataset is given in Dhyne et al. (2015).

Firm-level characteristics We extract information on �rms' annual accounts from the

Central Balance Sheet O�ce at the NBB for the years 2002 to 2014. Firms above a certain

size threshold have to �le annual accounts at the end of the �scal year.29 We retain infor-

mation on the �rm identi�er, turnover (total sales in euro, code 70 in the annual accounts),

input purchases (total material and services inputs in euro, codes 60+61), labor cost (total

cost of wages, social securities and pensions in euro, code 62) and employment (average

number of full-time equivalent (FTE) employees, code 9087). Small �rms submit abbrevi-

ated annual accounts and do not have to report turnover and intermediate input purchases

. We annualize all �ow variables in the annual accounts from �scal years to calendar years.

This transformation ensures that all �rm-level information in our database is consistent with

observations in the VAT listings data.30

We obtain information on the main economic activity of the �rm at the NACE 4-digit

level from the Crossroads Bank of Belgium for the years 2002 to 2014. We concord NACE

codes over time to the NACE Rev. 2 version to deal with changes in the NACE classi�cation

over our panel from Rev. 1.1 to Rev. 2. Table 12 lists industry groups at the NACE 2-

digit level. We also extract the main location of the �rm at the postal code level from the

Crossroads Bank.

B.3 Data construction and cleaning

Wages are calculated as labor cost over FTE employment. Labor shares are calculated as

labor cost over turnover. We set the labor share equal to one if it is larger than one. For most

of the analysis, we use wages and labor shares at the NACE 2-digit industry, by �rst summing

29See here for �ling requirements and exceptions. See here for the size criteria and �ling requirements for
either full-format or abridged annual accounts.

3078% of �rms have annual accounts that coincide with calendar years, while 98% of �rms have �scal years
of 12 months.
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over all �rms' labor costs in that industry and then dividing by total FTE employment or

total turnover in that industry. We drop �rms that have missing employment information

or less than one FTE employee.

Geographical distance between �rm pairs is calculated as the distance in kilometers be-

tween the �rms' postal codes. For within-postal code trade, we follow Head and Mayer

(2000) and calculate internal distance as 0.4×
√
area, where area is the surface area of the

postal code in squared kilometers.

Firm pairs are indexed by the Cantor pairing function to keep the pairing identity con-

sistent over the panel.31

Throughout the paper, we report statistics on both the full sample in the raw data and the

estimation sample used in the �rm size decomposition. For the full sample, we keep all �rm-

to-�rm relationships in the NBB B2B dataset, even if there is missing �rm-level information,

as these contribute to the decomposition exercise. We thus keep all �rms that show up in

the network as either a buyer or a seller. For the estimation sample, in Step One we �rst

estimate the two-way �xed e�ects regression on the full sample. Note that if a buyer or seller

has only one business relationship, the �xed e�ect is not identi�ed. This �rm, together with

its connections, is then dropped from the sample. This is done iteratively, until only �rms

that have at least two sellers or buyers remain. Finally, for the decomposition exercise to

contain the same number of observations across all (sub-)components, in Step Two and Step

Three we keep only �rms that show up as both buyer and seller in the network.

B.4 Supplementary empirical results

This sub-section contains additional empirical results that we refer to in the main text.

Table 13 reports all two-way correlation coe�cients among the various �rm size compo-

nents that we use in the decomposition analysis.

31In particular: pij = 1
2 (a+ b) × (a+ b+ 1) + b, where pij is the pair ID and a and b are the seller and

buyer ID respectively.
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Table 13: Correlation among �rm size components (demeaned by NACE-2 sector, 2014).
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Note: All correlations are signi�cant at 5% except those strictly below 0.01.
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