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DESCRIBE CLASS OF DESCENDING CLOCK AUCTIONS
(INDEXED BY A FUNCTION 𝑝)

• PERIODS: 𝑡 = 1,2, …

• ACTIVE BIDDERS 𝐴) ⊆ 𝑁

• HISTORY: 𝐴) = (𝐴-, … , 𝐴)) where 𝐴) ⊆ 𝐴)/- ⊆ ⋯ ⊆ 𝐴- = 𝑁

• CLOCK PRICE RULE: 𝑝:𝐻 → ℝ56 such that 𝑝) 𝐴) ≤ 𝑝)/-(𝐴)/-) for all 𝑡 ≥ 2, 𝐴).

• EACH ACTIVE BIDDER accepts or rejects its price if that price has changed. 

• AUCTION ENDS at 𝑇 when 𝑝: 𝐴: = 𝑝:/-(𝐴:/-).

• WINNERS are the bidders in 𝐴:.
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OPTIMIZATION & SUBSTITUTES

• It is a familiar result that, when goods are substitutes for the buyer, there is a clock auction that 
implements the Vickrey outcome.

• Let 𝛼(𝑣) be an “optimizing” allocation rule, that is, one that for some 𝐹 and some non-decreasing 
𝛾? ?∈6 satisfies

𝛼 𝑣 ∈ argmax
F⊆6

𝐹 𝐴 −H𝛾?(𝑣?)
�

?∈F

Theorem
Suppose that for any finite set 𝑉 =×?∈6𝑉? ⊂ ℝ56, 𝛼 restricted to 𝑉 is implemented by a 
clock auction. Then on any such set 𝑉 with “no ties,” 𝛼 has the substitutes property. 
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MATROID

Let 𝑋 be a finite set and ℛ ⊆ 2O.

The elements of ℛ are called the independent sets.

(𝑋, ℛ) is a matroid if

1. Downward comprehensive: 𝑆Q ⊂ 𝑆 ∈ ℛ ⇒ 𝑆Q ∈ ℛ

2. Non-empty: ∅ ∈ ℛ

3. Augmentation: 𝑆, 𝑆Q ∈ ℛ	𝑎𝑛𝑑	 𝑆 > 𝑆Q ⇒ ∃𝑛 ∈ 𝑆 − 𝑆Q𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑆Q ∪ 𝑛 ∈ ℛ
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MATROIDS AND SUBSTITUTES

Informally, ignore ties and think of 𝛼 𝑤; 𝑣 as a demand function when the price vector 𝑣 varies:  

“Theorem”
Let 𝛼 𝑤, 𝑣 = argmax

a∈ℛ
∑ 𝑤c − 𝑣c�
c∈a . The elements of 𝑋 are 

(gross) substitutes for all 𝑣 ∈ ℝ5O if and only if ℛ is a matroid.
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MATROID INTUITION

1. A discrete descending clock auction “greedily” rejects the “worst” option myopically: 
it does not look carefully at how that rejection affects the remaining feasible sets of options. 

2. With substitutes, “greedy” rejection works for this reason: If it is optimal to reject the worst offer from 
some set of offers, then it remains optimal to reject that offer when other offers are improved.

3. The key to optimality of a greedy algorithm is that the constraints have the augmentation property, 
which characterizes matroids. 

Augmentation: 𝑆, 𝑆Q ∈ ℛ	𝑎𝑛𝑑	 𝑆 > 𝑆Q ⇒ ∃𝑛 ∈ 𝑆 − 𝑆Q𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑆Q ∪ 𝑛 ∈ ℛ
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KNAPSACK PROBLEM AND GREEDY ALGORITHM

max
a
H 𝑣c

�

c∈a
	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	H 𝑠c

�

c∈a
≤ 𝐾

• Approximate optimization by a greedy algorithm without a matroid. Order the items so that 𝑣c/𝑠c
decreases with 𝑛 and pack in that order if there is room. Otherwise, set the item aside and continue.

• If the first item set aside is item 𝑚, then loss compared to optimization is no more than 

𝐾 − ∑ 𝑠kl/-
km- 𝑣l.

• Potentially relevant for repacking TV stations (in each DMA) 
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COMPLEXITY OF CONSTRAINTS

A set of stations is feasible if therre
is a way to assign channels to 
stations without interference.

About 130,000 co-channel 
constraints shown in the graph.

Graph coloring is an NP-complete 
problem.
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COMPUTABILITY OF VICKREY PRICES

• Let 𝑆 ∈ ℱ mean that 𝑆 is a feasible set of broadcasters. 

• Then, the Vickrey price for a station 𝑖 that goes off air is

𝑝? = max
a∈ℱ

H 𝑣k
�

k∈p
− max

a∈ℱ
a∋?

H 𝑣k
�

k∈a

• With 2000 stations, a 1% computation error in one of the maximizations leads to a pricing error 
of ≈ 20×average station value.

• Conclusion: Vickrey prices are not computable in practice.
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BIDDER EXPERIENCE

Dear Mr. Broadcaster:

We have heard your concerns about the complexity of the spectrum reallocation process. You may even 
be unsure about whether to participate or how much to bid. To make things as easy as possible for you, 
we have adopted a Nobel-prize winning auction procedure called the “Vickrey auction.”

In this auction, all you need to do is to tell us what your broadcast rights are worth to you. We’ll figure 
out whether you are a winner and, if so, how much to pay to buy your rights. The rules will ensure that it 
is in your interest to report truthfully. That is the magic of the Vickrey auction!

The computations that we do will be very hard ones, and we cannot guarantee that they will be exactly 
correct. Also, federal law forbids us to share the information that you would need to check them.  

…. 
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IMPORTANT STRATEGIC PROPERTIES 
OF THE DESCENDING CLOCK AUCTION

Theorem
For any single-minded bidder, the descending clock auction is obviously 
strategy-proof.

Theorem
For any set of single-minded bidders, the descending clock auction is group 
strategy-proof. 
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ACCOMMODATING BUDGET CONSTRAINTS

• Vickrey auctions cannot accommodate budget constraints.

• In a descending clock auction, if the procurement budget is exceeded, modify 𝑝 and continue to 
reduce prices. 
• Cancel the procurement if the final result is unacceptable. 

• Special case: Moulin’s model of cost sharing for a group procurement. 

Theorem
This budget-constrained modification of the original descending clock auction is still a 
descending clock auction.
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COMMUNICATION PROTOCOLS

DEFINITION: A communications protocol Γ, 𝜎, 𝑡 consists of a 
1. finite extensive form mechanism Γ = (𝑁, 𝑆) coupled with …

2. a profile of strategies 𝜎c: 𝑉c → 𝑆c for each player 𝑛 ∈ 𝑁
3. a labelling of the terminal nodes 	𝑡 𝑠 ⊆ 𝑁 (identifying the “winners”)

Any communications protocol “implements” an allocation function 𝛼:×c∈6𝑉c → 26,
where 𝛼 𝑣 = 𝑡(𝜎 𝑣 ).
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WINNER PRIVACY AND INCENTIVES

DEFINITION: A protocol satisfies unconditional winner privacy (UWP) if 
𝑛 ∈ 𝛼 𝑣c, 𝑣/c ∩ 𝛼 𝑣cQ , 𝑣/c ⇒ 𝑡 𝑣c, 𝑣/c = 𝑡 𝑣cQ , 𝑣/c .

DEFINITION: A protocol is ex post incentive compatible (EPIC) if, for all value profiles 𝑣 the selected 
strategies form a full information Nash equilibrium.

Theorem
1. Every DA clock auction with truthful bidding satisfies UWP and EPIC
2. If 𝛼 can be implemented by any protocol that satisfies UWP and EPIC, then it can be 

implemented by a descending clock auction with truthful bidding. 19
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“COMPETITIVE EQUILIBRIUM”

DEFINITION: Given 𝑣, the pair (𝑆, 𝑝), with 𝑆 ⊆ 𝑁 (the “winners”) and 𝑝 ∈ ℝ56, is aN
𝛼-competitive equilibrium of the auction setting if 

SUPPLY CONDITION: 𝑝c > 𝑣c ⇒ 𝑛 ∈ 𝑆 and 𝑝c < 𝑣c ⇒ 𝑛 ∉ 𝑆

DEMAND CONDITION: 𝑆 = 𝛼(𝑝)

In contrast, for the Vickrey auction, prices can be uncompetitively high.

Theorem
1. Let 𝑆 = 𝛼(𝑣) be the set of winners from a descending clock auction and let 𝑝a be the 

clock auction prices. Then 𝑆, 𝑝a, 𝑣/a is a maximal price 𝛼-competitive equilibrium.
2. Moreover, the prices 𝑝a, 𝑣/a are full-information Nash equilibrium bids in the related 

first-price auction with the same winners selection rule.
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MYERSON-STYLE EXPECTED COST MINIMIZATION 

min
O,|

𝐸 ∑ 𝑃c(𝑣)�
c∈6 	subject	to

(IC) …for	all	𝑛, 𝑣c, 𝑣cQ

(PC) … 	for	all	𝑛, 𝑣c

(PF)  𝑠𝑢𝑝𝑝 𝑋 𝑣 ⊆ ℱ for all 𝑣

min
���� O ⋅ ∈ℱ

𝐸 H 𝐶c 𝑣c 	𝑋c(𝑣)
�

c∈6
𝑥c ⋅ 	nondecreasing	for	all	𝑛

where 𝐶c 𝑣c = 𝑣c −
��(��)
��(��)

is the virtual cost 

function for bidder 𝑛.

⇒

Theorem
If (𝑁, ℱ) is a matroid, then the “descending clock auction” that sets price 𝐶c/-( 1 − 𝑡 𝑣̅) for 
bidder 𝑛 at time 𝑡 is an expected cost minimizing auction. 

23



OUTLINE

1. DESCRIBE CLASS OF DESCENDING CLOCK AUCTIONS

2. DA OPTIMIZATION ó SUBSTITUTES ó MATROID CONSTRAINTS

3. GREEDY ALGORITHMS FOR KNAPSACK PROBLEMS

4. OBVIOUS STRATEGY-PROOFNESS FOR SINGLE-MINDED BIDDERS, GROUP STRATEGY-PROOFNESS

5. BUDGET CONSTRAINTS AND COST-SHARING (MOULIN)

6. WINNER PRIVACY CHARACTERIZATION 

7. COST: COMPETITIVE EQUILIBRIUM CHARACTERIZATION

8. COST MINIMIZATION: EXACT AND APPROXIMATE

9. COMPUTATIONS WITH THE ACTUAL AUCTION

24



EFFICIENCY AND COST

Descending auction sets prices by: 
𝑝c 𝑡 = 𝑞(𝑡)×(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛c�.�×𝐿𝑖𝑛𝑘𝑠c�.�)
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛c connects price to virtual cost

𝐿𝑖𝑛𝑘𝑠c connects to “knapsack size”  

Milgrom-Segal paper reports simulations results for 
a sub-problem, including only stations within 2 links 
of NYC, so that Vickrey outcomes are computable.

• SIMULATION RESULTS

• Vickrey mean computation time: 90 CPU days

• DA computation time: 1.5 CPU hours

• Vickrey mean efficiency ratio: 100%

• DA mean efficiency ratio: 95%

• Mean cost DA/Vickrey ratio: 76% 
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SUPPLY REDUCTION?

• SIMULATION RESULTS IN THE WORKS.

• THRESHOLD PRICES FOR ~3000 STATIONS ARE COMPUTABLE, BUT REQUIRE RUNNING THE 
AUCTION 3000 TIMES.

• INTENTION IS TO COMPARE THRESHOLD PRICES FOR LOSERS AND ACTUAL BIDS FOR WINNERS 
TO ESTIMATED STATION VALUES.
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THANK YOU!
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