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Abstract

A productive capacity generates output and risks, both of which need to be absorbed

by economic agents. If they are unable to do so, output and risk gaps emerge. Risk gaps

close quickly: A decline in the interest rate increases the Sharpe ratio of the risky assets

and equilibrates the risk markets. If the interest rate is constrained from below (or the

policy response is slow), the risk markets are instead equilibrated via a decline in asset

prices. However, the drop in asset prices also drags down aggregate demand and generates

a recession, which further drags prices down, and so on. If investors are pessimistic about

the recovery, the economy becomes highly susceptible to downward spirals due to dynamic

feedbacks between asset prices, aggregate demand, and growth. The fear of a recession with

a downward asset price spiral also reduces the interest rate (“rstar”) during the boom. In

this context, belief disagreements can be highly destabilizing, as they induce investors to

take speculative positions that make the economy effectively extrapolative: raising optimism

during the boom and pessimism during the recession. Speculation exacerbates the dynamic

feedbacks and motivates macroprudential policy. Optimists take too much risk from a social

point of view since they do not internalize their positive effect on asset prices and aggregate

demand during recessions. Macroprudential policy can improve outcomes (in a Pareto and a

belief-neutral sense), and is procyclical as the negative aggregate demand effect of prudential

tightening is more easily offset by interest rate policy during booms than during recessions.
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Figure 1: Solid line plots the (forward looking) equity risk premium for the US. Dashed line
plots the unweighted average premium for the G5 countries (the US, Japan, the UK, Germany,
France). Source: Constructed by Datastream as the median of nine different methods to calculate
the ERP. Mean-based methods tend to give higher levels but similar shapes for the path of the
ERP.

1. Introduction

Figure 1 shows an estimate of the path of the expected equity risk premium (ERP) for the U.S.

and the average of the G5 countries. Several risk-intolerance patterns are apparent in this figure:

(i) the ERP spiked during the subprime and European crises; (ii) the ERP remained elevated

through much of the U.S. recovery; and (iii) at the global level there is little evidence that the

ERP will go to pre-crisis levels any time soon. These risk market observations are not only

important for asset pricing issues but also for macroeconomics. Central banks are acutely aware

of the connection between risk markets and macroeconomic outcomes. For example, Cieslak and

Vissing-Jorgensen (2017) conduct a textual analysis of 184 FOMC minutes during the 1994-2016

period and find extensive reference to stock market developments, which in turn had significant

explanatory power for target rate changes. The rationale for these reactions highlighted the

negative impact of severe stock markets declines on aggregate consumption and investment.

The implicit framework in these policy discussions is that a productive capacity generates

output and risks, both of which need to be absorbed by economic agents. If they are unwilling

or unable to do so, reinforcing output- and risk-gaps emerge that require appropriate policy

responses to prevent severe downward spirals. In contrast with this dual-perspective, most

New Keynesian macroeconomic modeling focuses on the output-gap component and relegates

the risk-side to a secondary role or none at all. Our main goal in this paper is to provide a

macroeconomic model and narrative that give the risk-side a prominent role.
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For this, we develop a continuous time macrofinance model with aggregate demand channels

and speculative motives due to belief disagreements.1 In this model, shocks interact with interest

rate policy and its constraints in determining the output gap and the natural interest rate

(“rstar”). Importantly, while the degree of optimism of economic agents is key in containing the

fall during recessions, optimists’risk taking is potentially destabilizing, which generates a role

for macroprudential policy.

The supply side of the (model-)economy is a stochastic AK model with capital-adjustment

costs and sticky prices. The demand side has risk-averse consumer-investors that demand the

goods and risky assets. In equilibrium, the volatility of their consumption is equal to “the

Sharpe ratio”of capital (a measure of the risk-adjusted expected return in excess of the risk-free

rate). Our analysis rests on the mechanism by which this risk balance condition is achieved.

Economic agents only differ in their beliefs with respect to the likelihood of a near-term recession

or recovery. There are no financial frictions. Instead, we focus on “interest-rate frictions”:

factors that might constrain or delay the adjustment of the risk-free interest rate to shocks.

For concreteness, we work with a zero lower bound on the interest rate. In the absence of this

friction, speculation only has distributional consequences. In its presence, speculation can be

highly destabilizing.

The model has productivity shocks, which we use to generate asset price volatility. Our

focus is on “volatility shocks,”which we view as capturing a variety of factors that affect the

risk premium. Specifically, the economy transitions between low and high volatility episodes. In

the absence of interest-rate frictions, it is “rstar”that absorbs these shocks. The natural interest

rate ensures that output is determined by the supply side of the economy. By Walras law, this

also implies that the risk balance condition is satisfied. Put differently, “rstar”simultaneously

closes the output gap and the risk gap. The output gap is closed by generating suffi ciently

high asset prices that convinces the agents to absorb the current productive capacity (via high

consumption and investment), and the risk gap is closed by generating a suffi ciently high Sharpe

ratio that convinces them to hold the assets backed by (volatile) future productive capacity.

When the interest rate is constrained, it cannot accomplish both objectives. In our model, the

risk markets are frictionless, whereas the goods markets are subject to nominal rigidities. This

ensures that, when there is a conflict between the two objectives, the risk gaps close immediately

whereas the output gaps remain and the economy experiences a demand-driven recession.

To fix ideas, consider a shock that increases volatility (or the risk premium). The immediate

effect of this shock is to decrease the Sharpe ratio of capital. A risk gap develops, in the sense

that the economy generates too much risk relative to what investors are willing to absorb. The

1By a macrofinance model we mean, following (and quoting) Brunnermeier and Sannikov (2016b): “Instead of
focusing only on levels, the first moments, the second moments, and movements in risk variables are all an integral
part of the analysis, as they drive agents’consumption, (precautionary) savings and investment decisions.”
Also, while in our model heterogenous beliefs have a specific formulation, we intend to capture common features,

especially on the positive analysis, of many mechanisms that generate effective heterogeneity in asset valuation.
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Figure 2: The asset price-output feedbacks during a risk-centric demand recession.

natural response of the economy is a decrease in the interest rate, which increases the Sharpe

ratio and restores equilibrium in risk markets (as well as goods markets).

If there is a lower bound on the interest rate, the economy loses its natural line of defense.

Instead, the risk markets are equilibrated via a decline in asset prices, which increases the Sharpe

ratio via expected capital gains. However, the decline in asset prices lowers consumption through

a wealth effect and investment through a standard valuation (marginal-Q) channel. This reduces

aggregate demand and output, that is, the economy experiences a demand recession.

In a dynamic environment, the recession can be exacerbated by two feedback mechanisms.

First, when the risk shock is somewhat persistent, the decline in output in future recessionary

periods lowers expected profits, which exerts further downward pressure on asset prices. Second,

the decline in current investment lowers the growth of potential output, which reduces expected

profits and asset prices (even if there is no demand recession in future periods). In turn, the

decline in asset prices feeds back into current consumption and investment, generating scope

for severe spirals in asset prices and output. Figure 2 provides a graphical illustration of these

dynamic feedback mechanisms.

We identify two conditions on investors’beliefs that amplify the severity of the recession:

pessimism and belief disagreements– that trigger speculation. Let’s start with the former. If

investors are pessimistic about recovery, then they interpret the decline in asset prices as a

lasting one, and they anticipate potentially severe feedback effects from asset prices to output

and growth. In this case, it takes a large drop in current asset prices to increase investors’
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Sharpe ratio and stabilize the risk markets. If instead investors are optimistic, then they don’t

anticipate strong feedbacks since they think of the decline in asset prices as largely temporary. In

this case, a limited asset price drop is suffi cient to increase investors’perceived Sharpe ratio and

restore equilibrium. Hence, the degree of pessimism is a critical state variable in our economy,

not only because pessimism has a direct impact on asset valuations, but also because it mediates

the strength of the dynamic feedbacks.

Consider now the role of belief disagreements and speculation. With disagreements, the

economy’s degree of pessimism depends on the share of wealth in the hands of pessimistic and

optimistic investors. The value of rich optimists for the economy as a whole is high during

recessions since they raise asset valuations, which in turn increases aggregate demand. However

there is nothing in the economy that ensures this allocation of wealth. Disagreements also lead to

speculation which may introduce undesirable correlations between the state of the economy and

the relative wealth of optimists and pessimists. For example, if the main source of discrepancy

during a boom is in the likelihood of a near-term recession, optimists will sell put options which

will impoverish them precisely in the state of the economy that needs them the most. Or, if

during a recession the discrepancy is about the speed of recovery, they will buy call options

which will deplete their wealth if the recession lingers. That is, through relative wealth effects

the economy becomes extrapolative: booms breed optimism and recessions breed pessimism.

Speculation during the boom creates damage, because the extrapolation that it induces has

asymmetric effects on the economy. If the boom persists, then the interest rate (optimally)

rises to neutralize the effect of greater optimism on asset prices and output. However, if the

economy transitions into recession, the interest rate is constrained and greater pessimism trans-

lates into lower prices and output. This also motivates macroprudential policy that restricts

speculation during the boom. Intuitively, optimists’risk taking is associated with aggregate de-

mand externalities. The depletion of optimists’wealth during a recession depresses asset prices

and aggregate demand. Optimists do not internalize the effect of their portfolio risks on asset

valuations (in subsequent periods), which leads to excessive risk taking from an aggregate point

of view. We show that macroprudential policy that makes optimistic agents behave as-if they

were more pessimistic can lead to a Pareto improvement (that is, we evaluate investors’welfare

according to their own beliefs).

Speculation during the recession also creates damage, because it exacerbates the dynamic

feedbacks. If the economy transitions into recovery, then the interest rate (optimally) rises to

neutralize the effect of greater optimism on asset prices and output. However, if the recession

persists, the interest rate is constrained and greater pessimism translates into strong feedbacks

and (much) lower prices and output. Moreover, the anticipation of this feature lowers asset prices

and output immediately. Investors “overweight”low probability paths dominated by pessimists,

because these paths feature strong feedback effects. This suggests that restricting speculation via

macroprudential policy can also be useful during the recession. However, macroprudential policy

also depresses aggregate demand (in the current period), which can be easily offset by the interest
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rate policy during the boom but not during the recession. Hence, we find that macroprudential

policy is naturally procyclical. The damage from speculation during the recession strengthens

the case for macroprudential policy but it does not undo the procyclicality of the policy.

We also find that the drop in asset prices during the recession has implications for “rstar”

during the boom. The fear of a switch into the high-volatility (recession) state raises the ex-

pected capital loss in the low-volatility (boom) state– and considerably so when pessimism or

speculation is high and the feedback effects are strong. The interest rate then has to decline also

in the low volatility state so as to increase the Sharpe ratio and equilibrate the risk markets.

Hence, our model can generate low interest rates together with low volatility– similar to the

current macroeconomic environment– because agents fear downward price spirals triggered by

a persistent increase in volatility. The strength of this mechanism is once again mediated by the

current degree of pessimism, captured with the investors’belief that the economy will transition

into the high-volatility state.

While we emphasize the effect of exogenous risk shocks, such as changes in volatility or

pessimism, the model also generates endogenous price volatility (jumps). Without interest

rate rigidities, the interest rate policy optimally mitigates the impact of risk shocks on asset

prices. When the interest rate is constrained, these shocks translate into price volatility. With

belief disagreements, speculation exacerbates endogenous price volatility further by creating

fluctuations in investors’wealth shares. In recent work, Brunnermeier and Sannikov (2014) also

obtain endogenous price volatility under a slightly different set of assumptions, but our model

makes the additional prediction that volatility will be higher when the interest rate policy is

constrained. This prediction lends support to the many unconventional tools aimed at reducing

downward volatility, which the major central banks put in place once interest-rate policy was

no longer available during the Great Recession.

Literature review. At a methodological level, our paper belongs in the new continuous time

macrofinance literature started by the seminal work of Brunnermeier and Sannikov (2014, 2016a)

and summarized in Brunnermeier and Sannikov (2016b) (see also Basak and Cuoco (1998);

Adrian and Boyarchenko (2012); He and Krishnamurthy (2012, 2013); Di Tella (2012); Moreira

and Savov (2017); Silva (2016)). This literature seeks to highlight the full macroeconomic

dynamics induced by financial frictions, which force the reallocation of resources from high-

productivity borrowers to low-productivity lenders after a sequence of negative shocks. While

the structure of our economy shares many similarities with theirs, in our model there are no

financial frictions, and the macroeconomic dynamics stem not from the supply side (relative

productivity) but from the aggregate demand side.

Our paper is also related to an extensive New Keynesian literature that emphasizes the role of

financial frictions and nominal rigidities in driving business cycle fluctuations (see, for instance,

Bernanke et al. (1999); Curdia and Woodford (2010); Gertler and Karadi (2011); Gilchrist and

Zakrajšek (2012); Christiano et al. (2014)). Like this literature, we focus on episodes with high
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risk premia, but we generate these episodes from changes in risk (or risk perceptions) as opposed

to financial frictions. We also emphasize the role of beliefs (pessimism) as well as speculation in

exacerbating risk-driven business cycles.

A strand of the literature emphasizes the role of “risk shocks”in exacerbating financial fric-

tions (see, for instance, Christiano et al. (2014); Di Tella (2012)). We share with this literature

the emphasis on uncertainty, but we focus on changes in aggregate risk– as opposed to idiosyn-

cratic uncertainty– which increases risk premia even in absence of frictions. More broadly, there

is an extensive recent empirical literature documenting the importance of uncertainty shocks in

causing and worsening recessions (see, for instance, Bloom (2009)).

The interactions between risk shocks and interest rate lower bounds is also a central theme

of the literature on safe asset shortages and safety traps (see, for instance, Caballero and Farhi

(2017); Caballero et al. (2017b)). We extend this literature by analyzing recurrent business

cycles with multiple shocks, speculation, as well as integrated interest-rate and macroprudential

policies. In recent work, Del Negro et al. (2017) provide a comprehensive empirical evaluation

of the different mechanisms that have put downward pressure on interest rate and argue con-

vincingly that risk and liquidity considerations played a central role (see also Caballero et al.

(2017a)). More broadly, the literature on liquidity traps is extensive and has been rekindled by

the Great Recession (see, for instance, Tobin (1975); Krugman (1998); Eggertsson and Woodford

(2006); Eggertsson and Krugman (2012); Guerrieri and Lorenzoni (2017); Werning (2012); Hall

(2011); Christiano et al. (2015); Eggertsson et al. (2017); Rognlie et al. (2017); Midrigan et al.

(2016); Bacchetta et al. (2016)). We extend this literature by focusing on the risk aspects (both

shocks and mechanisms) behind the drop in the natural rate below its lower bound, as well as

on the interaction between speculation and the severity of recessions.

Our results on macroprudential policy are related to a recent literature that analyzes the

implications of aggregate demand externalities for the optimal regulation of financial markets.

For instance, Korinek and Simsek (2016) show that, in the run-up to deleveraging episodes that

coincide with a zero-lower-bound on the interest rate, welfare can be improved by policies tar-

geted toward reducing household leverage. In Farhi and Werning (2017), the key constraint is

instead a fixed exchange rate, and the aggregate demand externality calls for ex-ante regulation

but also ex-post redistribution, in the form of a fiscal union. In these papers, heterogeneity

in agents’marginal propensities to consume (MPC) is the key determinant of optimal macro-

prudential policy. The policy works by reallocating wealth across agents and states in a way

that high-MPC agents hold relatively more wealth when the economy is more depressed due to

deficient demand. The mechanism in our paper is different and works through heterogeneous

asset valuations. In fact, we work with a log-utility setting in which all agents have the same

marginal propensity to consume. The policy operates by transferring wealth to optimists during

recessions, not because optimists spend more than other agents, but because they raise the asset

valuations and induce all investors to spend more (while also increasing aggregate investment).2

2Also, see Farhi and Werning (2016) for a synthesis of some of the key mechanisms that justify macroprudential
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Beyond aggregate demand externalities, the macroprudential literature is also extensive, and

mostly motivated by the presence of pecuniary externalities that make the competitive equi-

librium constrained ineffi cient (e.g., Caballero and Krishnamurthy (2003); Lorenzoni (2008);

Bianchi and Mendoza (2013); Jeanne and Korinek (2010)). The friction in this case is not

“nominal”and interest rate rigidities, but market incompleteness or collateral constraints that

depend on asset prices (see Davila and Korinek (2016) for a detailed exposition). Macropruden-

tial policy typically improves outcomes by mitigating fire sales that exacerbate financial frictions.

The policy in our model also operates through asset prices but through a different channel. We

show that a decline in asset prices is damaging not only because of the fire-sale reasons empha-

sized in this literature, but also because it lowers aggregate demand through standard wealth

and investment channels. Moreover, our analysis does not feature the incomplete markets or

collateral constraints that are central in this literature.

Our results are also related to a large literature that analyzes the effect of belief disagreements

and speculation on financial markets (e.g., Lintner (1969); Miller (1977); Harrison and Kreps

(1978); Varian (1989); Harris and Raviv (1993); Chen et al. (2002); Scheinkman and Xiong

(2003); Fostel and Geanakoplos (2008); Geanakoplos (2010); Simsek (2013a,b); Iachan et al.

(2015)). One strand of this literature emphasizes that disagreements can exacerbate asset price

fluctuations by creating endogenous fluctuations in agents’wealth distribution (see, for instance,

Basak (2000, 2005); Cao (2017); Xiong and Yan (2010); Kubler and Schmedders (2012); Korinek

and Nowak (2016)). Our paper features similar forces but explores them in an environment in

which output is not necessarily at its supply-determined level due to interest rate rigidities.

In fact, our framework is similar to the models analyzed by Detemple and Murthy (1994);

Zapatero (1998), who show that financial speculation between optimists and pessimists (with

log utility) can increase the volatility of the interest rate. In our model, these results apply when

the interest rate is unconstrained but they are modified if the interest rate is constrained in

downward adjustments. In the latter case, speculation translates into (ineffi cient) fluctuations

in asset prices as well as aggregate demand. Among other things, we show that (controlling

for the average belief) speculation driven by belief disagreement depresses aggregate demand

and lowers output during recessions. We also show that belief disagreements create scope for

macroprudential policy.

The rest of the paper is organized as follows. In Section 2 we present an example that

illustrates the main mechanism and motivates the rest of our analysis. Section 3 presents the

general environment and defines the equilibrium. Section 4 characterizes the equilibrium in a

benchmark setting with homogeneous beliefs. This section illustrates how risk premium shocks

can lower asset prices and induce a demand recession, and how optimism helps to mitigate

the recession. It also illustrates how the drop in asset prices during the recession lowers the

interest rate during booms. Section 5 characterizes the equilibrium with belief disagreements,

policies in models that exhibit aggregate demand externalities.
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and illustrates how speculation exacerbates the recession. Section 6 establishes our normative

results in two steps. Section 6.1 characterizes the value functions and illustrates the aggregate

demand externalities. Section 6.2 analyzes the effect of introducing risk limits on optimists, and

presents our results on (procyclical) macroprudential policy. Section 7 concludes and is followed

by an appendix that contains the omitted derivations and proofs.

2. A stepping-stone example

Here we present a simple (largely static) example that illustrates the workings of the basic

aggregate demand mechanism, and that serves as a stepping stone into our main (dynamic)

model that features additional amplification mechanisms and speculative forces.

A two-period risk-centric aggregate demand model. Consider an economy with two

dates, t ∈ {0, 1}, a single consumption good, and a single factor of production– capital. For
simplicity, capital is fixed (i.e., there is no depreciation or investment) and it is normalized to

one. Potential output is equal to capital’s productivity, zt, but the actual output can be below

this level due to a shortage of aggregate demand, yt ≤ zt. For simplicity, we assume output is

equal to its potential at the last date, y1 = z1, and focus on the endogenous determination of

output at the previous date, y0 ≤ z0. We assume the productivity at date 1 is uncertain and

log-normally distributed so that,

log y1 = log z1 ∼ N
(
g − σ2

2
, σ2

)
. (1)

We also normalize the initial productivity to one, z0 = 1, so that g denotes the expected growth

rate of productivity, and σ denotes its volatility.

The demand side is characterized by a representative household, who is endowed with the

initial output as well as claims on future output. At date 0, she chooses how much to consume, c0,

and how to allocate her wealth across available assets. We assume there is a “market portfolio”

that represents claims to the output at date 1 (the return to capital as well as profits), and

a risk-free asset in zero net supply. We let Q and rk = log z1
Q denote, respectively, the price

and the (log) return of the market portfolio, and rf denote the log risk-free interest rate. The

household invests a fraction of her wealth, ωk, in the market portfolio, and the residual fraction,

1− ωk, in the risk-free asset. When asset markets are in equilibrium, the household will invest
all of her wealth in the market portfolio, ωk = 1, and her portfolio demand will determine the

price Q.

We assume the household has Epstein-Zin preferences with the discount factor given by

e−ρ, the elasticity of intertemporal substitution (EIS) equal to 1, and the relative risk aversion

coeffi cient (RRA) given by γ.3 The assumption on the EIS implies that the household consumes

3For simplicity, in the main model we restrict attention to the special case with log utility, which implies
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a fraction of her lifetime income,

c0 =
1

1 + e−ρ
(y0 +Q) . (2)

In Appendix A.1, we also show that, up to a local approximation, the household’s optimal weight

on the market portfolio is determined by,

ωkσ ' 1

γ

E
[
rk
]

+ σ2

2 − r
f

σ
. (3)

In words, household’s optimal portfolio risk (left side) is proportional to “the Sharpe ratio”on

the market portfolio (right side). The Sharpe ratio captures the reward per risk, where the

reward is determined by the risk premium: the (log) expected return in excess of the (log) risk

free rate. This is the standard risk-taking condition for mean-variance portfolio optimization,

which applies exactly in continuous time. It applies approximately in the two-period model for

arbitrary levels of the risk premium, and the approximation becomes exact for the level the risk

premium that ensures equilibrium (ωk = 1).

In particular, substituting the equilibrium condition, ωk = 1, as well as the expected return

on the market portfolio from Eq. (1), we obtain the (exact) risk balance condition,

σ =
1

γ

g − logQ− rf
σ

. (4)

In words, the equilibrium in asset markets requires the Sharpe ratio on the market portfolio

(right side) to be suffi ciently large to convince the investors to hold the risk generated by the

productive capacity (left side).

The supply side of the economy is described by New-Keynesian firms that have preset fixed

prices. These firms meet the available demand at these prices as long as it does not exceed their

marginal costs (see Appendix A.2.2 for details). These features imply that output is determined

by the aggregate demand for goods (consumption) up to the capacity constraint,

y0 = c0 ≤ z0. (5)

Since prices are fully sticky, the real interest rate is equal to the nominal interest rate, which

is controlled by the monetary authority. We assume that the interest rate policy attempts to

replicate the supply-determined output level. However, there is a lower bound constraint on the

interest rate, rf ≥ 0. Thus, the monetary policy is described by, rf = max
(
rf∗, 0

)
, where rf∗ is

the natural interest rate that ensures output is at its effi cient level.

To characterize the equilibrium, first note that Eqs. (2) and (5) imply that there is a one-

EIS=1 and RRA=1. In the two-period model, we can be more general in terms of the RRA, which allows us to
illustrate that our volatility shocks are meant to capture spikes in implied volatility, driven by risk aversion or
realized volatility.
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to-one relationship between output and the price of the market portfolio,

y0 = eρQ. (6)

Intuitively, asset prices increase aggregate wealth and consumption, which in turn determines

output. In particular, output is equal to its potential level, y0 = z0 = 1, if and only if the asset

prices are at a particular level, Q∗ = e−ρ. Combining this expression with Eq. (4), we can also

solve for the natural interest rate as,

rf∗ = g + ρ− γσ2.

Suppose the initial parameters are such that rf∗ > 0, so that the equilibrium features Q∗, rf∗

and full output, y0 = z0 = 1. Now suppose there is a “risk shock” that raises the volatility,

σ, or risk aversion, γ. The immediate impact of this shock is to create an imbalance in the

risk-market equilibrium condition (4). The economy produces too much risk (left side) relative

to what households are willing to absorb (right side). In response, the monetary policy lowers

the risk-free interest rate (as captured by the decline in rf∗), which tends to re-equilibrate the

risk market condition (4). Intuitively, the monetary policy lowers the opportunity cost of risky

investment and induces households to absorb risk.

Next suppose the shock is suffi ciently large so that the natural interest rate becomes negative,

rf∗ < 0, and the actual interest rate becomes constrained, rf = 0. In this case, the risk market

condition is reestablished with a decline in the price of the market portfolio, Q, which increases

the expected return on risky investment and induces investors to hold risk. However, the decline

in Q reduces aggregate wealth and induces a demand-driven recession. Formally, we have,

log y0 = ρ+ logQ, where logQ =

{
logQ∗ = −ρ, if γσ2 ≤ g + ρ,

g − γσ2 < −ρ, otherwise.

Note also that, in the constrained region, asset prices and output become sensitive to further

changes in risk (σ, γ) and in beliefs about future prospects. For instance, an increase in the

expected growth rate, g (optimism) increases asset prices and mitigates the recession.

Why dynamics and speculation? While the two period model is useful to illustrate the

basic mechanism by which risk shocks can induce a recession, it does not capture the richer

mechanisms that arise from dynamic considerations. As Figure 2 in the introduction illustrates,

(current and future) asset prices also affect expected profits. Put differently, g in the risk

balance equation (4) is endogenous. Since g also affects current prices, there is scope for

feedbacks between asset prices and output. Moreover, in this context heterogenous beliefs about

future dynamics create speculative forces which have the potential to greatly exacerbate these

feedbacks and justify macroprudential policy. We turn to the formal dynamic framework next.
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3. General environment and equilibrium

In this section we introduce our general environment and define the equilibrium. In subsequent

sections we will characterize this equilibrium in various special cases of interest. We start by

describing the production and investment technology, as well as the risk-premium shocks that

play the central role in our analysis. We then describe the firms’investment decisions, followed

by the investors’consumption and portfolio choice decisions. Then, we introduce the nominal

and the interest rate rigidities that ensure output is determined by aggregate demand. We finally

introduce the goods and asset market clearing conditions and define the equilibrium.

Potential output and risk-premium shocks. The economy is set in infinite continuous

time, t ∈ [0,∞), with a single consumption good and a single factor of production: capital. Let

kt,s denote the capital stock at time t and the aggregate state s ∈ S. Suppose that, when fully
utilized, kt,s units of capital produces Akt,s units of the consumption good. Hence, Akt,s denotes

the potential output in this economy. Capital follows the process,

dkt,s
kt,s

= gt,sdt+ σsdZt where gt,s ≡ ϕ (ιt,s)− δ. (7)

Here, ιt,s =
it,s
kt,s

denotes the investment rate, ϕ (ιt,s) denotes the production function for capital

(that will be specified below), and δ denotes the depreciation rate. The second equation defines

the expected growth rate of capital (and potential output). The term, dZt, denotes the standard

Brownian motion, which captures “aggregate productivity shocks.”4

The states, s ∈ S, differ only in terms of the volatility of aggregate productivity, σs. For
simplicity, suppose there are only two states, s ∈ {1, 2}, with σ1 < σ2 (see the extended working

paper version Caballero and Simsek (2017b) for the general formulation with an arbitrary number

of states). State s = 1 corresponds to a low-volatility state, whereas state s = 2 corresponds to

a high-volatility state. At every instant, the economy in state s transitions into the other state

s′ 6= s according to a Poisson process.

Remark 1 (Interpreting the Volatility Shocks). We work with volatility shocks mainly because
they lead to a tractable analysis. The key feature of these shocks is that they increase the risk

premium on capital, and might push the economy into a liquidity trap in which the risk-free

interest rate is at its lower bound. Many other shocks that increase the risk premium would lead

to a similar analysis. In fact, we view the variance parameters,
{
σ2
s

}
s
, as capturing in reduced

form various unmodeled objective and subjective factors that might shift the risk premium (such

as time-varying risk aversion, long-run risks, Knightian uncertainty, or financial panics).

4Note that fluctuations in kt,s generate fluctuations in potential output, Akt,s. We introduce Brownian shocks
to capital, kt,s, as opposed to the total factor productivity, A, since this leads to a slightly more tractable analysis.
See Footnote 2 in Brunnermeier and Sannikov (2014) for an equivalent formulation in terms of shocks to A.
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Transition probabilities and belief disagreements. We let λis denote the transition prob-

ability in state s (into the other state) according to investor i ∈ I. These transition probabilities
will play a central role in the analysis, as they capture investors’optimism or pessimism. For

instance, an investor with low λi2 is pessimistic in the sense that she expects the high risk condi-

tions to persist. Likewise, an investor with high λi1 is pessimistic in the sense that she believes

that, even though the economy currently features low risk, the high risk conditions are around

the corner. We will set up the model for investors with heterogeneous beliefs (and in fact, this

will be the only possible source of heterogeneity). We will first analyze the special case with

common beliefs (Section 4) and then investigate the effect of belief disagreements and specula-

tion (Section 5). When investors disagree, they have dogmatic beliefs: that is, they know each

others’beliefs and they agree to disagree. We use these types of belief disagreements to capture

a broad array of reasons that generate heterogeneous valuations and trade in financial markets,

ranging from a literal interpretation to institutional factors (see Remark 3 in Section 5).

Investment and the growth-price relationship. There is a continuum of identical firms

that manage capital. These firms rent capital to production firms (that will be described below)

to earn the instantaneous rental rate, Rt,s. They also make investment decisions to maximize

the value of capital. Letting Qt,s denote the price of capital, the firm’s investment problem can

be written as,

max
ιt,s

Qt,sϕ (ιt,s) kt,s − ιt,skt,s.

Under standard regularity conditions for ϕ (ι), investment is determined by the optimality con-

dition, ϕ′ (ιt,s) = 1/Qt,s We will work with the special and convenient case proposed by Brun-

nermeier and Sannikov (2016b): ϕ (ι) = ψ log
(
ι
ψ + 1

)
. In this case, we obtain the closed form

solution,

ι (Qt,s) = ψ (Qt,s − 1) . (8)

The parameter, ψ, captures the sensitivity of investment to asset prices.

Note also that the amount of capital produced is given by,

ϕ (ι (Qt,s)) = ψqt,s, where qt,s ≡ log (Qt,s) . (9)

The log price level, qt,s, will simplify some of the expressions below. Combining Eq. (9) with

Eq. (7), we also obtain an expression for growth,

gt,s = ψqt,s − δ. (10)

In particular, unlike in the two period model, the expected growth rate of capital (and potential

output) is now endogenous and depends on asset prices. Lower asset prices reduce investment,

which in turn translates into lower growth and lower potential output in future periods. This

mechanism will be a key source of amplification.
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Capital price and return. As before, we assume there is a “market portfolio”that represents

a claim on aggregate capital (more specifically, a claim on the firms that manage capital). The

return on this portfolio depends on (among other things) the evolution of the value of aggregate

capital, Qt,skt,s. We next describe how Qt,skt,s evolves and how this translates into the return

to capital.

Absent state transitions, the price of capital follows an endogenous but deterministic

process,5
dQt,s
Qt,s

= µQt,sdt for each s ∈ {1, 2} . (11)

When investors have common beliefs (Section 4), the endogenous price drift will be zero, µQt,s = 0:

that is, the price of capital will be fixed with high and low volatility states, {Q1, Q2}. With belief
disagreements (Section 5), there will be room for price dynamics due to changes in investors’

wealth shares. Combining Eqs. (7) and (11), the aggregate wealth (conditional on no transition)

evolves according to
d (Qt,skt,s)

Qt,skt,s
=
(
gt,s + µQt,s

)
dt+ σsdZt. (12)

It follows that, absent state transitions, the volatility of the market portfolio (claim on

aggregate capital) is given by, σs. Likewise, the expected return on this portfolio conditional on

no transition is given by,

rkt,s =
Rt,s − ιt,s
Qt,s

+ gt,s + µQt,s. (13)

Here, the first term can be thought of as the “dividend yield,”which captures the instantaneous

rental rate of capital, Rt,s, as well as the investment costs. The second component is the capital

gains conditional on no transition, which reflect the expected growth in aggregate wealth due

to the growth of capital or price drift.

Eqs. (11− 13) describe the prices and returns conditional on there not being a state transi-

tion. If there is a transition at time t from state s into state s′ 6= s, then the price of capital jumps

from Qt,s to a potentially different level, Qt,s′ . Therefore, the aggregate wealth also jumps from

Qt,skt,s to a potentially different level, Qt,s′kt,s, and the investors that hold the market portfolio

experience instantaneous capital gains or losses that will be reflected in their portfolio problem.

Consumption and portfolio choice. There is a continuum of investors denoted by i ∈ I,
who are identical in all respect except possibly their beliefs about state transitions, λis, and who

continuously make consumption and portfolio allocation decisions. Each investor has access to

three types of assets. First, she can invest in the market portfolio that we described above.

Second, she can invest in a risk-free asset with return, rft,s. The risk-free asset is in zero net

5 In general, the price follows a diffusion process and this equation also features an endogenous volatility
term, σQt,sdZt. In this paper, we assume that financial markets are complete, which (combined with our other
assumptions) ensures that σQt,s = 0. See our companion paper for the analysis with incomplete markets, which
features σQt,2 6= 0, that is, there is endogenous price volatility within the high-volatility state.
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supply. Third, the investor can also invest in a contingent Arrow-Debreu security that trades

at the (endogenous) instantaneous price ps
′
t,s, and that pays 1 dollar if the economy transitions

to the other state s′ 6= s. These securities are also in zero net supply, and they ensure that the

financial markets are complete.

Specifically, at any time t and s, investor i has some financial wealth denoted by ait,s. She

chooses her consumption rate, denoted by cit,s; what fraction of her wealth to allocate to capital,

denoted by ωk,it,s ; and what fraction of her wealth to allocate to the contingent security, ω
s′,i
t,s .

The residual fraction, 1−ωk,it,s−ω
s′,i
t,s , is invested in the risk-free asset. For analytical tractability,

we assume the investor has log utility. The investor then solves a relatively standard portfolio

problem. Appendix A.2.1 states the problem formally and derives the optimality conditions using

recursive techniques. In view of log utility, the investor’s consumption is a constant fraction of

her wealth,

cit,s = ρait,s. (14)

Less obviously, the investor’s optimal portfolio allocation to capital is determined by,

ωk,it,sσs =
1

σs

(
rkt,s − r

f
t,s + λis

1/ait,s′

1/ait,s

Qt,s′ −Qt,s
Qt,s

)
. (15)

Intuitively, she invests in capital up to the point at which the risk of her portfolio (left side) is

equal to “the Sharpe ratio”of capital (right side). This is similar to the optimality condition

in the two period model (cf. Eq. (3)) with the difference that the dynamic model also features

state transitions. Our notion of the Sharpe ratio accounts for potential revaluation gains or

losses from state transitions (the term,
Qt,s′−Qt,s

Qt,s
) as well as the adjustment of marginal utility

in case there is a transition (the term,
1/ai

t,s′

1/ait,s
).6

Finally, the investor’s optimal portfolio allocation to the contingent securities implies,

ps
′
t,s

λis
=

1/ait,s′

1/ait,s
. (16)

The portfolio weight, ωs
′,i
t,s , is implicitly determined as the level that ensures that this equality

holds. The investor buys contingent securities up to the point at which the price-to-probability

ratio of a state (or the state price) is equated to the investor’s relative marginal utility in that

state. Note that replacing (16) into (15) shows that investors allocate identical portfolio weights

to capital, ωkt,s (which will be equal to one in equilibrium), and express their differences in beliefs

through their holdings of contingent securities.

6The presence of state transitions makes the Sharpe ratio in our model slightly different than the common
definition of the Sharpe ratio, which corresponds to the expected return in excess of the risk-free rate normalized
by volatility.
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Equilibrium in asset markets. Asset markets clearing requires that the total wealth held

by investors is equal to the value of aggregate capital before and after the portfolio allocation

decisions, ∫
I
ait,sdi = Qt,skt,s and

∫
I
ωk,it,sa

i
t,sdi = Qt,skt,s. (17)

Contingent securities are in zero net supply, which implies,∫
I
ait,sω

s′,i
t,s di = 0. (18)

The market clearing condition for the risk-free asset (which is also in zero net supply) holds

when conditions (17) and (18) are satisfied.

Nominal rigidities and aggregate demand. The supply side of our model features nominal

rigidities similar to the standard New Keynesian model. We relegate the details to Appendix

A.2.2 and describe the main implications relevant for our analysis. There is a continuum of mo-

nopolistically competitive production firms that rent capital from investment firms and produce

intermediate goods (which are then converted into the final good). For simplicity, these pro-

duction firms have preset prices that they never change. The firms meet the available demand

(as long as they find it optimal to do so). In equilibrium, these features imply that output is

determined by aggregate demand,

yt,s = ηt,sAkt,s =

∫
I
cit,sdi+ kt,sιt,s, where ηt,s ∈ [0, 1] . (19)

Here, ηt,s denotes the instantaneous factor utilization rate for capital. We assume firms can

increase factor utilization for free until ηt,s = 1 and they cannot increase it beyond this level

(we relax the latter assumption in the extended working paper version). Aggregate demand

corresponds to the sum of aggregate consumption and aggregate investment.

There are also lump sum taxes on the production firms’profits combined with linear subsidies

to capital. In equilibrium, these features imply that the rental rate of capital is given by,

Rt,s = Aηt,s. (20)

This also implies, yt,s = Rt,skt,s, that is all output accrues to the agents in the form of return to

capital, which simplifies our analysis.7 Combining this expression with Eqs. (13), and using Eqs.

(19) and (14), we also obtain the instantaneous return to capital conditional on no transition

as,

rkt,s = ρ+ gt,s + µQt,s, where gt,s = ψqt,s − δ. (21)

7Without this type of taxes and subsidies, firms would also make pure profits that are not necessarily linked
to the capital they use in production. The analysis of the portfolio problem would then require introducing a
second risky asset (claims on pure profits).
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Hence, in equilibrium, the dividend yield from capital is the same as the consumption rate ρ.

Output-price relationship. Our analysis so far implies that there is a one-to-one relationship

between output and the price of capital as in the two period model (cf. Eq. (6)). Specifically,

combining Eqs. (14) and (17) implies that aggregate consumption is a constant fraction of

aggregate wealth,
∫
I c

i
t,sdi = ρQt,skt,s. Plugging this into Eq. (19), and using the investment

equation (8), we obtain,

Aηt,s = ρQt,s + ψ (Qt,s − 1) = (ρ+ ψ)Qt,s − ψ.

Intuitively, output per capital (or factor utilization) depends on asset prices, because consump-

tion depends on asset prices through a wealth effect and investment depends on asset prices

through a standard marginal-Q channel. Rewriting this expression, we obtain,

qt,s = q
(
ηt,s
)

= log

(
Aηt,s + ψ

ρ+ ψ

)
, (22)

which illustrates that full factor utilization, ηt,s = 1, obtains only if the price of capital is

at a particular level q∗ ≡ q (1). This is the level of the price that ensures that the implied

consumption and investment clears the goods market. Likewise, the economy features a demand

recession, ηt,s < 1, if and only if the price of capital is strictly below q∗.8

Interest rate rigidity and monetary policy. Our assumption that production firms do

not change their prices implies that the aggregate price level is fixed. The real risk-free interest

rate is then equal to the nominal risk-free interest rate, which is determined by the interest rate

policy of the monetary authority. We assume there is a lower bound on the nominal interest

rate, which we take to be zero for convenience,9

rft,s ≥ 0. (23)

In practice, this type of constraint emerges naturally from a variety of factors. The zero lower

bound in particular can be motivated by the presence of cash in circulation (which we leave

unmodeled for simplicity). Since cash offers zero interest rate, the monetary authority cannot

lower the interest rate (much) below zero– a constraint that appeared to be binding for major

central banks in the aftermath of the Great Recession.

We assume that the interest rate policy focuses on replicating the level of output that would

obtain absent nominal rigidities subject to the constraint in (23). Appendix A.2.2 illustrates

8Recall that this is the price of effective capital; the value of actual equity adds the diffusion term to this price.
9 In practice, the lower bound on the real interest rate seems to be slightly below zero due to steady-state

inflation. We could also assume that firms set their prices at every period mechanically according to a predeter-
mined inflation target. This formulation yields a very similar bound as in (23) and results in the same economic
trade-offs. We normalize inflation to zero so as to economize on notation.
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that, without nominal rigidities, capital is fully utilized, ηt,s = 1. Thus, we assume the interest

rate policy follows the rule,

rft,s = max
(

0, rf,∗t,s

)
for each t ≥ 0 and s ∈ S. (24)

Here, rf,∗t,s is recursively defined as the (instantaneous) natural interest rate that obtains when

the (instantaneous) utilization is given by ηt,s = 1, and the monetary policy follows the rule in

(24) at all future times and states.

Remark 2 (Interpretation of Price Stickiness). Our assumption that the aggregate price (or
inflation) level is fixed is admittedly extreme. However, we should note that making the prices

more flexible does not necessarily circumvent the bound in (23). In fact, if monetary policy

follows an inflation targeting policy regime, then limited price flexibility leads to price deflation

during a demand recession, which strengthens the bound in (23) and exacerbates the recession (see

Werning (2012); Korinek and Simsek (2016); Caballero and Farhi (2017) for further discussion).

We could capture this mechanism by allowing for some price flexibility, which would introduce a

standard New-Keynesian Phillips curve into the model as in Werning (2012). We have chosen

not to emphasize the deflationary spiral mechanism since the analysis is already involved with

several other amplification mechanisms related to the endogeneity of (real) asset prices.

Equilibrium in the goods market. Combining Eq. (24) with the output-price relationship

(22), the goods market side of the economy can be summarized with,

qt,s ≤ q∗, rft,s ≥ 0, with at least one condition satisfied as equality. (25)

In particular, the equilibrium at any time and state takes one of two forms. If the natural

interest rate is nonnegative, then the interest rate policy ensures that the price of capital is at

the level consistent with full employment, qt,s = q∗, capital is fully utilized, ηt,s = 1, and output

is equal to its potential, yt,s = Akt,s. Otherwise, the interest rate policy is constrained, r
f
t,s = 0,

the price of capital is at a lower level, qt,s < q∗, and output is determined by aggregate demand

according to Eq. (22). We can now define the equilibrium as follows.

Definition 1. The equilibrium is a collection of processes for allocations, prices, and returns

such that capital and its price evolve according to Eqs. (7) and (11), the investment firms

maximize (cf. Eqs. (14), the growth rate is given by Eq. (10), the investors maximize (cf. Eqs.

(14− 16)), the asset markets clear (cf. Eqs. (17) and (18)), output is determined by aggregate

demand (cf. Eqs. (19) and (22)), the return to capital (conditional on no transition) is given by

Eq. (21), the interest rate policy follows the rule in (24), and the goods market clears (cf. Eq.

(25)).

For future reference, we also note that the first-best equilibrium obtains when price is at
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its effi cient level at all times and states, qt,s = q∗. This also implies that the growth rate of

output and the expected return to capital are constant and given by, respectively, g = ψq∗ − δ
and rk = ρ+ ψq∗ − δ (see Eq. (21)). We next turn to the characterization of equilibrium with

interest rate rigidities.

4. Common beliefs benchmark and amplification mechanisms

In this section, we analyze the equilibrium in a benchmark case in which all investors share the

same belief, that is, λis ≡ λs for each i. We also normalize the total mass of investors to one

so that individual and aggregate allocations are the same. We use this benchmark to establish

two amplification mechanisms that have no counterparts in the two period model. We also

establish the comparative statics of the equilibrium with respect to investors’(common) belief,

and illustrate that these amplification mechanisms are especially powerful when investors are

pessimistic.

In view of the linear structure of the model, we conjecture that the price and the interest rate

will remain constant within states, Qt,s = Qs and r
f
t,s = rfs (in particular, there is no price drift,

µQt,s = 0). Since the investors are identical, we also have ωkt,s = 1 and ωs
′
t,s = 0. In particular,

the representative investor’s wealth is equal to aggregate wealth, at,s = Qt,skt,s. Combining

this with Eq. (15) and substituting for rkt,s from Eq. (21), we obtain the following risk balance

conditions,

σs =
ρ− δ + ψqs + λs

(
1− Qs

Qs′

)
− rfs

σs
for each s ∈ {1, 2} . (26)

These equations are the dynamic counterpart to Eq. (4) in the two period model. They say

that, in each risk state, the total risk in the economy (the left side) is equal to the Sharpe ratio

perceived by the representative investor (the right side). Note that the Sharpe ratio accounts

for the fact that the aggregate wealth (as well as the marginal utility) will change in case there

is a state transition.10

The equilibrium is then characterized by finding four unknowns,
(
Q1, r

f
1 , Q2, r

f
2

)
, that solve

the two equations (26) together with the two goods market equilibrium conditions (25). We

solve these equations under the following parametric restriction.

Assumption 1. σ2
2 > ρ+ ψq∗ − δ > σ2

1.

When this restriction holds (and additional assumptions are satisfied), there is an equilibrium

in which the low-volatility state 1 features positive interest rates, effi cient asset prices, and full

factor utilization, rf1 > 0, q1 = q∗ and η1 = 1, whereas the high-volatility state 2 features zero

interest rates, lower asset prices, and imperfect factor utilization, rf2 = 0, q2 < q∗ and η2 < 1.

10To see this, observe that the term,
Qt,s′−Qt,s

Qt,s′
, in the equation is actually equal to, Qt,s

Qt,s′

Qt,s′−Qt,s
Qt,s

. Here,
Qt,s′−Qt,s

Qt,s
denotes the capital gains and Qt,s

Qt,s′
denotes the marginal utility adjustment when there is a represen-

tative investor (see (15)).
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In particular, the analysis with common beliefs reduces to finding two unknowns,
(
q2, r

f
1

)
, that

solve the two risk balance equations (26) (after substituting q1 = q∗ and rf2 = 0).

Equilibrium in the high-volatility state. Using our conjecture, the risk balance equation

(26) for the high-volatility state s = 2 can be written as,

σ2 =
ρ+ ψq2 − δ + λ2

(
1− Q2

Q∗

)
σ2

. (27)

In view of Assumption 1, if the price were at its effi cient level, Q2 = Q∗, the risk (the left

side) would exceed the Sharpe ratio (the right side). As in the two period model, the economy

generates too much risk relative to what the agents are willing to absorb at the constrained level

of the interest rate. As before, the price of capital, Q2, needs to decline to equilibrate the risk

markets. Unlike in the two period model, however, the decline in the price of capital does not

necessarily increase the Sharpe ratio, due to two destabilizing amplification mechanisms.

Amplification mechanisms. The first amplification mechanism comes from the output-price

relation (cf. Eq. (22)). If the dividend yield from capital were kept constant, a decline in the

current asset price would increase the dividend yield as well as the return– a stabilizing force.

However, in our model the dividend yield is not constant and it is decreasing in the current

price of capital. A lower price level reduces output, which reduces the rental rate of capital (see

Eq. (20)), which in turn lowers dividends. In fact, the dividend yield term in Eq. (27) can be

better understood by writing it as, ρQ2Q2
= ρ (see also Eq. (13)). It does not depend on the price

because the cash flows in the numerator also decline proportionally with the price level. Hence,

the output-price relation overturns an important stabilizing force from price declines, and opens

the door for amplification of these declines.

The second amplification mechanism comes from the growth-price relation (cf. Eq. (10)). In

particular, a decline in the current asset price also lowers investment, which reduces the growth

of potential output and dividends, which in turn lowers the return to capital. The strength of this

effect depends on the sensitivity of investment to asset prices, captured by the term ψq2. Figure

2 in the introduction presents a graphical illustration of the two amplification mechanisms.

In view of these amplification mechanisms, one might wonder how the risk market ever

reaches equilibrium once the price, Q2, starts to fall below its effi cient level, Q∗. The stabilizing

force is captured by the last term in Eq. (27), λ2

(
1− Q2

Q∗

)
. A decline in the price of capital

increases the expected capital gain from transition into the recovery state s = 1, which tends

to increase the expected return to capital as well as the Sharpe ratio. Note that the stabilizing

force is stronger when investors are more optimistic and perceive a higher transition probability

into the recovery state, λ2. In fact, to ensure that there exists an equilibrium with positive

prices, we need a minimum degree of optimism, which is captured by the following assumption.
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Assumption 2. λ2 ≥ λmin
2 , where λmin

2 is the unique solution to the following equation over

the range λ2 ≥ ψ:
ρ+ ψq∗ − δ + λmin

2 − ψ + ψ log
(
ψ/λmin

2

)
= σ2

2.

Assumption 2 ensures that there is a unique positive solution to Eq. (27) (see Appendix

A.3). When the assumption holds as strict inequality, the decline in prices increases the Sharpe

ratio. In this case, the stabilizing capital gains force dominates the destabilizing endogenous

output and growth mechanisms. When the condition is violated, a lower price level would lower

the return further, which would trigger a downward spiral that would lead to an equilibrium

with zero asset prices and output.11 When the condition holds as equality, the stabilizing force

barely balances the destabilizing mechanisms. As we will see below, the price and output in this

case is very low and also very sensitive to further changes in beliefs.

Equilibrium in the low-volatility state. Using our conjecture, the risk balance equation

(26) for the low-volatility state s = 1 can be written as,

σ1 =
ρ+ ψq∗ − δ + λ1

(
1− Q∗

Q2

)
− rf1

σ1
. (28)

Given q2, this equation determines the interest rate, r
f
1 . Intuitively, given the expected return

on capital (that depends on q2, among other things), the interest rate adjusts to ensure that

the risk-balance condition is satisfied with the effi cient price level, q1 = q∗. For our conjectured

equilibrium, we also require that the implied interest rate to be nonnegative, rf1 ≥ 0. The

following parametric condition ensures that this is the case.

Assumption 3. λ1 ≤ λmax
1 (q2), where λmax

1 (q2) ≥ 0 denotes the unique solution to the

following equation with q2 < q∗ that solves Eq. (27):

ρ+ ψq∗ − δ + λ1

(
1− Q∗

Q2

)
= σ2

1.

That is, we need pessimism in the low-volatility state (captured by the transition probability)

to be suffi ciently low so that the fear of a transition into the high-volatility state does not push

the economy into the interest rate lower bound. As expected, greater equilibrium price level in

the high-volatility state, q2, increases the upper bound for pessimism, λmax
1 (q2).

Proposition 1. Consider the model with two states, s ∈ {1, 2}, with common beliefs and As-
sumptions 1-3. The low-volatility state 1 features a nonnegative interest rate, effi cient asset

prices and full factor utilization, rf1 ≥ 0, q1 = q∗ and η1 = 1, whereas the high-volatility state 2

11This is reminiscent of Werning (2012), who show that output approximates zero when the liquidity trap
is expected to last forever– an extremely pessimistic scenario (λ2 = 0). In our setting, even smaller doses of
pessimism could push output to zero, since the destabilizing dynamics are stronger due to endogenous investment
and growth (see Figure 2).
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features zero interest rate, lower asset prices, and a demand-driven recession, rf2 = 0, q2 < q∗,

and η2 < 1. The price level in state 2 is characterized as the unique solution to Eq. (27), and

the risk-free rate in state 1 is characterized by Eq. (28).

Comparative statics for the high-volatility state. We next establish comparative stat-

ics of the equilibrium, starting with the high-volatility state. First consider how a change in

optimism, λ2, affects the price of capital, q2. Implicitly differentiating Eq. (27), we obtain,

dq2

dλ2
=

1−Q2/Q
∗

λ2Q2/Q∗ − ψ
> 0. (29)

Here, the inequality follows since the denominator is nonnegative in view of Assumption 2 (see

Appendix A.3). Hence, the effect of optimism on the price is determined by its direct effect on

the expected return to capital captured in the numerator, which is positive. Intuitively, greater

optimism increases the expected capital gains, which increases the asset price.

Next consider this expression for the special case in which optimism is at its lowest allowed

level, λ2 = λmin
2 , so that Assumption 2 holds as equality. In this case, the denominator in Eq.

(29) is zero, and we have dq2
dλ2

= ∞. Hence, in the neighborhood of λ2 = λmin
2 , the recession is

deep, and asset prices and output are extremely sensitive to further changes in beliefs due to

the destabilizing endogenous output and growth mechanisms.

More generally, as Eq. (29) illustrates, the destabilizing mechanisms are more powerful when

investors are more pessimistic. Hence, pessimism lowers asset prices not only because of its direct

impact on asset valuations, but also because it strengthens the destabilizing feedback effects.

Figure 3 illustrates these results for a particular parameterization.

Comparative statics for the low-volatility state. Note also that, as illustrated by Eq.

(28), these changes that reduce the price in the high-volatility state, q2, also reduce the interest

rate in the low-volatility state, rf1 . Lower prices in state 2 also lower asset prices and aggregate

demand in state 1, which is countered by a lower interest rate. Moreover, the interest rate in

the low-volatility state is also influenced by the beliefs in this state. Specifically, we have

drf1
dλ1

= 1− Q∗

Q2
< 0.

Figure 4 illustrates this result for a particular parameterization. For this exercise, we set

λ2 = λmin
2 so that the recession is severe and q2 is low. We also set the exogenous shifter of the risk

premium in the boom state to be much lower than in the recession state, σ2
1 = 0.01 < σ2

2 = 0.1

(so as to capture the current low volatility environment). This choice ensures that the first-best

level of the interest rate in the boom state is quite high, rf∗1 ' 7%. This is also the interest rate

that obtains in equilibrium when pessimism is extremely low so there is no recession risk. The

figure illustrates that, starting from this benchmark, small doses of pessimism can considerably
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Figure 3: The effect of optimism on the asset price in state 2.
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Figure 4: The effect of pessimism (in state 1) on the risk-free rate in the low-volatility state 1.
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lower the risk-free interest rate, rf1 . In particular, the equilibrium interest rate becomes zero for

λmax
1 ' 0.09, i.e., when the representative investor assigns about 9% probability to a risk-driven

recession in a given year. How can a relatively small chance of a recession lower the interest rate

by several percentage points? The intuition is that, as we discussed above, the price during the

recession, q2, is lowered considerably due to the destabilizing forces triggered by a combination

of a risk shock and pessimism. The fear of a downward price spiral lowers the interest rate

during the boom, even when the likelihood of the recession is relatively low.

Endogenous Jump Volatility An important aspect of equilibrium is that it features en-

dogenous volatility in asset prices. To establish this formally, we fix some ∆t > 0 and consider

the proportional change in the value of capital over this time interval, defined as,

∆kt,sQt,s/∆t

kt,sQt,s
≡ (kt+∆t,sQt+∆t,s − kt,sQt,s) /∆t

kt,sQt,s
.

Corollary 1. For any s ∈ {1, 2}, the instantaneous (unconditional) variance of capital is,

lim
∆t→0

V art,s

(
∆kt,sQt,s/∆t

kt,sQt,s

)
= σ2

s + λs

(
Qs′ −Qs

Qs

)2

.

This is strictly greater than the instantaneous variance that would obtain in the first-best equi-

librium without interest-rate frictions, σ2
s.

Intuitively, when there is a shock to the risk premium, the interest rate policy changes the

rate to mitigate the impact of the shock on asset prices. Interest rate rigidity reduces the ability

of the policy to lean against risk premium shocks, which leads to endogenous volatility. As

this intuition suggests, while we focus on risk premium (or volatility shocks), “beliefs shocks”

that induce investors to revise their expectations would also create endogenous volatility in

asset prices through the same mechanism. In the next section, we will see that speculation also

exacerbates endogenous volatility, because it generates endogenous fluctuations in the effective

belief that determines asset prices.

5. Belief disagreements and speculation

We next consider the equilibrium with belief disagreements. We show that speculation induced

by belief disagreements creates further amplification and worsens the recession. While investors’

beliefs are exogenously fixed, the extent of their speculation can be influenced by policy, which

motivates our analysis of welfare and macroprudential policy in the next section.

We restrict attention to two types of investors, “optimists” and “pessimists”, with beliefs

denoted by,
{(
λi1, λ

i
2

)}
i∈{o,p}. We normalize the mass of each belief type to one so that i = o

and i = p denotes, respectively, the representative optimist and pessimist (and the total set of

investors I has mass equal to two). We assume the beliefs satisfy the following.
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Assumption 4. λo2 > λp2 and λ
o
1 ≤ λ

p
1.

This assumption ensures that optimists are more optimistic than pessimists in either state.

Specifically, when the economy is in the high-volatility state, optimists find the transition into

the low-volatility state relatively likely (λo2 > λp2); when the economy is in the low-volatility

state, optimists find the transition into the high-volatility state relatively unlikely (λo1 ≤ λ
p
1).

Remark 3 (Interpreting Persistent Belief Disagreements). The essence of this assumption is
that there are some investors that value risky assets more than others, and that they do so across

most environments. This could be interpreted literally as differences in beliefs, in which case it

is supported by an extensive psychology literature that documents the prevalence of optimism, as

well as its heterogeneity and persistence– since it is largely a personal trait (see Carver et al.

(2010) for a review). The assumption could also be interpreted as capturing in reduced form

other fundamental reasons for heterogeneous valuations, such as differences in risk tolerance or

(perceived) Knightian uncertainty, which are likely to be persistent. Finally, the assumption could

also capture institutional reasons for heterogeneous valuations, such as capacity or mandates for

handling risk. Investment banks, for example, have far larger capacity to handle and lever risky

positions than pensioners and money market funds. Our qualitative results are robust to the

exact source of heterogeneous valuations, as long as this heterogeneity is persistent across booms

and recessions.

To characterize the equilibrium, we define wealth-weighted average transition probability,

λt,s ≡ λs (αt,s) ≡ αt,sλos + (1− αt,s)λps, where αot,s =
aot,s

kt,sQt,s
. (30)

Here, αt,s denotes optimists’wealth share, and it is the payoff-relevant state variable in this

economy. The notation, λs (αt,s), describes the wealth-weighted average belief in state s as a

function of optimists’wealth share, and λt,s denotes the belief at time t and state s. This belief

is central to the analysis because the following analogue of the risk balance condition (26) holds

in this setting (see Appendix A.4),

σs =
1

σs

(
rkt,s − r

f
t,s + λt,s

(
1− Qt,s

Qt,s′

))
for each s ∈ {1, 2} . (31)

In particular, the equilibrium in risk markets are determined according to the wealth-weighted

average belief. When αt,s is greater, optimists exert a greater influence on asset prices.

It remains to characterize the evolution of optimists’wealth share, αt,s (and thus, the evo-

lution of λt,s). In Appendix A.4, we further characterize investors’ positions and find that

ωk,ot,s = ωk,pt,s = 1. That is, investors continue to have the same exposure to the market portfo-

lio, which is equal to one in equilibrium. Intuitively, since investors disagree about the jump

probabilities, they settle these disagreements by adjusting their holdings of contingent securities

as opposed to their exposure to the diffusion risk. In fact, we have the following closed form
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Figure 5: The evolution of optimists’wealth share over the medium run (50 years).

solution for optimists’equilibrium contingent positions [cf. Eq. (A.22)],

ωs
′,o
t,s = λos − λt,s = (λos − λps) (1− αt,s) . (32)

Optimists take a positive position on a contingent security whenever her belief for the transition

probability exceeds the weighted average belief. In view of Assumption 4, we further have,

ω2,o
t,1 ≤ 0 and ω1,o

t,2 > 0. In the boom state, optimists sell put options since they think transition

into recession is unlikely. In the recession state, they buy call options since they believe the

transition into recovery is likely.

Consistent with this interpretation, we also find that optimists’wealth share evolves accord-

ing to [cf. Eqs. (A.23) and (A.24)],{
α̇t,s = − (λos − λps)αt,s (1− αt,s) , if there is no state change,

αt,s′/αt,s = λos/λt,s, if there is a state change to s′.
(33)

Here, α̇t,s =
dαt,s
dt denotes the derivative with respect to time. In the boom state, optimists’

wealth share drifts upwards due to the profits they make from selling put options, but it makes a

downward jump if there is a transition into the recession state. In the recession state, optimists’

wealth share drifts downwards due to the cost of the call options they purchase, but it makes

an upward jump if there is a transition into the boom state. Figure 5 illustrates the dynam-

ics of optimists’wealth share for a particular parameterization and a particular realization of

uncertainty.

These observations also imply that the weighted-average belief in (30) (that determines

asset prices) is effectively extrapolative. As the boom (low-volatility) state persists, and opti-

mists’wealth share increases, the aggregate belief becomes increasingly more optimistic. After
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a transition to a worse (high-volatility) state, the aggregate belief becomes more pessimistic.

Conversely, the aggregate belief becomes more pessimistic as the recession state persists, and it

becomes more optimistic after a transition into the boom state. As we will see, these endoge-

nous extrapolation dynamics and their anticipation are behind the amplification mechanism in

this setting.

The equilibrium is then characterized as follows. Regardless of the level of asset prices and

output, Eq. (33) determines the evolution of investors’wealth shares. This in turn determines

the weighted average belief, as well as its evolution [cf. Eq. (30)]. Given the characterization

for the weighted-average belief, the equilibrium is determined by jointly solving the risk balance

equation (31) and the goods market equilibrium condition (25). Solving these equations is

slightly more involved than in the previous section since the weighted-average belief is generally

not stationary, which implies the price of capital might also have a nonzero drift, µQt,s (although

σQt,s is zero as before).

To make progress, we suppose Assumptions 1-3 from the previous section hold according

to both belief types. This ensures that, regardless of the wealth shares, state 2 features a zero

interest rate, an ineffi cient asset price level, and imperfect factor utilization, rft,2 = 0, qt,2 < q∗,

and ηt,1 < 1, whereas state 1 features a positive interest rate, an effi cient asset price level, and

full factor utilization, rft,1 > 0, qt,1 = q∗, and ηt,1 = 1. We next characterize this equilibrium

starting with the high-volatility state.

Equilibrium in the high-volatility state. Consider the risk balance equation (31) for state

s = 2. After substituting the return to capital from (21), and using µQt,2 =
dQt,2/dt
Qt,2

= q̇t,2, we

obtain,

σ2 =
1

σ2

(
ρ+ ψq2 − δ + q̇t,2 + λt,2

(
1− Q2

Q∗

))
. (34)

This expression is similar to its common-beliefs counterpart, Eq. (27), except for the term, q̇t,2,

which captures the price drift conditional on no transition. This term enters the risk balance

condition since it affects the expected return on capital. A negative price drift lowers the expected

return and exerts a downward pressure on the equilibrium price. Conversely, a positive price

drift increases the return and exerts an upward pressure.

To solve for the equilibrium, we combine Eqs. (33) and (34) to obtain a stationary differential

equation,

q̇t,2 = −
(
ρ+ ψq2 − δ + λ2 (αt,2)

(
1− Q2

Q∗

)
− σ2

2

)
, (35)

α̇t,2 = − (λo2 − λ
p
2)αt,2 (1− αt,2) .

This system describes the joint evolution of the price and optimists’wealth share, (qt,2, αt,2),

conditional on there not being a transition. In Appendix A.4, we show that this system is

saddle path stable. In particular, for any initial wealth share, αt,2 ∈ (0, 1), there exists a
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Figure 6: The solid line illustrates the equilibrium price function in state s = 2 under hetero-
geneous beliefs. The dashed line illustrates the price that would obtain if investors shared the
wealth-weighted average belief in state s = 2.

unique equilibrium price level, qt,2 ∈ [qp, qo), such that the solution satisfies limt→∞ αt,2 = 0 and

limt→∞ qt,2 = qp2 . When αt,2 = 1, the solution satisfies qt,2 = qot .

Since the equilibrium system (35) is stationary, the equilibrium price can be written as a

function of optimists’wealth share, that is, qt,2 = q2 (α) for some function q2 : [0, 1] → [qp, qo].

In particular, we can eliminate time from the system in (35) (using the observation, q̇t,2 =

q′2 (α) α̇t,2), to obtain,

q′2 (α) (λo2 − λ
p
2)α (1− α) = ρ+ ψq2 − δ + λ2 (α)

(
1− Q2

Q∗

)
− σ2

2. (36)

This provides an equivalent characterization of the price function as a solution to a differential

equation in α-domain, together with the boundary conditions, q2 (0) = qp2 and q2 (1) = qo2. In

Appendix A.4, we further show that the price function, q2 (α), is strictly increasing in α. As in

the previous section, greater optimism increases the asset price.

Amplification from speculation. We are now in a position to present the main result in

this section, which illustrates that speculation creates further amplification. To this end, we

define qh2 (α) as the solution to the risk balance equation in the common-beliefs benchmark [cf.

Eq. (27)] when all investors share the wealth-weighted average belief, λ2 (α). Comparing the

equilibrium price with this benchmark isolates the effect of speculation. In the appendix, we
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show that

q2 (α) < qh2 (α) for each α ∈ (0, 1) . (37)

That is, the equilibrium with speculation always features a lower equilibrium price (and a more

severe recession).

Intuitively, speculation reshuffl es optimists’wealth across states so that they become wealth-

ier in case there is a transition into the boom state but they become poorer if the recession

persists longer [cf. Eq. (33)]. The increase in optimists’wealth in the boom state does not

increase asset prices since it is neutralized by monetary policy, which increases the interest rate

and keeps the price of capital at its first-best level. The decline in optimists’wealth in the

recession state, however, creates damage. Specifically, conditional on no transition, optimists’

wealth share and the asset price drift downwards, α̇t,2 < 0 and q̇t,2 < 0. Moreover, as illustrated

by Eq. (34), the damage is anticipated by investors and lowers their expected return to capital.

Thus, the current price needs to fall further to equilibrate the risk balance condition, which

leads to a more severe recession.

Figure 6 illustrates the price function, q2 (α), for a particular parameterization. We chose

the parameters so that pessimists’transition probability in state 2 is at the lowest allowed level,

λp2 = λmin
2 (see Assumption 2). This implies that, when optimists’wealth share is low, asset prices

and output are very low due to the destabilizing feedbacks that we discussed in the previous

section. The figure also illustrates that the price with belief disagreements differs sharply from

the (appropriate) common beliefs benchmark. When investors share the same belief, there is no

speculation and optimism improves the price considerably. With belief disagreements, optimism

has a smaller impact since it comes bundled with speculation. This suggests that it is enough

to have one group of highly pessimistic agents to unleash destabilizing dynamics.

Equilibrium in the low-volatility state. Following similar steps for the risk balance con-

dition for the low-volatility state s = 1, we obtain,

rf1 (α) = ρ+ ψq∗ − δ + λ1 (α)

(
1− Q∗

exp (q2 (α′))

)
− σ2

1 where α
′ =

αλo2
λ2 (α)

. (38)

Here, rf1 (α) denotes the interest rate when optimists’wealth share is equal to α. The interest

rate depends (among other things) on the weighted average transition probability into the high-

volatility state, λ1 (α), as well as the price level that would obtain after transition, q2 (α′). The

latter depends on the wealth-share of optimists after transition, α′, which is smaller than α

since optimists are selling put options. For our conjecture to be valid, we also require that

rf1 (α) ≥ 0 for each α. This condition holds because Assumptions 1-3 hold for pessimists (as well

as optimists).

It is easy to check that the interest rate function, rf1 (α), is increasing in optimists’wealth

share, α, for two reasons. First, smaller α makes the wealth-weighted average belief assign a
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higher probability to a transition into the recession state s = 2, which decreases the interest rate

(even if qt,2 were kept constant). This effect is reminiscent of the analysis in Hall (2016), who

argue that the decline in the wealth share of relatively optimistic (and risk tolerant) investors can

explain some of the decline in the interest rate in recent years.12 In our model, there is a second

effect that operates in the same direction because the severity of the recession is endogenous.

In particular, smaller α also reduces the price after a transition into the recession state, q2 (α′),

which further lowers the interest rate. The following result summarizes the characterization of

equilibrium.13

Proposition 2. Consider the model with two beliefs types. Suppose Assumptions 1-3 hold for
each belief, and that beliefs are ranked according to Assumption 4. Then, optimists’wealth share

evolves according to Eq. (33). The equilibrium prices and interest rates can be written as a

function of optimists’ wealth shares, q1 (α) , rf1 (α) , q2 (α) , rf2 (α). At the high-volatility state,

rf2 (α) = 0 and q2 (α) solves the differential equation (34) with q2 (0) = qp2 and q2 (1) = qo2. At

the low-volatility state, q1 (α) = q∗ and rf1 (α) is given by Eq. (38). The equilibrium price and

interest-rate functions are increasing in optimists’wealth share. Moreover, speculation reduces

the price and exacerbates the recession in state s = 2, that is, the price function satisfies the

inequality in (37).

Dynamics of equilibrium. We next fix investors’beliefs and simulate the equilibrium for a

particular realization of uncertainty over a 50-year horizon. We choose the (objective) simulation

belief to be in the “middle”of optimists’and pessimists’beliefs in terms of the relative entropy

distance, which ensures that there is a non-degenerate long-run wealth distribution in which

neither optimists nor pessimists permanently dominate.14 Figure 7 illustrates the evolution

of equilibrium variables (except for optimists’wealth share, which we plot in Figure 5). For

comparison, the dashed line plots the equilibrium that would obtain in the common-beliefs

benchmark if all investors shared the “middle”simulation belief. For another comparison, the

dotted line plots the first-best equilibrium that would obtain without interest rate rigidities.

12This mechanism is also present in Caballero and Farhi (2017), where the average pessimism during the low
vol regime is so acute that the first-best level of rf1 becomes negative (which they refer to as a “safety trap”).
13 It can also be checked that rf1 (α) < rf,h1 (α) for each α ∈ (0, 1), where rf,h1 (α) denotes the interest rate that

would obtain if investors shared the weighted average belief, λ1 (α) (while keeping their beliefs in the other state
unchanged). Hence, speculation in state 1 reduces the interest rate. Intuitively, the same amplification mechanism
that lowers the price in state 2 is also operational in state 1. In this case, it translates into a low interest rate as
opposed to a low price, since it is neutralized by monetary policy.
14Specifically, given two probability distributions (p (s̃))s̃∈S and (q (s̃))s̃∈S , relative entropy of p with respect to q

is defined as
∑
s̃ p (s̃) log

(
p(s̃)
q(s̃)

)
. Blume and Easley (2006) show that, in a setting with independent and identically

distributed shocks (and identical discount factors), only investors whose beliefs have the maximal relative entropy
distance to the true distribution survive. Since our setting features Markov shocks, we apply their result state-by-
state to ensure that conditional probabilities satisfy the necessary survival condition. Specifically, for each state
s ∈ {1, 2}, we choose λsims so that the relative entropy of the conditional probability distribution for the next state
with respect to optimists’beliefs (in the discrete-time approximation of the model) is the same as the relative
entropy with respect to pessimists’beliefs.
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Figure 7: The evolution of the equilibrium variables with interest rate rigidity and belief dis-
agreements (solid line), with rigidity and common beliefs (dashed line), and without rigidity
(dotted line) over the medium run (50 years).

The figure illustrates two points. First, consistent with our benchmark analysis in the pre-

vious section, the interest rate is more compressed and the price of capital is more volatile than

in the first-best equilibrium. In the high-risk state, the interest rate cannot decline suffi ciently

to close the risk gap, which leads to a drop in asset prices. This also lowers output as well as in-

vestment and expected growth. In the low-risk state, the fear of transition into the recessionary

high-volatility state keeps the interest rates lower than in the first-best benchmark.

Second, consistent with our analysis in this section, these effects are more powerful when

investors have belief disagreements. In fact, the common beliefs benchmark is not too far from

the first-best equilibrium since we have calibrated the “middle”belief to be relatively optimistic

(in particular, it comfortably satisfies Assumptions 2 and 3 in the previous section). The figure

shows that belief disagreements alone can create considerable damage. This illustrates the

amplification caused by speculation and motivates the analysis of macroprudential policy that

restricts speculation, which we turn to next.

6. Welfare analysis and macroprudential policy

In this section we establish our normative results on macroprudential policy. To this end, we

first characterize investors’ value functions in equilibrium. This establishes the determinants
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of welfare in this setting and illustrates the aggregate demand externalities. We then show

that, when investors have belief disagreements, the equilibrium can be Pareto improved by

macroprudential policy that restricts optimists’ risk taking. Throughout, we work with the

model with two belief types, {o, p}, that we analyzed in the previous section.

6.1. Equilibrium value functions and aggregate demand externalities

In Appendix A.2.1, we show that the value function can be written as,

V i
t,s

(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vit,s. (39)

Here, vit,s denotes the normalized value function per unit of capital stock. An investor that

has twice the capital chooses the same portfolio weights and consumes twice the consumption

state-by-state, which leads to the functional form in (39).

In Appendix A.5, we further characterize vit,s as the solution to the following differential

equation system,

ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

 ψqt,s − δ − 1
2σ

2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) + λis
(
vit,s′ − vit,s

)
. (40)

This expression illustrates the determinants of welfare. When there is a demand-driven reces-

sion (e.g., in the high-volatility state s = 2), a lower equilibrium price, qt,s, reduces investors’

welfare since it is associated with lower factor utilization, ηt,s. Note that welfare declines due

to a decline in current consumption (captured by the term, log ρ + qt,s) as well as a decline in

investment and consumption growth (captured by the term, ψqt,s − δ = gt,s). The risk pre-

mium, σ2
s, also affects welfare through its influence on the risk-adjusted consumption growth.

Finally, speculation among investors with belief disagreements also affects (perceived) welfare.

This is captured by the term, −
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
, which is zero with common beliefs,

and strictly positive with disagreements.

To facilitate our analysis of macroprudential policy, we also break down the value function

into two components,

vt,s = v∗t,s + wt,s. (41)

Here, v∗t,s denotes the first-best value function that would obtain if there were no interest rate

rigidity. It is characterized by solving Eq. (40) with qt,s = q∗ for each t, s. The residual, wt,s =

vt,s − v∗t,s, denotes the gap value function, which captures the loss of value due to the interest
rate rigidity and demand recessions. Using Eq. (40), the gap value function is characterized as

the solution to the following differential equation,

ρwit,s −
∂wit,s
∂t

=

(
1 +

ψ

ρ

)
(qt,s − q∗) + λis

(
wit,s′ − wit,s

)
. (42)
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Figure 8: The plots illustrate the equilibrium value functions for each state and belief type.
The solid lines are the actual value functions, vis (α), the dotted lines are the first-best value
functions, vi,∗s (α), and the dashed lines (in the bottom panels) are the gap value functions,
wis (α).

This illustrates that the gap value captures the loss of welfare due to the price deviations from

the first best. As we will see, the gap value functions are useful to understand the marginal

effect of macroprudential policy on social welfare.

When investors share the same belief, the value function and its components are stationary,

e.g., vt,s = vs. In Appendix A.5, we calculate these values in closed form (see Eq. (A.28)) and

find that they depend on a weighted average of the price of capital in the two states, (qs)s∈{1,2},

as well as on the volatilities, (σs)s∈{1,2}. The weights reflect time discounting and transition

probabilities: they can be thought of as the “discounted expected time”the investor spends in

one state relative to another. We show that the value in the recession state is lower than in the

boom state, v2 < v1, precisely because the investor expects to spend more discounted time in

state 2 that features both lower price of capital and higher volatility relative to the other state.

For the same reason, we find that the gap value is negative in both states but more so in the

recession state, w2 < w1 < 0.

With belief disagreements, the value function is not necessarily stationary since the price

might have a drift. Recall that the equilibrium price in the high-volatility state is a function of op-

timists’wealth share, q2 (α). In Appendix A.5, we show that the equilibrium values and its com-

ponents can also be written as a function of optimists’wealth share,
{
vis (α) , vi,∗s (α) , ws (α)

}
s,i
.

We also characterize these value functions as solutions to differential equations in α-domain.

Figure 8 illustrates the numerical solution for the equilibrium plotted in the earlier Figure 6.

The bottom panels of Figure 8 show that the gap value functions are increasing in the wealth
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share of optimists, α, which illustrates the aggregate demand externalities. Greater α increases

the effective optimism, which in turn leads to a greater equilibrium asset price in the high-

volatility state (see Figure 6). This improves the gap value function in this state by raising the

aggregate demand and bringing the economy closer to the first-best benchmark (see Eq. (42)).

It also improves the gap value function in the low-volatility state, because the economy can

always transition into the high-volatility state, and these transitions are less costly when α is

greater. Hence, increasing optimists’wealth share is always associated with positive aggregate

demand externalities. Individual optimists that take risks (or pessimists that take the other side

of these trades) do not internalize their effects on asset prices, which leads to ineffi ciencies and

generates scope for macroprudential policy.

The top panels of Figure 8 illustrate that the first-best value functions are increasing in

α for pessimists but they are decreasing in α for optimists. These effects can be understood

via pecuniary externalities in contingent security markets. Increasing the mass of optimists

increases the price of contingent securities that optimists purchase, while decreasing the price

of contingent securities that pessimists purchase. This creates negative pecuniary externalities

(or crowd-out effects) on optimists, and positive pecuniary externalities on pessimists.

Finally, note that the actual value function is the sum of the first-best and the gap value

functions. For pessimists, the actual value is always increasing in α, since the two components

move in the same direction. For optimists, this is not necessarily the case since the gap value is

increasing in α whereas the first-best value is decreasing.

6.2. Macroprudential policy

We capture macroprudential policy as risk limits on optimists. Suppose, the planner can induce

optimists to choose (instantaneous) allocations as if they have less optimistic beliefs. Specifically,

optimists are constrained to choose allocations as-if they have the beliefs, λo,pl ≡
(
λo,pl1 , λo,pl2

)
,

that satisfy, λo,pl1 ≥ λo1 and λ
o,pl
2 ≤ λo2.

15 Pessimists continue to choose allocations according to

their own beliefs. Throughout, we use λi,pls to denote investors’as-if beliefs and λis to denote

their actual beliefs (for pessimists, the two beliefs coincide). We also use the notations, λ
pl
t,s =

αt,sλ
o,pl
s + (1− αt,s)λp,pls and λ

pl
s (α) to represent the weighted average as-if belief.

In Appendix A.6, we show that the planner can implement this policy by imposing in-

equality restrictions on optimists’portfolio weights, while allowing them to make unconstrained

consumption-savings decisions. Specifically, the policy constrains optimists from taking too low

a position on the contingent security that pays in the high-volatility state, ω2,o
t,1 ≥ ω2,o

t,1 (restric-

tions on selling “put options”). It also constrains optimists from taking too high a position on

the contingent security that pays in the low-volatility state, ω1,o
t,2 ≤ ω1,o

t,2 (restrictions on buying

“call options”). Finally, the policy also constrains optimists’position on capital not to exceed

15For simplicity, we restrict attention to time-invariant policies. The planner commits to a policy at time zero,(
λo,pl1 , λo,pl2

)
, and implements it throughout.
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the market average, ωk,ot,s ≤ 1 (since otherwise optimists start to speculate by holding more

capital).

Remark 4 (Banks and Macroprudential Policy). In practice, most macroprudential policies
are implemented through banks, especially large ones. If the banks are interpreted as the high

valuation agents in the economy, perhaps because of their greater risk tolerance or capacity (see

Remark 3), then our policy applies directly to their balance sheets. If instead the borrowers of

the banks are interpreted as the high valuation agents, then strictly speaking the policy applies

to borrowers’balance sheets.16 However, under the realistic assumption that the borrowers have

little choice but to obtain risk exposure via banks, the policy can still be implemented through

banks by limiting their lending to their optimistic borrowers (e.g., real estate investors in the

run-up to the housing bubble) or other high-valuation borrowers (e.g., hedge funds). The key

aspect of macroprudential policy in our environment is that it restricts high valuation investors’

exposure to recession risks.

The characterization of equilibrium with policy is the same as in Section 5. In particular,

Eqs. (33) and (34) continue to hold with the only difference that investors’beliefs are replaced

with their “as-if”beliefs, λi,pls .

To characterize the optimal policy, we assume the planner respects investors’ individual

beliefs, that is, investors’expected values in equilibrium are calculated according to their own

beliefs, λis. To trace the Pareto frontier, we also allow the planner to do a one-time wealth

transfer among the agents at time zero. In Appendix A.6, we show that the planner’s Pareto

problem can then be reduced to,

max
λ̃
o,pl

α0,sv
o
0,s + (1− α0,s) v

p
0,s. (43)

Hence, the planner maximizes a wealth-weighted average of investors’normalized values. The

relative wealth shares reflect the planner’s relative Pareto weights

We further characterize vi0,s as the solution to a differential equation [cf. Eq. (A.35)]. This

is the analogue of Eq. (40) with the only difference that the portfolio weights on contingent

securities (and the payoffs from these positions) are calculated according to investors’ as-if

beliefs, λi,pls , whereas the transition probabilities are calculated according to their actual beliefs,

λis. As before, we also decompose the value function into first-best and gap value components,

vit,s = vi,∗t,s + wit,s.

We also show that the value function as well as its components can be written as a function

of optimists’ wealth shares. As in the case without policy, we denote the equilibrium price

functions with {qs (α)}s, individuals’ value functions with
{
vis (α) , vi,∗s (α) , wis (α)

}
s,i∈{o,p}

.17

The planner’s value function is then a wealth-weighted average of individual value functions,
16These interpretations are not mutually exclusive since there are multiple layers of heterogeneous valuations

in the financial system.
17These functions also depend on the policy, λo,pl, which we suppress to simplify the notation.
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vpls (α) = αvos (α) + (1− α) vps . We also break this into first-best value and gap value, v
pl
s (α) =

vpl,∗s (α) + wpls (α).

A key observation is that the marginal impact of the policy on the planner’s first-best value

function is zero,
∂vpl,∗s (α)

∂λo,pl

∣∣∣∣∣
λo,pl=λo

= 0. (44)

This is because our model features complete markets and no frictions other than interest rate

rigidities. Hence, the First Welfare Theorem applies to the first-best allocations that also correct

for these rigidities (and features effi cient output). This in turn implies that the marginal impact

on the first-best value must be zero, since otherwise the first-best allocations could be Pareto

improved by appropriately changing optimists’as-if beliefs. It follows that the marginal impact

of the policy is determined by its marginal impact on the planner’s gap value function, wpls (α) =

αwos (α) + (1− α)wps (α).

It remains to characterize how the policy affects investors’gap value functions. In Appendix

A.6, we show that the gap value function solves the equation system,

ρwis (α) =

(
1 +

ψ

ρ

)
(qs (α)− q∗)−α (1− α)

(
λo,pls − λps

) ∂wis (α)

∂α
+λis

(
wis′
(
α′
)
− wis (α)

)
, (45)

where α′ = α λo,pls

λ
o,pl
s (α)

. This follows from the earlier equation (42) after replacing optimists’

wealth dynamics from Eq. (33) when they act according to their as-if beliefs, λo,pls . Note how

the transition probability is calculated according to investors’ actual beliefs, λis. The policy

influences the perceived gap values not because it changes investors’beliefs, but since it changes

optimists’wealth dynamics, which in turn affects asset prices and the output gaps relative to

the first-best. We next describe the effect of macroprudential policy in the boom state s = 1,

assuming that there is no intervention in the other state. We then analyze the polar opposite

case of macroprudential policy in the recession state s = 2, assuming no intervention in the

boom state.

6.2.1. Macroprudential policy during the boom

Suppose the economy is currently in the boom state s = 1. The planner can use macroprudential

policy in the current state, λo,pl1 ≥ λo1 (she can induce optimists to act as if transition into the

recession is more likely), but not in the other state λo,pl2 = λo2 (she cannot influence optimists’

actions in the recession state). Finally, suppose we are in the special case in which the beliefs

satisfy, λ1 ≡ λo1 = λp1 (so investors disagree only in the recession state). We obtain a sharp result

for this case, and we show in numerical simulations that the result also applies when λo1 < λp1.

Proposition 3. Consider the model with two beliefs types that satisfy λo1 = λp1. Consider

the macroprudential policy in the boom state, λo,pl1 ≥ λo1 (and suppose λ
o,pl
2 = λo2). The policy
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increases the gap value according to each belief, that is,

∂wi1 (α)

∂λo,pl1

∣∣∣∣∣
λo,pl1 =λo1

> 0 for each i ∈ {o, p} and α ∈ (0, 1) .

The policy also increases the planner’s value, ∂vpl1 (α)

∂λo,pl1

∣∣∣∣
λo1

=
∂wpl1 (α)

∂λo,pl1

∣∣∣∣
λo1

> 0. In particular, regard-

less of the planner’s Pareto weight, there exists a Pareto improving macroprudential policy.

The result shows that macroprudential policy improves the gap value function according

to optimists as well as pessimists. Therefore, it also increases the wealth-weighted average gap

value. In view of Eq. (44), it also increases the social welfare and leads to a Pareto improvement.

To obtain a sketch proof for the result, consider the differential equation (45) for state s = 1

and an arbitrary belief type i ∈ {o, p}. Differentiating this expression with respect to policy,
λo,pl1 , and evaluating at the no-policy equilibrium, λo,pl1 = λo1, we obtain,

(ρ+ λ1)
∂wi1 (α)

∂λo,pl1

=

[
−α (1− α)

∂wi1 (α)

∂α
+ λ1

∂α′

∂λo,pl1

∂wi2 (α′)

∂α′

]
+ λ1

∂wi2 (α′)

∂λo,pl1

,

= α (1− α)

[
−∂w

i
1 (α)

∂α
+
∂wi2 (α)

∂α

]
+ λ1

∂wi2 (α)

∂λo,pl1

. (46)

Here, λ1 denotes investors’ common belief in state 1 (by assumption). The second line uses

α′ = α
λo,pl1

λ
o,pl
1 (α)

. The two terms inside the brackets capture the direct effects of macroprudential

policy on social welfare. Macroprudential policy effectively induces optimists to purchase more

insurance (or sell fewer puts). This reduces optimists’ relative wealth share in state 1 but

improves their relative wealth share in state 2. Moreover, using the equilibrium prices, one unit

of decline in wealth share in state 1 is associated with one unit of increase in expected wealth

share in state 2.

Next note that the gap value function in either state is increasing in optimists’wealth share
∂wi1(α)
∂α ,

∂wi2(α)
∂α > 0 (see Figure 8). Hence, macroprudential policy always involves a trade-off.

Intuitively, optimism is a scarce resource that could also be utilized immediately as well as in

the future. Moving optimism across states via macroprudential policy is always associated with

costs as well as benefits. However, the typical situation is such that optimism increases the social

welfare more in the recession state s = 2, where it provides immediate benefits, as opposed to

the boom state s = 1, where its benefits are realized in case there is a future transition into the

recession state. For the special case with λo1 = λp1, we in fact have
∂wi1(α)
∂α = λ1

ρ+λ1

∂wi2(α)
∂α <

∂wi2(α)
∂α .

Combining this with Eq. (46) provides a sketch-proof of Proposition 3. The actual proof

in Appendix A.6 relies on the same idea but uses recursive techniques to establish the result

formally.

The left panel of Figure 9 illustrates the result by plotting the change in the planners’value

functions in the boom state resulting from a small macroprudential policy change (specifically,
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Figure 9: The left panel illustrates the effect of a small change in macroprudential policy in
the boom state on the planner’s value functions. The right panel illustrates the effect of larger
policy changes.

we start with the equilibrium with λo1 = 0.03 and set λo,pl1 = 0.0305). Note that the policy

reduces the planner’s first-best value function, since it distorts investors’allocations according

to their own beliefs. However, the magnitude of this decline is small, illustrating the First Welfare

Theorem (cf. Eq. (44)). Note also that the policy generates a relatively sizeable increase in the

planner’s gap value function. Moreover, this increase is suffi ciently large that the policy also

increases the actual value function and generates a Pareto improvement, illustrating Proposition

3.

Macroprudential policy improves welfare by internalizing the aggregate demand external-

ities. In the recession state s = 2, optimists improve asset prices, which in turn increases

aggregate demand and brings output closer to the first-best level. Individual optimists do not

internalize that they would improve asset prices and output by bringing more wealth into state

2. Macroprudential policy works by increasing optimists’insurance purchases, which increases

their wealth share in the recession state. The result is reminiscent of the analysis in Korinek and

Simsek (2016), in which macroprudential policy improves outcomes by inducing agents that have

a high marginal propensity to consume (MPC) to bring more wealth into states in which there

is a demand-driven recession. However, the mechanism here is different and operates via asset

prices. In fact, in our setting, all investors have the same MPC equal to ρ. Optimists improve

aggregate demand not because they spend more than pessimists, but because they increase asset

prices and induce all investors to spend more, while also increasing aggregate investment and

hence growth.

As this discussion suggests, the parametric restriction, λo1 = λp1, is useful to obtain an an-
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alytical result but it does not play a central role. We suspect that Proposition 3 also holds

absent this assumption, even though we are unable to provide a proof. In our numerical simula-

tions, we have not yet encountered a counterexample. The results displayed in Figure 9 actually

correspond to our earlier parameterization that features λo1 < λp1.

Proposition 3 concerns a small policy change. The right panel of Figure 9 illustrates the

effect of larger policies by plotting the changes in the planner’s value as a function of the size of

the policy (starting from no policy, λo,pl1 = λo1). For this exercise, we fix the optimists’wealth

share at a particular level, α = 1/2. Note that, as the policy becomes larger, the gap value

continues to increase whereas the first-best value decreases. Moreover, the decline in the first-

best value is negligible for small policy changes but it becomes sizeable for large policy changes.

The (constrained) optimal macroprudential policy obtains at an intermediate level, λo,pl,∗1 > λo1.

The figure also illustrates that the constrained optimal policy intervention is not too large

(specifically, we have λo,pl,∗1 = 0.04 where λo1 = 0.03). This is typically the case in our numerical

simulations. The reason is that speculation generates high perceived utility for investors. Since

macroprudential policy restricts speculation, the perceived costs quickly rise with the degree of

the policy intervention, which implies that the optimal intervention is not too large.

Macroprudential policy according to a belief-neutral criterion. When we interpret

belief disagreements literally (see Remark 3), it is questionable whether the utility from specula-

tion should be counted toward social welfare. A recent literature argues that the Pareto criterion

is not the appropriate notion of welfare for environments with belief disagreements. If investors’

beliefs are different due to mistakes (say, in Bayesian updating), then it is arguably more appro-

priate to evaluate investors’utility according to the objective belief– which is common across

the agents. Doing so would remove the speculative utility from welfare calculations, and it could

lead to a constrained optimal policy that is much larger in magnitude. While reasonable, this

approach faces a major challenge in implementation: whose belief should the policymaker use?

In recent work, Brunnermeier et al. (2014) offer a belief-neutral welfare criterion that circum-

vents this problem. The basic idea is to require the planner to evaluate social welfare according

to a single belief, but also to make the welfare comparisons robust to the choice of the single

belief. Specifically, their baseline criterion says that an allocation is belief-neutral superior to

another allocation if it increases social welfare under every belief in the convex hull of investors’

beliefs. Proposition 3 suggests their criterion can also be useful in this context since macropru-

dential policy increases the gap value according to each belief– that is, the gap-reducing welfare

gains are belief neutral.

For a formal analysis, fix some h ∈ [0, 1] and let vis
(
α;λo,pl1 , λh

)
denote the value function for

an individual when the planner implements policy, λo,pl1 , and evaluates utility under the beliefs,

λhs = λps + h (λos − λps).18 As before, define the planner’s value function, v
pl
s

(
α;λo,pl1 , λh

)
, as the

18This value function solves the differential equation system (A.35) after replacing the actual beliefs, λis, with
the planner’s beliefs, λhs .
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Figure 10: The left panel illustrates the effect of macroprudential policy on social welfare when
all investors’value is calculated according to respectively optimists’or pessimists’belief. The
panels on the right illustrate the effects on respectively the first-best and the gap value functions.

wealth-weighted average of individual’s value functions. Then, given the wealth share α (that

corresponds to a particular Pareto weight), the policy, λo,pl1 , is a belief-neutral improvement over

some other policy, λ̃
o,pl
1 , as long as it increases the planner’s value according to each h ∈ [0, 1].

Figure 10 illustrates the belief-neutral optimal policy in the earlier example. The left panel

plots the effect of the policy on the social welfare (given α = 1/2) when the planner evaluates all

investor’s values under respectively pessimists’belief and optimists’belief. The social welfare

evaluated under intermediate beliefs lie in between these two curves. As the figure suggests,

tightening the policy towards λo,pl,neutral1 = 0.1 constitutes a belief-neutral improvement. In

particular, the belief-neutral criterion supports a much larger policy intervention than the Pareto

criterion (cf. Figure 9).

The right panel provides further intuition by breaking the social welfare into its two com-

ponents, vpl1 = vpl,∗1 + wpl1 . The top right panel shows that tightening macroprudential policy

towards the belief, λo,pl,first1 = 0.1, generates a belief-neutral improvement in the “first best”

social welfare, vpl,∗1 . Speculation induces investors to deviate from the optimal risk sharing

benchmark in pursuit of perceived speculative gains. However, these speculative gains are trans-

fers from other investors, and they do not count towards social welfare when investors’values

are evaluated under a common belief (regardless of whose belief is used). Hence, if there were

no interest rate rigidities, a belief-neutral planner would eliminate almost all speculation.19

The bottom right panel shows the effects of policy on the gap value, wpl1 , which captures

19An unconstrained planner that uses a common belief for welfare calculations would set, λo,pl1 = λp1 ' 0.09, so
as to eliminate all speculation. Our constrained planner slightly overshoots this benchmark since she also corrects
for the fact that she does not have access to macroprudential policy in state 2.
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Figure 11: The evolution of the equilibrium variables without macroprudential policy (solid
line) and with macroprudential policy in the boom state (dotted line) over the medium run (50
years).

the reduction in social welfare due to interest rate rigidities. Tightening the macroprudential

policy towards the belief, λo,pl,gap1 = 0.07 increases the gap value according to both optimists

and pessimists (illustrating Proposition 3). Beyond this level, tightening the policy improves the

gap value according to pessimists but not according to optimists– who perceive smaller benefits

from macroprudential policy since they find the transition into state 2 unlikely.

It follows that, up to the level, λo,pl,gap1 = 0.07– which constitutes a sizeable policy

intervention– there is no conflict in belief-neutral policy objectives. Tightening the policy helps

to rein in speculation while also improving the gap value, according to any belief. This might be

a natural choice for a planner who focuses exclusively on closing the output gaps relative to the

first best while remaining agnostic about whether speculation improves or reduces social wel-

fare. Beyond this level, tightening the policy continues to generate belief-neutral welfare gains

by reducing speculation and improving risk sharing, but it also reduces the gap value according

to optimists.

Dynamics of equilibrium with policy. We next consider how macroprudential policy af-

fects the dynamics of equilibrium variables. Figure 11 illustrates the evolution of equilibrium

over a 50-year horizon when the planner implements the (belief—neutral) gap-value maximizing

policy, λo,pl,gap1 = 0.07. For comparison, the figure also replicates the evolution of the equilib-
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rium variables without policy from Figures 5 and 7. Note that macroprudential policy ensures

optimists’wealth share drops relatively less when there is a transition into the high-volatility

state. This in turn leads to greater asset prices and higher growth rate in the high-volatility

state. However, macroprudential policy is not without its drawbacks. As the period between

years 5-15 illustrates, the policy slows down the growth of optimists’wealth share when the

economy remains in the low-volatility state.

The effect of macroprudential policy on the interest rate in the low-volatility state is rather

subtle. On the one hand, for a fixed level of optimists’wealth share, the policy lowers the

interest rate as it lowers aggregate demand. On the other hand, the policy also preserves

optimists’wealth over time, which increases the interest rate. In our simulation in Figure 11,

the latter effect dominates and macroprudential policy leads to a higher interest rate over time.

6.2.2. Macroprudential policy during the recession

The analysis so far concerns macroprudential policy in the boom state and maintains the as-

sumption that λo,pl2 = λo2. We next consider the polar opposite case in which the economy is

currently in the recession state s = 1, and the planner can apply macroprudential policy in this

state, λo,pl2 ≤ λo2 (she can induce optimists to act as if the recovery is less likely), but not in the
other state, λo,pl1 = λo1. We obtain a sharp result for the special case in which optimists’wealth

share is suffi ciently large.

Proposition 4. Consider the model with two belief types. Consider the macroprudential policy
in the recession state, λo,pl2 ≤ λo2 (and suppose λ

o,pl
1 = λo1). There exists a threshold, α < 1, such

that if α ∈ (α, 1], then the policy reduces the gap value according to each belief, that is,

∂wi2 (α)

∂
(
−λo,pl2

)
∣∣∣∣∣∣
λo,pl2 =λo2

< 0 for each i ∈ {o, p} .

Thus, for α ∈ (α, 1], the policy also reduces the planner’s value, ∂vpls (α)

∂
(
−λo,pl2

)
∣∣∣∣∣
λo2

= ∂wpls (α)

∂
(
−λo,pl2

)
∣∣∣∣∣
λo2

< 0.

Thus, in contrast to Proposition 3, macroprudential policy in the bust phase can actually

reduce the social welfare. The intuition can be understood by considering two counteracting

forces. First, similar to the boom state, macroprudential policy in the recession state is poten-

tially valuable by reallocating optimists’wealth from state s = 1 to state s = 2. Intuitively,

optimists purchase too many call options that pay if there is a transition to the boom state but

that impoverish them in case the recession persists. They do not internalize that, if they keep

their wealth, they will improve asset prices if the recession lasts longer.

However, there is a second force that does not have a counterpart in the boom state: Macro-

prudential policy in the bust state also affects the current price level, with potential implications

for social welfare. It can be seen that making optimists less optimistic in state 2 shifts the price
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Figure 12: The left (resp. right) panel illustrates the effect of a small change in macroprudential
policy in the boom (resp. recession) state.

function downward, ∂q2(α)

∂
(
−λo,pl2

) < 0 (as in Figure 3 for common beliefs). Hence, the price impact

of macroprudential policy is welfare reducing. Moreover, as optimists dominate the economy,

α→ 1, the price impact of the policy is still first order, whereas the beneficial effect from reshuf-

fling optimists’wealth is second order. Thus, when optimists’wealth share is suffi ciently large,

the net effect of macroprudential policy is negative, illustrating Proposition 4.

This analysis also suggests that, even when the policy in the bust state exerts a net positive

effect, it would typically increase the welfare by a smaller amount than a comparable policy in

the boom state. Figure 12 illustrates this by plotting side-by-side the effects of a small policy

change in either state. The left panel replicates the value functions from the earlier Figure 9,

whereas the right panel illustrates the results from changing optimists’belief in the bust state by

an amount that would generate a similar distortion in the first-best equilibrium as in our earlier

analysis.20 Note that a small macroprudential policy in state 2 has a smaller positive impact

when optimists’wealth share is small, and it has a negative impact when optimists’wealth share

is suffi ciently large.

It is useful to emphasize that macroprudential policy does not have an adverse price impact in

the boom state due to the interest rate response. Intuitively, as macroprudential policy reduces

the demand for risky assets, the interest rate policy lowers the rate to dampen its effect on asset

prices and aggregate demand. In the recession state, the interest rate is already at zero, so the

interest rate policy cannot neutralize the adverse effects of macroprudential policy.

Taken together, our analysis in this section provides support for procyclical macroprudential

20Specifically, we calibrate the belief change in state 2 so that the maximum decline in the planner’s first-best

value function is the same in both cases, maxα

∣∣∣∆vpl,∗2 (α)
∣∣∣ = maxα

∣∣∣∆vpl,∗1 (α)
∣∣∣.
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policy. In states in which output is not demand constrained (in our model, state 1), macro-

prudential policy that restricts high valuation investors’(in our model optimists’) risk taking

is desirable. This policy improves welfare by ensuring that high valuation investors bring more

wealth to the demand-constrained states, which in turn increases asset prices and output. Its

adverse price effects are countered by a reduction in the interest rate. In contrast, in states in

which output is demand constrained (in our model, state 2), macroprudential policy has coun-

teracting effects on social welfare. While the policy has the same beneficial effects as before,

it also lowers asset prices and aggregate demand, which cannot be countered by the interest

rate. The latter effect reduces the overall usefulness of macroprudential policy, and it could even

reduce social welfare.

7. Final Remarks

We provide a macroeconomic framework where risk- and output—gaps are joint phenomena that

feed into each other. The key tension in this framework is that asset prices have the dual

role of equilibrating risk markets and supporting aggregate demand. When the dual role is

inconsistent, the risk market equilibrium prevails. Interest rate policy works by taking over

the role of equilibrating risk markets, which then leaves asset prices free to balance the goods

markets. However, once interest rates reach a lower bound, the dual role problem reemerges

and asset prices are driven primarily by risk markets equilibrium considerations. This reduces

aggregate demand and triggers a recession, which then feeds back negatively into asset prices.

The drop in asset prices during recessions also reduces interest rates during booms. In this

environment, the role of macroprudential regulation is to preserve the wealth of high-valuation

investors during recessions, so as to reduce the gap between the asset prices that equilibrate the

risk and goods markets when interest rate policy is no longer available.

Interest rate cuts work in our model by improving the market’s Sharpe ratio. From this

perspective, any policy that reduces market volatility should have similar effects, which renders

support to the many such policies implemented during the aftermath of the subprime and

European crises.

In the model we take the interest rate friction to be a stark zero lower bound constraint,

which can be motivated with standard cash-substitutability arguments. In practice, this con-

straint is neither as tight nor as narrowly motivated: Central banks do have some space to bring

rates into negative territory, especially when macroeconomic uncertainty is rampant, but there

are also many other frictions besides cash substitutability that can motivate downward rigidity

in rates once these are already low (see, e.g., Brunnermeier and Koby (2016) for a discussion of

the “reversal rate”, understood as a level of rates below which the financial system becomes im-

paired). The broader points of the dual role of asset prices and their interactions with aggregate

demand constraints during recessions would survive many generalizations of the interest rate

friction. Similarly, one could also imagine situations that motivate ceilings on interest rates, in
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which case asset prices would overshoot and the productive capacity would become stretched.

In the main text, we also did not take a stand on whether optimists or pessimists are right

about the transition probabilities. The reason is that core of our analysis does not depend on

this. For example, we could think of optimists as rational and pessimists as Knightians (see, e.g.,

Caballero and Krishnamurthy (2008); Caballero and Simsek (2013)). Absent any direct mech-

anism to alleviate Knightian behavior during severe recessions, the key macroprudential point

that optimists may need to be regulated during the boom survives this alternative motivation.

As we noted earlier, our modeling approach belongs to the literature spurred by Brunnermeier

and Sannikov (2014), although unlike that literature our analysis does not feature financial

frictions. However, if we were to introduce these realistic frictions in our setting, many of

the themes in that literature would reemerge and become exacerbated by aggregate demand

feedbacks. For instance, in an incomplete markets setting, optimists take leveraged positions

on capital, and by doing so they induce endogenous volatility in asset prices and the possibility

of tail events following a sequence of negative diffusion shocks that make the economy deeply

pessimistic (we analyze the incomplete markets case in a companion paper, Caballero and Simsek

(2017a)).

The model omits many realistic healing mechanisms that were arguably relevant for the

Great Recession (as well as other deep recessions). For example, a financial crisis driven by a

reduction in banks’net worth is typically mitigated over time as banks earn high returns and

accumulate net worth (see Gertler et al. (2010); Brunnermeier and Sannikov (2014)). Likewise,

household or firm deleveraging eventually loses its potency as debt is paid back (see Eggertsson

and Krugman (2012); Guerrieri and Lorenzoni (2017)). Investment hangovers gradually dissipate

as the excess capital is depleted (see Rognlie et al. (2017)). While these healing mechanisms are

useful to understand the aftermath of the Great Recession, they raise the natural question of

why the interest rates seem unusually low and the recovery (especially in investment) appears

incomplete almost ten years after the start of the recession. Our paper illustrates how (objective

and subjective) risk factors can drag the economy’s recovery.

Conversely, the model also omits many sources of inertia that stem from financial markets.

Throughout we have assumed that risk-markets clear instantly while goods markets are sluggish.

In practice, risk-market have their own sources of inertia as financial institutions avoid or delay

mark-to-market losses, liquidity evaporates, policy noise rises, and so on.

Finally, one feature of the aftermath of the subprime crisis is the present high valuation of

risk-assets, that could appear to contradict the higher required equity risk premium observed

in the data (see Figure 1). The model offers a natural interpretation for such a combination:

While we focused exclusively on changes in the required risk-premium, there is also evidence

that during this period both ρ and ψ have declined due to a variety of factors such as a worsening

of the income distribution and an increase in monopoly rents (see, e.g., Gutiérrez and Philippon

(2016)). Equation (22) shows that such declines require a higher valuation to obtain full factor

utilization, which is achieved via a drop in “rstar.”It may well be that this new high valuation
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full-employment equilibrium will bring about higher instability in the future by exacerbating

speculation, which is a theme we intend to explore in future work.
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A. Appendix: Omitted Derivations and Proofs

This appendix presents the derivations and proofs omitted from the main text. The next appendix

presents the proofs.

A.1. Omitted derivations in Section 2

Most of the analysis is provided in the main text. Here, we formally state the household’s problem and

derive the optimality conditions. Recall that the market portfolio is the claim to all output at date 1. Let

rk (z1) = log
(
z1
Q

)
denote the log return on this portfolio if the productivity is realized to be z1. Since

the payoff distribution is log normal, the return distribution is also log normal,

rk (z1) ∼ N
(
g − logQ− σ2

2
, σ2

)
. (A.1)

The household takes the returns as given and solves the following problem,

max
c0,a0,ωk

log c0 + e−ρ logU1

where U1 =
(
E
[
c1 (z1)

1−γ
])1/(1−γ)

s.t. c0 + a0 = y0 +Q

and c1 (z1) = a0

(
ωk exp

(
rk (z1)

)
+
(
1− ωk

)
exp

(
rf
))
.

Here, c1 (z1) denotes total financial wealth, which equals consumption (since the economy ends at date

1). Note that the household has Epstein-Zin preferences with EIS coeffi cient equal to one and the RRA

coeffi cient equal to γ > 0. The case with γ = 1 is equivalent to log utility as in the main text.

In view of the Epstein-Zin functional form, the household’s problem naturally splits into two steps.

Conditional on savings, a0, the household solves a portfolio optimization problem, that is, U1 = RCEa0,

where

RCE = max
ωk

(
E
[
(Rp (z1))

1−γ
])1/(1−γ)

(A.2)

and Rp (z1) =
(
ωk exp

(
rk (z1)

)
+
(
1− ωk

)
exp

(
rf
))
.

Here, we used the observation that the portfolio problem is linearly homogeneous. The variable, Rp (z1),

denotes the realized portfolio return per dollar, and RCE denotes the optimal certainty-equivalent port-

folio return. In turn, the household chooses asset holdings, a0, that solve the intertemporal problem,

max
a0

log (y0 +Q− a0) + e−ρ log
(
RCEa0

)
.

The first order condition for this problem implies Eq. (2) in the main text. That is, regardless of her

certainty-equivalent portfolio return, the household consumes and saves a constant fraction of her lifetime

wealth.

It remains to characterize the optimal portfolio weight, ωk, as well as the resulting certainty-equivalent

return, RCE . Even though the return on the market portfolio is log-normally distributed (see Eq. (A.1)),

the portfolio return, Rp (z1), is in general not log-normally distributed (since it is the sum of a log-normal

variable and a constant). Following Campbell and Viceira (2002), we assume the household solves an
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approximate version of the portfolio problem (A.2) in which the log portfolio return is also normally

distributed. Moreover, the mean and the variance of this distribution are such that the following identifies

hold,

πp ≡ ωkπk (A.3)

where πp = logE [Rp]− rf and πk = log
(
E
[
exp

(
rk
)])
− rf = E

[
rk
]
− rf +

σ2

2
,

and σp = ωkσ (A.4)

where (σp)
2

= var (logRp) and σ2 = var
(
rk
)
.

Here, the first line says that the risk premium on the investor’s portfolio (measured in log difference of

expectations of gross returns) depends linearly on the investor’s portfolio weight and the risk premium

on the market portfolio. The third line says that the standard deviation of the (log) portfolio return

depends linearly on the investor’s portfolio weight and the standard deviation of the (log) return on the

market portfolio.21 These identities hold exactly in continuous time. In the two period model, they hold

approximately when the period time-length is small. Moreover, they become exact for the level the risk

premium that ensures equilibrium, ωk = 1, since in this case the portfolio return is actually log-normally

distributed.

Taking the log of the objective function in problem (A.2), and using the log-normality assumption,

the problem can be equivalently rewritten as,

logRCE − rf = max
ωk

πp − 1

2
γ (σp)

2 ,

where πp and σp are defined in Eqs. (A.3) and (A.4). It follows that, up to an approximation (that

becomes exact in equilibrium), the investor’s problem turns into standard mean-variance optimization.

Taking the first order condition, we obtain Eq. (3) in the main text. Substituting ωk = 1 and E
[
rk
]

=

g − logQ− σ2

2 [cf. Eq. (A.1)] into this expression, we further obtain Eq. (4) in the main text.

A.2. Omitted derivations in Section 3

A.2.1. Portfolio problem and its recursive formulation

The investor’s portfolio problem (at some time t and state s) can be written as,

V it,s
(
ait,s
)

= max[
c̃t̃,s̃,ω̃

k
t̃,s̃
,ω̃s̃
′
t̃,s̃

]
t̃≥t,s̃

Eit,s

[∫ ∞
t

e−ρt̃ log c̃it̃,s̃dt̃

]

s.t.


dait,s =

(
ait,s

(
rft,s + ω̃kt,s

(
rkt,s − r

f
t,s

)
− ω̃s

′
)
− c̃t,s

)
dt+ ω̃kt,sa

i
t,sσsdZt absent transition,

ait,s′ = ait,s

(
1 + ω̃kt,s

Qt,s′−Qt,s
Qt,s

+ ω̃s
′

t,s
1
ps
′
t,s

)
if there is a transition to state s′ 6= s.

(A.5)

21Note that there is a unique log-normal distribution for Rp that ensures these identities. Specifically, logRp ∼
N
(
rf + πp − (σp)2

2
, (σp)2

)
.
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Here, Eit,s [·] denotes the expectations operator that corresponds to the investor i’s beliefs for state
transition probabilities. The HJB equation corresponding to this problem is given by,

ρV it,s
(
ait,s
)

= max
ω̃k,ω̃s

′
,c̃

log c̃+
∂V it,s
∂a

(
ait,s

(
rft,s + ω̃k

(
rkt,s − r

f
t,s

)
− ω̃s

′
)
− c̃
)

(A.6)

+
1

2

∂2V it,s
∂a2

(
ω̃kait,sσs

)2
+
∂Vt,s (at,s)

∂t

+ λis

(
V it,s′

(
ait,s

(
1 + ω̃k

Qt,s′ −Qt,s
Qt,s

+
ω̃s
′

ps
′
t,s

))
− V it,s (at)

)

In view of the log utility, the solution has the functional form in (39), which we reproduce here,

V it,s
(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vit,s.

The first term in the value function captures the effect of holding a greater capital stock (or greater

wealth), which scales the investors consumption proportionally at all times and states. The second term,

vit,s, is the normalized value function when the investor holds one unit of the capital stock (or wealth,

ait,s = Qt,s). This functional form also implies,

∂V it,s
∂a

=
1

ρat,s
and

∂2V it,s
∂a2

=
−1

ρ (at,s)
2 .

The first order condition for c̃ then implies Eq. (14). The first order condition for ω̃k implies,

∂V it,s
∂a

at,s

(
rkt,s − r

f
t,s

)
+ λis

∂V it,s′ (at,s′)

∂a
at,s

Qt,s′ −Qt,s
Qt,s

= −
∂2V it,s
∂a2

ωkt,s
(
ait,sσs

)2
.

After substituting for
∂V it,s
∂a ,

∂V i
t,s′

∂a ,
∂2V it,s
∂a2 and rearranging terms, this also implies Eq. (15). Finally, the

first order condition for ω̃s
′
implies,

ps
′

t,s

λis
=

∂V i
t,s′(at,s′)
∂a

∂V it,s(at,s)

∂a

=
1/ait,s′

1/ait,s
,

which is Eq. (16). This completes the characterization of the optimality conditions.

A.2.2. Description of the New Keynesian production firms

The supply side of our model features nominal rigidities similar to the standard New Keynesian setting.

There is a continuum of measure one of production firms denoted by ν. These firms rent capital from

the investment firms, kt,s (ν), and produce differentiated goods, yt,s (ν), subject to the technology,

yt,s (ν) = Aηt,s (ν) kt,s (ν) . (A.7)

Here, ηt,s (ν) ∈ [0, 1] denotes the firm’s choice of capital utilization. We assume utilization is free up to

ηt,s (ν) = 1 and infinitely costly afterwards (see our extended working paper version, in which we relax

this assumption and allow for excess utilization at the cost of excess depreciation). The production firms
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sell their output to a competitive sector that produces the final output according to the CES technology,

yt,s =
(∫ 1

0
yt,s (ν)

ε−1
ε dν

)ε/(ε−1)

, for some ε > 1. Thus, the demand for the firms’goods is given by,

yt,s (ν) = pt,s (ν)
−ε
yt,s, where pt,s (ν) = Pt,s (ν) /P . (A.8)

Here, pt,s (ν) denotes the firm’s relative price, which depends on its nominal price, Pt,s (ν), as well as the

ideal nominal price index, Pt,s =
(∫

Pt,s (ν)
1−ε

dν
)1/(1−ε)

.

We also assume there are subsidies designed the correct the ineffi ciencies that stem from the firm’s

monopoly power and markups. In particular, the government taxes the firm’s profits lump sum, and

redistributes these profits to the firms in the form of a linear subsidy to capital. Formally, we let Πt,s (ν)

denote the equilibrium pre-tax profits of firm ν (that will be characterized below). We assume each firm

is subject to the lump-sum tax determined by the average profit of all firms,

Tt,s =

∫
ν

Πt,s (ν) dν. (A.9)

We also let Rt,s− τ t,s denote the after-subsidy cost of renting capital, where Rt,s denotes the equilibrium
rental rate paid to investment firms, and τ t,s denotes a linear subsidy paid by the government. We assume

the magnitude of the subsidy is determined by the government’s break-even condition,

τ t,s

∫
ν

kt,s (ν) dν = Tt,s. (A.10)

Without price rigidities, the firm chooses pt,s (ν) , kt,s (ν) , ηt,s (ν) ∈ [0, 1] , yt,s (ν) , to maximize its

(pre-tax) profits,

Πt,s (ν) ≡ pt,s (ν) yt,s (ν)− (Rt,s − τ t,s) kt,s (ν) , (A.11)

subject to the supply constraint in (A.7) and the demand constraint in (A.8). The optimality conditions

imply,

pt,s (ν) =
ε

ε− 1

Rt,s − τ t,s
A

and ηt,s (ν) = 1.

That is, the firm charges a markup over its marginal costs, and utilizes its capital at full capacity. In a

symmetric-price equilibrium, we further have, pt,s (ν) = 1. Using Eqs. (A.7−A.10), this further implies,

yt,s (ν) = yt,s = Akt,s and Rt,s =
ε− 1

ε
A+ τ t,s = A. (A.12)

That is, output is equal to potential output, and capital earns its marginal contribution to potential

output (in view of the linear subsidies).

We focus on the alternative setting in which the firms have a preset nominal price that is equal to

one another, Pt,s (ν) = P . In particular, the relative price of a firm is fixed and equal to one, pt,s (ν) = 1.

The firm chooses the remaining variables, kt,s (ν) , ηt,s (ν) ∈ [0, 1] , yt,s (ν), to maximize its (pre-tax)

profits, Πt,s (ν). We conjecture a symmetric equilibrium in which all firms choose the same allocation,

kt,s, ηt,s, yt,s, output is determined by aggregate demand,

yt,s = ηt,sAkt,s =

∫
I

cit,sdi+ kt,sιt,s, for ηt,s ∈ [0, 1] , (A.13)
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and the rental rate of capital is given by,

Rt,s = Aηt,s. (A.14)

To verify that the conjectured allocation is an equilibrium, first consider the case in which aggregate

demand is below potential output, so that yt,s < Akt,s and ηt,s < 1. In this case, the firms can reduce

their capital input, kt,s (ν), and increase their factor utilization, ηt,s (ν), to obtain the same level of

production. Since factor utilization is free (up to ηt,s (ν) = 1), the after tax cost of capital must be zero,

Rt,s − τ t,s = 0. Since its marginal cost is zero, and its relative price is one, it is optimal for each firm

to produce according to the aggregate demand, which verifies Eq. (A.13). Using Eqs. (A.9) and (A.10),

we further obtain, τ t,s = Aηt,s. Combining this with the requirement that Rt,s − τ t,s = 0 verifies Eq.

(A.14).

Next consider the case in which aggregate demand is equal to potential output, so that yt,s = Akt,s

and ηt,s = 1. In this case, a similar analysis implies there is a range of equilibria with Rt,s−τt,s
A ≤ 1 and

Rt,s = A. Here, the first equation ensures it is optimal for the firm to meet the aggregate demand. The

second equation follows from the subsidy and the tax scheme. In particular, the frictionless benchmark

allocation (A.12), that features Rt,s−τt,s
A = ε−1

ε and Rt,s = A, is also an equilibrium with nominal

rigidities as long as the aggregate demand is equal to potential output.

A.3. Omitted derivations and proofs in Section 4

Proof of Proposition 1. Most of the proof is provided in the main text. It remains to show that

Assumptions 1-3 ensure there exist a unique solution, q2 < q∗ and rf1 ≥ 0, to Eqs. (27) and (28). To this

end, we define,

f (q2, λ2) = ρ+ ψq2 − δ + λ2

(
1− exp (q2)

Q∗

)
− σ2

2.

The equilibrium price is the solution to, f (q2, λ2) = 0 (given λ2). Note that f (q2, λ2) is a concave

function of q2 with limq2→−∞ f (q2, λ2) = limq2→∞ f (q2, λ2) = −∞. Its derivative is,

∂f (q2, λ2)

∂q2
= ψ − λ2

exp (q2)

Q∗
.

Thus, for fixed λ2, it is maximized at,

qmax
2 (λ2) = q∗ + log (ψ/λ2) .

Moreover, the maximum value is given by

f (qmax
2 (λ2) , λ2) = ρ− δ + ψ (q∗ + log (ψ/λ2)) + λ2 (1− exp (log (ψ/λ2)))− σ2

2

= ρ− δ + ψq∗ + ψ log (ψ/λ2) + λ2 − ψ − σ2
2.

Next note that, by Assumption 1, the maximum value is strictly negative when λ2 = ψ, that is,

f (qmax
2 (ψ) , ψ) < 0. Note also that df(qmax

2 (λ2),λ2)
dλ2

= 1 − ψ
λ2
, which implies that the maximum value is

strictly increasing in the range λ2 ≥ ψ. Since limλ2→∞ f (qmax
2 (λ2) , λ2) = ∞, there exists λmin

2 that

ensures f
(
qmax
2

(
λmin

2

)
, λmin

2

)
= 0. By Assumption 1, the actual level of optimism satisfies λ2 ≥ λmin

2 ,

which implies that f (qmax
2 (λ2) , λ2) ≥ 0. By Assumption 1, we also have that f (q∗, λ2) < 0.

It follows that, for any λ2 ≥ λmin
2 , there exists a unique q2 ∈ [qmax

2 , q∗) which ensures that solves
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the equation, f (q2, λ2) = 0. Our analysis also implies that the solution has the following feature,
∂f(q2,λ2)

∂q2
= ψ − λ2

exp(q2)
Q∗ ≤ 0, with equality only if λ2 = λmin

2 . This facilitates the comparative statics

results in Section 4.

Next consider Eq. (28), which can be rewritten as

rf1 = ρ+ ψq∗ − δ + λ1

(
1− Q∗

Q2

)
− σ2

1.

Since q2 < q∗, this expression is decreasing in λ1. When λ1 = 0, it is strictly positive by Assumption 1.

As λ1 → ∞, it approaches −∞. Thus, for any q2 < q∗, there exists λmax
1 (q2) such that rf1 ≥ 0 if and

only if λ1 ∈ [0, λmax
1 (q2)]. Note also that for any fixed λ1 > 0, rf1 is increasing in q2. This implies that

the upper bound for the transition probability, λmax
1 (q2), is increasing in q2, completing the proof.

Proof of Corollary 1. Fix some ∆t > 0 and let s∆t denote the random variable that is equal to s if

there is no state transition over [0,∆t], and s′ if there is at least one state transition. The law of total

variance implies,

V art,s

(
∆kt,sQt,s/∆t

kt,sQt,s

)
= Es

∆t

[
V art,s

(
∆kt,sQt,s/∆t

kt,sQt,s
|s∆t

)]
+ V ars

∆t

(
Et,s

[
∆kt,sQt,s/∆t

kt,sQt,s
|s∆t

])
.

(A.15)

Here, Es
∆t

[·] and V ars∆t [·] denote, respectively, the expectations and the variance operator over the
random variable, s∆t. We next calculate each component of variance.

For the first component, we have,

Es
∆t

[
V art,s

(
∆kt,sQt,s
kt,sQt,s

|s∆t

)]
= e−λs∆tσ2

s∆t+
(
1− e−λs∆t

)
O (∆t) .

Here, the first term captures the variance conditional on there being no transition, s∆t = s. The variance

in this case comes from the Brownian motion for kt,s. The second term captures the average variance

conditional on there being a transition, s∆t = s′. Here, the last term satisfies, lim∆t→0O (∆t) = 0.

Dividing by ∆t and evaluating the limit, we obtain,

lim
∆t→0

Es
∆t

[
V art,s

(
∆kt,sQt,s/∆t

kt,sQt,s
|s∆t

)]
= σ2

s. (A.16)

For the second component, we have,

V ars
∆t

(
Et,s

[
∆kt,sQt,s
kt,sQt,s

|s∆t

])
= V ars

∆t

(
Et,s

[
∆Qt,s
Qt,s

|s∆t

])
+O

(
(∆t)

2
)
,

= (1− λs∆t)
(
Qs −Q
Qs

)2

+ λs∆t

(
Qs′ −Q
Qs

)2

+O
(

(∆t)
2
)
,

where Q = (1− λs∆t)Qs + λs∆tQs′ .

Here, O
(

(∆t)
2
)
denotes terms that satisfy, lim∆t→0

O((∆t)2)
∆t = 0. The first line uses the observation

that for small ∆t the state transitions change the return only through their impact on the price level.

The second line calculates the variance of price changes up to terms that are first order in ∆t. Dividing
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the last line by ∆t and evaluating the limit, we obtain,

lim
∆t→0

V ars
∆t

(
Et,s

[
∆kt,sQt,s/∆t

kt,sQt,s
|s∆t

])
= λs

(
Qs′ −Qs

Qs

)2

. (A.17)

Combining Eqs. (A.15) , (A.16) and (A.17), the unconditional variance is given by, σ2
s+λs

(
Qs′−Qs
Qs

)2

,

completing the proof.

A.4. Omitted derivations and proofs in Section 5

We derive the equilibrium conditions that we state and use in Section 5. First note that, using Eq. (16),

the optimality condition (15) can be written as,

ωk,it,sσs =
1

σs

(
rkt,s − r

f
t,s + ps

′

t,s

Qt,s′ −Qt,s
Qt,s

)
. (A.18)

Combining this with the market clearing condition (17), we obtain,

ωk,ot,s = ωk,pt,s = 1. (A.19)

Next note that by definition, we have

aot,s = αt,sQt,skt,s and a
p
t,s = (1− αt,s)Qt,skt,s for each s ∈ {1, 2} .

After plugging these into Eq. (16), using kt,s = kt,s′ (since capital does not jump), and aggregating over

optimists and pessimists, we obtain,

ps
′

t,s = λt,s
Qt,s
Qt,s′

, (A.20)

where λt,s denotes the wealth-weighted average belief defined in (30). Combining Eqs. (A.18) , (A.19),

and (A.20), we obtain the risk balance condition (31) in the main text.

We next characterize investors’equilibrium positions. Combining Eq. (A.5) with Eqs. (A.19) and

(A.20), investors’wealth after transition satisfies,

ait,s′

ait,s
=
Qt,s′

Qt,s

(
1 +

ωs
′,i
t,s

λt,s

)
. (A.21)

From Eq. (16), we have
ps
′
t,s

λis
=

1/ai
t,s′

1/ait,s
. Substituting this into the previous expression and using Eq.

(A.20) once more, we obtain,

ωs
′,i
t,s = λis − λt,s for each i ∈ {o, p} . (A.22)

Combining this with Eq. (32), we obtain Eq. (32) in the main text.

Finally, we characterize the evolution of optimists’wealth share. After substituting aot,s = αt,sQt,skt,s

and using Eq. (A.22) (as well as kt,s = kt,s′), Eq. (A.21) implies

αt,s′

αt,s
=

λos
λt,s

. (A.23)

Thus, it remains to characterize the evolution of wealth conditional on no transition. To this end, we
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Figure 13: The phase diagram that describes the equilibrium with heterogeneous beliefs.

combine Eq. (A.5) with Eqs. (A.19) , (21) , (14) to obtain,

daot,s
aot,s

=
(
gt,s + µQt,s − ω

s′,i
t,s

)
dt+ σsdZt.

After substituting aot,s = αt,sQt,skt,s, and using the observation that
dQt,s
Qt,s

= µQt,sdt and
dkt,s
kt,s

= gt,sdt +

σsdZt, we further obtain,
dαt,s
αt,s

= −ωs
′,o
t,s dt = −

(
λos − λt,s

)
dt. (A.24)

Combining Eqs. (A.23) and (A.24) implies Eq. (33) in the main text.

Proof of Proposition 2. We analyze the solution to the system in (35) using the phase diagram

over the range α ∈ [0, 1] and q2 ∈ [qp2 , q
o
2]. First note that the system has two steady states given by,

(αt,2 = 0, qt,2 = qp2), and (αt,2 = 1, qt,2 = qo2). Next note that the system satisfies the Lipschitz condition

over the relevant range. Thus, the vector flows that describe the law of motion do not cross. Next consider

the locus, q̇2 = 0. By comparing Eqs. (34) and (31), we conclude that this locus is exactly the same

as the price that would obtain if investors’shared the same wealth-weighted average belief, denoted by

q2 = qh2 (α). Using our analysis in Section 4, we also find that qh2 (α) is strictly increasing in α. Moreover,

q2 < qh2 (α) implies q̇t,2 < 0 whereas q2 > qh2 (α) implies q̇t,2 > 0. Finally, note that α̇t,2 < 0 for each

α ∈ (0, 1).

Combining these observations, the phase diagram has the shape in Figure 13. This in turn implies

that the system is saddle path stable. Given any αt,2 ∈ [0, 1), there exists a unique solution, qt,2,

which ensures that limt→∞ qt,2 = qp2 . We define the price function (the saddle path) as q2 (α). Note

that the price function satisfies q2 (α) < qh2 (α) for each α ∈ (0, 1), since the saddle path cannot cross

the locus, q̇t,2 = 0. Note also that q2 (1) = qo2, since the saddle path crosses the other steady-state,

(αt,2 = 1, qt,2 = qo2). Finally, recall that q2 < qh2 (α) implies q̇t,2 < 0. Combining this with α̇t,2 < 0, we

further obtain dq2(α)
dα > 0 for each α ∈ (0, 1).

Next note that, after substituting q̇t,2 = q′2 (α) α̇t,2, Eq. (35) implies the differential equation (36) in α-
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domain. Thus, the above analysis shows there exists a solution to the differential equation with q2 (0) = qp2
and q2 (1) = qo2. Moreover, the solution is strictly increasing in α, and it satisfies q2 (α) < qh2 (α) for each

α ∈ (0, 1). Note also that this solution is unique since the saddle path is unique.

Next consider Eq. (38) which characterizes the interest rate function, rf1 (α). Note that drf1 (α)
dα > 0

since
dq2(α′)
dα > 0 (recall that α′ = αλo1/λ2 (α)). Note also that rf1 (α) > rf1 (0) > 0, where the latter

inequality follows since Assumptions 1-3 holds for the pessimistic belief. Thus, the interest rate in state

1 is always positive, which verifies our conjecture and completes the proof.

A.5. Omitted derivations in Section 6.1 on equilibrium values

This subsection derives the HJB equation that describes the normalized value function in equilibrium. It

then characterizes this equation further for various cases analyzed in Section 6.1.

Characterizing the normalized value function in equilibrium. Consider the recursive

version of the portfolio problem in (A.6). Recall that the value function has the functional form in Eq.

(39). Our goal is to characterize the value function per unit of capital, vit,s (corresponding to a
i
t,s = Qt,s).

To facilitate the analysis, we define,

ξit,s = vit,s −
logQt,s

ρ
. (A.25)

Note that ξit,s is the value function per unit wealth (corresponding to a
i
t,s = 1), and that the value

function also satisfies V it,s
(
ait,s
)

=
log(ait,s)

ρ + ξit,s. We first characterize ξ
i
t,s. We then combine this with

Eq. (A.25) to characterize our main object of interest, vit,s.

Consider the HJB equation (A.6). We substitute the optimal consumption rule from Eq, (14), the

contingent allocation rule from Eq. (16), and ait,s = 1 (to characterize the value per unit wealth) to

obtain,

ρξit,s = log ρ+
1

ρ

(
rft,s + ωk,it,s

(
rkt,s − r

f
t,s

)
− 1

2

(
ωk,it,s

)2

σ2
s − ρ− ω

s′,i
t,s

)
(A.26)

+
∂ξit,s
∂t

+ λis

(
1

ρ
log

(
λis
ps
′
t,s

)
+ ξit,s′ − ξit,s

)
.

As we describe in Section 5, the market clearing conditions imply the optimal investment in capital and

contingent securities satisfies, ωk = 1 and ω̃s
′,i
t,s = λis − λt,s, and the price of the contingent security is

given by, ps
′

t,s = λt,s
1/Qt,s′

1/Qt,s
. Here, λt,s denotes the weighted average belief defined in (30). Using these

conditions, the HJB equation becomes,

ρξit,s = log ρ+
1

ρ

(
rkt,s − ρ− 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) ) (A.27)

+
∂ξit,s
∂t

+ λis

(
1

ρ
log

(
Qt,s′

Qt,s

)
+ ξit,s′ − ξit,s

)
.
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After substituting the return to capital from (21), the HJB equation can be further simplified as,

ρξit,s =

 log ρ+ 1
ρ

(
ψ log (Qt,s)− δ + µQt,s − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) )
+
∂ξit,s
∂t + λis

(
1
ρ log

(
Qt,s′

Qt,s

)
+ ξit,s′ − ξit,s

)
 .

Here, the term inside the summation on the second line, −
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
, is zero when there

are no disagreements, and it is strictly positive when there are disagreements. It captures the intuition

that speculation increases the expected value for optimists as well as pessimists.

We finally substitute vit,s = ξit,s +
logQt,s

ρ (cf. (A.25)) into the HJB equation to obtain the differential

equation,

ρvit,s =

 log ρ+ log (Qt,s) + 1
ρ

(
ψ log (Qt,s)− δ − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) )
+
∂vit,s
∂t + λis (vt,s′ − vt,s)

 .
Here, we have canceled terms by using the observation that

∂ξit,s
∂t =

∂vit,s
∂t −

1
ρ
∂ logQt,s

∂t =
∂vit,s
∂t −

1
ρµ

Q
t,s. We

have thus obtained Eq. (40) in the main text.

Solving for the value function in the common beliefs benchmark. Next consider the

benchmark with common beliefs. In this case, the price level is stationary, qt,s = qs for each s (see Section

4). Then, the HJB equation (40) implies the value functions are also stationary, vt,s = vs, with values

that satisfy,

ρvs = log ρ+ qs +
1

ρ

(
ψqs − δ −

1

2
σ2
s

)
+ λs (vs′ − vs) .

Consider the same equation for s′ 6= s. Multiplying that equation with λs and the above equation with

(ρ+ λs′), and adding up, we obtain a closed form solution,

ρvs = log ρ+ qs +
1

ρ

(
ψqs − δ −

1

2
σ2
s

)
, (A.28)

where qs = βsqs + (1− βs) qs′ and σ2
s = βsσ

2
s + (1− βs)σ2

s′ ,

and βs =
ρ+ λs′

ρ+ λs′ + λs
.

Here, the weights βs and 1 − βs can be thought of as capturing the “discounted expected time” the

economy spends in each state (note that the economy starts in state s and the investors discount the

future at rate ρ). The value in a state is the sum of the utility from (the discounted average of) current

consumption and the present value of the risk-adjusted growth rate. All else equal, the value is decreasing

in the weighted average volatility, σs, but it is increasing in the weighted-average price level, qs.

Note also that the weights (the discounted expected times) satisfy the following property,

βs =
ρ+ λs′

ρ+ λs′ + λs
> 1− βs′ =

λs′

ρ+ λs + λs′
.

Here, βs (resp. 1 − βs′) is the discounted time the investor spends in state s when she starts in state
s (resp. in the other state s′). Thus, βs > 1 − βs′ implies that the economy spends more discounted
time in the state it starts with. Combining this observation with q2 < q1 = q∗ and σ2

2 > σ2
1, Eq. (A.28)
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implies v2 < v1. Intuitively, investors have a lower expected value when they are in the high-volatility

state since they expect asset prices to be lower and the volatility to be higher.

Next note that {v∗s}s is defined as the solution to the same equation system with qs = q∗ for each s.

The gap value, ws = vs − v∗s , can be calculated by subtracting the corresponding equations for vs an v∗s .
With some algebra, we obtain,

ρws = (qs − q∗)
(

1 +
ψ

ρ

)
. (A.29)

That is, the gap value is proportional to the weighted-average price gap relative to the first best. Note

also that we have q1 − q∗ = 0 and q2 − q∗ < 0. Since βs ∈ (0, 1), this implies ws < 0 for each s ∈ {1, 2}.
Since β2 > 1− β1, we further obtain w2 < w1 < 0.

Solving the value function with belief disagreements. With belief disagreements, the value

function and its components,
{
vit,s, v

i,∗
t,s , wt,s

}
s,i
, can be written as functions of optimists’wealth share,{

vis (α) , vi,∗s (α) , ws (α)
}
s,i
, that solve appropriate ordinary differential equations.

Recall that the price level in each state can be written as a function of optimists’wealth shares,

qt,s = qs (α) (where we also have, q1 (α) = q∗). Plugging in these price functions, and using the evolution

of αt,s from Eq. (33), the HJB equation (40) can be written as,

ρvis (α) =

 log ρ+ qs (α) + 1
ρ

(
ψqs (α)− δ − 1

2σ
2
s

−
(
λis − λs (α)

)
+ λis log

(
λis

λps+α∆λs

) )
−∂v

i
s

∂α (λos − λps)α (1− α) + λis

(
vis′
(
α

λos
λs(α)

)
− vis (α)

)
 .

For each i ∈ {o, p}, the value functions,
(
vis (α)

)
s∈{1,2}, are found by solving this system of ODEs. For

i = 0, the boundary conditions are that the values, {vos (1)}s, are the same as the values in the common
belief benchmark characterized in Section 4 when all investors have the optimistic beliefs. For i = p,

the boundary conditions are that the values, {vps (0)}s, are the same as the values in the common belief
benchmark when all investors have the pessimistic beliefs.

Likewise, the first-best value functions,
(
vi,∗s (α)

)
s∈{1,2}, are found by solving the analogous system

after replacing qs (α) with q∗ (and changing the boundary conditions appropriately). Finally, after sub-

stituting the price functions into Eq. (42), the gap-value functions,
(
wis (α)

)
s,i
, are found by solving the

following system (with appropriate boundary conditions),

ρwis (α) =

(
1 +

ψ

ρ

)
(qs (α)− q∗)− ∂wis (α)

∂α
(λos − λps)α (1− α) + λis

(
ws′

(
α

λos
λs (α)

)
− ws (α)

)
.

Figure 8 in the main text plots the solution to these differential equations for a particular parameteriza-

tion.

A.6. Omitted derivations in Section 6.2 on macroprudential policy

Recall that macroprudential policy induces optimists to choose allocations as if they have more pessimistic

beliefs, λo,pl ≡
(
λo,pl1 , λo,pl2

)
, that satisfy, λo,pl1 ≥ λo1 and λ

o,pl
2 ≤ λo2. We next show that this allocation can

be implemented with portfolio restrictions on optimists. We then show that the planner’s Pareto problem

reduces to solving problem (43) in the main text. Finally, we derive the equilibrium value functions that

result form macroprudential policy and present the proofs of Propositions 3 and 4.
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Implementing the policy with risk limits. Consider the equilibrium that would obtain if

optimists had the planner-induced beliefs, λo,pls . Using our analysis in Section 5, optimists’equilibrium

portfolios are given by,

ωk,o,plt,s = 1 and ωs
′,o,pl
t,s = λo,pls − λplt,s for each t, s. (A.30)

We first show that the planner can implement the policy by requiring optimists to hold exactly these

portfolio weights. We will then relax these portfolio constraints into inequality restrictions (see Eq.

(A.32)).

Formally, an optimist solves the HJB problem (A.6) with the additional constraint (A.30). In view

of log utility, we conjecture that the value function has the same functional form (39) with potentially

different normalized values, ξot,s, v
o
t,s, that reflect the constraints. Using this functional form, the opti-

mality condition for consumption remains unchanged, ct,s = ρaot,s [cf. Eq. (14)]. Plugging this equation

and the portfolio holdings in (A.30) into the objective function in (A.6) verifies that the value function

has the conjectured functional form. For later reference, we also obtain that the optimists’unit-wealth

value function satisfies [cf. Eq. (A.25)],

ξot,s = log ρ+
1

ρ

(
rft,s + ωk,o,plt,s

(
rkt,s − r

f
t,s

)
− ρ− ωs

′,o,pl
t,s

)
(A.31)

− 1

2ρ

(
ωk,o,plt,s σs

)2

+
∂ξot,s
∂t

+ λos

(
1

ρ
log

(
aot,s′

aot,s

)
+ ξot,s′ − ξot,s

)
.

Here,
ao
t,s′

aot,s
= 1 +ωk,o,plt,s

Qt,s′−Qt,s
Qt,s

+
ωs
′,o,pl
t,s

ps
′
t,s

in view of the budget constraints of problem (A.6). Hence, the

value function has a similar characterization as before [cf. Eq. (A.26)] with the difference that optimists’

portfolio holdings reflect the constraints.

Since pessimists are unconstrained, their optimality conditions are unchanged. It follows that the

equilibrium takes the form in Section 5 with the difference that investors’beliefs are replaced by their

as-if beliefs, λi,pls . This verifies that the planner can implement the policy using the portfolio restrictions

in (A.30).

We next show that the portfolio constraints in (A.30) can be relaxed to the following inequality

restrictions,

ωk,o,plt,s ≤ 1 for each s, (A.32)

ω2,o,pl
t,1 ≥ ω2,o

t,1 ≡ λ
o,pl
1 − λplt,1 and ω

1,o,pl
t,2 ≤ ω1,o

t,2 ≡ λ
o,pl
2 − λplt,2.

In particular, we will establish that all inequality constraints bind, which implies that optimists optimally

choose the portfolio weights in Eq. (A.30). Thus, our earlier analysis continues to apply when optimists

are subject to the more relaxed constraints in (A.32).

The result follows from the assumption that the planner-induced beliefs are more pessimistic than

optimists’ actual beliefs, λo,pl1 ≥ λo1 and λo,pl2 ≤ λo2. To see this formally, note that the optimality

condition for capital is given by the following generalization of Eq. (15),

ωk,o,plt,s σs ≤
1

σs

(
rkt,s − r

f
t,s + λos

aot,s
aot,s′

Qt,s′ −Qt,s
Qt,s

)
and ωk,o,plt,s ≤ 1, (A.33)
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with complementary slackness. Note also that,

λos
aot,s
aot,s′

Qt,s′ −Qt,s
Qt,s

= λos
λ
pl

t,s

λo,pls

Qt,s′ −Qt,s
Qt,s′

≥ λplt,s
Qt,s′ −Qt,s

Qt,s′
for each s.

Here, the equality follows from Eq. (A.36) and the inequality follows by considering separately the two

cases, s ∈ {1, 2}. For s = 2, the inequality holds since Qt,s′ −Qt,s > 0 and the beliefs satisfy, λos ≥ λo,pls .

For s = 1, the inequality holds since Qt,s′ −Qt,s < 0 and the beliefs satisfy, λo,pls ≥ λos. Note also that in
equilibrium the return to capital satisfies the risk balance condition [cf. Eq. (31)],

σs =
1

σs

(
rkt,s − r

f
t,s + λ

pl

t,s

(
1− Qt,s

Qt,s′

))
.

Combining these expressions implies, σs ≤ 1
σs

(
rkt,s − r

f
t,s + λos

aot,s
ao
t,s′

Qt,s′−Qt,s
Qt,s

)
, which in turn implies the

optimality condition (A.33) is satisfied with ωk,o,plt,s = 1. A similar analysis shows that optimists also

choose the corner allocations in contingent securities, ω2,o,pl
t,1 = ω2,o

t,1 and ω
1,o,pl
t,2 = ω1,o

t,2 , verifying that the

portfolio constraints (A.30) can be relaxed to the inequality constraints in (A.32).

Simplifying the planner’s problem. Recall that, to trace the Pareto frontier, we allow the

planner to do a one-time wealth transfer among the agents at time 0. Let V it,s
(
ait,s|

{
λo,plt

})
denote type

i investors’expected value in equilibrium when she starts with wealth ait,s and the planner commits to

implement the policy,
{
λo,plt

}
. Then, the planner’s Pareto problem can be written as,

max
λ̃
o,pl

,α̃0,s

γoV o0,s

(
α̃0,sQ0,sk0,s|λ̃

o,pl
)

+ γpV p0,s

(
(1− α̃0,s)Q0,sk0,s|λ̃

o,pl
)
. (A.34)

Here, γo, γp ≥ 0 (with at least one strict inequality) denote the Pareto weights, and Q0,s denotes the

endogenous equilibrium price that obtains under the planner’s policy.

Next recall that the investors’value function with macroprudential policy has the same functional form

in (39) (with potentially different ξot,s, v
o
t,s for optimists that reflect the constraints. After substituting

ait,s = αit,skt,sQt,s, the functional form implies,

V it,s = vit,s +
log
(
αit,s

)
+ log (kt,s)

ρ
.

Using this expression, the planner’s problem (A.34) can be rewritten as,

max
λ̃
o,pl

,α̃0,s

(
γovo0,s + γpvp0,s

)
+
γo log

(
α̃o0,s

)
+ γp log

(
1− α̃o0,s

)
ρ

+
(γo + γp) log (k0,s)

ρ
.

Here, the last term (that features capital) is a constant that doesn’t affect optimization. The second term

links the planner’s choice of wealth redistribution, αo0,s, α
p
0,s, to her Pareto weights, γ

o, γp. Specifically,

the first order condition with respect to optimists’wealth share implies γo

γp =
α0,s

1−α0,s
. Thus, the planner

effectively maximizes the first term after substituting γo and γp respectively with the optimal choice of

α0,s and 1− α0,s. This leads to the simplified problem (43) in the main text.
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Characterizing the value functions with macroprudential policy. We first show that the

normalized value functions, vit,s, are characterized as the solution to the following differential equation

system,

ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

 ψqt,s − δ − 1
2σ

2
s

−
(
λi,pls − λplt,s

)
+ λis log

(
λi,pls

λ
pl
t,s

) + λis
(
vit,s′ − vit,s

)
. (A.35)

This is a generalization of Eq. (40) in which investors’positions are calculated according to their as-if

beliefs, λi,pls , but the transition probabilities are calculated according to their actual beliefs, λis.

First consider the pessimists. Since they are unconstrained, their value function is characterized by

solving the earlier equation system (A.31). In this case, equation (A.35) also holds since it is the same

as the earlier equation.

Next consider the optimists. In this case, the analysis in Section 5 and Appendix A.4 applies with

as-if beliefs. In particular, we have,

aot,s′

aot,s
=
αt,s′

αt,s

Qt,s′

Qt,s
=
λo,pls

λ
pl

t,s

Qt,s′

Qt,s
. (A.36)

Plugging this expression as well as Eq. (A.30) into Eq. (A.31), optimists’unit-wealth value function

satisfies,

ξot,s = log ρ+
1

ρ

 rkt,s − ρ− 1
2σ

2
s

−
(
λo,pls − λplt,s

)
+ λos log

(
λo,plt,s

λ
pl
t,s

) 
+
∂ξot,s
∂t

+ λos

(
1

ρ
log

(
Qt,s′

Qt,s

)
+ ξot,s′ − ξot,s

)
,

This is the same as Eq. (A.31) with the difference that the as-if beliefs, λo,pls , are used to calculate their

positions on (and the payoffs from) the contingent securities, whereas the actual beliefs, λos, are used to

calculate the transition probabilities. Using the same steps after Eq. (A.31), we also obtain (A.35) with

i = o.

We next characterize the first-best and the gap value functions, vi,∗t,s and w
i
t,s, that we use in the

main text. By definition, the first-best value function solves the same differential equation (A.35) after

substituting qt,s = q∗. It follows that the gap value function wit,s = vit,s − v
i,∗
t,s , solves,

ρwit,s −
∂wit,s
∂t

=

(
1 +

ψ

ρ

)
(qt,s − q∗) + λis

(
wit,s′ − wit,s

)
,

which is the same as the differential equation (42) without macroprudential policy. The latter affects the

path of prices, qt,s, but it does not affect how these prices translate into gap values.

Note also that, as before, the value functions can be written as functions of optimists’wealth share,{
vis (α) , vi,∗s (α) , ws (α)

}
s,i
. For completeness, we also characterize the differential equations that these

functions satisfy in equilibrium with macroprudential policy. Combining Eq. (A.35) with the evolution

of optimists’wealth share conditional on no transition, α̇t,s = −
(
λo,pls − λps

)
αt,s (1− αt,s), the value
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functions,
(
vis (α)

)
s,i
, are found by solving,

ρvis (α) =


log ρ+ qs (α) + 1

ρ

 ψqs (α)− δ − 1
2σ

2
s

−
(
λi,pls − λplt,s

)
+ λis log

(
λi,pls

λ
pl
t,s

) 
−∂v

i
s

∂α

(
λo,pls − λps

)
α (1− α) + λis

(
vis′

(
α
λo,pls

λ
pl
t,s

)
− vis (α)

)
 ,

with appropriate boundary conditions. Likewise, the first-best value functions,
(
vi,∗s (α)

)
s∈{1,2}, are

found by solving the analogous system after replacing qs (α) with q∗. Finally, combining Eq. (42) with

the evolution of optimists’wealth share, the gap-value functions,
(
wis (α)

)
s,i
, are found by solving Eq.

(45) in the main text.

Proof of Proposition 3. For this and the next proof, we find it useful to work with the transformed
state variable,

bt,s ≡ log

(
αt,s

1− αt,s

)
, which implies αt,s =

1

1 + exp (−bt,s)
. (A.37)

The variable, bt,s, varies between (−∞,∞) and provides a different measure of optimism, which we refer

to as “bullishness.”Note that there is a one-to-one relation between optimists’wealth share, αt,s ∈ (0, 1),

and the bullishness, bt,s ∈ R = (−∞,+∞). Optimists’wealth dynamics in (33) become particularly

simple when expressed in terms of bullishness,{
ḃt,s = −

(
λo,pls − λps

)
, if there is no state change,

bt,s′ = bt,s + log λo,pls − log λps , if there is a state change.
(A.38)

With a slight abuse of notation, we also let qs (b) and wis (b) denote, respectively, the price function and

the gap value function in terms of bullishness.

Note also that, since db
dα = 1

α(1−α) , we have the identities,

∂q2 (b)

∂b
= α (1− α)

∂q2 (α)

∂b
and

∂wis (b)

∂b
= α (1− α)

∂wis (α)

∂α
. (A.39)

Using this observation, the differential equation for the price function, Eq. (36), can be written in terms

of bullishness as,

∂q2 (b)

∂b

(
λo,pls − λps

)
= ρ+ ψq2 − δ + λ2 (α)

(
1− Q2

Q∗

)
− σ2

2. (A.40)

Likewise, the differential equation for the gap value function, Eq. (45) can be written in terms of

bullishness as,

ρwis (b) =

(
1 +

ψ

ρ

)
(qs (b)− q∗)−

(
λo,pls − λps

) ∂wis (b)

∂b
+ λis

(
wis′ (b

′)− wis (b)
)
. (A.41)

We next turn to the proof. To establish the comparative statics of the gap value function, we first

describe it as a fixed point of a contraction mapping. Recall that, in the time domain, the gap value

function solves the HJB equation (42). Integrating this equation forward, we obtain,

wis (b0,s) =

∫ ∞
0

e−(ρ+λis)t
((

1 +
ψ

ρ

)
(qs (bt,s)− q∗) + λisw

i
s′ (bt,s′)

)
dt, (A.42)
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for each s ∈ {1, 2} and b0,s ∈ R. Here, bt,s denotes bullishness conditional on there not being a transition
before time t, whereas bt,s′ denotes the bullishness if there is a transition at time t. Solving Eq. (A.38)

(given as-if beliefs, λi,pl) we further obtain,

bt,s = b0,s − t
(
λo,pls − λps

)
, (A.43)

bt,s′ = b0,s − t
(
λo,pls − λps

)
+ log λo,pls − log λps .

Hence, Eq. (A.42) describes the value function as a solution to an integral equation given the closed form

solution for bullishness in (A.43).

Let B
(
R2
)
denote the set of bounded value functions over R2. Given some continuation value

function,
(
w̃is (b)

)
s
∈ B

(
R2
)
, we define the function,

(
Tw̃is (b)

)
s
∈ B

(
R2
)
, so that

Tw̃is (b0,s) =

∫ ∞
0

e−(ρ+λis)t
((

1 +
ψ

ρ

)
(qs (bt,s)− q∗) + λisw̃

i
s′ (bt,s′)

)
dt, (A.44)

for each s and b0,s ∈ R. Note that the resulting value function is bounded since the price function,
qs (bt,s), is bounded (in particular, it lies between qp and q∗). It can be checked that operator T is a

contraction mapping with respect to the sup norm. In particular, it has a fixed point, which corresponds

to the gap value function,
(
wis (b)

)
s
.

We next show that the value function has strictly positive derivative with respect to bullishness as

well as optimists’wealth share. To this end, we first note that the value function is differentiable since it

solves the differential equation (45). Next, we implicitly differentiate the integral equation (A.42) with

respect to b0,s, and use Eq. (A.43), to obtain,

∂wis (b0,s)

∂b
=

∫ ∞
0

e−(ρ+λis)t
((

1 +
ψ

ρ

)
∂qs (bt,s)

∂b
+ λis

∂wis′ (bt,s′)

∂b

)
dt. (A.45)

Note from Eq. (A.40) that the derivative of the price function, ∂qs(b)∂b , is bounded. Thus, Eq. (A.45)

describes the derivative of the value function, ∂w
i
s(b0,s)
∂b , as a fixed point of a corresponding operator T ∂b

over bounded functions (which is related to but different than the earlier operator, T ). This operator is

also a contraction mapping with respect to the sup norm. Since ∂qs(bt,s)
∂b > 0 for each b, and λis > 0 for

each s, it can further be seen that the fixed point satisfies, ∂w
i
s(b0,s)
∂b > 0 for each b and s ∈ {1, 2}. Using

Eq. (A.39), we also obtain ∂wis(α)
∂α > 0 for each α ∈ (0, 1) and s ∈ {1, 2}.

Next consider the comparative statics of the fixed point with respect to macroprudential policy. We

implicitly differentiate the integral equation (A.42) with respect to λo,pl1 , and use Eq. (A.43), to obtain,

∂wi1 (b0,1)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi1

(
∂wi2 (bt,2)

∂λo,pl1

+
∂wi2 (bt,2)

∂b

dbt,2

dλo,pl1

)
dt,

∂wi2 (b0,2)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi2
∂wi1 (bt,1)

∂λo,pl1

dt.

Note also that, using Eq. (A.43) implies, dbt,2

dλo,pl1

= −t+ 1

λo,pl1

. Plugging this into the previous system, and

evaluating the partial derivatives at λo,pl1 = λ1, we obtain,
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∂wi1 (b0,1)

∂λo,pl1

= h (b0,1) +

∫ ∞
0

e−(ρ+λi1)tλi1
∂wi2 (bt,2)

∂λo,pl1

dt, (A.46)

∂wi2 (b0,2)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi2
∂wi1 (bt,1)

∂λo,pl1

dt,

where h (b0,1) =

∫ ∞
0

e−(ρ+λi1)tλi1
∂wi2 (bt,2)

∂b

(
−t+

1

λo1

)
dt.

Note that the function, h (b), is bounded since the derivative function, ∂w
i
2(b)
∂b , is bounded (see (A.45)).

Hence, Eq. (A.46) describes the partial derivative functions,
(
∂wis(b)

∂λo,pl1

|λo,pl1 =λo1

)
s
, as a fixed point of a

corresponding operator T ∂λ over bounded functions (which is related to but different than the earlier

operator, T ). Since h (b) is bounded, it can be checked that the operator T ∂λ is also a contraction

mapping with respect to the sup norm. In particular, it has a fixed point, which corresponds to the

partial derivative functions.

The analysis so far applies generally. We next consider the special case, λo1 = λp1, and show that it

implies the partial derivatives are strictly positive. In this case, λi1 = λ1 for each i ∈ {o, p}. In addition,
Eq. (A.43) implies bt,2 = b0,2. Using these observations, for each b0,1, we have,

h (b0,1) =
∂wi2 (b0,2)

∂b

∫ ∞
0

e−(ρ+λ1)tλ1

(
−t+

1

λ1

)
dt

=
∂wi2 (b0,2)

∂b

(
− λ1

ρ+ λ1

1

ρ+ λ1
+

1

ρ+ λ1

)
> 0.

Here, the inequality follows from our earlier result that ∂wi2(b0,2)
∂b > 0. Since h (b) > 0 for each b, and

λis > 0, it can further be seen that the fixed point that solves (A.46) satisfies ∂wis(b)

∂λo,pls
> 0 for each b and

s ∈ {1, 2}. Using Eq. (A.39), we also obtain∂w
i
s(α)

∂λo,pl1

> 0 for each α ∈ (0, 1) and s ∈ {1, 2}.

Proof of Proposition 4. A similar analysis as in the proof of Proposition 3 implies that the partial

derivative function, ∂wis(b)

∂(−λo,pl2 )
, is characterized as the fixed point of a contraction mapping over bounded

functions (the analogue of Eq. (A.46) for state 2). In particular, the partial derivative exists and it

is bounded. Moreover, since the corresponding contraction mapping takes continuous functions into

continuous functions, the partial derivative is also continuous over b ∈ R. Using Eq. (A.39), we further

obtain that the partial derivative, ∂wis(α)

∂(−λo,pl2 )
, is continuous over α ∈ (0, 1).

Next note that wis (1) ≡ limα→1 w
i
s (α) exists and is equal to the value function according to type i

beliefs when all investors are optimistic. In particular, the asset prices are given by q1 = q∗ and q2 = qo,

and the transition probabilities are evaluated according to type i beliefs. Then, following the same steps

as in our analysis of value functions in Appendix A.5, we obtain,

wis (1) =

(
1 +

ψ

ρ

)(
βisq

o
s +

(
1− βis

)
qos′ − q∗

)
,

where βis =
ρ+ λis′

ρ+ λis′ + λis
.

Here, βis denotes the expected discount time the investor spends in state s according to type i beliefs.
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We consider this equation for s = 2 and take the derivative with respect to
(
−λo,pl2

)
to obtain,

∂wis (1)

∂
(
−λo,pl2

) =

(
1 +

ψ

ρ

)
β2
s

dqos

d
(
−λo,pl2

) < 0.

Here, the inequality follows since reducing optimists’optimism reduces the price level in the common

belief benchmark (see Section 4).

Note that the inequality, ∂wis(1)

∂(−λo,pl2 )
< 0, holds for each state s and each belief type i. Using

the continuity of the partial derivative function, ∂wis(α)

∂(−λo,pl2 )
, we conclude that there exists α such that

∂wis(α)

∂(−λo,pl2 )

∣∣∣∣
λo,pl=λo

< 0 for each i, s and α ∈ (α, 1), completing the proof.
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