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Abstract

This paper considers team incentive schemes that are robust to nonquantifiable
uncertainty about the game played by the agents. A principal designs a contract for a
team of agents, each taking an unobservable action that jointly determine a stochastic
contractible outcome. The game is common knowledge among the agents, but the
principal only knows some of the available action profiles. Realizing that the game may
be bigger than he thinks, the principal evaluates contracts based on their guaranteed
performance across all games consistent with his knowledge. All parties are risk neutral
and the agents are protected by limited liability.

A contract is said to align the agents’ interests if each agent’s compensation covaries
positively and linearly with the other agents’ compensation. It is shown that contracts
that fail to do so are dominated by those that do, both in terms of the surplus guarantee
under budget balance, and in terms of the principal’s profit guarantee when he is the
residual claimant. It thus suffices to base compensation on a one-dimensional aggregate
even if richer outcome measures are available. The best guarantee for either objective
is achieved by a contract linear in the monetary value of the outcome. This provides a
foundation for practices such as team-based pay and profit-sharing in partnership.

1 Introduction

Much of economic activity is performed by teams, broadly defined to encompass groups
of agents such as partnerships, committees, research groups or start-ups, and work teams
in manufacturing and services. The classical contract-theoretic approach to incentivizing
such teams, pioneered by Holmström (1982), emphasizes the informational aspects of the
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problem. It holds that any signal informative of an agent’s action should optimally be used
to determine his compensation. This leads to contracts that are sophisticated and highly
context-dependent. Moreover, there is no reason for compensation to be team-based, unless it
is exogenously assumed that the outcome only provides information on the team’s aggregate
performance. Both predictions are at odds with incentive schemes typically observed in
practice, which tend to be simpler and often include team-based pay even if information
about individual performance is available. For instance, partnerships commonly operate
under a simple profit-sharing agreement.

In this paper, we investigate foundations for such simple incentive schemes by considering
contracts that are robust to nonquantifiable uncertainty about the game played by the agents.
Our model is based on Holmström’s (1982) team production problem, where each agent takes
an unobservable action at a private cost, and the profile of actions stochastically determines a
contractible outcome that may convey information about both aggregate as well as individual
performance. We assume that all parties are risk-neutral and the agents are protected by
limited liability, but impose no particular structure on the production technology.

The game is common knowledge among the agents, perhaps by virtue of their expertise,
or because it is simply evident now that they have been called to act. However, inspired by
Carroll’s (2015) work on the foundations of linear contracts in principal-agent problems, we
assume that the principal designing the contract only knows some of the actions available
to each agent, and hence he only knows some of the action profiles in the game. Realizing
that the game may be bigger than he thinks, but not having a prior on the set of possible
games, the principal evaluates contracts based on their guaranteed performance across all
games consistent with his knowledge.

Our first result shows that guaranteeing good performance either in terms of the expected
surplus for a budget-balanced team, or in terms of the principal’s own profit if he is the
residual claimant, requires that a contract align the agents’ interests. In particular, each
agent’s compensation should covary positively and linearly with the compensation of all
other agents. Such a contract has a natural representation in terms of a one-dimensional
aggregate of the outcome, the value of which determines everyone’s compensation, so we can
reasonably interpret the contract as providing team-based compensation. Contracts of this
form dominate all other contracts. Thus, team-based compensation is optimal even though
rich measures of individual performance may be available.

The necessity of interest alignment derives from the fact that when a contract induces
disagreement about the ranking of outcomes among the agents, then—should the game
provide the opportunity for it—each agent will seek personal gain at the others’ expense. We
can then find games where this creates a “race to the bottom,” with the unique equilibrium
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leading to the worst possible outcome. We illustrate the basic intuition in the context of a
rank-order tournament after having introduced the model. While the result is reminiscent of
Carroll’s (2015) linearity result for principal-agent problems, the two are logically distinct:
the definition of interest alignment only involves the payments to the agents, so every contract
trivially aligns the agent’s interests in the single-agent case.

If a contract that aligns the agents’ interests is budget balanced among the agents, then
it is in fact a linear contract where each agent is paid a fixed share of the monetary value
generated by the contractible outcome. We show that some such linear contract achieves the
best possible surplus guarantee within the class of budget-balanced contracts. This provides
a possible foundation for profit-sharing agreements in partnerships.

We also show that a linear contract achieves the best possible guarantee for the principal’s
profit in the case where the principal is the residual claimant for the team’s profits and
losses. By our first result, the search for the principal-optimal contract can be restricted to
contracts that align the agents’ interests. Moreover, the candidate optimal contracts can be
represented as consisting of a function specifying the agents’ total compensation for each
outcome, and of shares that determine how it is divided amont the agents. By keeping the
shares fixed and focusing on the total compensation, we can adapt Carroll’s (2015) argument
for the one-agent case to show that the total compensation should be a linear function of the
monetary value generated by the outcome (and thus the contract should be linear overall).
Heuristically, a contract that aligns the agents’ interests ensures that no agent can seek
personal gain at the expense of the other agents. Requiring that this not happen at the
expense of the principal, either, implies that the agents’ compensation must covary linearly
with the principal’s payoff as well, leading to a linear contract.

Whether the optimal guarantees for surplus and profit are positive depends on the severity
of the free-rider problem. Unlike in the case of one agent, it is not enough that some known
action profile generate a positive surplus. The condition that characterizes known production
technologies for which the optimal guarantees are non-trivial comprises of a virtual surplus
calculation: a social planner should be able to generate positive surplus in a model where
the agents’ costs are appropriately inflated to account for the robustness concern. Thus
the theory here predicts that, even absent setup costs, only sufficiently profitable teams are
worth forming.

The question of foundations for linear contracts has received a great deal of attention in
the one-agent case, starting with Holmström and Milgrom (1987). See Carroll (2015) for a
review of this literature. As we focus on the contracts’ guaranteed performance, our work
belongs to the literature studying worst-case optimal contracts in various settings—see, for
example, Hurwicz and Shapiro (1978), Chung and Ely (2007), Chassang (2013), Frankel
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(2014), Garrett (2014), Yamashita (2015), Carroll (2017), Carroll and Segal (2017), and
Marku and Ocampo Diaz (2017). Similar robustness concerns motivate the work on robust
mechanism design following Bergemann and Morris (2005), and the analysis of approximately
optimal contracts in locally misspecified models by Madarász and Prat (2017).

Other theoretical explanations have been put forth for the use of profit-sharing, and
for the prevalence of partnerships as an organizational form in the professional services
industry—see, for example, Garicano and Santos (2004) or Levin and Tadelis (2005). These
papers either exogenously restrict the contract space, or solve for the optimal contract in
particular parametric models. Che and Yoo (2001) show that team-based compensation can
be a part of the optimal mix of formal and relational incentives in a repeated partnership
problem where the agents can observe each others’ actions. Our work provides a comple-
mentary perspective, showing that team-based compensation arises as a robustly optimal
contract in a static setting where the agents cannot monitor each other.

Finally, there is an extensive management literature on teams. The result that contracts
should align the agents’ interests connects with some of the themes in this literature. For
example, Hackman (2002) posits that one of the key enabling conditions for work-team
effectiveness is the existence of a compelling direction that should specify ends but not
means. Interpreting the “means” as the agents’ actions and the “ends” as the contractible
outcome, a contract that aligns the agents’ interests provides just that.1

2 Model

We consider the problem of a principal incentivizing a team of agents, indexed i = 1, . . . , I.
Each agent takes an unobservable action ai from a finite set Ai at a private cost ci(ai) ≥ 0.
The cost can be interpreted as monetary, or as simply describing the agent’s preferences
over the available actions. The resulting action profile a = (a1, . . . , aI) ∈ A := ×Ii=1Ai

determines stochastically the team’s observable output y, an element of a finite set Y of
possible outcomes. The distribution of y given a is denoted F (a) ∈ ∆(Y ). We refer to the
tuple (A, c, F ), where c = (c1, . . . , cI) : A1 × · · · × AI → RI

+ is the profile of cost functions
and F : A→ ∆(Y ) is the family of output distributions, as the technology.

The outcome y provides a measure of the team’s performance, possibly along multiple
dimensions, and serves as a signal about the agents’ actions. Its intrinsic monetary value is
denoted v(y). For example, v(y) may be the expected market value of the team’s production
conditional on the signal y, or it may reflect how the principal aggregates different dimensions

1This is true quite literally: the parameter d in our Definition 1 is the direction of the ray in RI
+ along

which all payment profiles lie.
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of performance. We denote by y0 the least desirable outcome and normalize its value to zero,
i.e., v(y0) = min v(Y ) = 0. (y0 can be chosen arbitrarily among the minimizers if the worst
outcome is not unique.) To avoid trivialities, we assume max v(Y ) > 0.

The agents do not have preferences over the outcomes per se, but the principal can guide
them by designing an incentive scheme that rewards the agents based on the team’s output.
We assume that the agents are protected by limited liability, meaning that payments to them
have to be non-negative. An incentive scheme, or a contract, is thus a function w : Y → RI

+

that specifies a payment profile w(y) = (w1(y), . . . , wI(y)) for every possible outcome y ∈ Y .
The net payoff of agent i is then wi(y)− ci(ai), with the principal receiving v(y)−∑iwi(y).
All parties are assumed risk neutral.

Given a contract w, the convex hull of all payment profiles is denoted W := co(w(Y )).
We say that the contract w is budget balanced if the value of output is shared by the agents,
i.e., if ∑iwi(y) = v(y) for all y.

The principal designs the contract either to maximize total surplus subject to budget
balance, or to maximize his profits. However, he does so without full knowledge of the game
played by the agents. Specifically, inspired by Carroll (2015), we assume that the technology
(A, c, F ) is common knowledge among the agents, but the principal only knows some finite
set A0 = ×Ii=1A

0
i of action profiles with an associated profile of cost functions c0 : A0 → Rn

+

and outcome distributions F 0 : A0 → ∆(Y ), collectively referred to as the known technology.
The principal believes that the true technology may be any (A, c, F ) such that A ⊇ A0 and
(c, F )|A0 = (c0, F 0). That is, the true technology contains the action profiles known to the
principal, and the true costs and output distributions associated with these profiles conform
with the principal’s knowledge. (Note that the set of possible outcomes Y is held fixed; it
is known by all parties.) To simplify notation, we suppress the cost functions and outcome
distributions when this causes no confusion, writing A0 and A for the known and the true
technology, respectively.

Together a contract w and the (true) technology A induce a normal form game Γ(w,A)
between the agents. We let E(w,A) denote its set of mixed strategy Nash equilibria. An
equilibrium exists because A was assumed finite. In case there are many, we adopt the usual
partial-implementation assumption from contract theory and focus on the equilibrium that is
best for the principal’s objective.2 Thus, the expected total surplus induced by the contract

2This minimizes the departure from the standard model and ensures the existence of an optimal contract.
Essentially the same results obtain under the alternative assumption that the agents play the worst equi-
librium for the principal among equilibria that are not strictly Pareto dominated for the agents, but in this
case optimal contracts may only exist in the sense of a limit.
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w given technology A is

S(w,A) := max
σ∈E(w,A)

(
EF (σ)[v(y)]−

∑
a

σ(a)
∑
i

ci(ai)
)
,

where F (σ) is the outcome distribution induced by F and the equilibrium strategy profile σ.
Similarly, the principal’s expected profit from the contract w given technology A is

V (w,A) := max
σ∈E(w,A)

EF (σ)[v(y)−
∑
i

wi(y)].

Faced with the uncertainty about the game played by the agents, the principal ranks
contracts according to their guaranteed expected performance over all possible (finite) tech-
nologies. For total surplus and profits, these guarantees are, respectively,

S(w) := inf
A⊇A0

S(w,A) and V (w) := inf
A⊇A0

V (w,A).

We say that a contract is team-optimal if it maximizes S(w) over all budget-balanced con-
tracts. A contract is principal-optimal if it maximizes V (w). Note that the guaranteed
expected surplus satisfies S(w) ≥ −∑i c

0
i , where c0

i := min ci(A0
i ), since each agent can

ensure a payoff of −c0
i by playing the least-cost action in A0

i given any technology A ⊇ A0.
Similarly, the zero contract w ≡ 0 yields a nonnegative expected profit from any technology,
and hence V (0) ≥ 0.

Some remarks regarding the formulation are in order. The most immediate interpretation
is that the principal is designing the contract for a single team, not fully aware of the game the
agents are playing. For example, this uncertainty may reflect the agents’ superior knowledge
of the situation. Or it could be due to the principal having to design the contract before the
details of the team’s operating environment are known, or even who the team’s members
will be. Importantly, however, the principal can envision and evaluate all possible outcomes
that may arise as a result of the teams activities, i.e., he knows the set Y and the mapping
v : Y → R. The fact that Y is held fixed is not restrictive as our main findings do not
require the output distributions in the known technology to have full support. Thus Y can
contain outcomes that are impossible under the known technology. (We selectively invoke a
full-support assumption to state stronger versions of some of our results.)

An alternative interpretation of the model is that the principal is designing a contract
to be used in a number of different situations, perhaps by many different teams, and wants
the contract to guarantee good expected performance in all of them. In case of the profit
guarantee, a concrete example might be a collection of self-managing teams, such as the
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cabin crews of a large international airline. Each crew may face a multitude of situations
at the airport and on board depending on the model and the condition of the aircraft, the
number and types of passengers, the weather and possible delays caused by it or by technical
problems, and so on. The realized situation may be apparent to all crew members (captured
by the agents knowing A), but it may be too difficult and costly to communicate or verify all
of this information about the circumstances to a third party for the contract to depend on it.
Moreover, large airlines have numerous cabin crews, whose compositions change frequently,
so robust performance in a broad range of circumstances may seem desirable.3

We have deliberately assumed that the contract can only condition on the outcome y.
We view this assumption as capturing the spirit of the robustness exercise. However, as
the agents are assumed to know the true technology, a more general contract could first
ask the agents to report the true technology A, and then determine the incentive scheme w
based on the reports. With one agent, Carroll (2015) shows that such screening contracts
do not alter the findings. But with many agents, there does exist an equilibrium where the
agents truthfully report the technology, and—given our partial implementation assumption—
the situation reduces to the standard Bayesian case. A stronger notion of implementation
together with limited liability would prevent this trivial solution, but a detailed analysis of
this case seems difficult, and we leave it for future work.

3 Necessity of Interest Alignment

We start the analysis by showing that contracts that fail to align the agents’ interests can
be easily improved upon. We also show that, under mild additional assumptions about the
known technology, interest alignment becomes necessary for a contract to have a nontrivial
surplus or profit guarantee.

In order to motivate our definition of interest alignment and to develop intuition for
the result, it is useful to first consider a contract under which the agents are in direct
competition—a rank-order tournament. To this end, suppose for a moment that there are
just two agents and that an outcome is a pair y = (y1, y2) listing their outputs. Let Y be any
finite grid on R2

+ containing the origin and at least one outcome with y1 > y2 and another
with y2 > y1. The value to the principal is the sum v(y) = y1 + y2, and thus y0 = (0, 0).
A rank-order tournament is a contract specifying three payment levels: wi(y) = b > 0 if
yi > y−i, wi(y) = b/2 if yi = y−i, and wi(y) = 0 if yi < y−i. That is, the agent with the
highest output gets a bonus b, which is shared equally in case of a tie.

Because of the form of the contract, agent 1 has an incentive to pursue actions that
3See Hackman (2002) and references therein for a discussion and case studies of cabin crews.
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A0
2 a′2

A0
1 · · · −c1(a1), b
a′1 b,−c2(a2) b/2, b/2

Figure 1. The game Γ(w,A) for the tournament example. Since b is the highest feasible payoff,
a′i is a weakly dominant strategy. To see that a′ is the unique equilibrium, fix a mixed strategy
equilibrium σ. If the support of σ is contained in A0, then some agent i’s expected payoff is at
most b/2, whereas deviating to a′i yields b for sure. Hence, a′i must be in the support of σi for
some agent i. But then a′−i is the unique best response for agent −i, and thus σ−i must play it
with certainty. This in turn implies that σi must play a′i with certainty. Therefore, σ is simply
the pure-strategy profile a′.

increase the likelihood that his output is greater than agent 2’s output, or y1 > y2. If the
only way to do this is by increasing y1, then the tournament does incentivize the agent to
exert effort towards increasing total output.4 But as pointed out by Lazear (1989), it is also
in agent 1’s interest to sabotage agent 2 to lower y2, for example, by refusing to help. He
may also try to claim credit for some of agent 2’s output—or even outright steal it—to shift
some of y2 to y1. To the extent that such actions distract from agent 1’s productive efforts,
they lead to lower total output. Indeed, if both agents can engage in such activities, even
the best equilibrium for the principal may yield no output.

More formally, given any known technology A0, consider a technology A where each agent
has an additional zero-cost action a′i so that Ai = A0

i ∪{a′i} for i = 1, 2. The action a′i results
deterministically in some outcome yi that has agent i winning the tournament if agent −i
plays any action in A0

−i (i.e., yii > yi−i). Think of a′i as an activity that benefits agent i at
the other agent’s expense as discussed above. However, suppose that if both agents engage
in this activity, then nothing is produced: the profile a′ = (a′1, a′2) leads to the outcome
y0 = (0, 0) with certainty. It is easy to verify that a′i is then a weakly dominant strategy for
each agent in the game Γ(w,A), and a′ is the unique equilibrium—see Figure 1.

The principal’s profit given technology A is V (w,A) = v(y0) − b = −b, and thus the
tournament’s profit guarantee is negative: V (w) ≤ V (w,A) < 0. The principal would be
better off offering the zero contract. In fact, as the unique equilibrium of Γ(w,A) yields y0

with certainty, the tournament’s profit guarantee would be nonpositive even if rewarding the
agents was costless to the principal (i.e., if his payoff was just v(y)).

To motivate our definition of interest alignment, it is useful to represent the above ar-
gument graphically. In Figure 2.a, the line segment between (b, 0) and (0, b) is the convex

4Holmström (1982) showed that for some specific choices of technology, a tournament is the optimal
contract for a principal who knows the game played by the agents and designs the contract to maximize his
expected payoff. The (sub-)optimality of the tournament in this sense plays no role in the example.
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w2

w1(b, 0)

(0, b)

(b/2, b/2) = w(y0)

W = co(w(Y ))

(a)

w2

w1

W = co(w(Y ))

(b)

Figure 2. (a) The rank-order tournament. (b) A contract that aligns the agents’ interests.

hull of payment profiles W = co({(0, b), (b/2, b/2), (b, 0)}). The new action a′i allows agent i
to force at zero cost his most preferred point in W (i.e., (0, b) or (b, 0)) if agent −i plays
any action in A0

−i. As the expected payment profile EF (σ)[w(y)] under any mixed strategy
profile σ lies somewhere in W , at least one agent thus has a profitable deviation if the other
agent’s strategy puts positive probability only on known actions. This rules out equilibria
with support in A0. Finally, a′ yields rewards w(y0) = (b/2, b/2) at the midpoint of the line
segment; this point is better for each agent than the other agent’s most preferred point, so
a′ is the unique equilibrium.

A rank-order tournament is special in that the agents’ interests are in direct conflict: for
any outcome distributions F,G ∈ ∆(Y ), whenever EF [w1(y)] > EG[w1(y)] so that agent 1
prefers F to G, we have EG[w2(y)] > EF [w2(y)] so that agent 2 prefers G to F . Graphically,
this is equivalent to W being a downward-sloping line segment as in Figure 2.a so that the
agents have opposite preferences over the points in W . However, it turns out that the same
perverse incentives that undermine the tournament can arise in contracts that induce far less
disagreement about the desirability of different outcome distributions. To completely rule
out such disagreement,W must consist of a (weakly) increasing line segment as in Figure 2.b.
This suggests the following definition.

Definition 1. A contract w aligns the agents’ interests if all payment profiles lie on the
same ray in RI

+, i.e., if w(Y ) ⊂ {w + dt : t ∈ R+} for some w, d ∈ RI
+.

A contract that does not satisfy the definition is said to fail to align the agents’ interests.
The tournament in Figure 2.a is an example. Note that any contract for which the interior
of W is non-empty as in Figures 3 and 4 below fails to align the agents’ interests.

Definition 1 is equivalent to the requirement that for all agents i and j and all outcome
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distributions F,G ∈ ∆(Y ), EF [wi(y)] > EG[wi(y)] implies EF [wj(y)] ≥ EG[wj(y)]. That is,
no two agents disagree on the ranking of any pair of outcome distributions, albeit one of the
agent’s preference may be strict and the other’s weak (if the latter is globally indifferent).
The equivalence follows by noting that each point in the convex hull of payment profiles W
is the expected profile EF [w(y)] for some F ∈ ∆(Y ). Hence, the agents do not disagree on
the ranking of distributions precisely when W , and thus w(Y ), lies along a ray in RI

+.
A second equivalent condition is the existence of outcomes y and y with w(y) ≥ w(y)

such that, for all y ∈ Y , we have w(y) = (1 − λ)w(y) + λw(y) for some λ ∈ [0, 1]. The
parameter λ has a natural interpretation as a measure of the team’s performance on a scale
from zero to one. In this sense a contract that aligns the agents’ interests prescribes team-
based compensation.

Note that any constant contract satisfies Definition 1. For example, the zero contract
aligns the agents’ interests. It is also worth noting that the definition only concerns the
agents, and so in general it is silent on how the payments relate to the value of the outcome.
However, if the contract is also budget balanced, then interest alignment is equivalent to the
agents dividing the value v(y) amongst themselves according to some fixed shares.

Lemma 1. A contract w is budget balanced and aligns the agents’ interests if and only if
there exists α = (α1, . . . , αn) ∈ [0, 1]I such that ∑i αi = 1 and wi(y) = αiv(y) for all i and y.

Proof. Clearly a contract of this form is budget balanced and aligns the agents’ interests.
For the converse, note that by budget balance we can take y = y0 and y ∈ arg maxy v(y)
in the second equivalent condition above. Fixing y, we sum over i and use budget balance
again to get v(y) = ∑

iwi(y) = (1−λ)∑iwi(y0)+λ
∑
iwi(y) = (1−λ)v(y0)+λv(y) = λv(y).

Hence, λ = v(y)/v(y). Noting that wi(y0) = 0 by limited liability and budget balance, we
thus have wi(y) = (wi(y)/v(y))v(y), so taking αi = wi(y)/v(y) yields the result.

Our first main result shows that any contract that fails to align the agents’ interests can
be easily improved upon regardless of whether we are interested in profits or total surplus.

Theorem 1. If a contract w fails to align the agents’ interests, then V (w) ≤ V (0). If,
in addition, w is budget balanced, then S(w) ≤ S(w′) for every contract w′ that is budget
balanced and aligns the agents’ interests.

That is, the guaranteed expected profit of a contract that fails to align the agents’ interests
is no better than that of the zero contract, generalizing the observation from the tournament
example. And if the contract is also budget balanced, then its guaranteed expected surplus
is weakly worse than the guarantee obtained by arbitrarily distributing shares across the
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agents. These results imply, inter alia, that we can restrict attention to contracts that align
the agents’ interests when searching for optimal ones.

We prove Theorem 1 by finding for any contract that fails to align the agents’ interests
a (sequence of) game(s) with poor performance. The construction is more involved, but
the basic idea is the same as in the tournament example: misalignment erodes a contract’s
guaranteed performance because, if given the opportunity, agents will seek personal gain at
the expense of others, and this can lead to all equilibria being bad for the principal.

Before turning to the proof, we note that Theorem 1 can be strengthened under additional
assumptions about the known technology to show that interest alignment is necessary in
order to obtain any nontrivial performance guarantees.

We need the following definitions. An action profile a ∈ A0 satisfies full support if
F (a) 6= δy0 (where δy0 is the Dirac measure at y0) implies that F (a) has full support on
Y . It satisfies costly production if EF (a)[v(y)] > 0 implies ci(ai) > 0 for some agent i. The
following corollary shows that if each known action profile satisfies either of these, the worst
case for any contract that fails to align the agents’ interests is that no value is created.

Corollary 1. Suppose every action profile in the known technology A0 satisfies full support
or costly production. If a contract w fails to align the agents’ interests, then there exists a
sequence of technologies An ⊇ A0 such that

sup
σ∈E(w,An)

F ({y ∈ Y : v(y) > 0}|σ)→ 0.

The value of the team’s equilibrium output converges to zero as n→∞, so the principal’s
profit is nonpositive in the limit (and it would be so even if the principal didn’t have to pay
the agents’ compensation out of pocket). Moreover, the construction in the proof uses actions
whose costs are no lower than the costs of the known actions, implying that the equilibrium
total surplus converges to its theoretical lower bound. This establishes the following corollary.

Corollary 2. Under the assumptions of Corollary 1, if a contract w fails to align the agents’
interests, then V (w) ≤ 0 and S(w) ≤ −∑i c

0
i .

Corollary 2 shows that under relatively weak additional assumptions, contracts that fail
to align the agents’ interests are not only dominated in the sense of Theorem 1; they fail to
improve on the trivial bounds both for profits and total surplus. In fact, if the contract is
also budget balanced, an even weaker assumption will do.

Corollary 3. Suppose the known technology A0 does not contain an action profile a such
that c(a) = 0 and suppF (a) ⊆ arg maxy v(y). If a budget balanced contract w fails to align
the agents’ interests, then S(w) ≤ −∑i c

0
i .
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That is, unless it is costless to produce the most valuable outcome(s) with certainty under
the known technology, any budget balanced contract that fails to align the agents’ interests
has only the trivial surplus guarantee.

Of course, the above results are silent on whether contracts that do align the agents’
interests can improve on the trivial guarantees. We address this question in Sections 4 and 5,
which consider, respectively, team-optimal and principal-optimal contracts.

3.1 Proof of Theorem 1

We present here the proof of Theorem 1, relegating those of the corollaries to the Appendix.
Throughout this section, fix a contract w that fails to align the agents’ interests. Let

Y ∗ :=
I⋂
i=1

arg max
y∈Y

wi(y).

By definition, any y ∈ Y ∗ simultaneously maximizes the payment to every agent. Graphi-
cally, this means that w(y) ≥ x for every x ∈ W . Note that Y ∗ may well be empty.

There are three cases to consider, corresponding to the following three lemmas. The first
case is that the set Y ∗ is empty. This case is similar to the tournament example in that then
no single point in W is the best point for all agents.

Lemma 2. If Y ∗ = ∅, then there exists a sequence of technologies An ⊇ A0, with unique
equilibrium distributions F n ∈ ∆(Y ) and min ci(Ani ) = c0

i for all i, such that F n → δy0.

The proof of this and that of the next lemma make use of the fact that the agents’ payoffs
depend on the outcome distribution F (a) ∈ ∆(Y ) only through the expected payment profile
EF (a)[w(y)] ∈ W . Conversely, any x ∈ W is the expected payment profile for some F ∈ ∆(Y ).
Therefore, when constructing a technology A, as far as the agents’ incentives are concerned,
it suffices to specify the expected payment profiles x(a) ∈ W , a ∈ A.

Proof Sketch. For simplicity, we sketch the proof for the case of two agents, assuming further
that the lowest known cost is zero for each agent (i.e., c0

i = 0, i = 1, 2).
When Y ∗ = ∅ and I = 2, the set W is either a downward-sloping line segment as in

Figure 2.a, or it has a non-empty interior as in Figure 3. The first case essentially reduces
to the tournament example, so we focus on Figure 3.

Consider a technology A where Ai = A0
i ∪ {a1

i , a
2
i , a

3
i } with ci(aki ) = 0 for all i and k (so

that each new action is a least-cost action) and where any a ∈ A involving new actions is
assigned an expected payment profile as specified in the right panel of Figure 3.
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w2

w1

z2

z1
x0

x1

x2

x3

x4

w(y0)

W

A0
2 a1

2 a2
2 a3

2

A0
1 · · · z2 u0 u0

a1
1 z1 x0 u1 u1

a2
1 u0 x1 x2 u2

a3
1 u0 u1 x3 x4

Figure 3. A contract that fails to align the agents’ interests with Y ∗ = ∅. The gray area is
W , the convex hull of payment profiles. The payoff matrix represents the game Γ(w,A) in the
proof sketch for Lemma 2.

Note that zi is (one of) agent i’s most preferred point(s) in W . Such points z1 and z2 are
necessarily distinct when arg maxy w1(y)∩arg maxy w2(y) = ∅. Taking zi to be the expected
payment profile if agent i plays a1

i and the other agent plays any a−i ∈ A0
−i eliminates

equilibria in known actions (i.e., with support in A0): in any such equilibrium some agent i
would necessarily get less than zi, and hence he could profitably deviate to a1

i .
If w(y0) was in the dotted rectangle in Figure 3, we could then set x(a1

1, a
1
2) = w(y0)

with no need for actions a2
i and a3

i . Then (a1
1, a

1
2) would be the unique equilibrium of the

game Γ(w, (A0
1 ∪{a1

1})× (A0
2 ∪{a1

2})), similarly to the tournament example. However, when
w(y0) lies outside the rectangle, as depicted here, this no longer works as at least one agent
i prefers the other agent’s most preferred point z−i to w(y0). (They both do in Figure 3.)

Instead, we choose a sequence (x0, . . . , x4) in W as in Figure 3. That is, each agent i
prefers x0 to z−i, and given any two adjacent elements of the sequence (x0, . . . , x4), agent 1
strictly prefers the odd one and agent 2 the even one. The last element, x4, is chosen in the
interior of W so that we can populate the remaining cells in the payoff matrix in Figure 3
with points u0 < u1 < u2 such that ul < xk for all l, k. (ui are not shown in the left panel;
they can be chosen in the gap between x4 and w(y0) if x3

2 is close enough to x4
2.)

When the row(s) and column(s) corresponding to A0
1 and A0

2 have been eliminated—they
are not necessarily strictly dominated, but no agent will play them with positive probabil-
ity in any equilibrium—the remaining matrix is by construction dominance solvable, with
(a3

1, a
3
2) the unique outcome. Letting x4 → w(y0) thus yields a sequence of technologies whose

unique equilibrium expected payment profiles converge to w(y0), and thus the distributions
generating them can be taken to converge to δy0 as desired.

Note that the number of steps in the path (x0, . . . , x4), and hence the number of actions
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in the technology A, is dictated by the shape ofW , with a narrower set requiring more steps.
However, any points x and x′ < x in the interior of W can be connected by such a path.

If Y ∗ 6= ∅, the projection of W to some pair of agents’ payments is of the form depicted
in Figure 4. (The interior (relative to R2

+) is non-empty, since otherwise w would align the
agents’ interests.) There no longer exist distinct most preferred points for the agents that
got the construction in the proof of Lemma 2 started. However, if no known zero-cost action
profile maps deterministically to the point z in Figure 4, then we can still eliminate equilibria
involving profiles in A0 and drive the outcome to y0 with essentially the same construction.

Lemma 3. Let Y ∗ 6= ∅. Suppose that, for all a ∈ A0, suppF (a) ⊆ Y ∗ implies c(a) 6= 0.
Then there exists a sequence of technologies An ⊇ A0, with unique equilibrium distributions
F n ∈ ∆(Y ), such that min ci(Ani )→ c0

i for all i and F n → δy0.

Proof Sketch. We again assume for simplicity that I = 2 and c0
i = 0, i = 1, 2.

Consider a technology A that assigns one new zero-cost action a1
i to each agent so that

Ai = A0
i ∪ {a1

i }. Choose x0, z1, z2 as in Figure 4, i.e., x0 is in the interior of W and
zii > x0

i > z−ii . Let the expected payment profile be zi if only agent i plays the new action
a1
i ; let it be x0 if both agents play the new action.
The profile a1 is an equilibrium of the game Γ(w,A), because a1

i is the unique best-
response to a1

−i by construction. In fact, for x0 close enough to z, it is the only equilibrium.
To see this, choose x0 close enough to z such that

x0
1 + x0

2 > EF (a)[w1(y)]− c1(a1) + EF (a)[w2(y)]− c2(a2) ∀a ∈ A0.

This is possible, because by assumption every a ∈ A0 with EF (a)[w(y)] = z has some agent
playing a costly action, and A0 is finite. The inequality implies that for all a ∈ A0, we have
zii > x0

i > EF (a)[wi(y)]− ci(ai) for some agent i, who thus can profitably deviate to a1
i . This

rules out other pure-strategy equilibria. With some more work one can establish a1 as the
unique mixed-strategy equilibrium as well.

Having escaped the point z, we can now add actions {a2
i , . . . , a

K
i } to the technology A

and use the construction in the proof of Lemma 2 to drive the equilibrium outcome to y0.

Finally, there remains the possibility that some known action profile a∗ ∈ A0 ensures
that the outcome is in Y ∗ at no cost to the agents. Then a∗ is an equilibrium for any
technology A ⊇ A0, and hence the contract w can potentially give a nontrivial profit or
surplus guarantee. But a∗ is also an equilibrium under the zero contract as well as under
any budget balanced contract that aligns the agents’ interests; such contracts can be shown
to improve upon w. More precisely, we have the following lemma.

14
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w1

z

x0 z1

z2

w(y0)

W

Figure 4. A contract that fails to align the agents’ interests with Y ∗ 6= ∅.

Lemma 4. Suppose there exists a ∈ A0 such that suppF (a) ⊆ Y ∗ and c(a) = 0. Then
V (w) < V (0). Moreover, if w is budget balanced, then S(w) ≤ S(w′) for every contract w′

that is budget balanced and aligns the agents’ interests.

We note for future reference that this lemma holds also for any contract w that aligns
the agents’ interests, different from the zero contract.

Proof. Let a∗ ∈ A0 satisfy the assumption in the lemma. Consider a technology A where
Ai = A0

i ∪ {a′i} and ci(a′i) = 0 for all i. Let F (a′i, a−i) = F (a∗) for all a−i ∈ A−i. Then each
agent can ensure his highest feasible payoff maxwi(Y ) by playing a′i. This implies that any
equilibrium σ ∈ E(w,A) can assign positive probability only to a such that c(a) = 0 and
suppF (a) ⊆ Y ∗. Hence,

V (w,A) ≤ max
a∈A : c(a)=0 and suppF (a)⊆Y ∗

EF (a)
[
v(y)−

∑
i

wi(y)
]

= max
a∈A0 : c(a)=0 and suppF (a)⊆Y ∗

EF (a)
[
v(y)−

∑
i

wi(y)
]
< max

a∈A0 : c(a)=0
EF (a)[v(y)] ≤ V (0).

Above, the second line follows from the first one, since the set of distributions associated
with zero-cost profiles is the same in A and A0; the strict inequality follows, since wi(y) > 0
for y ∈ Y ∗ for some agent i because w is different from the zero contract; the last inequality
follows since every a ∈ A0 with c(a) = 0 is an equilibrium under the zero contract given any
A ⊇ A0. Thus, V (w) ≤ V (w,A) < V (0), establishing the first part of the lemma.

For the second part, suppose that w is budget balanced so that ∑iwi(y) = v(y) for
all y. Then Y ∗ ⊆ arg maxy∈Y

∑
iwi(y) = arg maxy∈Y v(y). By assumption, there thus exists

a∗ ∈ A0 such that c(a∗) = 0 and suppF (a∗) ⊆ arg maxy∈Y v(y). We claim that a∗ ∈ E(w′, A)
for any budget-balanced contract w′ that aligns the agents’ interests and any technology
A ⊇ A0. Indeed, w′i is of the form w′i(y) = αiv(y) for some αi ≥ 0 by Lemma 1. So a∗ gives
each agent his highest feasible payoff under w′ as it maximizes v(y) at zero cost. Hence, a∗

is an equilibrium and S(w′) ≥ EF (a∗)[v(y)] = max v(Y ) ≥ S(w).
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Theorem 1 follows from Lemmas 2–4 by noting that each of Lemmas 2 and 3 implies that
the profit guarantee satisfies V (w) ≤ V (w,An) ≤ EFn [v(y)]→ 0, and the surplus guarantee
satisfies S(w) ≤ S(w,An) ≤ EFn [v(y)]−∑min ci(Ani )→ −∑ c0

i .
To prove the stronger results in Corollaries 1–3, it suffices to show that the additional

assumptions allow us to strengthen Lemma 4. Heuristically, they ensure that there is no
known zero-cost action profile a ∈ A0 such that suppF (a) ⊆ Y ∗, or, if one exists, that the
outcomes in Y ∗ have value zero. See the Appendix for details.

4 Team-Optimal Contracts

We now consider team-optimal contracts, i.e., contracts that give the best possible expected
surplus guarantee S(w) subject to budget balance. By the preceding analysis, it is without
loss of generality to restrict attention to contracts that align the agents’ interests. We
show here that an optimal contract of this form exists, and give a necessary and sufficient
condition for it to yield a non-trivial surplus guarantee. We also derive a necessary and
sufficient condition for the guarantee to be positive so that the team is worth forming, and
discuss how to find the optimal shares.

The following result collects our main findings on team-optimal contracts. For the state-
ment, say that a contract is linear if each agent is paid some fixed share αi ∈ [0, 1] of the
value v(y) for every y ∈ Y . Under budget balance this is equivalent to the contract aligning
the agents’ interests by Lemma 1.

Theorem 2. (i) There exists a linear team-optimal contract.

(ii) A team-optimal contract w guarantees non-trivial expected surplus (i.e., S(w) > −∑i c
0
i )

if and only if the known technology A0 satisfies

max
a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)− 2
∑
i,j:i 6=j

√
(ci(ai)− c0

i )(cj(aj)− c0
j)
)
> −

∑
i

c0
i . (4.1)

(iii) If no known action profile a ∈ A0 satisfies both c(a) = 0 and EF (a)[v(y)] = max v(Y ),
then every team-optimal contract that guarantees non-trivial expected surplus is linear.

Part (i) of Theorem 2 implies that profit-sharing is a robustly optimal arrangement for
a partnership absent a principal who could act as a sink or a source of funds. Part (ii) gives
a necessary and sufficient condition on the known technology A0 for the optimal surplus
guarantee to be non-trivial. The first two terms on the left-hand side of (4.1) correspond
to the expected surplus. The presence of the third term means that a non-trivial surplus
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guarantee requires the known technology to be sufficiently productive; simply being able
to generate surplus in excess of the agents’ minimum costs is not enough. As we explain
below, this can be seen as a manifestation of the familiar free-rider problem. Finally, part
(iii) gives a sufficient condition for all team-optimal contracts to be linear when (4.1) holds.
The condition is weak enough that we expect it to hold in most cases of interest.

Part (iii) of Theorem 2 follows immediately from Corollary 3. As for part (i), since
budget-balanced linear contracts outperform other budget-balanced contracts by Theorem 1,
it suffices to show the existence of an optimal contract within the class of linear contracts. For
this we identify the space of such contracts with the compact set {α ∈ [0, 1]I : ∑i αi = 1} by
Lemma 1. We then use the upper hemi-continuity of the Nash equilibrium correspondence
and our equilibrium selection to show that the surplus guarantee S(w) is an upper semi-
continuous function of α. As such it achieves a maximum at some α∗; this α∗ is a team-
optimal contract. See Lemma A.4 for details.

To prove part (ii) of Theorem 2, and to describe the properties of linear team-optimal
contracts further, we characterize the guaranteed expected surplus S(w) for any budget-
balanced linear contract. Fix any such contract w. Define U0(w) ∈ R ∪ {−∞} by setting

U0(w) := sup
a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)
αi

)
, (4.2)

where 0/0 = 0 and x/0 =∞ for x > 0 by convention. We shall see below that U0(w) can be
interpreted as a type of virtual surplus. It turns out to be a key object in the determination
of the guarantee S(w). One can easily verify that U0(w) = −∞ if and only if αi = 0 for some
agent i with positive lowest known cost c0

i > 0. Thus, every agent’s share being positive, or
every agent’s lowest known cost being zero, is sufficient for U0(w) to be finite. In fact, in the
latter case we have U0(w) ≥ 0, since the sum in (4.2) can then be made zero by choosing a
profile of zero-cost actions.

We note first that if U0(w) = −∞, then we obtain the trivial guarantee S(w) = −∑i c
0
i .

Indeed, then αi = 0 for some agent i with c0
i > 0. Consider a technology where this agent i

has a new action that costs slightly less than c0
i , but leads to the outcome y0 with certainty.

Agent i must play this new action in all equilibria as he has no stake in the outcome, and the
other agents must play their least-cost actions as they cannot affect the outcome. Thus all
equilibria yield the lowest feasible surplus with certainty.5 This shows that we can at least
weakly improve upon any contract w with U0(w) = −∞.

5More formally, consider A ⊇ A0 where Ai = A0
i ∪ {a′i} for some agent i with αi = 0 and c0i > 0, and

Aj = A0
j for j 6= i. Let ci(a′i) = ηc0i for some η ∈ (0, 1), and let F (a) = δy0 whenever ai = a′i. Because

αi = 0, agent i plays a′i in all equilibria of Γ(w,A). Since the other agents cannot affect the outcome, they
must play their least-cost actions in A0. Thus, S(w) ≤ S(w,A) = −ηc0i −

∑
j 6=i c

0
j → −

∑
j c

0
j as η → 1.
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For the case U0(w) > −∞ we have the following characterization.

Lemma 5. Let w be a budget-balanced contract that aligns the agents’ interests. Suppose
U0(w) > −∞. Then

S(w) = min
E∈[0,max v(Y )], b∈RI

+

E −
∑
i

bi subject to

E −
∑
i

bi
αi
≥ U0(w), (4.3)

αiE − bi ≥ −c0
i ∀i = 1, . . . , I. (4.4)

If (E, b) achieves the minimum, then it satisfies (4.3) with equality. Furthermore, there exists
a minimizer (E, b) with E = max{U0(w), 0}, Ebi = 0, and bi ≤ c0

i for all i.

The interpretation of the above minimization problem is that we are trying to construct
a worst-case technology A ⊇ A0 where the best equilibrium a ∈ A results in the expected
value of output E = EF (a)[v(y)] and cost bi = ci(ai) for each agent i.

The proof of Lemma 5 uses the fact that w induces a potential game between the agents.6

That S(w) is not less than the minimum follows by verifying that any technology has an
equilibrium satisfying (4.3) and (4.4). To see this, fix any technology A ⊇ A0. Suppose for
simplicity that each agent’s share αi is positive under w. Define the function P : A→ R by

P (a) := EF (a)[v(y)]−
∑
i

ci(ai)
αi

.

Denoting agent i’s payoff by ui(a) := EF (a)[αiv(y)]− c(ai) we have, for every ai, a′i, and a−i,

ui(ai, a−i)− ui(a′i, a−i) = αi(P (ai, a−i)− P (a′i, a−i)).

That is, the function P is a weighted potential for the game Γ(w,A). This implies that any
a∗ ∈ arg maxa∈A P (a) is a pure strategy Nash equilibrium. Any such equilibrium a∗ satisfies

EF (a∗)[v(y)]−
∑
i

ci(a∗i )
αi

= max
a∈A

P (a) ≥ max
a∈A0

P (a) = U0(w),

where the inequality follows because A ⊆ A0, and the last equality is by definition of U0(w).
Thus, there always exists an equilibrium where the expected value of output and costs satisfy

6All concepts and results related to potential games used in the analysis can be found in Monderer and
Shapley (1996). It can be shown that any contract that aligns the agents’ interests induces a potential game
between the agents, but we do not need the general form of this result.
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(4.3). Moreover, we have αiEF (a∗)[v(y)] − ci(a∗i ) ≥ −c0
i , as otherwise agent i would deviate

to the least-cost action in A0
i , and thus this equilibrium also satisfies (4.4).

We generalize the above argument in the Appendix to the case where αi = 0 for some
agent(s). Then P is no longer a potential, but the game can still be shown to be a generalized
ordinal potential game. We state the general version here for future reference.

Lemma 6. Let w be a budget-balanced contract that aligns the agents’ interests. For every
technology A ⊇ A0, there exists a pure-strategy Nash equilibrium a∗ ∈ E(w,A) such that

EF (a∗)[v(y)]−
∑
i

ci(a∗i )
αi

≥ U0(w),

and αiEF (a∗)[v(y)]− ci(a∗i ) ≥ −c0
i for all i. (−∞ ≥ −∞ is allowed in the first inequality.)

To prove the other direction—that S(w) is not greater than the minimum in Lemma 5—
we construct a sequence of technologies An ⊇ A0 such that S(w,An) converges to the min-
imum. The idea is the easiest to illustrate when every agent’s share is positive, so suppose
this is the case. Let (E, b) achieve the minimum in Lemma 5. Consider a technology A that
assigns one new action a′i to each agent. Let EF (a′)[v(y)] = E and ci(a′i) = bi.

We note first that it is easy to complete the description of A such that the profile of new
actions a′ is an equilibrium by considering the potential P . To see this, note that (4.3) says
that P (a′) ≥ U0(w) = maxa∈A0 P (a). Thus, if we set F (a) = δy0 for every a /∈ A0 ∪ {a′},
then P (a) = −∑ ci(ai)/αi ≤ −

∑
bi/αi ≤ P (a′) for all such a, since we can assume that the

minimizer satisfies bi ≤ c0
i by Lemma 5. Then a′ maximizes the potential on A and hence it

is an equilibrium with the desired surplus E −∑ bi.
However, in general the equilibrium that maximizes the potential need not be the one with

the highest surplus. To rule out equilibria with a higher surplus, we modify the construction
to ensure that a′ is the unique equilibrium. Roughly, we slightly increase the payoff to the
profile a′ and then use the gap between P (a′) and U0(w) so created to carefully construct the
distributions F (a) for actions a /∈ A0∪{a′} to eliminate all other equilibria. We relegate the
details to the Appendix. Our discussion of the free-rider problem below contains a heuristic
derivation of the worst-case surplus under particular assumptions, which essentially provides
a non-technical outline of the proof for that case.

We are now in a position to complete the proof of Theorem 2.

Proof of Theorem 2.(ii). Let w be a linear team-optimal contract. Without loss of generality,
we may assume U0(w) > −∞ so that Lemma 5 applies. Let (E, b) be a minimizer. Suppose
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that w only has the trivial guarantee S(w) = −∑i c
0
i ≤ 0. Then (4.3) implies

0 ≥ S(w) = E −
∑
i

bi ≥ E −
∑
i

bi
αi
≥ U0(w).

By Lemma 5 we can then take E = 0 and bi ≤ c0
i , and hence we must have bi = c0

i for all i.
Since (4.3) binds, this in turn implies that −∑i c

0
i /αi = U0(w), or equivalently, that

max
a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)− c0
i

αi

)
= 0. (4.5)

Conversely, if (4.5) holds, then (E, b) = (0, (c0
1, . . . , c

0
I)) is feasible in the minimization prob-

lem, and thus S(w) ≤ −∑i c
0
i . We conclude that (4.5) is a necessary and sufficient condition

for w to yield the trivial guarantee S(w) = −∑i c
0
i .

The left-hand side of (4.5) is non-negative, since the sum can be made equal to zero by
choosing a profile of least-cost actions. Hence, w has a non-trivial surplus guarantee if and
only if the maximum is positive. Maximizing with respect to α we obtain a necessary and
sufficient condition for this to be true for some (and hence also for the optimal) α:

max
a∈A0

max
α∈[0,1]I :

∑
i
αi=1

(
EF (a)[v(y)]−

∑
i

ci(ai)− c0
i

αi

)
> 0. (4.6)

For any a ∈ A0, the inner maximum in (4.6) is achieved by setting

αi(a) =

√
ci(ai)− c0

i∑
j

√
cj(aj)− c0

j

,

with 0/0 = 1/I by convention. Substituting these shares back into (4.6) and rearranging
then yields the expression in (4.1) and establishes part (ii) of Theorem 2.

4.1 Positive guarantee and optimal shares

Part (ii) of Theorem 2 characterizes all known technologies for which a team-optimal contract
gives a non-trivial surplus guarantee. However, if the lowest known cost c0

i is positive for
some of the agents, this guarantee may still be negative. One possible interpretation of such
a positive lowest cost is that the agent has to incur a fixed cost. With this in mind, it
is natural to ask when does a team-optimal contract achieve a positive surplus guarantee
S(w) > 0 so that the fixed cost is worth incurring and the team is worth forming.

The properties of the minimizers in Lemma 5 immediately imply the following result.
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Lemma 7. Let w be a budget-balanced contract that aligns the agents’ interests. We have
S(w) > 0 if and only if U0(w) > 0. Furthermore, if U0(w) ≥ 0, then S(w) = U0(w).

Therefore, S(w) > 0 for some contract w (and thus also for the optimal contract) if and
only if U0(w) can be made strictly positive by maximizing it with respect to α, or

max
α∈[0,1]I :

∑
i
αi=1

U0(w) = max
a∈A0

max
α∈[0,1]I :

∑
i
αi=1

(
EF (a)[v(y)]−

∑
i

ci(ai)
αi

)
> 0.

Analogously to (4.6), the inner maximum is achieved for any a ∈ A0 by setting

αi(a) =

√
ci(ai)∑

j

√
cj(aj)

, (4.7)

with 0/0 = 1/I by convention. Substituting these shares back into the objective establishes
the following result.

Theorem 3. A team-optimal contract guarantees positive expected surplus if and only if

max
a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)− 2
∑
i,j:i 6=j

√
ci(ai)cj(aj)

)
> 0. (4.8)

If (4.8) holds and w is a team-optimal contract, then S(w) equals the left-hand side of (4.8).
Moreover, a linear team-optimal contract can then be found by substituting any maximizer
from (4.8) into (4.7).

Analogously to (4.1), the left-hand side of condition (4.8) includes an extra term in
addition to the expected surplus, implying that the maximized expected surplus from the
known technology has to be sufficiently positive for the guarantee to be positive. Of course,
(4.1) and (4.8) coincide if the lowest known cost is zero for each agent.

Theorem 3 shows that when the optimal surplus guarantee is positive, a linear team-
optimal contract can be found by first solving the maximization problem in (4.8) to obtain
a maximizer a∗, and then backing out the shares α∗i = αi(a∗) using (4.7). This provides a
way to solve for an optimal contract in parametric examples. The simplest such example is
found by taking the known technology to be a singleton, in which case the optimal shares
are just (4.7) evaluated at the only known action profile.

Even without any additional structure, it is immediate from (4.7) that an agent’s share
should be larger, the costlier is his action in the profile a∗. However, in general the optimal
shares reflect more than just the agents’ costs, because a∗ depends also on how the actions
affect the distribution of outcomes.
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For completeness, we note that if (4.1) holds, but (4.8) is not satisfied, then a linear
team-optimal contract can still be found by maximizing S(w) with respect to α using the
characterization in Lemma 5. But this is a tedious exercise at best. Finally, if (4.1) is not
satisfied, any contract just gives the trivial guarantee −∑ c0

i , so any shares are optimal.

4.2 On the free-rider problem

In order to see the economic intuition behind the surplus guarantee, it is useful to consider
the case where the lowest known cost is zero for each agent (i.e., c0

i = 0, i = 1, . . . , I) so that
U0(w) is nonnegative. The surplus guarantee from any linear budget-balanced contract w is
then simply S(w) = U0(w) by Lemma 7.

The surplus guarantee U0(w) can be interpreted as a type of virtual surplus: it accounts
for the incentive and robustness concerns by inflating the agents’ costs with their shares.
Its roots are in the free-rider problem. Namely, if there is only one agent, then the virtual
surplus equals the true surplus as the agent receives the full value of output. But with two
or more agents, it is impossible to promise the full value to every agent—captured by some
of the shares αi being less than one—resulting in the virtual surplus being lower than the
true surplus. As is evident from the derivation of Theorem 3 above, the third term in (4.8)
captures what is left of this effect after the shares have been optimized. It is also responsible
for the extra term in (4.1).

The following thought experiment explains the functional form of U0(w). Suppose that
the known technology consists of just one action profile: A0 = {a0}. Consider trying to lower
the expected surplus relative to a0 by giving agent 1 a new lower-cost action a′1. To keep
agent 1 indifferent and thus willing to play the new action, we can lower the expected value
of output by (c1(a0

1)− c1(a′1))/α1. If α1 < 1, this reduces the total surplus as the reduction
in the expected value of output is larger than agent 1’s cost saving. That is, the deviation
by agent 1 imposes a negative externality on the other agents; this is precisely the free-rider
problem. Letting c1(a′1) = 0 we obtain the maximal reduction of c1(a0

1)/α1 in the expected
value of output. We can then give agent 2 a zero-cost action a′2 to obtain a further reduction
of c2(a0

2)/α2, and so on. Continuing this process, we obtain a zero-cost action profile a′ whose
expected value of output is given by EF (a′)[v(y)] = EF (a0)[v(y)] −∑ ci(a0

i )/αi. As the costs
are zero, this is also the expected surplus from the profile a′.7 By inspection of (4.2), we
have thus arrived at the formula for U0(w) for the case of one known action profile.

Heuristically, when there are multiple known action profiles, the maximum in (4.2) iden-
tifies the one for which the above process yields the highest remaining surplus.

7This is essentially what the worst-case technology used in the proof of Lemma 5 reduces to in this case,
modulo the fact that there we require incentives to be strict to ensure uniqueness of the equilibrium outcome.
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Two further remarks are in order: First, if some agents have fixed costs so that c0
i > 0,

the above logic still applies. Indeed, as long as U0(w) ≥ 0, the worst-case can still be
obtained with zero-cost actions—that is, Lemma 5 has a minimizer with b = 0—and hence
we have S(w) = U0(w) exactly as above. But because of the fixed costs, we may now have
U0(w) < 0. In this case, we can reduce the expected value of output all the way to zero in
the above process without having to reduce each agent’s cost to zero. The worst case will
then involve some agents having actions with positive costs (corresponding to having bi > 0
for some agent(s) i in Lemma 5). The determination of these costs is why the solution to
the minimization problem in Lemma 5 is more complicated when U0(w) < 0. While there
does not appear to be a simple closed-form expression for S(w) in this case, the solution has
the following regularity: The cost of the new action is set to zero for the agents with the
smallest shares as this provides the largest reduction in the expected value of output for a
given reduction in costs; the agents with the largest shares will have their costs reduced only
to the minimum cost c0

i , which may be positive. We omit the details.
Second, it is worth emphasizing that even when U0(w) ≥ 0, the virtual surplus U0(w) is

the relevant guarantee only because the true technology is unknown. Namely, any maximizer
a∗ ∈ A0 in U0(w) is an equilibrium of Γ(w,A0) as it maximizes the potential P on A0. (It
can be verified that any such a∗ is an equilibrium even if αi = 0 for some i, in which case P
is not a potential for the game.) The resulting expected surplus is EF (a∗)[v(y)] −∑i ci(a∗i ).
So if the principal knew the true technology to be A0, he would expect (at least) this much
surplus instead of U0(w). Consequently, a linear team-optimal contract is in general not an
optimal linear contract for a model where the principal knows the technology.

5 Principal-Optimal Contracts

We then turn to principal-optimal contracts that maximize the principal’s guaranteed ex-
pected profit V (w). By Theorem 1, we can restrict attention to contracts that align the
agents’ interests, because any contract that fails to do so is dominated by the zero contract.
However, unlike in the case of budget-balanced contracts studied in the previous section,
this restriction by itself does not imply any particular relationship between the value of
the outcome, v(y), and the agents’ compensation. Thus, even though a linear contract still
turns out to be optimal, showing this requires more work than in the case of team-optimal
contracts, where linearity was implied by Theorem 1.

As a first step, we derive a convenient representation of the candidate optimal contracts.
Note that if w is a principal-optimal contract, then the lowest payment to each agent must
be zero. Otherwise we could strictly increase the principal’s profit with the contract w′
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defined by w′(y) := w(y) − (minw1(Y ), . . . ,minwI(Y )) for all y ∈ Y , because subtracting
the constants does not affect the agents’ incentives (i.e., E(w,A) = E(w′, A) for all A), but
it reduces the principal’s wage bill. Moreover, because w aligns the agents’ interests, there
exists an outcome y ∈ Y that yields the zero payment simultaneously to all agents so that
w(y) = 0. A contract with this property is said to be anchored at the origin.

Any contract w that aligns the agents’ interests and is anchored at the origin has the
following representation. Let w̄(y) := ∑

iwi(y) denote the agents’ total compensation under
w given outcome y. Then there exist shares α = (α1, . . . , αI) ∈ [0, 1]I , with ∑i αi = 1, such
that for every agent i,

wi(y) = αiw̄(y) ∀y ∈ Y. (5.1)

That is, each agent is paid some fixed share of the total compensation for any outcome.
Conversely, any contract that can be written in this form and where w̄(y) = 0 for some y
aligns the agents’ interests and is anchored at the origin. This result is almost immediate
from the definitions; it can be proven the same way as Lemma 1.8

With the above representation in hand, we can think of the problem of finding a principal-
optimal contract in two stages. First, given the agents’ shares α, determine how the total
compensation w̄(y) should depend on the outcome y. Second, optimize over the agents’
shares. As the total compensation is one dimensional, the first stage resembles the single-
agent case studied by Carroll (2015). We will make use of this connection to show that,
here too, it is optimal to tie total compensation linearly to the value of the outcome, i.e.,
w̄(y) = βv(y) for some β ∈ [0, 1]. The payment to each agent is then wi(y) = αiβv(y),
implying that a linear contract is optimal. (Recall that a contract is said to be linear if each
agent is paid a fixed share of the value v(y) for each y; the shares may or may not sum to
one across agents.) The second stage then consists of finding the optimal linear contract by
optimizing jointly with respect to β and α.

More precisely, we have the following result:

Theorem 4. (i) There exists a linear principal-optimal contract.

(ii) A principal-optimal contract w guarantees a positive expected profit (i.e., V (w) > 0) if
and only if the known technology A0 satisfies (4.8).

(iii) If every action profile in the known technology A0 satisfies full support, then every
principal-optimal contract that guarantees a positive expected profit is linear.

8Replace v with w̄ everywhere in the proof of Lemma 1, and observe that min w̄(Y ) = 0 because w is
anchored at the origin.
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Theorem 4 parallels the findings for team-optimal contracts in Theorem 2. Parts (i) and
(iii) extend Carroll’s (2015) result on the optimality of linear contracts to multiple agents.
Heuristically, a linear contract aligns interests not just among the agents, but among all
the parties. This prevents the agents from seeking personal gain at the other agents’ or the
principal’s expense.

Part (ii) gives a necessary and sufficient condition for the profit guarantee to be positive.
This condition is the same one that characterizes whether a team-optimal contract can
guarantee positive expected surplus. To see why this is the case, note that the principal
can ensure a positive profit by choosing β close enough to 1 and taking α to coincide with
the shares in the team-optimal contract whenever the latter generates a positive expected
surplus. In contrast, if the condition fails, then the free-rider problem makes the surplus
guarantee negative for every linear contract with β = 1; decreasing the agents’ shares by
lowering β can only make matters worse. Note that with one agent, (4.8) reduces to the
requirement that some known action generates a positive expected surplus, which is precisely
Carroll’s (2015) non-triviality assumption.

The rest of this section is devoted to the proof of Theorem 4. Along the way, we obtain a
formula for the profit guarantee for a linear contract, which can be used to find the agents’
shares in a linear principal-optimal contract. We remark on this after the proof.

We will make use of the fact that—as far as the agents are concerned—any contract w
that aligns the agents’ interests and is anchored at the origin can be interpreted as a budget-
balanced contract in an auxiliary model where the value of each outcome y is given by w̄(y).
This allows us to recycle results, most notably the characterization behind Lemma 5, from
the analysis of team-optimal contracts. (In case of the zero contract w ≡ 0, the auxiliary
model does not satisfy the non-triviality assumption max v(Y ) = max w̄(Y ) > 0, so we treat
it separately.) This allows the analysis here to proceed relatively fast.

The virtual surplus U0(w) continues to play a key role in the analysis. To avoid confusion,
we write

Ū0(w) := sup
a∈A0

(
EF (a)[w̄(y)]−

∑
i

ci(ai)
αi

)
∈ R ∪ {−∞},

where we have simply replaced v(y) with the total compensation w̄(y) in the definition of
U0(w) in (4.2), and where 0/0 = 0 and x/0 =∞ for x > 0 by convention.

To shorten the statements of some of the lemmas that follow, we say that a contract w
is eligible if it (i) aligns the agents’ interests, (ii) is anchored at the origin, and (iii) satisfies
V (w) > 0 and V (w) ≥ V (0). This definition adapts Carroll’s (2015) notion of an eligible
contract to the multi-agent setting, parts (i) and (ii) being the novel requirements. For
example, any linear contract satisfies (i) and (ii). But the set of eligible contracts may
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nevertheless be empty, since the best profit guarantee may be zero in violation of (iii).
However, if V (w) > 0 for some contract w, then this contract is eligible unless V (w) < V (0),
in which case the zero contract is eligible. In particular, any principal-optimal contract with
a positive guarantee is eligible.

The following characterization is analogous to the single-agent case.

Lemma 8. Let w be an eligible contract, different from the zero contract. Then

V (w) = min
G∈∆(Y )

EG[v(y)− w̄(y)] subject to EG[w̄(y)] ≥ Ū0(w). (5.2)

Moreover, if G achieves the minimum, then EG[w̄(y)] = Ū0(w).

The proof of Lemma 8 relies on the characterization behind Lemma 5. To see that V (w)
is not less than the minimum, interpret w as a budget-balanced contract in a model where
v(y) = w̄(y). Then Lemma 6 implies that every technology A ⊇ A0 has an equilibrium a∗

such that EF (a∗)[w̄(y)] ≥ EF (a∗)[w̄(y)] −∑ ci(a∗i )/αi ≥ Ū0(w). Thus the principal’s profit is
at least the minimum profit under distributions satisfying the constraint in (5.2).

We prove the other direction in the Appendix. The key observation is that (E, b) ∈ RI+1
+

defined by E = EG[w̄(y)] and b = 0 is a feasible point in the minimization problem in
Lemma 5. Thus, the constructive direction in the proof of Lemma 5 gives us a technology
A ⊇ A0 where the unique equilibrium distribution of outcomes is approximately G.

An application of Lemma 8 yields a formula for the profit guarantee for any eligible linear
contract w, where w̄(y) = βv(y) for some β ∈ (0, 1] and wi(y) = βαiv(y). It turns out that
the formula is also valid for the zero contract whenever it is eligible.9

Lemma 9. Let w be an eligible linear contract with β ∈ [0, 1] and α ∈ [0, 1]I , ∑αi = 1.
Then

V (w) = (1− β) max
a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)
βαi

)
, (5.3)

where 0/0 = 0 and x/0 =∞ for x > 0 by convention.

Note that Lemma 9 applies also when I = 1, in which case α1 = 1 and (5.3) reduces to
the formula derived for the single-agent case by Chassang (2013) and Carroll (2015).

Proof. If w is different from the zero contract and G achieves the minimum in (5.2), then

V (w) = (1− β)EG[v(y)] = 1− β
β

EG[w̄(y)] = 1− β
β

Ū0(w).

9The zero contract has a continuum of parameterizations by α and β, since any αi with
∑

i αi = 1 will do
if β = 0. This multiplicity creates no problem in the analysis, but of course it could be avoided by denoting
the agents’ shares by γi := βαi, in which case β =

∑
γi ≤ 1 and the zero contract corresponds to γ = 0.
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The claim now follows by writing out Ū0(w) and noting that the supremum is achieved, since
Lemma 8 implies that Ū0(w) ≥ 0.

If the zero contract is eligible, then there exists a profile a ∈ A0 such that c(a) = 0 and
EF (a)[v(y)] > 0. (We can’t have c0

i > 0 for any i, because V (0) could then be driven to zero by
giving agent i a cheaper action—cf. footnote 5.) Any a ∈ A0 with c(a) = 0 is an equilibrium
given any technology A ⊇ A0, and hence V (0) = maxEF (a)[v(y)] over a ∈ A0 such that
c(a) = 0. This agrees with the formula in the lemma, given the conventions involving 0.

From (5.3) we can deduce the existence of a best linear contract and see that (4.8) is
necessary and sufficient for the profit that it guarantees to be positive.

Lemma 10. There exists a linear contract w∗ such that V (w∗) ≥ V (w) for every linear
contract w. Moreover, V (w∗) > 0 if and only if the known technology satisfies (4.8).

Proof. If no linear contract is eligible, then the zero contract has V (0) = 0 and thus it is
optimal within the class of linear contracts. If there exists an eligible linear contract, then
the claim follows by continuity of (5.3) in β and αi.

The derivation leading to Theorem 3 in Section 4 shows that if (4.8) holds, then we have
U0(w) = maxa∈A0(EF (a)[v(y)]−∑ ci(ai)/αi) > 0 for some αi ∈ [0, 1]I with ∑αi = 1. Thus,
(5.3) is positive for β close enough to 1. Conversely, if (4.8) does not hold, then we have
(1− β) maxa∈A0(EF (a)[v(y)]−∑ ci(ai)/βαi) ≤ (1− β)U0(w) ≤ 0 for every β and α, showing
that (5.3) is nonpositive. Hence, no linear contract is eligible.

With these facts regarding linear contracts established, to prove Theorem 4 it suffices
to show that any eligible contract can be improved upon by a linear contract, strictly so if
every known action profile satisfies full support. To this end, fix an eligible contract and
consider the representation (5.1). We will show that the contract can be (weakly) improved
upon by making the total compensation w̄ a linear function of the output value v(y), while
keeping each agent’s share αi of the total compensation fixed. As the total compensation is
one-dimensional, this allows us to draw on the proof of the single-agent case.

We need the following key lemma from the single-agent case. It identifies a particular
supporting hyperplane to the set of pairs (v(y), w̄(y)) under contract w that will be used to
define the improvement contract.

Lemma 11. Let w be an eligible contract, different from the zero contract. Then there exist
numbers κ and λ, with λ > 0, such that

v(y)− w̄(y) ≥ κ+ λw̄(y) ∀y ∈ Y, (5.4)

V (w) = κ+ λŪ0(w). (5.5)
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Proof. The claim follows from Lemma 3 in Carroll (2015).10

Given an eligible contract w and numbers κ, λ satisfying (5.4) and (5.5), define the
contract w′ by

w̄′(y) := 1
1 + λ

v(y)− κ

1 + λ
and w′i(y) := αiw̄

′(y), (5.6)

where αi is agent i’s share in the representation (5.1) of the original contract w. Then
w̄′(y) ≥ w̄(y) ≥ 0 for all y ∈ Y by (5.4), and thus w′i ≥ 0 for all i as required by our
definition of a contract. Note that w̄′(y0) = −κ/(1 + λ) ≥ 0 implies κ ≤ 0.

The affine contract w′ so defined will be shown to improve on the contract w. Moreover,
w′ can be further improved upon simply by removing the constant payment, which does not
affect the agents’ incentives, and which is nonnegative by limited liability. Because w′ is
affine, it is not anchored at the origin and hence it neither has the representation (5.1), nor
is it eligible. So for technical reasons, it is convenient to show both improvements at once.

To this end, define the linear contract w′′ by setting

w′′i (y) := αi
1 + λ

v(y) = w′(yi) + αiκ

1 + λ
≤ w′i(y), (5.7)

where the inequality holds because, as noted above, κ ≤ 0.

Lemma 12. Let w be an eligible contract, different from the zero contract, that satisfies (5.4)
and (5.5), and let w′′ be the linear contract defined by (5.7). Then V (w′′) ≥ V (w). Moreover,
if every known action profile satisfies full support and w is not linear, then V (w′′) > V (w).

Proof. We observe first that since w̄(y) ≤ w̄′(y) = w̄′′(y)− κ/(1 + λ) for all y ∈ Y , we have

Ū0(w) ≤ max
a∈A0

(
EF (a)

[
w̄′′(y)− κ

1 + λ

]
−
∑
i

ci(ai)
αi

)
= Ū0(w′′)− κ

1 + λ
. (5.8)

The contract w′′, being linear, satisfies (5.1). Reinterpreting it as a budget-balanced contract
we apply Lemma 6 (with the substitutions v(y) = w̄′′(y) and U0(w′′) = Ū0(w′′)) to find for
any A ⊇ A0 a pure-strategy equilibrium a∗ ∈ E(w′′, A) with EF (a∗)[w̄′′(y)] ≥ Ū0(w′′). But
E(w′, A) = E(w′′, A) as the constants do not affect incentives. Thus, a∗ ∈ E(w′, A) and

EF (a∗)[w̄′(y)] = EF (a∗)[w̄′′(y)]− κ

1 + λ
≥ Ū0(w′′)− κ

1 + λ
≥ Ū0(w),

10The only point where a clarification is warranted is when arguing that the numbers λ and µ—the latter
only appears in the proof—are positive. Then Carroll (2015) shows that V (w) < V (0) (or VP (w) < VP (0) in
his notation), contradicting the eligibility of w. He cites the proof of his Lemma 1. For us the corresponding
reference is the proof of our Lemma 8, where this same conclusion is arrived at by appealing to our Lemma 4.
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where the last inequality is by (5.8). Moreover, w′ satisfies (5.4) by construction, and thus

V (w′, A) ≥ EF (a∗)[v(y)− w̄′(y)] ≥ κ+ λEF (a∗)[w̄′(y)] ≥ κ+ λŪ0(w) = V (w), (5.9)

where the last step is by (5.5). Because A was arbitrary, this implies V (w′) ≥ V (w). Now
V (w′′) = V (w′)− κ/(1 + λ) ≥ V (w′) shows that V (w′′) ≥ V (w) as desired.

It remains to show the strict inequality for non-linear contracts under the full support
assumption. Observe first that if w′ is not linear (i.e., if κ < 0), then V (w′′) > V (w′) ≥ V (w).
So suppose w′ is linear. Let every action profile in A0 satisfy full support, i.e., F (a) 6= δy0

implies suppF (a) = Y for all a ∈ A0. If w is not linear, then w̄(y) ≤ w̄′(y) = w̄′′(y)−κ/(1+λ)
holds with strict inequality for some y ∈ Y . Furthermore, because w is eligible, we have
Ū0(w) > 0 by Lemma 8, and so the maximum in Ū0(w) is achieved by some a ∈ A0 such
that F (a) has full support. This implies that the inequality in (5.8) is strict. The strict
inequality carries through to imply that in (5.9), V (w′, A) is bounded above V (w) uniformly
in A ⊇ A0. Therefore, V (w′′) ≥ V (w′) > V (w).

We can now summarize how the claims in Theorem 4 follow from the previous lemmas.

Proof of Theorem 4. For part (i), we may restrict attention to contracts that align the agents’
interests and are anchored at the origin. Let w be any such contract. If w is not eligible, then
it is dominated by the zero contract, which is linear. If w is eligible, then Lemmas 11 and 12
imply that there exists a linear contract that does at least as well as w. Thus, either way, w
is weakly dominated by a linear contract, and so the existence of a linear principal-optimal
contract follows from Lemma 10, which shows the existence of a best linear contract.

Part (ii) follows from part (i) and Lemma 10.
For part (iii), suppose that every action profile in A0 satisfies full support. Let w be a

nonlinear principal-optimal contract with V (w) > 0. Then w is eligible and it can be strictly
improved upon with a linear contract by Lemmas 11 and 12, a contradiction.

A linear principal-optimal contract can be found as follows. If (4.8) is not satisfied, then
the zero contract is optimal. Otherwise, maximize (5.3) with respect to β and α.

In the latter case, similarly to team-optimal contracts, we may first find the optimal shares
for each a ∈ A0, and then maximize with respect to a. So fix a ∈ A0. Note that given any β,
maximizing (5.3) with respect to α gives us the team-optimal shares in an auxiliary model
where the value of each outcome is βv(y). These are given by α(a) defined in (4.7). Similarly,
maximizing (5.3) with respect to β given α gives us the principal-optimal share in an auxiliary
single-agent model where each action a ∈ A0 costs the agent C(a, α) := ∑

i ci(ai)/αi. Carroll

29



(2015) shows that this is given by β(a, α) =
√
C(a, α)/EF (a)[v(y)]. Substituting these shares

back into the objective gives

(√
EF (a)[v(y)]−

√
C(a, α(a))

)2
=
(√

EF (a)[v(y)]−
√∑

i,j

√
ci(ai)cj(aj)

)2
.

Maximizing the above expression (or the square root thereof to eliminate the square) yields
a maximizer a∗, which can be substituted back into the formulas for the shares to obtain the
optimal contract α∗ = α(a∗) and β∗ = β(a∗, α∗).

The simplest non-trivial examples can be created by assuming that there is only one
known action profile so that A0 = {a0}. In that case there is no maximization over actions,
so the optimal linear contract is given by α∗ = α(a0) and β∗ = β(a0, α∗).

6 Concluding Remarks

We have shown that demanding team incentives to be robust to nonquantifiable uncertainty
about the game played by the agents leads to contracts that align the agents’ interests. Such
contracts have a natural interpretation as being team-based. Under budget balance they
reduce to linear contracts, showing that profit-sharing, or equity, is a team-optimal contract.
And the contract with the best profit guarantee for the principal is similarly linear.

These incentive schemes have two additional robustness properties, which play no role
in our analysis, but likely contribute to their popularity. First, interest alignment limits the
scope for collusion among subsets of agents as all agents’ payoffs are already similar to each
other, save for the costs. Moreover, in case of a linear principal-optimal contract, the agents’
compensation varies linearly with the value of the outcome, so any collusive scheme that
increases the agents’ total compensation also increases the principal’s payoff.

Second, interest alignment not only limits a contract’s downside, it also has the potential
to increase the upside as it gives the agents an incentive to take advantage of unexpected
opportunities to help each other and to allocate tasks efficiently. This upside potential is
lost on our worst-case analysis, and it is unclear how to capture it short of moving to a fully
Bayesian framework. (See Itoh (1991) and Garicano and Santos (2004) for the analysis of
incentives to help and to allocate tasks in Bayesian models.) Note, however, that if the said
opportunities are not unexpected (i.e., if they are part of the known technology), then they
do affect our analysis: withholding help or not referring a task to a better-equipped agent
are examples of the kind of negative actions that lead to the worst case.

The driving force behind our results is that only by completely eliminating conflict in the
agents’ preferences over outcomes can the contract guarantee good performance in all games.
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Taking the worst case over all games consistent with the known technology is arguably a
strong assumptions. On one hand, it leads to a tractable analysis and yields sharp predictions
about optimal contracts. But on the other hand, the prediction that all teams be governed
via linear schemes is obviously empirically false.

With this in mind, one may view the contribution of this paper to be that it identifies
robustness as a force pushing towards contracts that align the agents’ interests. The analysis
here shows that if this concern is strong enough, only linear schemes survive as optimal
ones. Robustness is, however, only one of many considerations affecting contract design.
Consequently, the incentive schemes we observe in practice reflect it to varying degrees. A
natural way to try to incorporate this into the worst-case analysis would be to restrict the
set of games deemed possible, with smaller sets then resulting in less limitations on contract
form. Identifying subsets of games for which the analysis remains tractable is a nontrivial
problem which we leave for future work.

The Appendix

A.1 Proofs for Section 3

Proof of Lemma 2. We assume throughout the proof that the set Y ∗ is empty.
We use the following notation. Let w̄i := maxy∈Y wi(y) and Y ∗i := arg maxy∈Y wi(y).

The projection of W to the payments of agents i and j is denoted Wi,j ⊂ R2
+. The interior

of Wi,j relative to R2 is int(Wi,j). For any x ∈ W , we write xi,j for the image of x in Wi,j.
To simplify the exposition, we assume that wi is not constant for any agent i. We comment

at the end of the proof how the argument needs to be adjusted to accomodate such agents.
(These agents can be essentially ignored when constructing the worst-case technology, so the
issue is mostly notational.)

A Preliminary Technology. We construct a technology with a unique equilibrium ex-
pected payment profile in W . It forms the basis of all other technologies used in the proof.

Define A1 by letting A1
i = A0

i ∪ {a1
i } for all i. Let ci(a1

i ) = c0
i for all i so that the new

action is a least-cost action for each agent.
For each i, fix zi ∈ W such that zii = w̄i. Let F i ∈ ∆(Y ) be such that EF i [w(y)] = zi.
Given an action profile a in A1 such that at least one agent plays the new action a1

i , let
n = n(a) := |{i : ai = a1

i }|. We then define the outcome distribution by setting

F (a) =
(

1− I − n+ 1
I

ξ
) 1
n

∑
i : ai=a1

i

F i + I − n+ 1
I

ξH,
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where ξ ∈ (0, 1), and H is the uniform distribution on Y . The corresponding profile of
expected payments to the agents is

x(a) =
(

1− I − n+ 1
I

ξ
) 1
n

∑
i : ai=a1

i

zi + I − n+ 1
I

ξEH [w(y)]. (A.1)

We record the following observations for future reference:

1. Since wi(y) is not constant in y, a1
i is the unique best-response to any profile a−i where

some agent j 6= i plays a1
j . This is because playing a1

i shifts the convex combination in
(A.1) in the direction of zi and reduces the weight on the full-support distribution H;
the latter effect gives uniqueness even if we have zii = zji for all j such that aj = a1

j .

2. The distribution F (a) has full support on Y . Hence, xi(a) < w̄i for every agent for
whom wi is not constant. Moreover, xi,j(a) is in the interior of the projection Wi,j

(relative to R2) for all agents i and j for which the interior is nonempty.

Lemma A.1. The profile a1 is the unique equilibrium of Γ(w,A1) for all ξ > 0 small enough.

Proof. Observation 1. implies that a1 is an equilibrium, and that it is the only equilibrium
where at least one agent i plays the new action a1

i with probability 1. Thus it only remains
to show that this is the case in every equilibrium.

Let E := ∩iEi, where Ei := {a ∈ A1 : ai ∈ A0
i }. Then E is the event that every agent

plays some known action. Suppose towards contradiction that there exists an equilibrium σ

such that σ(E) = ∏
i σi(A0

i ) > 0. Because Y ∗ is empty, there exists some agent j such that,
conditional on E, F (σ) assigns probability at most (I − 1)/I to arg maxy∈Y wj(y). Thus,
agent j’s payoff, given E, is at most I−1

I
w̄j + 1

I
max{wj(y) : y /∈ Y ∗j }. In particular, some

âj ∈ A0
j with σj(âj) > 0 yields agent j a payoff no greater than this conditional on ∩i 6=jEi.

Note that agent j’s payoff from a1
j is (1 − ξ)zjj + ξEH [wj(y)] = (1 − ξ)w̄j + ξEH [wj(y)]

conditional on ∩i 6=jEi. Moreover, a1
j gives a strictly higher payoff than âj if some agent i 6= j

plays ai /∈ A0
i by observation 1. Thus, for ξ > 0 small enough, a1

j yields a strictly higher
(unconditional) expected payoff than âj, contradicting σj(âj) > 0. The cutoff for ξ depends
on j, but not on σ, so it can be chosen uniformly as there are finitely many agents.

In what follows, we assume that ξ is small enough for the result to apply.

The Worst-case, Case 1. There are two cases to consider. We first deal with the easier
case where wi(y0) ≥ xi(a1) for some agent i, where x(a1) is the expected payment profile
defined by equation (A.1). For concreteness, suppose the inequality holds for agent 1. We
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will ensure strict incentives by using the following perturbation. Let Fε ∈ ∆(Y ) be such
that Fε(y0) > 1 − ε and EFε [w1(y)] > x1(a1). Such a distribution can be found because
x1(a1) < w̄1 by observation 2. Fε will be our equilibrium distribution, so letting ε → 0 will
then give the desired sequence of technologies as Fε → δy0 .

Define A by setting A1 = A1
1 ∪ {a2

1}, with c1(a2
1) = c0

1, and Ai = A1
i for i > 1, where A1

is the technology constructed above. Let F (a) = Fε for all a ∈ A such that a1 = a2
1.

We claim that Fε is the unique equilibrium outcome distribution for the game Γ(w,A).
Indeed, the profile (a2

1, a
1
2, . . . , a

1
I) is an equilibrium, since EFε [w1(y)] > x1(a1) > x1(a1, a

1
−i)

for all a1 ∈ A0
1, and a1

i is optimal for agents i > 1 as their actions do not affect the outcome
when a1 = a2

1. Moreover, agent 1 must play a2
1 in any equilibrium where σi(A0

i ) = 0 for some
agent i. To see this, suppose to the contrary that some such equilibrium has σ1(a2

1) < 1.
Since σi(A0

i ) = 0 for some i, observation 1. then implies that a1
j strictly dominates all aj ∈ A0

j

for every agent j. Thus, σj(A0
j) = 0 for all j, and hence aj = a1

j for all j > 1. But then a2
1

is agent 1’s unique best-response, contradicting σ1(a2
1) < 1.

It remains to show that we have σi(A0
i ) = 0 for at least one agent i in every equilibrium of

Γ(w,A). This follows by the same argument as Lemma A.1. Define the events Ei analogously
and suppose there exists an equilibrium σ with σ(E) > 0. The second paragraph in the
proof of Lemma A.1 applies verbatim. The only difference is in the third paragraph. Now
conditional on some agent i 6= j playing ai /∈ A0

i , a1
j may be only weakly better than âj: if

j 6= 1 and a1 = a2
1, then agent j’s action doesn’t affect the outcome, but a1

j is still optimal as
it is a least-cost action. This is enough to get the contradiction, because a1

j is strictly better
than âj conditional on ∩i 6=jEi. This completes the proof for the first case.

The Worst-case, Case 2. The more challenging case obtains if wi(y0) < xi(a1) for all
i. Then some projection Wi,j of W has a nonempty interior relative to R2. To see this,
note that if intWi,j is empty for all pairs i, j, then each Wi,j is a (possibly degenerate) line
segment. But Y ∗ is empty, so some line segment Wi,j must be strictly decreasing, implying
that wk(y0) ≥ xk(a1) for k = i or k = j. Relabeling if necessary, we assume that intW1,2 6= ∅.

Consider a technology A where Ai = A1
i ∪ {a2

i , . . . , a
K
i } for i = 1, 2, with K a number to

be specified, and where Ai = A1
i for i > 2. We let ci(aki ) = c0

i for all i and k so that any
action ai /∈ A0

i is a least-cost action for agent i.
We first define a collection of points used to define expected payments to action profiles

containing actions in Ai \A1
i , i = 1, 2. Fix ε > 0 and Fε ∈ ∆(Y ) such that Fε(y0) > 1−ε and

EFε [w1,2(y)] ∈ int(W1,2). Fε will be our equilibrium outcome distribution. (We can simply
take Fε = δy0 , if w1,2(y0) ∈ int(W1,2).) Fix x ∈ W such that EFε [w1,2(y)] > x1,2.

Let x0 be some point in X := {x(a) : a ∈ A1, a /∈ A0} (with x(a) defined by (A.1)) that
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maximizes agent 1’s payoff on X. As both x0
1,2 and EFε [w1,2(y)] are in the interior of the

convex setW1,2 (the former by observation 2.), we can choose fromW points x1, . . . , x2(K−1),
with x2(K−1) = EFε [w(y)], such that the sequence (x0, . . . , x2(K−1)) satisfies the following
conditions (where any cases involving k < 0 or k > 2(K − 1) can be ignored):

1. Among two consecutive points, agent 1 prefers the odd one: for all k = 0, . . . , K − 1,

x2k−1
1 > x2k

1 and x2k+1
1 > x2k

1 .

2. Agent 2 has the opposite preference: for all k = 0, . . . , K − 1,

x2k−1
2 < x2k

2 and x2k+1
2 < x2k

2 .

3. Both prefer each point in the sequence to x: for all k = 0, . . . , 2(K − 1), xk1,2 > x1,2.

(See Figure 3, where this sequence is (x0, x1, x2, x3, x4), so K = 3.) Note that the sequence
can be constructed by first choosing a desired sequence in W1,2, and then defining the re-
maining coordinates arbitrarily subject to feasibility.

With K fixed by the above sequence, we choose another sequence (u0, . . . , uK−1) in W
such that uK−1

1,2 > · · · > u0
1,2 and xk1,2 > ul1,2 for any k and l. Say, as xk1,2 > x1,2 for each k, we

can use convex combinations of x2(K−1) and x with large enough weights on x. (In Figure 3
we can take x = w(y0), so these points would lie between x4 and w(y0), close to w(y0).)

To complete the description of A, we assume that any action profile involving actions
{a2

i , . . . , a
K
i }, i = 1, 2, leads to an expected payment profile as specified in Figure 5. Further-

more, we assume that the profile x2(K−1) = EFε [w(y)] is generated by the distribution Fε,
i.e., F (aK1 , aK2 , a−{1,2}) = Fε for all a−{1,2} ∈ A−{1,2}. For all other expected payment profiles,
any distribution F ∈ ∆(Y ) that generates them will do.

Uniqueness of the Equilibrium Outcome Distribution in Case 2. We claim that
every equilibrium of Γ(w,A) has agents 1 and 2 playing actions aK1 and aK2 . Note that this
leads to the outcome distribution Fε that puts at least probability 1 − ε on y0. Therefore,
letting ε→ 0 yields a sequence of technologies with the properties listed in the lemma.

The claim follows from the following two lemmas:

Lemma A.2. Let σ ∈ E(w,A). If σi(A0
i ) = 0 for some i, then σ1(aK1 ) = 1 and σ2(aK2 ) = 1.

Proof. Let σ ∈ E(w,A). Suppose first that σ2(A0
2) = 0. (The case σ1(A0

1) = 0 is handled
analogously.) We can then eliminate column A0

2 in Figure 5. Then a1
1 strictly dominates any

a1 ∈ A0
1 for agent 1. To see this, note that u1

1 > u0
1 by construction. And if agent 2 plays
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A0
2 a1

2 a2
2 a3

2 · · · aK−1
2 aK2

A0
1 · · · · u0 u0 · · · u0 u0

a1
1 · · u1 u1 · · · u1 u1

a2
1 u0 x1 x2 u2 · · · u2 u2

a3
1 u0 u1 x3 x4 · · · u3 u3

... · · · · · · · · · · · · . . . · · · · · ·
aK−1

1 u0 u1 u2 u3 · · · x2K−4 uK−1

aK1 u0 u1 u2 u3 · · · x2K−3 x2(K−1)

Figure 5. Expected payments to agents 1 and 2 (for any fixed a−{1,2} ∈ A−{1,2}) in the game
Γ(w,A) in the proofs of Lemmas 2 and 3.

a1
2, then a1

1 is the unique best-response among actions in A1
1 = A0

1 ∪ {a1
1} by observation 1.

Therefore, σ1(A0
1) = 0, and we can eliminate row A0

1 in Figure 5. But now that row A0
1 and

column A0
2 are both eliminated, the remaining matrix is by construction solvable by iterated

elimination of strictly dominated strategies: a2
1 dominates a1

1 for agent 1 since his payoff in
the cell (a1

1, a
1
2) in Figure 5 is at most x0

1, and we have x0
1 < x1

1, u1
1 < x2

1, and u1
1 < u2

1.
Similarly, once a1

1 is eliminated, a2
2 dominates a1

2 for agent 2 since x1
2 < x2

2, u1
2 < x3

2, and
u1

2 < u2
2. Continuing iteratively, we see that only the cell (aK1 , aK2 ) remains. (Note that we

need not consider costs here as each new action is equally costly.)
Suppose then that σi(A0

i ) = 0 for some i > 2. Then the payoffs in the four cells in the
top-left corner of the matrix in Figure 5 are given by equation (A.1). This implies that a1

2

strictly dominates all a2 ∈ A0
2 for agent 2 by observation 1., and the fact that u1

2 > u0
2 by

construction. Therefore, σ2(A0
2) = 0, implying that we are back in the first case.

Lemma A.3. In every equilibrium σ of Γ(w,A), we have σi(A0
i ) = 0 for some agent i.

The proof is essentially the same as that of Lemma A.1.

Proof. Define the events E := ∩iEi, Ei := {a ∈ A : ai ∈ A0}, and suppose σ(E) > 0 for
some σ ∈ E(w,A). The second paragraph in the proof of Lemma A.1 applies verbatim. The
only difference is in the third paragraph:

If j > 2, then conditional on some agent i 6= j playing ai /∈ A0
i , a1

j may now be only
weakly better than âj. This is because, if ai = aki for some i ∈ {1, 2} and k ≥ 2, then
agent j’s action doesn’t affect the outcome. However, a1

j is still a best-response as it is a
least-cost action. This is enough to get the contradiction, because a1

j does strictly better
than âj conditional on ∩i 6=jEi.

If j ∈ {1, 2}, then a1
j does strictly better than âj whenever some agent i 6= j plays ai /∈ A0

i

by observation 1., and the fact that u1
j > u0

j by construction. A contradiction.
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As promised, we comment here on how to accommodate agents for whom wi is constant.
Let J be the set of such agents. We have |J | ≤ I−2, since w fails to align the agents’ interests.
We can then apply the above construction to agents {1, . . . , I} \ J , setting Aj = A0

j for all
j ∈ J and letting the new actions of agents not in J dictate the outcome in all of the
technologies considered. The above analysis still applies, with the obvious modification that
any “all i”-statement now means “all i /∈ J” where relevant.11 In every equilibrium, any
agent j ∈ J will then play some least-cost action(s) in A0

j , without affecting the outcome.
For example, in Lemma A.1, the result is now that every equilibrium has each agent i /∈ J
playing a1

i . All other results hold as stated.

Proof of Lemma 3. The proof has many elements in common with that of Lemma 2, but
here we also need to manipulate the agents’ costs, leading to some important differences.

Since Y ∗ 6= ∅, there exists z ∈ W such that z ≥ x for all x ∈ W . (Just take z = w(y) for
any y ∈ Y ∗.) This implies that the projection Wi,j of W is two-dimensional for some i and
j as otherwise w would align the agents’ interests. Without loss, take this pair to consist
of agents 1 and 2. Note that the interior of W1,2 relative to R2

+, or int(W1,2), is nonempty.
Recall that x1,2 denotes the image of x ∈ W in W1,2.

We will construct a technology A where Ai = A0
i ∪ {a1

i , . . . , a
K
i } for i = 1, 2, with K to

be specified, and where Ai = A0
i ∪ {a1

i } for i > 2.
Fix η ∈ (0, 1). Let ci(aki ) = ηc0

i for each agent i and k = 1, . . . , K. Then the new
actions are strictly cheaper than any known action with a positive cost: if ci(ai) > 0 for
some ai ∈ A0

i , then at least one inequality in ci(ai) ≥ c0
i ≥ ηc0

i is strict.
In order to define the expected payments, fix ε > 0 and let Fε ∈ ∆(Y ) be a distribution

such that Fε(y0) > 1−ε and EFε [w1,2(y)] ∈ int(W1,2). (If w1,2(y0) ∈ int(W1,2), we can simply
take Fε = δy0 .) Fε will be our equilibrium outcome distribution. Because EFε [w1,2(y)] < z1,2,
we can then find a point x0 ∈ W such that (i) z1,2 > x0

1,2 > EFε [w1,2(y)], (ii) x0
1,2 ∈ int(W1,2),

and (iii) x0 is close enough to z so that

∑
i

(x0
i − ηc0

i ) >
∑
i

EF (a)[wi(y)− ci(ai)] for all a ∈ A0. (A.2)

To see why (A.2) can be satisfied, fix a ∈ A0. If suppF (a) ⊆ Y ∗ so that EF (a)[wi(y)] = zi

for all i, then by the assumption in the lemma, cj(aj) > 0 for some j. Then ηc0
j < cj(aj)

and thus the inequality in (A.2) holds for any x0 such that ∑i x
0
i is close enough to ∑i zi.

If suppF (a) * Y ∗, then ∑i zi >
∑
i EF (a)[wi(y)], and again the inequality holds for any x0

11In particular, Case 1 is now defined as having wi(y0) ≥ xi(a1
−{J}) for some agent i /∈ J , whereas in Case

2, we have wi(y0) < xi(a1
−{J}) for all i /∈ J . (The notation a1

−{J} reflects the fact that x(a) is still defined
by (A.1) to only depend on actions of agents not in J .)
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such that ∑i x
0
i is close enough to ∑i zi. As A0 is finite, some x0 < z thus satisfies (A.2).

We let the profile of expected payments to be x(a) = x0 for any a ∈ A such that ai ∈ A0
i

for i = 1, 2 and aj = a1
j for at least one agent j > 2.

We then define expected payments for action profiles involving new actions of agent 1 and
2. By the above conditions (i) and (ii), we can pick z1 and z2 inW such that zii > EFε [wi(y)],
zii > x0

i > zji , j 6= i. (See Figure 4.) Then we complete the construction of the sequence
(x0, . . . , x2(K−1)) and choose the sequence (u0, . . . , uK−1) exactly as in the proof of Lemma 2.
Finally, given any a−{1,2} ∈ A−{1,2}, we assign the expected payment profiles to agent 1 and
2’s actions as in Figure 5, where the top-left corner is now given by the matrix

A0
2 a1

2

A0
1 · · · z2

a1
1 z1 x0

that reflects elements specific to the current construction. Any distributions generating these
payoffs will do, except for x2(K−1), which is generated by the distribution Fε ∈ ∆(Y ).

We claim that every equilibrium of the game Γ(w,A) so constructed has agents 1 and
2 playing aK1 and aK2 , and thus the unique equilibrium distribution is Fε, which assigns at
least probability 1 − ε to y0. As min ci(Ai) = ηc0

i , letting ε → 0 and η → 1 simultaneously
(say, put 1− η = ε→ 0) yields a sequence of technologies with the desired properties.

To prove the claim, we show first that agents 1 and 2 must play aK1 and aK2 with proba-
bility 1 in every equilibrium σ where σj(A0

j) = 0 for some agent j. Indeed, suppose this holds
for some j > 2. Then the payoff in the cell (A0

1, A
0
2) in Figure 5 is x0. But then a1

i dominates
all actions in A0

i for agents i = 1, 2, and iterated elimination leads to the profile (aK1 , aK2 ) as
desired. If instead j ∈ {1, 2}, say, j = 1, then the top row in Figure 5 is eliminated, and so
a1

2 dominates all actions in A0
2 for agent 2, and iterated elimination again leads to (aK1 , aK2 ).

The case j = 2 is handled similarly.
It remains to show that every σ ∈ E(w,A) has σj(A0

j) for some j. Let E := ∩iEi, with
Ei := {a ∈ A : a ∈ A0}. Suppose towards contradiction that σ(E) > 0. Then (A.2) implies
that conditional on E, the expected payoff of some agent j is strictly less than x0

j−ηc0
j . Thus,

some âj ∈ A0
j with σj(âj) > 0 yields agent j a payoff strictly less than x0

j − ηc0
j conditional

on ∩i 6=jEi. Hence, a1
j gives a strictly higher payoff than âj given ∩i 6=jEi. Moreover, if any

agent i 6= j plays ai /∈ A0
i , then a1

j still gives at least as high a payoff as âj: for j > 2 this
is because agent j’s action then doesn’t affect the outcome and a1

j is a least-cost action; for
j = 1, 2 this is because a1

j then dominates any aj ∈ A0
j by construction. Therefore, a1

j yields
a higher (unconditional) expected payoff than aj, contradicting σj(âj) > 0.
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Proof of Corollary 1. By Lemmas 2 and 3, it suffices to show that if there exists a∗ ∈ A0

such that suppF (a∗) ⊆ Y ∗ and c(a∗) = 0, then there exists a technology A ⊇ A0 such that
for all σ ∈ E(w,A), we have F ({y ∈ Y : v(y) = 0}|σ) = 1. So fix any such a∗.

Note that if a∗ satisfies full support, then F (a∗) = δy0 (since Y ∗ 6= Y if w fails to align the
agents’ interests), and hence y0 ∈ Y ∗. If a∗ satisfies costly production, then EF (a∗)[v(y)] = 0,
and again {y ∈ Y : v(y) = 0} ∩ Y ∗ 6= ∅. Thus, either way, v(y∗) = 0 for some y∗ ∈ Y ∗.

Let A be the technology constructed in the first part of the proof of Lemma 4 with
v(y∗) = 0. As noted there, if σ ∈ E(w,A), then the agents only play zero cost actions
under σ and suppF (σ) ⊆ Y ∗, since otherwise some agent i could profitably deviate to a′i.
Therefore, σ(a) > 0 for a ∈ A0 only if (i) c(a) = 0 and (ii) suppF (a) ⊆ Y ∗. But we saw
above that F ({y ∈ Y : v(y) = 0}|a) = 1 for all such a. On the other hand, if a /∈ A0, then
F (a) = δy∗ , where v(y∗) = 0. Thus A has the desired property.

Proof of Corollary 3. If w is budget balanced so that ∑iwi(y) = v(y) for all y ∈ Y , then
Y ∗ ⊆ arg maxy∈Y

∑
iwi(y) = arg maxy∈Y v(y). The assumption in Corollary 3 then implies

that the case covered by Lemma 4 cannot arise, so the claim follows by Lemmas 2 and 3.

A.2 Proofs for Section 4

We first restate and prove part (i) of Theorem 2:

Lemma A.4. There exists a linear team-optimal contract.

Proof. By Lemma 1, we can identify the space of linear budget-balanced contracts with the
compact set B := {α ∈ [0, 1]I : ∑i αi = 1}. We will denote such a contract simply by α.
As noted in the discussion following Theorem 2 in the main text, it suffices to show that
the guaranteed expected surplus S(α) is an upper semi-continuous function of α on B.12

Fix a sequence (αn) in B converging to some α ∈ B. (Since B is finite dimensional, any
norm will do.) We need to show that S(α) ≥ lim supn S(αn). By moving to a subsequence
if necessary, we can assume that S(αn) converges to lim supn S(αn). Fix any technology
A ⊇ A0 and denote by σn the equilibrium of Γ(α,A) that achieves S(αn, A). Extracting a
further subsequence if necessary, we can assume that the sequence (σn) converges to some
σ ∈ ∆(A). Since the agents’ payoffs are continuous in α, the profile σ is an equilibrium of

12The argument that follows parallels Carroll’s (2015) proof of existence of an optimal linear contract with
general cost lower bounds in the single-agent case.
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Γ(α,A) by the upper hemi-continuity of the Nash equilibrium correspondence. We thus have

S(α,A) ≥ EF (σ)[v(y)]−
∑
a

σ(a)
∑
i

ci(a)

= lim
n

(
EF (σn)[v(y)]−

∑
a

σn(a)
∑
i

ci(a)
)

= lim
n
S(αn, A) ≥ lim

n
S(αn).

Since A ⊇ A0 was arbitrary, this implies S(α) ≥ limn S(αn) as desired.

We then prove Lemma 6.

Proof of Lemma 6. Fix any w and A as in the statement of the Lemma. Define positive
“auxiliary shares” α̃i ∈ (0, 1], i = 1, . . . , n, by setting α̃i = αi if αi > 0, and otherwise letting
α̃i > 0 be any number small enough such that

α̃i <
min{|ci(ai)− ci(a′i)| : ai, a′i ∈ Ai, ci(ai) 6= ci(a′i)}

max v(Y ) .

(Note that ∑i α̃i > 1 if αi = 0 for some i.) Define the function P̃ : A→ R by

P̃ (a) := EF (a)[v(y)]−
∑
i

ci(ai)
α̃i

. (A.3)

It is straightforward to verify that then, for every agent i and every ai, a′i, and a−i,

ui(ai, a−i)− ui(a′i, a−i) > 0 implies P̃ (ai, a−i)− P̃ (a′i, a−i) > 0.

Indeed, if αi > 0, then ui(ai, a−i)− ui(a′i, a−i) = αi(P̃ (ai, a−i)− P̃ (a′i, a−i)). If αi = 0, then
ui(ai, a−i)− ui(a′i, a−i) > 0 implies ci(ai) < ci(a′i), and so the choice of α̃i implies

P̃ (ai, a−i)− P̃ (a′i, a−i) = EF (ai,a−i)[v(y)]− EF (a′i,a−i)[v(y)]− ci(ai)− ci(a′i)
α̃i

> 0.

Thus, P̃ is a generalized ordinal potential for Γ(w,A), and hence arg maxa∈A P̃ (a) ⊆ E(w,A).
In particular, there exists a pure-strategy equilibrium.

It remains to establish the inequalities. Fix an equilibrium a∗ ∈ arg maxa∈A P̃ (a). Then
αiEF (a∗)[v(y)]− ci(a∗i ) ≥ −c0

i , as otherwise agent i could deviate to a least-cost action in A0
i .

Consider then the first inequality. If U0(w) = −∞, it holds vacuously. So let U0(w) > −∞.
As noted after the definition of U0(w) in (4.2), then αj = 0 implies c0

j = 0. Moreover, we
have cj(a∗j) = 0 for any such agent j, since otherwise he could deviate to a zero-cost action
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in A0
j . But then ci(a∗i )/α̃i = ci(a∗i )/αi for all i (since α̃i = αi > 0 or ci(a∗i ) = 0), and we have

EF (a∗)[v(y)]−
∑
i

ci(a∗i )
αi

= EF (a∗)[v(y)]−
∑
i

ci(a∗i )
α̃i

= max
a∈A

P̃ (a) ≥ max
a∈A0

P̃ (a) ≥ U0(w),

where the first inequality follows since A ⊇ A0, and the second follows since αi ≤ α̃i.

As preparation for the proof of Lemma 5, the following lemma establishes some properties
of the solutions to the minimization problem.

Lemma A.5. If (E, b) achieves the minimum in Lemma 5, then

(i) αi = 0 implies bi = 0 (∀i = 1, . . . , I).

(ii) (4.3) holds with equality.

Furthermore, there exists a minimizer (E, b) satisfying the following additional properties:

(iii) Ebi = 0 (∀i = 1, . . . , I).

(iv) E = max{U0(w), 0}.

(v) bi ≤ c0
i (∀i = 1, . . . , I).

(The proof shows that properties (iii)–(v) are in fact necessary unless αi = 1 for some i.)

Proof. A minimizer exists since we are minimizing a continuous function over a compact set.
We first deal with the case U0(w) = max v(Y ). It is straightforward to verify that then

(E, b) = (U0(w), 0) is the only feasible point, and that it satisfies properties (i)–(v).
From now on, let max v(Y ) > U0(w) > −∞. Note that if αi = 0, then c0

i = 0 (since
U0(w) > −∞), and so (4.4) implies that only bi = 0 is feasible. This shows property (i).

To show (ii), suppose to the contrary that E − ∑i bi/αi > U0(w) for some minimizer
(E, b). Then equality must hold in (4.4) for all i, since otherwise we could increase some bi.
Thus, bi = αiE + c0

i , which we can substitute for bi in (4.3). Rearranging then gives

E(1− |{i : αi > 0}|) > U0(w) +
∑
i

c0
i

αi
= max

a∈A0

(
EF (a)[v(y)]−

∑
i

ci(ai)− c0
i

αi

)
≥ 0,

where the equality is by definition of U0(w), and the last inequality follows because a ∈ A0

with ci(ai) = c0
i for all i is feasible. But |{i : αi > 0}| ≥ 1, and thus E(1−{i : αi > 0}|) ≤ 0,

contradicting the strict inequality in the other direction above. This establishes (ii).
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If there exists some agent i with αi = 1, then we can clearly satisfy properties (iii)-(v) by
letting (E, b) = (U0(w), 0) if U0(w) ≥ 0, and letting (E, bi, b−i) = (0,−U0(w), 0) otherwise.13

For the rest of the proof, we assume that αi < 1 for all i, and we show that any minimizer
satisfies properties (iii)–(v). Let bj = 0 for all j ∈ J0 := {i : αi = 0}. Consider minimization
only over E and bi, i ∈ {1, . . . , I}\J0. By inspection, the feasible set is a convex polyhedron
in RI+1−|J0| with a nonempty interior, and the objective function is affine. The following
Kuhn-Tucker conditions are thus necessary for a minimum:

β ≥ 0, µi ≥ 0, η ≥ 0, λ ≥ 0, θi ≥ 0, (A.4)

1− λ−
∑
i

θiαi − η + β = 0, (A.5)

−1 + λ

αi
− µi + θi = 0, (A.6)

β(V̄ − E) = 0, µibi = 0, ηE = 0, λ
(
E −

∑
i

bi
αi
− U0(w)

)
= 0, θi(αiE − bi + c0

i ) = 0,

(A.7)

where i ranges over all agents with αi > 0, and where V̄ := max v(Y ).
We can now show property (iii). Let (E, b) be a minimizer. If E = 0, then we are done,

so let E > 0. We show first that θi = 0 for all i. Suppose to the contrary that θi > 0 for
some i. Note that if θi > 0, then bi = αiE + c0

i > 0 by (A.7), implying that µi = 0. Thus,
multiplying both sides of (A.6) by αi and then summing over all i such that θi > 0 gives

0 =
∑
i:θi>0

(−αi + λ) +
∑
i

θiαi =
∑
i:θi>0

(−αi + λ) + 1− λ+ β,

where the second equality substitutes for ∑i θiαi using (A.5), noting that η = 0 by (A.7).
Rearranging the terms yields

∑
i:θi>0

αi = 1 + β + (|{i : θi > 0}| − 1)λ ≥ 1 + β ≥ 1,

since θi > 0 for at least one agent by assumption. But ∑i:θi>0 αi ≥ 1 implies that we must
have θi > 0 for all i such that αi > 0, and hence (4.4) holds as equality for every such agent
by (A.7). Since (4.4) is an equality also for each agent in J0, it thus holds as an equality for
every agent, leading to a contradiction with (4.3) as in the proof of property (i) above. We

13To see that (4.4) and property (v) are satisfied for agent i, note that

αiE − bi = E − bi = U0(w) = max
a∈A0 : cj(aj)=0 ∀j 6=i

(
EF (a)[v(y)]− ci(ai)

)
≥ −c0i .
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conclude that θi = 0 for all i. This implies that λ = 1 + β by (A.5), so that (A.6) becomes

−1 + 1 + β

αi
− µi = 0,

which in turn implies µi > 0, as αi < 1 by assumption. Hence, bi = 0 by (A.7), as desired.
Property (iv) follows from properties (ii) and (iii). Namely, if U0(w) ≥ 0, then only

(E, b) = (U0(w), 0) is consistent with both (ii) and (iii). On the other hand, if U0(w) < 0,
then bi > 0 for some i by (ii), which by (iii) implies E = 0.

It remains to show property (v). If U0(w) ≥ 0, then (ii) and (iv) imply bi = 0 ≤ c0
i for

all i. If U0(w) < 0, then E = 0 by (iv), and (4.4) implies bi ≤ c0
i for all i.

The next lemma will be used to show that S(w) is not greater than the minimum in
Lemma 5. It will also be used to characterize V (w) in Section 5, which is why we state it in
a form that emphasizes the uniqueness of the equilibrium distribution of outcomes.

Lemma A.6. Let w be a budget-balanced contract that aligns the agents’ interests. Suppose
max v(Y ) > U0(w) > −∞. Let (E, b) ∈ [0,max v(Y )]× RI

+ and G ∈ ∆(Y ) be such that

(i) E > max{U0(w), 0},

(ii) (4.3) holds with strict inequality,

(iii) bi ≤ c0
i for all i (and thus (4.4) is satisfied), and

(iv) EG[v(y)] = E.

Then there exists a technology A ⊇ A0 such that every σ ∈ E(w,A) satisfies F (σ) = G (and
hence EF (σ)[v(y)] = E) and ∑ai

σi(ai)ci(ai) = bi for all i.

Proof of Lemma A.6. Fix (E, b) and G as in the lemma. Let J0 = {i : αi = 0}. Note that
0 ≤ |J0| < I, because w is budget balanced. Moreover, we have c0

i = 0 = bi for all i ∈ J0,
since U0(w) > −∞. We will construct a technology A ⊇ A0 where Ai = A0

i ∪ {a′i} with
ci(a′i) = bi for all i /∈ J0, and Ai = A0

i for all i ∈ J0. Equilibria of Γ(w,A) will consist of
profiles where each agent i /∈ J0 plays a′i and agents in J0 mix over zero-cost actions.

We define outcome distributions for action profiles involving the new actions as follows.
Let εI := E − max{U0(w), 0} and let 0 ≡ ε|J0| < ε|J0|+1 < · · · < εI , to be used to provide
strict incentives. We will assume that each εk is small enough to satisfy the finitely many
restrictions imposed on it by (A.9) below. Fix a ∈ A and let J := {i : ai = a′i}∪J0. Suppose
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|J0| < |J | so that at least one agent plays the new action in a. If equality holds in14

max
aJ∈A0

J

(
EF (aJ ,a−J )[v(y)]−

∑
j∈J

cj(aj)− bj
αj

)
≤ max v(Y ), (A.8)

then we take F (a) to be any distribution such that EF (a)[v(y)] = max v(Y ). Since bj ≤ c0
j

for every agent by assumption (iii), the only other possibility is that (A.8) holds with strict
inequality instead. In that case we let F (a) to be any distribution such that

EF (a)[v(y)] =
[

max
aJ∈A0

J

(
EF (aJ ,a−J )[v(y)]−

∑
j∈J

cj(aj)− bj
αj

)]+
+ ε|J | < max v(Y ), (A.9)

where [r]+ := max{r, 0} for r ∈ R. (This defines at most finitely many inequalities involving
ε|J |, because A is finite.)

Note that if |J | = I so that every agent i /∈ J0 plays a′i in the profile a, then the left-hand
side of (A.8) equals U0(w) + ∑

i bi/αi < E ≤ max v(Y ), where the strict inequality is by
assumption (ii). Thus F (a) satisfies (A.9) and EF (a)[v(y)] = [U0(w)]+ + εI = E. We may
thus put F (a) = G for any such a.

The following lemma is the first step towards a characterization of E(w,A).

Lemma A.7. Let a ∈ A be an action profile where every agent in J0 plays a zero-cost
action. Then ui(a′i, a−i) ≥ ui(a) for every agent i /∈ J0.

Proof. Let i /∈ J0 and âi ∈ A0
i . Fix a−i ∈ A−i such that cj(aj) = 0 for all j ∈ J0. Then

ui(âi, a−i) ≤ max
ai∈A0

i

ui(ai, a−i) = αi max
ai∈A0

i

(
EF (ai,a−i)[v(y)]− ci(ai)

αi

)
. (A.10)

Let N := {j 6= i : aj = a′j}. Suppose first that the maximum in (A.10) is achieved by ai
such that F (ai, a−i) is defined by (A.9), with J = N ∪ J0. We can then write out the far

14Recalling that c0i = bi = 0 for all i ∈ J0 shows that the maximum on the left-hand side is finite, since
we can always choose zero-cost actions for every agent with αi = 0.
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right-hand side of (A.10) as15

αi max
ai∈A0

i

([
max
aJ∈A0

J

(
EF (aJ ,ai,a−J∪{i})[v(y)]−

∑
j∈J

cj(aj)− bj
αj

)]+
+ ε|J | −

ci(ai)
αi

)

≤ αi min
{[

max
aJ∪{i}∈A0

J∪{i}

(
EF (aJ∪{i},a−J∪{i})[v(y)]−

∑
j∈J∪{i}

cj(aj)− bj
αj

)]+
+ ε|J | −

bi
αi
,

max v(Y )− bi
αi

}
≤ αi

(
EF (a′i,a−i)[v(y)]− bi

αi

)
= ui(a′i, a−i),

(A.11)

where the first inequality uses bi ≤ c0
i and the second inequality follows by definition of

F (a′i, a−i) (with J = N ∪ J0 ∪ {i}), since ε|J | < ε|J∪{i}|. Thus ui(âi, a−i) ≤ ui(a′i, a−i).
If instead the maximum in (A.10) is achieved by ãi such that EF (ãi,a−i)[v(y)] = max v(Y ),

then (A.8) holds with equality. This implies that there exists some ãJ ∈ A0
J such that

cj(aj) − bj = 0 for all j ∈ J and EF (ãJ ,ãi,a−J∪{i})[v(y)] = max v(Y ). The right-hand side of
(A.10) now becomes

αi
(

max v(Y )− ci(ãi)
αi

)
= αi

(
EF (ãJ ,ãi,a−J∪{i})[v(y)]−

∑
j∈J∪{i}

cj(ãj)− bj
αj

− bi
αi

)

= αi max
aJ∪{i}∈A0

J∪{i}

(
EF (aJ∪{i},a−J∪{i})[v(y)]−

∑
j∈J∪{i}

cj(aj)− bj
αj

)
− bi

≤ αiEF (a′i,a−i)[v(y)]− bi = ui(a′i, a−i), (A.12)

where the last line follows by definition of F (a′i, a−i) (with J = N ∪ J0 ∪ {i}). This shows
that ui(âi, a−i) ≤ ui(a′i, a−i) in this case as well.

Lemma A.7 implies that any σ ∈ ∆(A) with σi(a′i) = 1 for i /∈ J0 and σj(aj)cj(aj) = 0
for j ∈ J0 is an equilibrium. In any such equilibrium, only profiles a ∈ A with |J | = I arise
with positive probability. Therefore, F (σ) = G, EF (σ)[v(y)] = E and ∑ai

σi(ai)ci(a′i) = bi.
To rule out other equilibria, we need the following result.

Lemma A.8. Let a ∈ A be an action profile where every agent in J0 plays a zero-cost
action. If a−J0 6= a′−J0, then ui(a′i, a−i) > ui(ai, a−i) for some agent i.

Proof. Fix a ∈ A as in the lemma. Define J as above. Assume towards contradiction that
ui(a′i, a−i) = u(ai, a−i) for all i /∈ J . Then, for each agent i /∈ J , (A.11) or (A.12) holds

15If N = ∅, then by convention we ignore the maximization over aJ ∈ A0
J and the operator [·]+ on the

first line of (A.11).
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as a chain of equalities. By definition of the distributions F (a′i, a−i), this is possible only if
EF (a′i,a−i)[v(y)] = EF (a)[v(y)] = max v(Y ) and ci(ai) = bi for all i /∈ J ; otherwise the choice of
εk results in at least one strict inequality in each case. But note that, by definition of F (a),
we have EF (a)[v(y)] = max v(Y ) only if

max v(Y ) = max
aJ∈A0

J

(
EF (aJ ,a−J )[v(y)]−

∑
j∈J

cj(aj)− bj
αj

)

= max
aJ∈A0

J

(
EF (aJ ,a−J )[v(y)]−

I∑
i=1

ci(ai)− bi
αi

)
≤ U0(w) +

∑
i

bi
αi

< E,

where the second equality follows because ci(ai) = bi for all i /∈ J , the weak inequality follows
because in U0(w) the maximization is over all agents’ actions, and the strict inequality is
because (E, b) satisfies (4.3) with strict inequality by assumption (ii). Thus, E > max v(Y ),
contradicting E ∈ [0,max v(Y )].

To complete the proof, observe that the agents in J0 can clearly only play zero-cost
actions in any equilibrium. Consider σ ∈ ∆(A) where this is true. Suppose σi(a′i) < 1 for
some agent i /∈ J0. Then some profile â satisfying the assumptions of Lemma A.8 arises with
positive probability under σ. Let i be an agent who can profitably deviate from â to a′i; the
existence of such an agent follows by Lemma A.8. If agent i deviates from σi to playing a′i for
sure, then his payoff increases strictly when the other agents play â−i (which happens with
positive probability under σ−i), and it increases weakly against all other a−i by Lemma A.7.
Thus σ is not an equilibrium.

We are now in a position to prove Lemma 5.

Proof of Lemma 5. By Lemma 6, every technology A ⊇ A0 has a pure strategy equilibrium
where the expected value of output E and costs b satisfy (4.3) and (4.4). Hence S(w) is not
less than the minimum of E −∑ bi over E ∈ [0,max v(Y )] and b ∈ RI

+ such that (4.3) and
(4.4) are satisfied.

In the other direction, suppose first that U0(w) < max v(Y ). By Lemma A.5.(iv) and
(v), there exists a minimizer (E, b) with E = max{U0(w), 0} and bi ≤ c0

i for all i. Let
E < E ′ ≤ max v(Y ). Then (E ′, b) together with any G such that EG[v(y)] = E ′ satisfies
the assumptions in Lemma A.6, and hence there exists a technology A ⊇ A0 such that
S(w) ≤ S(w,A) = E ′ − ∑ bi. Letting E ′ → E shows that S(w) is not greater than the
minimum.

If on the other hand U0(w) = max v(Y ), then (E, b) = (max v(Y ), 0) achieves the mini-
mum by Lemma A.5.(iii) and (iv). As S(w) ≤ max v(Y ) by feasibility, S(w) is less than the
minimum in this case as well. We conclude that S(w) equals the minimum.
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The properties of the minimizers follow from Lemma A.5.

A.3 A Proof for Section 5

Proof of Lemma 8. That V (w) is not less than the minimum is shown in the main text.
To prove the converse, note that the feasible set in (5.2) is compact, so the minimum is

achieved at some G∗. Let π := EG∗ [v(y)− w̄(y)]. We show below that Ū0(w) < max w̄(Y ).
Thus we can approximate G∗ with a sequence (Gn) such that En := EGn [w̄(y)] > Ū0(w) and
EGn [v(y)− w̄(y)]→ π as the objective is continuous in G.16 Every (En, 0) and Gn satisfy the
assumptions of Lemma A.6 (with the substitutions v(y) = w̄(y) and U0(w) = Ū0(w)), and
thus there exists a technology An ⊇ A0 for which Gn is the unique equilibrium distribution
of outcomes. Hence, V (w) ≤ V (w,An) = EGn [v(y)− w̄(y)]→ π as desired.

To show that Ū0(w) < max w̄(Y ), suppose to the contrary that Ū0(w) = max w̄(Y ). The
definition of Ū0(w) then implies that there exists a profile a ∈ A0 such that c(a) = 0 and
suppF (a) ⊆ arg maxy∈Y w̄(y) = Y ∗, where the equality holds because w aligns the agents’
interests. Thus V (w) < V (0) by Lemma 4, contradicting the eligibility of w.

It remains to show that any minimizer satisfies the constraint with equality. Let G∗ be
a minimizer. Because w is eligible, we have V (w) = EG∗ [v(y) − w̄(y)] > 0. Observe that if
EG∗ [w̄(y)] > Ū0(w), then the mixture G := (1−ε)G∗+εδy0 is feasible for ε > 0 small enough.
But v(y0) − w̄(y0) = −w̄(y0) ≤ 0, implying that EG[w̄(y) − w̄(y)] ≤ (1 − ε)V (w) < V (w),
which contradicts G∗ being a minimizer. We conclude that EG∗ [w̄(y)] = Ū0(w).
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