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Abstract

We study monetary and fiscal policy in a heterogeneous agents model with incomplete
markets and sticky nominal prices. We develop numerical techniques that allow us to
approximate Ramsey plans in economies with substantial heterogeneity. In a calibrated
model that captures features of income inequality in the US, we study optimal responses
of nominal interest rates and labor tax rates to productivity and cost push shocks.
Optimal policy responses are an order of magnitude larger than in a representative
agent economy, and for cost push shocks are of opposite signs. Taylor rules poorly

approximate optimal nominal interest rates.
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1 Introduction

An empirical labor literature has documented that dispersions of labor earnings, assets, and
other measures of inequality co-move with aggregate business cycle fluctuations. Meanwhile,
a quantitative macroeconomics literature that studies optimal monetary and /or fiscal policy
over business cycles relies almost exclusively either on a representative agent assumption or
oversimplified models of heterogeneity. We want to know how those simplified treatments
of heterogeneity affect quantitative prescriptions. Therefore, this paper studies optimal
monetary and fiscal policies in a workhorse New Keynesian model augmented to capture rich
heterogeneities across agents and empirical facts about co-movements of aggregate variables
and measures of inequality.

We study a New Keynesian economy populated by a continuum of heterogeneous agents
who are subject to idiosyncratic wage risks. Agents differ in permanent and transitory
components of shock processes that we calibrate to emulate dynamics of the distribution of
U.S. labor earnings documented by Guvenen et al. (2014). Financial markets are incomplete
with agents differing in their equity holdings and their access to financial markets. We study
how a Ramsey planner adjusts nominal interest rates, transfers, and proportional labor taxes
in response to aggregate shocks.

In studying the optimal policies of a Ramsey planner, we confront substantial compu-
tational challenges. Existing studies of economies with heterogeneities, incomplete markets,
and aggregate shocks typically approximate the ergodic distributions of competitive equi-
librium prices and quantities under a given set of policies and cannot easily be extended to
answer normative questions. Ramsey problems bring additional challenges. First, because
they assign important roles to Lagrange multipliers on individual and aggregate forward
looking constraints, they have state variables that summarize history dependencies making
them larger than what are needed to characterize ordinary competitive equilibria. Second,
due to market incompleteness, some elements of state spaces exhibit very slow rates of mean-
reversion, implying that approximations around a mean of an invariant distribution poorly
approximate an optimal policy during a transition from a given distribution.

This paper contributes a new computational technique that allows us to obtain good ap-
proximations to optimal government policies for economies with such large state spaces. Our
numerical methods build on perturbation theory that uses small noise expansions with re-
spect to a one-dimensional parameterization of uncertainty as in Fleming (1971) and Fleming
and Souganidis (1986) that has been applied earlier in economics by Anderson et al. (2012).
These are related to but differ from expansions in Judd and Guu (1993, 1997) and Judd

(1996, 1998) that explore small noise expansions with respect to shocks and state variables



about a deterministic steady state. A key step is that at each date, we take a Taylor expan-
sion of policy functions around the current value of state vector with respect to a parameter
that scales both idiosyncratic and aggregate shocks. The current state vector can include a
distribution of idiosyncratic states. We thus update the point around which local approxi-
mations are taken each period,which allows our approximations to remain accurate even in
settings where transition dynamics are slow.

To manage heterogeneity, we approximate the distribution of individual state variables
using a discrete grid with a sufficiently large number of points. Our contribution here is
to derive explicit formulas for coefficients occurring in the Taylor expansions of individual
agents’ and aggregate policy functions. We show that these formulas require matrix inver-
sions only of manageable dimensions, often equal to the number of aggregate variables, and
that they can be efficiently computed. In this way, our procedure allows fast approxima-
tions even for a large number of agents. so we can also construct impulse responses that
account for how distributions across agents evolve after an aggregate shock. In Section 3.3,
we describe the steps in our algorithm and how our method compares to other approaches.

Applying our methods to a calibrated New Keynsian economy with heterogeneous agents,
we find that attitudes about inequality induce the planner to use fiscal and monetary tools
to redistribute resources toward agents who are especially adversely affected by recessions.
We study two types of shocks: shocks to the growth rate of productivity that also change
the distribution of labor earnings in ways documented by Guvenen et al. (2014) and markup
shocks. We compare our results to those from a representative agent benchmark.

In response to a negative productivity shock, we find that optimal monetary policy lowers
nominal rates and closely tracks real rates thereby keeping expected inflation near zero.
Nevertheless, it is desirable to engineer high unanticipated inflation in recessions because that
transfers resources from agents with high bond holdings toward agents with low holdings.
This transfer makes up for the inability of agents to fully insure against aggregate shocks. An
optimal plan induces such surprise inflation by increasing the tax rate, which raises real wages
and marginal costs for firms. Furthermore, as in data, recessions in our calibrated economy
are accompanied by persistent increases inequality. This generates a motive to redistribute
labor income from productive agents by increasing transfers. The planner achieves this
by keeping marginal labor tax rates high long after output has recovered. We find that
in response to a productivity shock that lowers output growth by 3%, there is a nearly
permanent increase in the labor tax rates of about 0.5 percentage points and a 0.15 percentage
points jump in inflation for one period. As a point of comparison, the optimal tax rate and
inflation rate in an economy without heterogeneity are an order of magnitude lower for

similar shocks.



In response to a “cost push” shock that we model as a shock to the elasticity of substitution
between goods that leads to an increase in the the desired mark-ups for the firms, an optimal
policy calls for a significant decrease in nominal interest rates that generates an increase in
inflation and output. This policy response is opposite from that found in a representative
agent economy. The explanation for this difference is that in response to a cost push shock
firms, want to increase their prices, and the presence of nominal rigidities makes that costly.
So, in a representative agent economy, a Ramsey planner increases nominal interests rates to
reduce output and marginal costs enough to offset this inflationary pressures, a policy that
Gali (2015) dubs “leading against the wind”. The mark-up shock also decreases the labor
share and increases the profit share, which in heterogeneous agent economies redistributes
resources from agents who mainly obtain income from wages to agents to with large stock
holdings. The “leaning against the wind policies” exacerbate this effect. When we calibrate
the distribution of equity ownership to U.S. data, we find that a 1 percentage point positive
cost push shock calls for a -0.75 percentage point decrease in the nominal interest rate
compared to 0.05 percentage point increase with a representative agent calibration.

We also investigate to what extent Taylor rules approximate an optimal policy. We find
that in heterogeneous agent economies Taylor rules do a substantially worse job than in a
representative agent counterpart. Taylor rules imply that interest rates and inflation share
the same persistence and co-move positively. This behavior is sub-optimal in our economy.

We begin by describing our model and some properties of the Ramsey allocation in
Section 2. The numerical method and its comparison to alternative are discussed in Section
3. We use our method to obtain quantitative results in the calibrated economy in Section 4.
Section 5 studies the optimal response to “cost-push” shocks. Section 6 compare the optimal

policies to those prescribed by a Taylor rule. Section 7 concludes.

2 Environment

A continuum of infinitely lived households face idiosyncratic shocks to their productivities.
Individual 4’s preferences over stochastic processes for a final consumption good {¢;,;} and

labor supply {n;;} are ordered by

Eo Z 5tU (Ci,ta Nt @t)
t=0

where
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E; is a mathematical expectations operator conditioned on time ¢ information and 5 € (0, 1)
is a time discount factor. With separable preferences, scaling the disutility of labor with
exp ((1 — v)O) keeps n stationary when the aggregate shocks have a stochastic trend.

The economy is subject to aggregate and idiosyncratic shocks. Aggregate shocks are labor
productivity ©, and government expenditures G; that follow stochastic processes described
by

O, =0+6;1+ oy,

log Gt = @t + G + gG,t,

where g4, Eq, are mean-zero, i.i.d. random variables. Aggregate and idiosyncratic shocks

relate to individual ¢’s labor productivity 6;, by
Oir = O + € + i (2)

it = PeCit—1 + f(€it—1) Eox + Mg, (3)

where ¢, 4, 7, are also mean-zero, i.i.d. random variables. This specification of idiosyncratic
shocks builds closely on formulations used in labor literature, e.g. Storesletten et al. (2001),
Low et al. (2010) where ¢;; and 7;; correspond to transitory and persistent shocks to indi-
vidual productivity. The function f (e;;—1) individuals’ skills vary with aggregate shocks. It
allows us to match the business cycles in cross sections that are documented by Guvenen
et al. (2014). We assume that all shocks take values in a compact set.

Agent i supplies exp(6;.)n;; units of effective labor to a competitive labor market at
nominal wage P,W,, where P; is the nominal price of the final consumption good at time t.
There is a common proportional labor tax rate 7; and a common lump transfer T; P,. Agents
trade a one-period risk-free nominal bond with each other and with the government. We
use P,b; ¢, P,B; to denote bond holdings of agent 7 and the debt position of the government
respectively, and ¢;,m; to denote the nominal interest rate and inflation. Finally, D, are
dividends from intermediate goods producers measured in units of the final good. We assume
in our baseline specification that these dividends are distributed equally across households
but drop this assumption in Section 5. We take as given an initial price level P_; < oo and
set 1 =871 —1.

Agent i’s budget constraint can be written as

1+
Cip+biy = (1 —7m)Wyexp(0;)niy + 1, + D, + (TL;I) bi—1- (4)
t



The government’s budget constraint at time ¢ is

T4+
1+7Tt

Gt + E + ( ) Bt—l = Tt /Wt exp(@iﬁt)ni,tdi + Bt.

A final good Y, is produced by competitive firms that use a continuum of intermediate

goods {y:(j)},cp,1 in & production function

1 5
y; = [/ ()= d]} |
0

The final good producer takes the final good prices F; and intermediate goods prices {p;(j)},

as given and solves

max P, {/Olyt(]‘)dj}eil — /Olpt(j)yt(j)dj. (5)

{yt(j)}je[o,1]

Outcomes of optimization problem (5) are a demand function for intermediate goods

and a nominal price satisfying

P = </01pt(j)1_5) - :

Intermediate goods y;(j) are produced by monopolists having linear technologies

ye(7) = (),

where 7,(j) is the amount of effective labor hired by firm j. These monopolists face down-

ward sloping demand curves (’%ﬁj)>_ Y; and choose prices p;(j) while bearing quadratic

exp(O¢)y ( pt(J)
2 pt—1(j)
final consumption good. Firm j chooses prices {p:(j)}, that solve

e (8 (P ] (52) e (20

where for convenience we have imposed that each firm values profit streams with a stochastic

2
Rotemberg (1982) price adjustment costs — 1) measured in units of the




discount factor that is driven by aggregate consumption C; = [ ¢;,di.!
In the symmetric equilibrium p;(j) = B, y:(j) = Y; for all j and market clearing condi-

tions in labor, goods, and bond markets are:

w(y) =Y = /eXP (01) Migdi (7)
o
Cit G =y, - SO (8)

/bl7td7/ == Bt. (9)

Definition 1. An allocation is a sequence {c¢;;,ni.}; , - A bond profile is a sequence {{blt}Z , Bt}t'
A price system is a sequence {W;, P,};. A monetary policy is a sequence {¢;, T3} A

monetary-fiscal policy is a sequence {vy, Ty, Ty b4

Definition 2. Given an initial bond distribution ({bi’_l, €i—1}; B_l) and initial price levels
p_1(j) = Py for all j, a competitive equilibrium is a monetary-fiscal policy {¢;, T3, 7 }+ and
a sequence {{ci7t,ni,t,bi7t}i,Bt,Wt,Pt}t such that: (i) {ci4,lit, bit}ie maximize (1) subject
to (4) and natural debt limits; (i) final goods firms choose {y:(j)}; to maximize (5); (iii)
intermediate goods producers’ prices solve (6) and satisfy p;(j) = P;; and (iv) market clearing
conditions (7), (8) and (9) are satisfied.

A utilitarian Ramsey planner orders allocations by

0o . Clt—y nl;""Y
E 4 1— b 2 1
0/;5 [ e (1)) 12| (10)

Definition 3. Given a tax sequence 7, = 7 for some 7 and initial conditions ({bi,—h €i -1} B_l),
an optimal monetary policy is a sequence {v;, T;}; that supports a competitive equilibrium
allocation that maximizes (10). Given initial conditions ({@;1,61,71}“371), an optimal
monetary-fiscal policy is a sequence {¢, T}, 7;}; that support a competitive equilibrium al-
location that maximizes (10). A maximizing monetary or monetary-fiscal policy is called a

Ramsey plan; an associated allocation is called a Ramsey allocation.

The distinction between optimal monetary and monetary-fiscal policies is that the former

takes tax rates as given while the latter also optimizes with respect to tax rates. A common

'In economies with heterogeneous agents and incomplete markets one has to take a stand on how firms
are valued. Using aggregate consumption to drive a stochastic discount factor process allows us to get a
representative agent economy as a special case of our heterogeneous agent economy by appropriately setting
some of our parameters. This choice aligns with Kaplan et al. (2016).



argument is that institutional constraints make it difficult to adjust tax rates in response to
typical business cycle shocks, leaving nominal interest rates as the government’s only tool for
responding to such shocks. We will capture that argument by studying optimal monetary
policy when tax rates {7;}; are fixed at some level 7. The monetary-fiscal Ramsey plan

evaluates the optimal policies when this restriction is dropped.

2.1 Ramsey Plans

As in Kydland and Prescott (1980) and Farhi (2010), we use firms’ and household’s optimality
conditions to derive implementability constraints and express a Ramsey problem in terms
of two Bellman equations, a continuation Ramsey problem for ¢ > 1, and a ¢ = 0 Ramsey
problem. We relegate descriptions of these equations to Appendix A and state only the ¢ > 1
continuation problem here.

We use hats to denote variables scaled by aggregate productivity. For example, ¢;; =
%, Ai,t = exziﬁ T, = % and so on for other idiosyncratic and aggregate variables.
The period utility function is

él—V nl—f—’y

1—1/_1—|—’y

Ule,n,0) =exp((1—-vr)0) ( ) =exp((1—-v)O)U (¢,n,1)

We use U: and U, to denote derivatives of U (¢,n, 1) with respect to first and second argu-
ments, respectively. State variables for the ¢ > 1 continuation value function are marginal
utility adjusted assets, a; = éi_’t”i)ivt, inverse marginal utility m;; = ¢/;, and the persis-
tent component of idiosyncratic shocks e;;. Let 2y = (a;, 44, €;¢) and let Z; denote the
distribution of individual states z;;, an aggregate state vector for our problem.

In an optimum, aggregate allocations in period ¢ are functions of the previous period’s
aggregate state Z;_; and the aggregate shocks & = (£o4,Eq+). Individual variables are
functions of (Z;_1,&;), individual state z;,_; and idiosyncratic shocks ¢, = (n;,¢). Let ®
and ¢ denote distributions of & and &,. It will also be convenient to define g(z,¢,&) =
exple+¢+n+ fle, Z,E)Es] as the productivity of an agent scaled by the aggregate pro-
ductivity in state (z,¢e, ). Finally, let E, denote a mathematical expectation of an individ-
ual variable conditional on z, Z. Let V(Z ) be the value function for Ramsey monetary-fiscal

problem, so

V(Z)=  max / RN {U (@(2,2,8),n(2,2,E),1) dpdZ + BV (Z’)} d®

CA',W,?,D,T,TAA/JT,Q

(11)



subject to
exp{— [0+ o]} a(2) Us(z,2, &)1+ 7(€))
BE.lexp {—v [0 + Eo4] } Us(2,6,E)(1 + m(€)) 7]
— Uil2,2,€) |&(z,2,6) = D(E) = T(E)| + Un(z,2,E)n(z,6,8) + @(2.6,6)  (12)
o = (). [exp {—v [0 + o]} Ualz,2, E)(1 + 7(€)) ] (13)
Un(z,6,) = —(1 = 7(E))W(E)Ua(z, 2, )g(2.e, E), (14)

for all (z,¢,&), and

C(E :/ iz, e, E)dpdZ (15)
V(€ :/ n(z e E)g(z e, E)dopdZ (16)
C(E) + C(E) = V(€) — (e a7)
D(E)=(1- W(é’))Y(é’) %(5)2. (18)

for all £. The distribution Z’ is generated by a’,m’ and shocks ¢, £.

The steps to obtain these equations are standard. Equation (12) is obtained by dividing
the budget constraint (4) by exp (©;), then multiplying with Ug,; and substituting for the
labor-leisure optimality condition in equation (14). Equations (13) and (14) use agents’ intra
and inter-temporal marginal conditions. Equations (15) - (18) are aggregate market clearing
conditions.

The Ramsey monetary problem is written in a similar way except that 7; is replaced with
7 in (14). Since the two problems are very similar, for concreteness we focus on the Ramsey
monetary-fiscal policy in this section and the next.

Bellman equation (11) closely resembles one obtained in representative agent economies,
except now the state is a distribution over individual state variables, a highly dimensional
object for realistic amounts of heterogeneity. That makes it impossible to solve Bellman
equation (11) directly, and motivates us instead to approach the problem by approximating
the policy rules that solve the first order conditions of the planner’s problem..

We use tildes to denote policy functions that attain the right side of Bellman equa-
tion (11). Let Z(z,Z,¢,&) and X (Z,&) denote vectors of individual and aggregate policy
functions, respectively. Let Z(z,Z,¢,&) and Z (Z,&) be laws of motion for individual and
aggregate states respectively. Let Z be a component of . And as noted above, we use E,Z

to denote the expectation of # (2, Z, -,-) conditional on (z,Z) and E;Z the expectation of



T <2 (2,Z,€,E),Z(V,E),-, ) conditional on (2, Z).

From problem (11), Z includes {¢,n,a’} and Lagrange multipliers on constraints (12) -
(14), X, while contains {C’, W,Y,D,r, T,?,?T,Oé} and the Lagrange multipliers on (28) -
(18). Let N., N,, and Nx be numbers of elements in z, x, and X respectively. Substitute
(15) into (17), (18) into (12), and follow Marcet and Marimon (2011) to use the Lagrange
multiplier on (12), the co-state variable of a(z), in place of d(z) in z to end up with N, = 3,
N, =6, and Nx = 4. More details are in Appendix B.

We start with the set of individual constraints and first-order conditions with respect to
x for the problem defined by (11). There exists a vector-valued function F' that lets us write

these equations as
F <z,]Ez£,:Tc(z, Z,s,E),IE;%,X(Z,S),s,E) =0 forall z,¢¢&. (19)

Similarly, there exists a vector-valued function R such that first-order conditions with respect

to X along with market clearing constraints can be written compactly as
/R(z, i(2,2,¢,€),X(Z,€),e,E)dpdZ =0  for all £. (20)

Explicit functional forms of F' and R are described in Appendix B. Our goal is to approximate
i(z,Z,¢,E) and X (Z,&) that satisfy (19) and (20) for arbitrary Z.

3 Numerical Method

Our starting point is the perturbation theory of Fleming (1971), Fleming and Souganidis
(1986) that uses small noise expansions. Consider a family of stochastic processes param-
eterized by a positive scalar o that scales all shocks (¢,&). Let Z(z,Z,0-¢,0-&;0) and
X (Z,0 - &;0) denote policy functions when the scaling parameter equal o. For our applica-
tion, we will assume that autocorrelation of the persistent component of idiosyncratic shock
is parameterized as p. = 1 — p.o.

Consider a second-order Taylor expansion with respect to ¢ around o = 0 at a given
state Z:2

B 3 2
X(Z,060) = X + 0 (Xe& + X,) + % (ETXeel + 2Xe,E + Xo0) + O(0®)  (21)

ZWe use ETXge€ to denote the vector who’s ith element is given by the quadratic form ETX}:.E

10



and

T(2,Z,0¢,08;0) =T+ 0 (v€ + 2.6 + 4)
2
+Z (ETxec€ + €™ woce + 28 wgcE + 206,E + 2006 + T0o) + O(0°), (22)

2
where X = X (Z,0;0), 7 = # (2, Z,0,0;0), X¢, X, denote derivatives of X (Z,0€;0) with
respect to the second and third arguments evaluated at ¢ = 0, and the derivatives of & and
higher order derivatives defined in similar ways.

Our main contribution is to show that the right sides of these expressions can be computed
quickly even when the dimension of the underlying discretized state Z is very large. With
realistic heterogeneity, it is important to have a large number of points on the grid for Z in
order to capture a distribution of individual states (in our numerical application we discretize
Z with K =10,000 elements). In particular, we show: (a) that the “no uncertainty” terms X,
T solve a simple system of non-linear equations corresponding to a static economy, and (b)
explicit formulas for higher order terms Xg¢,x., ... that can involve only linear algebra. We
attained these formulas by overcoming two significant problems. The first problem is that
the number of unknowns in the first-order terms is proportional to K?, while the number
of unknowns for the second order terms is proportional to K3. A second problem is that
computing these unknowns directly requires inverting at least K x K matrices. When K is
large, inverting K x K matrices and solving for unknowns whose number grow exponentially
in K become impractical. We overcome these problems in the following ways. First, we
show that all unknowns can be computed as a product of either two (in the case of first-order
expansions) or three (in the case of the second-order expansion) K x 1 vectors with unknown
coefficients, so that the number of unknowns grows linearly rather than exponentially with
K. Furthermore, we can compute these unknowns by inverting matrices with dimensions of
at most N, x N,. Since the inversion of 6 x 6 matrices (unlike 10,000 x 10,000 matrices)

can be done quickly, all unknowns can be computed quickly even when K is very large.

3.1 Step 1: computing points of expansion

Our next proposition describes how to simplify the ‘zeroth-order’ terms X, Z.

Proposition 1. The individual and aggregate states are stationary in the mon-stochastic
limit, i.e.,
2(2,7,0,0;0) = z and Z(Z,O;O) =7

11



Therefore (f,)_() solve
F(2,%,2,2,X,0,0) =0 for all z, (23)

R(z,7,X,0,0)dZ = 0. (24)

The explanation for these outcomes is that in the absence of shocks, markets are complete
and the pair (i, X ) corresponds to a stationary economy in which all households completely
smooth consumption, which implies that the aggregate state Z stays unchanged too. In our
case, we can invert (23) to express Z in terms of X and then use a standard numerical root

finder to solve (24) as a system of equations in Nx unknowns.?

Once (:Z’, X ) is known, we evaluate first-, second- and higher-order derivatives of functions
F and R at an allocation. These derivatives can be found efficiently using automatic differ-
entiation routines. Let FF, F* FF Fk "\ F% be the derivatives of F with respect to its first
five arguments evaluated at (zy,7,z,%,X,0,0) for k = 1,.., K. Similarly, let R, R¥, R be
derivatives of R with respect to its first three arguments evaluated at (zk,, z,X,0, O) . Define

higher order terms in similar ways.

3.2 Step 2: finding derivatives of policy functions

We now describe how to compute derivatives of policy functions # and X. Given our dis-
cretization procedure, the state variable for X is an N, x K-dimensional object, and the
state variable for 7 is an N, x (K + 1) dimensional object. We let X}, z} denote derivatives
of X (Z,;-) and % (2, Z, -, -;-) with respect to the k" element of Z evaluated at o = 0 and
z = z; and 2}, for [ € {1,..., K} denote the derivative of & with respect to the individual
state z evaluated at 0 = 0 and z = z;. It is convenient to define a matrix () that selects state
variables Z from the vector 7, i.e., Z = Q% and similarly use z}, 2} to define the derivatives
of z. Higher order derivatives of # and X are defined in similar ways.

Although derivatives of policy functions only with respect to shocks (g,&) appear in
the Taylor expansion (21) - (22), computing those derivatives requires also computing the
derivatives of Z and X with respect to the state variables (z, Z). This creates an obstacle.
Consider the first-order terms. Total differentiation of (19) and (20) generates a linear
system that determines {Xk, xﬁc, %}k,l' This is a system with K NxN, + K2N,N, + KN,N,
unknowns that requires inverting a KN, + Nx x KN, + Nx dimensional Jacobian matrix.
Since the number of terms grows with K2, these inversions are not computationally feasible

for large K. The next lemma significantly simplifies things.

3In Section (5) we extend our analysis to the cases when zeroth-order expansions cannot be found using
Proposition (1)

12



Lemma 1. For z = z, let 2, xf) be matrices of dimension N, X Nx and N, X N, defined

as
t=—[F_+F +F ] FL
Derivatives of policy rules with respect to states {:L‘f),Xk,:z:ﬁC}k’l are
wh=—[F_+F +F ] F

—1

<&:@]@@+@ﬂ R+ Rbal]
l

[

ok = 2l X

Lemma 1 is a critical step that makes our approach computationally feasible. It allows
us to decompose a {xﬁg}lk that has N, x K? elements into a product of two objects, {xfx}l
and {X},, each of which has N, x K elements. This means that computational complexity
grows linearly in K rather than K2. Critically, computing !, and X} requires inversions
of max{Nx, N, } x max{Nx, N,} matrices, which can be done quickly when the number of
aggregate variables is small.

Economic structure that yields these simplifications are described by Evans (2015). The
term z! captures the effect on the group of agents having state variable z = z by a small
change in the state variable of the group z = z;. In the present economy, interactions between
groups are entirely intermediated through aggregates like prices and taxes. The means that
pairwise effects z{, can be divided into how group k affect the aggregates X and how a change
in aggregates X affect individuals in group [. Ultimately, the number of computations scales
linearly in the number of points required to approximate Z.

Lemma 1 allows us to compute coefficients of the first-order expansion of policy functions.

Proposition 2. Coefficients in a first-order expansion of the policy function T are given by:
rt =0 and
A= [F 4 FdQ]

13



—1
NI (VY (z - zxk@xz;g) (z Xk@xz;l)
k k
-1
+ | aly + 2l (I—ZXkaﬁ’g)) (Zkugﬂ;g) X,.
k k

where
Ten == (F+ Foua0Q)  Fey wep == (Fo+ FromgQ)  Fy, @iy == (F+ FrymQ)  Froal,
Ifm— (Fl —|—Fxl—|—F:i +FZ+ oQ) xfﬂ:_(F£7+F£+Fi++F£+xéQ)_lF§(,

1{7,3 (Fl +F1+Fl++Fl+x0Q) 'y

Approzimate policy functions X satisfy

-1

—1
Xe=— () |Rk + Rhak, + Riak, (1 — ZXlel&S) (Z Xle‘é’Q)
l l

k

~1
(5 R4 Rk Rk, (z—le@xlg,?,) (z X;Qx;,l)
l l

k

and

-1

~1
Z RX + R 02 + R; 0'3 ( ZXlea 3) <Z Xleff,z
k l

X Z RExk | + Rix 03< ZXIQIU:J,) (ZXZQOC@J)
I

k

Another message from Proposition 2 is that derivatives necessary for the approximations
can be expressed in terms of matrices that are N, x N, or Nx X Nx and do not scale with
the number of agents K. This allows us to handle very large state spaces.

Similar reasoning allows us to compute find higher-order derivatives with respect to
(z,7,¢,€) and also derivatives of policy functions with respect to o. It might seem that
the number of terms required for higher order derivatives grows exponentially. For example,
the second-order derivatives with respect to the state variables {xék,Xjk,x&k} k1, would
require solving for K3N,N, + K?NxN, +K?N,N, terms, which grow at the rate K3. But

a counterpart of Lemma 1 allows computations of all the second-order derivatives to be

14



subdivided into simpler terms that scale at most linearly with K and that only require
inversion of low dimensional matrices. This logic preserves the computational advantages of
our approach for higher-order expansions. The next proposition summarizes these findings.

We provide formulas for all second-order terms in Appendix C.3.

Proposition 3. The derivatives {$§k,Xjk,$6k}k7l,j can be expressed in terms that scale
at most linearly with K. Derivatives {z!_, zk,, ale, abe, 2!, Xee, Xoq } in the second-order

expansion can be expressed in terms of matrices of dimensions at most max {N,, Nx} by
max {N,, Nx}.

The inclusion of second-order terms improves accuracy of approximations by capturing
interesting economic behavior. For instance, the derivative x,, describes how agents with
different asset holdings save differently in anticipation of future uninsurable shocks. In our
economy, self insurance motives affect individuals’ savings behavior and through market
clearing conditions change aggregate prices and optimal responses of government policies.
Such aggregate responses are encoded in the X,, terms. Our formulas for second-order
derivatives combine such partial and general equilibrium effects of future risks on individual
behavior. From a computational standpoint, these terms are important in capturing the
evolution of the distributional state variable Z. In our quantitative Section 4, we show
that ignoring second order terms significantly affects the quantitative magnitudes of policy

responses to aggregate shocks.

3.3 Comparison to Other Methods

Our method is related to perturbation techniques of Judd and Guu (1993, 1997) and Judd
(1996, 1998) that were subsequently extended to heterogeneous agent economies by Campbell
(1998), Reiter (2009), Mertens and Judd (2013), Ahn et al. (2017), Winberry (2016), and
Legrand and Ragot (2017).

Those approaches approximate responses to aggregate shocks by using first-order expan-
sions of policy rules around a steady state Z%% obtained by shutting down aggregate shocks.
Ahn et al. (2017), which represents the current frontier,* extends Reiter (2009) into continu-
ous time and performs a sophisticated form of model reduction by projecting a distribution
of individual states onto a lower-dimensional subspace that is designed to do a good job

of approximating impulse response functions of key variables like prices. In doing so, they

4Mertens and Judd (2013) approximate around a point of no heterogeneity. Winberry (2016) uses a
variant in which parametric forms capture the steady state distributions rather than the histograms used by
Reiter (2009). Legrand and Ragot (2017) study an optimal fiscal policy problem with idiosyncratic risk and
aggregate shocks after truncating individual histories, which limits the amount of heterogeneity that they
can consider.

15



can incorporate a larger number of individual state variables than was previously possible.
Lastly, except for Legrand and Ragot (2017), the studies cited earlier in this paragraph focus
on competitive equilibria under fixed policies, rather than finding optimal policies.

We differ from these contributions in two ways. First, our points of approximation, Z; 1,
are dynamic and history dependent. By building on Fleming (1971), Fleming and Souganidis
(1986), and Anderson et al. (2012), we take Taylor expansions with respect to uncertainty
at each date as aggregate shocks push the economy through time.

There are several reasons that approximating around Z°° is not a good way to approxi-
mate economies like ours. First, computing Z°° in a Ramsey setting is difficult. Z°9 is an
endogenous object that depends on a key object to be computed, an optimal policy. That
requires jointly solving for agents’ optimal behaviors, which depend on the government’s
policies, and optimal optimal policies. Even for a deterministic setting, that would require
using computationally challenging non-linear solution methods. We are not aware of meth-
ods to do that quickly. But even if Z°° could be found, it would be unlikely to be a good
point of expansion. That is because in Ramsey settings with incomplete markets, speeds
of mean-reversion to Z°° are typically extremely slow because state variables are driven
by martingale-like dynamics that drift slowly.® From a computational point of view, using
perturbation around the fixed point provides a poor approximation for the optimal policy in
many states that are away from Z°9.

Secondly, paralleling Evans (2015), in Proposition 2 and 3 we are able to characterize the
derivatives used in a small noise expansion in terms of matrices of small (typically N, x N,)
dimension. This allows us to perform not only first-order but also higher-order expansions
quickly. As mentioned earlier, higher order terms are required to compute transition paths
and accurate responses of aggregate variables to shocks because agents’ responses to the
idiosyncratic risks that they face puts slow drifts into equilibrium distributions of their state
variables.

Alternatives to perturbation methods the literature have also used projection methods
like Krusell and Smith (1998), Den Haan (1997), Algan et al. (2010). Projection methods
summarize the infinite dimensional state variable using a subset of moments and approximate
value functions and policy functions by using functional approximations and simulations for
aggregate laws of motion that describe the ergodic behavior of moments.

Like the perturbation methods cited above, projection methods that approximate around

the long run ergodic distribution Z°° are problematic in Ramsey settings. Projections

5To give an extreme example, debt follows a random walk in a canonical incomplete market model of Barro
(1979), so that the speed of the mean reversion is 0. Aiyagari et al. (2002) showed that a slow margtingale-like
component is generally typically present in a Ramsey plan in an incomplete market economy. In Bhandari
et al. (2017) we compute analytically the speed of mean reversion for several incomplete markets economies.
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methods work well only when an economy exhibits what Krusell and Smith termed an
“approximate aggregation” property in which a function of the first moment of Z predicts next
period’s prices accurately. In our setting, Z is distributed over R3, which makes it much more
difficult to summarize in terms of one or two dimensional statistics. Moreover, there is little
reason to believe that our economy with heterogeneous loadings on aggregate shocks (and,
in later extensions, heterogeneous participation in asset markets) exhibits approximation

aggregation.

4 Quantitative Application

We apply our equilibrium approximation algorithm to an economy whose initial conditions
are calibrated to recent U.S. data, assess quantitatively the properties of Ramsey policies,

and contrast them with those of benchmark representative agent settings.

4.1 Calibration of Baseline Economy

In our baseline economy, we study effects of productivity shocks. We set v =1 and v = 2 to
attain an intertemporal elasticity of substitution of 1 and a Frisch elasticity of labor supply
equal to 0.5. The mean and standard deviation of the growth rate in productivity ©; are
set at 2% and 3%, respectively, to match the mean and standard deviation of growth rate
in output per hour in the US. The elasticity of substitution is set at ¢ = 6 to target a
value-added markup of 20%.

We choose initial conditions {bi,,l,eiﬁl}i using data from the 2013 wave of the Sur-
vey of Consumer Finance (SCF). We restrict the SCF sample to married households and
use information on households’ total labor earnings, hours worked by the primary and sec-
ondary earners, and assets. From labor earning and hours we compute average households
wages, {e; _1}. We then split wages into 20 quantiles and compute average households’
holdings of government debt in each quantile. This gives us a joint frequency distribution
of {b;_1, ei,,l}i. High wage earners hold more government debt, the correlation coefficient
between e; _; and b; _; being 0.47.

Remaining parameters are calibrated by insisting that competitive equilibrium outcomes

given policies {¢;, 7}, match stylized facts about U.S. policies. In particular, we set

T =T (25)

6We sum direct holdings plus indirect holdings through government bond mutual funds (taxable and
nontaxable), saving bonds, money market accounts, and components of retirement accounts that are invested
in government bonds.
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with 7 = 24% to match the federal average marginal income tax estimated by Barro and
Redlick (2011). We set ¢ to follow a Taylor rule

w=— 1) i (26)
L BEexp{—@} o

Our choice of constant tax rates and Taylor rule that responds more than one to one to
inflation and has a constant intercept features a desirable property that it can implement
the optimal allocation in the absence of heterogeneity. The reason for this is that the real
interest in a flexible price economy and with i.i.d. growth rate shocks and our choice of
preferences is constant. Our baseline calibration is not sensitive to alternative specifications
for fiscal and monetary policy that allow the nominal interest rate and tax rate to feedback
on output or the output gap.”

We set the discount factor S to match an interest rate of 4% per year. The mean of
government expenditures divided by labor productivity G and its standard deviation &; are
set to match the level and the volatility of the observed ratio of government spending to
GDP.® Following Schmitt-Grohé and Uribe (2004), we use the estimates of Sbordone (2002)
to calibrate the menu cost 1. °

The persistence and volatility of idiosyncratic shocks and their loading on aggregate
shocks are chosen to match several stylized facts about labor earnings. The standard devia-
tion of ¢;; is chosen to match the standard deviation of change in log earnings. As discussed
in Storesletten et al. (2004), the parameter p. and the standard deviation of 7, can be
inferred from the slope and curvature of the variance of log earnings at horizon ¢ + h as a
function of horizon h. The left panel of Figure I shows how the variance-age plot for log
earnings simulated from the model compares with the data. For both the date and the
model outcomes, we plot the variance of log earnings horizon ¢ + h minus the variance of log
earnings at h = 0.

The loading function f(e) is constructed to match the evidence in Guvenen et al. (2014)

on how recessions affects households in different parts of labor earning distribution. Following

7An empirical literature about Taylor rules typically estimates loadings on output that are small and
statistically close to zero. See for example Bhandari et al. (2017) for a discussion of fiscal policy rules and
Clarida et al. (2000) for a discussion of monetary policy rules.

8For the measure of government spending we use federal government current expenditures net of transfer
payments from NIPA. The average ratio for the period 1960-2016 is 7% with a standard deviation of 2%.

9Using quarterly data inflation and measures for marginal cost mc;, Sbordone estimates a relationship
m = By + agme; with a3 = 1 and aal in the range of 10 - 20 depending on particular measure of
marginal cost. In a linearized version of Phillps curve equation 30, ag = e_il. Using € = 6 and o =15
implies a ¢ = 75. Since in our model a period is an year, we set 6 = 74—5 = 18.75. As explained in Shordone
(2002), in a Calvo type price setting friction, this estimate corresponds to firms changing prices every 9

months. In appendix D we show how our results change when we vary .
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Parameters Values Targeted moment Values

Preferences, technology

! 1 inter temporal elasticity 1

vt 2 Frisch elasticity 2

I6] 98 risk free rate 4%

€ 6 average markups 20%

Y 18.75 estimates from Sbordone (2002) see footnote 9

Aggregate shocks

© 2% mean labr productivity growth 2%
G 7% mean govt. expenditure to GDP ratio ™%
s.d of &g 3% s.d of labor productivity growth 3%
s.d of &g 2% s.d of govt. expenditure to GDP ratio 2%

Idiosyncratic shocks

s.d of ¢ 0.25 s.d. of earnings growth 0.53
pe and s.d. of 7 0.998,0.11 log earnings variance - age profile '
fa, f1, fo 0.28,—0.52,0.00 earnings losses 5", 50t" & 95" percentiles Figure I

Table I: Baseline calibration

the empirical procedure in Guvenen et al. (2014), we rank workers by their average log labor
earnings 5 years prior to simulating a 3% fall in aggregate output. We then compute the
percent income loss for each worker following the recession and calibrate the parameters of
a quadratic function for f(e) = fo + fie + f2e? to match income losses of the 5, 50" and
95" percentiles. The right panel of Figure I compares earnings loss patterns simulated from
our model with corresponding data summarized by moments in Guvenen et al. (2014).

Parameters of our baseline specification are summarized in Table I.

4.2 Results

In this section we show the optimal response to a one standard deviation negative labor
productivity shock. When we consider purely a monetary policy response, we fix the tax
rate at 7, = 7%, where 7* is the optimal tax rate in the non-stochastic environment. Since
Ramsey policies at time 0 typically differ from continuation Ramsey policies at ¢ > 1, we

report impulse responses for a shock that occurs at ¢t = 10.
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Figure I: The left panel plots change in variance of log earnings for several horizons using
simulated earnings from the model and data from Guvenen et al. (2012). The right panel
plots annual earnings losses using simulated earnings from the model and data in Guvenen
et al. (2014).
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4.2.1 Optimal Response to Productivity Shock

We first consider an optimal monetary policy. Figure III depicts responses to a one-time,
one standard deviation negative impulse to aggregate productivity &g occurring at ¢ = 10.
On impact, this shock induces a drop in growth rate of output of about 3 percentage points.
The solid lines represent responses in our calibrated heterogeneous agent New Keynesian
(HANK) economy, the dashed line show responses in its representative agent counterpart
(RANK). Here we have set by _; = B_y, 6;; = O, for all i and f = 0.1

In the representative agent version, the economy’s response to a productivity shock is
efficient without policy adjustments. As a result, the Ramsey planner keeps nominal interest
rates unchanged to keep inflation stable. Tax rates, which are unchanged by assumption,
are shown to ease comparisons with later experiments.

Such a hands-off monetary policy is not optimal when agents are heterogeneous. A
productivity shock affects different agents differently and because markets are incomplete,
agents cannot insure those risks. A monetary policy response indirectly provides insurance,
partly compensating for market incompleteness.

Productivity shocks differentially affect agents for two reasons. One arises from wealth
heterogeneity. Because an adverse productivity shock permanently lowers all wages, the
consumption of agents having few financial assets falls by more than consumption of agents
with more financial assets. To provide insurance against that adverse aggregate shock, the
planner desires to lower returns on assets. She can achieve this in two ways. First, the planner
can reduce the ex post realized real return on debt by engineering a surprise inflation at the
time of the shock. Second, the planner can tilt the path of future nominal interest rates
to reduce ex ante returns on savings in subsequent periods. Both of these effects appear in
Figure III. The planner cuts interests rates on impact of the shock, thereby generating a
spike in inflation and a drop in ex post real asset returns, and then commits higher nominal
interest rates that raises real rates.

The second motive for government intervention comes from productivity shocks hav-
ing different effects on high-wage and low-wage agents. As we saw in panel B of Figure I,
low-wage agents are more adversely affected by an adverse productivity shock. To provide in-

surance indirectly, the government would like to design a policy that effectively redistributes

19T compute the impulse responses we simulate a 20 sequences of {€g ¢+, Ee ¢} of length 25 and simulate
the economy twice changing only the shock at period 10. For the first path {g+,€e.+},_1, = (0, —0.03) and
for the second {€g,¢,E0,¢},_10 = (0,0). For each sequence we subtract the the path of endogenous variables
with {€a.t,€e,t},_1o = (0,0) from the path corresponding to the sequence {£g .+, 0.t },_;, = (0, —0.03) and
report the mean across the 20 sequences. The distribution of the IRF is quite tight for our case and so we
do not report the standard error bands around the mean path. All variables show deviations in percentage
points.
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Figure II: Optimal monetary response to a productivity shock

resources from high-wage earners to low-wage earners. Monetary policy can redistribute
indirectly by affecting returns on financial assets. Recall from Section 4.1 that wages and
asset holdings are positively correlated, both in the data and in our model. Thus, a policy
that reduces asset returns effective redistributes resources from high to low wage individuals.
A desire to use this channel reinforces the direction of the optimal response that discussed
above.

When a government also has access to fiscal policy, increasing progressiveness of the
labor taxes also induces desirable redistributions by directly offsetting adverse differential
affects of an adverse productivity shock on the distribution of wages. Figure III shows
the optimal response of monetary-fiscal policy to one standard deviation negative aggregate
labor productivity shock. Because an adverse TFP shock leads to a persistent increase in
the dispersion of log wages, a government optimally responds by permanently increasing tax
rates one period after the shock. The delayed increased in tax rates is optimal as it also helps
to lower real rate at the time of the shock (for the same reason tax rates are temporarily
decreased on the impact of the shock). As the result, the path of nominal rates and inflation
is smoother when fiscal policy is active, which helps the planner to reduce to costs of price

adjustments.
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Figure III: Optimal monetary-fiscal response to a productivity shock

4.2.2 Robustness of baseline findings

We now discuss the robustness of our baseline findings and the roles of several assumptions.

We begin with the role of Pareto weights. Since agents are heterogeneous, a Ramsey
planner wants to redistribute resources; how and how much depends on the Pareto weights.
Therefore, Pareto weights affect the average levels of the interest rate, tax rate, and transfers.
Policy responses to shocks are mainly driven by the planner’s desire to provide insurance.
The planner’s desire to insure is distinct from its desire to redistribute. As a result, policy
responses to aggregate shocks remain quite similar when we assign Pareto weights other than
those assigned by the utilitarian in government objective function (10), or if we were to have
made alternative assumptions about 7 in our analysis of the optimal monetary policy. We
illustrate this assertion in figures VIII and IX of Appendix D.

The planner’s preference for supplying insurance driven by the assumption that aggregate
shocks affect consumption of agents differentially. A planner’s preference to supply insurance
arises from two features of our baseline calibration: agents differ in their holdings of the
nominal bonds as well as in their exposures to the aggregate shocks through the loading
function that we have f calibrated to match the evidence in Guvenen et al. (2014). In
Figure X of Appendix D, we indicate optimal responses in a economy in which f = 0 and
find that asset heterogeneity alone contributes to 30% of the policy responses.

In our experiments the planner chooses transfers T; at each t. Authors of RANK models
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including Schmitt-Grohé and Uribe (2004) and Siu (2004) typically restrict 7; = 0 for all
t. When we re-compute optimal policies in the RANK version or our economy with 7, =
0 for all ¢, we recover outcomes like those discovered by Schmitt-Grohé and Uribe and
Siu, namely, that paths of inflation and interest rates in that economy, while not longer
constant, are extremely smooth. This reaffirms those authors’ insight that the cost of price
changes in calibrated RANK economies is sufficiently high that a Ramsey planner chooses
to abstain from using inflation fluctuations to smooth distortions coming from aggregate
shocks. The peak change in nominal interest rates and inflation is 0.05% and 0.03% in the
RANK economy, which is an order of magnitude smaller than our baseline HANK outcomes.

We calibrated menu costs to match the the slope of the Phillips curve. Lower costs
of changing prices imply that lowering ex-post returns through inflation is a cheaper tool
for the planner to insure agents. We use Figure XI of Appendix D to study the role of
price stickiness by computing the optimal monetary-fiscal policy when menu cost parameter
1 = 0. We find that an inflation response of about 7 percentage points, which is about 5
times larger than in the benchmark economy.

We evaluate the importance of second-order terms in our approximation. In Figure
XII we find that ignoring second-order terms would result in underestimating the optimal
responses by 50%. With only first-order terms, the model misses agents’ precautionary
savings and therefore the evolution of the asset distribution. The fact that impulse responses
are computed at different locations in the state-space under first-order and second-order
approximations causes the first-order and second-order approximations to differ.

In the baseline we imposed natural borrowing limits. A tractable way to add credit
frictions in our framework is to allow for segmented markets and along the lines of Camp-
bell and Mankiw (1989) we introduce “hand-to-mouth” agents. To discipline the mass and
characteristics of such hand-toOmouth agents, we use the SCF to compute the fraction of
households who report zero bond holdings in each of the 20 wage bins ordered by the wage
quantiles and adjust our initial conditions. In the model these agents do not trade nomi-
nal bonds and finance their consumption using after tax labor income and profits from the
firm.!* The optimal monetary fiscal responses with hand-to-mouth agents are reported in
Figure XIII. In comparison to the baseline, the optimal interest rate response is about 50%

larger in magnitude and the response of the tax rate is about the same.

1To maintain the comparability with the baseline and other exercises in this section, we maintain the
assumption that the holdings for the firm are uniformly distributed. It is straightforward to relax this
assumption as we do in Section 5.
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5 Cost-Push Shocks

The New Keynesian literature has emphasized cost-push shocks in accounting for business
cycle fluctuations (see, e.g., Smets and Wouters (2007)) and studied their implications for
optimal monetary policy in a representative agent framework (see, e.g., Clarida et al. (2001),
Gali (2015), Woodford (2003)). Here we study normative implications of such shocks in our
heterogeneous agents economy. To allow for cost push shocks we make two departures from
the Section 2 environment. First, we follow Gali (2015) by modeling cost-push shocks as
shocks to the the elasticity of substitution parameter e. In particular, we assume that the

elasticity of substitution follows an AR(1) process

In(e;) = (1 — pe) In(€) + peIn(er—1) + ¢

Second, we relax the assumption of the previous section that all agents hold equal number
of firm shares. Instead, we assume that agent 7 holds s; shares of firms so that agent i’s

budget constraint (4) becomes

1+
Cip+biy =1 —71)Weexp(0;)niy + T, + si Dy + (T;l) bi—1.
t

5.1 Calibration and Calculations

These assumptions introduce two additional aggregate state variables to a continuation plan-
ner’s problem: x;_; the co-state of the Phillips curve and the elasticity of substitution among
goods, In(e;_1). Both state variables have deterministic dynamics in the non-stochastic limit.
The section 3 computational algorithm must be adjusted to handle such state variables.
We define a new set of aggregate state variables Z; that have deterministic dynamics in
the non stochastic zero noise limit. We adjust the optimal individual and aggregate policy
functions explicitly to depend on these additional states: #(z, Z, Z,¢,&) and X (Z, Z,€),
but continue to approximate around a sequence of current distributions of idiosyncratic
states date by date. To achieve this, let Z(Z) be the non-stochastic steady state values of Z
associated with the current distribution of idiosyncratic states Z and scale both the size of the
shocks ¢,€ and deviations of Z from their steady state levels with the same scaling parameter
o. We can write policy rules explicitly as functions of 0: #(2,Z, Z+0-(Z—Z2),0-¢,0-&;0)
and X (Z,Z+0-(Z — Z),0-&;0) and take a truncated Taylor expansion with respect to o

around o = 0 to approximate policies.'?

12 An alternative approach would be to scale only the shocks: Z(z, Z, Z,0-¢,0-&;0) and X (Z, Z,0 - E; 0).
Such an approach would require solving and approximating around a deterministic path of Z. We leave
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In Appendix C.4, we show that numerical methods from Section 3 extend to this setting:
all required derivatives can be computed by inverting at most max{Nx, N, } x max{Nx, N, }
matrices and computing terms that grow linearly in K, where K is the number of elements
in discrete approximation of Z.

Our calibration remains identical to the one presented in Section 4 except for the stochas-
tic process for ¢; and an initial distribution of shares. To calibrate the distribution of shares,
s;, we average stock holdings of the 2013 Survey of Consumer Finances by wage quantile.!
The correlation of wages and stock holdings is 0.52. Initial shares are defined to be average
stock holding scaled to make average shares held by all individuals be 1. We normalize (; so
that a one standard deviation shock to ¢; changes markups by 1% and following Smets and
Wouters (2007) set the persistence of In(e;) to be 0.65.

5.2 Optimal Responses to Cost-Push Shocks

We report responses to a one standard deviation positive shock (;. Experiments were con-
structed in similar ways to those conducted in Section 4.2. A key finding is that the trade-offs
faced by the policy maker in a heterogeneous agents setting differ substantially from those in
a representative agent economy, leading to policy prescriptions that an order of magnitude
larger in the HANK economy and can also have opposite signs from those in the RANK
economy. We start with differences in monetary policy when labor taxes are fixed at 7" and
then study the case with optimal monetary and fiscal policy.

Optimal monetary responses to a cost-push shock are shown in Figure IV. Although the
representative agent model calls for a moderate tightening of monetary policy following a
cost-push shock, the heterogeneous agents economy requires a substantial decrease in nominal
interest rates and a positive spike in inflation.

To understand this result, it is useful first to analyze the optimal response in the RANK
model. A positive cost-push shock increases firms’ desired mark ups over marginal costs.
Since price changes are costly in New Keynesian models, the planner offsets this effect by
lowering marginal costs and thereby pushes output below its natural level.'* Galf (2015) dubs
this policy “leaning against the wind”. The reduction in output is achieved by committing

to a tight monetary policy in the future that lowers aggregate demand.

studies of that approach to future work and scale Z — Z with o partly because Z — Z remains small
throughout our simulations.

13We interpret stock holdings to be the sum of direct stock and mutual funds and indirect holdings in the
through retirement accounts.

141t is feasible to implement an allocation that sets m; = 0 but that requires that wages adjust to offset
markups and associated deviations of (1 — 7)W from one, which is costly. We return to this consideration
when we discuss an optimal monetary-fiscal response to cost-push shocks.
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Figure IV: Optimal monetary response to a markup shock

Not only positive mark-up shocks induce inflationary pressure, they also decrease labor’s
share and increase profit’s share (see the last row in Figure IV). In the representative agent
economy, these effects on factor shares are of second-order since workers and firm owners
are the same person. In the HANK economy stock ownership is heterogeneous and, thus,
a mark up shock naturally redistributes resources from agents with low stock ownership to
agents with high stock ownership. Since stock ownership and labor earnings are correlated,
this effectively redistributes resources from low wage workers to high wage workers. Leaning
against the wind policies exacerbate this effect.

When markets are incomplete, agents cannot insure against the cost push shock and the
Ramsey planner sets policies indirectly to provide insurance by offsetting the distributional
effects of a cost-push shock. Quantitatively, this consideration dominates the planner’s desire
to reduce costs of price changes. The planner induces a desired redistribution by significantly
lowering interest rates immediately and committing to low interest rates in the future. That
boosts aggregate demand and thereby raises wages and lowers dividends. A notable feature
of the optimal policy is the increases in wages that occur in the period that the shock hits.
Postponing wage increases would be detrimental because firms would respond to anticipated
wage increases by raising current prices thereby generating extra inflation, which is costly,
while not getting the benefits from lowering dividends.

With fixed tax rates, a cost-push shock sets up a tension between movements in the labor
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Figure V: Optimal fiscal monetary response to a markup shock

wedge, i.e., deviations in (1 —7)W from one, and costs of inflation. In a representative agent
economy, when the planner has access to fiscal policy, a first-best allocation characterized by
m = 0 and (1 — 7)W =1 is feasible and can be implemented using a labor tax subsidy that
offsets the time varying markup and nominal rates that do not respond to to the cost-push
shock. This summarizes the dashed lines in Figure V.

Optimal fiscal policy in a HANK economy also stands starkly in contrast to what it is
in a RANK economy. In the HANK economy, the planner raises taxes in response to an
adverse cost-push shock. The aim of planner is still to transfer resources from high-wage
owners of the firms to lower-wage agents but, with labor taxes available, the planner has
a more direct way of influencing wages and firm profits. Higher tax rates contracts labor
supply, raise wages, and lowers dividends. That arrests some of the adverse distributional
effects of markup shocks. As before, tax changes are concentrated on impact of the shock in
order to make the wage increase and the resulting inflation both be unanticipated. Following
the shock, the planner implements a tax subsidy like the one used in the representative agent
economy. The nominal rate closely tracks the real rate, which is also low on impact. These

responses are summarized in the solid lines of Figure V.
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Figure VI: Comparing optimal monetary responses to Taylor rule in RANK model. The solid
line is the optimal response and the dashed line is the response in a competitive equilibrium
with i, = ¢ + 1.5m.

6 Taylor Rules

In this section we study how well standard Taylor rules approximate the optimal policy
in heterogeneous agents settings. We impose a Taylor rule of the form (26) and compare
responses to TFP shocks and cost-push shocks with responses under an optimal policy.!®

We begin with the RANK economy. In Figure VI, we see that the Taylor rule economy
implements an optimal allocation in an economy with only productivity shocks. It also leads
to outcomes similar to those for an optimal policy in response to a cost-push shock. A key
feature of the optimal response is low and stable prices that can be implemented by a Taylor
rule that features a sufficiently large response of nominal rates to inflation. These findings
confirm conclusions of Woodford (2003) and Gali (2015) who also find that Taylor rules are
to being optimal rules.

Things differ in the HANK model. In response to both types of adverse shocks — a
negative aggregate productivity shock or a positive cost-push shock that raises markups —
the optimal plan seeks to transfer resources from high wage earners who receive asset income

to low wage earners who rely primarily on wage income. Transfers are implemented by

15 As in sections 4.2.1 and 5.2, we we keep tax rates constant at optimal 7* value and focus on monetary
responses for all the experiments.
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Figure VII: Comparing optimal monetary responses to Taylor rule in HANK model. The solid
line is the optimal response and the dashed line is the response in a competitive equilibrium

lowering nominal rates, thereby raising aggregate demand, wages, and the price level. Under
the Taylor rule, the responses of aggregates in the HANK economy are very close to those
of RANK economy. The Taylor rule continues to recommend no response to productivity
shocks, and contrary to an optimal response, an increase in interest rates after a cost push
shock. Thus, Taylor rules do a poor job of approximating an optimal policy. Figure VII

summarizes these findings.

7 Concluding Remarks

James Tobin described macroeconomics as a field that explains aggregate quantities and
prices while ignoring distribution effects. Tobin’s characterization also describes much work
subsequent to his in the real business cycle, asset pricing, Ramsey tax and debt, and New
Keynesian research traditions. In each of these lines of research, an assumptions of com-
plete markets and/or of a representative consumer allows the analyst to compute aggregate
quantities and prices without also determining distributions across agents.

This paper departs from Tobin’s “aggregative economics” in two ways. First, we as-

sume incomplete markets — which means that aggregate quantities, prices, and allocations

30



across agents must be determined jointly, not recursively as in complete markets models.
And second, we specify technology and relative skills shocks in a way that makes contact
with findings of Guvenen et al. (2014) that US cross section distributions of labor earnings
have moved systematically over business cycles. A common shock affects both an aggregate
technology shock and the cross-section distribution of skills. Cross-section dispersions in
labor earnings and asset holdings shape both aggregate outcomes and choices confronting a
Ramsey planner.

Finally, an incomplete markets model goes a long way toward framing an optimal policy
problem when it sets the menu of assets. By specifying that the only asset traded in our
model is a risk-free nominal bond, we activate a beneficial role for fiscal and monetary policy
to make nominal interest rates fluctuate in ways that hedge inequality-increasing shocks to

distributions of labor earnings.!®

161t is fruitful to compare our assumptions with those of Musto and Yilmaz (2003), who focus on how
markets that allow citizens to insure outcomes of voting affect the efficacy of redistribution.

31



References

Ahn, SeHyoun, Greg Kaplan, Benjamin Moll, Thomas Winberry, and Christian
Wolf. 2017. “When Inequality Matters for Macro and Macro Matters for Inequality.” In
NBER Macroeconomics Annual 2017, volume 32.: University of Chicago Press.

Aiyagari, S. Rao, Albert Marcet, Thomas J. Sargent, and Juha Seppala. 2002.
“Optimal Taxation without State-Contingent Debt.” Journal of Political Economy, 110(6):
1220-1254.

Algan, Yann, Olivier Allais, Wouter J Den Haan, and Pontus Rendahl. 2010.
“Solving and simulating models with heterogeneous agents and aggregate uncertainty.”

Handbook of Computational Economics.

Anderson, Evan W, Lars Peter Hansen, and Thomas J Sargent. 2012. “Small noise

methods for risk-sensitive /robust economies.” Journal of Economic Dynamics and Control,

36(4): 468-500.

Barro, Robert J. 1979. “On the Determination of the Public Debt.” Journal of Political
Economy, 87(5): 940-971.

Barro, Robert J., and Charles J. Redlick. 2011. “Macroeconomic Effects From Gov-

ernment Purchases and Taxes.” Quarterly Journal of Economics, 126(1): 51-102.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas Sargent. 2017.
“Fiscal Policy and Debt Management with Incomplete Markets.” Quarterly Journal of

Economics.

Campbell, Jeffrey R. 1998. “Entry, exit, embodied technology, and business cycles.” Re-

view of economic dynamics, 1(2): 371-408.

Campbell, John Y., and N. Gregory Mankiw. 1989. “Consumption, Income, and
Interest Rates: Reinterpreting the Time Series Evidence.” NBER Macroeconomics Annual,
4 185-216.

Clarida, Richard, Jordi Gali, and Mark Gertler. 2001. “Optimal Monetary Policy
in Open versus Closed Economies: An Integrated Approach.” The American Economic
Review, 91(2): 248-252.

Clarida, Richard, Jordi GalA, and Mark Gertler. 2000. “Monetary Policy Rules and
Macroeconomic Stability: Evidence and Some Theory.” The Quarterly Journal of Eco-
nomics, 115(1): 147-180.

32



Den Haan, Wouter J. 1997. “Solving dynamic models with aggregate shocks and hetero-

geneous agents.” Macroeconomic dynamics, 1 355—-386.

Evans, David. 2015. “Perturbation Theory with Heterogeneous Agents: Theory and Ap-
plications.” Ph.D. dissertation, New York University.

Farhi, Emmanuel. 2010. “Capital Taxation and Ownership When Markets Are Incom-
plete.” Journal of Political Economy, 118(5): 908-948.

Fleming, Wendell H. 1971. “Stochastic Control for Small Noise Intensities.” SIAM Journal
on Control, 9(3): 473-517.

Fleming, Wendell H, and PE Souganidis. 1986. “Asymptotic series and the method of
vanishing viscosity.” Indiana University Mathematics Journal, 35(2): 425-447.

Gali, Jordi. 2015. Monetary policy, inflation, and the business cycle: an introduction to

the new Keynesian framework and its applications.: Princeton University Press.

Guvenen, Fatih, Serdar Ozkan, and Jae Song. 2012. “The Nature of Countercyclical
Income Risk.” Working Paper 18035, National Bureau of Economic Research.

Guvenen, Fatih, Serdar Ozkan, and Jae Song. 2014. “The Nature of Countercyclical
Income Risk.” Journal of Political Economy, 122(3): 621-660.

Judd, Kenneth L. 1996. “Approximation, perturbation, and projection methods in eco-

nomic analysis.” Handbook of computational economics, 1 509-585.
Judd, Kenneth L. 1998. Numerical methods in economics.: MIT press.

Judd, Kenneth L, and Sy-Ming Guu. 1993. “Perturbation solution methods for economic
growth models.” In Fconomic and Financial Modeling with Mathematica®).: Springer, 80—
103.

Judd, Kenneth L, and Sy-Ming Guu. 1997. “Asymptotic methods for aggregate growth
models.” Journal of Economic Dynamics and Control, 21(6): 1025-1042.

Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante. 2016. “Monetary Policy
According to HANK.” Working Papers 1602, Council on Economic Policies.

Krusell, Per, and Anthony A Smith, Jr. 1998. “Income and wealth heterogeneity in
the macroeconomy.” Journal of political Economy, 106(5): 867-896.

33



Kydland, Finn E, and Edward C Prescott. 1980. “Dynamic optimal taxation, rational
expectations and optimal control.” Journal of Economic Dynamics and Control, 2(0): 79—
91.

Legrand, Francois, and Xavier Ragot. 2017. “Optimal policy with heterogeneous agents

and aggregate shocks : An application to optimal public debt dynamics.”Technical report.

Low, Hamish, Costas Meghir, and Luigi Pistaferri. 2010. “Wage risk and employment
risk over the life cycle.” The American economic review, 100(4): 1432-1467.

Marcet, Albert, and Ramon Marimon. 2011. “Recursive contracts.”

Mertens, Thomas M, and Kenneth L Judd. 2013. “Equilibrium existence and approx-
imation for incomplete market models with substantial heterogeneity.” SSRN 1859650.

Musto, David K., and Bilge Yilmaz. 2003. “Trading and Voting.” Journal of Political
Economy, 111(5): 990-1003.

Reiter, Michael. 2009. “Solving heterogeneous-agent models by projection and perturba-
tion.” Journal of Economic Dynamics and Control, 33(3): 649-665.

Rotemberg, Julio J. 1982. “Monopolistic Price Adjustment and Aggregate Output.” The
Review of Economic Studies, 49(4): , p. b17.

Sbordone, Argia M. 2002. “Prices and unit labor costs: a new test of price stickiness.”
Journal of Monetary Economics, 49(2): 265-292.

Schmitt-Grohé, Stephanie, and Martin Uribe. 2004. “Optimal fiscal and monetary
policy under sticky prices.” Journal of economic Theory, 114(2): 198-230.

Siu, Henry E. 2004. “Optimal fiscal and monetary policy with sticky prices.” Journal of
Monetary Economics, 51(3): 575-607.

Smets, Frank, and Rafael Wouters. 2007. “Shocks and frictions in US business cycles:
A Bayesian DSGE approach.” The American Economic Review, 97(3): 586-606.

Storesletten, Kjetil, Chris I Telmer, and Amir Yaron. 2001. “How important are id-
iosyncratic shocks? Evidence from labor supply.” The American Economic Review, 91(2):
413-417.

Storesletten, Kjetil, Christopher I Telmer, and Amir Yaron. 2004. “Consumption
and risk sharing over the life cycle.” Journal of monetary Economics, 51(3): 609-633.

34



Winberry, Thomas. 2016. “A Toolbox for Solving and Estimating Heterogeneous Agent

Macro Models.” Forthcoming Quantitative Economics.

Woodford, Michael. 2003. Interest and prices.: Princeton University Press.

35



A Scaled Bellman Equation

t—1

After history {Ee.s, Ea.ss Sivss Miys fomp

{Cz’,ta nit}t is

the continuation value for agent ¢ for an allocation
o0

W ({cip,nic},) = B Z BHU (Ciggs igsj, Oras) -

J=0

Scaling WHH = ¢=(1=»)O 7 HH e then have
WtIﬁ{ ({Ci,ta nit}t) = Et—le(lw)[@“g@’t] [U (ét, Ny, 1) + BWtHH ({Cz’,ta nit}t)i| . (27)

Household budget constraint at date ¢ with scaled variables is

1+
1+7Tt

éi7t+8i,t = (1—=m7)n; Wy exp(6; s — ) ‘l'Tt‘l'bH' ( ) exp {— [(:) + 59,4 } Bi,t—l- (28)

For a given monetary-fiscal policy, the household maximizes W7 ({cit, nit},) subject to
(28) for all ¢ > 0 and natural debt limits. The optimality conditions are (??) and

E, | {5 (1 i L”) exp {—v [0+ Eoy]} UUé“ } =1. (29)

1+ m Cit—1

The firms’ optimal pricing and symmetry after dividing by exp (©,) gives us

<Yt - 65 _ Wt)]) —m(147m)+BE exp (1 = v) [© + Eo,411]) <Cg1> i1 (1+mea) = 0.

(30)

The market clearing conditions using the scaled variables are

. . 140 _ . .
G+ T, + ( ] +L; 1) exp {— [@ + 5@,4 } By 1=m /m,t exp(b; — ©O)Widi + B, (31)
t 7
Y, = / s exp(6s, — ©,)di, (32)
Gt Cr= T L 33
t+ Gy =Yy — 577157 (33)

/[;i,tdi — Eta (34)

ﬁt = (1 - Wt>ift - %77'13. (35)
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The planner maximizes (10) subject to (28) - (35). The next lemma shows that (30) and

(35) are slack at the optimal allocation.
Lemma 2. Constraint (30) and (35) do not bind at the optimal allocation.

Proof. Consider an allocation, bond profile, price system, and monetary-fiscal policy

{éi,ta ni,t}m ) {{l;l,t} ,Bt}t ) {Wta Rt7 Pt}t7 {Tt7 j—;fy /Lt}

that satisfies constraints (28) - (35) except (30) and (35). We can construct an alternative
price system and monetary-fiscal policy that does satisfy all equations (28) - (35) and attains
the same value to the Planner.
First, choose a sequence {I; }; that makes constraint (30) satisfied. Then choose {ft, T;, Dt}
so that
(1—F)W, =1 —7) W,

Tt"‘WYt :Tt‘FWth-

Dt = (1 - Wt)ift - %Wf

Evidently {¢;¢, ni¢}, oy {{ } } AWy, Ry, P}y, {7, Ty, iy} satisfies (28) - (35) and is thus
implementable. Furthermore, since the allocation, {¢;s,niz}, s unchanged, the value that

the planner assigns to the equilibrium allocation is also unchanged. O]

B First-Order Conditions for ¢t > 1 Continuation Plan

For brevity we will use s to denote the joint of states and shocks (z,¢,E). Let u(s), p(s), ¢(s)
be the multipliers on the individual constraints (12) - (14) and x(&),£&(E), A(€) be the mul-
tipliers on the aggregate constraints (15) - (17).

Lemma 2 shows that (18) does not bind and hence W (&) only appears in the form of
term (1 —7(€))W(E) and D in the form of term D + 7'. Similarly the state variable 7 only
enters in equation (13). This means that in order to solve for the optimal allocation we need
to find the product (1 — 7(£))W (E) which we denote by W(&), the sum D + T denoted by
T and scale 7/ by a constant of proportionality such that m/(s)Us(s) = R(E) and

/ s)d¢dZ = 1.

Following Marcet and Marimon (2011) we also replace @ in z with a transformation of its
Ez[exp{—[(:)-i-c‘:@]}f]c(l—&—ﬂ)’lu]

associated co-state variable i = 5B loxp {0420 10 im) 1]
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The list of equations that comprise functions F' are

_exp{—[0+&]}a(s)Us(s)(1 +7(E))""
BE, exp{ V[®+E@]}U( )~
~ Uels) [els) = T(E)] = Un(s)n(s) + a(s)), (362)
0=—a+m(z)Elexp{—v [0+ E|} U:(1+m)7 ], (36b)
0= —Un(s) = W(E)Us(s)g(s), (36¢)
0= —N(E) +m/(s)Us(s), (36d)
ex V(O +& ) (1+nw(&
0= pﬁ% eip {+ V@[]G} +(g)@] ] (Uc)((l )( 1]) (A'(s) = (=)
—exp {(1-v) [0+ &o]} i (5) (Usas(s) [els) = T(€)| + Vels))
— p(s)exp {—v [0 + Eo,] } Usl(s)(1 +7(E)) ™"
FWEa(s)o(96(6) () eI (et~ ot WO ) @0
0 = w(z)eIO+ell, (s) — exp {(1 — v) [0 + Eo] } /' (5) (Unn(s)n(s) + Un(s))
+ ¢(5)Unn(s) — g(s)E(E), (36f)
E, [exp{—v [0+ Eg|Us(l + )"0
N e e %6e)
0= —o(s) — p(s)E,[exp {—l/ [@ + 5@} } Us(1+ 7T)_1], (36h)
0= —€(s) + pee(2) + f (2, Z,) Eo + n(e), (361)
0=—u'(s) +w(2). (36))

To impose a measurability restriction that a and p are choice variables that do not depend

on shocks ¢, £ we require
a(s) =E.a(s), p(s) =E.p(s). (36k)

and include them in F'. Next, the list of equations in function R are
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0=—-C(E)+ / é(s)dpdZ, (37a)
0= V(&) + / n(s)g(s)dbdZ (37b)
0= V() + %(5)2 +C(E) + CLE) (37¢)
0= X(g) — A(€), (37d)
)+ A(E), (37e)

0= / () Ua(5)g(s)ddZ, (370)
0= [ #Uis)asz. (37g)
0= / o(s)dodZ (37h)

exp {—v [0+ Eoy} als)Us(s)(1 +7(E)) 2
BE.lexp {—v [0 + Eo4] } Us(1 + 7)1

+ / p(2)m(z) exp {—v [B + o]} Us(s)(1 + (E))2dodZ — ¢ (E)A(E). (37i)

0=—

(i (s) - (=) dod2.

C Taylor Expansion

C.1 Proof of Proposition 1

Let [ (2, Z,0¢,0&;0) and (2, Z, 0e, 0€; o) be optimal policies for the state variable p/ and
m’. From equation (36g) when when o = 0
i (2,2,0,0;0)U.(2, Z,0,0;0)(1 + 7(Z,0;0)) "

1(z) = = = i'(2,7,0,0;0).
) 0.2 2.0,0;0)(1 1 7(Z.0:0)) 1 A )

From (36b) we have, when o = 0,

a(Z,0;0) = m(2>0é(2, Z,0,0;0)(1 +7(Z,0; O))fl

and (36d) implies
' (z,Z,0,0;0)Us(z, Z,0,0;0) = X(Z,0,0), /m’(z, Z,0,0;0)dZ = 1.

Thus
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10;0)(1+7(Z,0;0)) "

TA) =1 and hence

and integrating both sides with respect to dZ we find Rz
m/(z,7,0,0;0) = m(z).
Finally, the stochastic process (36i) for shocks implies
¢'(z,7,0,0;0) = e(2).

We conclude that
2(2,7,0,0;0) = z

and therefore the o = (0 allocation is stationary.

C.2 First-Order Terms

We first prove Lemma 1:

Proof. Proposition 1 implies that %Z (2,7,0,0;0) = 1 for all (z, Z) and therefore 2 = 1 for
all . Using this fact, differentiate (19) with respect to z, evaluated at 2!, and re-arrange to
get

wh=—[F_+F +F.,] " Flforall

Differentiation of (19) and (20) with respect to the k' argument of Z gives

Fl_al + Flal + F! 2} + FxX;, = Ofor all [, k, (38)
K
(Rb + REab) + > (Rlaj + Ry X;) =0 for all k. (39)

=1

Then solving (38) for z} we get
dh=—[F_+F + FL] 7 FiX, = 2l X, (40)

Substituting z! using (40) allows us to solve for Y}, as

X = (Z (RL:UZX + RZX)> [R’g + R’;x’g} : (41)

After we have found Xj, we compute x!, from (40). ]

We now are ready to prove Proposition 2
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Proof. The total derivative of (19) and (20) with respect to o along with E.[¢] = E,[£] = 0
yields!'”

0=F'(zle + 2L& + 21) + FL(XeE + X,) + FLE + Fle

(42)
+ P |2pQ(ale + abE +al) + > 2 Qak + ak) + 2l
k
and
3 (RE(25E + k) + REE + R (Xe€ + X,)) = 0. (43)

k
As equations (42) and (43) must hold for all £ and e, combining the terms loading on &
yields the first result of Proposition 2

o= [F + Fl2lQ] " FL

The terms multiplying £ produce the equations

Flal + FiXe + FL+ F,

hQrl + ZZ‘LQ@“?] =0 (44)
k
and

> (RExf + RE + R Xe) = 0. (45)
k

After substituting z, = 2!y X} and solving equation (44) for x%
th=— [FL+Fl Q] <Fg + Py Xe+ FLal > Xkag)
k
= 2 + 0o Xe + 2y Z XQu.
k
Applying >, X;Q to both sides of this equation gives

-1
ZX’CQ‘%{; = (I - Z Xlelffs,?,) (Z XiQue, + ZX1Q$2,2X€> ;
k . z z

17As ¢ is mean 0, to first-order it will not affect the distribution Z, thus there is no ¥ in the laster term
of the derivative of F' or R.

41



which can be substituted back into zL to yield the next result of the proposition
-1
xfg = xfg’l + xl&g (I — ZX’CQSC;S> (Z Xka§,1>
k k
-1
+ | aky + 2k (1 -y X,g@q;g?,) (Z XkagQ) Xe.
k k

The response of aggregate variables can be found by substituting for zL in (45) and then

solving for Xg

-1
Xe=— > |Rk + Riak, + RExf, (I — ZXlelg’:g) (Z X,Qxlw)
l l

k

—1
(S | Be+ Rak, R, (f—le@xgg) (2 Xz@xfg,l)
l l

k

The remaining terms of (42) and (43) give

F,+Fl ol + Flal + Fi X, + F., =0 (46)

[ I Ak I
r,Qx, + E Q. 4+,
k

and

> (Rbxh + REX,) = 0. (47)
k

Solving for (46) for z! yields
G L IR CRRERERS 38
K

= fﬁ;@ + :EZQXU + xi,,g (Z XkQa:ﬁ) :

k

Applying >, X;@ to both sides of this equation gives

-1
> XQak = (1 -y XZQ:L‘ZS) (Z XiQuhy + Y Xle2’2X0> :
k l l l
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which can be substituted back into zL to yield the next result of the proposition
—1
al = (al,+al, (I -y Xkaf,,?)) <Z XkaZl)
k k
-1
+ | al,+al, (1 -y Xkagg,) (Z Xka’;J) X,.
k k

The response of aggregate variables can be found by substituting for z! in (45) and then

solving for X,

-1

-1
Xo=—|>_ | Rk + Riak, + Riak, (I -y Xleg,?)) <Z XZQ:C;Q)
l l

k

—1
5 |t mtat, (z—le@xz,3> (leczxg,l)
l l

k

C.3 Proof of Proposition 3

In this section we document the properties of the second-order approximation. To express the
terms compactly we will use tensor notation. In particular, suppose that A is a n; X ny X ng
dimensional tensor, H is a ny X ny dimensional tensor and L is a ng X ns dimensional tensor.
Let Ajjx a particular element of the tensor A and Hj; be an element of the tensor /' and

Lyy be an element of tensor L. Define (A, H, L) as the n; X ny X nj tensor given by

<Aa H, L>i1m = Z Aiijlekm,

jk
and similarly (A, -, L), (A, H,-) as

<A> K L)ijl = ZAijkLkl <Aa H, '>ik1 = ZAiijjl
l J

For convenience, we also define z to be the identity matrix, (z—)} = 2}, (z—)% = 2,
(z+)) = b, (z+) = 7, and XY to be the identity matrix. We begin with a lemma that

is the counterpart of Lemma 1 for higher order derivatives.
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Lemma 3. {z),, Xj}r1; satisfy

the=—(F_+F+F) | Y S (Flab By |, (48a)

Oze{z,xf,m,:er} BE{Z327717‘T+}

xhy, = (whx, - Xp) for k > 1 (symmetrically for x%) with

vy =—(FL_+ FL+ FL)™ >, > (FlaanBy) | (48b)
ae{z,x—z,2+} fe{z—,z,2+,X }
and x%y, = (v’ x, Xj, Xp) + 2 X3 with
xé(X :_(Fxl——i_Fxl_'—ng—i-)il Z Z <F(§zﬁaoél){75é{> . (48C>
ac{z—z,2+,X} pe{z—,z,2+,X}

Finally
Xjk = 1ijgO + <ij, ,Xk> + <XXka, > + <XXX7X]',Xk> (49&)

where 15 is 1 if j = k and 0 otherwise

- q-1

Xo=— > (Riak +RY)| | Riaho+ Y D (Rlgat.0) (49b)
L i ac{z,z} Be{z,x}
- -1

Xjx == ) (Rak +RY)| |Rialx+ Y. D (Rladph) (49c)

L I i ac{zz} pe{z, X}
- 11

Xxx =—|Y_ (RLaly + RY) TR+ DY ) (Rl ak BY) (49d)

L i l ae{z, X} pe{z, X}

and symmetrically for X xi.

Proof. From Proposition 1, we know several key features of the policy functions when o = 0.
For the first-order terms zy = I, 2z, = 0 for all k > 1, and Z, = I if | = k and 0 otherwise.
For the second-order terms, zj;, = 0 and Z]l-k = 0 for all 7, k,l. With this, total differentiation

of (19), evaluated at 2!, twice with respect to z yields

Fi_IéO—I—FlfL'OO_’_Fl_i_ZEOO_’_ Z Z <Fclxﬁ7aé76(l)> -

aG{z,x—,x,:{:+} ﬁE{z,x—,w,x-i—}

44



where latter sum captures the contribution of all the first-order terms. Solving for ),
produces equation (48a). Following similar procedures we can produce the other terms
(48b) and (48c). To find X}y, total differentiate equation (20) twice with respect to the jth
and kth arguments of Z to obtain

022( Jk+RX Jk+ Z Z Raﬂ’ J”Bé(Xk>>
l

acfz, X} pe{z, X}

+ R (., Xi Z Z Raﬁ”%’ﬁXX’“)

ac{z,z} pe{z, X}

+Rk<xX07 i’ + Z Z RaﬁvaX 50>

ac{z, X} Be{z,x}

+ 1 Rix), 4 1 Z Z agaamﬁo

ac{zz} pe{z,x}

Substituting for :1:3 p = (th v, X, Xi) + 2% X% and then solving for X gives the expressions

in equations (49). O

In addition to Lemma 3 we require expressions governing the interactions of the individual
and aggregate states (z,Z) with the perturbation parameter o. For convenience, we also
define 0! =1, (z—)! = z,, X! = X, and (z+)!, = 2L +2,Qa2! + 3, 2, Qxk.

Lemma 4. {2} _, X}, }r. satisfy

why=—(F_+F +F, +F 2Q)" 3 ST (Elab Bl

OAE{Z,(E—,(IZ,ZE-‘,—} BG{U,$—,Z,X,I+}

and

-1
Thy = | ¥ + 7Ly (I - Xmngfg> <Z Xmng;J) X,
-1

+ flchz + $la,3 <I - Z Xszgfa) (Z XmQx?ag) (<X§0> B QfB(’j) + (Xkx, X;>)

-1
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whereX] =37 X;Qx) and
21 == (Fom + o+ Fop + FrimoQ) (F‘ (aexs s Xp) + Fypae (Xoex, -, X0)

+Fl+<xX0’ 7Q$ > Z Z <FOZ‘B’O'/ZX’6£‘>

ac{z—z,X,z+} fe{o,x—,z, X, x+}

ZlZU,QZ_(Fll‘—+Fll'+FZ + Fya0Q) Fy o

Finally

_ -1
- (Z Ry 572 R, 03 ( ZXWQ%S) (Z Xm@ﬂ;%) + Ry
1 m

-1

[~ -1

Z Rl leal +Rx 0,3 (I - ZXmQx?,?))

l

<ZXmQx?o,l> + Z <Raﬁ,04fx,ﬁi> Xk

a,Be{z, X}

-1

+ Z leO’,Z + xfr,iﬁ ([ - ZXmQfo?,) (Z XmQx?aQ) (<X§O> 5 Ql’i) + <XkX7 K Xé>)
l m m

PR Y S (Rl )
ac{z,x} fe{z, X}
and symmetrically for {xf,k, Xok -

Proof. Total differentiation of (19) with respect to z and o gives

Fl an+leOU +F3l3+'ré)a+Fal:+xéQxé)a+ Z Z <F(i67a€)’/6<l7> =0
ae{z,x—z,x+} fe{o,x—x,x+}

Directly solving for x yields the expression in the Lemma. For x!_and X!_; total differ-

entiation of (19) and (20) with respect to Z; and o obtains
0 :Fal:—nga + Faixéfa + F)Z(Xko' + Fl+xka + Fl—i-ajOkaa + Fl+ Z ka’ ! Q.CE (50)

+Fxl+<$§cofan +FI+Z$ Qi + Z Z <Fol¢B’C“kvﬁclw>

ac{z—z,X,2+} Be{ox—,z, X, x+}
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and

0= [Rlal, + RxXio+ D (Rl ok Xy, B) (51)
l a,fe{z,X}

+RExb, A+ Y Y (Rhsaf,BL).

ac{z,x} fe{z, X}

Solving equation (50) for %  gives
xfrm = lea,le + ':UIZU,Q (<X50: Y Q$§> + (Xx, - X¢,7>) + l‘fy,szcr + 1’5,73 ZXmQIZ?;

! ! e ! ! :
where z%,, and 2y, , are given in the statement of the Lemma and z, , and z, 3 are in the

statement of Proposition 2. Applying ), X;Q to both sides of this equation and solving for
>, XiQal, yields the expression for %, found in the Lemma. Substituting for z!_ in (51)

and solving for X, generates the expression for X, in the statement of the Lemma. O

Once again we are able to decompose complicated terms such as xék and z!_ which

depend on multiple agents into terms that only depend on a single agent. We exploit this in
the following lemma that gives the quadratic terms in the Taylor expansion of & and X. For

convenience, define E; as the identity matrix, X; = X¢ and (z+)% = ab+2)Qal+>, 2L Qak.

Lemma 5. The terms {:wa ale ol Jabo ol al | Xee, XgUXM} i the second-order expan-
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ston for the indiwidual policies T are given by

l

:EEE

J,’l

[Sea

l
Leg =

[Fl + Fl+x0Q] Z <Fl6>%7 l> + le+<xf)0,Qxl€, Qxb
a,Be{e,x,x+}

—[Fl+Fla OQ]‘1< > ST (Flyal, gl

ac{e,z,z+} Be{ox—,z, X, x+}

+ Fy (w2, Qal, ) + L (w0, Qal, Q) + F Z Top, Qut, Qu >)

R4 P ( S (Fal

ac{e,zz+} Be{€,x,X,z+}
+ Fai+<x607 Qxéa QIE + FlJr Z x0k7 Q‘rsa ng

1
= (a:551+x53< ZXkas?,) (ZXle"ggl )

% k
—1
= (%51 + 2y (I - ZXkag?,) (Z XeQuge )
k k
-1
+ ( -y (z zxk@xgg) (z Xk@xw)) X
k k

-1
= (ZL’fﬂT 1+ 17573 ([ - ZXICQII;B) <Z XkaUU 1)
k k
-1
+ ($g2 +2x ( Z Xkal;a,?)) (Z Xka‘”)) Koo
k

48



and for the aggregate policy function X are given by

-1
o (| it et (1 o) (St
l !

k
—1
; (z Rik. + Rik, (z—zxz@xgg) (le@xgg,l)
k [ l
+ Z < afr & 576£>])
a,Be{€,z,X}

-1
Xoe = Z [RX + Ry o + Ry ( ZXIQIS 3) (Z Xlelg,z)
! ]
1
(Z They + Ry s (I - ZXlefs,:a) (Z Xlelgg,l)
! I I
+ >, D, (Riga >]>

ac{z,X} pe{€,x,X}

-1
Z R + Rzl , + Ryal (I - ZXIQ$2,3> <Z Xlef;z)
k I I

-1
x (Z Ryx; Log,1 + Ry 133 (I_ ZXIQQ?Z,B,) (ZXlefmJ)
koL l !

a,Be{z, X}

Z E, [(Raﬂ,afs,ﬁfz—:)] Rk]E [(:UOO,E 5)}
a,Be{e,z}
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Where

xfﬁ'éf,l - (Fl + Fl+$0Q ( +Z kaQﬁganS + Fl+z ]O?th‘,‘v@mf)

+ Fl+ Z o, Qle, Q) + Fl+<5”007 Qug, Q)

+ Z (Flmo‘gaﬁg))

o, Be{€,x,X,x+}
xfn‘},l —(F; + Fl+$oQ ( o+ Z Lk Qul, Qug) + Fl+ Z L0 Qx}, Q)
+ Fl+ Z T, Qly, Qi) + FZ+<5’7007 Qxl, Qu)

+ FL, Z xh, Quk 4+ Foal Qal

DS <Flﬁ70<mﬁg>>

ae{ox—z,X,x+} fe{€ x, X x+}
xlUO',l:_(FIl——i_Fxl—i_Fl + Fl x5Q)” ( +Z gkan +FZ+Z ]07Q$ )
+ Fl+ Z To, Qrl, Q) + Fl+<$007Q%,Q~’U )
+Fy, Z%ka + F 200Qul, + F,x0,Qx,
+F, ZwngI + (FL_+ FLE, [(al.,e,8) + (b, £, E)]
+ Fl+a:XZXkQE (2, e, e)]

+ Faﬁ—i—‘rX Z Ez X(l)€07 Qx6€7 Q"Efg)}
k
+ Z <Fl,87a076¢l7>>
a,fe{ox—x, X, x+}

Proof. As in Proposition 2, proceed by total differentiating equations (19) and (20) twice
with respect to o. To simplify exposition we will only report the component parts of this

derivatives. Combining the terms loading on e¢ yields

Flal + Fl ahQxl + Z (Flg al, Bl + F. (wf, Qzl, Qal) = 0.
a,fe{e,x,z+}

20



Solving this equation for x!_ obtains the expressions in the proposition. A similar procedure
with produces the expression for z'. and z! . After combining the terms loading on EE,

from the derivative of (19), we see
0 =Flake + FiXee + FlL a\Quls + FL, Z 24 Qe
+ Fl+<x007 Qxé'? ng + FlJr Z ka? Qx57 Qx5>

+FI+Z xkO,ng,ng +FZ+Z ]kan£7Qx£>

7.k

+ Z (Faps e Be).

a,Be{€,2, X, x+}

After substituting =}, = 2!, X} and solving for zl. gives

I ! ! k
Teg = Tggy + TeoXee + Tes E XpQrgg,
2

where z} , is the expression from the Lemma and z% ,, 2 4 are the same terms from Proposi-
tion 2. Applying >, X;Q- to both sides and then solving for >°, X;Qz%. yields the expression
for 2t in the proposition. The terms loading on £ in the derivative of (20) imply

0= Z (R’)‘“(ng + RbEgh. + Z ( ag,ag,ﬁa)

k a?ﬂe{€7x7X}

Substituting for zt, and solving for Xgg, produces the expression for Xgg in the Lemma.

Combining the loading on o, from the derivative of (19) gives
0 =Flale + FyxXogo + Fy 00Qupe + Fiy Z 1, Qe
+Fl+z (@, Ql, Qug) +FZ+Z (o, Qs Qu)
+ Fl+z Thy, Ql, Q) + Fl+<%07Q%aQ$5>
+ Fl+ Z xokaS + FgH_xUOng

+ Z Z (Flg,al, Bg).

ae{a,xf,x,X,er} B€{£7$9X7x+}
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After substituting z} = x4, X} and solving for z! . gives
Ll l X l X k
Log = Log 1 + Teoiee + Tgg ka&%
k

where z} , is the expression from the Lemma and z% ,, 2 4 are the same terms from Proposi-
tion 2. Applying >, X;Q- to both sides and then solving for Y, X;Qz%. yields the expression

for ! . in the proposition. The terms loading on o€ in the derivative of (20) imply

O—Z(R];{Xg—FRk kg"— Z Z aﬁ? §76§>)

k ac{z, X} pe{€,x,X}

Substituting for z! . and solving for X,¢ yields the expression for X¢¢ in the Lemma.

The remaining terms capture the direct dependence on oo. From the derivative of (19) :
0=Flal + FiX,p+ Fl ol + F alQa! + F., Z 2t Qak,

+ F,_ (E. [(zl.,e,e)] +E. [(xfgg,é’ E)]) + Fuy (E [(zl.,e,6)] +E. [(z%e, E,E)])
+Fl+xXZXkQE z¥ e +FZ+$XZE (X}, Qzle, Qule)]

+FZ+Z b, Q. Q +FZ+Z 2o, Q) Qu,)
+FZ+Z oy Qy, QT >+Fl+<x00’Q$sz )
+Fl+ZxUka + Py aggQy + Fy2,Qu

+Fl+zl’kaQ$ + Z (Fags 0oy 35)-

7ﬂ€{0)$_ ’:EuX:'TJ'_}

The final line line captures the effect of the idiosyncratic shocks on the distribution Z and

hence of future policies. Solving this equation for z!  gives
1ol l ! Z k
Loo = Too,1 + xaa,QXUU + Loo,3 XkQI’UU,
k

l

oo,

sides and then solving for >, X;Qz%  yields the expression for 2! . Finally the remaining

where z xlwg and xfm,g are the terms given in the Lemma. Applying ), X;Q- to both

o2



terms from the derivative of (20) are

=Y | Rk, + R Xoo+ > E.[(Rhg afe, BYe)] + REE. [(afy. 2, €)]
k a,Be{e,x}

The expression for X,, in the proposition is obtained by substituting for z _ and solving for
XO'O" D

Finally we note that all the expressions in Lemma 5 involve expressions that inverses of
matrices of order at most max{/N,, Nx}. And sum over at most K elements. The latter can
be seen as all of the subcomponents of any sum can be decomposed into terms depending

on only one group of agents Z;. For example

Z@éka Qi”?fv Q$§> = Z <<$lXX7XjQ:E§7Xka];> + ZUlX<Xjk, QIE(],, QZU(’;))

Jik gk

e ST 00 S X0 S <<Xs‘o,@xz;, ot
J k g,k
+ <XXk7X]Q:L%-7 QJ'J;> + <X]X7 Q.I’Z,,Xk@l";) + <XXX7X]Q'I'£-7XICQ$I;>>

=(ax, X}, X,) + 7y <Z<X§o, Qxh, Qf) + (X, X0, )
k

+ < ¢,7X7 '7X¢/7> + <XXX7X(/77XC/7'>> :
where X! =, X;Quk, X% =" (Xxg, -, Qz%) and symmetrically for X/ .

C.4 Extension to Cost-Push Shocks

[TBA|

C.5 Simulation and Choice of K

In simulating the optimal policy two tasks must be accomplished: we must track the evolu-
tion of the distribution of individual state variables and then discretize the distribution using
K points. In order to track the evolution of the distribution we approximate the continuum
of agents with a large number, N = 100,000, of agents, with each receiving his/her own

idiosyncratic shock. In principle, each period it would be possible to approximate the policy
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rules around this discretized group of agents, but this would be unecessarily intensive. In-
stead we follow a two step procedure: first we approximate the N = 100, 000 group of agents
with a smaller group of K = 10,000 points using a k-means algorithm. Next we approximate
the policy rules around the Z constructed with the k-means algorithm and simulate 1 period
of the economy with the IV agents using the procedure presented in section 3. Additionally,
the derivatives provided in sections C.2-C.3 with respect to the state variables allow us to
partially correct the errors introduced, with the k-means approximation, by adding addi-
tional terms to the Taylor expansion. The advantage of this approach is that it can reduce
the computational time by, in this case, a factor of 10. We choose our K such that increasing

K does not change the impulse responses reported in section 4.

D Robustness

In this section we show the robustness of our main results. We compare the optimal
monetary-fiscal response to alternative economies changing one feature at time. Apart from
Figure IX, in all the figures VIII-XII, the solid line is our baseline calibration and coin-
cides with the “HANK?” lines of Figure III. In Figure IX we compare the optimal monetary
response and the solid line corresponds to that in Figure II.

We start with alternative Pareto weights. Let the initial Pareto weights be denoted by
w; , we use the functional form w; 6271 and choose h to make the optimal tax rate in an
economy with no risk equal the observed marginal tax rate of 24%. In Figure VIII, we see
taxes are slightly more volatile but overall the results are essentially unchanged.

In the main text Section 4.2, when we reported the optimal monetary responses, we
fixed tax rate to their non-stochastic optimal value. Our results are driven by the need for
insurance against aggregate shocks and hence robust to alternative choices of tax rates. As
an example, in Figure IX we compare the optimal monetary responses when 7, = 24%.

To isolate the role of initial asset heterogeneity and the heterogeneous exposure that
comes directly from the loadings function f(.) we set f = 0. The productivity shock now
leads to a parallel shift in skills for all agents. The optimal responses to such a shock is
in Figure X. As one can expect, the responses are mitigated and we conclude that asset
heterogeneity by itself accounts for a third of the response with the more substantial two
third portion coming from the heterogeneous exposures to the aggregate shocks.

Menu costs affect the tradeoffs for the planner to use inflation as against tax rates to
lower holding period returns. In Figure XI we see that when v = 0 the tax rate no longer
dips on impact but stays high for a long time. The planner need not move the tax rate

in order to lower real returns but can instead raise inflation to achieve the same outcome
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Figure VIII: Optimal monetary-fiscal response to a productivity shock with non-utilitarian
Pareto weights
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Figure IX: Optimal monetary response to a productivity shock with non optimal tax rate,
T+ = 24%
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Figure X: Optimal monetary-fiscal response to a productivity shock with f =0

at a lower welfare cost. The inflation rate jumps by 7 percentage points as against 0.12

percentage points in our baseline heterogeneous agent economy.

A useful contribution is that we have derived analytical expressions for derivatives that

allow us to compute higher order terms terms in the Taylor expansions. In Figure XII we

compare our results to the case where we only use the first-order terms. We find that the

optimal responses are very different and lowered by about 50%.

Lastly, in Figure XIII we compute the optimal responses with hand-to-mouth agents.
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Figure XI: Optimal monetary-fiscal response to a productivity shock with ¢» =0
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Figure XII: Optimal monetary-fiscal response to a productivity shock with no second-order
terms
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Figure XIII: Optimal monetary-fiscal response to a productivity shock with hand to mouth

agents.
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