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Abstract

This paper provides an assessment of the early contributions of machine
learning to economics, as well as predictions about its future contributions.
It begins by briefly overviewing some themes from the literature on ma-
chine learning, and then draws some contrasts with traditional approaches
to estimating the impact of counterfactual policies in economics. Next, we
review some of the initial “off-the-shelf” applications of machine learning
to economics, including applications in analyzing text and images. We then
describe new types of questions that have been posed surrounding the appli-
cation of machine learning to policy problems, including “prediction policy
problems,” as well as considerations of fairness and manipulability. Next,
we briefly review of some of the emerging econometric literature combin-
ing machine learning and causal inference. Finally, we overview a set of
predictions about the future impact of machine learning on economics.

1 Introduction

I believe that machine learning (ML) will have a dramatic impact on the field of
economics within a short time-frame. Indeed, the impact of ML on economics
is already well underway, and so it is perhaps not too difficult to predict some

I am grateful to David Blei, Guido Imbens, Denis Nekipelov, Francisco Ruiz, and Stefan
Wager, with whom I have collaborated on many projects at the intersection of machine
learning and econometrics and who have shaped my thinking, as well as to Hal Varian, Mike
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of the effects. For this reason, this article will both review recent research
contributions and also make qualitative predictions about changes in the way
economic research will be conducted in the future.

2 What is Machine Learning and What are

Early Use Cases?

It is harder than one might think to come up with an operational definition
of ML. The term can be (and has been) used broadly or narrowly; it can refer
to a large subfield of computer science, but also to a narrower field that spans
multiple disciplines. Indeed, one could devote an entire article to the definition
of ML, or to the question of whether the thing called ML really needed a new
name other than statistics, the distinction between ML and AI, and so on. The
fact that many ML researchers seem unaware that applied statistics has been
a field with numerous methodological and applied contributions for decades
prior to their discovery of data analysis makes it tempting to go down this
path. However, I will leave this debate to others, and focus on a narrow,
practical definition that will make it easier to distinguish ML from the most
commonly used econometric approaches used in applied econometrics until
very recently.1

Starting from a relatively narrow definition of machine learning, machine
learning is a field that develops algorithms to be used for prediction, classifi-
cation, and clustering or grouping tasks with data. These tasks are divided
into two main branches, supervised and unsupervised ML. Unsupervised ML
involves finding clusters of observations that are similar in terms of their co-
variates; it is commonly used for video, images and text. The output of a
typical unsupervised ML model is a partition of the set of observations, where
observations within each element of the partition are similar according to some
metric. If you read in the newspaper that a computer scientist “discovered cats
on YouTube,” that might mean that they used an unsupervised ML method to
partition a set of videos into groups, and when a human watches the the largest
group, they observe that most of the videos in the largest group contain cats.

Luca and Sendhil Mullainathan, who have also contributed to my thinking through their
writing, lecture notes, and many conversations.

1I will also focus on the most popular parts of ML; like many fields, it is possible to find
researchers who define themselves as members of the field of ML doing a variety of different
things, including pushing the boundaries of ML with tools from other disciplines. In this
article I will consider such work to be interdisciplinary rather than “pure” ML, and will
discuss it as such.
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This is referred to as “unsupervised” because there were no “labels” on any of
the images in the input data; only after examining the items in each group does
an observer determine that the algorithm found cats or dogs. Another form of
unsupervised learning is dimensionality reduction. Old methods such as prin-
cipal components analysis fit into this category, while modern methods include
matrix factorization (finding two low-dimensional matrices whose product well
approximates a larger matrix), topic modeling, and neural networks.

In my view, these tools are very useful as an intermediate step in empirical
work. They provide a data-driven way to find similar newspaper articles,
restaurant reviews, etc., and thus create variables that can be used in economic
analyses. These variables might be part of the construction of either outcome
variables or explanatory variables, depending on the context. For example,
if an analyst wishes to estimate a model of consumer demand for different
items, it is common to control for characteristics of the the items. Many items
are associated with text descriptions as well as online reviews. Unsupervised
learning could be used to discover items with similar product descriptions, in an
initial phase of finding potentially related products; and it could also be used
to find subgroups of similar products. Unsupervised learning could further
be used to categorize the reviews into types. An indicator for the review
group could be used in subsequent analysis without the analyst having to use
human judgement about the review content; the data would reveal whether a
certain type of review was associated with higher consumer perceived quality,
or not. An advantage of using unsupervised learning to create covariates is that
the outcome data is not used at all; thus, concerns about spurious correlation
between constructed covariates and the observed outcome are less problematic.
Despite this, Egami et al. (2016) have argued that researchers may be tempted
to fine-tune their construction of covariates by testing how they perform in
terms of predicting outcomes, thus leading to spurious relationships between
covariates and outcomes. They recommend the approach of sample splitting,
whereby the model tuning takes place on one sample of data, and then the
selected model is applied on a fresh sample of data.

Unsupervised learning can also be used to create outcome variables. For
example, Athey et al. (2017c) examine the impact of Google’s shutdown of
Google News in Spain on the types of news consumers read. In this case, the
share of news in different categories is an outcome of interest. Unsupervised
learning can be used to categorize news in this type of analysis; that paper
uses community detection techniques from netowrk theory.

There are a variety of techniques available for unsupervised learning, in-
cluding k-means clustering, topic modeling, community detection methods for
networks, and many more.
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Supervised machine learning typically entails using a set of features or
covariates (xs) to predict an outcome (y). When using the term prediction, it
is important to emphasize that the framework focuses not on forecasting, but
rather on a setting where there are some labelled observations where both x
and y are observed (the training data), and the goal is to predict outcomes
(y) in a test set based on the values of x. The observations are assumed to
be independent, and the joint distribution of x and y in the training set is
the same as that in the test set. These assumptions are the only substantive
assumptions required for most machine learning methods to work.

There are a variety of ML methods, such as regularized regression (LASSO,
ridge and elastic net), random forest, regression trees, support vector machines,
neural nets, matrix factorization, and many others, including model averaging
and targeted maximum likelihood. See Varian (2014) for an overview of some
of the most popular methods, and Mullainathan and Spiess (2017) for more
details. What leads us to categorize these methods as “ML” methods rather
than traditional econometric or statistical methods? First is simply an ob-
servation: until recently, these methods were neither used in published social
science research, nor taught in social science courses, while they were widely
studied in the self-described ML and/or “statistical learning” literatures. One
exception is ridge regression, which received some attention in economics; and
LASSO had also received some attention. But from a more functional perspec-
tive, one common feature of many ML methods is that they use data-driven
model selection. That is, the analyst provides the list of covariates or features,
but the functional form is at least in part determined as a function of the data.

There is typically a tradeoff between expressiveness of the model (e.g. more
covariates included in a linear regression) and risk of over-fitting, which occurs
when the model is too rich relative to the sample size. (See Mullainathan and
Spiess (2017) for more discussion of this.) In the latter case, the goodness of
fit of the model when measured on the sample where the model is estimated is
expected to be much lower than the goodness of fit of the model when evalu-
ated on an independent test set. The ML literature uses a variety of techniques
to balance expressiveness against over-fitting. The most common approach is
cross-validation whereby the analyst repeatedly estimates a model on part of
the data (a “training fold”) and then evaluates it on the complement (the “test
fold”). The complexity of the model is selected to minimize the average of the
mean-squared error of the prediction (the squared difference between the model
prediction and the actual outcome) on the test folds. Other approaches used
to control over-fitting include averaging many different models, sometimes es-
timating each model on a subsample of the data (one can interpret the random
forest in this way).
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In contrast, in much of cross-sectional econometrics and empirical work in
economics, the tradition has been that the researcher specifies one model, esti-
mates the model on the full dataset, and relies on statistical theory to estimate
confidence intervals for estimated parameters. The researcher might check ro-
bustness by looking at 2 or 3 alternatives. Researchers often checked dozens
or even hundreds of alternative specifications behind the scenes, but rarely
reported this practice because it would invalidate the confidence intervals re-
ported (due to concerns about multiple testing and searching for specifications
with the desired results). There are many disadvantages to the traditional
approach, including but not limited to the fact that researchers would find
it difficult to be systematic or comprehensive in checking alternative specifi-
cations, and further because researchers were not honest about the practice,
given that they did not have a way to correct for the specification search pro-
cess. I believe that regularization and systematic model selection have many
advantages over traditional approaches, and for this reason will become a stan-
dard part of empirical practice in economics. This will particularly be true as
we more frequently encounter datasets with many covariates, and also as we
see the advantages of being systematic about model selection.

There are also other categories of ML models; anomaly detection focuses
on looking for outliers or unusual behavior, and is used, for example, to de-
tect network intrusion, fraud, or system failures. Other categories that I will
return to below are reinforcement learning (roughly, approximate dynamic
programming) and multi-armed bandit experimentation (dynamic experimen-
tation where the probabiity of selecting an arm is chosen to balance exploration
and exploitation).

Supervised and unsupervised ML can be contrasted with some of the more
traditional types of questions considered by social scientists, who have been
interested in conducting inference about causal effects and estimating the im-
pact of counterfactual policies (that is, estimating the impact of policies that
havent been tried yet, or estimating the counterfactual outcomes if a differ-
ent policy had been used). Examples of questions economists often study are
things like the effects of changing prices, or introducing price discrimination, or
changing the minimum wage, or evaluating advertising effectiveness. In simple
cases, this can boil down to estimating a single parameter, such as an average
treatment effect for a particular population, or an average elasticity. In more
complex cases, this might involve estimating a probability distribution over
bidder values in an auction, For further discussions of the contrast between
prediction and parameter estimation, see the recent review by Mullainathan
and Spiess (2017).

There have already been a number of successful applications of prediction
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methodology to policy problems. Kleinberg et al. (2015) have argued that
there is a set of problems where off-the-shelf ML methods for prediction are
the key part of important policy and decision problems. They use examples like
deciding whether to do a hip replacement operation for an elderly patient; if you
can predict based on their individual characteristics that they will die within a
year, then you should not do the operation. Many Americans are incarcerated
while awaiting trial; if you can predict who will show up for court, you can
let more out on bail. ML algorithms are currently in use for this decision in
a number of jurisdictions. Bjorkegren and Grissen (2015) use ML methods to
predict loan repayment using mobile phone data.

In other applications, Goel et al. (2016) use ML methods to examine stop-
and-frisk laws, using observables of a police incident to predict the probability
that a suspect has a weapon, and they show that blacks are much less likely
than whites to have a weapon conditional on observables and being frisked.
Glaeser et al. (2016a) helped cities design a contest to build a predictive model
that predicted health code violations in restaurants, in order to better allocate
inspector resources. There is a rapidly growing literature using machine learn-
ing together with images from satellites and street maps to predict poverty,
safety, and home values (see, e.g., Naik et al. (2017)). As Glaeser et al. (2016b)
argue, there are a variety of applications of this type of prediction methodology.
It can be used to compare outcomes over time at a very granular level, thus
making it possible to assess the impact of a variety of policies and changes,
such as neighborhood revitalization. More broadly, the new opportunities cre-
ated by large-scale imagery and sensors may lead to new types of analyses of
productivity and well-being.

Although prediction is often a large part of a resource allocation problem –
people who will almost certainly die soon should not receive hip replacement
surgery, and rich people should not receive poverty aid– Athey (2017) discusses
the gap between identifying units that are at risk and those for whom inter-
vention is most beneficial. Determining which units should receive a treatment
is a causal inference question, and answering it requires different types of data
than prediction. Either randomized experiments or natural experiments may
be needed to estimate heterogeneous treatment effects and optimal assignment
policies.

3 New Topics in Prediction for Policy Settings

Athey (2017) summarizes a variety of research questions that arise when pre-
diction methods are taken into policy applications. A number of these have
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attracted initial attention in both ML and the social sciences, and interdisci-
plinary conferences and workshops have begun to explore these issues.

One set of questions concerns interpretability of models. There are dis-
cussions of what interpretability means, and whether simpler models have ad-
vantages. Of course, economists have long understood that simple models can
also be misleading. In social sciences data, it is typical that many attributes of
individuals or locations are positively correlated–parents’ education, parents’
income, child’s education, and so on. If we are interested in a conditional
mean function, and estimate µ̂(x) = E[Yi|Xi = x], using a simpler model that
omits a subset of covariates may be misleading. In the simpler model, the
relationship between the omitted covariates and outcomes is loaded onto the
covariates that are included. Omitting a covariate from a model is not the
same thing as controlling for it in an analysis, and it can sometimes be easier
to interpret a partial effect of a covariate controlling for other factors, than it
is to keep in mind all of the other (omitted) factors and how they covary with
those included in a model. So, simpler models can sometimes be misleading;
they may seem easy to understand, but the understanding gained from them
may be incomplete or wrong.

One type of model that typically is easy to interpret and explain is a causal
model–one where parameters of interest reflect the causal effect of an interven-
tion. Such parameters by definition give the answer to a well-defined question,
and so the magnitudes are straightforward to interpret. An area for further
research concerns whether there are other ways to mathematically formalize
what it means for a model to be interpretable, or to analyze empirically the
implications of interpretability. Yeomans et al. (2016) study empirically a re-
lated issue of how much people trust ML-based recommender systems, and
why.

Another area that has attracted a lot of attention is the question of fairness.
There are a number of interesting questions that can be considered. One is,
how can fairness constraints be defined? What type of fairness is desired?
For example, if a predictive model is used to allocate job interviews based on
resumes, there are two types of errors, type I and type II. It is straightforward
to show that it is in general impossible to equalize both type I and type II
errors across two different categories of people, so the analyst must choose
which to equalize (or both). See Kleinberg et al. (2016) for further analysis
and development of the inherent tradeoffs in fairness in predictive algorithms.
Overall, the literature on this topic has grown rapidly in the last two years,
and we expect that as ML algorithms are deployed in more and more contexts,
the topic will continue to develop.

A third issue that arises is stability and robustness. There are a variety
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of related ideas in machine learning, including domain adaptation (how do
you make a model trained in one environment perform well in another en-
vironment), “transfer learning,” and others. The basic concern is that ML
algorithms do exhaustive searches across a very large number of possible spec-
ifications looking for the best model that predicts Y based on X. The models
will find subtle relationships bewteen X and Y , some of which might not be
stable across time or across environments. For example, for the last few years,
there may be more videos of cats with pianos than dogs with pianos. The
presence of a piano in a video may thus predict cats. However, pianos are not
a fundamentnal feature of cats that holds across environments, and so if a fad
arises where dogs play pianos, performance of an ML algorithm might suffer.
This might not be a problem for a tech firm that re-estimates its models with
fresh data daily, but predictive models are often used over much longer time
periods in industry. For example, credit scoring models may be held fixed,
since changing them makes it hard to assess the risk of the set of consumers
who accept credit offers. Scoring models used in medicine might be held fixed
over many years. There are many interesting methodological issues involved
in finding models that have stable performance and are robust to changing
circumstances.

Another issue is that of manipulability. In the application of using mo-
bile data to do credit scoring, a concern is that consumers may be able to
maniplate the data observed by the loan provider (Bjorkegren and Grissen,
2015). For example, if certain behavioral patterns help a consumer get a loan,
the consumer can make it look like they have these behavioral patterns, for
example visiting certain areas of a city. If resources are allocated to homes
that look poor via satellite imagery, homes or villages can possibly modify the
aerial appearance of their homes to make them look poorer. An open area for
future research concerns how to constrain ML models to make them less prone
to manipulability; Athey (2017) discusses some other examples of this.

There are also other considerations that can be brought into ML when it
is taken to the field, including computational time, the cost of collecting and
maintaining the “features” that are used in a model, and so on. For example,
technology firms sometimes make use of simplified models in order to reduce
the response time for real-time user requests for information.

Overall, my prediction is that social scientists (and computer scientists at
the intersection with social science), particularly economists, will contribute
heavily to defining these types of problems and concerns formally, and propos-
ing solutions to them. This will not only provide for better implementations
of ML in policy, but will also provide rich fodder for interesting research.
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4 Further Predictions

My prediction is that there will be substantial changes in how empirical work is
conducted; indeed, it is already happening, and so this prediction already can
be made with a high degree of certainty. I predict that a number of changes
will emerge, summarized as follows:

1. Adoption of off-the-shelf ML methods for their intended tasks (predic-
tion, classification, and clustering, e.g. for textual analysis)

2. Extensions and modifications of prediction methods to account fo con-
siderations such as fairness, manipulability, and interpretability

3. Development of new econometric methods based on machine learning
designed to solve traditional social science estimation tasks

4. Increased emphasis on model robustness and other supplementary anal-
ysis to assess credibility of studies

5. Adoption of new methods by empiricists at large scale

6. Revival and new lines of research in productivity and measurement

7. New methods for the design and analysis of large administrative data,
including merging these sources

8. Increase in interdisciplinary research

9. Changes in organization, dissemination, and funding of economic re-
search

10. Economist as engineer engages with firms, government to design and
implement policies in digital environment

11. Design and implementation of digital experimentation, both one-time
and as an ongoing process, in collaboration with firms and government

12. Increased use of data analysis in all levels of economics teaching; increase
in interdisciplinary data science programs

13. Research on the impact of AI and ML on economy
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I have already discussed the first two predictions in some detail; I will now
discuss each of remaining predictions in turn, with the exceptoin of the third,
which I will reivew in greater depth in the next Section of the paper.

There are many reasons that empiricists will adopt ML methods at scale.
First, many ML methods simplify a variety of arbitrary choices analysts needed
to make. In larger and more complex datasets, there are many more choices.
Each choice must be documented, justified, and serves at a potential source
of criticism of a paper. When systematic, data-driven methods are available,
research can be made more principled and systematic, and there can be ob-
jective measures against which these choices can be evaluated. Second, one
way to conceptualize ML algorithms is that they perform like automated re-
search assistants–they work much faster and more effectively than traditional
research assistants at exploring modeling choices, yet the methods that have
been customized for social science applications also build in protections so that,
for example, valid confidence intervals can be obtained. Although it is crucial
to consider carefully the objective that the algorithms are given, in the end
they are highly effective. Third, in many cases, new results can be obtained.
For example, if an author has run a field experiment, there is no reason not
to search for heterogeneous treatment effects using methods such as those in
Athey and Imbens (2016). The method ensures that valid confidence intervals
can be obtained for the resulting estimates of treatment effect heterogeneity.

Alongside the adoption of ML methods for old questions, new questions
and types of analyses will emerge in the fields of productivity and measure-
ment. Some examples of these have already been highlighted, such as the abil-
ity to measure economic outcomes at a granular level over a longer period of
time, through, e.g. imagery. As governments begin to absorb high-frequency,
granular data, they will need to grapple with questions about how to main-
tain the stability of official statistics in a world where the underlying data
changes rapidly. New questions will emerge about how to architect a system of
measurement that takes advantage of high-frequency, noisy, unstable data but
yields statistics whose meaning and relationship with a wide range of economic
variables remains stable. Firms will face similar problems as they attempt to
forecast outcomes relevant to their own businesses using noisy, high-frequency
data. The emerging literature in academics, government, and industry on
“now-casting” in macroeconomics (e.g. (Banbura et al., 2013) and ML begins
to address some, but not all, of these issues. We will also see the emergence
of new forms of descriptive analysis, some inspired by ML. Examples of these
include techniques for describing association, e.g., people who do A also do B;
as well as interpretations and visualizations of the output of unsupervised ML
techniques such as matrix factorization, clustering, and so on. Economists are
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likely to refine these methods to make them more directly useful quantiatively,
and for business and policy decisions.

Another area of transformation for economics will be in the design and
analysis of large-scale administrative data sets. We will see attempts to bring
together disparate sources to provide a more complete view of individuals and
firms. The behavior of individuals in the financial world, the physical world,
and the digital world will be connected, and in some cases ML will be needed
simply to match different identities from different contexts onto the same indi-
vidual. Further, we will observe behavior of individuals over time, often with
high-frequency measurements. For example, children will leave digital foot-
prints throughout their education, ranging from how often they check their
homework assignments, the assignments themselves, comments from teach-
ers, and so on. Children will interact with adaptive systems that change the
material they receive based on their previous engagement and performance.
This will create the need for new statistical methods, building on existing ML
tools, but where the methods are more tailored to a panel data setting with
significant dynamic effects (and possibly peer effects as well; see for some re-
cent statistical advances designed around analyzing large scale network data
Ugander et al. (2013), Athey et al. (2016b), Eckles et al. (2016)).

I also predict a substantial increase in interdisciplinary work. Computer
scientists and engineers may remain closer to the frontier in terms of algo-
rithm design, computational efficiency, etc. As I will expand on further in a
moment, academics of all disciplines will be gaining a much greater ability to
intervene in the environment in a way that facilitates measurement and caual
inference. As digital interactions and digital interventions expand across all
areas of society, from education to health to government services to transporta-
tion, economists will collaborate with domain experts in other areas to design,
implement, and evaluate changes in technology and policy. Many of these dig-
ital interventions will be powered by ML, and ML-based causal inference tools
will be used to estimate personalized treatment effects of the interventions and
design personalized treatment assignment policies.

Alongside the increase in interdisciplinary work, there will also be changes
to the organization, funding, and dissemination of economics research. Re-
search on large datasets with complex data creation and analysis pipelines can
be labor intensive, and also require specialized skills. Scholars who do a lot
of complex data analysis with large datasets have already begun to adopt a
“lab” model more similar to what is standard today in computer science and
many natural sciences. A lab might include a post-doctoral fellow, multiple
Ph.D. students, pre-doctoral fellows (full-time research assistants between their
bachelors and Ph.D.), undergraduates, and possibly full-time staff. Of course,
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labs of this scale are expensive, and so the funding models for economics will
need to adapt to address this reality. One concern is inequality of access to
resources required to do this type of research, given that it is expensive enough
that it cannot be supported given traditional funding pools for more than a
small fraction of economists at research universities.

Within a lab, we will see increased adoption of collaboration tools such as
those used in software firms; tools include GitHub (for collaboration, version
control, and dissemination of software) as well as communication tools; for
example, my generalized random forest software is available as an open source
package on github at http://github.com/swager/grf, and users report issues
through the GitHub, and can submit request to pull in proposed changes or
additions to the code.

There will be an increased emphasis on documenation and reproducibility,
which are necessary to make a large lab function. This will happen even
as some data sources remain proprietary. “Fake” data sets will be created
that allow others to run a lab’s code and replicate the analysis (except not
on the real data). As an example institutions created to support the lab
model, both Stanford GSB and the Stanford Institute for Economic Policy
Research have “pools” of predoctoral fellows that are shared among faculty;
these programs provide mentorship, training, the opportunity to take one class
each quarter, and they also are demographically more diverse than graduate
student populations. The predoctoral fellows have a special form of student
status with the university.

We will also see changes in how economists engage with government, indus-
try, education, and health. The concept of the “economist as engineer” and
even “economist as plumber” will move beyond its traditional homes in fields
like market design and development. As digitization spreads across application
areas and sectors of the economy, it will bring opportunities for economists to
develop and implement policies that can be delivered digitially. Farming ad-
vice, online education, health information and information, government service
provision, personalized resource allocation–all of these create opportunities for
economists to design policies, design the delivery and implementation of the
policy including randomization or staggered roll-outs to enable evaluation, and
to remain involved through successive rounds of incremental improvement for
adopted policies. Feedback will come more quickly and there will be more op-
portunities to gather data, adapt, and adjust. Economists will be involved in
improving operational efficiency of government, reducing costs, and improving
outcomes.

ML methods, when deployed in practice in industry, government, education
and health, lend themselves to incremental improvement. Standard practice
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is to evaluate incremental improvements through randomized controlled trials.
Firms like Google and Facebook do 10,000 or more randomized controlled
trials of incremental improvements to machine learning algorithms every year.
An emerging trend is to build the experimentation right into the algorithm,
using “bandit” techniques. Multi-armed bandit is a term for algorithms that
balance exploration and learning–trying new things that might be better than
the status quo–against exploiting information that is already available about
which alternative is best. Bandits can be dramatically faster than standard
randomized controlled experiments (see, e.g., the description of bandits on
Google’s web site by Steve Scott: https://support.google.com/analytics/
answer/2844870?hl=en, because they have a different goal: the goal is to learn
what the best alternative is, not to accurately estimate the average outcome
for each alternative, as in a standard randomized controlled trial.

Balancing exploration and exploitation involves fundamental economic con-
cepts about optimization under limited information and resource constraints.
Bandits are generally more efficient and I predict they will come into much
more widespread use in practice. In turn, that will create opportunities for
social scientists to optimize interventions much more effectively, and to eval-
uate a large number of possible alternatives faster and with less inefficiency.
More broadly, statistical analysis will come to be commonly placed in a longer-
term context where information accumulates over time. Beyond bandits, other
themes include combining experimental and observational data to improve pre-
cison of estimates (see Peysakhovich and Lada (2016), and making use of large
numbers of related experiments when drawing conclusions.

Optimizing ML algorithms require an objective or an outcome to optimize
for. In an environment with frequent and high-velocity experimentation, mea-
sures of success that can be obtained in a short time frame are needed. This
leads to a substantively challenging problem: what are good measures that
are related to long-term goals, but can be measured in the short term, and
are responsive to interventions? Economists will get involved in helping define
objectives and constructing measures of success that can be used to evaluate
incremental innovation. One area of research that is receiving renewed atten-
tion is the topic of “surrogates,” a name for intermediate measures that can be
used in place of long-term outcomes; see, e.g., Athey et al. (2016a). Economists
will also place renewed interest on designing incentives that counterbalance the
short-term incentives created by short-term experimentation.

All of these changes will also affect teaching. Anticipating the digital trans-
formation of industry and government, undergraduate exposure to program-
ming and data will be much higher than it was ten years ago. Within 10 years,
most undergraduates will enter college (and most MBAs will enter business
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school) with extensive coding experience obtained from elementary through
high school, summer camps, online education, and internships. Many will take
coding and data analysis in college, viewing these courses as basic preparation
for the workforce. Teaching will need to change to complement the type of
material covered in these other classes. In the short run, more students may
arrive at econometrics classes thinking about data analysis from the perspec-
tive that all problems are prediction or classification problems. They may
have a cookbook full of algorithms, but little intuition for how to use data
to solve real-world problems or answer business or public policy questions.
Yet, such questions are prevalent in the business world: firms want to know
the return on investment on advertising campaigns,2, the impact of changing
prices or introducing products, and so on. Economic education will take on
an important role in educating students in how to use data to answer ques-
tions. Given the unique advantages economics as a discipline has at these
methods and approaches, many of the newly created data science undergradu-
ate and graduate programs will bring in economists and other social scientists,
creating an increased demand for teaching from empirical economists and ap-
plied econometricians. We will also see more interdisciplinary majors; Duke
and MIT both recently announced joint degrees between computer science and
economics. There are too many newly created data science master’s programs
to mention, but a key observation is that while early programs most commonly
have emerged from computer science and engineering, I predict that these pro-
grams will over time incorporate more social science, or else adopt and teach
social science empirical methods themselves. Graduates entering the workforce
will need to know basic empirical strategies like difference-in-differences that
often arise in the business world (e.g. some consumers or areas treated and
not others).

A final prediction is that we will see a lot more research into the soci-
etal impacts of machine learning. There will be large-scale, very important
regulatory problems that need to be solved. Regulating the transportation in-
frastructure around autonomous vehicles and drones is a key example. These
technologies have the potential to create enormous efficiency. Beyond that,
reducing transportation costs substantially effectively increases the supply of
land and housing in commuting distance of cities, thus reducing housing costs
for people who commute into cities to provide services for wealthier people.
This type of reduction in housing cost would be very impactful for the cost

2For example, several large technology companies employ economists with PhD’s from
top universities who specialize in evaluating and allocating advertising spend for hundreds
of millions of dollars of expenditures; see Lewis and Rao (2015) for a description of some of
the challenges involved.
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of living for people providing services in cities, which could reduce effective
inequality (which may otherwise continue to rise).

We will also see experts in the practice of machine learning and AI collab-
orate with different subfields of economics in evaluating the impact of AI and
ML on the economy.

Summarizing, I predict that economics will be profoundly transformed by
AI and ML. We will build more robust and better optimized statistical models,
and we will lead the way in modifying the algorithms to have other desirable
properties, ranging from protection against over-fitting and valid confidence
intervals, to fairness or non-manipulability. The kinds of research we do will
change; in particular, a variety of new research areas will open up, with bet-
ter measurement, new methods, and different substantive questions. We will
grapple with how to re-organize the research process, which will have increased
fixed costs and larger scale research labs, for those who can fund it. We will
change our curriculum and take an important seat at the table in terms of
educating the future workforce with empirical and data science skills. And,
we will have a whole host of new policy problems created by ML and AI to
studey, including the issues experienced by parts of the workforce who need to
transition jobs when their old jobs are eliminated due to automation.

5 Machine Learning and Causal Inference

Despite the fascinating examples of “off-the-shelf” or slightly modified pre-
diction methods, in general ML prediction models are solving fundamentally
different problems from much empirical work in social science, which instead
focuses on causal inference. A prediction I have is that there will be an active
and important literature combining ML and causal inference to create new
methods, methods that harness the strengths of ML algorithms to solve causal
inference problems. In fact, it is easy to make this prediction with confidence,
because the movement is already well underway. Here I will highlight a few ex-
amples, focusing on those that illustrate a range of themes, while emphasizing
that this is not a comprehensive survey or a thorough review.

To see the difference between prediction and causal inference, imagine that
you have a data set that contains data about prices and occupancy rates of
hotels. Prices are easy to obtain through price comparison sites, but occupancy
rates are typically not made public by hotels. Imagine first that a hotel chain
wishes to form an estimate of the occupancy rates of competitors, based on
publicly available prices. This is a prediction problem: the goal is to get a
good estimate of occupancy rates, where posted prices and other factors (such

15



as events in the local area, weather, and so on) are used to predict occupancy.
For such a model, you would expect to find that higher posted prices are
predictive of higher occupancy rates, since hotels tend to raise their prices as
they fill up (using yield management software). In contrast, imagine that a
hotel chain wishes to estimate how occupancy would change if the hotel raised
prices across the board (that is, if it reprogrammed the yield management
software to shift prices up by 5% in every state of the world). This is a question
of causal inference. Clearly, even though prices and occupancy are positively
correlated in a typical dataset, we would not conclude that raising prices would
increase occupancy. It is well known in the causal inference literature that
the question about price increases cannot be answered simply by examining
historical data without additional assumptions or structure. For example, if
the hotel previously ran randomized experiments on pricing, the data from
these experiments can be used to answer the question. More commonly, an
analyst will exploit natural experiments or instrumental variables, where the
latter are variables that are unrelated to factors that affect consumer demand,
but that shift firm costs and thus their prices. Most of the classic supervised
ML literature has little or nothing to say about how to answer this question.

To understand the gap between prediction and causal inference, recall that
the foundation of supervised ML methods is that model selection (through,
e.g., cross-validation) is carried out to optimize goodness of fit on a test sam-
ple. A model is good if and only if it predicts outcomes well in a test set. In
contrast, a large body of econometric research builds models that substantially
REDUCE the goodness of fit of a model in order to estimate the causal effect
of, say, changing prices. If prices and quantities are positively correlated in
the data, any model that estimates the true causal effect (quantity goes down
if you change price) will not do as good a job fitting a test dataset that has
the same joint distribution of prices and quantities as the training data. The
place where the econometric model with a causal estimate would do better is
at fitting what happens if the firm actually changes prices at a given point in
timeat doing counterfactual predictions when the world changes. Techniques
like instrumental variables seek to use only some of the information that is
in the data the clean or exogenous or experiment-like variation in pricesac-
rificing predictive accuracy in the current environment to learn about a more
fundamental relationship that will help make decisions about changing price.

However, very recently a nascent literature is tackling the problem of us-
ing ML methods for causal inference. This new literature takes many of the
strengths and innovations of ML methods, but applies them to causal infer-
ence. Doing this requires changing the objective function, since the ground
truth of the causal parameter is not observed in any test set. Also for this
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reason, statistical theory plays a more important role in evaluating models,
since it is more difficult to directly assess how well a parameter estimates the
truth, even if the analyst has access to an independent test set. Indeed, this
discussion highlights one of the key ways in which prediction is substantially
simpler than parameter estimation: for prediction problems, a prediction for
a given unit (given its covariates) can be summarized in a single number, the
predicted outcome, and the quality of the prediction can be evaluated on a
test set without further modeling assumptions. Although the average squared
prediction error of a model on a test set is a noisy estimate of the expected
value of the mean squared error on a random test set, due to small sample
size, the law of large numbers applies to this average and it converges quickly
to the truth as the test set size increases.

There are a variety of different problems that can be tackled with ML meth-
ods. An incomplete list of some that have gained early attention is given as
follows. First, we can consider the type of identification strategy for identify-
ing causal effects. Some that have received attention in the new ML/causal
inference literature include:

1. Experimental data

2. Unconfoundedness

3. Instrumental variables

4. Difference-in-difference methods

5. Panel data settings

6. Regression discontinuity designs

7. Structural models of individual or firm behavior

In each of those settings, there are different problems of interest:

1. Estimating average treatment effects (or a low-dimensional parameter
vector)

2. Estimating heterogeneous treatment effects in simple models or models
of limited complexity

3. Estimating optimal treatment assignment policies

4. Identifying groups of individuals that are similar in terms of their treat-
ment effects
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Although the early literature is already too large to summarize all of the
contributions to each combination of identification strategty and problem of
interest, it is useful to observe that at this point there are entries in almost
all of the “boxes” associated with different identification strategies, both for
average treatment effects and heterogeneous treatment effects. Here, I will
provide a bit more detail on a few leading cases that have received a lot of
attention, in order to illustrate some key themes in the literature.

5.1 Average Treatment Effects

In the mid-2000s, Mark van der Laan and coauthors introduced and developed
a set of methods called “targeted maximum likelihood” (van der Laan and
Rubin, 2006). The idea is that maximum likelihood is used to estimate a low-
dimensional parameter vector in the presence of high-dimensional nuisance
parameters. The method allows the nuisance parameters to be estimated with
techniques that have less well established properties or a slower convergence
rate. This approach can be applied to estimate an average treatment effect
parameter.

An early example of the application of ML methods to causal inference
(see Belloni et al. (2014) and Chernozhukov et al. (2015) for reviews) concerns
the question of estimating the average effect of a treatment in an environment
with unconfoundedness, where the treatment assignment is as good as random
conditional on covariates, but some covariates are correlated with both the
treatment assignment and the outcome, so that if the analyst does not con-
dition on them, the omission of the confounder will lead to a biased estimate
of the treatment effect. BCH propose a double-selection method based on the
LASSO. The LASSO is a regularized regression procedure, where a regression
is estimated using an objective function that balances in-sample goodness of
fit with a penalty term that depends on the sum of the magnitude of regression
coefficients. This form of penalty leads many covariates to be assigned a coeffi-
cient of zero, effectively dropping them from the regression. The magnitude of
the penalty parameter is selected using cross-validation. The authors observe
that if LASSO is used in a regression of the outcome and both the treatment
indicator and other covariates, the coefficient on the treatment indicator will
be a biased estimate of the treatment effect, because confounders that have a
weak relationship with the outcome but a strong relationship with the treat-
ment assignment may be zeroed out by an algorithm whose sole objective is
to select variables that predict outcomes.

A variety of other methods have been proposed for combining machine
learning and traditional econometric methods for estimating average treatment
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effects under the unconfoundedness assumption. Athey et al. (2016c) propose
using a method they refer to as “residual balancing.” Their approach is similar
to a “doubly-robust” method for estimating average treatment effects that pro-
ceeds by taking the average of the efficient score, which involves an estimate of
the conditional mean of outcomes given covariates as well as the inverse of the
estimated propensity score; however, the residual balancing replaces inverse
propensity score weights with weights obtained using quadratic programming,
where the weights are designed to achieve balance between the treatment and
control group. The conditional mean of outcomes is estimated using LASSO.
The main result in the paper is that this procedure is efficient and achieves the
same rate of convergence as if the outcome model was known, under a few key
assumptions. The most important assumption is that the outcome model is
linear and sparse, although there can be a large number of covariates and the
analyst does not need to have knowledge of which ones are important. The
linearity assumption, while strong, allows the key result to hold in the absence
of any assumptions about the structure of the process mapping covariates to
the assignment, other than overlap (propensity score bounded strictly between
0 and 1, which is required for identification of average treatment effects). No
other approach has been proposed that is efficient without assumptions on the
assignment model. In settings where the assignment model is complex, simula-
tions show that the method works better than alternatives, without sacrificing
much in terms of performance on simpler models. Complex assignment rules
with many weak confounders arise commonly in technology firms, where com-
plex models are used to map from a user’s observed history to assignments of
recommendations, advertisements, and so on.

More recently, Chernozhukov et al. (2017) propose “double machine learn-
ing,” a method analogous to Robinson’s (1988) nonparametric residual-on-
residual regression, as a method for estimating average treatment effects under
unconfoundedness. The idea is to run a non-parametric regression of outcomes
on covariates, and a second non-parametric regression of the treatment indi-
cator on covariates; then, the residuals from the first regression are regressed
on the residuals from the second regression. in Robinson’s original paper, the
non-parametric estimator was a kernel regression; the more recent work estab-
lishes that any ML method can be used for the non-parametric regression, so
long as it converges at the rate n

1
4 .

A few themes are common to the latter two approaches. One is the impor-
tance of building on the traditional literature on econometric efficiency, which
provides strong guidance on what types of estimators are likely to be success-
ful. A second is that orthogonalization can work very well in practice–using
machine learning to estimate flexibly the relationship between outcomes and
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treatment indicators, and covariates–and then estimating average treatment
effects using residualized outcomes and/or residualized treatment indicators.
The intuition is that in high dimensions, mistakes in estimating nuisance pa-
rameters are likely, but working with residualized variables makes the estima-
tion of the average treatment effect orthogonal to errors in estimating nuisance
parameters.

5.2 Heterogeneous Treatment Effects and Optimal Poli-
cies

Another area of active research concerns the estimation of heterogeneity in
treatment effects, where here we refer to heterogeneity with respect to observed
covariates. For example, if the treatment is a drug, we can be interested in how
the drug’s efficacy varies with individual characteristics. Athey and Imbens
(2017) provides a more detailed review of a variety of questions that can be
considered relating to heterogeneity; we will focus on a few here.

Treatment effect heterogeneity can be of interest either for basic scientific
understanding (that can be used to design new policies or understand mecha-
nisms), or as a means to the end of estimating treatment assignment policies
that map from a user’s characteristics to a treatment.

Starting with basic scientific understanding of treatment effects, another
question concerns whether we wish to discover simple patterns of heterogeneity,
or whether a fully nonparametric estimator for how treatment effects vary with
covariates is desired. One approach to discovering simpler patterns is provided
by Athey and Imbens (2016). This paper proposes to create a partition of
the covariate space, and then estimate treatment effects in each element of the
partition. The splitting rule optimizes for finding splits that reveal treatment
effect heterogeneity. The paper also proposes sample splitting as a way to avoid
the bias inherent in using the same data to discover the form of heterogeneity,
and to estimate the magnitude of the heterogeneity. One sample is used to
construct the partition, while a second sample is used to estimate treatment
effects. In this way, the confidence intervals built around the estimates on the
second sample have nominal coverage no matter how many covariates there are.
The intuition is that since the partition is created on an independent sample,
the partition used is completely unrelated to the realizations of outcomes in the
second sample. In addition, the procedure used to create the partition penalizes
splits that increase the variance of the estimated treatment effects too much.
This, together with cross-validation to select tree complexity, ensures that the
leaves don’t get too small, and thus the confidence intervals have nominal
coverage.
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There have already been a wide range of applications of “causal trees”
in applications ranging from medicine to economic field experiments. The
methods allow the researcher to discover forms of heterogeneity that were not
specified in a pre-analysis plan, without invalidating confidence intervals.

This paper builds on earlier work on “model-based recursive partitioning
(Zeileis et al., 2008), which looked at recursive partitioning for more complex
models, but did not provide statistical properties. More recently, Asher et al.
(2016) and Athey et al. (2017d) have proposed methods to define subgroups
based on more general method of moments models. For example, Athey et al.
(2017d) considers any model that can be estimated using generalized method
of moments, and builds trees tailored to discovering heterogeneity in parameter
estimates.

In some contexts, a simple partition of the covariate space is most useful.
In other contexts, it is desirable to have a fully non-parametric estimate of
how treatment effects vary with covariates. In the traditional econometrics
literature, this could be accomplished through kernel estimation or matching
techniques; these methods have well-understood statistical properties. How-
ever, even though they work well in theory, in practice matching methods and
kernel methods break down when there are more than a handful of covariates.

In Wager and Athey (2017), we introduce the idea of a “causal forest.”
Essentially, a causal forest is the average of a lot of causal trees, where trees
differ from one another due to subsampling. Conceptually, a causal forest can
be thought of as a version of a nearest neighbor matching method, but one
where there is a data-driven approach to determine which dimensions of the
covariate space are important to match on. The main technical results in this
paper establish the first asymptotic normality results for random forests used
for prediction; this result is then extended to causal inference. We also propose
an estimator for the variance and prove its consistency, so that confidence
intervals can be constructed.

A key requirement for our results about random forests is that each in-
dividual tree is “honest,” that is, we never use the same data to construct
a partition of the covariate space, and estimate treatment effects within the
leaves. That is, we use sample splitting, similar to Athey and Imbens (2016).
In the context of a random forest, all of the data is used for both “model
selection” and estimation, as an observation that is in the partition-building
subsample for one tree may be in the treatment effect estimation sample in
another tree.

More recently, Athey et al. (2017d) extended the framework to analyze
nonparametric parameter heterogeneity in any model where the parameter of
interest can be estimated via GMM. The idea is that the random forest is used
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to construct a series of trees. Rather than estimating a model in the leaves of
every tree, the algorithm instead extracts the weights implied by the forest. In
particular, when estimating treatment effects for a particular value of X, we
estimate a “local GMM” model, where observations close to X are weighted
more heavily. How heavily? The weights are determined by the fraction of
time an observation ended up in the same leaf during the forest creation stage.
A subtlety in this project is that it is difficult to design general purpose, com-
putationally light-weight “splitting rules” for constructing partitions according
to the covariates that predict parameter heterogeneity. We provide a solution
to that problem, and also provide a proof of asymptotic normality of estimates
as well as an estimator for confidence intervals. The paper highlights the case
of instrumental variables, and how the method can be used to find hetero-
geneity in treatment effect parameters estimated with instrumental variables.
Recently, an alternative approach to estimating parameter heterogeneity in
instrumental variables models was proposed by Hartford et al. (2016), who
use an approach based on neural nets. General nonparametric theory is more
challenging for neural nets.

Finally, a motivating goal for understanding treatment effects is estimating
optimal policy functions; this has been recently studied in economics by, e.g.,
Kitagawa and Tetenov (2015). The goal is to estimate a policy that maps
from individual characteristics to treatment assignments, and select this to
minimize the loss from failing to use the (infeasible) ideal policy. Despite the
general lack of research about causal inference in the ML literature, the topic
of optimal policy estimation has received some attention. However, most of
the ML literature focuses on algorithmic innovations, and does not exploit
insights from the causal inference literature. In Athey and Wager (2017), we
show how bringing in insights from semi-parametric efficiency theory narrows
down substantially the set of algorithms that might be efficient. We derive a
bound on the loss from using a policy estimate relative to the ideal personalized
policy, and show that in order to attain the bound, it is necessary to use an
estimator that is semi-parameterically efficient.

5.3 Robustness and Supplementary Analysis

In a recent review paper, Athey and Imbens (2017) highlights the importance
of “supplementary analyses” for establishing the credibility of causal estimates
in environments where crucial assumptions are not directly testable without
additional information. Examples of supplementary analyses include placebo
tests, whereby the analyst assses whether a given model is likely to find evi-
dence of treatment effects even at times where no treatment effect should be
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found. One type of supplementary analysis is a robustness measure. ? pro-
poses to use ML-based methods to develop a range of different estimates of
a target parameter (e.g. a treatment effect), where the range is created by
introducing interaction effects between model parameters and covariates. The
robustness measure is defined as the standard deviation of parameter estimates
across model specifications. This paper provides one possible approach to ML-
based robustness measures, but I predict that more approaches will develop
over time as ML methods become more popular.

Another type of ML-based supplementary analysis, proposed by Athey
et al. (2017b), uses ML-based methods to construct a measure of how challeng-
ing the confounding problem is in a particular setting. The proposed measure
constructs an estimated conditional mean function for the outcome as well as
an estimated propensity score, and then estimates the correlation between the
two.

There is much more potential for supplementary analyses to be further de-
veloped; the fact that ML has well-defined, systematic algorithms for compar-
ing a wide range of model specifications makes ML well suited for constructing
additional robustness checks and supplementary analyses.

5.4 Large Scale Bayesian Modeling

Another important area of connection between machine learning and causal in-
ference concerns more complex structural models. For decades, scholars work-
ing at the intersection of marketing and economics have built structural models
of consumer choice, sometimes in dynamic environments, and used Bayesian
estimation to estimate the model, often Markov Chain Monte Carlo. Recently,
the ML literature has developed a variety of techniques that allow similar types
of Bayesian models to be estimated at larger scale. These have been applied
to settings such as textual analysis and consumer choices of, e.g., movies at
Netflix. See, e.g., Blei et al. (2003) and Blei and M. (2012). I expect to see
much closer synergies between these two literatures in the future. For exam-
ple, Athey et al. (2017a) builds on models of hierarchical Poisson factorization
to create models of consumer demand, where a consumer’s preference over
thousands of products are considered simultaneously. The model reduces the
dimensionality of this problem by using a lower-dimensional factor represen-
tation of a consumer’s mean utility as well as the consumer’s price sensitivity
for each product. The paper departs from the pure prediction literature in
ML by evaluating and tuning the model based on how it does at predicting
consumer responses to price changes, rather than simply on overall goodness
of fit. Thus, the paper again highlights the theme that for causal inference,
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the objective function differs from standard prediction.

6 Conclusions

It is perhaps easier than one might think to make predictoins about the im-
pact of ML on economics, since many of the most profound changes are well
underway. There are exciting and vibrant research areas emerging, and dozens
of applied papers making use of the methods. In short, I believe there will be
an important transformation.

At the same time, the automation of certain aspects of statistical algorithms
does not change the need to worry about the things that economists have
always worried about: is a causal effect really identified from the data; are
all confounders measured; what are effective strategies for identifying causal
effects; what considerations are important to incorporate in a particular applied
setting; defining outcome metrics that reflect overall objectives; and many
others. As ML automates some of the routine tasks of data analysis, it becomes
all the more important for economists to maintain their expertise at the art of
credible and impactful empirical work.
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