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1 Introduction

An agent must apprehend her world before she can make decisions. Her perception
generates a representation of the environment—“[a] ‘small-scale model’ of external
reality” used to formulate and evaluate her options (Craik, 1943: 61).

Since Savage (1954), economics has recognized that distilling the “grand world” into
a “small world” precedes rational decision-making. It is frequently assumed that the
small world is a parsimonious but accurate model, exogenously given. Alternatively,
the small world can result from a deliberate choice made by an agent (e.g., by allocating
attention among different variables) or by a third party (e.g., by designing how much
information is provided). However, Savage warned that the deliberate choice of an
appropriate small world is a difficult task—“a matter of judgment and experience about
which it is impossible to enunciate complete and sharply defined general principles”
(1954: 16).

Cognitive science goes further than economics on this question: it is widely agreed
that agents distill the environment into partial representations and that agents’ mental
models depend on cognitive mechanisms that usually escape conscious control. For
example, Allport (1954: 20) stated that “the human mind must think with the aid of
categories. Once formed, categories are the basis for normal prejudgment. We cannot
possibly avoid this process.” In short, in the cognitive approach, the small world cannot
be attributed to a deliberate choice and need not be accurate.

In this paper, we develop and analyze a model of how agents’ partial representations
affect their strategic behavior and hence their performance. Motivated by the cognitive
approach, our main goal is to explore the role of “small-scale” mental models in strategic
interactions. Our model can also be interpreted in terms of information design and
thus nests a version of the economic approach as well.

We study two agents who engage in strategic interaction using a shared mental
model. The environment is an uncountable space G of games. Each agent distills G
into a finite number of categories called situations. The collection of situations is a
partition of G, which we call the agent’s frame.1 The frame-based cognition of G is

1 We borrow this term from Bacharach (2003: 63), who defines it as “the set of concepts an
agent uses in thinking about the world” and assumes that a frame induces a partition. Less formally,
Goffman (1974: 21) uses this term to connote “schemata of interpretation” that allow agents to
“locate, perceive, identify, and label” events in the world around them.
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coarse, because the frame reduces an uncountable set to a finite partition.
Under our economic approach, the frame is exogenously given or follows from known

choices: when a game from G is realized, an agent learns only which situation has
occurred and updates her belief accordingly. We call this case generative because
the agent’s frame is generated by an information structure known to the agent. The
generative case is consistent with the “metaphorical” interpretation of information
design (Bergemann and Morris, 2017: 4).

Under our cognitive approach, in contrast, agents have no access to the cognitive
process that produces their mental representation: they are unaware that they are
framing, and they cannot imagine that others perceive the world differently. More
precisely, they know only (i) the set of situations that could be realized and (ii) which
one has been; they are not aware of the underlying games in G. We call this case
interpretive because the frame summarizes how agents interpret their environment.2

We assume that both parties share the same frame. In the generative case, this
occurs when the information structure is symmetric; in the interpretive case, the shared
frame may be culturally determined, as we discuss below. We study how the frame
affects strategic behavior, under minimal requirements of rationality: conditional on
what their frame lets them perceive, agents have correct beliefs and play their dominant
strategy. Our analysis thus applies to both our generative and interpretive cases.

We provide three main results. First, in a one-shot interaction, the coarse represen-
tation induced by a frame can either decrease or increase the parties’ payoffs, compared
to having full information about the environment. We say that the shared frame may
induce either a fog of conflict or a fog of cooperation. In the generative case, this implies
that limiting access to information can make both agents better (or worse) off. In the
interpretive case, it suggests that performance differences may be due to differences in
cognitive frames across dyads.

Second, we consider a repeated interaction. In each period an independent draw
from G selects (a) the game the parties actually face and (b) conditional on their
shared frame, which situation they perceive. Assuming an infinite horizon and subgame
perfection, standard arguments allow the parties to increase their payoffs above the

2 Our terminology is similar to Hong and Page (2009: 2175), who suggest that “generated signals
[. . .] are passively received by the agents, [whereas to] create an interpreted signal, an agent filters
reality into a set of categories.”
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static level if they are sufficiently patient. We focus on the opposite comparative
static: fix the parties’ discount rate δ and analyze how their frame affects payoffs in a
repeated interaction. We find that, for fixed δ, there are frames under which the parties’
highest equilibrium payoffs are greater (or lower) than in a repeated interaction under
full information. In this respect, the configuration of the situations induced by a frame,
called the frame’s footprint, is as important as discounting in facilitating cooperation.

Third, moving beyond comparative statics, we investigate the dynamics of changes
in the shared frame within a dyad. We distinguish between incremental change, when
only the footprint of the situations perceived by the parties varies, but not the dominant
action in a given situation, versus radical change, where both the footprint and the
action vary. When the cost of reshaping the footprint is increasing in the size of the
change, the optimal change in frame may be incremental and lead to lower gross payoffs
than a radical (but expensive) change would. When changes in the frame are costless
but of uncertain effectiveness, we illustrate how behavioral inertia after a radical change
may have perverse effects on short-term performance.

Framing this paper

We take two inspirations from economics and one from cognitive science. First, at
the individual level, we follow Simon (1986), Kreps (1990a), and Rubinstein (1991)
by separating cognition from behavior. Simon (1986: S211) cautions that “we must
distinguish between the real world and the actor’s perception of it and reasoning about
it.” Kreps (1990a: 155) explicitly separates cognition and (rational) behavior: “the
individual builds a model of his choice problem, [. . .] which is typically a simplification
or a misspecification (or both) of the ‘true situation’. The individual finds his ‘optimal’
choice of action within the framework of this model and acts accordingly.” Finally,
Rubinstein (1991) calls for game-theoretic models to account for what agents perceive.

Second, at the group level, we follow Denzau and North (1994), Aoki (2001), and
Ostrom (2005) by emphasizing the shared mental models that can be held by individu-
als with common backgrounds or experiences. Denzau and North (1994: 5) argue that
the experiences of past generations are distilled into “a culturally provided set of cat-
egories and priors.” Aoki (2001: 235) discusses how shifts in equilibria are associated
with changes in the parties’ “common cognitive representations,” and Ostrom (2005:
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106) emphasizes that “cultural beliefs systems affects the mental models that individ-
uals utilize.” More recently, Hoff and Stiglitz call for economic analyses to consider
“socially constructed cognitive frames” (2010: 141) and “cultural mental models [such
as] concepts, categories, social identities, [and] narratives” (2016: 26).

Finally, from cognitive science, we follow a wide consensus that subjective represen-
tations mediate between perception and choice: “we have mental structures, especially
schematic representations of complex social phenomena, which shape the way we at-
tend to, interpret, remember, and respond emotionally to the information we encounter
and possess”’ (DiMaggio, 1997: 273). We focus on categories as a basic form of such
cognitive simplifications: “categorization is the mental operation by which the brain
classifies objects and events [and] this operation is the basis for the construction of our
knowledge of the world” (Cohen and Lefebvre, 2005: 2).

Related literature

Categorization is not new to the economics literature. For example, Mullainathan et
al. (2008) and Fryer and Jackson (2009) use categorization to model coarse cognition;
Wernerfelt (2004), Crémer et al. (2007), and Blume and Board (2014) use it to model
coarse language. Another strand of research studies categorization of the elements
of a given game; e.g., in Jehiel (2005) each player partitions the opponents’ moves
into similarity classes. We focus our review on contributions where the categorization
concerns different games, because this case is closest to ours.

Heller and Winter (2016) assume that each agent initially and simultaneously de-
cides a categorization over a finite set G of two-player games, committing to play the
same strategy for all the games in the same category. Categorizations may be part of
a subgame-perfect equilibrium and the strategic value of choosing a coarser partition
can be positive, akin to our fog of cooperation.

Categorizations might emerge from an evolutionary process. Mengel (2012a) studies
the evolutionary fitness of different cultures (viewed as different partitions of the game
space) under the assumption of persistent noise in the transmission process across
generations. Our model shows that categorizations can be advantageous even when
errors play no role.

Samuelson (2001) studies finite automata that bundle bargaining games to save cog-
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nitive resources for more demanding games. Mengel (2012b) considers two players with
arbitrary small reasoning costs who, under reinforcement learning, end up bundling
games into categories that are then played identically. Bednar and Page (2007) use
agent-based simulations to demonstrate that different rules of behavior emerge when
different pairs of games are bundled in the same category.

Moving from theory to experiments, psychology has produced a vast literature on
categorization in individual decision-making (Cohen and Lefebvre, 2005), but catego-
rization has attracted far less attention within games. Halevy et al. (2012) show that
individuals map the outcome interdependence from a variety of conflicts to only four
archetypal situations. Grimm and Mengel (2012) provide evidence of learning spillovers
across six games and match it to a model of coarse partitions of the space of games
where agents best reply to the “average game” in each category; see Bednar et al.
(2012) and Huck et al. (2011) for related experimental results. Transfer effects across
games played in sequence have been attributed to perceiving their similarity; see Knez
and Camerer (2000).

2 The model

We study an environment involving symmetric interactions where rational agents will
either cooperate (as in common-interest games) or compete (as in zero-sum games).
When these clear-cut interactions are conflated, interesting tensions can emerge.

For example, the prisoners’ dilemma (PD) can be associated to a lottery between
a common-interest (CI) game and a zero-sum (ZS) game; see Kalai and Kalai (2013).
Consider the interaction between two parties facing a 50–50 lottery over the CI and
ZS games below.

H L

H 10, 10 6, 6
L 6, 6 2, 2

CI

H L

H 0, 0 −6, 6
L 6,−6 0, 0

ZS

This interaction is best-reply equivalent (Morris and Ui, 2004) to the PD game
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H L

H 5, 5 0, 6
L 6, 0 1, 1

PD

based on the expected payoffs from the lottery. The cooperation motive in the CI
game encourages agents to play (H,H), while the competitive motive in the ZS game
suggests they play (L,L). Given the payoffs in the CI and ZS games above, when the
lottery puts probability p = 1/2 on the CI game, the cooperative motive is weaker than
the competitive one. The cooperative motive would instead prevail for p > 3/5.

We generalize this example by considering CI games with payoff parameter a > 0
and ZS games with payoff parameter z > 0. In the game G(a, z; p) shown in Figure ??,
the two parties face a CI game with probability p and a ZS game with probability 1−p.

H L
H a, a 0, 0
L 0, 0 −a,−a

CI

H L
H 0, 0 −z, z
L z,−z 0, 0

ZS

Figure 1: Nature draws CI or ZS, with probabilities p and 1− p.

Assuming that the parties move before uncertainty is resolved, the game G(a, z; p)
with imperfect information is best-reply equivalent to the game below.

H L

H pa, pa −(1− p)z, (1− p)z
L (1− p)z,−(1− p)z −pa,−pa

Defining
π = a

a+ z
,

the dominant strategy for each party is to play H when π > 1−p and L when π < 1−p.
From a strategic viewpoint, it is therefore possible to reduce the number of dimensions
from three to two: there is a projection from the (a, z; p)-space to the (π, p)-space that
preserves best replies, while losing information about payoffs. Under this projection,
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(π, p) is the (representative) element for a class of games that are best reply-equivalent.
Therefore, with some abuse of language, we refer to (π, p) as a game.

We assume that p is uniformly distributed on [0, 1]; moreover, a and z have in-
dependent exponential distributions with parameter λ = 1, so π = a/(a + z) has a
uniform distribution on [0, 1]. The bidimensional space of games G = [0, 1]2 is thus
uniformly distributed and is depicted in Figure ??. Any game with π > 1− p is a CI

π

p

0
ZS

CI
H

L

Figure 2: The space G of games.

game where H is the dominant strategy, and any game with π < 1 − p is a PD game
where L is the dominant strategy.3

As a benchmark, in this paragraph we consider the case where each party perceives
any game drawn from the space G as distinct and plays the appropriate dominant
strategy in whatever game is drawn. The expected payoff is 1/3; see Proposition ?? in
the Appendix, where we have collected theorems and proofs.

We henceforth assume that each dimension of the space G—the payoff ratio π in
[0, 1] and the probability p in [0, 1]—is too rich to allow either party to perceive all its
elements as distinct. Instead, each agent apprehends each dimension by means of a
categorization that bundles uncountable points into a finite number of intervals. For
simplicity, we work with binary categorizations, respectively defined by the thresholds
π̂ and p̂. Thus, an agent categorizes π as High (h) if π > π̂ and Low (`) if π < π̂;
similarly, p is High (h) if p > p̂ and Low (`) if p < p̂.4

An agent with binary categorizations for π and p perceives four cells, as depicted
in Figure ??. We call each of the four cells a situation. A cell bundles together many
games, all of which are perceived by a party as instances of the same situation. That

3 One may reformulate the space of games as a single game with payoff uncertainty.
4 Which categorization applies at π = π̂ or at p = p̂ is immaterial, because this event has zero

probability.
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π

p

0
ZS

CIS4 S1

S3 S2

π̂

p̂

Figure 3: A categorization of G into four situations.

is, when an agent faces a game from G and wonders “what kind of situation am I in?”,
only four answers come to her mind. For example, the northeastern cell S1 corresponds
to the situation where both π and p are perceived as h. If she views the dimension π as
the (relative) salience of the cooperation payoff and the dimension p as the (likelihood
of the) opportunity for cooperation, the situation S1 involves high salience and high
opportunity. The other three situations have similar interpretations.

The frame of an agent is the collection of the situations that she perceives, identified
by the threshold pair (π̂, p̂). In the generative case, the frame is a direct consequence
of the information structure, which is known by the agents. In the interpretive case,
she simply perceives a game (π, p) as a situation, described by each of the dimensions
π and p taking value h or `: only the model-builder, not the agent, knows that the
agent (a) categorizes games and (b) does so via the threshold pair (π̂, p̂).

Throughout this paper, we assume that interacting parties share the same frame
(π̂, p̂): in each of the four situations associated with the frame, they perceive a single
2 × 2 symmetric game with payoffs equal to the expected payoffs from all the games
ascribed to that situation.5 In sum, agents’ strategic understanding of the space of
games G is coarsened into the four situations S1, S2, S3, S4 in Figure ??. Using Lem-
mata ?? and ??, the expected payoffs to the first party (rescaled by a factor of 2) are
shown in Figure ?? for each of the four situations perceived under the frame (π̂, p̂).

After playing a perceived situation, the parties receive the payoffs associated with
the actual game drawn: either CI with probability p or ZS with probability 1− p from

5 Conditional on the frame, the agents have correct beliefs about the distribution of payoffs in
each situation. In the generative case, this occurs because they can compute this distribution. In the
interpretive case, we assume that the cognitive process selecting their frame also provides them with
correct beliefs about payoffs.
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H L

H π̂2(1− p̂2) −π̂(2− π̂)(1− p̂)2

L π̂(2− π̂)(1− p̂)2 −π̂2(1− p̂2)

S4

H L

H (1− π̂2)(1− p̂2) −(1− π̂)2(1− p̂)2

L (1− π̂)2(1− p̂)2 −(1− π̂2)(1− p̂2)

S1

H L

H π̂2p̂2 −π̂(2− π̂)p̂(2− p̂)
L π̂(2− π̂)p̂(2− p̂) −π̂2p̂2

S3

H L

H (1− π̂2)p̂2 −(1− π̂)2p̂(2− p̂)
L (1− π̂)2p̂(2− p̂) −(1− π̂2)p̂2

S2

Figure 4: Perceived payoffs in the four situations under the frame (π̂, p̂).

Figure ??. In the interpretive case, they ascribe the difference between the expected
payoff and the realized payoff to noise.

We intend the interpretive case of this model as one way to capture differences—
sometimes attributed to “culture”— in how agents perceive not only what situation
they are in but also what the likely consequences of alternative actions are. By assuming
that two agents share a frame, we imagine them coming from the same culture.

3 One-shot interaction

This section considers the one-shot interaction between two parties under a shared
frame (π̂, p̂), with π̂ + p̂ 6= 1. We label the northeast and southwest situations S1 and
S3 congruous, because their descriptors π and p are both high or both low: the salience
of cooperation π and the opportunity for cooperation p are aligned. In contrast, we
say that the two situations S2 and S4 are incongruous because their descriptors are
misaligned: one is high and the other is low.

Rational behavior in the two congruous situations is unequivocal. Figure ?? shows
that the situation S1 is always perceived as a CI game under any frame (π̂, p̂), so H is
the dominant strategy. Similarly, the situation S3 is always perceived as a PD game,
so L is the dominant strategy. In short, regardless of the frame, rational behavior for
a party facing a congruous situation is to play H in S1 and L in S3.

Assuming that the frame satisfies π̂ + p̂ 6= 1, we find that there is also a unique
dominant strategy for the incongruous situations S2 and S4. This is characterized in the
next proposition, which is an immediate corollary of Proposition ?? in the Appendix.
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Proposition 1. The unique dominant strategy for both S2 and S4 is H if π̂ + p̂ > 1,
and it is L if π̂ + p̂ < 1.

Unlike the congruous situations, the dominant strategy for the incongruous situations
depends on the frame.

Combining the dominant strategies over the four situations, we find two rational
rules of behavior, shown in Figure ??. The first rule, depicted on the left, is optimal if
π̂ + p̂ > 1: play H in any situation except S3, and then play L; we call it the OR rule,
because it prescribes playing H when either π or p is perceived as high. The second
rule, shown on the right, is optimal if π̂+ p̂ < 1: play H only in S1 and otherwise play
L; we call it the AND rule, because it prescribes playing H only when both π and p
are perceived as high.

π

p

0
ZS

CIH H

L H

π̂

p̂

π

p

0
ZS

CIL H

L L

Figure 5: The OR and AND rules of behavior.

Since the frame is shared and payoffs are symmetric, the parties will play the same
strategy in a given situation. If π̂+ p̂ > 1, they will play (H,H) in all situations except
S3 and (L,L) in S3 (OR rule); if π̂+ p̂ < 1, they will play (H,H) only in S1 and (L,L)
otherwise (AND rule). Therefore, different frames can induce different strategy profiles
when parties encounter incongruous situations.

Having computed optimal strategies, we next analyze how the parties’ expected
payoffs depend on the thresholds (π̂, p̂) of their shared frame. First, payoffs change
continuously in (π̂, p̂) unless the thresholds induce a switch in the parties’ rule of
behavior; second, if the rule of behavior switches, then there is a discontinuous change
in payoffs.

Proposition ?? gives the expected payoff to each party as a function of π̂ and p̂. As
an illustrative example, suppose π̂ = p̂ = x so that a change in x makes the thresholds
shift in lockstep. The parties play the OR rule for x > 1/2 and the AND rule for
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x < 1/2. Figure ?? shows the payoff to each party as a function of the common
value x for the two thresholds. Within either the OR or the AND region, payoffs are

x

U

0 1/2 1

1/3 benchmark
max payoff

O
R
−O
R

+
A
N
D
−

A
N
D

+

Figure 6: Payoffs as a function of x when π̂ = p̂ = x.

continuously decreasing in x. On the other hand, moving x leftward across 1/2 implies
an abrupt drop in payoffs, as the parties switch to the less cooperative AND rule of
behavior. Nonetheless, depending on x, the AND rule may outperform the OR rule.

Framing games as situations can either help or hurt the parties’ payoffs, relative
to the benchmark case where each game is perceived as distinct. This is apparent in
Figure ??, where the benchmark payoff of 1/3 cuts across the payoff curve. Intuitively,
one may think of the frame as creating a fog that confounds different games into a
single situation, forcing a party to deal with all such games in one way. Depending
on the frame, the result is either a fog of conflict (marked −), making agents play less
cooperatively than they would under full information, or a fog of cooperation (marked
+), making them play more cooperatively. Note that either fog can occur under either
rule of behavior, so frames evidently do more than determine rules of behavior.

We can identify which frames generate which kind of fog. Proposition ?? states
formally a simple characterization, but the main message is conveyed through a picture.
Each frame is associated with a threshold pair (π̂, p̂) in [0, 1]2 so the unit square in
Figure ?? stands for the space of the frames. We emphasize that Figure ?? does not
portray the space G of the games (π, p), but rather the set of threshold pairs (π̂, p̂) that
define a frame.6

The OR rule prevails when the parties’ shared frame is a threshold pair (π̂, p̂) above
6 One of us enjoys the mnemonic “put your hat on” when keeping track of p versus p̂.
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the diagonal, while the AND rule prevails when it is a pair below. The curve above

π̂

p̂

0

OR−

OR+
AND−

AND+

Figure 7: Fog of cooperation (+) and fog of conflict (−).

the diagonal separates the OR region into the shared frames (π̂, p̂) generating a fog of
conflict (marked −) versus those generating a fog of cooperation (marked +). Similarly,
the curve below the diagonal separates the AND region into fog of conflict (marked
−) versus fog of cooperation (marked +). Consistent with the special case depicted
in Figure ??, moving from northeast to southwest within a rule in Figure ?? improves
payoffs continuously; on the other hand, crossing the boundary coming from the OR
into the AND rule causes a discontinuous drop in payoffs. Switches in the rule of
behavior motivate part of our discussion about changing frames in Section ??.

As one way to summarize the interpretive case of this static model, we find it
useful to imagine two parties who share a low-performing frame arranging a site visit
to observe two other parties who share a high-performing frame. All parties perceive
situations in terms of their own categorizations; the low-performing parties observe the
actions chosen by the high-performing parties.

As a dramatic example, consider the discontinuity at x = 1/2 in Figure ??, and
suppose that the low- and high-performing frames have x = .45 and x = .55, respec-
tively. For all the games (π, p) from the set (.45, .55) × (.45, .55), the low-performing
parties perceive the situation S1 and hence a CI game, expecting the high-performing
parties to choose (H,H), while the high-performing parties perceive the situation S3

and hence a PD game, leading them to choose (L,L). Thus, on this set of games, the
high-performing team does worse.

The more important difference cuts the other way: in the incongruous situations
the high-performing parties perceive a CI game and so choose (H,H), whereas the
low-performing parties perceive a PD (even for games when both teams agree that an
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incongruous cell has been realized) and so choose (L,L). In sum, the low-performing
parties will be mystified by the site visit: when they see CI, they observe their hosts
playing (L,L) with small probability; and when they see PD, they observe their hosts
playing (H,H) with larger probability.

We see the interpretive case of this stylized model as a small step towards un-
derstanding widespread evidence of differences in cooperation during evolution (Boyd
and Richerson, 2009) and among cultures (Henrich et al., 2005), communities (Os-
trom, 1990), firms (Leibenstein, 1982), and teams (Cole, 1991). Moving from the field
to the laboratory, experiments show that cultural frames differ in how they perceive
situations as “cooperative” or “competitive” (Keller and Lowenstein, 2011) and how
different frames affect cooperation levels (Pruitt, 1970; Liberman et al., 2004). Many
explanations of such differences in cooperation emphasize differences in preferences; we
provide a complementary explanation based on differences in shared cognition which,
in turn, might arise from cultural differences.

4 Repeated interaction

Having constructed a model where shared frames shape behavior in static situations,
we next consider the case of infinitely repeated interactions. Under any frame, the
congruous situation S3 is perceived as a PD. Furthermore, if π̂ + p̂ < 1, then the
incongruous situations S2 and S4 are also perceived as PDs. In a repeated interaction,
familiar logic might allow the parties to cooperate in some or all of these PDs, even if
they would defect in a one-shot interaction.

We analyze such opportunities for long-term cooperation using a multi-period model,
where in each period the stage game is randomly drawn from the space G of games
and perceived as one of four situations under the shared frame (π̂, p̂). As in the static
model, given their frame, the parties have correct beliefs: before a game is drawn in a
given period, the parties expect to face situation S1 with probability (1 − π̂)(1 − p̂),
situation S2 with probability (1− π̂)p̂, situation S3 with probability π̂p̂, and situation
S4 with probability π̂(1 − p̂). We assume that the parties have the same discount
factor δ < 1, and we rescale their discounted payoffs by a factor (1− δ) to make them
comparable to the one-shot payoffs.

We analyze subgame-perfect equilibria in trigger strategies where defection (i.e.,
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playing L) in a PD situation is met by defection in all future PD situations, discarding
the possibility that punishment calls for a party to play (the dominated) action L in a
CI situation. We are especially interested in the case of full cooperation, when agents
play (H,H) everywhere.

As above, we briefly consider the benchmark case where the parties can distinguish
all the games in G. Then the parties can support full cooperation if δ ≥ 24/25; see
Proposition ??.

Returning to the case of a shared frame, recall that the one-shot model calls for
the OR rule of behavior if π̂ + p̂ > 1, but the AND rule if π̂ + p̂ < 1. As above, we
reduce the number of parameters by assuming π̂ = p̂ = x; then the two rules obtain
for x > 1/2 and x < 1/2.

Consider x > 1/2: the only situation perceived as a PD is S3. The frame’s footprint,
here given by x, has three effects. First, when x increases, there is a probability x2

that the PD situation occurs in the future. Second, when the PD situation does occur,
the temptation of a short-term payoff improvement from defecting (L) rather than co-
operating (H) initially goes up (until x = 2/3) and then shrinks to zero. Finally, in the
trigger-strategy equilibrium, the threat of a long-term payoff loss from reversion to the
static equilibrium after defecting is decreasing in x. These effects of shared cognition
on the perceived frequency of PD situations and on the perceived relative strength of
temptation versus punishment all influence the viability of long-term cooperation.

In spite of these three effects of the frame’s footprint, the familiar intuition that a
sufficiently high δ supports cooperation (i.e, both parties playing H) in the S3 situation
survives: if

δ ≥ 2− 2x
2− 2x+ x4

then there is a trigger-strategy equilibrium where the parties play H in the S3 situation;
see Proposition ??. This critical region for x > 1/2 is illustrated in Figure ??: given δ
and x, either the parties can sustain cooperation in ALL situations, or they cooperate
only in those situations perceived to be CI (which, given x > 1/2, is the OR rule from
the static game). In particular, for δ ≥ 16/17, sustaining ALL is possible for any value
x > 1/2.

Consider now x < 1/2. Proposition ?? demonstrates a similar result, shown in
Figure ?? for x < 1/2: given δ and x, either the parties can sustain cooperation in
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Figure 8: Optimal cooperation in the repeated interaction.

ALL situations, or they cooperate only in the situation perceived to be CI (which,
given x < 1/2, is the AND rule from the static game).

Our analysis reiterates the familiar theme that repetition and patience may allow
the parties to achieve higher payoffs than in the static model. The novel point here is
that performance differences may arise from differences in shared frames, even when all
parties share the same discount factor and are playing the best repeated–interaction
equilibrium they can, given how they perceive the space of games.

This novel point is illustrated most vividly if we assume a discount factor 16/23 <
δ < 16/17. Then Figure ?? shows that, as x progresses from 0 to 1, the best outcome
that parties can sustain in a repeated interaction changes from AND to ALL to OR
to ALL again. For instance, taking δ = .8, Figure ?? shows that either expected
payoffs are at their maximum (normalized) value of 1/2 (such as for x1 < x < 1/2
or for x2 < x < 1) or they are at their static level (such as for 0 < x < x1 or for
1/2 < x < x2), where the critical values x1 ≈ 0.255 and x2 ≈ 0.648 depend on the
chosen value δ = .8.

x

U

0 x1 1/2 x2 1

1/2 max payoff
ALLORALLAND

Figure 9: Payoffs in the repeated interaction for δ = .8.

In the generative case, this analysis of repeated interaction shows that, for a given
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δ, there may be quite different information structures that are equally conducive to
full cooperation: x1 < x < 1/2 or x2 < x < 1. Furthermore, the full information
benchmark says that full cooperation is feasible only if δ ≥ 24/25. But, taking for
instance δ = .8 in Figure ??, it is possible to have full cooperation using coarser
frames, regardless of which rational rule of behavior (AND/ OR) these frames support
in one-shot interactions. This latter result shows that adding fog in agents’ information
structures can help them sustain full cooperation.7

For the interpretive case, we again imagine low-performing parties conducting a
site visit to observe high-performing parties. Importantly, all parties share a common
discount factor, such as δ = .8 in Figure ??. Parties able to achieve only the static
equilibrium (whether under the AND rule for 0 < x < x1 or under the OR rule for
1/2 < x < x2) understand that the interaction is repeated but calculate that δ is not
high enough to allow the ALL equilibrium, whereas parties with different shared frames
(x1 < x < 1/2 or x2 < x < 1) share the same δ but calculate that a trigger-strategy
equilibrium will support cooperation in ALL situations.

The low-performing parties will again be mystified by the site visit, observing coop-
eration on (H,H) in many situations that all four parties perceive as PDs, and perhaps
hearing explanations from the high-performing parties such as “Sure, we see a PD, but
the shadow of the future makes cooperation credible today.”

We saw the interpretive case of the static model as a small step towards under-
standing a broad set of findings concerning evolution, cultures, communities, firms,
teams, and more. In contrast, we see the interpretive case of this repeated model as a
larger step towards a smaller set of findings.

A growing literature documents persistent performance differences among seemingly
similar plants and firms; e.g., Syverson (2011). Bloom et al. (2016) find that measures
of management practices correlate with these performance differences, and Gibbons and
Henderson (2012) argue that many competitively significant management practices rely
on relational contracts that seem difficult to replicate.

Moving to theory, Kreps (1990b) suggested long ago that different equilibria in a
repeated game might correspond to different corporate cultures (shared understandings

7 This point may be reinforced. As noted above, our benchmark with agents distinguishing games
up to (π, p) allows full cooperation for δ ≥ 24/25. If we let them have a finer partition and distinguish
games up to (a, z, p), then Proposition ?? shows that full cooperation is impossible for any δ.
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of “how we do things here”) associated with different performance levels across plants
and firms. But modeling performance differences as resulting from different equilibria
in a given game implies that low performers know that better equilibria exist; and yet
the model gives these parties no way to try to reach a better equilibrium and hence
offers no rationale for why moving to a better equilibrium might be difficult. Our
model formalizes one such difficulty: low performers are playing the best equilibrium
they can perceive; reaching a better equilibrium would require changing the parties’
frame.

As one example along these lines, consider the innovations introduced by Toyota
in supply-chain management, which redefine how some key interactions are perceived.
The difficulties of reshaping these shared representations contribute to the difficulties in
replicating the results of the Toyota system even after having imported its contractual
framework and management tools (Helper and Henderson, 2014). In short, Toyota’s
system is geared more towards explaining when a supplier is expected to cooperate
than towards excluding him from future interactions (Womack et al., 1990). Ostrom
(1990) makes similar observations about education versus exclusion in communities
that successfully manage common-pool resources.

5 Shifts in the frame

The parties’ shared frame could change in many ways; for instance, it could be refined
by increasing the number of cells. In this section we consider shifts in the thresholds,
which change the size of the cells but not their number. The change in the frame may
be driven by an outside shock or a purposeful third agent. For simplicity, we assume
that the new frame is simultaneously shared by both parties.

Consider the simple example where the current threshold pair is (π̂, p̂), with p̂ = 1/2
and the initial threshold π̂ > 1/2 changing to a new threshold π̂′ < π̂. We distinguish
two cases: (a) π̂′ > 1/2, versus (b) π̂′ < 1/2.

The case π̂′ > 1/2 is shown in Figure ??. When the parties’ frame changes, they
recategorize some games as different situations. Because π̂′ < π̂, the probabilities that
the agents perceive S1 and S4 increase, and the probabilities that they perceive S2 and
S3 decrease. On the other hand, because π̂′+ p̂ > 1, their rational rule of behavior does
not change: it remains the OR rule, and S2 and S4 remain CI games. In short, the
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Figure 10: Lowering the threshold from π̂ to π̂′ > 1/2.

parties’ rational behavior changes only for the games shaded in Figure ??: the parties
recategorize these games from S3 (PD) to S4 (CI) and thus switch behavior from L to
H.

The case π̂′ < 1/2 is shown in Figure ??. The parties used to play the OR rule

π

p

0

1
S2 S1

S3 S4

π̂π̂′

1/2

Figure 11: Lowering the threshold from π̂ > 1/2 to π̂′ < 1/2.

but, because π̂′ + p̂ < 1, their rational behavior now switches to the AND rule and
they change strategies (from H to L) in the incongruous situations S2 and S4 shaded in
Figure ??. Note that behavior changes only in games ascribed to the same incongruous
situations both before and after the change in frame; this change in behavior occurs
because the change in expected payoffs for the incongruous situations causes the parties
to now perceive these situations as PD instead of CI.

Even in this simple example we see that a change of the frame may affect not only
how the agents perceive situations (the frame’s footprint) but also how they rationally
behave in a given situation (their rule of behavior). Within the context of this example,
we call a change in frame incremental if the frame’s footprint changes but the rational
rule of behavior (OR or AND) does not, and we call it radical if the rational rule of
behavior also changes.
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We henceforth assume that frame change is driven by a purposeful third person
(called leader) who seeks to influence the parties (called followers). As an initial
model, we assume that the leader knows everything the modeler knows; in particular,
the leader is aware that the followers perceive the space of games as situations generated
by a frame (π̂, p̂).

The novel—and, in our interpretive case, realistic—aspect of our analysis is that
the leader lacks full control of the parties’ new frame: the final outcome of an attempt
to change thresholds is uncertain. This uncertainty may concern: (a) appraisal (e.g.,
whether and how much thresholds change), (b) evaluation (e.g., how long it takes before
followers revise their beliefs about payoffs in a reconfigured situation), or (c) behavior
(e.g., how long followers stick with the old rule of behavior after revising their beliefs
about payoffs).

Concerning (a) appraisal, the leader takes unmodelled actions that may shift the
followers’ threshold π̂, thus reframing their understanding of the four situations. In our
interpretive case, we imagine the leader taking actions such as using certain language,
or extolling certain behaviors, or telling certain stories—all as efforts to change the
followers’ frame. The direction of this change may be clear, but its magnitude will
often be uncertain. Thus we assume that the leader controls the direction of change
(aiming for a higher or a smaller threshold π̂′), but not the exact shift. As above, the
new frame is simultaneously shared by both followers.

Concerning (b) evaluation, the followers may need time to revise their beliefs about
the payoffs associated with the situations defined by the new frame. We consider only
two extreme cases: either the followers revise payoffs immediately, or with some delay.

Concerning (c) behavior, we make the standard assumption that followers immedi-
ately adjust behavior to a perceived change in payoffs. All this yields two scenarios:
(1) the followers react immediately to a change in frame, revising payoffs at once and
changing their rule of behavior (if needed); or (2) the followers exhibit inertia (because
of a delay in revising beliefs about payoffs) and hence stick to their previous rule of
behavior for a while.

Returning to our simple example, the leader may lower or raise the π̂ threshold
from its initial value. We now allow π̂ to be greater or less than 1/2. We code the
leader’s two options as L (Lower the threshold by moving it to the Left) and R (Raise
the threshold by moving it to the Right). The leader is benevolent and maximizes the
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sum of the payoffs obtained by the followers in their static interaction under a new
frame. Proposition ?? gives the expected payoff U to each party. Doubling U , we
obtain the leader’s payoff UL represented in Figure ??.

π̂

UL

0 1/2 1

1/2

OR
AND

Figure 12: Leader’s payoff as a function of π̂ for p̂ = 1/2.

Consider scenario (1), where the followers’ appraisal and evaluation are updated
immediately after the frame changes. Suppose that the initial threshold is π̂ > 1/2, so
the followers use the OR rule. What are the leader’s options? Choosing R is dominated
by staying put. Choosing L, on the other hand, is risky: moving to a new threshold
π̂′ < π̂ increases payoffs only if π̂′ does not cross over 1/2. In short, under the OR rule,
the leader might want to pursue a strategy of incremental change (i.e., a mild reduction
of the threshold), unless the risk of a radical change—with followers switching to the
AND rule—is too high.

Suppose instead that the initial threshold is π̂ < 1/2, so the followers use the AND
rule. Choosing L is a safe option that increases payoffs through incremental change.
The alternative is to choose R and attempt a radical change: if the leader can get the
followers’ threshold to cross the 1/2 barrier, this yields a substantial improvement in
payoffs, but an attempt for a radical change carries the risk that the new threshold
moves right without crossing the barrier, making payoffs worse than before.

Now consider scenario (2), where only the followers’ appraisal is updated immedi-
ately, but they then need time to update their evaluation of payoffs and change their
rule of behavior. This adds new trade-offs to the choice between incremental versus
radical change.

Under incremental change, the original rule of behavior is still optimal, so there
are no delayed effects on behavior (even if evaluation is slow, as postulated in this
scenario). But suppose that π̂ < 1/2 and the leader attempts a radical change to
π̂′ > 1/2. The followers are initially using the AND rule, so after a radical change
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crossing 1/2 from the left the payoff stays on the lower dashed curve until the followers
adjust behavior, and afterwards jumps up to the higher solid curve—both at the new
threshold π̂′ > 1/2. In short, things get worse before they get better: inertia in the
adaptation of behavior to a radical change in the frame may cause a transient decline
in performance before producing its positive effects—an “implementation dip” (Fullan,
2001).

Conversely, suppose π̂ > 1/2 and the leader attempts an incremental change to the
left that goes too far, becoming a radical change to π̂′ < 1/2. Such radical change
would enjoy an initial success before its ultimate failure: transient payoffs would be on
the upper dashed curve, but long-run payoffs would be on the lower solid curve.8

The view that leaders take action to change followers’ mental models is central
to the leadership literature (Argyris, 1982; Schein, 1985; Senge, 1990). Our model is
also consistent with theory and evidence from the organizations literature that radical
change is a risky activity: its development and timing are often opaque (Hannan et al.,
2003), leading to a high rate of failure. And there is broad consensus that radical change
is easier in greenfield sites, where it can be seeded from scratch, than in brownfield
sites, where it is inhibited by pre-existing frames (Brynjolfsson et al., 1997).

Because the leader lacks full control over the followers’ new frame, the leader’s risk
attitude could influence his propensity to attempt incremental versus radical change.
In addition, the leader’s overconfidence (Weinstein, 1980; Camerer and Lovallo, 1999)
about the transience of a performance decline or about her ability to minimize this
decline may bias her towards attempting radical change. On the other hand, if pres-
sures for current performance push an organization towards abandoning radical change
prematurely (Repenning and Sterman, 2002), the leader’s overconfidence might bene-
ficially promote persistence in the change effort.

6 Conclusions

This paper analyzes how coarse cognition can influence strategic interactions. We
constructed a simple framework consistent with both economic and cognitive perspec-

8 In Figure ?? p̂ is fixed at 1/2 and the OR rule of behavior dominates the AND rule of behavior,
but Figure ?? in Section ?? shows that this is general: therefore, an initial success before ultimate
failure may also occur when radical change is actively sought, not just when it arises mistakenly.
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tives, uniting them through the assumption that the parties share a cognitive frame.
The shared frame can be attributed either to the information the parties receive (the
generative approach favored by economic theory) or to the parties’ perception of the
environment (the interpretive viewpoint preferred by the cognitive sciences).

We provide three main results. The first is that changes in the cognitive frame
may induce a fog of cooperation or a fog of conflict. The second is that, in a repeated
interaction, the frame’s footprint is as important as agents’ patience in achieving full
cooperation. And the third is that incremental or radical changes in frame may have
starkly different (short- and long-run) consequences for performance.

In future work, there may be interesting applications of our generative case to
information design; we intend to explore our interpretive case in various ways. For
example, when two parties hold frames that differ only slightly, they may proceed
in harmony for some time before an unexpected outcome occurs: we are interested
in how the parties’ efforts to diagnose such a misalignment in frames may lead to a
repair or a rupture of their relationship. We also plan to study some of the leader’s
actions for changing a frame; we hope such work will contribute to new perspectives
on language and stories in organizations. More generally, we would like to deepen
our understanding of how shared and persistent cognitive representations—typical of
a culture—affect economic interactions.
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A Appendix
Throughout the appendix, we use majuscules to denote random variables and minuscules
to denote their realizations. There are three independent r.v.’s.: A and Z have exponential
distributions with λ = 1, and P has a uniform distribution on (0, 1). It can be shown that
the ratio Π = A

A+Z has a uniform distribution on (0, 1). Situations (Π, P ) are uniformly
distributed on (0, 1)2.

Proposition A.1. Under the benchmark, the expected payoff from playing a randomly drawn
situation is 1/3.

Proof. Suppose that the parties use their dominant strategies. When Π + P > 1, the (ex-
pected) payoff to an agent is AP ; when Π + P < 1, it is −AP . Write this payoff function
as

V = −AP + 2AP1{Π≥1−P} = −AP + 2AP1{Z≤ AP
1−P }

Since Z ∼ Exp(1), E
(
1{Z≤ AP

1−P }
∣∣A,P) = 1− e−

AP
1−P . Compute the conditional expectation

E(V |A,P ) = −AP + 2AP1{Z≤ AP
1−P } = −AP + 2AP

[
1− e−

AP
1−P

]
= AP − 2APe−

AP
1−P

Given that E(Ae−kA) = 1/(1+k)2, we have E
(
Ae−

AP
1−P

∣∣ P) = (1−P )2. Using independence,
the expectation of E(V |A,P ) with respect to A ∼ Exp(1) is

E(V |P ) = P − 2P (1− P )2 = −P + 4P 2 − 2P 3

and, finally, computing its expectation with respect to P ∼ U [0, 1] we obtain

E(V ) = −1
2 + 4

3 −
1
2 = 1

3

�

As discussed in the main text, a game G(a, z; p) is best-reply equivalent to the game

H L

H pa, pa −(1− p)z, (1− p)z
L (1− p)z,−(1− p)z −pa,−pa
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Figure 13: A cell in (the cartesian product of) a threshold categorization.

A frame bundles several games as a single situation. We compute the expected payoffs for each
strategy profile over all the games categorised in the same situation. The next two lemmas
provide the building blocks for the computations. For generality, let K = (α, β) × (γ, δ) be
the cell including the games G(A,Z;P ) with Π = A/(A+ Z) ∈ (α, β) and P ∈ (γ, δ), where
0 ≤ α < β ≤ 1 and 0 ≤ γ < δ ≤ 1; see Figure ??.

Lemma A.2. The expected value of AP over all games G(A,Z;P ) in K is

EK
(
AP

)
= (β2 − α2)(δ2 − γ2)

2

Proof. Let
V = AP1{K} = AP1{α≤Π≤β}1{γ≤P≤δ}

Clearly, α ≤ Π ≤ β if and only if α
1−αZ ≤ A ≤

β
1−βZ; thus, we have

V = AP1{ α
1−αZ≤A≤

β
1−βZ

}1{γ≤P≤δ}
Using independence,

E(V ) = E

(
A1{ α

1−αZ≤A≤
β

1−βZ
}) · E (P1{γ≤P≤δ})
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Recall that
∫
ae−a da = −(1 + a)e−a. For k = α

1−α <
β

1−β = m, we have

E
(
A1{kZ≤A≤mZ}

)
=
∫ +∞

0
e−z

(∫ mz

kz
ae−a da

)
dz

=
∫ +∞

0
e−z

[
(1 + kz)e−kz − (1 +mz)e−mz

]
dz

=
∫ +∞

0

[
(1 + kz)e−(1+k)z − (1 +mz)e−(1+m)z

]
dz

= 1
1 + k

+ k

(1 + k)2 −
1

1 +m
− m

(1 +m)2

= (1− α) + α(1− α)− (1− β)− β(1− β) = β2 − α2,

where the last line follows from replacing k = α
1−α and m = β

1−β . Since

E
(
P1{γ≤U≤δ}

)
= δ2 − γ2

2 ,

we multiply the two terms and get the result. �

Lemma A.3. The expected value of Z(1− P ) over all games G(A,Z;P ) in K is

EK
[
Z(1− P )

]
= (β − α)(2− β − α)(δ − γ)(2− δ − γ)

2

Proof. Let
V = Z(1− P )1{K} = Z(1− P )1{α≤Π≤β}1{γ≤P≤δ}

Clearly, α ≤ Π ≤ β if and only if 1−β
β A ≤ Z ≤ 1−α

α A. Let k = 1−β
β < 1−α

α = m. By
independence,

E(V ) = E
(
Z1{kA≤Z≤mA}

)
· E

(
(1− P )1{γ≤U≤δ}

)
Since A and Z are identically distributed, the first term on the right-hand side yields

E
(
Z1{kA≤Z≤mA}

)
= E

(
A1{kZ≤A≤mZ}

)
= 1

1 + k
+ k

(1 + k)2 −
1

1 +m
− m

(1 +m)2

= β + β(1− β)− α− α(1− α) = (β − α)(2− β − α)

where the last line follows from replacing k = 1−β
β and m = 1−α

α . Since

E
(
(1− P )1{γ≤P≤δ}

)
= (δ − γ)(2− δ − γ)

2
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we multiply the two terms and get the result. �

We prove that each party has a dominant choice for almost every cell K = (α, β)× (γ, δ).
We begin with two lemmata characterizing best replies.

Lemma A.4. Suppose that i’s opponent plays H over the cell K = (α, β)× (γ, δ). Then i’s
best reply over K is H if and only if

β + α

2− (β + α) ≥
2− (δ + γ)
δ + γ

(1)

Proof. Under the strategy profile (H,H), by Lemma ?? the expected payoff for i over K is

EK
(
AP

)
= (β2 − α2)(δ2 − γ2)

2

Under the strategy profile LH, by Lemma ?? the expected payoff for i over K is

EK
[
Z(1− P )

]
= (β − α)(2− β − α)(δ − γ)(2− δ − γ)

2

Hence, H is preferred to L if and only if

(β2 − α2)(δ2 − γ2)
2 ≥ (β − α)(2− β − α)(δ − γ)(2− δ − γ)

2

Simplifying and rearranging, we obtain the inequality in (??). �

Lemma A.5. Suppose that i’s opponent plays L over the cell K = (α, β)× (γ, δ). Then i’s
best reply over K is H if and only if (??) holds.

Proof. Under the strategy profile HL, by Lemma ?? the expected payoff for i over K is
EK

[
−Z(1− P )

]
. Under the strategy profile LH, by Lemma ?? the expected payoff for i

overK is EK
(
−AP

)
. Hence, H is preferred to L if and only if EK

(
AP

)
≥ EK

[
−Z(1− P )

]
,

which leads again to the inequality in (??). �

Proposition A.6. Given a cell K = (α, β) × (γ, δ), let π = (β + α)/2 and p = (δ + γ)/2.
Then i has a (strictly) dominant strategy if π + p 6= 1 and is indifferent between H and L if
equality holds. Moreover, the dominant strategy is H if π + p > 1, and it is L if π + p < 1.

Proof. If we multiply and divide by 2 the expressions on either side of the inequality in (??),
we find

π

1− π ≥
1− p
p
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that, upon rearrangement, is equivalent to π + p ≥ 1. Then the result follows immediately
from Lemma ?? and Lemma ??. �

Proposition A.7. Given the threshold pair (π̂, p̂), the expected payoff to each agent under
the (unique) rational rule of behavior is

1
2 − π

2p2 when π̂ + p̂ > 1

and
1
2 − π

2 − p2 + π2p2 when π̂ + p̂ < 1

Proof. Suppose π̂ + p̂ > 1. The dominant rule of behavior is OR, yielding a random payoff
AP in situations S1, S2, S4 and −AP in S3. Lemma ?? gives the expected payoffs over these
four situations. Taking their sum yields

(1− π2)(1− p2)
2 + π2(1− p2)

2 − π2p2

2 + p2(1− π2)
2 = 1− 2π2p2

2

Suppose instead π̂ + p̂ < 1. The dominant rule of behavior is AND, yielding a random
payoff AP in situation S1, and −AP in situations S2, S3, S4. Proceeding similarly, we find

(1− π2)(1− p2)
2 − π2(1− p2)

2 − π2p2

2 − p2(1− π2)
2 = 1− 2π2 − 2p2 + 2π2p2

2

�

Proposition A.8. When the OR rule prevails, there is fog of conflict if

π̂2 · p̂2 > 1/6 (2)

and fog of cooperation if the opposite (strict) inequality holds.
When the AND rule prevails, there is fog of conflict if

π̂2 + p̂2 − π̂2 · p̂2 > 1/6 (3)

and fog of conflict if the opposite (strict) inequality holds.

Proof. By Proposition ??, the expected payoff to a party under the benchmark is 1/3. Given
a threshold pair (π̂, p̂), Proposition ?? characterizes the expected payoff to a party under
the rational rule of behavior. There is fog of conflict (or cooperation) when this payoff is
lower (or greater) than 1/3. If π̂ + p̂ > 1 and the OR rule applies, the expected payoff is
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1
2−π

2p2. This is lower (or greater) than 1/3 when (??) (or its opposite) holds. The argument
is similar if π̂+ p̂ < 1 and the AND rule applies, taking into account that the expected payoff
is 1

2 − π
2 − p2 + π2p2. �

Proposition A.9. Suppose that the parties perceive two games (π1, p1) 6= (π2, p2) in G as
distinct. Then cooperation on (H,H) for all games (π, p) can be supported by a subgame
perfect equilibrium based on a Nash reversion trigger strategy if and only if

δ ≥ 24
25 (4)

Proof. Cooperation on (H,H) is a dominant strategy when the one-shot game maps to a pair
(π, p) such that π+p ≥ 1. This occurs with probability 1/2. Consider now the complementary
eventD− = {(π, p) : π+p < 1} and assume that the agents perceive (π, p) inD−. Cooperation
on (H,H) can be supported only if the long-term benefit from choosing H is never smaller
than the short-term temptation to deviate and pick L. We compare the short-term temptation
against the long-term benefit.

Conditional on the knowledge of (π, p), the short-term temptation ST is the difference in
expected payoffs from choosing L or H when the other party plays H:

ST = E [(1− p)Z − pA | π, p]

Using A/(A+ Z) = π and E(Z) = 1, we obtain that the short-term temptation is

ST = E

[
(1− p)Z − p πZ

1− π | π
]

= 1− π − p
1− π

The long-term benefit LB is the discounted sum of the (expected) incremental payoffs from
sustaining cooperation on (H,H) against shifting to (L,L) on D−. Since this occurs with
probability 1/2, we have

LB = 1
2

(
δ

1− δ

)
E [PA1D− ] = 1

2

(
δ

1− δ

)
E
[
PA1{Π+P<1}

]
and, by the same technique used in the proof of Proposition ??, we find

LB = 1
2

(
δ

1− δ

)
E
[
P (1− P )2

]
= 1

2

(
δ

1− δ

) 1
12

Cooperation can be supported when the long-term benefit LB is not smaller than the short-
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term temptation ST; that is, if

1
24

(
δ

1− δ

)
≥ 1− π − p

1− π

or, equivalently, if
δ ≥ 24(1− π − p)

1− π + 24(1− π − p)

This follows for any (π, p) in D− if and only if (??) holds. �

Proposition A.10. Suppose that the parties perceive two games G1 and G2 with (a1, z1; p1) 6=
(a2, z2; p2) as distinct. Then cooperation on (H,H) for all games cannot be a.s. supported by
a subgame perfect equilibrium based on a Nash reversion trigger strategy.

Proof. Given δ, for any game that maps to (π, p) with π+ p < 1, the long-term benefit from
playing H is δ/[6(1− δ)] while the short-term temptation is (1− p)z − pa: cooperation fails
whenever we draw a game such that (1 − p)z − pa > δ/[6(1 − δ)]. Since Z has unbounded
support and δ < 1, there is a strictly positive probability that cooperation fails for any
combination of a, p, δ. �

Proposition A.11. Suppose x > 1/2. Cooperation on (H,H) in all situations can be sup-
ported by a subgame perfect equilibrium based on a Nash reversion trigger strategy if and only
if

δ ≥ 2− 2x
2− 2x+ x4 (5)

Proof. Cooperation on (H,H) is a dominant strategy for the one-shot games associated with
situations S1, S2, S4. So we only need to compare the short-term temptation in S3 against
the long-term benefit. The one-shot game perceived by the agents in S3 is depicted on the
left of Figure ??. The short-term temptation in S3 is the difference in payoffs from playing
L instead of H when the other party plays H; that is,

x2(2− x)2

2 − x4

2 = 2x2(1− x)

The long-term benefit in S3 is the discounted sum of the (expected) incremental payoffs from
sustaining cooperation on (H,H). Since this situation occurs with probability x2, we find

δx2

1− δ

[
x4

2 −
−x4

2

]
= δx6

1− δ
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H L
H x4/2 −x2(2− x)2/2
L x2(2− x)2/2 −x4/2

S3
H L

H x2(1− x2)/2 −x(2− x)(1− x)2/2
L x(2− x)(1− x)2/2 −x2(1− x2)/2

S2

Figure 14: The one-shot games associated with S3 (left) and S2 (right) for π̂ = p̂ = x.

Cooperation can be supported when the long-term benefit is not smaller than the short-term
temptation

δx6

1− δ ≥ 2x2(1− x)

which yields (??). �

Proposition A.12. Suppose x < 1/2. Cooperation on (H,H) in all situations can be sup-
ported by a subgame perfect equilibrium based on a Nash reversion trigger strategy if and only
if

δ ≥


(1− x)(1− 2x)

1− 3x+ 4x2 − 2x3 − 2x4 + 3x5 for 0 < x ≤ 1
4

2− 2x
2− 2x2 − 2x3 + 3x4 for 1

4 < x <
1
2

(6)

Proof. Cooperation on (H,H) is a dominant strategy only for the one-shot game associated
with situation S1, so we need to check the other three situations. By the simplifying as-
sumption π̂ = p̂ = x, the payoffs for S2 and S4 are identical and we can restrict attention
to S3 and S2, depicted in Figure ??. The short-term temptation is 2x2(1 − x) in S3 and
x(1 − x)(1 − 2x) in S2. Comparing the two, the short-term temptation is greater in S3 for
x > 1/4 and in S2 for x < 1/4. Thus, we study the two cases separately for x ≷ 1/4.
The long-term benefit is the same across the three situations S2, S3, S4, which occur with
probability x(1− x), x2, x(1− x) respectively; thus, the long-term benefit is

δ

1− δ
[
2x(1− x)x2(1− x2) + x2 · x4

]
= δ

1− δ
[
x3
(
2− 2x− 2x2 + 3x3

)]
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When x > 1/4, the greater temptation is in S3 and thus cooperation can be supported if

δ

1− δ
[
x3
(
2− 2x− 2x2 + 3x3

)]
≥ 2x2(1− x)

which can be rewritten as
δ ≥ 2− 2x

2− 2x2 − 2x3 + 3x4 (7)

When x < 1/4, the greater temptation is in S2 and thus cooperation can be supported if

δ

1− δ
[
x3
(
2− 2x− 2x2 + 3x3

)]
≥ x(1− x)(1− 2x)

which yields
δ ≥ (1− x)(1− 2x)

1− 3x+ 4x2 − 2x3 − 2x4 + 3x5 (8)

Both right-hand sides for (??) and (??) are decreasing and take value 384/475 ≈ 0.8084 at
x = 1/4, yielding (??). �
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