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Abstract

We establish a novel return spread based on the distance between firms and final

consumers in a production network. Firms with the longest distance to consumers

earn an excess monthly return of 105 basis points relative to final goods producers. We

explain this spread quantitatively using a general equilibrium model with multiple

layers of production. The driving force behind the spread is creative destruction,

which reduces firms’ exposure to productivity shocks. The spread is smaller for firms

that belong to supply chains with lower competition. Overall, our results demonstrate

a novel effect of creative destruction on firms’ cost of capital.
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1 Introduction

A growing literature in macroeconomics and finance examines the joint dynamics of firm-

level production-based characteristics and stock returns. It has been shown that investment

rate, hiring growth, and productivity correlate with firms’ expected cost of capital.1 To

date, most of the research that connects investment behavior and stock returns tends to

treat all firms as producing the same homogeneous goods. A few studies explicitly model

heterogeneous goods and multi-sector economies and derive implications for risk premia

(see, e.g., Gomes et al. (2009), and Kogan and Papanikolaou (2014)). These latter papers

use crude granularity by dividing firms into producers of durables versus non-durables, or

consumption goods versus capital goods. However, in reality, the majority of firms produce

differentiated intermediate inputs used by firms in long production chains. These produc-

tion chains constitute a complex production network that transforms raw materials into

final products via multiple layers of production.2 How risk is distributed along production

chains remains an open question.

Intuitively, not all firms along the same production chain should benefit equally from

common technological advancements. Innovation which benefits the production of new

vintages of capital, produced by suppliers at the top of the production chain, can devalue

old capital of customer firms located at the bottom of the chain. This creative destruction

yields differential exposure of firms along the multi-chain production network to aggregate

shocks. Motivated by this intuition, we seek to empirically and theoretically study the

relationship between the granular location of a firm in a multi-chain production network

and its stock returns.

The main empirical challenge to study this relationship is the availability of compre-

hensive data that allows one to measure a firm’s position in the production network. A

common practice in the literature is to study production networks using industry level

input-output tables, ignoring any intra-industry variation across firms. We overcome this

challenge by exploiting a novel database of supplier-customer relationships. The database

allows us to compute firm’s upstreamness in a production network at a monthly frequency.

We use this measure to compare stock returns of firms at different vertical positions in a

production network.

To compute a firm’s upstreamness measure, we decompose a production network into

1See discussion in the related literature section below.
2A famous representation of this multi-layer structure of production is the so-called “Hayekian Triangle”

(Hayek (1935), page 39).
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layers of production. All firms in the same layer are separated by the same number of

supplier-customer links from the bottom layer firms that produce final consumption goods.

We define a vertical position of any firm as the smallest number of supplier-customer links

between itself and firms at the bottom layer. A firm’s vertical position is the primary

production-based characteristic of interest in this paper.

The first contribution of this paper is to empirically document a novel, strong, and

monotonic link between a firm’s distance to consumers (i.e., vertical position) and its cost

of capital. We show that expected returns are higher for firms that are further away from

final goods producers. An investment strategy that longs firms with the longest distance

to consumers (highest vertical position) and shorts firms with the shortest distance (lowest

vertical position) earns a return of 105 basis points per month. We refer to this difference

in returns as the TMB (top-minus-bottom) spread. This spread remains significant after

we control for the common risk factors. It is also orthogonal to existing cross-industry

spreads such as Durables-minus-Non-Durables (see Gomes et al. (2009)), or Investment-

minus-Consumption (see Kogan and Papanikolaou (2014)).

Our second contribution is to build a production-based asset-pricing model, which

demonstrates how the force of creative destruction affects asset prices and gives rise to

the TMB spread. The model provides a quantitative risk-based explanation for the spread.

It also delivers a novel insight that contrary to common wisdom, creative destruction may

reduce firms’ cost of capital. The model ingredients include multiple production layers (a

production chain), an aggregate productivity shock that features time-varying and persis-

tent growth rate, and a household with Epstein and Zin (1989) and Weil (1989) preferences.

In the model, the output of a representative firm in the top layer, layer N , is used to sup-

ply intermediate capital to the layer below it, layer N − 1, which in turn uses this capital

stock (and labor) to produce and supply intermediate capital goods to a representative

firm in layer N − 2. The production chain uses intermediate capital goods from one layer

as inputs to the next layer until a representative firm at the bottom layer uses its capital

stock and labor to produce final consumption goods. The markets for labor and capital

are competitive.

We calibrate the model to target macroeconomic moments. The calibrated model ex-

hibits a monotonic relationship between stock returns and vertical position and is able

to generate a 12% per annum spread between the top and bottom layers, which quan-

titatively matches its empirical counterpart. Moreover, in both the model and the data

the largest return differential is between the top two layers. The model also successfully
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matches moments related to the market portfolio and the risk-free rate. The sizable return

spread between the top and bottom layers are due to differential exposures to aggregate

productivity shocks, which decline monotonically from the top to the bottom layer.

The pattern of exposure to aggregate productivity across the layers results from the

force of creative destruction in the spirit of Schumpeter (1942).3 Intuitively, a positive

productivity shock has a dual effect on firm valuation. On one hand, it acts as a positive

demand shock for the firm’s output, which implies higher future cash flows or improved

growth options.On the other hand, a positive productivity shock also acts as a positive

supply shock for the firm’s intermediate capital input. This supply shock lowers the value of

the firm’s assets-in-place. Put differently, technological improvements make the production

of firms’ capital input easier and cheaper, which erodes the marginal value of their existing

stock of capital.

A firm at the bottom of the production chain experiences the greatest impact of the

latter effect, because its existing capital is (effectively) built using the capital goods pro-

duced by all the layers above it, which encompass the entire production chain. As each of

the intermediate capital goods becomes cheaper to produce, the value of the assets-in-place

of the bottom layer firm drops the most, as its replacement cost of capital falls drastically.

By contrast, the firm at the top of the production chain has no suppliers. As such, it is

not subject to this creative destruction force. Creative destruction makes the sensitivity

of a firm to productivity shocks less positive, acting as a hedge. Since top layer firms do

not experience the negative supply effect, their total exposure to aggregate productivity is

larger than that of bottom layer firms. Firms in the middle layers experience some amount

of devaluation to their installed capital following a positive productivity shock, but it is not

as large as that of the bottom layer firms because assets of the firms in the middle layers

are produced using inputs from fewer layers. This explains not only the positive spread

between the top and the bottom layers (TMB spread), but also why expected returns

monotonically increase with the vertical position.

We perform several tests of the creative destruction mechanism discussed above. First,

we examine directly the sensitivity of each layer to the aggregate productivity shock. Con-

sistent with the predictions of the model, we find that the sensitivities of portfolio returns

and Tobin’s Q to changes in labor productivity increase monotonically from the bottom

3Typically, one thinks of creative destruction as value destroyed by competitors’ innovations or new
entrants, in what is also called displacement risk. This creative destruction works horizontally. Our
creative destruction is different: it works vertically along the supply chain. Innovations by upstream firms
devalue the installed capital of downstream firms.

4



layer to the top layer. This provides direct evidence that firms in the upper layers are more

exposed to the aggregate productivity shock.

We further test whether the spread indeed reflects the force of creative destruction by

augmenting our model to accommodate monopolistic competition. The augmented model

provides additional predictions that allow us to test the economic mechanism. The model

predicts that the TMB spread is smaller when firms at each layer of production have greater

monopolistic power. The monopolistic power enhances firms’ growth options, which makes

them more exposed to productivity shocks. In addition, assets-in-place of the bottom layer

firms devalue less when there is less competition because monopolistic suppliers keep part

of the benefits from the technological improvements by not reducing the prices of their

output as much as competitive suppliers would. With a diminished hedging of creative

destruction, firms at the bottom layer become more exposed to the shocks, their expected

returns increase, decreasing the TMB spread.

To test predictions of the augmented model, we compute a novel measure of supply

chain competition, which takes into account the number of competitors at each level of

production. This measure combines the network framework of supplier-customer relation-

ships with information about the number of competitors each firm has. A firm has a high

measure of “supply chain competition” if it has many competitors, if its suppliers have

many competitors, if the suppliers of its suppliers have many competitors, and so on.We

split the sample into two subsamples based on the measure of a firm’s supply chain com-

petition relative to that of the median firm at the same vertical position. Consistent with

the model’s prediction, we find that the spread is smaller in the sample of firms that face

a low level of supply chain competition. Moreover, we find that the value-weighted return

of bottom-layer firms increases monotonically with the market power of their direct and

indirect suppliers. These results strongly suggest that monopolistic power diminishes the

hedging provided by creative destruction, as predicted by the augmented model.

Lastly, we test the model prediction that creative destruction is more severe for firms

with more assets-in-place. Consistent with this prediction, we find that the TMB spread

is larger among value firms and among firms with a lower capital depreciation rate. These

results provide further confirmation that the spread is driven by creative destruction.

Related theoretical literature. Technological advancements are an important driver

of economic growth. However, not all firms benefit equally from innovation, a notion

that traces back to Schumpeter (1942). Gârleanu et al. (2012), Loualiche (2016), and

Barrot et al. (2016) study displacement risk, which refers to the notion that innovation can
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benefit new firms or entrants at the expense of incumbent firms. In our model, common

technology improvements benefit all firms, but downstream firms suffer more from the

depreciation of their installed capital due to creative destruction. As a result, downstream

firms are less exposed to the shock, which explains why the TMB spread within incumbent

firms is positive and significant.

We contribute to the extensive literature about creative destruction started by Schumpeter

(1942). From the theoretical modeling perspective, creative destruction has been used to

study endogenous growth (Aghion and Howitt, 1992), effects of labor market frictions on

the resource allocation process (Caballero and Hammour, 1996), and even to explain “an-

imal spirits” (Kennedy and Lloyd-Ellis, 2003). The novelty of our model is to explicitly

account for the multi-layer nature of production process, rather than to assume a represen-

tative firm. Our model reveals a counterintuitive result that creative destruction can lower

firms’ cost of capital by making them less exposed to productivity shocks.

Our paper is also related to the literature that examines cross-sector return spreads.

Papanikolaou (2011), Kogan and Papanikolaou (2014), Garlappi and Song (2016), and Yang

(2013) examine the cross-sectional pricing difference between the consumption sector and

the investment sector. We deviate from this literature by using a network-based method-

ology to compute individual firms’ vertical positions. Quantitatively, the majority of the

TMB spread stems from within the investment sector, not from the return differentials

of consumption versus investment firms. Gomes et al. (2009) document higher expected

returns for firms that produce durables than for non-durables producers. The TMB spread

is orthogonal to this cross-industry spread.

More broadly, our paper contributes to the theoretical literature which studies macroe-

conomic dynamics jointly with aggregate asset-pricing implications, or cross-sectional re-

turn risk premia, including Jermann (2010), Berk et al. (1999), Tallarini (2000), Boldrin et al.

(2001), Gomes et al. (2003), Carlson et al. (2004), Zhang (2005), Belo et al. (2014), among

others. Our contribution is to demonstrate how creative destruction generates differential

exposures to productivity shocks, yielding a quantitatively large spread.

Our paper is also related to the macro literature that studies the effect of the structure

of production networks on aggregate fluctuations (Acemoglu et al., 2012; Bigio and La’O,

2016; Acemoglu et al., 2017; Atalay, 2017). While this literature investigates how idiosyn-

cratic shocks aggregate in the network, our paper investigates how firms differentially ex-

posed to aggregate shocks because of the network effects.

Related empirical literature. The paper contributes to the empirical literature
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about the effects of creative destruction.4 Very few papers have studied the implications

of creative destruction on stock returns. Hobijn and Jovanovic (2001) argue that improve-

ments in information technologies (IT) are responsible for the the stock market decline in

early 1970s. Chun et al. (2008) argue that improvements in the IT sector are responsible

for the elevated firm performance heterogeneity in the late 20th century. In our paper,

we do not try to explain fluctuations in the aggregate stock returns or a cross-sectional

heterogeneity in firm performance due to innovations in a particular sector, but rather to

explain why and to what extend some firms are more affected by aggregate productivity

shocks than others. To the best of our knowledge, our paper is the first to quantitatively

measure how differential degree of creative destruction affects firms’ cost of capital.

Our paper is also closely related to the recent asset pricing literature that utilizes

supplier-customer relationships or input-output tables. Cohen and Frazzini (2008) and

Menzly and Ozbas (2010) study predictability of stock returns via supplier-customer links.

In contrast, we are interested in contemporaneous returns across layers of production.

Ahern (2013) finds that industries with a higher network centrality measure have higher

returns. We verify that the TMB spread is not explained by the differences in firms’ network

centrality. Ozdagli and Weber (2017) find sizable network effects in the propagation of

monetary shocks. Our paper suggests that because of creative destruction, productivity

shocks also have indirect (network) effects on firms’ valuations. In a recent paper, Herskovic

(2017) derives two risk factors based on the changes in network concentration and network

sparsity. In our model, changes in the network structure are not the origin of risk, but they

can affect the size of each firm’s indirect exposure to a general productivity shock because

of the forces of creative destruction.5

The rest of the paper is organized as follows. In Section 2 we present the data and

our measure of the vertical position. Section 3 includes the main empirical results. The

baseline theoretical model with perfect competition is presented in Section 4. In Section

5, we perform several tests of the creative destruction mechanism by examining how the

sensitivity to the productivity shock varies across layers, and how monopolistic competi-

tion, book-to-market equity ratio and depreciation rate drive the TMB spread. Section 6

discusses robustness checks. We conclude in Section 7.

4See Caballero (2008) for an excellent survey.
5Other asset pricing implications of production networks were studies by Buraschi and Porchia (2012);

Aobdia et al. (2014); Branger et al. (2017); Rapach et al. (2015), and Richmond (2015). None of these
studies has examined the effect of creative destruction on stock returns or the relationship between stock
returns and firms’ vertical position.
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2 Empirical Measures of Vertical Position

2.1 Data

The data used in our empirical analysis are obtained from several sources. We use CRSP

for stock prices, Compustat for accounting data, and the FactSet Revere relationships

database for information about suppliers, customers, and competitors.

The FactSet Revere relationships database is the most comprehensive database currently

available that covers a large cross-section of public and private firms. Our sample period

is from April 2003, when the database started, to September 2013, when we purchased

it from FactSet Revere. The database includes only public information reported by firms

and their trading partners or competitors. Regulation SFAS No. 131 requires firms to

report customers with more than 10 percent of sales. Some companies voluntarily report

additional customers that are below that threshold.6 FactSet complements this information

with additional sources, making the database more comprehensive than the commonly

used Compustat’s segment data. These sources include SEC 10-K annual filings, investor

presentations, corporate action announcements, and press releases. Another advantage

of using the FactSet Revere relationships data is that it includes not only information

about customers, but also about suppliers and competitors. FactSet’s analysts analyze

each relationship in depth at annual frequency, but the database is updated daily as new

information becomes publicly available. To allow for a sufficient time to Factset’s analysts

to verify and update the supplier-customer relationships, we use only relationships that

were present as of December 2012.

2.2 Supplier-Customer Relationships

We construct a dynamic production network using information about individual links

between a supplier and a customer. The unit of observation in the database is a relationship

between two firms. We observe a relationship’s start and end dates. To get the most

comprehensive information about the production network, we combine both the information

about customers disclosed by firms and information about their suppliers. A relationship

does not need to be reported by both firms to be recorded. For example, if Mellanox

Technologies Ltd discloses IBM as a customer, we use this relationship even if IBM has not

6While for some suppliers we observe the percentage of revenues from a given customer, we do not
utilize this data in our analysis because it only covers a small subset of supplier-customer relationships.
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reported Mellanox Technologies Ltd as its supplier.

The database includes 433,271 supplier-customer relationships between 193,851 pairs of

firms, covering a total of 43,656 firms. These relationships require cleaning. Our cleaning

procedure includes removing duplicate records, removing redundant relationships whose

start and end dates are within the time period of a longer relationship between the same

pair of firms, and eliminating the gap between two relationships between a single pair of

firms when the second starts within six months of the end of the first. This data cleaning

results in 206,264 supplier-customer relationships.

We merge this sample of firms with firms in the Compustat North America database

using CUSIP codes, and are able to find 9,117 matches. We exclude financial firms (GICS

code: 40) and industrial conglomerates (GICS: 201050), and end up with 7,801 Compustat

firms with at least one supplier-customer relationship. We further match this sample of

firms to the CRSP monthly stock database using the CRSP-Compustat linking table. After

excluding penny stocks (stocks with a price of less than $1 in the previous month), our final

Revere-Compustat-CRSP matched sample consists of 5,645 common stocks (with CRSP

share codes 10, 11, and 12).

Over the 2003-2013 period, the total number of non-penny, non-financial, and non-

conglomerate common stocks in the CRSP-Compustat merged database is 6,437. Therefore,

our final sample includes about 88% of stocks in this most commonly used stock database.

Figure 1 shows the number of stocks in our Revere-CRSP-Compustat matched database

vs. the number of stocks in the CRSP-Compustat merged database for each industry. It

demonstrates that all industries are well-represented in our sample.
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Figure 1: Sample Coverage by Industry

The figure presents the number of common stocks in our Revere-CRSP-Compustat matched database vs.

the number of common stocks in the CRSP-Compustat merged database for each industry. The industries

are classified based on the Global Industry Classification Standard (GICS).

2.3 The Vertical Position Measure

We now describe the main production-based characteristic of interest, a firm’s vertical

position. The measure relates to the position of a given firm in a production chain (that is,

its upstreamness). In this section we illustrate and define this measure, and explain how

we compute it from the data.

Production networks can be split into tranches of firms, with firms in the same tranche

having a similar distance from consumers (or equivalently, from final consumption good

producers). We refer to these tranches as “production layers.” The firms at the bottom

layer of a network produce final consumption goods. All other firms are direct or indirect

suppliers to bottom layer firms. We define the vertical position of any firm as the smallest

number of supplier-customer links between itself and firms at the bottom layer.

To illustrate our approach, consider the network of firms depicted in Figure 2. Assume
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that firms A, B, C and D produce final consumption goods. These firms are, by our

convention, operating at layer zero (the bottom layer). The other firms are connected to

the bottom layer by one or more supplier-customer links. We denote the (minimal) number

of such links as a firm’s “vertical position.” For instance, Firms E, F and G belong to the

same layer, as they have a vertical position of one. Firms H and I, which operate at the

top layer, have a vertical position of two.

Figure 2: Production Network: an Illustration

The vertical position of each firm is determined endogenously relative to layer zero.

Firms in the first layer supply to at least one firm in layer zero. Following the same

intuition, firms in layer i supply to at least one firm in layer i− 1 and to none of the firms

in layers zero to i− 2. The number of layers of production in each month depends on the

supplier-customer relationships and the firms in layer zero.

Formally, consider a distance matrix Dt with nt rows and mt columns, where nt is the

total number of firms in the production network in month t and mt is the number of final

goods producers in month t. An element Dt(i, j) of this matrix measures the number of

supplier-customer links between firm i and final goods producer j. Given this distance

matrix Dt, the vertical position is defined as the minimum number of supplier-customer

relationships to any final goods producer:

V Pi,t = min
j∈{k:V Pk,t=0}

Dt(i, j). (1)

The vertical position measure is a global measure that depends on the entire network

structure. A firm’s vertical position can change even if its set of direct suppliers and

customers does not.
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A firm is assigned a vertical position i because it supplies one or more firms at vertical

position i− 1. For firms at vertical position i, we do not observe a supplier-customer link

to any firms in layers 0 to i− 2. Given that there are thousands of potential links that we

could observe, the lack of a single link provides a strong evidence that the firm’s location

in the production chain is above i− 1.

Our goal is to compute the expected returns of firms that belong to different layers of

production. Given that the production network is dynamic, the vertical position of firms

can change over time. Therefore, we compute our vertical position measures at a monthly

frequency by utilizing existing supplier-customer relationships that lasted for at least six

months before the measure is computed. Our methodology of computing vertical positions

is based on Gofman (2013), but it is extended to the panel data.

Specifically, we use all supplier-customer relationships involving any of the 7,801 non-

financial, non-conglomerate firms in the Compustat-Revere matched sample to compute

firms’ vertical positions.7 We assign a vertical position of zero to all firms in the Consumer

Discretionary (GICS code: 25) and Consumer Staples sectors (GICS code: 30). Firms

in layer zero belong to the following industries: Automobiles & Components, Consumer

Durables & Apparel, Consumer Services, Media, Retailing, Food & Staples Retailing, Food,

Beverages & Tobacco, and Household & Personal Products. We then use equation (1) to

estimate vertical positions of the remaining firms in the sample.

3 Vertical Positions and Stock Returns

3.1 Portfolio Formation

We form portfolios by sorting firms according to their vertical positions. When sorting

firms into portfolios at the end of month t, we utilize the vertical position computed at the

end of month t − 1. We do so to ensure that public information about supplier-customer

relationships are known to investors. We skip the first six months of the FactSet Revere

sample to make sure that the vertical position is based on supplier-customer relationships

lasting for at least six months.

The number of production layers, and the distribution of firms across these layers is

endogenous. In particular, firms need not be allocated equally across the different layers.

In fact, as we illustrate below, top layers of production (layers with a high vertical position)

7We exclude conglomerates because their vertical position in the production network is not precisely
measured, and keeping them could introduce a bias into other firms’ vertical position measures.
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may only include very few firms. To reduce the amount of noise due to the small number

of firms at the top layers, we assign firms belonging to layers zero to four into a separate

portfolio, but we combine all firms with a vertical position five or above into a single

portfolio. In all, we obtain six portfolios.

Table 1: Transition Matrix of the Vertical Position

Layer in Layer in month t+ 1
month t layer 1 layer 2 layer 3 layer 4 layer 5

layer 1 0.98 0.01 0.00 0.00 0.00
layer 2 0.01 0.97 0.01 0.00 0.00
layer 3 0.01 0.05 0.92 0.02 0.00
layer 4 0.00 0.03 0.06 0.88 0.02
layer 5 0.01 0.04 0.06 0.07 0.83

This table presents the transition probability of a firm’s vertical position from one month to another. The
matrix of transition probabilities is computed using monthly data from September 2003 to December
2012. Layer zero is not a part of the transition matrix because it does not change given that it is based
on the time-invariant Global Industry Classification Standard (GICS) code reported in Compustat.

The vertical position measure is computed at a monthly frequency and firms can move

across the layers of production. Table 1 reports the transition probabilities of firms moving

across the layers during the sample period. The matrix suggests that vertical positions are

rather stable, especially at the lower level. Firms with a vertical position of one (layer 1)

have a 98 percent probability of remaining in layer 1 in the next month. The probability

is 83 percent for the firms in the top layer. This result means that vertical positions could

potentially be associated with long-term risk profile of firms. However, some transitions

do occur, especially across adjacent layers, suggesting that tracking the network structure

dynamically is important.

Table 2 reports summary statistics for each layer. It shows a pyramidal shape of pro-

duction chains: the number of firms decreases almost monotonically from the bottom layer

to the top.8 This is consistent with the shape of the Hayekian Triangle used by Hayek

(1935) to depict the structure of multi-layer production.9 There is no significant difference

8Table A.1 in the Online Appendix provides a list of firms that are part of the top layer for at least 18
months.

9Our portfolios have different number of stocks because they are based on the production layers. The
top portfolio has on average 24 firms and an average total market capitalization of 62 billion USD, which is
significantly smaller than the number of firms or a market capitalization of the bottom layer. In Section 6,
we verify that the TMB spread is positive and significant even if we combine the top two layers and form
five portfolios instead of six. This robustness test alleviates the concern that there is a relatively small
number of firms in the top portfolio.
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between the top and bottom layer in terms of size and leverage. Top firms have lower

return on assets (ROA) than bottom firms, but there is no difference in ROA in layers

above one. We also find that top layer firms hoard more cash, but the relationship between

cash holdings and vertical positions is non-monotonic. We find a monotonic relationship

between vertical positions and stock returns, the non-monotonic cash holdings would not

be able to explain it. Firms at top layers also exhibit higher asset growth. Since, all else

equal, firms with lower asset, investment or hiring growth earn a larger risk premium (see,

e.g., Belo et al. (2014)), our novel spread is largely orthogonal to growth-related spreads.

Table 2: Summary statistics by layer

N Assets ROA Debt/Asset Cash/Asset Asset Growth

layer 5 24 679 0.094 0.194 0.137 0.061
layer 4 74 530 0.094 0.173 0.135 0.046
layer 3 252 524 0.094 0.182 0.149 0.048
layer 2 908 490 0.094 0.147 0.176 0.034
layer 1 694 598 0.098 0.117 0.187 0.024
layer 0 1067 598 0.119 0.219 0.087 0.016

Layer (5-0) 81.41 -0.025∗∗∗ -0.024 0.050∗∗ 0.044∗∗∗

(0.97) (-5.00) (-1.60) (2.83) (7.06)

This table presents summary statistics for each layer. N is the average number of firms in each layer from
September 2003 to December 2012. For all other variables, we first calculate the cross-sectional median in a
given month, and then report the time series mean. Assets is the total book assets in millions of 2009 USD;
ROA is operating income before depreciation divided by total book assets. Debt/Asset, and Cash/Asset
are the ratios of total debt, cash and cash equivalents to total book assets, respectively. Newey-West
t-statistics are reported in the parenthesis.

3.2 Portfolio Returns

Figure 3 shows the returns of the value-weighted and equal-weighted portfolios formed

based on the firms’ vertical positions. The main finding is that expected returns increase

in the vertical position. Firms that produce final consumer goods have a nominal value-

weighted (equal-weighted) monthly return of 0.73 (0.70) percent, while firms with a vertical

position of five or higher have a value-weighted (equal-weighted) average monthly return

of 1.78 (1.78) percent.
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Figure 3: Expected Monthly Returns by Vertical Position
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The figure presents the average monthly returns of the value-weighted (red triangles) and equal-weighted

(blue circles) portfolios constructed based on firms’ vertical positions. Firms with a vertical position of

zero are producers of final goods. The sample period is from November 2003 to February 2013.

Table 3 shows the average returns, along with their respective standard deviations, for

each layer. Consistently with Figure 3, the returns increase monotonically from the bottom

layer to the top layer. The spread between the top and bottom layers is 105 basis points

per month for the value-weighted portfolios and 108 basis points per month for the equal

weighted portfolios. Both are economically and statistically significant. The annualized

Sharpe ratio of the value-weighted (equal-weighted) TMB portfolio is 0.68 (0.82) from

November 2003 to February 2013. During the same period, the Sharpe ratio is 0.39 for the

market portfolio, 0.28 for the SMB factor, and 0.29 for the HML factor. The momentum

portfolio had a negative average return and a Sharpe ratio of -0.04. The risk-return trade-

off of the TMB portfolio is considerably higher than that of the market and more than

double the Sharpe ratios of the HML and SMB.

15



Table 3: Vertical Position and Stock Returns

Value-weighted return Equal-weighted returns

Mean SD Mean SD
layer 5 1.78 6.542 1.779 7.301
layer 4 1.412 6.229 1.113 7.108
layer 3 0.989 5.639 0.949 6.274
layer 2 0.871 4.927 0.92 6.312
layer 1 0.729 4.47 0.86 6.363
layer 0 0.731 3.969 0.704 6.559

spread (5-0) 1.049** 5.359 1.075** 4.535
(2.07) (2.51)

This table presents the summary statistics of the monthly raw returns for each layer and the spread
between layers 5 and 0 (the TMB spread). The returns are computed from November 2003 to February
2013.

In Table 4, we test whether the high returns of the TMB portfolio, i.e., a portfolio that

longs the top layer and shorts the bottom layer portfolio, can be explained by existing asset

pricing models.10 We consider six well-known factor models, from the classic CAPM, the

Fama and French (1993) three-factor model, the Carhart (1997) four-factor model, to the

recently proposed Fama and French (2015) five-factor model, the Hou et al. (2015) q-factor

model, and the Kogan and Papanikolaou (2014) two-factor model.

The alpha of the spread is not affected by controlling for the factors, and it is still positive

and statistically significant at least at the 10% significance level. The TMB portfolio has

positive betas with respect to the market excess return, and to the HML, SMB, and MOM

factors, but only the loading on MOM is statistically significant. It has a significantly

negative loading on the investment factor of the q-factor model (I/A), and an insignificantly

negative loading on the investment factor in the Fama and French (2015) five-factor model

(CMA). Due to the negative loading on the investment factor, the alpha of the TMB

portfolio in the q-factor model (110 bps per month) is even higher than the average raw

return (105 bps per month). The loading on the investment-minus-consumption (IMC)

10We construct the IMC factor following the procedure in Kogan and Papanikolaou (2014). The
consumption and investment industries are identified based on the industry classification developed by
Gomes et al. (2009). We thank Ken French, Chen Xue, and Motohiro Yogo for making the factor data and
sector classification available on their websites.

16



Table 4: Time series regressions of the TMB portfolio return

(1) (2) (3) (4) (5) (6)

RmRf 0.078 0.016 0.097 0.032 0.007 -0.280*
(0.68) (0.11) (0.69) (0.21) (0.05) (-1.98)

SMB 0.261 0.211 0.353 0.348
(1.02) (0.84) (1.36) (1.37)

HML 0.008 0.119 0.168
(0.03) (0.52) (0.68)

MOM 0.227**
(2.04)

RMW 0.292
(0.74)

CMA -0.621
(-1.48)

I/A -0.917**
(-2.56)

ROE -0.069
(-0.25)

IMC 0.784***
(3.94)

Constant 1.010* 0.993* 0.952* 0.905* 1.100** 1.167**
(1.98) (1.93) (1.88) (1.66) (2.15) (2.42)

R2 0.004 0.014 0.051 0.045 0.072 0.128

This table presents the results of the time series regressions of the value-weighted Top-Minus-Bottom
(TMB) portfolio returns on various risk factors. The TMB portfolio is constructed by taking a long
position in the value-weighted portfolio of companies with a vertical position of five or above, and shorting
a value-weighted portfolio of companies with a vertical position of zero. The returns are computed from
November 2003 to February 2013. RmRf is an excess return of the market portfolio. SMB and HMB are
the size (small-minus-big) and book-to-market (high-minus-low) factors in the Fama and French (1993)
three-factor model, and MOM is the momentum factor in the Carhart (1997) four-factor model. RMW
and CMA are the robust-minus-weak profitability and conservative-minus-aggressive investment factors,
respectively, in the Fama and French (2015) five-factor model. I/A and ROE are the investment and
profitability factors, respectively, in the q-factor model of Hou et al. (2015). IMC is the investment-minus-
consumption factor in the Kogan and Papanikolaou (2014) two-factor model. T-statistics are reported in
parentheses. Significance at the 5 and 10 percent levels are indicated by ** and * respectively.

factor of Kogan and Papanikolaou (2014) is significantly positive, which is to be expected

because the bottom layer consists of consumption good producers. However, the alpha

of the TMB portfolio is still economically and statistically significant, suggesting that the

TMB spread is distinct from the IMC factor. We stress that the TMB spread is mostly

within the investment sector, and not a cross-industry spread as IMC.
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While not reported, the results for the equal-weighted TMB portfolio spread are qual-

itatively similar, but quantitatively even stronger. The Carhart (1997) four-factor alpha

is 116 basis points per month, while the Fama and French (2015) five-factor alphas is 111

basis points, both statistically significant at the 1% level. These results provide further

evidence that the standard factor models are not able to price the cross-section of stock

returns sorted on vertical position.

In the next section, we develop a general equilibrium asset-pricing model that is able

to shed light on why firms at different vertical positions have different expected returns.

4 General Equilibrium Asset-Pricing Model with Mul-

tiple Layers of Production

4.1 The Model

This section describes the general-equilibrium model used to rationalize the production-

layer return spread.

There are N +1 layers of production in the economy, indexed by j ∈ {0, 1, ..., N}. Each

production layer is captured by a single representative firm. The firms that operate in

layers {1, .., N} produce differentiated (intermediate) capital goods. A firm that operates

in layer j ∈ {1, .., N} supplies capital to the firm operating in the layer vertically below it,

j − 1. The firm in the bottom layer (j = 0) produces final consumption goods, sold to the

household for consumption. The economy’s production structure is schematically depicted

below:
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4.1.1 Aggregate Productivity

Aggregate productivity is denoted by Zt, and its lower case denotes log-units. The

log-growth of aggregate productivity features a persistent component as in Croce (2014):

∆zt+1 = µz + xt + σzεz,t+1, (2)

xt+1 = ρxxt + φxσzεx,t+1, (3)

where εz,t+1 and εx,t+1 are standard Gaussian shocks with contemporaneous correlation ρxz.

In the specification above, x refers to the long-run risk component in productivity growth.

4.1.2 Firms

A firm in layer j ∈ {0, 1, ..., N} hires labor nj,t from the household and owns capital

stock kj,t, which is layer-specific. The firms produce their output using constant returns

to scale Cobb-Douglas production function over capital and labor, subject to aggregate

productivity shock Zt:

Yj,t = Ztk
α
j,tn

1−α
j,t , j ∈ {0, 1, .., N}, (4)

where α is the capital share of output for all firms. Since there are no capital suppliers for

the top layer (layer N), its capital stock is assumed to be fixed over time (kN,t = kN,0).

The capital stock for firms in layer j ∈ {0, .., N − 1} depreciates at rate δ, and evolves

according to:

kj,t+1 = (1− δ + ij,t)kj,t, (5)

where ij,t denotes the investment-rate of firm j. Each firm in layer 0 ≥ j ≥ N − 1 that

wishes to invest amount ij,tkj,t, must purchase Φ(ij,t)kj,t units of its layer-specific capital

goods directly from the layer vertically above it. Purchasing these layer-j capital goods is

done under the equilibrium output price of layer j − 1, Pj−1. The convex adjustment cost

function Φ(i) is given by:

Φ(i) =
1

φ
(1 + i)φ − 1

φ
. (6)

In all, the period dividend of firm j ∈ {0, .., N − 1}, dj,t, is given by:

dj,t = Pj,tYj,t −Wtnj,t − Pj+1,tΦ(ij,t)kj,t, (7)
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where Wt denotes the real wage per unit of labor. Given that the top layer firm’s capital

is fixed, the dividend of the top layer firm is similarly given by dN,t = PN,tYN,t −WtnN,t.

Each firm chooses optimal hiring and investment (except for the top firm) to maximize

its market value, taking as given wages Wt, output prices Pj,t, j ∈ {0, .., N}, and the

stochastic discount factor of the household Mt,t+1. Specifically, the layer-j representative

firm maximizes:

Vj,t = max
{nj,s kj,s}

Et

∞∑
s=t+1

Mt,sdj,s, (8)

subject to (5) if j ∈ {0, ..., N − 1}.

4.1.3 Household

The economy is populated by a representative household. The household derives utility

from an Epstein and Zin (1989) and Weil (1989) utility over a stream of consumption Ct:

Ut =
[
(1− β)C

1−γ
θ

t + β(EtU
1−γ
t+1 )

1
θ

] θ
1−γ

, (9)

where β is the subjective discount factor, γ is the risk aversion coefficient, and ψ is the

elasticity of the intertemporal substitution (IES). For ease of notation, the parameter θ

is defined as θ ≡ 1−γ
1− 1

ψ

. Note that when θ = 1, that is, γ = 1/ψ, the recursive preferences

collapse to the standard case of expected power utility, in which case the agent is indifferent

to the timing of the resolution of the uncertainty of the consumption path. When risk

aversion exceeds the reciprocal of IES (γ > 1/ψ), the agent prefers an early resolution

of the uncertainty of consumption path, otherwise, the agent has a preference for a late

resolution of the uncertainty.

The household supplies labor to all firms inelastically. It derives income from labor,

as well as from the dividends of all N + 1 production firms. The household chooses the

layer-specific labor supply and consumption to maximize its lifetime utility, subject to the

following budget constraint:

max
Cs,{nj,s,θj,s}j∈{1..N}

Ut, s.t. P0,tCt +
N∑
j=0

ωj,t+1Vj,t = Wt

N∑
j=0

nj,t +
N∑
j=0

ωj,t(Vj,t + dj,t), (10)

where ωj,t is the share of the household in the ownership of the layer j firm. It is straight-
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forward to show that the SDF used to discount the dividends of firms in all layers is given

by:

Mt,t+1 = β

(
Ct+1

Ct

)−1
ψ

 Ut+1

Et
[
U1−γ
t+1

] 1
1−γ

 1
ψ
−γ

. (11)

4.1.4 Equilibrium

In equilibrium, wage Wt, and output prices {Pj,t}j∈{0,..,N}, are set to clear all markets:

- Labor market clearing:
N∑
j=0

nj,t = 1. (12)

- Differentiated capital-goods market clearing:

Φ(ij−1,t)kj−1,t = Yj,t, ∀j ∈ {1, ..., N}. (13)

- Consumption-good market clearing:

Ct = Y0,t. (14)

- Firm-ownership market clearing:

ωj,t = 1, ∀j ∈ {0, ..., N}. (15)

An equilibrium consists of prices, labor, and capital allocations such that (i) taking

prices and wages as given, the household’s allocation solves (10), and firms’ allocations

solve (8); (ii) all markets clear.

4.2 Calibration

Table 5 shows the parameter choice of the model in the benchmark case. The model is

calibrated at an annual frequency. There are two main parameter groups.

Production parameters. We set N to 5, implying 6 production layers, similarly to the

benchmark empirical results. We set α = 0.33, so that the labor share of output across

different layers is 2/3. The annual depreciation rate is 10%. The capital adjustment cost

parameter φ helps to match the auto-correlation of output growth to the data, and boost

the volatility of the equity premium. The aggregate productivity log-growth µz is set
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such that the steady state growth rate of consumption is about 2%, similarly to the data.

We set σz to 1.7%, to obtain an annual volatility of consumption growth slightly below

2%, consistently with a long-run sample equivalent. To keep the long run component of

consumption small, we impose φx to be 0.085. This is a conservative value. Croce (2014)

shows that in the sample of 1930-2008, the ratio of the long-run risk volatility to the short-

run risk volatility is roughly 10%. We set the persistence of the long-run component ρx to

0.98. This value is set to match the annual auto-correlation of consumption growth to the

data (about 0.5). For simplicity, we set ρxz to 1. This reduces the number of shocks in the

model to only one.

Table 5: Model Calibration

Symbol Value Parameter

Panel A: Production
N 5 Number of layers
α 0.33 Share of capital in output
φ 25 Investment adjustment cost
δ 0.1 Depreciation rate

Panel B: Technology Shock
µz 0.013 Productivity growth rate
σz 0.017 Short-run productivity shock volatility
φx 0.085 Ratio of Long-to-Short-run productivity volatility
ρx 0.98 Persistent of long-run productivity
ρxz 1 Correlation between short and long run productivity shocks

Panel C: Preferences
β 0.98 Subjective discount factor
γ 10 Relative risk aversion
ψ 2 Intertemporal elasticity of substitution

The table shows the parameter values used in the benchmark model calibration. The model is calibrated
at the annual frequency.

Preference parameters. We set the relative risk aversion and the intertemporal elasticity

of substitution (IES) to 10 and 2, respectively. These are consistent with the estimates of

Bansal et al. (2012), and Colacito and Croce (2011). We set the subjective time discount

factor to 0.98, to target the level of the real risk free rate.
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4.3 Model Results

4.3.1 Vertical Position Model and Aggregate Moment Implications

The calibrated model is solved using a third-order perturbation method. The first order

conditions, and the required detrending are shown in the Appendix.

Table 6 compares aggregate moments of macroeconomic and return variables implied

by the model with their empirical counterparts. The model-implied moments are computed

from a simulated population path. Panel A reports summary statistics for consumption,

output, and investment growth rates. The growth rate of all macro quantities is roughly

2% per annum, consistently with the data. The volatility of consumption growth is 1.75%

in the model versus 1.33% in the data. While the model-implied consumption volatility is

somewhat larger than the data, it is still conservatively low, and consistent with a long-run

sample estimate of consumption growth volatility.11 The model implied volatility of output,

2.11%, falls inside the empirical 95% confidence interval.

Investment’s volatility is larger than the volatility of consumption or output, in-line with

the data, yet smaller than the data point estimate. This low volatility does not stem from

the capital adjustment costs, but rather from the value-weighted aggregation method. The

aggregate investment volatility is primarily driven by the low investment volatility of the

largest layer, layer 0, which equals 3.05% per annum. Unlike a one-sector economy, in which

output is used for both consumption and investment, in our model, the output of layer 0

is used for consumption purposes only. Keeping consumption volatility low restricts the

cash-flow variability of layer 0 and also its investment volatility. Importantly, computing an

equally-weighted average of investment growth rate across the different layers yields annual

volatility of 5.05%, much closer to the data. The volatility of investment growth for layers 3,

4, and 5 are 5.39%, 6.10% and 6.43%, respectively. These model-implied estimates are very

close to the empirical counterpart(s). Since the top layers have less capital, consistently

with the data, the value-weighted aggregation scheme attenuates investment volatility. The

11In the period of 1930-2012, the volatility of consumption growth is 2.11%
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autocorrelation of consumption and output are 0.45 and 0.30 in the model, respectively.

These are strikingly close the empirical estimates of 0.52 and 0.28, for consumption and

output growth. The autocorrelation of investment growth falls inside the empirical 95%

confidence interval.

Table 6: Aggregate Moments: Model versus Empirical Equivalents

Variable and Statistic Model Data

Panel A. Macroeconomic Variables

Consumption growth:

Mean (%) 1.94 1.97 [1.58, 2.35]

Standard deviation (%) 1.75 1.33 [1.11, 1.67]

Autocorrelation 0.45 0.52 [0.29, 0.75]

Output growth:

Mean (%) 1.94 2.11 [1.60, 2.61]

Standard deviation (%) 2.13 1.74 [1.45, 2.18]

Autocorrelation 0.30 0.28 [-0.04, 0.60]

Investment growth:

Mean (%) 1.94 1.74 [-0.22, 3.70]

Standard deviation (%) 3.26 6.83 [5.69, 8.53]

Autocorrelation 0.13 0.32 [0.13, 0.52]

Panel B. Return Variables

Excess Market portfolio Return:

Mean (%) 4.13 4.89 [-0.20, 9.97]

Standard deviation (%) 5.10 17.70 [14.76, 22.11]

Autocorrelation -0.01 -0.04 [-0.29,0.21]

Risk-free rate:

Mean (%) 1.02 1.04 [0.51, 1.57]

Standard deviation (%) 0.90 1.84 [1.54, 2.30]

The table shows annual moments from simulated model data against their empirical counterparts. Panel A
presents moments related to macroeconomic variables, and Panel B related to aggregate asset-prices. The
model implied moments are obtained from a simulated population path of length 100,000. The empirical
moments are based on annual data of a modern sample, 1964-2012 (we adopt the term “modern” from
Campbell et al. (2012)). Consumption, output and investment growth rates are real and per-capita. The
market portfolio is measured using CRSP value weighted returns. The real risk free rate corresponds to a
three month T-bill rate net of expected inflation. Brackets represent empirical 95% confidence-intervals.

The model also generates reasonable aggregate asset pricing moments. The equity

premium in the model is levered by a factor of 5/3, to account for financial leverage. The

model-implied equity premium equals 4.13% per annum, close to the empirical counterpart
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of 4.89%. One dimension in which the model deviates from the empirical evidence is the

volatility of the market excess return. It is difficult to generate a high equity premium and

a high volatility of stock returns in a general equilibrium production model (see related

discussion in Gomes et al. (2003)). The non-trivial equity premium is generated through

a fairly high risk aversion of 10, along with a persistent growth-productivity component

similar to Bansal and Yaron (2004) and Croce (2014). The risk-free rate is about 1% per

annum in the model and the data, with a very conservative annual volatility of 1%. The

elasticity of intertemporal substitution parameter intensifies the volatility of stock returns,

while keeping the volatility of the risk-free rate low.

Table 7: Vertical Position and Expected Return: Model versus Data

Model Data

Panel A. Excess returns by vertical position

layer 5 16.07 16.49 [11.89, 21.08]
layer 4 12.01 11.86 [7.21, 16.52]
layer 3 9.42 7.39 [3.13, 11.64]
layer 2 7.15 6.40 [2.57, 10.23]
layer 1 5.23 5.27 [1.81, 8.73]
layer 0 3.59 5.22 [1.86, 8.58]

Panel B. Spreads

spread (5-0) 12.49 11.27 [6.94, 15.60]
spread (5-4) 4.06 4.62 [0.12, 9.13]

The table presents excess returns and spreads in the model against their data equivalents. Panel A shows
mean excess returns of firms at different vertical positions (layers). Panel B shows return spreads between
layers 5 and 0 and layers 5 and 4. Layer 0 refers to the firm(s) that produce final consumption goods,
while layer 5 refers to the firm(s) that produce capital goods in the top vertical position. The model excess
returns are obtained from a simulated model path of length 100,000 years. The empirical excess returns
are based on a monthly sample from 2003-11:2013-02, aggregated over a rolling window of 12 months to
form continuously-compounded annual return observations. Brackets represent 95% confidence-intervals.

4.3.2 Vertical Position Model and Cross-Sectional Return Implications

Our main empirical contribution is to establish a novel spread based on vertical position.

The excess return spread between the top (layer 5) and bottom layers (layer 0) is about

105 bps per month, or 11.27% per annum (continuously compounded). The production

economy successfully replicates this sizable spread, as seen in Table 7. The table reports the
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model-implied average excess return of the different layers, against the empirical estimates.

The model-implied return spread between layers 5 and 0 is 12.49% per annum. The spread

is impressively large and falls inside the empirical confidence interval. The model-implied

mean excess returns increase monotonically from layer 0 to layer 5 for all layers and fall

inside the 95% confidence interval of the data. Moreover, the model generates excess returns

for layers 1, 4, and 5 that are strikingly similar to the data estimates.

4.3.3 Inspecting the Mechanism: the Role of Creative Destruction

The TMB Spread. The vertical position spread is driven by a single aggregate

productivity shock. Naturally, a positive productivity shock increases future consumption

in the model. Under the benchmark calibration, with a preference for an early resolution

of uncertainty, this effect on consumption reduces the marginal utility of the consumer.

As a result, the productivity shock has a positive market price of risk. Similarly, with an

IES greater than unity, asset prices rise in response to a positive productivity shock (see

Croce (2014)). The productivity betas of layers 0 to 5 are all positive and monotonically

increasing. In other words, the sensitivity of the top layer to productivity innovations is

larger than that of the bottom layer. Consequently, firms in a higher vertical position are

riskier because their valuations are more cyclical. In good (bad) times, they appreciate

(depreciate) more in value compared to firms in a lower vertical position. This happens

as firms in the bottom production layers are more subject to creative (Schumpeterian)

destruction.

Intuitively, a positive productivity shock increases the future cash flows for all firms due

to higher demand, which starts at the consumer side and flows upwards in the production

chain. Put differently, a positive productivity shock represents a higher value of growth

options for all firms. However, the productivity shock has a differential effect on the value

of assets-in-place for firms in different vertical positions. A positive productivity shock has

a negative effect on the value of the assets-in-place because of the increased capital supply.

The supply effect amplifies as it propagates downward in the production chain and destroys

existing value for firms in the bottom layers.
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To understand the logic above, consider the following example of Nvidia and Amazon.

Nvidia supplies Graphics Processing Units (GPUs) to Amazon for its Amazon Web Services

(AWS), which is a cloud services platform. AWS uses Nvidia’s GPUs to accelerate artificial

intelligence and high performance computing workloads. For simplicity, assume that AWS

is Amazon’s only business and that Nvidia and Amazon are the only two firms in the

supply chain. An economy wide technological improvement should appreciate the value of

Nvidia more than the value of Amazon. While the technological advancement increases

the dividends for both firms, it has a creative destruction effect only on Amazon. The

value of the existing stock of GPUs deployed in Amazon’s hyperscale data center, which is

Amazon’s installed capital, drops. The technological improvement means that it is easier

to replace Amazon’s assets-in-place because they are now cheaper to produce. However,

this creative destruction argument does not apply to Nvidia, as it has no capital suppliers

that can erode its existing capital stock. In the more general case, firms in the bottom

production layers suffer more from this creative destruction. Technological improvements

cause them to appreciate less compared to firms in the top layers, making their valuation

less cyclical.

The creative destruction argument can be demonstrated using standard Q-theory. Table

8 reports the productivity elasticity of firms in layers 0 to 4. Because of the constant returns

to scale and perfect competition, for these layers, Tobin’s Q is a sufficient statistic for the

ex-dividend firm value (or firms’ production beta). The table shows that productivity

shock affects the Tobin’s Q of the top layers more strongly than that of bottom layers.

An optimality condition for all layers stipulates that Qj = Pj+1 · Φ′(ij) ∀j ∈ {0..4}. The

condition implies that the changes in Tobin’s Q can be attributed to two separate channels:

a change in the price of new capital (Pj+1) and a change in the capital installation costs (Φ′).

Table 8 shows that a positive productivity shock increases the relative price of new capital

goods less strongly for the bottom layers. Again, this is a result of a more pronounced

creative destruction (or equivalently, a greater supply). In addition, productivity shocks

induce firms in the top layers to invest more compared to bottom layer firms. This is
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because the expected marginal revenue of capital is higher for the former firms, as their

output price appreciates more. Thus, firms in the top of the production chain face greater

capital installation costs (Φ′). This further enhances their Tobin’s Q.

Table 8: Model Implied Productivity-Elasticities By Vertical Position

Layer j dlog(Qj)/dεz dlog(Pj+1)/dεz dlog(φ′(ij))/dεz d(ij)/dεz × 10

4 0.058 0.016 0.042 0.128
3 0.052 0.014 0.039 0.126
2 0.045 0.012 0.034 0.122
1 0.036 0.009 0.028 0.107
0 0.025 0.005 0.021 0.081

The table presents slope coefficients (b) of the following projection, using a simulated model path: dYj,t =
const + b · εt + error, where Yj,t is a model-implied variable of interest of vertical layer j, and εt is the
aggregate productivity shock. The first column shows the appropriate j layer index number. The variable
Yt is either layer-j’s log Tobin’s Q (log(Qj)), the price of its capital input (log(Pj+1)), the log installation
cost of new capital (log(φ(ij))), or investment rate (ij). All results are based on a simulated path of length
100,000 periods.

CAPM α. In the model, all layers of production are affected by a common productivity

shock. Nevertheless, the CAPM does not hold in the model because valuations are non-

linear in the underlying shock. The non-linear effect is explained by the decreasing returns

to scale of the top layer, by the convex adjustment costs, and by the non-linear dependence

between wages and productivity. We find that CAPM α in the model is 4 percent per

year.12 This suggests that the non-linear effects in the model are quantitatively large.

4.3.4 Sensitivity Analysis

The previous section illustrates that the economic force behind the vertical position

spread is creative destruction. In this section, we demonstrate that the spread is qualita-

tively robust to most calibration parameters, but point out the quantitative importance of

the various parameter choices.

12The conditional CAPM with time-varying betas holds in the model.
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Table 9: Sensitivity Analysis to Model Parameters

(1) (2) (3) (4) (5)
Benchmark φx = 0;
Calibration ψ = 1.1 ψ = 0.9 σz = 0.018 φ = 1

Mean Excess Returns (%)
Layer 5 16.07 3.84 1.20 0.87 19.12
Layer 4 12.01 3.43 1.34 0.86 5.71
Layer 3 9.42 3.17 1.40 0.84 4.23
Layer 2 7.15 2.91 1.50 0.82 3.52
Layer 1 5.23 2.64 1.64 0.78 2.61
Layer 0 3.59 2.36 1.86 0.72 1.43

Spread (5-0) 12.49 1.49 -0.66 0.15 17.69

Mean Returns (%)
Equity premium 4.13 2.40 1.82 0.75 1.94
Risk-free rate 1.02 3.57 5.12 4.40 0.67

Consumption Growth
Mean (%) 1.94 1.79 1.98 1.94 1.99
Standard deviation (%) 1.74 1.94 1.98 1.74 1.80

The table presents summary model results using different calibrations. The left most column shows the
variable of interest. Column (1) presents results from the model under the benchmark calibration. Columns
(2) - (5) present results from the model calibrated using the same parameters as in the benchmark case,
other than the parameter(s) specified right below the column number. In Column (2) the IES parameter ψ
is set to 1.1. In Column (3) the IES parameter is set to 0.9. In Column (4) the long-run volatility is set to
zero, and the short-run volatility is raised to 1.8%. In Column (5) the capital adjustment cost parameter
φ is set to 1 (no adjustment costs). All model implied moments are based on a simulated population path
of length 100,000 periods.

The Role of IES. Column (1) of Table 9 shows the summary model statistics for a

model with a similar calibration to the benchmark case, except that the IES parameter, ψ,

is reduced to 1.1 (still above unity). The drop in the elasticity of intertemporal substitution

parameter raises the level of the risk-free rate and drops the level of the equity premium

compared to the benchmark case. Importantly, the spread in the returns between layers

5 and 0 is still positive, but diminished in magnitude to 1.49%. Intuitively, a lower IES

implies that firms invest less in response to long-run productivity shocks, which attenuates

their production betas. Column (2) of Table 9 shows the results when the IES parameter is

dropped below the unity threshold to 0.9. In that case, the spread between the layer 5 and

layer 0 excess returns turns negative. When the IES is less than unity, the income effect

dominates the substitution effect. In response to a productivity news shock, the household

desires to increase consumption strongly. The productivity news shock acts as a positive
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demand shock for the final goods, but less so for intermediary goods (that is, saving or

capital goods). This positive demand shock diverts resources to firms at bottom layers.

The capital installation costs become larger for these bottom layer firms, increasing their

Tobin’s Q and making them more sensitive to productivity shocks.

The Role of Long-Run Productivity. In Column (3) of Table 9 we report the results

when we shut down the long-run productivity news shocks (φx = 0). To keep consumption

growth volatility constant at the benchmark case level, we simultaneously raise the short-

run production volatility σz to 1.8%. In this case, consumption growth volatility remains

1.74% per annum. However, the equity premium is diminished to only 0.75% per annum.

Similarly, the spread between layer 5 and layer 0 remains positive, but it is only 0.15%.

As shown in Croce (2014), short-run productivity shocks do not induce firms to invest

largely enough, which implies positive yet low productivity betas. Introducing a persistent

component to the growth of aggregate productivity, as in the benchmark case, causes firms

to react more strongly to technology news (so long as the substitution effect dominates),

and amplified betas.

The Role of Capital Adjustment Costs. Column (5) of Table 9 presents the results

when there are no capital adjustment costs (φ = 1). Without adjustment costs, the spread

between layers 5 and 0 is still positive and very sizable. The creative destruction channel,

which is the primary force behind our benchmark result, is independent of the degree of

adjustment costs.

Notice that without adjustment costs, the TMB spread is higher than the benchmark

calibration (17.69% versus 12.49%). The spread between layers 5 and layer 4 also increases,

but it is now too large compared to the data. In addition, the average market excess

return drops to only 1.94%, and the excess return for the firm in the bottom layers is

counterfactually low (about 1.4%). To understand the intuition behind these findings, note

that the lack of adjustment costs has a strong effect on the excess returns of layers 0 to

4, but not on the excess return of layer 5. Intuitively, by excluding adjustment costs,

productivity shocks are absorbed in how much the firms in layers 0 to 4 invest (that is, in
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quantities), as opposed to being absorbed in their prices. This allows the firms in layers

0 to 4 to smooth their dividends more easily, making their valuations less volatile. As a

result, the risk premium of these firms drops. The firm in layer 5, however, does not possess

depreciable capital (it does not invest), and therefore is largely unaffected by the absence

of adjustment costs. Consequently, the TMB spread must rise.13

5 Tests of the Creative Destruction Mechanism

We perform three types of tests of the creative destruction channel. First, we compute

exposures of each layer to the productivity shocks. The model predicts that the exposure

is increasing with the vertical position. Second, we augment our benchmark model to

introduce monopolistic competition. The model predicts that when firms in the supply

chain have monopolistic power, the TMB spread is smaller because the creative destruction

is smaller. We construct a novel measure of supply chain competition to test this prediction.

Lastly, we split the sample into subsamples based on firms’ book to market or depreciation

rates. These splits help us to test whether the TMB spread is larger when assets-in-place

represent a larger fraction of firm value.

5.1 Exposure to Productivity Shocks: Empirical Evidence

One implication of our model is that firms in the upper layers are more exposed to the

aggregate productivity shock than firms in the lower layers. We test this prediction using

quarterly returns and quarterly labor productivity data published by the U.S. Bureau of

Labor Statistics (BLS). We use labor productivity to measure the aggregate productivity

because it is presumably less noisy than the total factor productivity, the estimation of

which requires an adjustment for seasonal variation in the capital utilization rate. Panel A

of Table 10 reports the regression coefficients (betas) of each layer and of the TMB portfolio

with respect to the aggregate productivity shock. The beta is 1.2 for the bottom layer,

13Importantly, the amplification of the TMB spread in the absence of adjustment costs depends only
partially on the fact that firm 5 does not invest. As long as layer 5 firm’s labor share of output is larger
than that of the layers below it, the argument still qualitatively holds.
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and it increases to 2.9 for the top layer. The beta of the TMB portfolio is 1.6. Because

of the small number of quarterly observations, we cannot reject the hypothesis that the

TMB beta is different from zero, but the point estimates are consistent with the model

predictions. In Panel B of the table, we change the specification to include a nonlinear

effect of the productivity shock. Inclusion of the non-linear term is consistent with the

model, which implies a time-varying beta. The results of the regressions show that the

coefficient on the linear term increases monotonically with the vertical position (from 2.5

to 10.5). The coefficient of the TMB spread on the linear term is positive and statistically

significant. The panel also reports the partial derivative of stock returns with respect to

productivity shocks based on the estimated coefficients on both the linear and the square

terms. This partial derivative shows a monotonic increase in the sensitivity of portfolio

returns to productivity shocks from the bottom to the top layer, confirming the prediction

of the model.

As shown in Table 8, our model also predicts a positive relation between the vertical

position and the sensitivity of the Tobin’s Q to productivity shocks. To test this prediction,

we estimate the Tobin’s Q of each firm using the quarterly Compustat database, and

calculate the quarterly change in the Tobin’s Q for each layer, ∆log(Qi,t), as the average

change in log(Q) at the firm level weighted by lagged book assets. Panel C of Table 10

shows the results for a linear model, while Panel D shows the results for a model that allows

both linear and nonlinear exposure. These results echo what we get for the sensitivity of

stock returns. Both panels reveal a strong positive relation between the vertical position

and the sensitivity of the Tobin’s Q to the changes in the aggregate productivity, providing

further support for our model.
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Table 10: Vertical Position and Exposures to Aggregate Productivity Shocks

TMB Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Panel A. Rei,t = const+ β∆Prodt + error

∆Prodt 1.664 1.214 1.306 1.645 2.534 2.072 2.878
[1.61] [1.36] [1.29] [1.30] [1.70] [1.28] [2.65]

const -0.272 -0.867 -1.101 -1.387 -2.745 -0.757 -1.139
[-0.10] [-0.37] [-0.40] [-0.43] [-0.72] [-0.19] [-0.49]

Panel B. Rei,t = const+ β1∆Prodt + β2∆Prod2
t + error

∆Prodt 8.044 2.484 4.117 6.609 9.654 10.513 10.528
[2.76] [0.86] [1.39] [1.91] [2.44] [2.65] [5.32]

∆Prod2
t -1.354 -0.269 -0.596 -1.053 -1.511 -1.791 -1.623

[-2.65] [-0.58] [-1.25] [-1.90] [-2.42] [-2.86] [-4.90]
const -4.463 -1.701 -2.948 -4.648 -7.422 -6.301 -6.165

[-1.27] [-0.51] [-0.78] [-1.06] [-1.44] [-1.25] [-3.18]

E[ ∂Re

∂∆Prod ] = β1 + 2β2E[∆Prod] 3.254 1.530 2.006 2.882 4.308 4.175 4.784

Panel C. ∆log(Qi,t) = const+ β∆Prodt + error

∆Prodt 1.194 0.410 0.529 0.920 1.010 1.058 1.603
(2.10) (1.20) (1.26) (1.93) (1.76) (1.50) (2.42)

Constant -1.700 -0.777 -1.424 -2.237 -2.085 -2.842 -2.477
(-1.19) (-0.91) (-1.35) (-1.87) (-1.45) (-1.61) (-1.49)

Panel D. ∆log(Qi,t) = const+ β1∆Prodt + β2∆Prod2
t + error

∆Prodt 5.968 0.257 0.496 2.585 4.103 4.230 6.225
(3.81) (0.24) (0.38) (1.77) (2.40) (1.98) (3.27)

∆Prod2
t -0.943 0.030 0.007 -0.329 -0.611 -0.627 -0.913

(-3.22) (0.15) (0.03) (-1.20) (-1.91) (-1.57) (-2.57)
Constant -5.017 -0.671 -1.401 -3.393 -4.233 -5.045 -5.687

(-3.07) (-0.60) (-1.02) (-2.22) (-2.37) (-2.26) (-2.86)

E[ ∂q
∂∆Prod ] = β1 + 2β2E[∆Prod] 2.310 0.373 0.523 1.309 1.733 1.798 2.683

The table shows the sensitivities of the portfolio returns (Panels A and B) and changes in log(Q) (Panels
C and D) to percentage changes in the aggregate labor productivity for different layers of production using
quarterly data. Layer 0 is a portfolio of firms in consumer discretionary and consumer staples sectors.
Layer 5 is a portfolio of firms that have a vertical position of five or higher. T-statistics are reported in the
square brackets. The Tobin’s Q is estimated using the quarterly Compustat database, and the quarterly
labor productivity data is from the website of the U.S. Bureau of Labor Statistics.
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5.2 Monopolistic Competition

5.2.1 The Augmented Model

We now augment the benchmark model to accommodate monopolistic competition. Our

goal is to study how firms’ market power, which affects the degree of creative destruction,

affects the TMB spread.

Aggregate productivity has the same dynamics as those described in Section 4.1.1.

The household side of the economy is identical to that described in Section 4.1.3. Unlike

the perfect competition model, we now assume that each production layer j ∈ {0..N} is

populated by a mass of differentiated intermediate good producers, indexed by m ∈ [0, 1].

The output of an intermediate good producer in layer j at time t of variety m is denoted

by yj,t(m). Its output price is pj,t(m).

Aggregators. In each layer j, an aggregator converts the layer’s intermediate goods

into a final composite layer good, Yj,t, using a CES production function:

Yj,t =

[∫ 1

0

yj,t(m)
µj−1

µj dm

] µj
µj−1

, (16)

when µj →∞, the intermediate good producers of the j-th layer face perfect competition.

For any finite µj, the intermediate good producers are not perfect substitutes, and they

possess some amount of monopolistic power.

The jth layer aggregator faces perfect competition in the product market. It solves:

max
{yj,t(m)}

Pj,tYj,t −
∫ 1

0

pj,t(m)yj,t(m)dm

s.t equation (16).

The above implies that the price index in layer j is given by Pj,t =
[∫ 1

0
pj,t(m)1−µjdm

] 1
1−µj .

The demand schedule for each intermediate good producer in layer j of variety m is given

by
[
pj,t(m)

Pj,t

]−µj
Yj,t.

The aggregator of layer j ∈ {1..N} supplies capital to intermediate good producers in

layer j−1. The aggregator at layer 0 sells its goods to the household for final consumption.

Intermediate good producers. The intermediate good producer in each layer j of
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variety m faces the same production technology and conditions as described in Section

4.1.2. It owns its capital stock, kj,t(m), which depreciates at rate δ, and it hires labor

from the household. Now, however, it has an additional degree of freedom: the ability to

optimally select its output price. Specifically, the period dividend of an intermediate good

producer of variety m in layer j ∈ {0, .., N − 1}, dj,t, is given by:

dj,t(m) = pj,t(m)

[
pj,t(m)

Pj,t

]−µj
Yj,t − Pj+1,tφ(ij,t(m))kj,t(m)−Wt · nj,t(m), (17)

where, as before, Wt denotes the real wage per unit of labor. Given that the top layer

intermediate good producer’s capital is fixed as before (kN,t(m) = kN,0(m)), their dividend

is similarly given by dN,t = pN,t(m)
[
pN,t(m)

PN,t

]−µN
YN,t−WtnN,t(m). Each intermediate good

producer chooses its output price, optimal hiring, and investment (except producers at the

top firm), to maximize its market value, taking as given wages Wt, its layer price index

Pj,t, j ∈ {0, .., N}, and the stochastic discount factor of the household Mt,t+1. Specifically,

layer-j firm maximizes:

Vj,t(m) = max
{nj,s(m) and pj,s(m) iff j∈ {0, .., N};kj,s(m) iff j∈ {0, .., N − 1}}

Et

∞∑
s=t+1

Mt,sdj,s(m); (18)

s.t. (19)[
pj,t(m)

Pj,t

]−µj
Yj,t ≤ Ztkj,t(m)αnj,t(m)1−α (20)

kj,t+1(m) = (1− δ + ij,t(m))kj,t(m) if j ∈ {0, ..., N − 1}. (21)

Market clearing and equilibrium. Compared to Section 4.1.4, the market clearing

conditions of the labor markets, the capital goods markets, and the consumption good

market are modified as follows:

ΣN
i=0

∫ 1

0

nj,t(m)dm = 1,∫ 1

0

Φ(ij,t(m))kj,t(m)dm = Yj+1,t ∀j ∈ {0, ..., N − 1},

Ct = Y0,t.

All other market clearing conditions remain the same. Equilibrium consists of prices, labor,

and capital allocations such that (i) taking prices and wages as given, the household’s

allocation solves (10), and firms’ allocations solve (18); (ii) all markets clear; (iii) we are
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interested in a symmetric equilibrium in which kj,t(m) = kj,t, nj,t(m) = nj,t, and pj,t(m) =

pj,t, for all m ∈ [0, 1].

We calibrate the augmented model at an annual frequency using a calibration identical

to that described in Section 4.2. We further impose that µj = µ, ∀j ∈ {0, ..., N}. We are

interested in varying the markup parameter µ, and considering the quantitative implications

that it has on the spread. The main prediction of the augmented model is that the TMB

spread is higher for firms that have high supply chain competition. To test this prediction,

we need to develop a new measure of supply chain competition that accounts not only

for the competition that each firm faces, but also the competition faced by its direct and

indirect suppliers. We present this measure next.

5.2.2 A Measure of Supply Chain Competition

Besides the vertical position, we construct a competition measure at the supply chain

level. These measures take into account not only a firm’s own competition environment,

but also the competition faced by its direct and indirect suppliers.

To derive this measure, we combine information about the production network structure

with information about the number of competitors each firm has. The FactSet Revere

relationships dataset allows us to identify each firm’s competitors at any point in time.

Firms can either report the list of their competitors directly or it can be inferred from

their competitors’ reports. We assume that competition relationships are undirected links,

meaning that it is sufficient for only one firm to report the relationship. We observe

271,586 competition links in the database. We eliminate links that last less than 90 days

and combine relationships where there is a gap of less than 90 days, with a gap defined as

the number of days between the end of the previous relationship and the beginning of a

new relationship between the same pair of firms.

Let Ct be an n by 1 column vector that measures the number of each firm’s competitors

in month t. While it could be a measure of competition, it does not account for competition

at the supply chain level. We define a new measure of competition at the supply chain
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level as follows.

Ĉt = Ct +
J∑
j=1

S̄
j
tCt, (22)

where Ĉt is an n by 1 column vector that measures each firm’s supply chain competition,

S̄t is a matrix of supplier-customer adjacency matrix normalized by the number of suppliers

that each customer has. In other words, if St is an adjacency matrix of zeros and ones,

such that St(i, j) = 1 if firm j is a supplier to firm i and St(i, j) = 0 otherwise, then

S̄t(i, j) = St(i, j)/
∑nt

k=1 St(i, k).

When J = 1, the supply chain competition measure for a firm is equal to the number of

the firm’s competitors plus the average number of its suppliers’ competitors. For J > 1, not

only is the average number of competitors of a firm’s suppliers included in the formula, but

also the average number of competitors of the suppliers of the suppliers, of the suppliers of

the suppliers of the suppliers, etc. In our benchmark specification we use J = 5, meaning

that the competitiveness of indirect suppliers at distance five from the firm is accounted

for in the supply chain competition measure of the firm.

The new measure allows us to split firms into two subsamples. In the high competition

subsample we include firms that have an above median measure of supply chain competition

within each layer of production. The second subsample includes firms with a below median

measure of supply chain competition. The comparison between these two subsamples allows

us to test augmented model’s main predictions.

5.2.3 TMB spread: high competition vs. low competition

We first examine the TMB spreads in the high and low competition samples. To compare

the empirical results to the model, we consider two choices for the value of µ: (i) a high

competition calibration, µ = 100, implying a markup of 1%, and (ii) a low competition

calibration: µ = 3, implying a markup of 33%. These numbers are consistent with the

empirical estimates of markups (see, e.g., Bilbiie et al. (2012)). The results are reported in

Table 11.

The TMB spread drops when firms have more market power, in both the model and
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the data. In the data, the spread is larger for the high competition subsample. The

empirical spread for the high competition subsample is 10.19% per annum, while for the

low competition subsample it is only 4.41%.14 The model-implied spread for these two

subsamples is qualitatively and quantitatively similar to the data. Specifically, for the

high competition calibration, the model-implied TMB spread is 12.15%, while for the low

competition calibration, the spread is 7.90%. In addition, in both the model and the data,

the spread between the excess return of layers 5 and 4 is positive and sizable under the high

competition subsample, but much smaller, and even negative, under the low competition

subsample. For all layers, and both subsamples the model-implied excess returns fall inside

the empirical 95% confidence interval.

In both the high and low competition model calibrations, the mean excess return of

the top layer is similar (about 16%). More generally, the results of Table 11 imply that

higher monopolistic competition has a negligible effect on the productivity beta of the top

layer, but the beta of the bottom layer becomes significantly more positive. There are two

driving forces behind this result.

First, as discussed in Section 4.3.3, under perfect competition firms’ valuations are

pinned down by the cost of replacing their capital stock (Tobin’s Q). Under monopolistic

competition, however, valuations also depend on monopolistic rents. The benefits arising

from technological improvements are not eroded completely by competition. For down-

stream firms that possess monopolistic power, a technological improvement decreases the

cost of investment and increases their rents. This positive and enhanced cash-flow effect

(equivalently, a rise in growth option valuations) operates against the negative Schumpete-

rian effect on the value of assets-in-place.

Second, higher markups for a firm’s suppliers diminish the creative destruction effect

that technological improvements have on its installed capital. When suppliers of a certain

firm have a higher degree of monopolistic power, it has a rationing effect on the production

14In untabulated results, we confirm this finding using equally weighted portfolios. In fact, the difference
between the high and low competition subsample spreads is more pronounced using equally weighted
returns. For the high competition group, the spread is 15.6% per annum, while for the low competition
group, it is merely 5.78%.
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of these suppliers. In other words, in response to a positive productivity shock, the suppliers

of the firm increase their output less than under the perfect competition case. Consequently,

the price of the firm’s intermediate capital goods does not drop as much, and the marginal

value of the firm’s installed capital falls by a smaller degree.

As a result of these two forces, the TMB spread declines when the firm, or its suppliers,

have monopolistic power.

Table 11: Vertical Position, Competition, and Expected Return: Augmented
Model versus Data

High Competition Low Competition
Model Data Model Data

Panel A. Excess returns by vertical position

layer 5 16.14 15.25 [10.27, 20.23] 16.26 11.12 [3.65, 18.59]
layer 4 12.85 10.12 [5.62, 14.62] 16.13 12.71 [7.19, 18.23]
layer 3 10.31 9.28 [5.40, 13.17] 14.86 5.69 [0.96, 10.43]
layer 2 7.96 5.38 [2.06, 8.70] 13.03 8.32 [3.22, 13.42]
layer 1 5.86 4.69 [1.32, 8.06] 10.80 5.99 [1.40, 10.58]
layer 0 3.98 5.06 [1.89, 8.23] 8.37 6.71 [2.49, 10.92]

Panel B. Spreads

spread (5-0) 12.15 10.19 [5.70, 14.68] 7.90 4.41 [-2.23, 11.05]
spread (5-4) 3.29 5.13 [1.33, 8.92] 0.13 -1.60 [-6.00, 2.80]

The table presents excess returns and spreads in the model against their data equivalents, for both high
and low competition subsamples. Panel A shows mean excess returns of firms at different vertical positions
(layers). Panel B shows return spreads across layers 5 and 0 and layers 5 and 4. Layer 0 refers to the
firm(s) that produce final consumption goods, while layer 5 refers to the firm(s) that produce capital
goods in the top vertical position. In the model the high competition results are based on a calibration in
which µ = 100 (implying a markup of 1%), while the low competition results are based on a calibration
in which µ = 3 (implying a markup of 33%). The model excess returns are obtained from a simulated
model path of length 100,000 years. The empirical excess returns are based on a monthly sample from
2003-11:2013-02, aggregated to form annual observations over the past 12 months. Brackets represent 95%
confidence-intervals. The empirical measure of competition is described in Section 5.2.2.

5.2.4 Competitiveness of Suppliers and Stock Returns

The monopolistic power of suppliers has a rationing effect on their output, which weak-

ens the negative effect of positive productivity shocks on the installed capital of their

customers, and makes downstream firms more exposed to the productivity shocks. This

implies a positive relation between the market power of a firm’s direct and indirect suppli-
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ers and its stock return. To test this novel prediction of our augmented model, we split the

bottom-layer firms, which belong to consumer staples and consumer discretionary sectors,

into five groups based on the average number of competitors of their direct and indirect

suppliers (up to five layers).15 Group 1 represents firms with the most competitive suppli-

ers, while group 5 represents firms with the least competitive suppliers. We focus on the

bottom-layer firms because they are subject the most to creative destruction and therefore,

they are more likely to reveal some meaningful variation in the intensity of this force.

Consistent with our model prediction, Table A.2 in the Internet Appendix shows that

the value-weighted return of bottom-layer firms increases monotonically from group 1 to

group 5. The spread between these two groups is 4.7% per annum, significant at the 5%

level. For the equal weighted return, a similar pattern exists except for group 5. These

results provide support for the idea that firms with a more competitive supply chain are

subject to stronger creative destruction and therefore, are less exposed to productivity

shocks and earn lower returns.

5.3 The Roles of Book-to-Market Equity Ratio and Depreciation

Since creative destruction affect the value of assets-in-place, its effect should be stronger

when assets-in-place account for a larger fraction of firm value. This implies that the TMB

spread should be larger for value firms than for growth firms, and that it should be larger for

firms with a lower capital depreciation rate. Table A.3 in the Internet Appendix presents

evidence in support of these predictions. In Panel A of the table, we split firms in each

layer into two subsamples of each size based on the book-to-market equity ratio. Consistent

with the model prediction, the value-weighted and equal-weighted TMB spreads for the

high book-to-market sample (i.e., value firms) are 11.9% and 16.0%, respectively, while the

same spreads are only 8.2% and 3.1%, respectively, for the low book-to-market sample (i.e.,

growth firms).

We split firms in each layer into two equal-size groups by the capital depreciation rate.

15This measure is the same as the measure in Equation 22, but without a firm’s own number of com-

petitors. Formally, Ĉ
S

t =
∑J

j=1 S̄
j
tCt.
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The results appear in Panel B of Table A.3 . While the difference in the equal-weighted

TMB spread is small between the low depreciation and the high depreciation samples

(10.7% vs. 9.1%), the value-weighted TMB spread in the low depreciation sample exceeds

the spread in the high depreciation sample by 8.0% (14.0% vs. 6.0%).

These results provide further support that creative destruction is the force behind the

TMB spread we uncover in the data.

6 Robustness Checks

We conduct several robustness checks to confirm that the TMB spread is statistically

and economically robust to alternative portfolio formation methods. The results are re-

ported in Table 12. In columns (1) and (2) we sort firms into portfolio using their vertical

positions at a lower frequency than in the benchmark case (once a quarter or a year, respec-

tively). Lower frequency sorting results in an even higher spread, and improved t-statistics.

This is not surprising given the persistence of the assigned vertical positions. In column

(3) we sort firms into portfolios every month t, based on the vertical position computed at

the end of month t−4, as opposed to t−2 in the benchmark implementation. This permits

more time for the relationship information to be absorbed in stock priced (although the

database is updated daily). Again, the results are materially unchanged.

In the benchmark case we define a firm’s vertical position as the minimum number of

links connecting it to (any) bottom layer firm. In column (4), we consider an alternative

way to compute firm’s vertical position. For robustness, we change the vertical position to

be the median number of links connecting the firm to the bottom layer firms. The results

show that the minimum vertical position measure is not crucial to obtain the spread. In

column (4), the spread between layers 5 and 0 is 77 basis points, significant at 10 percent

level, and the spread between layers 5 and 1 is 92 basis points significant at the 5% level.16

Lastly, in column (5) we reduce the number of layers to five. All firms with a vertical

position of four or above are assigned to the top production layer. In this case, the top

16Top portfolio includes all firms with a median vertical position above eight.
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minus bottom spread drops. This is consistent with the model prediction that also exhibits

a smaller spread when the number of layers decreases. However, the spread between layer

5 and layer 1 is still statistically significant.

Table 12: Empirical Robustness of the Top-Minus-Bottom Spread

(1) (2) (3) (4) (5)
Quarterly Annually Four-month Median Five
Rebalance Rebalance Lag Distance Layers

Panel A. Excess return by vertical position
Layer 5 1.900 1.846 1.619 1.500 -
Layer 4 1.306 1.054 1.244 0.995 1.431
Layer 3 0.996 0.948 0.983 1.039 0.989
Layer 2 0.866 0.877 0.813 0.835 0.871
Layer 1 0.730 0.717 0.683 0.580 0.729
Layer 0 0.731 0.731 0.706 0.731 0.731

Panel B. Spreads
Top-minus-Bottom 1.168** 1.115*** 0.913* 0.769* 0.699*

(2.48) (2.94) (1.97) (1.77) (1.73)
Top-minus-Layer 1 1.170*** 1.129*** 0.936** 0.920** 0.702**

(2.63) (3.39) (2.18) (2.26) (2.04)

The table presents excess returns of the different layers (Panel A) and spreads (Panel B) under multiple
alternative portfolio formation methods. The portfolios are constructed in an identical manner to the
benchmark case, except the following changes: (1) sorting firms into portfolios based on their vertical
position only at the end of each quarter only (at the end of March, June, September and December); (2)
sorting firms into portfolios based on their vertical position only once a year (at the end of June); (3)
sorting firms into portfolio every month t based on the vertical position computed in month t − 4; (4)
using the operator median instead of minimum in equation (1) for the vertical position assignment; and
(5) grouping firms into only five layers, where the top layer includes all firms with vertical position of 4 or
above. In columns (1)-(4), the top layer is layer five, and in column (5) it is layer 4. All numbers are in
percentage units. T-statistics are reported in parentheses. Significance at the 1, 5, and 10 percent levels
are indicated by ***, **, and *, respectively. The returns are computed from November 2003 to February
2013.

We further rule out alternative explanations for the spread. In untabulated results, we

verify that the TMB spread is robust to additional factors and known return spreads. We

find that the TMB spread is not driven by the intermediary capital risk factor (He et al.

(2016) or the durable vs. non-durable spread (Gomes et al. (2009)).17

17We consider the intermediary capital risk factor in our robustness checks because according to
Bigio and La’O (2016), tightening of financial constraints in the economy affects top layers more than
the bottom layers. The intermediation capital factor captures this risk. We consider the durability spread
to verify that the TMB spread is not driven by differences in durability across the layers of production.
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Firms at different vertical positions could differ in their centrality. Ahern (2013) finds

that industries with higher network centrality have higher returns. However, we find that

firms in upper layers have significantly lower eigenvector centrality than those in lower

layers, and that layer-1 firms have the highest centrality. Therefore, the TMB spread

cannot be explained by centrality.

Firms that are further away from consumers in the production chain may be less familiar

to investors and suffer from more severe information asymmetry. However, this hypothesis

is not supported by empirical evidence. First, we find no significant difference in the bid-ask

spread and the dispersion of earnings forecasts by financial analysts across layers. Second,

we find that institutional ownership is actually lower in upper layers than in lower layers,

suggesting that retail investors do not shy away from upstream firms.

We also verify that the spread exists when we exclude the energy and materials sectors,

or when we use only producers of durable goods as the bottom layer. Moreover, if we use

the materials sector as layer zero and construct the vertical position of other firms relative

to this layer using customer-supplier relationships, the spread between the top and the

bottom layers becomes negative, as expected.

We also conduct several robustness checks of our model. First, we consider ex-ante

heterogeneity between layers by allowing layers with higher vertical position to have either

higher durability due to lower depreciation, or higher degree of adjustment costs. The

marginal gain to the spread is quantitatively very small. Second, we allow each layer to

have layer-specific shocks, making all shocks systematic. Our results are largely unchanged.

7 Conclusion

We use the FactSet Revere database of supplier-customer relationships to measure the

vertical position of each firm in the production network from 2003 to 2012. We sort firms

into portfolios based on their vertical positions. A robust fact about the cross-section

of stock-returns emerges when we compare the returns of these portfolios. Firms at a

higher vertical position (further up from the producers of final goods) have higher expected
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returns. The spread between the top and the bottom layer portfolios is 105 basis points

per month.

We provide a risk-based explanation of this new finding using a general equilibrium

model with multiple layers of production. The calibrated model is able to generate the same

monotonic pattern of returns as a function of the vertical position, and a quantitatively

similar spread between the top and the bottom portfolios.

The model suggests that firms at a lower vertical position have less exposure to aggre-

gate productivity shocks than firms at a higher vertical position. While all firms derive a

direct benefit from improved productivity at all layers of production, the positive effect is

attenuated by a devaluation of assets-in-place. Devaluation occurs as technological progress

makes the replacement cost of existing capital units cheaper. Firms at the bottom of the

production network experience the attenuation effect to the highest degree because their

capital is composed of the capital goods produced by all layers above them in the produc-

tion process. As each stage of the production process improves, the depreciation of the

assets-in-place of the bottom layer firms reflects the collection of these improvements. In

other words, the assets-in-place of the firms in lower vertical positions are more exposed to

the force of creative destruction and as a result, less exposed to the aggregate productivity

shock. Consistent with this model prediction, we find that the sensitivities of stock returns

and the Tobin’s Q increase monotonically with the vertical position.

A strong empirical support for the Schumpeterian nature of the spread comes when

we split the sample into firms with high and low supply chain competition. The spread is

smaller for the sample of firms that belong to supply chains with higher markups. Under

monopolistic power, the price of firms’ capital input decreases less following a technological

advancement, since monopolistic suppliers do not increase supply as much as competitive

suppliers do. An augmented model with monopolistic competition provides a quantitative

confirmation for the above intuition.
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A Appendix

A.1 Equilibrium Conditions

For an economy with N + 1 layers there are 5N + 4 endogenous variables, denoted by:
{nj,t (for j ∈ {0..N}), kj,t, qj, ij (for j ∈ {0..N − 1}), Pj,t (for j ∈ {1..N}),Wt, Ct,Mt}.
The first-order conditions are given by:

Wt = (1− α)Pj,tZj,tk
α
j,tn
−α
j,t ∀j ∈ {0..N}, (23)

qj,t = Φ′(ij,t)Pj+1,t ∀j ∈ {0..N − 1}, (24)

qj,t = E
[
Mt,t+1

(
Pj,t+1zj,t+1αk

α−1
j,t+1n

1−α
j,t+1 − Pj+1,t+1Φ(ij,t+1 + (1− δ + ij,t+1)qj,t+1

)]
∀j ∈ {0..N − 1},

(25)
where the capital of the top layer N is fixed to unity. In total, there are there are 5N + 4
model equations: the above first-order conditions, along with N + 1 labor market clear-
ing equation (12), N capital markets clearing equations given by (13), consumption good
clearing given by (14), N capital law of motions (5), and the household SDF (11). We
normalize P0,t = 1 as a numeraire.

A.2 Detrending

In this section we assume that each layer of production j ∈ {0..N} is subject to a layer-
specific productivity shock denoted by Zj,t. We set N to 5, in-line with the benchmark
calibration. We demonstrate how to detrend the model for this general case. In the private
case in which all productivity shocks are perfectly correlated, as in the main text of this
paper, the equations below still hold by replacing Zj,t = Zt ∀j ∈ {0..N}.
Define capital trends as:

τk4,t = Z5,t (26)

τk3,t = Z4,tZ
α
5,t (27)

τk2,t = Z3,tZ
α
4,tZ

α2

5,t (28)

τk1,t = Z2,tZ
α
3,tZ

α2

4,tZ
α3

5,t (29)

τk0,t = Z1,tZ
α
2,tZ

α2

3,tZ
α3

4,tZ
α4

5,t (30)

Let the price trends be:

τp5,t = Z0,tZ
α
1,tZ

α2

2,tZ
α3

3,tZ
α4

4,tZ
α5−1
5,t (31)

τp4,t = Z0,tZ
α
1,tZ

α2

2,tZ
α3

3,tZ
α4−1
4,t Zα5−α

5,t (32)

τp3,t = Z0,tZ
α
1,tZ

α2

2,tZ
α3−1
3,t Zα4−α

4,t Zα5−α2

5,t (33)

τp2,t = Z0,tZ
α
1,tZ

α2−1
2,t Zα3−α

3,t Zα4−α2

4,t Zα5−α3

5,t (34)

τp1,t = Z0,tZ
α−1
1,t Zα2−α

2,t Zα3−α2

3,t Zα4−α3

4,t Zα5−α4

5,t (35)

Lastly, the trend of final consumption goods is given by:

τc,t = Z0,tZ
α
1,tZ

α2

2,tZ
α3

3,tZ
α4

4,tZ
α5

5,t (36)
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Covariance-stationary first-order conditions can be achieved by rescaling the non-stationary
variables of the model as follows:

• Divide kj,t by τkj,t−1, for j ∈ {0..4}.

• Divide pj,t and qj−1,t by τpj,t−1, for j ∈ {1..5}.

• Divide ct and Wt by τc,t−1.

After plugging the rescaled variables in the first-order equations, the equilibrium conditions
can be written using stationary quantities.

In the deterministic steady state, the growth rate in Tobin’s Q is given by:

∆q0 = ∆Z0∆Zα−1
1 ∆Zα2−α

2 ∆Zα3−α2

3 ∆Zα4−α3

4 ∆Zα5−α4

5 (37)

∆q1 = ∆Z0∆Zα
1 ∆Zα2−1

2 ∆Zα3−α
3 ∆Zα4−α2

4 ∆Zα5−α3

5 (38)

∆q2 = ∆Z0∆Zα
1 ∆Zα2

2 ∆Zα3−1
3 ∆Zα4−α

4 ∆Zα5−α2

5 (39)

∆q3 = ∆Z0∆Zα
1 ∆Zα2

2 Zα3

3 ∆Zα4−1
4 ∆Zα5−α

5 (40)

∆q4 = ∆Z0∆Zα
1 ∆Zα2

2 ∆Zα3

3 ∆Zα4

4 ∆Zα5−1
5 (41)

Equations (38) - (41) illustrate the effect of productivity shocks on the steady-state growth
rate of the marginal value of assets in place for different production layers (without ac-
counting for risk premia, of course). Notice that for these steady-state values, ∆qk

∂∆Z`
> 0

whenever k ≤ `.

Corollary. A positive productivity shock from layer k ∈ {0..N} increases (decreases)
installed capital’s value growth of layer ` ∈ {0..N − 1} iff k ≤ ` (k > `).

The corollary above demonstrates the creative destruction argument at the steady-state.
When a shock originates from a production layer below a given layer, the higher demand
operates to appreciate the value of installed capital. However, when a shock originates
from a production layer above a given layer (i.e. a supplier, or a supplier of suppliers), it
triggers Schumpeterian destruction which erodes the value of existing capital stock. The
creative destruction of a shock originating in layer k on the value growth of layer ` < k
diminishes in the absolute distance between the layers |k − `|, at a constant rate of α, the
capital share of output.
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B Online Appendix

Table A.1: A list of firms in the top layer

Sector Company Name
Energy Apco Oil And Gas Intl Inc

Boots & Coots Inc
Carbo Ceramics Inc
Eog Resources Inc
Foundation Coal Holdings Inc
International Coal Group Inc
James River Coal Co
Key Energy Services Inc
Natural Gas Services Group
Omega Navigation Ent Inc

Materials American Vanguard Corp
Gold Resource Corp
Turquoise Hill Resources Ltd
Vulcan Materials Co

Industrials Agco Corp
Alpha Pro Tech Ltd
Cleantech Solutions Intl Inc
Lincoln Electric Hldgs Inc
Manitowoc Co
Patriot Transn Holding Inc

Health Care Altus Pharmaceuticals Inc
I-Flow Corp
Nmt Medical Inc
Nucryst Pharmaceuticals Corp
Orthovita Inc
Pharmacyclics Inc
Thoratec Corp

Information Technology Blackbaud Inc
Internet Patents Corp
Magal Security Systems

Utilities Exelon Corp
National Fuel Gas Co
Westar Energy Inc

This table shows the companies that are in the top layer for at least 18 months.

A.1



Table A.2: Bottom Layer Return and Supply Chain Competition

Value-weighted Equal-weighted
1 (most competitive) 3.648 0.533
2 4.921 3.368
3 5.725 5.41
4 7.194 7.696
5 (least competitive) 8.365 1.948

(5) - (1) 4.717** 1.415
t-stat (2.11) (0.52)

We split the firms in the bottom layer into five groups based on the average number of competitors of a
firm’s direct and indirect suppliers (up to five layers). Group 1 (5) represents firms with the most (least)
competitive supply chain. We report the annualized continuously compounded excess returns for each
portfolio. The results are based on a monthly sample from 2003-11:2013-02, aggregated over a rolling
window of 12 months to form annualized returns. Newey-West t-statistics (with 12 lags) for the return
spread between group 5 and group 1 are in parentheses.
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Table A.3: Sample Split by Book-to-Market and Depreciation

Value-weighted Equal-weighted

Panel A. Book-to-market split
Book-to-market Book-to-market
Low High Low High

Layer 5 13.5 15.91 5.214 19.56
Layer 4 10.05 11.39 1.494 11.37
Layer 3 4.402 9.063 0.64 9.745
Layer 2 3.969 8.858 0.458 7.927
Layer 1 4.883 5.45 3.139 4.767
Layer 0 5.315 4.032 2.141 3.507

TMB 8.18 11.87 3.073 16.049***
t-stat (1.23) (1.59) (0.68) (3.08)

Panel B. Depreciation split
Depreciation rate Depreciation rate

Low High Low High

Layer 5 18.95 10.81 13.55 12.14
Layer 4 12.65 8.897 8.653 3.962
Layer 3 7.514 4.115 8.512 1.909
Layer 2 6.632 2.57 6.472 2.018
Layer 1 5.796 3.129 4.13 3.675
Layer 0 4.936 4.791 2.869 3.056

TMB 14.014* 6.02 10.679** 9.080**
t-stat (1.92) (1.27) (2.2) (2.07)

In Panel A, we split each layer into two subsamples of equal size based on the book-to market equity
ratio. In Panel B, we split each layer into two subsamples of equal size based on the depreciation rate
(Depreciation/(Depreciation+PP&E)). We report the annualized continuously compounded excess returns
for each portfolio. The results are based on a monthly sample from 2003-11:2013-02, aggregated over a
rolling window of 12 months to form annualized returns. Newey-West t-statistics (with 12 lags) for the
TMB portfolio are in parentheses.

A.3


	Introduction
	Empirical Measures of Vertical Position
	Data
	Supplier-Customer Relationships
	The Vertical Position Measure

	Vertical Positions and Stock Returns
	Portfolio Formation
	Portfolio Returns

	General Equilibrium Asset-Pricing Model with Multiple Layers of Production
	The Model
	Aggregate Productivity
	Firms
	Household
	Equilibrium

	Calibration
	Model Results
	Vertical Position Model and Aggregate Moment Implications
	Vertical Position Model and Cross-Sectional Return Implications
	Inspecting the Mechanism: the Role of Creative Destruction
	Sensitivity Analysis


	Tests of the Creative Destruction Mechanism
	Exposure to Productivity Shocks: Empirical Evidence
	Monopolistic Competition
	The Augmented Model
	A Measure of Supply Chain Competition
	TMB spread: high competition vs. low competition
	Competitiveness of Suppliers and Stock Returns

	The Roles of Book-to-Market Equity Ratio and Depreciation

	Robustness Checks
	Conclusion
	Appendix
	Equilibrium Conditions
	Detrending

	Online Appendix

