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ABSTRACT

We present a new model of asset prices based on return extrapolation. The model is a Lucas-type

general equilibrium framework, in which the agent has Epstein-Zin preferences and extrapolative

beliefs. Unlike earlier return extrapolation models, our model allows for a quantitative comparison

with the data on asset prices. When the agent’s beliefs are calibrated to match survey expecta-

tions of investors, the model generates excess volatility and predictability of stock returns, a high

equity premium, a low and stable risk-free rate, and a low correlation between stock returns and

consumption growth. We compare our model with prominent rational models and document their

different implications.
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In financial economics, there is growing interest in “return extrapolation,” the idea that in-

vestors’ beliefs about an asset’s future return are a positive function of the asset’s recent past

returns. Models with return extrapolation have two appealing features. First, they are consistent

with survey evidence on the beliefs of real-world investors.1 Second, they show promise in matching

important asset pricing facts, such as volatility and predictability in the aggregate market, momen-

tum and reversals in the cross-section, and bubbles (Barberis, Greenwood, Jin, and Shleifer (2015,

2017); Hong and Stein (1999)).

One limitation of existing models of return extrapolation, however, is that they can only be com-

pared to the data in a qualitative way. Early models, such as Cutler, Poterba, and Summers (1990)

and DeLong, Shleifer, Summers, and Waldmann (1990), highlight the conceptual importance of re-

turn extrapolation, but they are not designed to match asset pricing facts quantitatively. Barberis

et al. (2015) is a dynamic consumption-based model that tries to make sense of both survey ex-

pectations and aggregate stock market prices. However, the simplifying assumptions in the model

make it difficult to evaluate the model’s fit with the empirical facts. For instance, their model

adopts a framework with constant absolute risk aversion (CARA) preferences and a constant in-

terest rate. Under these assumptions, many ratio-based quantities that we study in asset pricing

(e.g., the price-dividend ratio) do not have well-defined distributions in the model and therefore do

not have properties that match what we observe in the data.

In this paper, we propose a new model of aggregate stock market prices based on return ex-

trapolation that overcomes this limitation. The goal of the paper is to see if the model can match

important facts about the aggregate stock market when the agent’s beliefs are calibrated to match

survey expectations of investors, and to compare the model in a quantitative way to rational ex-

pectations models of the stock market.

We consider a Lucas economy in continuous time with a representative agent. The Lucas tree is a

claim to an aggregate consumption process which follows a geometric Brownian motion. Besides the

Lucas tree, there are two tradeable assets in the economy: the stock market and an instantaneous

riskless asset. The stock market is a claim to an aggregate dividend process whose growth rate

1Among others, Vissing-Jorgensen (2004), Bacchetta, Mertens, and van Wincoop (2009), Amromin and Sharpe
(2013), Greenwood and Shleifer (2014), Koijen, Schmeling, and Vrugt (2015), and Kuchler and Zafar (2016) document
that many individual and institutional investors have extrapolative expectations: they believe that the stock market
will continue rising in value after a sequence of high past returns, and that it will continue falling in value after a
sequence of low past returns.
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is positively correlated with consumption growth. The riskless asset is in zero net supply with

its interest rate determined in equilibrium. The representative agent has Epstein-Zin preferences

and extrapolative beliefs. She perceives that the expected growth rate of stock market prices is

governed by a switching process between two regimes. If recent price growth of the stock market

has been high, the agent thinks it is likely that a high-mean price growth regime is generating

prices and therefore forecasts high price growth in the future. Conversely, if recent price growth

has been low, the agent thinks that it is likely that a low mean-price growth regime is generating

prices and therefore forecasts low price growth in the future.

We calibrate the agent’s beliefs to match the survey expectations of investors studied in Green-

wood and Shleifer (2014). Specifically, we set the belief-based parameters so that, for a regression

of the agent’s expectations about future stock market returns on past twelve-month returns, the

model produces a regression coefficient and a t-statistic that match the empirical estimates from

surveys. Our parameter choice also allows the agent’s beliefs to match the survey evidence on the

relative weight investors put on recent versus distant past returns when forming beliefs about fu-

ture returns. Overall, the model generates a degree of extrapolative expectations for the agent that

matches the empirical magnitude. With the agent’s beliefs disciplined by survey data, the model

quantitatively matches important facts about the aggregate stock market: it generates significant

excess volatility and predictability of stock market returns, a high equity premium, a low and stable

interest rate, as well as a low correlation between stock market returns and consumption growth.

We now explain the intuition for the model’s implications, starting with excess volatility. The

model generates significant excess volatility from the interaction between return extrapolation and

Epstein-Zin preferences. Suppose that the stock market has had high past returns. In such a case,

return extrapolation leads the agent to forecast high future returns. Under Epstein-Zin preferences,

the separation between the elasticity of intertemporal substitution and risk aversion gives rise to

a strong intertemporal substitution effect. Therefore, the agent’s forecast of high future returns

leads her to push up the current price significantly, generating excess volatility.2

2A feedback loop emerges from this mechanism. If current returns are high, that makes the agent think that
future returns will also be high, which leads her to push up prices, increasing current returns further, and so on. In
general, there is a danger that this feedback loop could “explode.” Nonetheless, in the model, we assume the agent
believes that the expected growth rate of stock market prices tends to switch over time from one regime to the other;
she therefore believes her optimism will decline in the future. As a result, the cumulative impact of the feedback
loop on investor expectations and asset prices is finite; the model remains stable. Models like Cutler et al. (1990)
and Barberis et al. (2015) instead introduce fully rational investors in order to counteract the behavioral investors
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The mechanism described above for generating excess volatility, together with a strong degree of

mean reversion in the agent’s expectations about stock market returns, produces the long-horizon

predictability of stock market returns that we observe in the data. The agent’s beliefs mean-revert,

for two reasons. First, by assumption, the agent believes that the expected growth rate of stock

market prices tends to switch over time from one regime to the other: the agent believes that her

expectations about stock market returns will mean-revert. Second, the agent’s return expectations

mean-revert faster than what she perceives: when the agent thinks that the future price growth is

high, future price growth tends to be low endogenously, causing her return expectations to decrease

at a pace that exceeds her anticipation. As a result, following periods with a high price-dividend

ratio—this is when the high past price growth of the stock market pushes up the agent’s expectation

about future returns and hence her demand for the stock market—the agent’s return expectation

tends to revert back to its mean, giving rise to low subsequent returns and hence the predictability

of stock market returns using the price-dividend ratio.

Next, we turn to the model’s implications for the equity premium. Three factors affect the

long-run equity premium perceived by the agent. First, because the agent is risk averse, excess

volatility causes her to demand a higher equity premium. Second, return extrapolation gives rise

to perceived persistence of the aggregate dividend process, which, under Epstein-Zin preferences,

is significantly priced, pushing up the perceived equity premium. Finally, the separation between

the elasticity of intertemporal substitution and risk aversion helps to keep the equilibrium interest

rate low and hence keep the equity premium high. Furthermore, the true long-run equity premium

is significantly higher than the perceived one. In the model, the agent’s beliefs mean-revert faster

than what she perceives. Given this, she underestimates short-term stock market fluctuations and

hence the risk associated with the stock market. In other words, if an infinitesimal rational agent,

one that has the same preferences as the behavioral agent but holds rational beliefs, enters our

economy, she would have demanded a higher equity premium: the model produces a true average

equity premium that is substantially higher than the perceived equity premium.

Finally, the model generates low interest rate volatility and a low correlation between stock

market returns and consumption growth. In the model, the agent separately forms beliefs about

the dividend growth of the stock market and about aggregate consumption growth. Here, we assume

and preserve equilibrium.
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that the bias in the agent’s beliefs about consumption growth derives only from the bias in her

beliefs about dividend growth. Given the low observed correlation between consumption growth and

dividend growth, the bias in the agent’s beliefs about consumption growth is small, consistent with

the lack of empirical evidence that investors have extrapolative beliefs about consumption growth.

The agent’s approximately correct beliefs about consumption growth allow the model to generate

low interest rate volatility. They also imply that the agent’s beliefs about stock market returns—

they co-move strongly with her beliefs about dividend growth—are not significantly affected by

fluctuations in consumption growth, giving rise to the low observed correlation between stock

market returns and consumption growth.

Although our model is based on return extrapolation, it yields direct implications for cash

flow expectations. When the past price growth of the stock market has been high, this has a

positive effect not only on the agent’s beliefs about future returns, but also on her beliefs about

future dividend growth; indeed, her expectations about dividend growth rise at a pace that exceeds

her expectations about future returns.3 Given this, a Campbell-Shiller decomposition using the

agent’s subjective expectations about stock market returns and dividend growth shows that changes

in subjective expectations about future dividend growth explain most of the volatility of the price-

dividend ratio. This model implication is consistent with the recent empirical findings of de la O and

Myers (2017): they find that during periods when the price-dividend ratio of the U.S. stock market

is high, investors’ expectations of future dividend growth are much higher than their expectations

of future stock market returns. As a result, changes in investors’ subjective expectations of future

dividend growth explain the majority of stock market movements. Importantly, the fact that prices

in our model are mainly correlated with cash flow expectations is a consequence of the Campbell-

Shiller accounting identity; this statement is about correlation, not about causality. The agent’s

return expectations determine her cash flow expectations and are the cause of price movements.

Given this, our model simultaneously explains the empirical findings of de la O and Myers (2017)

on cash flow expectations and the empirical findings of Greenwood and Shleifer (2014) on return

expectations. At the same time, the model also explains the empirical findings of Cochrane (2008)

and Cochrane (2011) that, under rational expectations, the variation of the price-dividend ratio

comes primarily from discount rate variation.

3We provide a detailed explanation of this finding in Sections I and II.
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Our model also points to some challenges: when calibrated to the survey expectations data, the

model predicts a persistence of the price-dividend ratio that is significantly lower than its empirical

value. In other words, to match the empirical persistence of the price-dividend ratio, investors need

to form beliefs about future returns based on many years of past returns. However, the available

survey evidence suggests that they focus on just the past year or two.

After presenting the model, we compare it to the standard rational expectations models of the

aggregate stock market. As with the habit formation model of Campbell and Cochrane (1999), the

long-run risks models of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), and the rare

disasters models of Barro (2006), Gabaix (2012), and Wachter (2013), our model is developed in a

Lucas economy with a representative agent. This model structure allows for a direct comparison

between our model and models with rational expectations. Here, we focus on the long-run risks

models because these are the models most related to ours. We document some different implications.

First, our model differs from the long-run risks models in the way the agent forms expectations.

In Bansal and Yaron (2004), dividend growth and consumption growth share a stochastic yet

persistent component. High past stock market returns are typically caused by positive shocks to

this common component, which, given its persistence, implies high dividend growth and hence high

raw returns moving forward. That is, the agent in Bansal and Yaron (2004) has extrapolative beliefs

about future raw returns. At the same time, precisely because dividend growth and consumption

growth share a persistent component, the comovement between the agent’s beliefs about stock

market returns—these rationally drive returns—and her beliefs about consumption growth—these

determine the interest rate in equilibrium—is high. That is, when the raw returns are high, the

interest rate is also high. As a result, the agent does not hold extrapolative beliefs about excess

returns. In our model, however, the agent extrapolates past stock market returns, but extrapolates

past consumption growth much less: the comovement between her beliefs about stock market

returns and her beliefs about consumption growth is low. Therefore, the agent has extrapolative

beliefs about both raw returns and excess returns.

Furthermore, these two models yield different implications for asset prices. Our model produces

an equity premium that does not vary significantly with changes in the elasticity of intertemporal

substitution. On the contrary, long-run risks models cannot generate a high equity premium with

a low elasticity of intertemporal substitution. To see this model difference, we first note that the
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agent’s beliefs in our model are much less persistent than the stochastic component of dividend and

consumption growth in Bansal and Yaron (2004), allowing the equilibrium interest rate and hence

the equity premium in our model to be less responsive to changes in the elasticity of intertemporal

substitution. At the same time, the perceived dividend growth in our model depends more strongly

on the agent’s beliefs about the price growth of the stock market, pushing up the perceived equity

premium; as a comparison, dividend growth in Bansal and Yaron (2004) depends much less on the

stochastic growth component. Finally, the true long-run equity premium in our model is above the

perceived one, allowing the equity premium to be high even when the elasticity of intertemporal

substitution is low.

Our paper adds to a new wave of theories that attempt to understand the role of belief forma-

tion in driving the behavior of asset prices and the macroeconomy (Fuster, Hebert, and Laibson

(2011); Gennaioli, Shleifer, and Vishny (2012); Choi and Mertens (2013); Alti and Tetlock (2014);

Hirshleifer, Li, and Yu (2015); Barberis et al. (2015); Jin (2015); Ehling, Graniero, and Heyerdahl-

Larsen (2015); Vanasco, Malmendier, and Pouzo (2015); Pagel (2016); Collin-Dufresne, Johannes,

and Lochstoer (2016a,b); Greenwood, Hanson, and Jin (2016); Glaeser and Nathanson (2017); De-

Fusco, Nathanson, and Zwick (2017); Bordalo, Gennaioli, and Shleifer (2018)). Our paper also adds

to a growing literature on the source of stock price movements (Cochrane (2008); Cochrane (2011);

Chen, Da, and Zhao (2013); de la O and Myers (2017)). Furthermore, it is related to theories of

model uncertainty and ambiguity aversion such as Bidder and Dew-Becker (2016). These models

typically assume that agents learn about the dynamic properties of the consumption process or

the dividend process. Therefore, they are closely linked to the fundamental extrapolation models

in the behavioral finance literature, but do not match survey evidence on return expectations. Fi-

nally, our paper speaks to the debate between Bansal et al. (2012) and Beeler and Campbell (2012)

which focuses on excess predictability: the notion that, in the long-run risks literature, future con-

sumption growth and dividend growth are excessively predicted by current variables such as the

price-dividend ratio and the interest rate (see also, Collin-Dufresne et al. (2016b)). Our model does

not give rise to excess predictability: return extrapolation in the model only generates perceived

but not true persistence in consumption growth and dividend growth.

The paper proceeds as follows. In Section I, we lay out the basic elements of the model and

characterize its solution. In Section II, we parameterize the model and examine its implications in
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detail. Section III provides a comparative statics analysis. Section IV discusses differences between

our model and rational expectations models. Section V further compares the model to a model with

fundamental extrapolation, the notion that some investors hold extrapolative expectations about

the future dividend growth of the stock market. Section VI concludes and suggests directions for

future research. All technical details are in the Appendix.

I. The Model

In this section, we first describe the model setup and characterize its solution, and then derive

equilibrium quantities that are important for understanding the implications of the model.

I.1. Model setup

Asset space.—We consider an infinite-horizon Lucas economy in continuous time with a repre-

sentative agent. The Lucas tree is a claim to an aggregate consumption process. We assume it is

a geometric Brownian motion

dCt/Ct = gCdt+ σCdω
C
t , (1)

and we denote the price of the Lucas tree at time t as PCt .

Besides the Lucas tree, there are two other tradeable assets in the economy; they are the main

focus of our analysis. The first asset is the stock market which is a claim to an aggregate dividend

process given by

dDt/Dt = gDdt+ σDdω
D
t ; (2)

we denote the price of the stock market at time t as PDt .4 Both ωDt and ωCt are standard Brownian

motions. We assume that the instantaneous correlation between dDt and dCt is ρ: Et[dωDt ·dωCt ] =

ρdt. The second asset is an instantaneous riskless asset. This asset is in zero net supply, and its

4Since the aggregate consumption process in the model is exogenous, the dividend payment from the stock market
does not further affect consumption. As a result, we can think of the stock market as an asset in zero net supply with
a shadow price determined in equilibrium. This is a common assumption adopted by many other consumption-based
models such as Campbell and Cochrane (1999) and Barberis, Huang, and Santos (2001).
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interest rate rt is determined in equilibrium.

Agent’s preferences.—We follow Epstein and Zin (1989, 1991) and assume that the agent has a

recursive intertemporal utility

Ut =

[
(1− e−δdt)C1−ψ

t dt+ e−δdt
(
Eet [Ũ

1−γ
t+dt]

)(1−ψ)/(1−γ)
]1/(1−ψ)

, (3)

where δ is the subjective discount rate, γ > 0 is the coefficient of relative risk aversion, and ψ > 0

is the reciprocal of the elasticity of intertemporal substitution. When ψ equals γ, (3) reduces

to power utility. The superscript “e” is an abbreviation for “extrapolative” expectations: the

certainty equivalence in (3) is computed under the representative agent’s subjective beliefs, which,

as we specify later, incorporate the notion of return extrapolation.

The subjective Euler equation, or the first-order condition, is

Eet

e−δ(1−γ)dt/(1−ψ)

(
C̃t+dt
Ct

)−ψ(1−γ)/(1−ψ)

M̃
(ψ−γ)/(1−ψ)
t+dt R̃j,t+dt

 = 1. (4)

Here M̃t+dt is the gross return on the optimal portfolio held by the agent from time t to time t+dt.

In a Lucas economy with a representative agent, the optimal portfolio in equilibrium is the Lucas

tree itself, and therefore

M̃t+dt =
P̃Ct+dt + C̃tdt

PCt
=
P̃Ct+dt + C̃t+dtdt

PCt
+ o(dt). (5)

On the other hand, R̃j,t+dt is the gross return on any tradeable asset j in the market from time t

to time t+ dt; as mentioned above, the two tradeable assets we focus on are the stock market and

the riskless asset.

Agent’s beliefs.—We now turn to the key part of the model: the representative agent’s beliefs

about stock market returns. According to surveys, real-world investors form beliefs about future

stock market returns by extrapolating past returns (Vissing-Jorgensen (2004); Bacchetta et al.

(2009); Amromin and Sharpe (2013); Greenwood and Shleifer (2014); Koijen et al. (2015); Kuchler

and Zafar (2016)). One natural way to capture this notion of return extrapolation is through a

regime-switching model. Specifically, we suppose that the agent believes that the expected growth
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rate of stock market prices is governed by (1 − θ)gD + θµ̃S,t, where µ̃S,t is a latent variable which

switches between a high value µH in a high-mean price growth regime H and a low value µL

(µL < µH) in a low-mean price growth regime L with the following transition matrix5


µ̃S,t+dt = µH µ̃S,t+dt = µL

µ̃S,t = µH 1− χdt χdt

µ̃S,t = µL λdt 1− λdt

. (6)

Here χ and λ are the intensities for the transitions of regime from H to L and from L to H,

respectively, and the parameter θ (0 ≤ θ ≤ 1) controls the extent to which the agent’s beliefs are

extrapolative: setting θ to zero makes the agent’s beliefs fully rational.

Given this perceived regime-switching model—this is not the true model—if recent stock market

price growth has been high, the agent thinks it is likely that the high-mean price growth regime

is generating prices and therefore forecasts high price growth in the future. Conversely, if recent

price growth has been low, the agent thinks it is likely that the low-mean price growth regime is

generating prices and therefore forecasts low price growth in the future. Formally, at each point in

time, the agent computes the expected value of the latent variable µ̃S,t given the history of past price

growth: St ≡ E[µ̃S,t|FPt ]. That is, she applies optimal filtering theory (see, for instance, Lipster

and Shiryaev (2001)) and obtains

dSt = (λµH + χµL − (λ+ χ)St)dt+ (σDP,t)
−1θ(µH − St)(St − µL)dωet

≡ µeS(St)dt+ σS(St)dω
e
t ,

(7)

where dωet ≡ [dPDt /P
D
t − (1 − θ)gDdt − θStdt]/σDP,t is a standard Brownian innovation term from

the agent’s perspective. As a result, she perceives the evolution of the stock market price PDt to be

dPDt /P
D
t = µD,eP (St)dt+ σDP (St)dω

e
t , (8)

where

µD,eP (St) = (1− θ)gD + θSt. (9)

5The models of Barberis, Shleifer, and Vishny (1998), Veronesi (1999), and Jin (2015) also adopt a regime-switching
learning structure.
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The agent’s expectation about price growth µD,eP (St) is therefore a linear combination of a rational

component gD and a behavioral component St; hereafter we call St the sentiment variable.

In summary, the evolution of sentiment in (7) captures return extrapolation: high past price

growth dPDt /P
D
t pushes up the perceived shock dωet , which leads the agent to raise her expectation

of the sentiment variable St, causing her expectation about future price growth µD,eP (St) to rise.6

Although the subjective evolution of sentiment (7) is derived through optimal learning, the

representative agent, it should be emphasized, does not hold rational expectations. With rational

expectations, the agent will realize in the long run that the regime-switching model (6) is incorrect:

she can look at the historical distribution of dωet and realize that it does not fit a normal distribution

with a mean of 0 and a variance of dt. Instead, the agent in our behavioral model always believes

that the regime-switching model is correct. In reality, it is possible that investors in the market

learn over time that their mental model is incorrect. At the same time, new investors who hold

extrapolative beliefs may continuously enter the market. The stable belief system in (6) is an

analytically convenient way to capture these dynamics. Alternatively, if equations (6) and (7)

represent the true data generating process, then the agent does hold rational expectations. In

that case, the model becomes a fully rational model with incomplete information.7 We discuss the

predictions of such a model in Section IV.

So far we have been focusing on the agent’s beliefs about stock market prices. These beliefs also

have direct implications for the agent’s beliefs about dividend growth. If we write the perceived

dividend process as

dDt/Dt = geD(St)dt+ σDdω
e
t , (10)

we can connect the agent’s expectation about dividend growth geD(St) to her expectation about

stock market price growth µD,eP (St). To formally make this connection, we first observe that all

the ratio-based quantities in our model (e.g., the price-dividend ratio of the stock market) are a

6There are many ways to specify the evolution of St in order to capture return extrapolation. We derive St from
a regime-switching model for two reasons. First, such a learning model captures base rate neglect, an important
consequence of the representativeness heuristic (Tversky and Kahneman (1974)). To see this, note that the perceived
regimes or states, H and L, are not part of the true states of the economy. As a result, assigning positive probability
weights to these regimes reflect the bias that the investor neglects the zero base rate associated with such regimes.
Second, bounding St by a finite range (µL, µH) reduces the analytical difficulty of solving the model.

7Information is incomplete in the sense that the agent does not directly observe the latent variable µ̃S,t.
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function of the sentiment variable St; we can define f(St) ≡ PDt /Dt. We then apply Ito’s lemma

on both sides of this equation f(St) = PDt /Dt and match terms to obtain

geD(St) = (1− θ)gD + θSt︸ ︷︷ ︸
expectation of price growth

−(f ′/f)µeS(St)︸ ︷︷ ︸
expectation of sentiment evolution

+σ2
D − σDP (St)σD − 1

2(f ′′/f)(σS(St))
2︸ ︷︷ ︸

Ito correction terms

,

(11)

where

σDP (St) =
σD +

√
σ2
D + 4θ(µH − St)(St − µL)(f ′/f)

2
> σD. (12)

Equation (11) highlights an “expectations transmission mechanism:” it says that the agent’s expec-

tation about dividend growth equals the sum of her expectation about stock market price growth,

her expectation about how the price-dividend ratio evolves with respect to changes in sentiment,

and the Ito correction terms that are related to the agent’s risk aversion and the volatility of div-

idend growth, price growth, and changes in sentiment. In this way, the agent’s expectation about

price growth affects her expectation about dividend growth.

With the parameter values we specify later, equation (11) suggests that the agent’s expectation

about dividend growth is more responsive to changes in sentiment than her expectation about

price growth. Under Epstein-Zin preferences, the separation between the elasticity of intertemporal

substitution and risk aversion gives rise to a strong intertemporal substitution effect. As a result,

when the past price growth has been high, the agent’s forecast of high future price growth leads her

to push up the current price-dividend ratio, making it a positive function of sentiment. Furthermore,

under the regime-switching model, the agent perceives sentiment to be mean-reverting: µeS(St)

in (7) is a negative function of St. This suggests that the agent also perceives the price-dividend

ratio to be mean-reverting. Together, these two conditions—the price-dividend ratio is a positive

function of sentiment and is perceived to be mean-reverting—imply that the agent anticipates that

the price-dividend ratio will decline from a high value when she expects high future price growth.

That is, when the agent expects high future price growth, her expectation about dividend growth

rises at a pace that exceeds her expectation about future price growth.
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To complete the description of the model, we need to further specify the agent’s beliefs about

consumption growth. To do this, first note that, with a local correlation of ρ between consumption

growth and dividend growth, we can rewrite the aggregate consumption process of (1) as

dCt/Ct = gCdt+ σC

(
ρdωDt +

√
1− ρ2dω⊥t

)
, (13)

where ω⊥t is a Brownian motion that is locally uncorrelated with ωDt , the Brownian shock on

dividends. We then assume that the agent perceives the consumption process as

dCt/Ct = geC(St)dt+ σC

(
ρdωet +

√
1− ρ2dω⊥t

)
. (14)

That is, we replace the true Brownian shock on dividends dωDt by the agent’s perceived Brownian

shock dωet and factor the difference between these two Brownian shocks into geC(St), the agent’s

subjective expectation about consumption growth. Conceptually, this amounts to assuming that

the bias in the agent’s beliefs about consumption growth comes only from the bias in her beliefs

about dividend growth.8 In doing so, we derive the agent’s expectation about dividend growth as

geC(St)− gC = ρσCσ
−1
D (geD(St)− gD). (15)

Empirically, the correlation between consumption growth and dividend growth is low—ρ is

positive but low—and consumption growth is much less volatile than dividend growth—σC is

much smaller than σD. As a result, (15) implies that the bias in the agent’s expectation about

consumption growth—the difference between geC(St) and gC—is small. This is in keeping with

the lack of any evidence that investors have extrapolative beliefs about consumption growth.9

Moreover, the agent’s approximately correct beliefs about consumption growth allow the model to

generate low interest rate volatility and a low correlation between consumption growth and stock

market returns, both of which are consistent with the data (Campbell (2003); Hansen and Singleton

8For any alternative assumption, one needs to explain why the investor has incorrect beliefs about consumption
above and beyond her incorrect beliefs about dividends.

9Consistent with the way we model the agent’s expectations about consumption growth, Kuchler and Zafar (2016)
find that survey expectations are “asset-specific:” respondents who become pessimistic about their employment
situation after experiencing unemployment are not pessimistic about other economic outcomes, such as stock prices or
interest rates. Similarly, Huang (2016) finds that investors who become optimistic about an industry’s future returns
after having positive prior investment experience in the industry do not invest heavily in a dissimilar industry.
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(1982, 1983)).

I.2. Model solution

The subjective Euler equation in (4) shows that, when pricing the stock market, the gross

return from holding the Lucas tree is also part of the pricing kernel. This observation has two

implications. First, both the price-dividend ratio f(St) = PDt /Dt and the wealth-consumption

ratio PCt /Ct are functions of the sentiment variable St; we can define l(St) ≡ PCt /Ct. Second,

the two functions f and l are interrelated through Euler equations, so they need to be solved

simultaneously. Specifically, using the Euler equation to price the stock market—setting R̃j,t+dt

in (4) to the gross return on the stock market—we obtain

0 =



− (1−γ)
1−ψ δ − γg

e
C + geD + [(f ′/f) + ψ−γ

1−ψ (l′/l)]µeS + 1
2 [(f ′′/f) + ψ−γ

1−ψ (l′′/l)]σ2
S

+γ(γ+1)
2 σ2

C + 1
2
ψ−γ
1−ψ

2ψ−γ−1
1−ψ (l′/l)2σ2

S −
γ(ψ−γ)

1−ψ ρσCσS(l′/l)− γρσCσD − γρσCσS(f ′/f)

+ψ−γ
1−ψσDσS(l′/l) + ψ−γ

1−ψσ
2
S(l′/l)(f ′/f) + σDσS(f ′/f) + ψ−γ

1−ψ l
−1 + f−1


.

(16)

Similarly, using the Euler equation to price the Lucas tree—setting R̃j,t+dt in (4) to the gross return

on the Lucas tree—we obtain

0 =


− 1−γ

1−ψ δ − (γ − 1)geC + γ(γ−1)
2 σ2

C + 1−γ
1−ψ (l′/l)µeS + 1−γ

2(1−ψ)(l′′/l)σ2
S

+1
2

1−γ
1−ψ

ψ−γ
1−ψ (l′/l)2σ2

S + (1−γ)2

1−ψ ρσCσS(l′/l) + 1−γ
1−ψ l

−1

 . (17)

Substituting µS and σS from (7), geD and σDP from (11) and (12), and geC from (15) into equations (16)

and (17), we then obtain a system of two ordinary differential equations that jointly determines

the evolutions of f and l.10 The detailed derivation of (16) and (17) is in the Appendix.

Regarding the boundary conditions for solving the differential equations, note that, in (16)

and (17), the second derivative terms are all multiplied by σS , and that σS goes to zero as S

10When θ = 0, our model reduces to a fully rational benchmark. In this case, equations (16) and (17) lead to

f =
[
δ + ψgC − gD − γ(ψ+1)

2
σ2
C + γρσCσD

]−1

, l =
[
δ + (ψ − 1)gC − γ(ψ−1)

2
σ2
C

]−1

.
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approaches either µH or µL. As a result, µH and µL are both singular points, and therefore no

boundary condition is required.

Equations (16) and (17) cannot be solved analytically. We apply a projection method with

Chebyshev polynomials to solve them numerically. We leave the details of the numerical procedure

to the Appendix.

I.3. Important equilibrium quantities

With the model solution at hand, we derive equilibrium quantities that are important for

understanding the model’s implications. Specifically, we derive the dynamics of the interest rate,

the objective and subjective expectations of stock market returns, and the steady-state distribution

of the sentiment variable.

For the interest rate, we use the Euler equation in (4) to price the riskless asset—we set R̃j,t+dt

to the gross return on the riskless asset 1 + rtdt—and obtain

rt = 1−γ
1−ψ δ + γgeC −

γ(γ+1)
2 σ2

C −
ψ−γ
1−ψ ×


(µeS − γρσCσS)(l′/l) + 1

2σ
2
S(l′′/l)

+2ψ−γ−1
2(1−ψ) σ

2
S(l′/l)2 + l−1

 . (18)

The interest rate is linked to the agent’s time preferences, her subjective expectation about con-

sumption growth, precautionary saving, as well as how the wealth-consumption ratio PCt /Ct re-

sponds to changes in sentiment.11

To understand the risk-return tradeoff in the model, we compute, at each point in time, both

the agent’s expectation about future stock market returns and the (objectively measured) rational

expectation about future stock market returns. From equations (8) and (9), the log excess return

on the stock market from time t to time t+ dt is

rD,et+dtdt ≡ `n(PDt+dt +Dt+dtdt)− `n(PDt )− rtdt

= [(1− θ)gD + θSt + f−1 − 1
2(σDP )2 − rt]dt+ σDP dω

e
t .

(19)

11When θ = 0, r = δ + ψgC − γ(ψ+1)
2

σ2
C .
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Therefore, the agent’s subjective expectation about the log excess return is

Eet [r
D,e
t+dt] = (1− θ)gD + θSt + f−1 − 1

2(σDP )2 − rt, (20)

and the subjective Sharpe ratio is [(1− θ)gD + θSt + f−1 − 1
2(σDP )2 − rt]/σDP .

Next, to compute the rational expectation about the stock market return, we compare (2)

with (10) and obtain a relationship between the true and perceived Brownian shocks

dωet = dωDt − (geD(St)− gD)dt/σD. (21)

We then substitute (21) into (19) and derive

rD,et+dtdt = [(1− θ)gD + θSt + f−1 − σ−1
D σDP (geD − gD)− 1

2(σDP )2 − rt]dt+ σDP dω
D
t . (22)

As a result, the rational expectation about the log excess return on the stock market is

Et[rD,et+dt] = (1− θ)gD + θSt + f−1 − σ−1
D σDP (geD − gD)− 1

2(σDP )2 − rt, (23)

and the objectively measured Sharpe ratio of the stock market return is [(1− θ)gD + θSt + f−1 −

σ−1
D σDP (geD − gD)− 1

2(σDP )2 − rt]/σDP .

All the ratio-based quantities in this model such as the agent’s expectation about stock market

returns and the interest rate are a function of the sentiment variable St. Given this, to provide a

statistical assessment of the model’s fit with the empirical facts, we also compute the steady-state

distribution for the sentiment variable St as objectively measured by an outside econometrician. To

that end, we first obtain the objective evolution of sentiment by substituting the change-of-measure

equation (21) into the subjective evolution of sentiment in (7)

dSt = [µeS(St) + σ−1
D σS(St)(gD − geD(St))]dt+ σS(St)dω

D
t . (24)

Compared to the subjective evolution of sentiment, the objective evolution exhibits a larger degree

of mean reversion: the additional term σ−1
D σS(St)(gD − geD(St)) in (24) is a negative function of
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sentiment.

Denote the objective steady-state distribution for sentiment as ξ(S). Based on (24), we then

derive ξ(S) as the solution to the Kolmogorov forward equation (the Fokker-Planck equation)

0 = 1
2
d2

dS2

(
σ2
S(S)ξ(S)

)
− d

dS

(
[µeS(St) + σ−1

D σS(St)(gD − geD(St))]ξ(S)
)

= (σ′S)2ξ + σSσ
′′
Sξ + 2σSσ

′
Sξ
′ + 1

2σ
2
Sξ
′′

− [(µeS)′ + σ−1
D σ′S(gD − geD)− σ−1

D σS(geD)′]ξ − [µeS + σ−1
D σS(gD − geD)]ξ′,

(25)

where σS and geD are from (7) and (11), respectively, and the expressions for σ′S , σ′′S , (µeS)′ and

(geD)′ are provided in the Appendix. In addition, the steady-state distribution must integrate to

one.

II. Model Implications

In this section, we examine the implications of the model. We begin by setting the benchmark

values for the model parameters. In particular, we calibrate the agent’s beliefs to match the survey

evidence documented in Greenwood and Shleifer (2014). We then look at two building blocks for

the model’s implications: a set of important equilibrium quantities, each as a function of sentiment;

and the steady-state distribution of sentiment. Finally, we discuss the model’s implications for asset

prices.

II.1. Model parameterization

There are three types of parameters: asset parameters, utility parameters, and belief parameters.

For the asset parameters, we set gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2.

These values are consistent with those used in Campbell and Cochrane (1999), Barberis et al.

(2001), Bansal and Yaron (2004), and Beeler and Campbell (2012).12 For the utility parameters,

we set γ, the coefficient of relative risk aversion, to 10. As pointed out in Bansal et al. (2012)

and Bansal and Yaron (2004), the long-run risks literature—a literature that depends significantly

on the parameter values of Epstein-Zin preferences for its model implications—typically assigns a

12The parameter values for gC and gD are set such that both `n(C) and `n(D) grow, on average, at an annual rate
of 1.84%; this rate is also used in Barberis et al. (2001).
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value of 10 or below for γ. Bansal and Yaron (2004), for instance, set γ to either 10 or 7.5.13 For ψ,

the reciprocal of the elasticity of intertemporal substitution, there exists a wide range of estimates

in the asset pricing literature. The majority of previous papers suggests that ψ should be lower

than one, but several other papers argue the opposite.14 Given this, we set ψ to 0.9, a value that

implies an elasticity of intertemporal substitution slightly above one. We explain in Section IV

that our model’s implications are quantitatively robust even with an elasticity of intertemporal

substitution significantly lower than one. Finally, for δ, the subjective discount rate, we assign a

value of 2%.

We now turn to the belief parameters. We set µH and µL, the mean price growth in the high and

low regimes, to 15% and −15%, respectively. As we will see later in this section, the probability of

the agent’s price growth expectations approaching the boundaries of µH and µL is approximately

zero. As a result, the model’s implications are not very sensitive to the choice of µH and µL.

Next, we focus on θ, the parameter that controls the extent to which the representative agent

is behavioral, and χ and λ, the perceived transition intensities between the high- and low-mean

price growth regimes. We calibrate these three parameters to match the survey expectations of

investors studied in Greenwood and Shleifer (2014). Specifically, we set θ = 0.5 and χ = λ = 0.18

so that the agent’s beliefs match survey data along two dimensions.15 First, for a regression of

the agent’s expectations about future stock market returns on past twelve-month returns, our

parameter choice allows the model to produce a regression coefficient and a t-statistic that match

the empirical estimates from surveys. Second, our parameter choice allows the agent’s beliefs to

match the survey evidence on the relative weight investors put on recent versus distant past returns

when forming beliefs about future returns. Below we examine these two dimensions in detail.

Empirically, Greenwood and Shleifer (2014) regress survey expectations about future stock

market returns on past twelve-month cumulative raw returns across various survey expectations

measures. They find that the regression coefficient is positive and statistically significant. To justify

our parameter values for θ, χ, and λ, we want to run the same regression in the context of the model.

One caveat, however, is that we are uncertain about what survey respondents think the definition

13An estimate of 10 for γ is also the maximum magnitude that Mehra and Prescott (1985) find reasonable.
14See Bansal et al. (2012) for a discussion of this point.
15Recall that θ = 0 means the agent is fully rational, whereas θ = 1 means that the agent is fully behavioral.

Therefore, 0.5 is a natural default value for θ: it implies that the representative agent is approximately an aggregation
of rational and behavioral agents with equal population weights.
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of return is. Does it include the dividend yield or not? Is it a raw return or an excess return?

Given this caveat, we examine four measures of return expectations: Eet [(dPDt +Dtdt)/(P
D
t dt)], the

agent’s expectation about the percentage return on the stock market, Eet [(dPDt +Dtdt)/(P
D
t dt)]−rt,

the agent’s expectation about the percentage return in excess of the interest rate, Eet [dPDt /(PDt dt)],

the agent’s expectation about the price growth of the stock market, and Eet [dPDt /(PDt dt)]− rt, the

agent’s expectation about the price growth in excess of the interest rate. The latter two measures

are also plausible candidates because investors may not actively think about the dividend yield

when answering survey questions.16

[Place Table 1 about here]

Table 1 reports the regression coefficient, its t-statistic, the intercept, as well as the adjusted R-

squared, when regressing each of the four measures of return expectations described above on either

the past twelve-month cumulative raw return or the current log price-dividend ratio, over a sample

of 15 years or 50 years. Each reported value—for instance, the regression coefficient—is averaged

over 100 trials, with each trial being a regression using monthly data simulated from the model.

Here we make two observations. First, the magnitude of the agent’s extrapolative beliefs about

future stock market returns matches the empirical values suggested by Greenwood and Shleifer

(2014). Regressing the agent’s expectation about future price growth (Eet [dPDt /(PDt dt)]) on the

past twelve-month cumulative raw return for a 15-year simulated sample, the regression coefficient

is 4.0% with a Newey-West adjusted t-statistic of 8.4. Running the same regression for a 50-year

simulated sample, the regression coefficient is 4.0% with a t-statistic of 12.1. As a comparison, for a

5-year sample of data from the Michigan survey, the regression coefficient is 3.9% with a t-statistic

of 1.68; for a 15-year sample of data from the Gallup survey, the regression coefficient, after some

conversion, is 8% with a t-statistic of 8.81.

Second, by comparing the regression coefficients and the t-statistics across the four measures of

return expectations, we find that including the dividend yield in the calculation of return reduces

the regression coefficient by about a half, but does not significantly affect the t-statistic. Therefore,

even though we model return extrapolation as extrapolating past price growth, the agent also holds

16Hartzmark and Solomon (2017) provide empirical evidence for the idea that investors do not take the dividend
yield into account when calculating returns. Barberis et al. (2015) also take this interpretation when calibrating their
model parameters to survey expectations.
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extrapolative expectations about the total return. Furthermore, subtracting the interest rate from

the expectation of returns only has a small impact on the regression results because of low interest

rate volatility. In summary, across all four measures of return expectations, the agent extrapolates

past stock market returns when forming expectations about future returns. In Section IV, we

compare these regression results with those from the rational expectations models of Bansal and

Yaron (2004) and Bansal et al. (2012).

Our parameter choice of θ, χ, and λ is also disciplined by matching the agent’s beliefs with the

survey evidence on the relative weight of recent versus distant past returns in determining investors’

return expectations. Specifically, we estimate the following non-linear least squares regression

Expectationt = a+ b
∑n

j=1
wjR

D
(t−j∆t)→(t−(j−1)∆t) + εt (26)

using model simulations, where Expectationt is the agent’s time-t expectation about stock market

returns, RD(t−j∆t)→(t−(j−1)∆t) is the raw return from time t − j∆t to t − (j − 1)∆t, and wj ≡

e−φ(j−1)∆t
/∑n

l=1 e
−φ(l−1)∆t. In Equation (26), each past realized return is assigned a weight. The

weight decreases exponentially the further back we go into the past, and the coefficient φ measures

the speed of this exponential decline. When φ is high, the agent’s expectation is determined

primarily by recent past returns; when it is low, even distant past returns have a significant impact

on the agent’s current expectation.

[Place Table 2 about here]

Table 2 reports the intercept a, the regression coefficient b, the adjusted R-squared, and most

importantly, the parameter φ. As before, we examine four expectations measures, Eet [(dPDt +

Dtdt)/(P
D
t dt)], Eet [dPDt /(PDt dt)], Eet [(dPDt +Dtdt)/(P

D
t dt)]− rt, and Eet [dPDt /(PDt dt)]− rt. Each

reported value is averaged over 100 trials, with each trial being a regression using simulated data

with a monthly frequency over either 15 years or 50 years. We set ∆t, the time interval for each

past return in (26), to 1/12 (one month), and we set n, the total number of past returns on the

right hand side of (26), to 600.17

Across the four expectations measures, the estimation of φ is stable: it is around 0.42. This

17We choose n = 600 because further increasing n has a minimal impact on the estimated values of the parameter
φ and the adjusted R-squared.
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value means that a monthly return three years ago is weighted about 25% as much as the most

recent return; that is, the agent looks back a couple of years when forming beliefs about future

returns. For comparison, Barberis et al. (2015) run the same regression (26) using survey data

documented in Greenwood and Shleifer (2014); they estimate φ at a value of 0.44. We choose the

values of θ, χ, and λ such that the model generates about the same estimate of φ as surveys.

The literature has not reached consensus on the value of φ. On the one hand, Greenwood and

Shleifer (2014) and Kuchler and Zafar (2016) find that investor expectations depend only on recent

returns. On the other hand, Malmendier and Nagel (2011, 2013) and Vanasco et al. (2015) suggest

that distant past events may also play an important role when investors form beliefs. Reconciling

this discrepancy is beyond the scope of the paper. Here, we provide two possible explanations.

First, investors may simultaneously adopt two mechanisms when forming beliefs: one that focuses

on recent past events such as daily stock market fluctuations, the other that focuses on infrequent

but salient events such as a stock market crash. Second, the horizon over which investors form

expectations may affect how far they look back into the past. For instance, the survey expectations

data studied in Greenwood and Shleifer (2014) are based on questions that ask investors to forecast

stock market returns over the next six to twelve months, which may prompt investors to look back

only a couple of years. On the other hand, the equity holdings data studied in Malmendier and

Nagel (2011) are based on equity investment decisions that may require investors to forecast equity

returns over the next couple of decades; they may therefore examine equity performance over the

past few decades.

[Place Table 3 about here]

We summarize the default parameter values in Table 3. In Section III, we further provide a

comparative statics analysis to examine the sensitivity of the model’s implications to changes in

these parameter values.

II.2. Building blocks

We start with two building blocks for understanding the model’s implications. First, we analyze

a set of important equilibrium quantities. We then look at the steady-state distribution of sentiment.
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Figure 1 plots the price-dividend ratio of the stock market f , the volatility of stock market

returns σDP , the rational expectation about the log excess return E[rD,e] (the conditional equity

premium), and the interest rate r, each as a function of the sentiment variable S.

[Place Figure 1 about here]

Figure 1 shows that the model generates substantial excess volatility: the volatility of dividend

growth is 11%, while the volatility of stock market returns is typically above 20%. This result

stems from the interaction between return extrapolation and Epstein-Zin preferences. With the

coefficient of relative risk aversion γ significantly higher than the reciprocal of the elasticity of

intertemporal substitution ψ—we set γ to 10 and ψ to 0.9—the intertemporal substitution effect

strongly dominates the wealth effect. Given this, when the stock market has had high past price

growth, the agent’s forecast of high future price growth—this is a result of the agent extrapolating

past price growth—leads her to push up the current price, causing the current price growth to rise.

When the current price growth is higher, the agent’s forecast of future price growth also becomes

higher, which leads her to push up the current price, causing the current price growth to further

rise, and so on. In other words, a feedback loop emerges from the interaction between beliefs and

preferences, giving rise to significant excess volatility.

The mechanism described above for generating excess volatility also allows the model to gen-

erate a strong procyclical pattern for the price-dividend ratio of the stock market. With a strong

intertemporal substitution effect in the model, the agent’s forecast of high future price growth fol-

lowing high past price growth also leads her to push up the current price-dividend ratio. Figure 1

shows that the price-dividend ratio f is indeed a positive function of sentiment S.

Furthermore, the model generates a strong countercyclical pattern for the true equity premium.

Suppose the stock market has had high past price growth. The agent’s expectation about future

price growth then increases, pushing up the stock market price relative to dividends. Given that

sentiment on average tends to revert back to its mean, the price-dividend ratio also tends to mean-

revert, leading to low future returns. In addition, the agent’s high expectation about future price

growth also makes her optimistic about future consumption growth, although to a much lesser

extent. This in turn causes the agent to push up the equilibrium interest rate. Together, both a

low (rational) expectation of stock market returns and a high interest rate contribute to a low equity
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premium during high-sentiment periods. Of these two forces, the first one dominates: moving St

from its mean to the top 25% percentile level causes a total decrease of 9.7% for the equity premium,

out of which 9.5% comes from the decrease in the expected log return of the stock market.

[Place Figure 2 about here]

The second building block for the model’s implications is the objectively measured steady-

state distribution of sentiment. Figure 2 plots this steady-state distribution. Under the true

probability measure, sentiment exhibits a strong degree of mean reversion, for two reasons. First,

the agent believes that sentiment will naturally mean-revert: with a regime-switching model, the

agent believes that the expected growth rate of stock market prices tends to switch over time from

one regime to the other. Second, the agent’s price growth expectations mean-revert faster than

what she perceives: when the agent thinks that the future price growth is high, future price growth

tends to be low endogenously, causing her price growth expectations to decrease at a pace that

exceeds her anticipation. Overall, the steady-state distribution has a mean of 2.0% and a standard

deviation of 2.7%: the chance of sentiment approaching the extreme values of µH and µL is close

to zero.

II.3. Model implications for asset prices

The two building blocks—the quantitative relation between important equilibrium quantities

and sentiment as well as the steady-state distribution of sentiment—allow us to systematically study

the model’s implications for asset prices. We begin with examining the long-run properties of stock

market prices and returns. Table 4 reports the model’s predictions for six important moments,

and compares them side by side with the empirical values. In general, the model matches the

facts: it generates significant excess volatility, a high equity premium, a Sharpe ratio similar to the

empirical value, an interest rate that has a low level and low volatility, and a price-dividend ratio

whose average level is close to the empirical one.

[Place Table 4 about here]

As explained above, the model generates significant excess volatility from the interaction be-

tween return extrapolation and Epstein-Zin preferences. This interaction is quantitatively impor-
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tant. Without return extrapolation, Epstein-Zin preferences alone with i.i.d. dividend growth and

consumption growth do not lead to any excess volatility. Without Epstein-Zin preferences—that is,

setting both ψ and γ to 10 while keeping all the other parameter values unchanged—return extrap-

olation alone leads to average return volatility of 13.8%, which implies much less excess volatility

compared to the data.

The model also generates a significant equity premium: when measured as the rational expecta-

tion of log excess returns, the true long-run equity premium is 4.9%; when measured as the rational

expectation of excess returns E[(dPDt +Dtdt)/(P
D
t dt)− rt], it is 8.6%. In order to understand this

model implication, we first note that the model produces a substantial long-run perceived equity

premium—this is what the agent thinks she will receive as the average equity premium. When mea-

sured as the subjective expectation of log excess returns, the perceived long-run equity premium is

1.6%; when measured as the subjective expectation of excess returns Ee[(dPDt +Dtdt)/(P
D
t dt)−rt],

it is 5.1%. Three factors affect the perceived long-run equity premium. First and most intuitively,

excess volatility causes the agent to demand a higher equity premium because she is risk averse.

Second, return extrapolation gives rise to perceived persistence of both the aggregate dividend pro-

cess and, to a lesser extent, the aggregate consumption process.18 Under Epstein-Zin preferences,

this perceived persistence is significantly priced, pushing up the perceived equity premium. Fi-

nally, the separation between the elasticity of intertemporal substitution and risk aversion keeps

the equilibrium interest rate low and hence helps to keep the equity premium high.

[Place Figure 3 about here]

Furthermore, with incorrect beliefs, the true long-run equity premium in the model can be

significantly different from the perceived long-run equity premium. We find that the true long-run

equity premium is significantly higher than the perceived one. In the model, the agent’s beliefs

mean-revert faster than what she perceives. Given this, she underestimates short-term stock market

fluctuations and hence the risk associated with the stock market. In other words, if an infinitesimal

rational agent, one that has the same preferences as the behavioral agent but holds rational beliefs,

enters our economy, she would have demanded a higher equity premium: the model produces a

18The agent is averse to persistent shocks when γ > ψ; with our choice of parameter values, this condition is
satisfied.
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true average equity premium that is substantially higher than the perceived equity premium. To

illustrate this point, Figure 3 plots the objective (rational) expectation and the agent’s subjective

expectation about price growth: for St less than 3.2%, the objective expectation about price growth

is higher than the subjective expectation; for St greater than 3.2%, the opposite is true. Because

the sentiment distribution has a mean of 2.0% and a standard deviation of 2.7%, Figure 3 suggests

that, about 67% of the time, the rational expectation about price growth is above the subjective

expectation. That is, the true price growth is more likely to be higher than the perceived price

growth. As a result, the model produces a true average equity premium that is substantially higher

than the perceived average equity premium.

During high-sentiment periods, the model produces a negative equity premium: the equity

premium averaged over the top quartile of the sentiment distribution is −13.05%. In general,

rational expectations models—for instance, long-run risks models and habit formation models—

do not generate a negative equity premium at any time.19 In our model, however, subjective

expectations and objective expectations of stock market returns differ significantly during high-

or low-sentiment periods: when the sentiment level is high, the agent expects high stock market

returns moving forward, but precisely because of her incorrect beliefs, future stock market returns

are low on average, generating a negative equity premium. This model implication is consistent with

the recent empirical findings of Greenwood and Hanson (2013), Baron and Xiong (2015), Cassella

and Gulen (2017), and Yang and Zhang (2016): these papers document that the expected excess

return turns negative during high-sentiment periods.

Next, we examine the model’s implications for the predictability of stock market returns. Em-

pirically, Campbell and Shiller (1988) and Fama and French (1988) document that a regression of

future log excess returns on the current log price-dividend ratio gives a negative and significant

regression coefficient. Moreover, the predictive power of the price-dividend ratio is greater when

future returns are calculated over longer horizons.

[Place Table 5 about here]

Table 5 reports the regression coefficient βj and the adjusted R-squared for a regression of the

19Strictly speaking, a rational expectations model can generate a negative equity premium if the stock market
negatively correlates with some other risk factors in the agent’s portfolio and therefore serves as a diversification
device.
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log excess return of the stock market from time t to time t + j on the current log price-dividend

ratio

rD,et→t+j = αj + βj`n(PDt /Dt) + εj,t (27)

over various time horizons j. We calculate the regression coefficients and the R-squared using

10,000 years of monthly data simulated from the model, and compare them side by side with the

empirical values. Consistent with the data, βj is negative and its magnitude increases as the time

horizon j increases. A strong degree of mean reversion in sentiment, together with the feedback

loop described above for generating excess volatility, allows the model to produce the long-horizon

predictability of stock market returns. When the stock market has had high past price growth,

the agent’s expectation about future price growth increases, pushing up the current price-dividend

ratio. Since the agent’s expectation—the sentiment variable—tends to revert back to its mean,

subsequent returns are low on average, giving rise to a negative regression coefficient in (27).

The magnitudes of the regression coefficient and the R-squared generated from the model are

broadly consistent with the empirical values. One difference, however, is that in the model, the

R-squared begins to decrease as the time horizon j increases beyond three years, whereas in the

data, the R-squared keeps rising over longer horizons. To understand this difference, recall that we

calibrate the model to the survey expectations by setting θ to 0.5 and setting λ and χ to 0.18: the

agent looks back a couple of years when forming beliefs about future returns. Given this parameter

choice, the mean reversion of sentiment tends to occur over the first few years. Over longer horizons,

no additional mean reversion in the agent’s beliefs contributes to the predictability of stock market

returns.

We now further investigate the model’s implications for the correlation between stock market

returns and consumption growth. Empirically, Hansen and Singleton (1982, 1983) document that

this correlation is low. Nonetheless, most consumption-based asset pricing models generate a high,

if not perfect, correlation between stock market returns and consumption growth. By imposing

rational expectations, these models treat the consumption-based pricing kernels as the only source

of stock market movements; stock market movements are driven by changes in consumption. As a

result, the correlation between stock market returns and consumption growth is high.20

20One exception is Barberis et al. (2001). They use “narrow framing”, the notion that investors may evaluate
financial risks in isolation from consumption risks, to generate a low correlation between stock market returns and

25



[Place Table 6 about here]

Table 6 reports both the model-implied values and the empirical values for the correlation

between consumption growth and stock market returns. Consistent with the data, the model

produces a low correlation: the correlation between annual log consumption growth and annual

log excess returns is 0.19 in the model, and similarly it is 0.09 in the data. In comparison, the

model of Campbell and Cochrane (1999) generates a correlation of 0.79, a much higher value.

In our model, we assume that the bias in the agent’s beliefs about consumption growth comes

only from the bias in her beliefs about dividend growth. Given the low correlation observed in

the data between consumption growth and dividend growth, the bias in the agent’s beliefs about

consumption growth in small. As a result, the agent’s beliefs about stock market returns—they co-

move strongly with her beliefs about dividend growth—are not significantly affected by fluctuations

in consumption growth, giving rise to the low observed correlation between stock market returns

and consumption growth.

Table 6 shows that the model also generates a small but negative correlation between the current

consumption growth and the stock market return in the subsequent period, an implication that

is consistent with the data. Recall that consumption growth and dividend growth are weakly but

positively correlated. If the current consumption growth is high, dividend growth is also high on

average, which leads the agent to push up the current price, increasing the current price growth

and the current level of sentiment. In the subsequent period, sentiment reverts towards its mean

value, giving rise to a low stock market return.

[Place Figure 4 about here]

Although our model is based on return extrapolation, it yields direct implications for cash flow

expectations. The expectations transmission mechanism described by equation (11) suggests that

the agent’s expectation about dividend growth is more responsive to changes in sentiment than

her expectation about price growth. Moreover, the total return equals the sum of the price growth

and the dividend yield, and the dividend yield decreases as sentiment increases. Therefore, the

consumption growth. Specifically, they use power utility as the agent’s preferences over consumption, but use prospect
theory developed by Kahneman and Tversky (1979) as the agent’s preferences over financial wealth.
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agent’s expectation about price growth is more responsive to changes in sentiment compared to her

expectation about stock market returns.

Figure 4 plots the agent’s expectation about stock market returns, Ee[(dPDt + Dtdt)/(P
D
t dt)],

the agent’s expectation about price growth, Ee[dPDt /(PDt dt)], and the agent’s expectation about

dividend growth, Ee[dDt/(Dtdt)], each as a function of the sentiment variable S. Quantitatively,

Figure 4 suggests that a one-standard deviation (2.7%) increase in sentiment from its mean (2.0%)

pushes up the agent’s expectation about stock market returns from 7.44% to 8.22%—a small in-

crease of 0.78%—while it pushes up the agent’s expectation about dividend growth from −0.04% to

6.48%—a much larger increase of 6.52%. Also, recall from Figure 1 that a one-standard deviation

increase in sentiment from its mean pushes up the price-dividend ratio of the stock market from

19.16 to 21.75. These results together imply that the price-dividend ratio is mainly correlated with

the agent’s expectation about dividend growth.

To further understand stock market movements, we follow the procedure in Campbell and

Shiller (1988) to decompose, in the context of the model, the log price-dividend ratio of the stock

market:

`n(PDt /Dt) ≈
∞∑
j=0

ξj
(

∆d(t+j∆t)→(t+(j+1)∆t) − rD(t+j∆t)→(t+(j+1)∆t)

)
− (`n(ξ) + (1− ξ)ζ)/(1− ξ),

(28)

where ζ is the in-sample average of the annual log dividend-price ratio, ξ = e−ζ/(∆t + e−ζ),

∆d(t+j∆t)→(t+(j+1)∆t) is the log dividend growth from time t+j∆t to t+(j+1)∆t, and rD(t+j∆t)→(t+(j+1)∆t)

is the log gross return over the same period. Equation (28) says that the movement of price-dividend

ratio comes from either the movement of future dividend growth—this is called “cash flow news”—

or the movement of future returns—this is called “discount rate news.” The standard approach that

empirically addresses the relative importance of these two components is to look at future realized

27



dividend growth and returns, and compute

1 ≈
Cov

(∑∞
j=0 ξ

j∆d(t+j∆t)→(t+(j+1)∆t), `n(PDt /Dt)
)

Var
(
`n(PDt /Dt)

)︸ ︷︷ ︸
CFobjective

+
Cov

(
−
∑∞

j=0 ξ
jrD(t+j∆t)→(t+(j+1)∆t), `n(PDt /Dt)

)
Var

(
`n(PDt /Dt)

)︸ ︷︷ ︸
DRobjective

.

(29)

The first term on the right hand side of (29), CFobjective, is the contribution of changes in cash flow

news to stock market movements, and the second term, DRobjective, is the contribution of changes

in discount rate news to stock market movements. By using future realized dividend growth and

returns, this approach effectively imposes rational expectations. Most empirical studies that have

conducted a Campbell-Shiller decomposition take this approach.

However, in a model with incorrect beliefs, we can further study the relation between the agent’s

subjective expectations and stock market movements by taking the subjective expectations on both

sides of (28) and computing

1 ≈
Cov

(
Eet [
∑∞

j=0 ξ
j∆d(t+j∆t)→(t+(j+1)∆t)], `n(PDt /Dt)

)
Var

(
`n(PDt /Dt)

)︸ ︷︷ ︸
CFsubjective

+
Cov

(
−Eet [

∑∞
j=0 ξ

jrD(t+j∆t)→(t+(j+1)∆t)], `n(PDt /Dt)
)

Var
(
`n(PDt /Dt)

)︸ ︷︷ ︸
DRsubjective

.

(30)

The first term on the right hand side of (30), CFsubjective, is the contribution of changes in subjective

expectations about cash flow news to stock market movements, and the second term, DRsubjective,

is the contribution of changes in subjective expectations about discount rate news to stock market

movements.

[Place Table 7 about here]

Table 7 reports the four coefficients, CFobjective, DRobjective, CFsubjective, DRsubjective, as well

as their corresponding adjusted R-squared. These coefficients and R-squared are calculated using
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10,000 years of monthly data simulated from the model. By using future realized dividend growth

and stock market returns and therefore imposing rational expectations, we obtainDRobjective = 0.98

with a R-squared of 0.209 and CFobjective = 0.02 with a R-squared of 1.2 × 10−4. This result

replicates the empirical finding of the volatility test literature that the variation of the price-

dividend ratio comes primarily from discount rate variation (see Cochrane (2008) and Cochrane

(2011)).

On the other hand, by relaxing the rational expectations assumption and using the agent’s

subjective expectations about dividend growth and returns, we obtain DRsubjective = −0.08 with

a R-squared of 0.982 and CFsubjective = 1.08 with a R-squared of 0.984. This result unveils a very

different picture and highlights the importance of expectations data: changes in the agent’s sub-

jective expectations about future cash flow news explain the majority of stock market movements.

Empirically, de la O and Myers (2017) find that DRsubjective = −0.09 and CFsubjective = 1.09.

These values match the theoretical values from our model.

Importantly, the fact that prices in our model are mainly correlated with cash flow expectations

is a consequence of the Campbell-Shiller accounting identity; this statement is about correlation,

not about causality. The agent’s return expectations determine her cash flow expectations and are

the cause of price movements. Given this, our model simultaneously explains the empirical findings

of de la O and Myers (2017) on cash flow expectations and the empirical findings of Greenwood

and Shleifer (2014) on return expectations. We provide additional discussion about the relation

between return expectations and cash flow expectations in the Appendix.

[Place Table 8 about here]

The model also points to some challenges: when calibrated to the survey expectations data, the

model predicts a persistence of the price-dividend ratio that is significantly lower than its empirical

value. Table 8 presents the empirical values and theoretical values for the autocorrelations of asset

prices. Empirically, price-dividend ratios are highly persistent at short lags. Nonetheless, the model

produces a persistence for the price-dividend ratio that is much lower than the empirical value: the

autocorrelation of `n(PD/D) with a lag of three years is 0.5 in the data, but it is essentially zero

in the model. In the model, the persistence of the price-dividend ratio is driven by the persistence

of the agent’s beliefs. The available survey evidence suggests that investors focus on just the past
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year or two when forming beliefs about future returns. Therefore, when calibrated to surveys, the

agent’s beliefs tend to mean-revert in a couple of years. However, to match the empirical persistence

of the price-dividend ratio, the agent’s beliefs need to be much more persistent: the agent needs to

form beliefs about future returns based on many years of past returns.

We leave a careful reconciliation of the survey expectations about stock market returns and

the observed persistence of the price-dividend ratio to future research. One possibility, however, is

to develop a framework that allows for the interaction between financial frictions and the agent’s

beliefs. Lopez-Salido, Stein, and Zakrajsek (2016) show that various types of financial frictions are

empirically more persistent than investor sentiment. As a result, investor beliefs can affect asset

prices through their interaction with financial frictions, making their impact more persistent.

We conclude this section by discussing the role of rational arbitrageurs. The model has a

representative agent whose beliefs are biased. One natural question to ask is: if we introduce

rational arbitrageurs, to what extent can they counteract the mispricing caused by the behavioral

agent and therefore attenuate the significance of the model implications? Developing such a two-

agent model is beyond the scope of the paper. However, three observations suggest that our model

implications will remain intact after taking rational arbitrageurs into account.

First, in an economy with both rational and behavioral agents who have recursive preferences,

the behavioral agents may eventually dominate the market: there is a positive probability that they

take up most of the wealth in the economy in the long run. This is a key finding in Borovicka (2016).

It suggests that our model’s implications can be the limiting implications of a model with both

rational and behavioral agents in the initial period. Second, in an economy with heterogeneous

beliefs, asset prices are jointly determined by agents’ beliefs weighted by their risk tolerances.

A positive fundamental shock causes optimists to gain a larger fraction of wealth and increases

their risk tolerance relative to pessimists, which in turn gives optimists a greater weight in driving

asset prices, pushing asset prices further up. As a result, heterogeneity in investor beliefs can

be an additional source of excess volatility; it can further amplify—rather than attenuate—our

model implications.21 Lastly, as pointed out by Barberis et al. (2015), extrapolative expectations

are persistent in a dynamic model, which means that the behavioral agents who extrapolate past

returns have persistently high demand for the stock market following high stock market returns. The

21See Xiong (2013) for more discussion of this amplification mechanism.
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persistence of this demand prevents near-future stock market returns from becoming too low, which

reduces the incentive of rational agents to counteract mispricing. In other words, the persistence

of extrapolative beliefs limits the impact of rational arbitrageurs on asset prices.

III. Comparative Statics

In this section, we examine the sensitivity of the model’s implications to changes in parameter

values. We focus on parameters that either have dispersed estimates in the literature or cannot be

directly observed from the data. Specifically, for the utility parameters, we study how changes in

γ, the coefficient of relative risk aversion, and ψ, the reciprocal of the elasticity of intertemporal

substitution, affect the equity premium and the volatility of stock market returns. For the belief

parameters, we look at how changes in θ affect the equity premium, the volatility of stock market

returns, the price-dividend ratio, and the average interest rate. We also examine how changes in θ,

χ, and λ affect return predictability and the persistence of the price-dividend ratio.

III.1. Utility parameters

Figure 5 plots the long-run average of the equity premium and the volatility of stock market

returns, each as a function of γ or ψ. The coefficient of relative risk aversion is positively related to

the equity premium but negatively related to the volatility of returns. Lower risk aversion naturally

leads the agent to require a lower equity premium for risk compensation; reducing γ from 10 to

5, the model still explains 75% of the observed equity premium. At the same time, lower risk

aversion strengthens the feedback loop described earlier since it increases the agent’s demand for

risky assets. Therefore, it leads to higher return volatility.

[Place Figure 5 about here]

Within the examined range, changes in the elasticity of intertemporal substitution do not sig-

nificantly affect the average equity premium and the average volatility of returns. As a result, our

model implications are quantitatively robust to changes in ψ. We provide a detailed explanation

of this observation in the next section when we compare our model with the model of Bansal and

Yaron (2004).
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III.2. Belief parameters

Belief Parameters.—Figure 6a plots the long-run average of the equity premium, the volatility

of stock market returns, the price-dividend ratio, and the interest rate, each as a function of θ,

the parameter that measures the extent to which the agent is behavioral. Setting θ to zero gives

the agent fully rational beliefs. In this case, the equity premium is 0.23%; the return volatility

equals the fundamental volatility of 11%; the price-dividend ratio stays constant at 135; and the

interest rate stays at 2.35%. With θ = 0, the model fails to match the long-run properties of the

stock market. Increasing θ from zero allows the feedback loop described above to emerge, which

generates excess volatility, pushes up the perceived equity premium, and significantly reduces the

price-dividend ratio. At the same time, a higher θ—and the agent’s more extrapolative beliefs

about stock market returns—leads the agent to perceive a higher persistence in dividend growth,

which, under Epstein-Zin preferences, is significantly priced, causing the perceived equity premium

to further rise. Finally, a higher θ leads to a true equity premium that is significantly higher than

the perceived one.

[Place Figure 6a about here]

Overall, a 1% increase in θ leads to a 0.09% increase in the equity premium and a 0.29% increase

in the volatility of returns. On the other hand, the effect of θ on the interest rate is small. A higher

θ increases the extrapolation bias in the agent’s beliefs about stock market returns, but does not

significantly affect her beliefs about consumption growth, which determine the equilibrium interest

rate.

Figure 6b examines how changes in θ, χ, and λ affect the predictability of stock market returns

and the persistence of the price-dividend ratio. Here the predictability of returns is measured by the

slope coefficient in a regression of the next year’s log excess return on the current log price-dividend

ratio; the persistence of the price-dividend ratio is measured by the one-year autocorrelation of log

price-dividend ratios.

[Place Figure 6b about here]

Figure 6b shows that higher values of θ, χ, and λ lead to stronger predictability of returns

and a lower persistence of the price-dividend ratio. Higher values of χ and λ—that is, higher
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perceived transition intensities between the high- and low-mean price growth regimes—suggest

that the agent focuses on a shorter history of past return realizations when forming beliefs about

future returns. A higher value of θ has a similar implication: it suggests that the agent exhibits a

stronger extrapolation bias, which means that the agent deviates more from a rational agent whose

beliefs depend on both recent and distant past returns. In other words, with a higher θ, the agent

relies more heavily on recent past returns when forming beliefs about future returns. Therefore,

higher values of θ, χ, and λ all lead to a stronger degree of mean reversion in sentiment, which in

turn gives rise to stronger predictability of returns and a lower persistence of the price-dividend

ratio.

The comparative statics results in Figure 6b are consistent with recent empirical findings. At the

aggregate level, Cassella and Gulen (2017) find that, during periods when investors’ expectations

about future returns depend on both recent and distant past returns, the price-dividend ratio does

not strongly predict the next year’s return. Conversely, during periods when investors’ expectations

depend primarily on recent past returns, the price-dividend ratio strongly predicts the next year’s

return. In our model, higher values of θ, χ, and λ lead to a higher φ, and therefore the agent’s

expectations about future returns depend more heavily on recent past returns. In the meantime,

they also lead to stronger return predictability. Overall, the model implies that, when the agent

forms beliefs based on a short history of past returns, the predictability of returns is strong. To

give an example, increasing θ from 0.05 to 0.5 changes φ from 0.37 to 0.43. At the same time,

it changes β1, the slope coefficient for a regression of the next year’s log excess return on the

current log price-dividend ratio, from −0.32 to −0.72; the corresponding R-squared increases from

0.001 to 0.13. In the cross-section, Da, Huang, and Jin (2017) show that stocks associated with

a larger extrapolation bias—beliefs of forecasters on these stocks depend more strongly on recent

past returns—exhibit stronger return reversals. Applying our model to individual stocks gives the

same prediction.

IV. Comparison with Rational Expectations Models

In this section, we provide a quantitative comparison between our model and several models

with rational expectations. First, we look at a rational expectations model that is most analogous
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to our behavioral model, one in which the regime-switching process characterized in Section I

represents the true data generating process. We then examine differences between our model and

the rational expectations models of Bansal and Yaron (2004) and Bansal et al. (2012): we focus on

the long-run risks models because these are the models most related to ours.

IV.1. The true regime-switching model

The rational expectations model most analogous to our model is the one that assumes the

regime-switching process characterized in equations (6) and (7) is the true data generating process.

In this case, the true evolution of the stock market price is

dPDt /P
D
t = [(1− θ)gD + θµ̃S,t]dt+ σDP (St)dω

P
t , (31)

where ωPt is a standard Brownian motion. As with the behavioral model, the agent in this model

does not directly observe the latent variable µ̃S,t. Instead, she uses past stock market prices to

form a Bayesian estimate of µ̃S,t: St = E[µ̃S,t|FPt ]. That is, the perceived evolution of stock market

price in (8) is fully rational. We further assume that the perceived dividend process (10) and the

perceived consumption process (14) are also rational.

By construction, this rational expectations model produces the same equilibrium prices as our

behavioral model: the solutions to the differential equations of (16) and (17) also apply to this

model. Nonetheless, the two models have statistical properties that are significantly different.

One difference, for instance, lies in the models’ implications for the predictability of stock market

returns.

[Place Table 9 about here]

Table 9 reports the regression coefficient βj and the adjusted R-squared for a regression of the

log excess return of the stock market from time t to time t+j on the current log price-dividend ratio

`n(PDt /Dt) over various time horizons j (one to seven years), now using the true regime-switching

model. Table 9 shows that the model fails to produce the predictability of stock market returns

documented in Campbell and Shiller (1988) and Fama and French (1988): both the regression

coefficients and the R-squared are close to zero. In contrast, Table 5 shows that the behavioral
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model produces the observed predictability of stock market returns.

With rational expectations, the agent’s beliefs about stock market returns are on average correct.

Therefore, following high past price growth, the agent properly anticipates high future price growth,

which pushes down the dividend yield in equilibrium, leading to flat returns in subsequent periods.

As a result, future returns do not vary significantly with the current price-dividend ratio, giving

rise to the lack of return predictability in the true regime-switching model.

IV.2. The long-run risks models

Table 10 reports the regression coefficients and t-statistics when regressing four measures of

rational expectations of return—raw return or excess return, with or without dividend yield—

either on the past twelve-month return or on the current log price-dividend ratio. The regressions

are based on simulated data from Bansal and Yaron (2004). Interestingly, their model generates,

to some extent, extrapolative expectations about future raw returns: a regression of the agent’s

expectations—this is also the rational expectation—about the next twelve-month total return on

past twelve-month total return yields a coefficient of 2.5% with a t-statistic of 2.4 for a 15-year

simulated sample; the regression coefficient is 3.0% with a t-statistic of 3.8 for a 50-year simulated

sample.

[Place Table 10 about here]

In Bansal and Yaron (2004), dividend growth and consumption growth share a stochastic yet

persistent component. High past stock market returns are typically caused by positive shocks to

this common component, which, given its persistence, implies high dividend growth and hence high

raw returns moving forward. That is, the agent in Bansal and Yaron (2004) has extrapolative beliefs

about future raw returns. At the same time, precisely because dividend growth and consumption

growth share a persistent component, high dividend growth tends to coincide with high consumption

growth, which implies a high interest rate in equilibrium. That is, when raw returns are high, the

interest rate is also high. As a result, the agent does not have extrapolative beliefs about future

excess returns: as shown in Table 10, regressing the agent’s expectation about future excess returns

on past returns, the regression coefficient and the t-statistic are both close to zero.
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These regression results highlight one fundamental difference between our model and the model

of Bansal and Yaron (2004). In our model, the agent extrapolates past returns on the stock

market, but extrapolates past consumption growth much less. The comovement between the agent’s

beliefs about returns and her beliefs about consumption growth is low. On the contrary, in Bansal

and Yaron (2004), the comovement between the agent’s beliefs about stock market returns—these

rationally drive returns—and her beliefs about consumption growth—these determine the interest

rate in equilibrium—is high. Therefore, the agent in our model has extrapolative beliefs about both

raw returns and excess returns, whereas the agent in Bansal and Yaron (2004) has extrapolative

beliefs only about raw returns.

Furthermore, as shown in Figure 5, our model produces an equity premium and return volatility

that do not vary significantly with respect to changes in the elasticity of intertemporal substitution.

On the contrary, the long-run risks models cannot generate a high equity premium with a low elas-

ticity of intertemporal substitution. For instance, setting the elasticity of intertemporal substitution

to 0.5, our model generates an equity premium of 7.1% (measured as the rational expectation of

excess returns), while the model of Bansal and Yaron (2004) produces an equity premium between

1% and 2%. Given this contrast, our model does not face the challenge of defending an elasticity

of intertemporal substitution that is greater than one.

To understand this model difference, first note that sentiment, the state variable in our model, is

much less persistent than the stochastic component of dividend and consumption growth in Bansal

and Yaron (2004), allowing the equilibrium interest rate and hence the equity premium in our

model to be less responsive to changes in the elasticity of intertemporal substitution. At the same

time, the perceived dividend growth in our model depends more strongly on the state variable of

sentiment, pushing up the perceived equity premium; as a comparison, dividend growth in Bansal

and Yaron (2004) depends much less on the stochastic growth component.22 Finally, the true

average equity premium in our model is above the perceived one, allowing the equity premium to

be high even when the elasticity of intertemporal substitution is low.

Table 11 repeats the regression analyses of Table 10 using the model of Bansal et al. (2012).

Compared to the original model of Bansal and Yaron (2004), Bansal et al. (2012) introduces ad-

22Bansal and Yaron (2004) set their “leverage parameter” φ to 3.5. In comparison, with return extrapolation, our
model effectively sets φ to 14.5, a much higher value.
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ditional time variation in the long-run risks that further reduces the model’s ability to generate

extrapolative expectations: when regressing the agent’s expectation of raw returns on past returns,

the coefficient now becomes insignificant.

[Place Table 11 about here]

We complete our discussion in this section by making two remarks. First, the persistence

introduced by the long-run risks models on consumption growth and dividend growth leads to excess

predictability, the notion that future consumption growth and dividend growth are excessively

predicted by current variables such as the price-dividend ratio and the interest rate (see Beeler and

Campbell (2012) and Collin-Dufresne et al. (2016b) for a detailed discussion). Our model does not

give rise to excess predictability: return extrapolation in the model only generates perceived but

not true long-run risks, and therefore the true consumption growth and dividend growth remain

unpredictable.

Second, the rational expectations models and our model generate different implications regard-

ing the role of cash flow expectations in understanding stock market movements. In models with

rational expectations, the stock market price is mainly correlated with subjective discount rate

(return) expectations; it is not significantly correlated with cash flow expectations. In our model,

however, the stock market price is mainly correlated with the agent’s subjective expectations of

future cash flow growth.

V. Fundamental Extrapolation

A literature in behavioral finance focuses on fundamental extrapolation, the notion that some

investors hold extrapolative expectations about fundamentals such as dividend growth or GDP

growth (Barberis et al. (1998); Fuster et al. (2011); Choi and Mertens (2013); Alti and Tetlock

(2014); Hirshleifer et al. (2015)). In this section, we provide a quantitative comparison between our

model and a model with fundamental extrapolation. To facilitate the comparison, we keep the two

models almost identical. The only difference is that, in the model with fundamental extrapolation,

sentiment is constructed from past dividend growth, whereas in the model with return extrapo-

lation, sentiment is constructed from past price growth. Below we first briefly describe the key
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assumptions in this fundamental extrapolation model. We then discuss the model’s implications.

V.1. Model setup

With fundamental extrapolation, the agent believes that the expected growth rate of divi-

dends—instead of the expected growth rate of stock market prices in the case of return extrapolation—

is governed by (1 − θ)gD + θµ̃S,t, where µ̃S,t is a latent variable that follows a regime-switching

process described in Section I. The agent does not directly observe the latent variable µ̃S,t. Instead,

she computes its expected value given the history of past dividend growth: St ≡ E[µ̃S,t|FDt ]. She

then applies optimal filtering theory and derives

dSt =(λµH + χµL − (λ+ χ)St)dt+ σ−1
D θ(µH − St)(St − µL)dωet

≡µeS(St)dt+ σS(St)dω
e
t ,

(32)

where dωet ≡ [dDt/Dt − (1− θ)gDdt− θStdt]/σD is a standard Brownian innovation term from the

agent’s perspective. That is, she perceives the evolution of dividend as

dDt/Dt = geD(St)dt+ σDdω
e
t , (33)

where

geD(St) = (1− θ)gD + θSt. (34)

In other words, the agent’s expectation about dividend growth geD(St) is a linear combination of a

rational component gD and a sentiment component St constructed from past dividend growth. On

the other hand, the perceived evolution of the stock market price can be derived as

dPDt /P
D
t = µD,eP (St)dt+ σDP (St)dω

e
t , (35)

where

σDP (S) =σD + (f ′/f)σ−1
D θ(µH − S)(S − µL),

µD,eP (S) =(f ′/f)µeS + 1
2(f ′′/f)σ2

S + (1− θ)gD + θS − σ2
D + σDσ

D
P (S).

(36)
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As before, f is defined as the price-dividend ratio of the stock market.

As with the return extrapolation model, equations (16) and (17) determine f and l, the price-

dividend ratio and the wealth-consumption ratio, except that µS , σS , geD, µD,eP , and σDP are now

from (32), (34), and (36).

V.2. Model implications

We first examine the model’s implications for investor expectations. Table 12 reports the

regression coefficient, its t-statistic, the intercept, as well as the adjusted R-squared, when regressing

the four measures of return expectations on either the past twelve-month cumulative raw returns

or the current log price-dividend ratio. With fundamental extrapolation, the regression coefficient

on past returns and the t-statistic are both close to zero.

[Place Table 12 about here]

Suppose past dividend growth has been high. On the one hand, it results in high past returns.

On the other hand, fundamental extrapolation leads the agent to expect high dividend growth

moving forward, but not high returns: following high past dividend growth, the stock market

price increases to the extent that the agent’s expectation of future returns does not change signifi-

cantly. A fundamental extrapolation model with a representative agent therefore faces a challenge

in explaining survey expectations about returns. In contrast, our return extrapolation model is

constructed to explain these survey expectations.23

[Place Table 13 about here]

Table 13 analyzes the model’s fit with the long-run properties of the stock market. Using the

same parameters that allow the return extrapolation model to well explain the important moments

of the stock market, the fundamental extrapolation model generates lower excess volatility and a

much lower equity premium. Quantitatively, fundamental extrapolation generates 74.4% of excess

volatility and 37.9% of the equity premium that return extrapolation produces.

23A fundamental extrapolation model with heterogeneous agents—for instance, one with both an agent who extrap-
olates past dividend growth and an agent who is fully rational—can potentially generate extrapolative expectations
of returns for the behavioral agent in the model. See the model of Ehling et al. (2015) as an example.
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This quantitative comparison highlights the importance of the feedback loop described above

in matching asset pricing facts. With return extrapolation, the feedback loop emerges because

extrapolative beliefs are applied to the stock market return, a variable that is endogenously de-

termined in equilibrium. With fundamental extrapolation, however, the feedback loop is absent

because extrapolative beliefs are applied to dividend growth, a variable that is exogenous in the

model: high past dividend growth makes the agent optimistic about future dividend growth and

therefore pushes up the current price, but the higher price does not further affect the agent’s beliefs

about future dividend growth.

This feedback loop also points to a methodological contribution of the paper. Equation (32)

shows that, in a fundamental extrapolation model, sentiment S, the state variable that drives

asset prices dynamics, can be exogenously specified without solving the equilibrium; this greatly

simplifies the model. On the other hand, with return extrapolation, sentiment S determines—and

is endogenously determined by—asset prices. As a result, such a model requires solving beliefs and

asset prices simultaneously, and therefore imposes a greater modeling challenge. Our numerical

approach to solving a system of differential equations provides a solution to this challenge.

VI. Conclusion

We build a new return extrapolation model that can be brought to the data quantitatively. With

the agent’s beliefs calibrated to fit the extrapolative expectations data documented in surveys, the

model matches the long-run properties of stock market prices: it generates a high average equity

premium, significant excess volatility, a low average interest rate, low interest rate volatility, and a

price-dividend ratio whose average level is similar to the empirical one. The model also matches the

dynamic behavior of stock market prices: it produces the long-horizon predictability of stock market

returns, and generates the observed low correlation between stock market returns and consumption

growth. We compare our model to the long-run risks models and find that our model’s quantitative

implications are more robust to changes in the elasticity of intertemporal substitution.

Our analysis has left several important issues for future work. First, when calibrated with

the survey expectations data, the model predicts a persistence of the price-dividend ratio that is

significantly lower than its empirical value. To reconcile the survey expectations about stock market
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returns with the observed persistence of the price-dividend ratio, we need a deeper understanding

about how investors form beliefs. Second, the extrapolation framework is closely linked to theories

of model uncertainty. A careful investigation of this connection may produce useful insights to

both literatures. Finally, our representative-agent model neglects an important channel that affects

asset prices: the time-varying fraction of wealth held by behavioral agents. Explicitly incorporating

rational agents into our framework may lead to additional implications.
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Appendices

A. Derivation of the Differential Equations (16) and (17)

For the subjective Euler equation (4), setting R̃j,t+dt, the return on the tradeable asset, to the

gross return on the stock market, the equation becomes

Eet

e−δ(1−γ)dt/(1−ψ)

(
C̃t+dt
Ct

)−ψ(1−γ)/(1−ψ)(
P̃Ct+dt + C̃tdt

PCt

)(ψ−γ)/(1−ψ)
P̃Dt+dt + D̃t+dtdt

PDt

 = 1.

(A.1)

Using Taylor expansion, (A.1) becomes

Eet
[
e−δ(1−γ)dt/(1−ψ)

(
C̃t+dt

)−ψ(1−γ)/(1−ψ)
(P̃Ct+dt)

(ψ−γ)/(1−ψ)
P̃Dt+dt

(
1 + ψ−γ

1−ψ
C̃t+dt
P̃Ct+dt

dt+
D̃t+dt
P̃Dt+dt

dt

)]
= C

−ψ(1−γ)/(1−ψ)
t (PCt )(ψ−γ)/(1−ψ)PDt .

(A.2)

Rearranging terms gives

0 = Eet


d(ΘC(ψ−γ)/(1−ψ)l(ψ−γ)/(1−ψ)Df) + ψ−γ

1−ψΘC(ψ−γ)/(1−ψ)l(2ψ−γ−1)/(1−ψ)Dfdt

+ΘC(ψ−γ)/(1−ψ)l(ψ−γ)/(1−ψ)Ddt

 , (A.3)

where Θ(C, t) ≡ e−δ(1−γ)t/(1−ψ)C−ψ(1−γ)/(1−ψ). By Ito’s lemma, (A.3) leads to

0 = Eet



− δ(1−γ)
1−ψ dt− γ(dC/C) + (dD/D) + (df/f) + ψ−γ

1−ψ (dl/l) + γ(γ+1)
2 (dC/C)2

+1
2
ψ−γ
1−ψ

2ψ−γ−1
1−ψ (dl/l)2 − γ(ψ−γ)

1−ψ (dC/C)(dl/l)− γ(dC/C)(dD/D)− γ(dC/C)(df/f)

+ψ−γ
1−ψ (dl/l)(dD/D) + ψ−γ

1−ψ (dl/l)(df/f) + (df/f)(dD/D) + ψ−γ
1−ψ l

−1dt+ f−1dt


.

(A.4)

Using (7), (10), and (14) to further simplify (A.4) gives (16).

Setting R̃j,t+dt in (4) to the gross return on the Lucas tree, the subjective Euler equation (4)
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becomes

Eet

e−δ(1−γ)dt/(1−ψ)

(
C̃t+dt
Ct

)−ψ(1−γ)/(1−ψ)(
P̃Ct+dt + C̃tdt

PCt

)(1−γ)/(1−ψ)
 = 1. (A.5)

Rearranging terms yields

0 = Eet
[
d(ΘC(1−γ)/(1−ψ)l(1−γ)/(1−ψ)) + 1−γ

1−ψΘC(1−γ)/(1−ψ)l(ψ−γ)/(1−ψ)dt
]
. (A.6)

By Ito’s lemma, (A.6) leads to

0 = Eet


− 1−γ

1−ψ δdt− (γ − 1)(dC/C) + γ(γ−1)
2 (dC/C)2 + 1−γ

1−ψ (dl/l)

+1
2

1−γ
1−ψ

ψ−γ
1−ψ (dl/l)2 + (1−γ)2

1−ψ (dC/C)(dl/l) + 1−γ
1−ψ l

−1dt

 . (A.7)

Using (7) and (14) to further simplify (A.7) gives (17). �

B. Steady-State Distribution for Sentiment

Below we provide all the terms necessary for solving the Kolmogorov forward equation (25).

From the expression of σS in (7)

σ′S =
θσDP (µH + µL − 2S)− θ(µH − S)(S − µL)(σDP )′

(σDP )
2 ,

σ′′S =
θ(µH − S)(S − µL){2[(σDP )′]

2 − σDP (σDP )′′}
(σDP )

3 − 2θ
σDP (σDP )′(µH + µL − 2S) + (σDP )

2

(σDP )
3 .

(B.1)

For the expression of µeS in (7) and the expression of geD in (11)

(µeS)′ =− (λ+ χ),

(geD)′ = θ − σD(σDP )′ − µ′S(f ′/f)− µS [f ′′/f − (f ′)2/f2]

− σSσ′S(f ′′/f)− 1
2σ

2
S [f ′′′/f − f ′f ′′/f2],

(B.2)
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where σDP is from (11), and (σDP )′ and (σDP )′′ are

(σDP )′ =
θ(µH + µL − 2S)(f ′/f) + θ(µH − S)(S − µL)[f ′′/f − (f ′)2/f2]√

σ2
D + 4θ(µH − S)(S − µL)(f ′/f)

,

(σDP )′′ =− 2{θ(µH + µL − 2S)(f ′/f) + θ(µH − S)(S − µL)[f ′′/f − (f ′)2/f2]}2

[σ2
D + 4θ(µH − S)(S − µL)(f ′/f)]

3/2

+
−2θf ′/f + 2θ(µH + µL − 2S)[f ′′/f − (f ′)2/f2]√

σ2
D + 4θ(µH − S)(S − µL)(f ′/f)

+
θ(µH − S)(S − µL)[f ′′′/f − 3(f ′f ′′)/f2 + 2(f ′)3/f3]√

σ2
D + 4θ(µH − S)(S − µL)(f ′/f)

.

(B.3)

�

C. Numerical Procedure for Solving the Equilibrium

We use a projection method with Chebyshev polynomials to jointly solve the two differential

equations (16) and (17). The value of the sentiment variable S ranges from µL to µH , whereas the

domain for Chebyshev polynomials is [–1, 1]. Therefore, we transform S to a new state variable z

z ≡ aS + b, where a =
2

µH − µL
, b = −µH + µL

µH − µL
, (C.1)

and we define h(z) ≡ f(S(z)) and j(z) ≡ l(S(z)). Equations (16) and (17) can be rewritten as

0 =



− (1−γ)
1−ψ δ − γg

e
C + geD + [(h′/h) + ψ−γ

1−ψ (j′/j)]aµeS + 1
2 [(h′′/h) + ψ−γ

1−ψ (j′′/j)]a2σ2
S

+γ(γ+1)
2 σ2

C + 1
2
ψ−γ
1−ψ

2ψ−γ−1
1−ψ (aj′/j)2σ2

S −
γ(ψ−γ)

1−ψ ρσCσS(aj′/j)− γρσCσD − γρσCσS(ah′/h)

+ψ−γ
1−ψσDσS(aj′/j) + ψ−γ

1−ψσ
2
Sa

2(j′/j)(h′/h) + σDσS(ah′/h) + ψ−γ
1−ψ j

−1 + h−1


(C.2)

and

0 =


− 1−γ

1−ψ δ − (γ − 1)geC + γ(γ−1)
2 σ2

C + 1−γ
1−ψ (aj′/j)µeS + 1−γ

2(1−ψ)(a2j′′/j)σ2
S

+1
2

1−γ
1−ψ

ψ−γ
1−ψ (aj′/j)2σ2

S + (1−γ)2

1−ψ ρσCσS(aj′/j) + 1−γ
1−ψ j

−1

 . (C.3)

44



We approximate h and j by

ĥ(z) =
∑n

r=0
arTr(z), l̂(z) =

∑m

r=0
brTr(z), (C.4)

where Tr(z) is the rth degree Chebyshev polynomial of the first kind.24 The projection method

chooses the coefficients {ar}nr=0 and {br}mr=0 so that the differential equations are approximately

satisfied. One criterion for a sufficient approximation is to minimize the weighted sum of squared

errors

∑N
i=1

1√
1−z2i



− (1−γ)
1−ψ δ − γg

e
C + geD + [(ĥ′/ĥ) + ψ−γ

1−ψ (ĵ′/ĵ)]aµeS + 1
2 [(ĥ′′/ĥ) + ψ−γ

1−ψ (ĵ′′/ĵ)]a2σ2
S

+γ(γ+1)
2 σ2

C + 1
2
ψ−γ
1−ψ

2ψ−γ−1
1−ψ (aĵ′/ĵ)2σ2

S −
γ(ψ−γ)

1−ψ ρσCσS(aĵ′/ĵ)− γρσCσD

−γρσCσS(aĥ′/ĥ) + ψ−γ
1−ψσDσS(aĵ′/ĵ) + ψ−γ

1−ψσ
2
Sa

2(ĵ′/ĵ)(ĥ′/ĥ) + σDσS(aĥ′/ĥ)

+ψ−γ
1−ψ ĵ

−1
+ ĥ

−1



2

z=zi

+
∑N

i=1
1√

1−z2i

 −
1−γ
1−ψ δ − (γ − 1)geC + γ(γ−1)

2 σ2
C + 1−γ

1−ψ (aĵ′/ĵ)µeS + 1−γ
2(1−ψ)(a2ĵ′′/ĵ)σ2

S

+1
2

1−γ
1−ψ

ψ−γ
1−ψ (aĵ′/ĵ)2σ2

S + (1−γ)2

1−ψ ρσCσS(aĵ′/ĵ) + 1−γ
1−ψ ĵ

−1


2

z=zi

,

(C.5)

where {zi}Ni=0 are the N zeros of TN (z). By the Chebyshev interpolation theorem, if N is suffi-

ciently larger than n and m, and if the sum of weighted square in (C.5) is sufficiently small, the

approximated functions ĥ(z) and l̂(z) are sufficiently close to the true solutions.

For the numerical results in the main text, we set m = 40, n = 40, N = 400. We then apply

the Levenberg-Marquardt algorithm and obtain a minimized sum of squared errors less than 10−11.

The small size of the total error indicates convergence of the numerical solution. The solution is

also insensitive to the choice of n, m, or N . Together, these findings suggest that the numerical

solutions are a sufficient approximation for the true h and j functions.

The same numerical procedure is applied to solving the Kolmogorov forward equation (25). �

24See Mason and Handscomb (2003) for a detailed discussion of the properties of Chebyshev polynomials.
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D. Additional Discussion about Return Expectations and Cash Flow Expectations

The direct implication of return extrapolation is that the agent’s subjective expectation about

the future stock market return

Eet [PDt+dt] = 1 + Eet [rDt+dt]dt = Eet

[
PDt+dt
PDt

]
+
Dtdt

PDt
(D.1)

is a positive function of the stock market’s recent past returns. Rearranging terms gives

PDt
Dt

=
1

Eet [rDt+dt]− Eet [dPDt /(PDt dt)]
. (D.2)

That is, the current price-dividend ratio is determined by the agent’s subjective expectation about

the future stock market return Eet [rDt+dt] and the agent’s subjective expectation about future price

growth Eet [dPDt /(PDt dt)]. Equation (D.2) does not suggest an explicit role for the agent’s expecta-

tion about dividend growth in determining the price-dividend ratio.

However, two conditions allow us to link the price-dividend ratio of the stock market to the

agent’s expectation about dividend growth. First, the law of iterated expectations must hold so

that we can iterate forward the Euler equation (4) with the stock market as the tradeable asset.

Second, the transversality condition must hold so that the economy permits no bubbles.25 These

two conditions allow us to obtain

PDt
Dt

= Eet

∫ ∞
t

e−δ(1−γ)(s−t)/(1−ψ)

(
C̃s
Ct

)−ψ(1−γ)/(1−ψ)

M̃
(ψ−γ)/(1−ψ)
t→s

(
D̃s

Dt

)
ds

 , (D.3)

where M̃t→s denotes the continuously compounded gross return for holding the Lucas tree from

time t to time s (> t). Equation (D.3) says that the current price-dividend ratio of the stock market

equals the agent’s subjective expectation of the sum of discounted future dividend growths.

For an infinitely-lived agent, (D.3) further implies that the agent is aware of the fact that both

her expectation about future price growth and her expectation about future returns are linked to

her expectation about future dividend growth. The specific relationship between these expectations

are discussed in Sections I and II. �

25The transversality condition holds in this economy as the stock market price is bounded by a finite range.
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Figure 1. Important Equilibrium Quantities Each as a Function of Sentiment. The

figure plots the price-dividend ratio of the stock market f , the volatility of stock market returns

σDP , the rational expectation about the log excess return E[rD,e] (the conditional equity premium),

and the interest rate r, each as a function of the sentiment variable S. The parameter values are:

gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ =

0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 2. Objectively Measured Steady-State Distribution of Sentiment. The figure

plots the objective steady-state distribution of sentiment ξ as a function of the sentiment variable

S. The parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10,

ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 3. Objective and Subjective Expectations about Price Growth. The dashed line

plots the objective (rational) expectation about price growth, Et[(dPDt )/(PDt dt)], as a function

of the sentiment variable St. The solid line plots the agent’s subjective expectation about price

growth, Eet [dPDt /(PDt dt)], as a function of the sentiment variable St. The parameter values are: gC

= 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ =

0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 4. Agent’s Expectations about Stock Market Returns, Price Growth, and

Dividend Growth. The dashed line plots the agent’s expectation about stock market returns,

Eet [(dPDt + Dtdt)/(P
D
t dt)] = (1 − θ)gD + θSt + 1/f , as a function of the sentiment variable St.

The dotted-dashed line plots the agent’s expectation about price growth, Eet [dPDt /(PDt dt)] = (1−

θ)gD + θSt, as a function of the sentiment variable St. The solid line plots the agent’s expectation

about dividend growth, Eet [dDt/(Dtdt)], as a function of the sentiment variable St. The parameter

values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ

= 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 5. Comparative Statics: Utility Parameters. The upper panel plots the average

equity premium E[rD,e] and the average volatility of stock market returns σ(rD,e), each as a function

of γ, the coefficient of relative risk aversion. The lower panel plots the average equity premium

E[rD,e] and the average volatility of stock market returns σ(rD,e), each as a function of ψ, the

reciprocal of the elasticity of intertemporal substitution. The default values for γ and ψ are 10 and

0.9, respectively. The other parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD =

11%, ρ = 0.2, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 6a. Comparative Statics: Belief Parameters (I). The figure plots the average equity

premium E[rD,e], the average volatility of stock market returns σ(rD,e), the average price-dividend

ratio exp(E[`n(P/D)]), and the average interest rate E[r] (in percentage), each as a function of

θ, the parameter that controls the extent to which the agent is behavioral. The other parameter

values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, χ

= 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Figure 6b. Comparative Statics: Belief Parameters (II). The figure plots the predictability

of stock market returns and the persistence of the price-dividend ratio, each as a function of θ,

χ, or λ. The predictability of returns is measured by the slope coefficient for a regression of the

next year’s log excess return on the current log price-dividend ratio. The persistence of the price-

dividend ratio is measured by the one-year autocorrelation of log price-dividend ratios. The default

values for θ, χ, and λ are 0.5, 0.18, and −0.18, respectively. The other parameter values are: gC =

1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, µH = 15%, and µL

= –15%.
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Table 1. Investor Expectations.

Eet [(dPDt +Dtdt)/(P
D
t dt)] Eet [dPDt /(PDt dt)]

RDt−12→t
0.022 0.023 0.040 0.040

(8.2) (11.7) (8.4) (12.1)

`n(P/D) 0.068 0.069 0.120 0.121

(29.5) (39.2) (36.8) (48.9)

Constant 0.07 0.07 –0.13 –0.13 0.02 0.02 –0.33 –0.34

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.57 0.54 0.98 0.98 0.58 0.55 0.99 0.99

Eet [(dPDt +Dtdt)/(P
D
t dt)]− rt Eet [dPDt /(PDt dt)]− rt

RDt−12→t
0.013 0.013 0.030 0.030

(6.6) (9.0) (7.8) (11.1)

`n(P/D) 0.039 0.039 0.091 0.091

(12.4) (16.6) (22.3) (28.7)

Constant 0.05 0.05 –0.06 –0.06 –0.002 –0.002 –0.27 –0.27

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.51 0.47 0.92 0.91 0.56 0.53 0.97 0.97

The table reports the regression coefficient and the t-statistic (in parenthesis), the intercept, as well

as the adjusted R-squared, for regressing the agent’s expectation about future stock market returns

either on the past twelve-month cumulative raw return RDt−12→t or on the current log price-dividend

ratio `n(Pt/Dt), over a sample of 15 years or 50 years. In the top panel, the expectations measure

for the first four columns is Eet [(dPDt + Dtdt)/(P
D
t dt)], and the expectations measure for the last

four columns is Eet [dPDt /(PDt dt)]. In the bottom panel, the expectations measure for the first four

columns is Eet [(dPDt +Dtdt)/(P
D
t dt)]− rt, and the expectations measure for the last four columns

is Eet [dPDt /(PDt dt)]− rt. Each reported value is averaged over 100 trials, and each trial represents

a regression using monthly data simulated from the model. The t-statistics are calculated using

a Newey-West estimator with twelve-month lags. The parameter values are: gC = 1.91%, gD =

2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH

= 15%, and µL = –15%.

60



Table 2. Determinants of Investor Expectations.

Eet [(dPDt +Dtdt)/(P
D
t dt)] Eet [dPDt /(PDt dt)]

φ 0.432 0.417 0.428 0.420

a 0.064 0.064 0.004 0.004

b 1.15 1.18 2.04 2.07

Sample size 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.98 0.98 0.99 0.98

Eet [(dPDt +Dtdt)/(P
D
t dt)]− rt Eet [dPDt /(PDt dt)]− rt

φ 0.414 0.408 0.418 0.420

a 0.047 0.047 –0.013 -0.010

b 0.70 0.67 1.58 1.55

Sample size 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.92 0.90 0.97 0.96

The table reports the parameter φ, the intercept a, the regression coefficient b, and the adjusted

R-squared, for running the non-linear least squares regression

Expectationt = a+ b
∑n

j=1
wjR

D
(t−j∆t)→(t−(j−1)∆t) + εt,

over a sample of 15 years or 50 years, where wj ≡ e−φ(j−1)∆t
/∑n

l=1 e
−φ(l−1)∆t, ∆t = 1/12, and

n = 600. In the top panel, the expectations measure for the first four columns is Eet [(dPDt +

Dtdt)/(P
D
t dt)], and the expectations measure for the last four columns is Eet [dPDt /(PDt dt)]. In the

bottom panel, the expectations measure for the first four columns is Eet [(dPDt +Dtdt)/(P
D
t dt)]−rt,

and the expectations measure for the last four columns is Eet [dPDt /(PDt dt)] − rt. Each reported

value is averaged over 100 trials, and each trial represents a regression using monthly data simulated

from the model. The t-statistics are calculated using a Newey-West estimator with twelve-month

lags. The parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ =

10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Table 3. Parameter Values.

Parameter Variable Value

Asset parameters:

Expected consumption growth gC 1.91%

Expected dividend growth gD 2.45%

Standard deviation of consumption growth σC 3.8%

Standard deviation of dividend growth σD 11%

Correlation between dD and dC ρ 0.2

Utility parameters:

Relative risk aversion γ 10

Reciprocal of EIS ψ 0.9

Subjective discount rate δ 0.02

Belief parameters:

Degree of extrapolation θ 0.5

Perceived transition intensity from H to L χ 0.18

Perceived transition intensity from L to H λ 0.18

Upper bound of sentiment µH 0.15

Lower bound of sentiment µL –0.15
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Table 4. Basic Moments.

Statistic Theoretical value Empirical value

Equity premium (E[rD,e]) 4.88% 3.90%

Return volatility (σ(rD,e)) 27.4% 18.0%

Sharpe ratio (E[rD,e]/σ(rD,e)) 0.20 0.22

Interest rate (E[r]) 2.16% 2.92%

Interest rate volatility (σ(r)) 0.33% 2.89%

Price-dividend ratio (exp(E[`n(P/D)])) 19.4 21.1

The table reports six important moments about stock market prices and returns: the long-run

average of the equity premium (the rational expectation of log excess return, E[rD,e]), the average

volatility of stock market returns (the volatility of log excess return, σ(rD,e)), the Sharpe ratio

(E[rD,e]/σ(rD,e)), the average interest rate (E[r]), interest rate volatility (σ(r)), and the average

price-dividend ratio of the stock market (exp(E[`n(P/D)])). The theoretical values for these mo-

ments are computed over the objectively measured steady-state distribution of sentiment S. The

model parameters are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9,

δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%. For the empirical values, five

out of six are from Campbell and Cochrane (1999); the empirical value for interest rate volatility is

not reported in Campbell and Cochrane (1999), so we report the value from Beeler and Campbell

(2012).
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Table 5. Return Predictability Regressions.

Theoretical value Empirical value

Horizon (years)
10×

coefficient

Adjusted

R-squared

10×
coefficient

Adjusted

R-squared

1 –7.2 0.13 –1.3 0.04

2 –9.5 0.16 –2.8 0.08

3 –10.1 0.15 –3.5 0.09

5 –10.6 0.13 –6.0 0.18

7 –11.0 0.12 –7.5 0.23

The table reports the regression coefficient βj and the adjusted R-squared for a regression of the

log excess return of stock market from time t to time t+ j on the current log price-dividend ratio

`n(PDt /Dt)

rD,et→t+j = αj + βj`n(PDt /Dt) + εj,t,

where j = 1, 2, 3, 5, and 7 (years). The theoretical values are calculated using 10,000 years of

monthly data simulated from the model. The parameter values are: gC = 1.91%, gD = 2.45%, σC

= 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%,

and µL = –15%. The empirical values are from Campbell and Cochrane (1999).
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Table 6. Correlation between Consumption Growth and Stock Returns.

Correlation
Theoretical value Empirical value

monthly quarterly annual annual

Corr(rD,et→t+1, `n(Ct−1/Ct−2)) –0.01 –0.02 –0.02 –0.05

Corr(rD,et→t+1, `n(Ct/Ct−1)) –0.01 –0.03 –0.06 –0.08

Corr(rD,et→t+1, `n(Ct+1/Ct)) 0.20 0.20 0.19 0.09

Corr(rD,et→t+1, `n(Ct+2/Ct+1)) 0.00 –0.00 0.01 0.49

Corr(rD,et→t+1, `n(Ct+3/Ct+2)) –0.00 –0.00 0.01 0.05

The table reports correlations between log consumption growth and log excess returns of the stock

market. The log consumption growth and log excess returns are computed at either a monthly,

a quarterly, or an annual horizon. Correlations are either contemporaneous or with a lead-lag

structure; for instance, at a monthly frequency, Corr(rD,et→t+1, `n(Ct+2/Ct+1)) is the correlation

between the current monthly log excess return and the log consumption growth in the subsequent

month. The theoretical values are calculated using 10,000 years of monthly data simulated from

the model. The parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2,

γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%. The empirical

values are from Campbell and Cochrane (1999).
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Table 7. Campbell-Shiller Decomposition.

Realized dividend growth and returns

Coefficient Value
Adjusted

R-squared

DRobjective 0.98 0.209

CFobjective 0.02 1.2× 10−4

Subjective expectations about dividend growth and returns

Coefficient Value
Adjusted

R-squared

DRsubjective −0.08 0.982

CFsubjective 1.08 0.984

The table reports the four coefficients, CFobjective, DRobjective, CFsubjective, and DRobjective, defined

in equations (29) and (30), as well as their corresponding adjusted R-squared. These coefficients

and R-squared are calculated using 10,000 years of monthly data simulated from the model. At

each point in time, for a given level of sentiment, subjective expectations about dividend growth

and returns are calculated as the average values of 100 trials. Each trial is 50 years of monthly

simulated data under the agent’s expectations with the given initial level of sentiment. For realized

dividend growth and returns, both
∑∞

j=0 ξ
j∆d(t+j∆t)→(t+(j+1)∆t) and

∑∞
j=0 ξ

jrD(t+j∆t)→(t+(j+1)∆t)

are approximated using 50 years of monthly simulated data. From the simulated data, ξ = 0.9957.

The other parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ =

10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Table 8. Autocorrelations of Log Excess Returns and Log Price-dividend Ratios.

Lag

(years)

Theoretical value Empirical value

`n(PD/D) rD,e Σj
i=1ρ(rD,et , rD,et−i ) `n(PD/D) rD,e Σj

i=1ρ(rD,et , rD,et−i )

1 0.33 –0.28 –0.28 0.78 0.05 0.05

2 0.11 –0.09 –0.37 0.57 –0.21 –0.16

3 0.05 –0.02 –0.39 0.50 –0.08 –0.09

5 0.00 –0.01 –0.40 0.32 –0.14 –0.28

7 –0.02 –0.01 –0.41 0.29 0.11 –0.15

The table reports, over various lags j, the autocorrelations of log price-dividend ratios and log

excess returns, as well as the partial sum of the autocorrelations of log excess returns. The operator

ρ(x, y) computes the sample correlation between variable x and variable y. The theoretical values

are calculated using 10,000 years of monthly data simulated from the model; for each month, we

compound the next 12 months of log excess returns to obtain an annual log excess return. The

parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ =

0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%. The empirical values are

from Campbell and Cochrane (1999).
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Table 9. Return Predictability Regressions in the True Regime-Switching Model.

Theoretical value Empirical value

Horizon (years)
10×

coefficient

103×Adjusted

R-squared

10×
coefficient

Adjusted

R-squared

1 0.2 0.16 –1.3 0.04

2 0.4 0.31 –2.8 0.08

3 0.5 0.32 –3.5 0.09

5 0.8 0.54 –6.0 0.18

7 0.7 0.34 –7.5 0.23

The table reports the regression coefficient βj and the adjusted R-squared for a regression of the

log excess return of stock market from time t to time t+ j on the current log price-dividend ratio

`n(PDt /Dt)

rD,et→t+j = αj + βj`n(PDt /Dt) + εj,t,

where j = 1, 2, 3, 5, and 7 (years). The theoretical values are calculated using 10,000 years

of monthly data simulated from the true regime-switching model described in Section IV. The

parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ =

0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%. The empirical values are

from Campbell and Cochrane (1999).
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Table 10. Investor Expectations in Bansal and Yaron (2004).

Expectation of return Expectation of return w/o divd.

RDt−12→t
0.025 0.030 0.025 0.031

(2.4) (3.8) (2.5) (4.0)

`n(P/D) 0.068 0.067 0.069 0.067

(5.6) (7.6) (5.8) (7.6)

Constant 1.06 1.05 0.88 0.88 1.06 1.05 0.88 0.89

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.140 0.142 0.500 0.451 0.136 0.145 0.529 0.451

Expectation of excess return Expectation of excess return w/o divd.

RDt−12→t
–0.001 0.000 0.000 0.001

(–0.1) (0.1) (–0.1) (0.2)

`n(P/D) –0.008 –0.012 –0.010 –0.011

(–0.8) (–1.3) (–0.8) (–1.2)

Constant 0.06 0.06 0.08 0.10 0.06 0.06 0.09 0.09

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.026 0.008 0.087 0.054 0.026 0.008 0.093 0.053

The table reports the regression coefficient and the t-statistic (in parenthesis), the intercept, as

well as the adjusted R-squared, for regressing four measures of rational expectation of return—

raw return or excess return, with or without dividend yield—either on the past twelve-month

cumulative raw return or on the current log price-dividend ratio, over a sample of 15 years or 50

years. The conditional expectation of subsequent returns, the dependent variable in each regression,

is computed by averaging realized returns across simulations over a twelve-month horizon for a

given state of the economy. Each reported value is the estimator median over 1,000 trials, and each

trial represents a regression using monthly data simulated from Bansal and Yaron (2004). The

t-statistics are calculated using a Newey-West estimator with twelve-month lags. The parameters

take their default values from Tables II and IV of Bansal and Yaron (2004).
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Table 11. Investor Expectations in Bansal et al. (2012).

Expectation of return Expectation of return w/o divd.

RDt−12→t
0.006 0.010 0.006 0.011

(0.7) (1.3) (0.7) (1.3)

`n(P/D) –0.006 –0.041 –0.006 –0.038

(–0.3) (–3.1) (–0.2) (–2.9)

Constant 1.08 1.08 1.11 1.22 1.08 1.08 1.11 1.21

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.031 0.021 0.129 0.147 0.033 0.020 0.139 0.136

Expectation of excess return Expectation of excess return w/o divd.

RDt−12→t
–0.003 0.000 –0.004 –0.001

(–0.3) (0.1) (–0.5) (–0.1)

`n(P/D) –0.071 –0.095 –0.036 –0.054

(–5.2) (–10.7) (–3.4) (–5.2)

Constant 0.09 0.08 0.30 0.37 0.08 0.08 0.19 0.24

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.021 0.010 0.432 0.599 0.026 0.008 0.226 0.254

The table reports the regression coefficient and the t-statistic (in parenthesis), the intercept, as

well as the adjusted R-squared, for regressing four measures of rational expectation of return—

raw return or excess return, with or without dividend yield—either on the past twelve-month

cumulative raw return or on the current log price-dividend ratio, over a sample of 15 years or 50

years. The conditional expectation of subsequent returns, the dependent variable in each regression,

is computed by averaging realized returns across simulations over a twelve-month horizon for a given

state of the economy. Each reported value is the estimator median over 1,000 trials, and each trial

represents a regression using monthly data simulated from Bansal et al. (2012). The t-statistics

are calculated using a Newey-West estimator with twelve-month lags. The parameters take their

default values from Table 1 of Bansal et al. (2012).
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Table 12. Investor Expectations in the Fundamental Extrapolation Model.

Eet [(dPDt +Dtdt)/(P
D
t dt)] Eet [dPDt /(PDt dt)]

RDt−12→t
0.004 0.003 0.010 0.010

(0.21) (0.63) (1.15) (2.04)

`n(P/D)
0.017 0.019 0.040 0.042

(0.88) (1.62) (2.08) (3.52)

Constant 0.05 0.05 –0.01 –0.02 0.03 0.03 –0.12 –0.13

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.14 0.04 0.24 0.10 0.17 0.08 0.31 0.22

Eet [(dPDt +Dtdt)/(P
D
t dt)]− rt Eet [dPDt /(PDt dt)]− rt

RDt−12→t
–0.004 –0.004 0.003 0.002

(–0.88) (–1.13) (0.07) (0.42)

`n(P/D)
–0.009 –0.007 0.014 0.016

(–0.49) (–0.54) (0.71) (1.35)

Constant 0.03 0.03 0.06 0.05 0.006 0.006 –0.05 –0.05

Sample size 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr. 15 yr. 50 yr.

R2 0.15 0.05 0.22 0.06 0.14 0.04 0.23 0.08

The table reports the regression coefficient and the t-statistic (in parenthesis), the intercept, as well

as the adjusted R-squared, for regressing the agent’s expectation about future stock market returns

either on the past twelve-month cumulative raw return RDt−12→t or on the current log price-dividend

ratio `n(Pt/Dt), over a sample of 15 years or 50 years. In the top panel, the expectations measure

for the first four columns is Eet [(dPDt + Dtdt)/(P
D
t dt)], and the expectations measure for the last

four columns is Eet [dPDt /(PDt dt)]. In the bottom panel, the expectations measure for the first four

columns is Eet [(dPDt +Dtdt)/(P
D
t dt)]− rt, and the expectations measure for the last four columns

is Eet [dPDt /(PDt dt)]− rt. Each reported value is averaged over 100 trials, and each trial represents

a regression using monthly data simulated from the fundamental extrapolation model described in

Section V. The t-statistics are calculated using a Newey-West estimator with twelve-month lags.

The parameter values are: gC = 1.91%, gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ

= 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ = 0.18, µH = 15%, and µL = –15%.
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Table 13. Basic Moments in the Fundamental Extrapolation Model.

Statistic Theoretical value Empirical value

Equity premium (E[rD,e]) 1.85% 3.90%

Return volatility (σ(rD,e)) 20.4% 18.0%

Sharpe ratio (E[rD,e]/σ(rD,e)) 0.08 0.22

Interest rate (E[r]) 2.27% 2.92%

Interest rate volatility (σ(r)) 0.23% 2.89%

Price-dividend ratio (exp(E[`n(P/D)])) 44.4 21.1

The table reports six important moments about stock market prices and returns: the long-run

average of the equity premium (the rational expectation of log excess return, E[rD,e]), the average

volatility of stock market returns (the volatility of log excess return, σ(rD,e)), the Sharpe ratio

(E[rD,e]/σ(rD,e)), the average interest rate (E[r]), interest rate volatility (σ(r)), and the average

price-dividend ratio of the stock market (exp(E[`n(P/D)])). The theoretical values for these mo-

ments are computed over the objectively measured steady-state distribution of sentiment S in the

fundamental extrapolation model described in Section V. The model parameters are: gC = 1.91%,

gD = 2.45%, σC = 3.8%, σD = 11%, ρ = 0.2, γ = 10, ψ = 0.9, δ = 2%, θ = 0.5, χ = 0.18, λ =

0.18, µH = 15%, and µL = –15%. For the empirical values, five out of six are from Campbell and

Cochrane (1999); the empirical value for interest rate volatility is not reported in Campbell and

Cochrane (1999), so we report the value from Beeler and Campbell (2012).
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