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Abstract

We analyze demand function competition with a finite number of agents and private infor-

mation. We show that the nature of the private information determines the market power of

the agents and thus price and volume of equilibrium trade.

We establish our results by providing a characterization of the set of all joint distributions

over demands and payoff states that can arise in equilibrium under any information struc-

ture. In demand function competition, the agents condition their demand on the endogenous

information contained in the price.

We compare the set of feasible outcomes under demand function to the feasible outcomes

under Cournot competition. We find that the first and second moments of the equilibrium

distribution respond very differently to the private information of the agents under these two

market structures. The first moment of the equilibrium demand, the average demand, is more

sensitive to the nature of the private information in demand function competition, reflecting

the strategic impact of private information. By contrast, the second moments are less sensitive

to the private information, reflecting the common conditioning on the price among the agents.
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1 Introduction

1.1 Motivation and Results

Models of demand function competition (or equivalently, supply function competition) provide a

cornerstone to the analysis of markets in industrial organization and finance.1 As an important,

descriptive as well as normative, model of competition it is useful to analyze market behavior.

The model also has well-known diffi culties: (i) under complete information there may be multiple

equilibria that yield radically different outcomes, (ii) under incomplete information the equilibrium

prediction is sensitive to the assumed information structures.

In this paper we attempt to provide an answer to the following two distinct, but related questions:

(i) can we select any of the equilibria that arise under complete information by considering small

amounts of incomplete information? (ii) can we provide predictions that hold across all information

structure?

We answer these questions in a setting with a finite number of agents that compete via demand

function competition for a divisible asset. Traders have linear-quadratic preferences over their asset

holdings, and the marginal utility of an agent is determined by a payoff shock. We restrict attention

to symmetric environments (in terms of payoff shocks and information structures) and symmetric

linear Nash equilibria.

The first main result of our paper shows that every outcome that can arise as a Nash equilibrium

under complete information can also arise as the outcome of the unique linear Nash equilibrium

under some small amount of incomplete information. A direct corollary of this result is that, for any

number of agents, all outcomes – from price-taking behavior to a complete market shutdown – can

be rationalized as the unique equilibrium for some information structure that is close to complete

information. The result shows that all outcomes that can arise under complete information can be

selected as being the unique outcome that arise under a small perturbations of complete information.

The reason that asymmetric information has an impact on the equilibrium outcome is that it

changes the market power of agents. That is, it changes how much an agent changes the equilib-

rium price by changing the quantity he demands. We present two results as to how asymmetric

information interacts with the equilibrium market power of agents. First, we show that changes

1There are two basic motivations to study demand function competition: (i) it is an accurate description of

divisible good auctions (e.g. treasury auctions), and (ii) it is one of the few static models of competition, besides

Cournot competition and Bertrand competition.
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in the market power can be caused by arbitrarily small amounts of incomplete information. We

show that market power is determined by residual uncertainty rather than by some absolute level

of uncertainty. Hence, markets that apparently do not suffer from large amounts of uncertainty,

may still be strongly impacted by asymmetric information. Second, we show that market power

can range from zero to infinity, regardless of the details of the payoff environment (e.g. regardless

of the number of agents). Hence, the bounds on market power in terms of the number of agents

and the correlation of the payoff shocks that arise when studying a specific class of signals are not

necessarily robust to the nature of the private information.

Given the sharp indeterminacy in the level of market power induced by the information structure,

it is natural to ask whether there are any predictions at all that hold across all information structures.

Clearly, it is essentially impossible to provide any prediction on the level of market power that is

robust to the choice of the information structure. Nevertheless, the level of market power is only

one of the possible measures that allow us to understand an equilibrium outcome. We establish

that it is possible to provide robust predictions on the price volatility and the dispersion in the

quantities bought by agents. These are two alternative measures that can help us understand the

performance of trading mechanism under incomplete information.

The second main result of our paper shows that the price volatility is always (that is, regardless

of the information structure) at most equal to the variance of the average shock across agents.

Moreover, the dispersion in the quantities bought by agents is always (that is, regardless of the

information structure) at most four times the dispersion of the payoff shocks. Hence, we show

that it is possible to provide sharp bounds on some equilibrium statistics, which hold across all

information structures.

As a by-product of the volatility bounds, we develop a methodology that helps us study the

set of outcomes that can arise for all information structures. This serves two purposes. First, we

can fully characterize the set of outcomes that can be achieved in demand function competition in

terms of necessary and suffi cient conditions. This allow us to immediately show that the volatility

bounds we find are in fact tight. That is, the volatility bounds we provide can be achieved for some

information structure.

The methodology used to study volatility bounds can also be used to compare the set of out-

comes of different trading mechanisms across all information structures. We define a distribution

of outcomes as the joint distribution of quantities, payoff shocks and price that is induced by an

equilibrium outcome. A distribution of outcomes provides a description of the outcome of demand
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function competition that allows to abstract from the strategies used in equilibrium and the precise

description of the information structure. The key conceptual innovation is to describe the outcomes

of the demand function completion game not in terms of the strategies used by the agents (that

is, the demand functions), but instead, in terms of the induced quantities (purchased quantity and

price) and payoff shocks.

A critical advantage of the focus on the distribution of outcomes is that it can be easily compared

with the distribution of outcomes induced by any other trading mechanisms. In the paper we focus

our analysis in comparing demand function competition with Cournot competition, as a particular

instance of what we call fixed slope mechanism. The set of possible first moments under demand

function competition has one more degree of freedom than under Cournot competition, while the

set of possible second moments under demand function competition has one less degree of freedom

than under Cournot competition. This apparently abstract description of the two mechanisms

allow us to conclude that price volatility is bounded by the size of aggregate shocks in demand

function competition, while in Cournot competition price volatility cannot be bounded by the size

of the aggregate shocks. By contrast, the first moment, the market power, or the average volume

of trade is uniquely determined in the Cournot competition, but larger than the positive real line

with demand function competition.

1.2 Related Literature

Our paper is closely related to two strands of the literature studying demand function competition.

The first strand is the literature studying equilibrium refinements in demand function competition.

The second strand is the literature studying the impact of asymmetric information on the equilib-

rium outcome. Finally, our paper is methodologically related to a strand of the literature in game

theory studying the impact of asymmetric information in games.

The existence of multiple equilibria in demand function under complete information dates back

at least to
gros81
Grossman (1981) and

hart85
Hart (1985). In a seminal contribution,

klme89
Klemperer and Meyer

(1989) show that a small perturbation to the exogenous supply of asset reduces the set of equilibria.

In a linear environment like ours, the perturbation studied by
klme89
Klemperer and Meyer (1989) yields a

unique equilibrium. Our results show that any of the equilibria that arise under complete informa-

tion can be selected by considering a small perturbation to the complete information setting. We

interpret the equilibrium selected by
klme89
Klemperer and Meyer (1989) as the equilibrium that can arise

in a model with uncertainty and private values. Yet, we highlight that a critical aspect of their



Information and Market Power July 7, 2017 6

equilibrium selection argument is the assumption of private values, which may not be hold anymore

even when the amount of incomplete information is small.
vive11a
Vives (2011) pioneered the study of asymmetric information under demand function competition

in the same setting of linear-quadratic payoffs and interdependent values that we investigate. He

studied a particular class of information structures where each trader observes a noisy signal of his

own payoff types. Our results strengthen in some directions his results. We show that the impact of

asymmetric information on the equilibrium market power can even be larger than the ones derived

from the one-dimensional signals studied in
vive11a
Vives (2011). In other directions, our results overturns

some of the comparative statics and bounds that are found using a specific class of one-dimensional

signal structures. In particular, market power can be large even when any of the following conditions

is satisfied: (i) the amount of asymmetric information is small, (ii) the number of players is large,

or (iii) payoff shocks are independently distributed.

Our paper is also related to a recent literature studying games under incomplete information,

but without specifying the information structure.
bemo16
Bergemann and Morris (2016) provide a solution

concept – Bayes correlated equilibrium – - which allows to study the set of outcomes of a game

under all information structures.2

2 Modelm

Payoff Environment There are N agents that demand a divisible good. The utility of agentpe

i ∈ {1, ..., N} who buys q ∈ R units of the good at price p ∈ R is given by:

ui(θi, qi, p) , θiqi − p · qi −
1

2
q2
i ,

where θi ∈ R is a payoff shock. The payoff shocks are symmetrically and normally distributed and
for any i, j ∈ N : (

θi

θj

)
∼ N

((
µθ

µθ

)
,

(
σ2
θ ρθθσ

2
θ

ρθθσ
2
θ σ2

θ

))
where ρθθ is the correlation coeffi cient between θi and θj. By symmetry, and for notational conve-

nience, we omit the subscripts i and j in the description of the moments (thus, e.g. µθ instead of

µθi).

2This has been used in subsequent work to study a variety of games. See, for example, ....
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With the symmetry of the payoff states across agents, a useful and alternative representation of

the environment is obtained by decomposing the random variable into a common and an idiosyn-

cratic component, ω and τ i respectively:

θi , ω + τ i. (1) cco

Provided that the correlation coeffi cient ρθθ is nonnegative, the common and idiosyncratic compo-

nents are independent from each other, and the joint distribution is therefore given by:(
ω

τ i

)
∼ N

((
µθ

0

)
,

(
ρθθσ

2
θ 0

0 (1− ρθθ)σ2
θ

))
.

There is an exogenous supply of the good with an inverse supply function given by:

p(q) = α + β · q. (2) kolp

Information Structure We assume that each agent i observes J signals:infostr

si , (si1, ..., siJ).

We assume that the joint distribution of signals and payoff shocks ( s1, ..., sN , θ1, ..., θN) is sym-

metrically and normally distributed. For now we keep the description of the information structure

abstract. We study specific examples in the following sections.

Demand Function Competition Agents compete via demand function competition. Each

agent submits a demand function xi : RJ+1 → R that specifies the demanded quantity as a function
of the received signal si and the market price p, denoted by xi (si, p). The Walrasian auctioneer

sets a price p∗ such that the market clears:

p∗ = α + β ·
∑
i∈N

xi(si, p
∗) (3) mk2

for every signal realization s.

We study the Nash equilibrium of the demand function competition game. The strategy profile

(x∗1, ..., x
∗
N) forms a Nash equilibrium if:

x∗i ∈ arg max
{xi:RJ+1→R}

E
[
θi · xi(si, p∗)− p∗ · xi(si, p∗)−

xi(si, p
∗)2

2

]
,
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where

p∗ = α + β · (xi(si, p∗) +
∑
j 6=i

x∗j(si, p
∗))

We say a Nash equilibrium (x∗1, ..., x
∗
N) is linear and symmetric if there exists (c0, ..., cJ ,m) ∈ RJ+2

such that for all i ∈ N :

xi (si, p) = c0 +
∑
j∈J

cj · sij +m · p.

Equilibrium Statistics: Market Power and Price Volatility We will frequently summarize

the equilibrium outcome in one of two distinct statistics. We define the (expected) equilibrium

market power by:

l , 1

N
E

∑i∈N

(
∂ui(θi,qi,p)

∂qi
− p
)

p

 =
1

N
E
[∑

i∈N θi − qi − p
p

]
. (4) mpdef

The market power l is defined as the ratio of the difference between the marginal utility and the

price paid for the good relative to the equilibrium price, and averaged across agents. The measure

l of market power is a version of the Lerner index. As we consider a demand function game, the

index captures the difference between the marginal utility and the price, rather than the more

conventional notion based on the difference between price and marginal cost.

If agents were price takers, then the market power would be l = 0. If agents were to compete in

Cournot competition, then the market power would be l = 1/N .

A second equilibrium statistic of interest is price volatility, the variance of the equilibrium price,

which we denote by σ2
p.

3 The Main Results Visualizedmotexa

The aim of this section is to illustrate visually the main results of this paper. We will present all the

associated analytic results in the subsequent sections. For the moment, we shall restrict ourselves

to display the sensitivity of the equilibrium outcome to the private information of the agents in

terms of the equilibrium statistics introduce a moment ago, market power and price volatility.

We shall consider three different classes of information structures: (i) noise-free one-dimensional

signals, (ii) noisy one-dimensional signals and (iii) noisy multi-dimensional signals and now briefly

describe them.
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The noise-free one-dimensional signal is given by

si = τ i + (1 + γ)ω, (5) nf

with γ ∈ R+. Thus for γ = 0, the signal si informs agent i perfectly about his payoff state θi.

But for γ > 0, the signal overweighs the common component of his payoff shock relative to his

idiosyncratic component. In either case, agent i can use his signal to update his beliefs about the

payoff states over the other agents. We refer to it as noise-free as the signal does not contain any

extraneous shocks or noise terms.

The noisy one-dimensional signal is given by

si = τ i + ω + εi, (6) no

where the noise term εi is normally distributed with variance σ2
ε and independent across agents.

Thus for σ2
ε = 0, the signal si informs agent i again perfectly about this payoff state, and for σ2

ε > 0,

the signal is a noisy version of the payoff state of agent i. In contrast to the noise-free signal, the

idiosyncratic and common component always enter the signal with their "true" weight.

The noisy multi-dimensional signal gives each agent a separate noisy signal about the idio-

syncratic and the common components in the payoff state, and thus each agent i observes N + 1

signals:

sii = τ i, sji = τ j + εji , ∀j 6= i ∈ N,

and

sN+1
i = ω + εi.

We assume that all the noise terms {εji} are normally distributed and independent of each other.
The environment is symmetric and the variance of the noise terms are given by:

var(εji ) , σ̂2
ε , var(εN+1

i ) , σ2
ε.

That is, each agent i knows his own idiosyncratic component τ i and receives a noisy signal about

the idiosyncratic component of the other agents, as well as about the common component. We

observe that for γ = 0 and σ2
ε respectively, each agent i knows his owns payoff state, but remains

uncertain about the payoff state over the other agents.

In the following illustration, we show how market power, l, and price volatility, σ2
p, are affected

by the nature of the private information. Across all information structures, we keep the payoff

environment fixed, and hence, any changes in the market power and price volatility stem only from
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the differences in the information structure. The payoff environment consists of three competitors,

N = 3, with positively correlated types, ρθθ = 1/2 and variance σ2
θ = 2. The supply function is

specified with α = 0 and β = 3.

In Figure
mp1
1 we plot how the market power changes with the private information of the agents.

As we consider noise-free as well as noisy information structure, we parametrize the information

received by the agent through the variance of the conditional expectation E [θi |si ], or conditional
variance:

σ2
θi|si , var (θi |si ) .

For all three classes of information structures, the variance starts at 0 with γ = 0 or σ2
ε = 0, and

then increases with an increase in γ or σ2
ε respectively. We display the multi-dimensional signal in

two versions, with a low and high variance, σ̂2
ε of the noise term appearing in the signals regarding

the idiosyncratic terms. Thus the low variance version of the multi-dimensional signal is close to

the complete information environment for σ2
ε ≈ 0. After all, if σ2

ε ≈ 0 and σ̂2
ε ≈ 0, every agent

observes every component of the payoff state almost without noise.

In Figure
mp1
1 we can see that an increase in the noise of the individual signal can either increase or

decrease the equilibrium market power. Moreover, even restricting attention to a specific class of in-

formation structures, say the noisy multi-dimensional signal, the market power does not necessarily

display a monotonic behavior in the conditional variance.

As we consider the limit as σ2
θi|si → 0, we observe that the market power approaches to a

common limit. The limit is precisely the market power induced by the equilibrium selected using

the selection criteria proposed by
klme89
Klemperer and Meyer (1989). As σ2

θi|si → 0, every agent i can

perfectly predict his own payoff shock using only his private information. This is the limit in which

agents have private (and correlated) values.

Importantly, as long as σ̂2
ε is kept fixed, an agent still remains largely uncertain about the

realization of the payoff shock of other agents. Hence, even in the limit σ2
ε → 0 the information

structure is still substantially different than the complete information environment.

If we compare one-dimensional information structures with multi-dimensional information struc-

tures, we can see several differences. First, with one-dimensional signals the level of market power

is monotonic in the conditional variance. By contrast, in the multi-dimensional environment the

level of market power is non-monotonic in the size of the noise term.

In Figure
pvol
2 we display the impact that the private information has on price volatility. As with

market power, we find that, locally as well as globally, an increase in the noise of the signal does
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Figure 1: Information and Market Power mp1
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Figure 2: Information and Price Volatility pvol

not necessarily lead to a decrease in the price volatility. But in contrast to the behavior of the

market power, we find that the price volatility remains within a small range. Indeed, Proposition
prp
4 establishes a sharp upper bound on the price volatility in terms of underlying volatility of the

payoff state.

4 Market Power Close to Complete Informationci

We begin the analysis of the demand function competition with environments “close to”complete

information. In fact, we first analyze demand function competition with complete information in

Section
me
4.1. In the linear-quadratic environment, we find that under complete information there is

a continuum of linear equilibria. This results, of course, echoes the findings in the earlier litera-
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ture that stressed the multiplicity of outcomes under demand function competition. The complete

information setting serves as benchmark. In Section
ii
4.2, we then show that with incomplete in-

formation, anyone of the multiple complete information equilibrium can arise as a unique linear

equilibrium with an arbitrarily small amount of incomplete information. We explicitly construct

the information structure that achieves the unique equilibrium outcome. It is a noise-free signal of

the format appearing in the previous section.

4.1 Complete Informationme

We begin by studying demand function under complete information. That is, every agent i observes

the realization of all payoff shocks {θi}i∈N . We characterize the set of linear Nash equilibria. To
this end, we denote the average (realized) payoff shock across agents by:

θ̄ , 1

N

∑
i∈N

θi (7) aps

In an analogous way, any variable with an over-bar represents the average across agents.

kpd Proposition 1 (Continuum of Complete Information Equilibria)

For every λ ≥ −1/2, there exists an equilibrium in which agent i submits a linear demand function:

xi(p) =
1

1 + λ

(
θi − (1−γ̂)·θ

)
−

(
(λ+1)
N−1

(
1
β
− 1

λ

)
+ 1
)

(λ+ β ·N + 1)
α− 1

N − 1
(
1

λ
− 1

β
) · p, (8) deeq

with:

γ̂(λ) , (λ+ 1)(βN − λ)

λ(N − 1)(βN + λ+ 1)
. (9) gamm

Proposition
kpd
1 characterizes a class of equilibria that are parametrized by a one-dimensional

parameter λ ∈ [−1/2,∞). For every agent i, the slope of the demand function is independent of

the realization of the payoff shock. By contrast, the intercept of the demand function depends on

the individual payoff shock θi and the aggregate payoff shock θ through the term

1

1 + λ

(
θi − (1−γ̂)·θ

)
, (10) wd

which represents a weighted difference between the individual and the aggregate payoff shock.

In equilibrium λ is equal to the equilibrium level of market power (as defined in (
mpdef
4)). To see

this it is convenient to analyze the residual supply faced by agent i. We define the residual supply

of agent i as:

ri(p) ,
p− α− β

∑
j 6=i xj(p)

β
. (11) rs
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If agent i submits demand xi(p), then the equilibrium price p∗ is chosen to satisfy xi(p∗) = ri(p
∗).

That is, ri(p) is how much quantity agent i can buy at price p given the demands submitted by all

other agents. It is easy to check that:
∂ri(p)

∂p
=

1

λ
.

This implies that, if agent i increases the quantity he buys by∆qi, the equilibrium price will increase

by ∆qi · λ. Hence, λ is the price impact of agent i, or how much agent i changes the realized price
by changing his demand. This is also the level of market power (as defined in (

mpdef
4)).

It is important to highlight that the precise slope and intercept of the demand submitted by

agent i is irrelevant from his own perspective. All agent i cares about is the intercept between his

own demand xi(p) and the residual supply he faces ri(p). Nevertheless, there are multiple affi ne

functions with different slopes that lead to the same intercept with ri(p). The slope of the demand

submitted by agent i only changes the slope of the residual supply faced by other agents. Hence,

the price impact of other agents.3 By changing the slope of the demands agent submit, it is possible

to generate different equilibria that lead to different outcomes.

It is useful to understand some extreme cases. For this, we note that the slope of the demand

of agent i in equilibrium λ is given by:

m =
1

N − 1
(
1

λ
− 1

β
). (12) slope

This slope is the number that makes the market power λ consistent with the slope of the demand

functions submitted by agents. We explain in detail how three equilibrium outcomes can arise: (i)

price taking behavior (λ ≈ 0), (ii) the Cournot competition outcome (λ = β), (iii) monopsony

quantity (λ = β ·N).
First, we describe how agents can play an equilibrium in which each agent behaves “as if”he

was a price taker (λ ≈ 0). This equilibrium can be supported under demand function competition

if every agent submits very elastic demands (m ≈ ∞). In this case, each agent behaves as a price

taker: any change in the quantity agent i buys is offset by the demand of other agents. Hence, agent

i does not have an impact on the realized price. That is, if agent i withdraws demand to decrease

the price, then this would change the quantity demanded by other agents, but the equilibrium price

would not change.
3This has a similar intuition as how a Nash equilibrium in mixed strategies is determined in any game. In a

mixed-strategy Nash equilibrium an agent is indifferent between the strategies over which he randomizes. Yet, he

chooses the weights to leave the other agents indifferent. Similarly, in demand function competition, an agent chooses

the slope so that the price impact of other agents is equal to the conjectured market power.
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Second, we consider the Cournot competition outcome. If agents submit perfectly inelastic

demands (m = 0), then agents are effectively submitting a fixed quantity. This is the equivalent

behavior to Cournot competition. In this case, the market power of an agent is determined by the

slope of the exogenous supply function (λ = β).

Finally, we show how the monopsony outcome can be realized with λ = β ·N . This is achieved
most transparently in the symmetric case when the payoff shocks of all agents are equal (θ1 =

... = θN).4 If every agent submits a demand with a slope m = −1/(β ·N), each agent commits to

buying a large quantity of asset if the price is lower than the conjectured Nash equilibrium price.

Note that each agent behaves as a supplier in the sense that they buy a higher quantity when the

price is higher (or alternatively, they submit upward sloping demands). In this case, each agent

incorporates that increasing the quantity that he buys will also induce other agents to buy more.

This way, an agent internalizes the pecuniary externality that his demand has on the profits of

other agents. Hence, the monopsony quantity is implemented.

The level of market power λ is has a profound impact on the equilibrium outcome. The equi-

librium price p∗ is equal to:

p∗ =
β ·N · θ̄ + (1 + λ) · α

(1 + λ+ β ·N)
(13) out1

and the aggregate equilibrium demand, q∗, and the individual equilibrium demand q∗i are given by:

q∗ =
N
(
θ̄ − α

)
(1 + λ+ β ·N)

and q∗i =
θ̄ − α

(1 + λ+ β ·N)
+
θi − θ̄
1 + λ

(14) out2

If agents behave as price takers then we attain the competitive outcome with λ = 0. As the market

power λ increases, the agents withdraw demand relative to the competitive outcome. This implies

that the price is lower (as demand is less). This also implies that the dispersion in the quantities

bought by agents (qi − qj) decreases. As the market power λ increases, agents have more price

impact, and hence their demands become less responsive to their payoff shocks.

4.2 Incomplete Informationii

We now study demand function competition with incomplete information. In this subsection, we

shall restriction our attention to a class of (N + 1)−dimensional noise free signals for every agent.
Towards this end, we decompose the individual payoff shock as the sum of two independent shocks:

θi , ηi + φi,

4It is easy to check that, if θ1 = ... = θN , then (
out1
13) maximize

∑
i∈N u(θi, qi, p).
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where the sets of payoff shocks {ηi}i∈N and {φi}i∈N are independent across the sets. These shocks
are all symmetrically and normally distributed. The distribution of shocks ηi and φi must satisfy

the following conditions:

σ2
θ = σ2

η + σ2
φ,

and

ρθθ · σ2
θ = ρηη · σ2

η + ρφφ · σ2
φ,

to guarantee that the joint distribution of {ηi+φi}i∈N is the same as the joint distribution of payoff
shocks {θi}i∈N which define the payoff environment.
We assume that the realization of the shocks

{ηi}i∈N

are common knowledge among the agents, and they form the first N signals for every agent. That

is, every agent observes the realization of all shocks {ηi}i∈N . Additionally, agent i observes a signal
that represent a weighted difference between his idiosyncratic and the common payoff shock φi:

si = φi − (1− γ)φ̄. (15) noisefree2

Signal si is a noise-free signal. By observing si, agent i cannot perfectly infer the realization of

φi. Instead, if agent i could observe all signals {si}i∈N , then agent i would be able to perfectly
infer φi (and hence, θi). We call the parameter γ the confounding parameter, as it measures how

much the signal confounds the payoff shock of agent i (φi) with the payoff shock of all other agents

(aggregated in φ̄).

For the results in this subsection, we will frequently consider the case when the variance of the

second component, σ2
φ, (and the mean µφ) is arbitrarily close to zero, or

µφ ≈ 0, σ2
φ ≈ 0. (16) kd

That is, the component shock φi is arbitrarily small, and thus the payoffshock θi is almost completely

represented by the component ηi, or θi ≈ ηi. If we assume that (
kd
16) is satisfied, then we have that:

var(θi|si, {ηk}k∈N) ≈ 0 and var(θj|si, {ηk}k∈N) ≈ 0.

That is, agent i knows almost perfectly the realization of all the payoff shocks {θk}k∈N just by

observing his private N + 1 dimensional signals. While (
kd
16) is useful to interpret the results, this is

not used in any of the proofs.
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nfs Proposition 2 (Unique Linear Equilibrium with Noise-Free Signals)

For every λ ≥ −1/2, if agents observe a N + 1 dimensional noise-free signal with γ = γ̂, then there

is a unique linear equilibrium in which the equilibrium outcome is attained by (
out1
13).

Proposition
nfs
2 shows that the outcome of every linear Nash equilibrium that arises under complete

information is also the outcome of the unique linear Nash equilibrium under a noise-free information

structure. Noteworthy, this information structure can be arbitrarily close to complete information.

That is, the realization of the payoff shocks {θi}i∈N can be arbitrarily close to complete information,
nevertheless the outcomes of the demand function competition game can be radically different.

There is a mechanic way of understanding why incomplete information allows us to select any

equilibrium that arises under complete information. By providing the agents with a noise-free

signal, we give the agents information that is consistent with only one of the intercepts that arises

under the multiple complete information equilibria. Hence, incomplete information shrinks the set

of available strategies of the agents, by restricting the set of possible intercepts they can submits.

To be more specific, it restricts the measurability of the intercept of the demand function with

respect to the realization of the payoff shocks of the agents. Once agents are restricted to submit

one specific intercept, they also adjust the slope to be the one that would be consistent under one

of the equilibria under complete information. In equilibrium, agent i submits a demand function:

xi(p) =
1

1 + λ
(si + ηi − (1− γ) · η̄)−

(
(λ+1)
N−1

(
1
β
− 1

λ

)
+ 1
)

(λ+ β ·N + 1)
α− 1

(N − 1)
(
1

λ
− 1

β
) · p. (17) df

Note that (
df
17) is the same as (

deeq
8), in fact:

si + ηi − (1− γ) · η̄ = θi − (1− γ) · θ̄.

This is the unique equilibrium under complete information in which the strategy of agent i is

measurable with respect to agent i’s signal (si).

The example in Section
motexa
3 showed that there are information structures close to complete infor-

mation in which the market power can be any number in λ ∈ [λKM , β ·N ]. Proposition
nfs
2 generalizes

this intuition. It shows that in fact any market power that is consistent with being an outcome

under complete information can also be an outcome under a small amount of incomplete informa-

tion. Note that in Section
motexa
3 we only discussed the market power in an information structure close

to complete information, but Proposition
nfs
2 generalizes the result by showing that in fact the entire

set of outcome is the same as under complete information. Thus, the noise free signals provide a
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set of information structures in which the entire set of outcomes is identical to the set of outcomes

under complete information.

5 Equilibrium Restrictions Across All Signalser

The analysis of the complete information environment, and a small class of nearby incomplete infor-

mation structures, showed a wide range of possible equilibrium outcomes. The complete information

environment displayed a continuum of equilibrium outcomes, and thus could only provide very weak

equilibrium predictions. The analysis of nearby incomplete information environment showed that a

possible cause of the weak equilibrium predictions is the sensitivity of equilibrium behavior to the

nature of the private information. Thus, with private information we established uniqueness of the

(linear) equilibrium, but small changes in the signal structure allowed us to recover the entire set

of complete information equilibrium.

Yet, as we only investigated a small class of signal structure, noise free and almost complete

information environment, the question remains how much larger is the set of all possible equilibrium

outcomes under all possible multi-dimensional (normal) information structures. In other words, are

there any equilibrium restrictions that we establish across all information structures. This is the

subject of this section. We now allow for arbitrary multi-dimensional information structure but

retain the normality and symmetry across agents. We initially provide a description of the set of

outcomes in terms of the induced joint distribution of payoff shocks, quantities and price in Section
di
5.1. We then provide necessary conditions on the joint distribution in order for it to be consistent

with a linear Nash equilibrium. We distinguish between purely statistical restrictions, presented

in Section
sro
5.2, and equilibrium restriction, presented in Section

ero
5.3. We use these restrictions to

jointly provide robust predictions on the set of outcomes that hold across all information structures

in Section
rp
5.4. In Section

de
?? we then show that the these necessary conditions are also suffi cient

conditions, and hence completely characterize the set of all equilibrium outcomes.

5.1 Distribution of Outcomesdi

We provide a description of the equilibrium outcomes from an ex ante perspective. We say that

the joint distribution of payoff shocks
(
θi, θ̄

)
and outcome quantities (qi, p) form a joint outcome

distribution
(
θi, θ̄, qi, p

)
of the demand function competition if the distribution is induced by an

equilibrium outcome. The advantage of the description in terms of distributions of equilibrium
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outcomes is that it does not depend on the detail description of the signals. That is, two information

structures may induce different beliefs and may induce different realization over outcomes ex post,

but as long as the distribution of outcomes ex ante is the same, these two information structures

will be indistinguishable in terms of outcomes.

We continue to restriction attention to multi-dimensional Gaussian distributions. The joint

distribution is hence completely characterized by the first and second moments:
θi

θ̄

qi

p

 ∼ N


µθ

µθ

µq

µp

 ,


σ2
θ ρθ̄θσθσθ̄ ρqθσθσq ρpθσθσp

ρθθ̄σθσθ̄ σ2
θ̄

ρqθ̄σθ̄σq ρpθ̄σθ̄σp

ρqθσθσq ρqθ̄σθ̄σq σ2
q ρqpσqσp

ρpθσθσp ρpθ̄σθ̄σp ρqpσqσp σ2
p


 . (18) kfpokr

Some of the coeffi cients are part of the distribution of payoff shocks, and hence, they are ex-

ogenously determined: (i) the expected payoff shock of every agent (µθ), (ii) the expected average

payoff shock (µθ̄), (iii) the variance of the payoff shock of an agent σ2
θ, (iv) the variance of the

average payoff shock σ2
θ̄
, and (v) the correlation between the payoff shock of an agent and the aver-

age payoff shock (ρθθ̄). The rest of the coeffi cients are endogenously determined by the equilibrium

outcome.

The joint distribution of outcomes thus contains nine endogenous variables: (i) the mean quan-

tity bought by agent (µq) , (ii) the mean price (µp), (iii) the variance of the quantity bought by an

agent (σ2
q), (iv) the price volatility (σ2

p), (v) the correlation between the price and the payoff shock

of agent i (ρpθ), (vi) the correlation between the price and the average payoff shock (ρpθ̄), (vii) the

correlation between the quantity bought by an agent and the payoff shock of this agent (ρqθ), (viii)

the correlation between the quantity bought by an agent and the average payoff shock (ρqθ̄), (ix)

the correlation between the quantity bought by an agent and the price (ρqp).

5.2 Statistical Restrictions on Outcomessro

It is convenient to first provide the restrictions on the set of outcomes that are simply statistical

conditions from the law of iterated expectations. We begin by providing conditions on the exogenous

variables.

lemmexo Lemma 1 (Statistical Conditions on Exogenous Variables)

Every distribution of payoff shocks must satisfy:

µθ = µθ̄, ρθθ̄σθ = σθ̄. (19) stexo
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Lemma
lemmexo
1 provides restrictions on the distribution of payoff shocks. These conditions are purely

statistical and are implied by the fact that payoffshocks are symmetrically distributed. In particular,

the expected payoffshock of agent i (µθ) is equal to the expected average payoffshock (µθ̄). Similarly,

the variance of the payoff shocks, the variance of the average payoff shock, and the correlation

between the payoff shock and the average payoff shock must satisfy a consistency requirement.

We now provide the respective statistical conditions on the endogenous variables.

lemmendo Lemma 2 (Statistical Conditions on Endogenous Variables)

Every distribution of outcomes must satisfy:

µp = α + β ·N · µq, ρpθ = ρpθ̄ρθθ̄, ρqθ̄ = ρpθ̄ · ρqp, ρqp · σq · β ·N = σp. (20) kodd

The four equations in (
kodd
20) are derived exclusively from the assumption that the payoff shocks

and quantities (θ1, ..., θN , q1, ..., qN) are symmetrically distributed and that the price is a linear

function of the quantities (see (
mk1
??)). Thus, the endogenous coeffi cients (µp, σq, σp, ρpθ̄, ρqθ) and the

restrictions imposed by (
kodd
20) are suffi cient to fully identify an outcome distribution.

5.3 Equilibrium Restrictions on Outcomesero

We now provide necessary conditions for a joint distribution given by (
kfpokr
18) to be consistent with

equilibrium. We begin with conditions for the first moments.

polol Lemma 3 (Distribution of Outcomes: Mean)

The first moments of any linear Nash equilibrium must satisfy:

µp =
1

1 + βN + λ
· (N · β · µθ + (1 + λ) · α), (21) mome1

for some λ ≥ −1/2.

The first moment of the equilibrium distribution of outcomes, in terms of price, and through the

linear supply function, also the quantities are thus determined exclusively by the market power λ.

Interestingly, this implies by Proposition
kpd
1 that all the possible first moments that can be achieved

by any information structure can also be achieved by an equilibrium under complete information.

In other words, the analysis of the complete information environment is suffi cient to characterize

all the first moments that can be achieved in any incomplete information environment.
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To complete describe the second moments, it is useful to define the idiosyncratic components in

the payoffs shocks and the demanded quantities:

∆θi , θi − θ and ∆qi , qi − q.

The variable ∆θi is the difference between the payoff shock of agent i and the average payoff

shock (and analogously ∆qi). The correlation ρ∆q∆θ is an economically important quantity. It is a

measure of how effi ciently the good is allocated across agents. More precisely, given a dispersion in

the quantities bought by agents {∆qi}i∈N , ρ∆q∆θ measures how much of this dispersion is caused

by fundamental shocks and how much is caused by noise.

polol2 Lemma 4 (Distribution of Outcomes: Variance)

The second moments of any linear Nash equilibrium must satisfy:

σ2
p = ρ2

pθ̄ ·
(

1

1 + λ+ β ·N

)2

· (β ·N)2 · σ2
θ̄, (22) mome3

σ2
q = ρ2

pθ̄ ·
(

1

1 + λ+ β ·N

)2

· σ2
θ̄ + ρ2

∆q∆θ ·
(

1

1 + λ

)2

· (σ2
θ − σ2

θ̄), (23) mome4

and the correlation coeffi cient must satisfy:

ρ∆q∆θ =
(ρqθ − ρpθ̄ρpqρθθ̄)√
(1− ρ2

qp)(1− ρ2
θθ̄

)
, (24) corrdeltas

with λ ∈ [−1/2,∞).

Proposition
polol2
4 characterizes the variance of the quantity bought by an agent (σ2

q) and the price

volatility (σ2
p). The variance of the price is determined by three term: (i) the variance of the average

payoff shock of agents (σ2
θ̄
), (ii) the market power (λ), and (iii) the correlation between the price

and the common shock (ρθ̄p). The price co-moves with the average payoff shock. Hence, if the

average payoff shock is more volatile, this induces a higher price volatility. Similarly, an increase

in the correlation between the price and the average payoff shock implies that the price is more

responsive to the common shock and less responsive to idiosyncratic and noise terms. Hence, this

also increases the price volatility. Finally, the market power λ just decreases the amount each agent

trades, and hence, an increase in market power decreases the price volatility.

The total variance of the quantity qi bought by agent i can be explained by two different

quantities:

var(qi) = var(q̄) + var(∆qi),
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namely the variance of the average quantity bought by the agents and the dispersion across agents

in the quantities bought. The variance of the average quantity bought by the agents equals:

σ2
q̄ = ρ2

pθ̄ ·
(

1

1 + λ+ β ·N

)2

· σ2
θ̄.

As the average quantity q̄ is collinear with p, with a constant of proportionality equal to β ·N, the
variance of the average quantity is explained in the same way as the price volatility. The dispersion

across agents of the quantities bought by the agents is equal to:

σ2
∆q = ρ2

∆q∆θ ·
(

1

1 + λ

)2

· σ2
∆θ.

The dispersion across agents of the quantities bought by the agents is determined by three terms: (i)

the dispersion of the agents’payoff shocks (σ2
∆θ), (ii) the market power (λ), and (iii) the correlation

between the dispersion in the quantities bought by agents and the dispersion of the payoff shocks

(ρ∆q∆θ). This allows us to characterize the restrictions on the correlations of the joint distribution.

polol22 Lemma 5 (Distribution of Outcomes: Correlation)

For every linear equilibrium the correlations of the distribution must satisfy:

ρpθ̄ ∈ [0, 1], (25) mome5

and

ρ∆q∆θ ∈ [0, 1]. (26) mome6

Given our original description of the joint distribution in (
kfpokr
18) and the statistical restrictions

in (
kodd
20), we finally consider two correlations that are left to be determined: (ρpθ̄, ρqθ). Condition

(
mome5
25) indicates that the correlation between the price and the average payoff shock must be positive.

Condition (
mome6
26) provides an implicit restriction ρqθ that depends on ρpθ̄, ρpq, ρθθ̄. In turn, the

correlation ρpq is determined by the variances σp and σq (as in (
kodd
20)). To interpret condition (

mome6
26)

we recall the expression for ρ∆q∆θ in (
corrdeltas
24). It follows that the restrictions for ρ∆θ∆q and ρpθ̄ are

symmetric and independent of each other. (
mome5
25) and (

mome6
26) state that the quantities and the price

must be positively correlated with fundamentals. We thus realize that the equilibrium outcome is

determined exclusively by three endogenous variables.

all Proposition 3 (Determining the Distribution of Outcomes)

For any (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1], the distribution of outcomes (
kfpokr
18) is completely

determined by (
kodd
20) - (

mome4
23).
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Proposition
all
3 characterizes the set of all outcome distribution in terms of three parameters

(λ, ρpθ̄, ρ∆q∆θ) which will be determined by the signal structure. While we provide intervals which

restrict the set of values of these three parameters, we have not yet provided any joint restriction

on them. A priori, it is not clear whether any set of endogenous parameters (λ, ρpθ̄, ρ∆q∆θ) ∈
[−1/2,∞) × [0, 1] × [0, 1] are consistent with being a outcome distribution for some information

structure. Yet, in the following section, we show that this is true. That is, for any parameters

(λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞) × [0, 1] × [0, 1] there exists an information structure that has a linear

Nash equilibrium that induces a distribution of outcomes given by these three parameters.

5.4 Robust Predictionsrp

We use the restrictions on the distribution of outcomes to derive predictions that hold across all

information structures. We begin by providing bounds on the price volatility:

prp Proposition 4 (Price Volatility)

In any linear Nash equilibrium, the price volatility must satisfy:

σ2
p ≤

(
β ·N

1/2 + β ·N

)2

· σ2
θ̄.

Proposition
prp
4 provides a bound on the maximum volatility that can be achieved for any infor-

mation structure. The most interesting thing to highlight is that the price volatility is bounded by

the size of the average shock across agents. That is, if σ2
θ̄
→ 0, then σ2

p → 0.

We now study the dispersion of the quantities. For this, we characterize the bounds on the

variance of the idiosyncratic component in the demand, ∆qi = qi − q. The variance of ∆qi is a

measure of how dispersed the quantities bought by agents are.

prq Proposition 5 (Dispersion of Quantities)

In any linear Nash equilibrium, the dispersion of quantities must satisfy:

σ2
∆q ≤

1

4
σ2

∆θ.

As in the case of price volatility, the dispersion in the quantities bought by agents is bounded

by the dispersion of the payoff shocks, and if σ2
∆θ → 0, then σ2

∆q → 0.
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6 Informational Decentralizationee

We now establish that for any outcome distribution that satisfies (
kodd
20) - (

mome6
26) there exists an infor-

mation structure that realizes this distribution as a Nash equilibrium. Thus, the conditions on the

distribution of outcomes we previously characterized are not only necessary, but also suffi cient. In

particular, the volatility bounds that we provided in the previous section are in fact sharp and can

be achieved for some information structure.

We provide two different decentralizations. We first show that all distribution of outcomes can

be implemented by selecting an equilibrium when agents observe only public signals. We then show

that the distribution of outcomes can also be implemented as a unique linear Nash equilibrium when

agents observe one-dimensional signals. These two distinct decentralizations allow us to provide

different intuitions on how the equilibrium outcomes can be achieved and how the information

structure determines the equilibrium outcome.

6.1 Multi-Dimensional Public Signalsps

We assume that all agents observe the same set of signals. In contrast to Section
ci
4, agents observe

the payoff shocks through noisy signals. Every agent observes N signals labeled {sj}j∈N , where si
is given by:

si = θi + εi. (27) kodk

The term εi is a noise term that is independent of all payoff shocks, has a variance of σ2
ε, and a

correlation across signals of ρεε (that is, corr(εi, εj) = ρεε).

public Proposition 6 (Equilibrium Outcomes with Multi-Dimensional Signals)

For every distribution (
kfpokr
18) that satisfies (

kodd
20)- (

mome6
26), there exists a set of public signals that have a

linear Nash equilibrium that induces this distribution.

Thus every distribution of outcomes can be decentralized by providing agents with public sig-

nals under some linear Nash equilibrium. As any distribution of outcomes is determined by three

coeffi cients (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1], it follows that we map the primitives of the

information structure and the equilibrium selection into these three parameters.

The market power λ is determined by the equilibrium selection. This follows the same intuition

as the equilibrium selection under complete information (see Section
ci
4). On the other hand, the
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correlations ρpθ̄ and ρ∆q∆θ are determined by the noise terms in (
kodk
27). In particular,5

ρpθ̄ = corr(E[θ̄|{si}i∈N ], θ̄) and ρ∆q∆θ = corr(E[∆θi|{si}i∈N ],∆θi). (28) corrls

That is, ρpθ̄ is determined by how precise the collection of all signals {si}i∈N is about the average
shock θ̄. On the other hand, ρ∆q∆θ is determined by how precise the collection of all signals {si}i∈N
is about the orthogonal component of the payoff shock of agent i, ∆θi.

6.2 One-Dimensional Private Signalsod

We now consider a restricted class of one-dimensional signals. We assume that agent i observes a

one-dimensional signal si given by:

si = θi + εi + (γ − 1)(θ̄ + ε̄). (29) one

The term εi is a noise term that is independent of all payoff shocks {θi}i∈N , has a variance of
σ2
ε, and a correlation ρεε across signals. There are two changes with respect to the information

structure in which agents observe public signals (as in the previous section). First, agent i observes

only a one-dimensional signal si, which is a private signal. Second, each signal has an additional

component that is weighted by the confounding parameter γ. The confounding parameter γ would

be innocuous if agent i could observe all signals {sj}j∈N in (
one
29). Since by taking the average of

these signals, an agent would learn:

1

N

∑
i∈N

si = γ(θ̄ + ε̄).

Hence, agent i could learn θ̄ + ε̄ by simply adding the signals regardless of the level of γ 6= 0.

It is only when agent i observes only his one-dimensional private signal si that the confounding

parameter will have an impact on the equilibrium outcome.

pub Proposition 7 (Equilibrium Outcomes with One-Dimensional Signals)

For every distribution (
kfpokr
18) that satisfies (

kodd
20) - (

mome6
26), there exists a one-dimensional signal given by

(
one
29) that has a unique linear Nash equilibrium that induces this distribution.

5To compute the correlations in (
corrls
28) in terms of the variances it is easy to check that:

corr(E[θ̄|{si}i∈N ], θ̄) =

√
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

; corr(E[∆θi|{si}i∈N ],∆θi) =

√
σ2
θ − σ2

θ̄

σ2
θ − σ2

θ̄
+ σ2

ε − σ2
ε̄

.



Information and Market Power July 7, 2017 25

Proposition
pub
7 shows that every distribution of outcomes can be decentralized as the unique Nash

equilibrium when agents observe one-dimensional signals. Hence, we can map the primitives of the

information structure and the equilibrium selection into the three parameters that determine an

equilibrium outcome (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1]. The correlations ρpθ̄ and ρ∆q∆θ are

determined by (
corrls
28). This is determined the same way as with public signals.

To understand how the equilibrium market power is determined, we define:

ϕi , E[θi|s1, ..., sN ].

That is, ϕi is the expected value of θi conditional on all the signals. Now, note that (
one
29) can be

written as follows:

si ∝ (ϕi + (γ̃ − 1)ϕ̄) , (30) one2

where

γ̃ , γ ·
σ2
θ̄

+ σ2
ε̄

σ2
θ̄

·
σ2
θ − σ2

θ̄

σ2
θ − σ2

θ̄
+ σ2

ε − σ2
ε̄

. (31) tgamm

We can see that (
one2
30) has the same form as (

noisefree2
15). Hence, γ̃ is the right confounding parameter once

we incorporate the fact that the collection of all signals does not allow to perfectly predict θi, but

that the best possible prediction is ϕi.

The market power λ is determined by γ and the noise terms as follows. Let γ̂−1(·) be the inverse
function of γ̂(λ) (as defined in (

gamm
9)) with values greater or equal than −1/2. The inverse restricted

to values greater or equal than -1/2 is unique. Then the equilibrium market power is given by

γ̂−1(γ̃). Hence, the market power is determined the same way as in the case with noise-free signals,

but taking into account the best prediction of θi conditional on all the signals.

7 Beyond Demand Function Competitionbd

In the analysis of demand function competition we found that the equilibrium outcome can be

rather sensitive to the private information. Yet, this did not imply that there were no equilibrium

restriction. We found that will the second moments of the equilibrium could be located in a narrow

range, and within a sharp upper bound. By contrast, we found that there was almost no restriction

on the first moment of the equilibrium outcome. This naturally raises the question whether other

market mechanism may impose more or perhaps different kind of restrictions on the equilibrium

outcome. More generally, we might ask whether our methods of analyzing all information structure

at once could be applicable to other market mechanisms. In this section we take a modest step in this
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direction and analyze a class of fixed slope mechanisms that includes as special or limit case, Cournot

and Bertrand competition, respectively. In Section
mm
7.1 we show that every fixed slope mechanism

has a unique complete information equilibrium. Moreover, the first moment is the same across all

possible information structures with incomplete information. Thus, fixed slope mechanisms allow

much sharper predictions regarding the first moments of the equilibrium distribution. In Section
cdf
7.2 we then consider the second moment restriction for one specific fixed slope mechanism, the

Cournot competition. By contrast to the first moment, we find that Cournot competition leads

to a much larger set of second moments of the equilibrium. This would suggest that in the choice

of market mechanism in the presence of concerns for robustness, there is trade-off across market

mechanism in which some trading mechanism may offer favorable bounds on first moments, other

trading mechanism favorable bounds on second moments of the equilibrium distribution.

7.1 Market Mechanismsmm

We study a class of mechanisms described by a single parameter κ ∈ R+ which leads to a fixed

slope in the demand quantity of agent i. In the mechanism each agent i is asked to submit a bid

pi ∈ R+. The equilibrium price is then determined by the average bid:

p∗ =
1

N

∑
i∈N

pi, (32) mech1

and the resulting quantity allocation is given by

qi =
p∗

βN
+

1

κN
(pi − p∗) (33) mech2

The price is determined by the average price submitted by all agents. Given an equilibrium price

p∗, market clearing dictates that agents must buy on average a quantity p∗/(β · N). The quantity

bought by agent i is equal to the average quantity bought by agents plus an additional term that

depends on the difference between the price submitted by agent i and the average realized price

(pi − p∗). The quantity purchased by agent i is determined by the difference between the bid pi
and the price p∗ and the rate is determined by κ. If κ ≈ 0, then a small difference between the

equilibrium price and the bid pi offered by agent i leads to a large difference between the individual

quantity qi and the average quantity bought by all agents. If κ → ∞, then all agents buy similar
quantities, regardless of the differences in the bids submitted.

This class of mechanisms contains the Cournot and Bertrand competition as special cases. If

κ = β, then we are in Cournot competition. If κ→ 0, then we approach Bertrand competition. We

characterize the unique equilibrium of this game when agents have complete information.
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mechpr Proposition 8 (Equilibrium of Fixed-Slope Competition)

The fixed-slope game with parameter κ has a unique equilibrium in which the outcome is given by

p∗ =
β ·N · θ̄ + (1 + λ) · α

(1 + λ+ β ·N)
(34) m1

and the aggregate equilibrium demand, q∗, and the individual equilibrium demand q∗i are given by:

q∗ =
N
(
θ̄ − α

)
(1 + λ+ β ·N)

and q∗i =
θ̄ − α

(1 + λ+ β ·N)
+
θi − θ̄
1 + λ

(35) m2

with λ = N · κ · β/(κ+ (N − 1)β).

Proposition
mechpr
8 thus establishes that any of the multiple equilibria that can arise in the demand

function competition game, see Proposition
kpd
1 and the equilibrium outcomes described in (

out1
13) and

(
out2
14), can arise as unique equilibria of a specific fixed slope mechanism. The set of mechanisms

(parametrized by κ) correspond to a class of games in which agents submit demand functions, but

they cannot choose the slope of the demand function they submit. To see this, note that (
mech1
32) and

(
mech2
33) imply the following:

pi = (κ ·N)

(
qi − (

1

βN
− 1

κ ·N )p∗
)
.

That is, the bid of agent i determines a linear combination between the equilibrium price (p∗)

and the quantity qi that agent i buys. By changing κ we change this linear combination. This is

equivalent to changing the slope of the demand function submitted by agents.

The intuition of the result is as follows. In demand function competition there is a continuum of

equilibria. In each of these equilibria agents are required to submit a demand function that specifies

a slope and an intercept. The intercept must be a function of the realized payoff shocks. As long as

they can choose these two objects freely, there will be multiple equilibria. This is because from the

perspective of an individual agent for a fixed residual supply, multiple combinations of a slope and

a demand give rise to the same equilibrium price and quantities. By fixing the slope of the demand

function they submit, we can select any of these equilibria.

A fixed-slope mechanism corresponds to mechanically shrinking the set of available strategies

to agents. This implies that only a subset of the equilibrium strategies are left for the agents, and

hence only one equilibrium of the demand function competition game is consistent with the set of

available strategies in the fixed slope mechanism. Note that, in general, by shrinking the set of

available strategies one can trivially reduce the amount of Nash equilibria that a game has. Yet, it

is not always the case that shrinking the strategy space of agents does not also add additional Nash
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equilibria. This is because in general we are also shrinking the set of available deviations for agents,

which a priori, could reduce the number of Nash equilibria. Yet, as we showed in Proposition
mechpr
8, in

the fixed-slope mechanism the set of Nash equilibria is a proper subset of the set of Nash equilibria

that arise under demand function competition.

An alternative interpretation of mechanism can be provided in terms of the quantities demanded.

We define

qi , pi/(κ ·N).

We can write (
mech1
32) and (

mech2
33) as follows:

p∗ = κ
∑
i∈N

qi, (36) mech12

and

q∗i = qi +
1

N
(
κ

β
− 1)

∑
i∈N

qi (37) mech22

Under this alternative formulation the price is proportional to the bids qi submitted by all agents.

The quantity bought by agent i is related to the bid submitted by agent i, qi, but it is demeaned

in an amount that is propositional to (κ/β − 1).

7.2 Cournot vs. Demand Function Competitioncdf

We now compare Cournot competition with demand function competition. We begin by comparing

the equilibrium outcomes for a class of one one-dimensional signals:

si = θi + (γ − 1)θ̄.

In Figure
aasdd
?? and Figure

fpv
7.2 we compare the equilibrium market power and the induced price

volatility respectively under Cournot and demand function competition.
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There are two stark differences. First, the level of market power is constant in γ for Cournot

competition, but it is decreasing in γ for demand function competition. The second stark difference

is regarding the level of price volatility. In demand function competition the price volatility is

increasing in γ and it is bounded. In Cournot competition the price volatility may be much higher

than under demand function competition. In fact, under Cournot competition, we have that price

volatility (σ2
p) can grow without bounds, even if σθ̄ → 0 (see

behm15
Bergemann, Heumann, and Morris

(2015))). For example, if we consider independent shocks (ρθ̄θ = 0) and a large market (N →∞),

then price volatility will be equal to 0 in demand function competition, while price volatility can

be proportional to the size of the variance of the payoff shocks in Cournot competition.

The study of both forms of market competition under noise free signals suggests that both

mechanisms respond very differently to the degree of asymmetric information. In fact, we can

generalize this comparison, and compare both mechanisms across all information structures. In

earlier work, (
behm15
Bergemann, Heumann, and Morris (2015)) we analyzed Cournot competition and

characterized the restrictions on the outcomes across all information structures. Here, we provide

a brief discussion on how the distribution of outcomes under Cournot competition is different than

in demand function competition.

In Cournot competition the first moment of the distribution is independent of the information

structure. In particular, the expected price is always equal to (
mome1
21), with λ = β. In contrast, the set

of feasible second moments is a three dimensional object. In particular, for any (ρpθ̄, ρ∆q∆θ, ρqq) ∈
[0, 1]3, there exists an information structure that induces a distribution of outcomes under Cournot

competition with correlations (ρpθ̄, ρ∆q∆θ, ρqq).

In contrast, in demand function competition, the set of feasible first moments is a one-dimensional
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object. This can be seen from the fact that the distribution of the price is determined by λ, with any

λ ≥ −1/2. Yet, for a fixed first moment, the set of possible second moments is a two dimensional

object. In particular, in the limit β → 0, we have that:

ρqq =
ρ2
pθ̄
· ( 1

N−1
+ ρθθ)− ρ2

∆q∆θ · (1− ρθθ) 1
(N−1)

ρ2
pθ̄
· ( 1

N−1
+ ρθθ) + ρ2

∆q∆θ · (1− ρθθ)
.

Hence, for any (ρpθ̄, ρ∆q∆θ) ∈ [0, 1]2, ρqq is uniquely determined.
6

The extra degree of freedom that demand function competition has on the first moment is a

reflection of the fact that market power is endogenously determined. The extra degree of freedom

that Cournot competition has in the second moments is reflection of the fact that agents cannot

condition the quantity bought on the equilibrium price. Hence, there is less information that

disciplines the quantities bought by agents. In Cournot competition, the price volatility and the

volatility in the quantity demanded by the agents are not determined separately (as σ2
p and σ

2
q in

(
mome3
22) and (

mome4
23)) but rather there is a single equation that jointly determines the volatility in the

quantities demanded by agents. This implies that the price volatility can increase with the absolute

level of uncertainty about payoff shocks, σ2
θ, and not only with the uncertainty about the average

payoff shock σ2
θ̄
.

8 Conclusionscon

In this paper we study demand function competition. Our results provide positive and negative

results regarding our ability to make predictions in this form of market microstructure. On the

one hand, we showed that any market power is possible– from −1/2 to infinity. Considering small

amounts of incomplete information does not allow us to provide any form of sharper predictions,

unless one is able to make more restrictive assumptions regarding the nature of the incomplete

information. On the other hand, we showed that we can provide many substantive predictions

on the outcome of demand function competition that are robust to the choice of the information

structure. Hence, a bit surprisingly, market power is the only quantity of the market outcome that

is indeterminate.
6Away form the limit β → 0, the correlation ρqq depends on (ρpθ̄, ρ∆q∆θ) ∈ [0, 1]2 and the level of market power

λ. Yet, once we have fixed the first moment, we also fix the market power. Hence, for a fixed first moments, the set

of correlations is a two-dimensional object.
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The analysis in our paper provides a way of thinking about demand function competition in a

more abstract way. In particular, we analyze directly quantities and payoff shocks, abstracting from

the specific demands that are submitted in equilibrium. While this allows us to analyze demand

function competition, it may also be helpful to analyze other forms of market microstructure, and

perhaps more interestingly, to compare between them. We believe this may a fruitful direction for

future work.
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Appendix

We begin with the following lemma that gives a complete characterization of the set of linear Bayes

Nash equilibria.

lne Lemma 6 (Characterization of Linear Nash Equilibrium)

The demand function x(si, p) = c0 +
∑

j∈J cjsj −m · p is a linear Nash equilibrium if and only if:

x(si, p) = c0 +
∑
j∈J

cjsij −m · p =
E[θi|p, {sij}j∈J ]− p

1 + λ
, (38) lpl

where λ is given by:

λ =
β

1 + β ·m · (N − 1)
, (39) kdod

and the expectation E[θi|p, {sij}j∈J ] is computed assuming that p is distributed as follows:

p =
α + β(N · c0 + c1

∑
i∈N
∑

j∈J sij)

1 +m · β ·N .

Proof. First, note that if all agents submit demand function as in (
lpl
38), then market clearing

implies that:

p∗ = α + β(N · c0 +
∑
i∈N

∑
j∈J

cjsij)−N ·m · p∗.

Hence, the equilibrium price is given by:

p∗ =
α + β(N · c0 + c1

∑
i∈N
∑

j∈J sij)

1 +m · β ·N .

Now fix an agent i. Given the demands submitted by other agents {xj(p)}j 6=i, agent imaximizes:

max
xi(p)∈C(R)

E[θi · xi(p∗)− p∗ · xi(p∗)−
xi(p

∗)2

2
].

such that α + β
∑
`∈N

x`(p
∗) = p∗.

We conjecture a linear equilibrium in which:

xj = c0 +
∑
j∈J

cjsj −m · p.

Agent i faces a residual supply:

ri(p) =
p− α− β

∑
`6=i x`(p)

β
.
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That is, if agent i submits a demand xi(p), then the equilibrium price is chosen to satisfy xi(p∗) =

ri(p
∗).

We first solve the optimal quantity for agent i if he knew his residual supply. If agent i knows

his residual supply, then he chooses a quantity qi such that:

max
qi∈R

E[θi|ri(p), {sij}j∈J ]qi − r−1(qi) · qi −
1

2
qi, (40) max1

where r−1
i (·) is the inverse function of ri. Note that the residual supply of agent i (ri) a priori

contains information about θi, and hence, this is added as a conditioning variable. That is, in a

linear Nash equilibrium the intercept of the residual supply ri(p) is measurable with respect to:∑
`6=i

∑
j∈J

cjs`j.

Hence, agent i can use the intercept of ri(p) as additional information on θi. Taking the first order

condition:

E[θi|ri, {sij}j∈J ]− r−1(q∗i )− q∗i
∂r−1(q∗i )

∂q∗i
− q∗i = 0

With a minor abuse of notation, we define:7

λ , β

1 + β ·m · (N − 1)
,

and note that:
∂r−1(qi)

∂qi
=

(
∂ri(p)

∂p

)−1

= λ.

Note that the second order conditions is satisfied if and only if λ ≥ −1/2. If λ < −1/2, then the

objective function in (
max1
40) is a convex function of qi, and hence, a maximum does not exist.

If agent i knows his residual demand, then the first order condition can be written as follows:

q∗i =
E[θi|ri, {sij}j∈J ]− r−1(q∗i )

1 + λ
.

Note that r−1(q∗i ) is the equilibrium price:

p∗ = r−1(q∗i ).

Hence, we can write the first order condition of agent i as follows:

q∗i =
E[θi|p∗, {sij}j∈J ]− p∗

1 + λ
.

7There is an abuse of notation with respect to the definition of λ in (
mpdef
4). Nevertheless, in a linear Nash equilibrium

both definitions coincide.
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Note that the equilibrium price p∗ is informationally equivalent to the intercept of the residual supply

faced by agent i. This is because p∗ is computed using ri and the demand function submitted

by agent i. Hence, for agent i, conditioning on the residual supply or the equilibrium price is

informationally equivalent. Hence, we replace it as a conditioning variables.

Of course, in demand function competition agent i does not know his residual supply. Never-

theless, agent i submits a whole demand schedule. If agent i submits demand schedule:

x(p) =
E[θi|p, {sij}j∈J ]− p

1 + λ
, (41) dfcpr

then he will buy the same quantity as if he knew his residual supply. The expectation E[θi|p, {sij}j∈J ]

is computed the same way as if p was the equilibrium price. That is, for any residual supply ri(p),

if agent i submits demand function (
dfcpr
41), then p∗ is chosen to satisfy x(p∗) = ri(p

∗). Hence, agent i

buys a quantity:

q∗i =
E[θi|ri, {sij}j∈J ]− p

1 + λ
,

which is the optimal quantity as if he knew his residual supply.

Hence, a linear Nash equilibrium is determined by constants (c0, ...., cJ ,m) such that:

c0 +
∑
j∈J

cjsj −m · p =
E[θi|p, {sij}j∈J ]− p

1 + λ
,

where λ is given by:

λ =
β

1 + β ·m · (N − 1)
,

and where expectation E[θi|p, {sij}j∈J ] is computed the same way as if p was the equilibrium price.

Hence, we prove the result.

Proof of Proposition
kpd
1. The equilibrium price is determined to satisfy:

α + β
∑
i∈N

xi(p
∗) = p∗

If agents submit demand functions as in (
deeq
8), it is easy to check that the equilibrium price will be

given by:

p∗ =
(1 + λ)α + β ·N · θ̄

1 + λ+ β ·N .

We now note that:

−(1− γ̂) · θ̄
1 + λ

−

(
(λ+1)
N−1

(
1
β
− 1

λ

)
+ 1
)

(λ+ β ·N + 1)
α− 1

N − 1
(
1

λ
− 1

β
) · p∗ +

1

1 + λ
p∗ = 0.
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Hence, we trivially have that:

θi
1 + λ

− (1− γ̂) · θ̄
1 + λ

−

(
(λ+1)
N−1

(
1
β
− 1

λ

)
+ 1
)

(λ+ β ·N + 1)
α− 1

N − 1
(
1

λ
− 1

β
) · p∗ +

1

1 + λ
p∗ =

θi
1 + λ

.

Hence, we can write (
deeq
8) as follows:

xi(p) =
E[θi|θi, θ̄, p]− p

1 + λ
.

Additionally, note that if agents submit demand functions as in (
deeq
8), then

m =
1

N − 1
(
1

λ
− 1

β
).

Hence,

λ =
β

1 + β ·m · (N − 1)
.

Hence, using Lemma
lne
6, this is a linear Nash equilibrium.

Proof of Proposition
nfs
2. In any linear Nash equilibrium, the equilibrium price must be a

linear function of the shocks {ηi}i∈N and the signals {si}i∈N . Using the symmetry of the conjectured
equilibrium, we have that in any symmetric linear Nash equilibrium, there exists constants ĉ0, ĉ1, ĉ2

such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1 · φ̄+ ĉ2 · η̄.

Regardless of the value of the constants, we have that:

E[θi|{ηi}i∈N , si, p∗] = θi.

That is, agent i can infer perfectly θi using the realization of the shocks {ηi}i∈N , the signal si and
the equilibrium price. This is because agent i can infer φ̄ from p∗, which in addition to si, allows

agent i to perfectly infer φi. Using Lemma
lne
6, agent i submits demand function:

xi(p) =
E[θi|{ηi}i∈N , si, p∗]− p

1 + λ
,

for some λ ≥ −1/2. Hence, agent i in equilibrium buys a quantity:

q∗i =
θi − p∗
1 + λ

,
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for some λ ≥ −1/2. Using the market clearing condition, we must have that the equilibrium price

is given by:

p∗ =
(1 + λ)α + β ·N · θ̄

1 + λ+ β ·N , (42) jodijd

for some λ ≥ −1/2. Hence, the price must be measurable with respect to θ̄. That is, we have that

the equilibrium price, must satisfy that ĉ1 = ĉ2. It is important to clarify that the linearity and

symmetry of the conjectured equilibrium guarantees that the price is an affi ne function of η̄ and φ̄.

Yet, since the equilibrium price plus the private signals observed by agent i allow agent i to infer

θi, the quantity bought by agent i is measurable with respect to θi. Hence, using the linearity and

the symmetry, the price must be a linear function of θ̄.

Given the equilibrium price in (
jodijd
42) (as a function of λ), we can find an expression for the

expected value of θi conditional on the private information of agent i and the equilibrium price. We

first note that:

(1− γ)

(
p∗

β ·N · (1 + λ+ β ·N)− (1 + λ)α

β ·N − η̄
)

= (1− γ)φ̄.

Hence, the expectation cane written as follows:

E[θi|p∗, si, {ηi}i∈N ] = si + ηi + (1− γ)

(
p∗

β ·N · (1 + λ+ β ·N)− (1 + λ)α

β ·N − η̄
)

= θi.

Remember that in equilibrium agent i submits demand function:

xi(p) =
E[θi|p∗, si, {ηi}i∈N ]− p

1 + λ
.

Hence, the slope of the demand submitted by agent i is equal to:

m = −∂xi(p)
∂p

=
1− (1− γ) 1

β·N · (1 + λ+ β ·N)

1 + λ
.

Yet, λ is determined by (
kdod
39). Hence, we have that λ is the root to a quadratic equation:

λ =
1

2

−1−N · β · γ(N − 1)− 1

γ(N − 1) + 1
±

√(
N · β · γ(N − 1)− 1

γ(N − 1) + 1

)2

+ 2 ·N · β + 1

 . (43) lam2

Only the positive root is a valid solution as the negative root yields a λ < −1/2, and hence, this

is not an equilibrium. Hence, for a fixed γ, there is a unique symmetric linear Nash equilibrium.

Additionally, inverting (
lam2
43) (using the positive solution), we have that γ as a function of λ is given
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by (
gamm
9). Hence, if γ is given by (

gamm
9) there is a unique linear Nash equilibrium in which the equilibrium

market power is λ.

Proof of Lemma
lemmexo
1. Remember that:

θ̄ =
1

N

∑
i∈N

θi.

Taking expectations, we get:

E[θ̄] =
1

N

∑
i∈N

E[θi].

Using that the payoff shocks are symmetrically distributed, we get µθ̄ = µθ.

Note σ2
θ̄

= cov(θ̄, θ̄). Using the collinearity of the covariance:

σ2
θ̄ =

1

N

∑
i∈N

cov(θi, θ̄).

Using the symmetry assumption:

σ2
θ̄ = cov(θi, θ̄) = ρθθ̄σθ̄σθ.

Hence, σθ̄ = ρθθ̄σθ. Hence, we prove the result.

Proof of Lemma
lemmendo
2. (First equation) The market clearing condition is given by:

p = α + β
∑
i∈N

qi.

Taking expectations of this equation:

E[p] = α + β
∑
i∈N

E[qi].

Using that by symmetry E[qi] = E[qj] we get:

µp = α + β ·N · µq.

(Second equation) By symmetry:

cov(θi, p) = cov(θj, p).

Hence, we have that:

cov(θi, p) =
1

N

∑
j∈N

cov(θj, p) = cov(θ̄, p).
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Hence,

ρθpσθσp = ρθ̄pσθ̄σp.

Using that σθ̄ = ρθθ̄σθ, we get:

ρθp = ρθ̄pρθθ̄.

(Third equation) By symmetry:

cov(qi, θ̄) = cov(qj, θ̄).

Hence, we have that:

cov(qi, θ̄) =
1

N

∑
j∈N

cov(qj, θ̄) = cov(q̄, θ̄).

Hence,

ρqθ̄σqσθ̄ = ρq̄θ̄σq̄σθ̄.

We have that σq̄ = ρqq̄σq (this can be proven the same way as we proved that σθ̄ = ρθθ̄σθ). Also,

note that q̄ is collinear with p, and hence ρq̄θ̄ = ρpθ̄ and ρqq̄ = ρqp. Hence, we get that:

ρqθ̄ = ρpθ̄ · ρqp.

(Fourth Equation) The price is collinear with the price, and hence:

σp = β ·N · σq̄.

As before, we use that σq̄ = ρqq̄σq = ρqpσq. Hence,

σp = β ·N · ρqp · σq.

Proof of Lemma
polol
3. Using Lemma

lne
6, in any linear Nash equilibrium:

qi =
E[θi|{sij}j∈J , p]− p

1 + λ
, (44) ffoc

for some λ ≥ −1/2. Taking expectations and using the law of iterated expectations:

µq =
µθ − µp
1 + λ

. (45) focf

In Lemma
lemmendo
2 we proved that:

µp = α + β ·N · µq.
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Replacing in (
focf
45):

µp − α
β ·N =

µθ − µp
1 + λ

. (46) focf1

Hence,

µp =
β ·N · µθ + α · (1 + λ)

1 + λ+ β ·N .

Rearranging terms we get the result.

Proof of Lemma
polol2
4. We begin with the restriction on the correlation coeffi cients given by

(
corrdeltas
24). We explain each step subsequently:

ρ∆q∆θ =
cov(∆qi,∆θi)

σ∆qσ∆θ

(47) eq1

=
cov(qi, θi)− cov(q̄, θ̄)

σ∆qσ∆θ

(48) eq2

=
(ρqθσqσθ − ρpθ̄ρpqσqρθθ̄σθ)

σ∆qσ∆θ

(49) eq3

=
(ρqθσqσθ − ρpθ̄ρpqσqρθθ̄σθ)√

(1− ρ2
qp)σ

2
q(1− ρ2

θθ̄
)σ2

θ

(50) eq4

=
(ρqθ − ρpθ̄ρpqρθθ̄)√
(1− ρ2

qp)(1− ρ2
θθ̄

)
(51) eq5

(
eq1
47) is the definition of the covariance. (

eq2
48) is as follows:

cov(∆qi,∆θi) = cov(qi − q̄, θi − θ̄) = cov(qi, θi)− cov(q̄, θ̄),

where the symmetry of the distribution is used to show that cov(q̄, θ̄) = cov(qi, θ̄) = cov(q̄, θi). The

numerator of (
eq3
49) is using the definition of the covariance and σ2

θ̄
= ρθ̄θσ

2
θ and σ

2
q̄ = ρpqσ

2
q (see

Lemma
lemmexo
1 and Lemma

lemmendo
2). (

eq4
50) is as follows:

σ2
∆θ = cov(θi − θ̄, θi − θ̄) = σ2

θ − σ2
θ̄ = (1− ρ2

θθ̄)σ
2
θ.

where once again in the last equality we used Lemma
lemmexo
1. σ2

∆q is calculated in an analogous way

(using Lemma
lemmendo
2). (

eq5
51) is by simplifying the variances.

We use the results and equations used in the proof of Lemma
polol
3. We begin by proving (

mome3
22).

Multiplying (
ffoc
44) by p, taking expectations, and using the law of iterated expectations, we get:

E[qip] =
E[p · θi]− E[p2]

1 + λ
(52) smp
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Multiplying (
focf
45) by µp on both sides and subtracting it from (

smp
52):

E[qip]− µq · µp =
E[pθ]− µp · µθ − (E[p2]− µ2

p)

1 + λ
(53) smp0

Hence, we have that:

cov(qi, p) =
cov(θi, p)− σ2

p

1 + λ
. (54) ojdod

Note that:

cov(qi, p) = cov(q̄, p) =
σ2
p

β ·N and cov(θi, p) = cov(θ̄, p) = ρθ̄pσθ̄σp. (55) simp

Hence, we have that:
σ2
p

β ·N =
ρθ̄pσθ̄σp − σ2

p

1 + λ
. (56) dodo

Rearranging terms we get (
mome3
22).

We now prove (
mome4
23). We first note that:

σ2
q = var(qi) = var(q̄ + ∆qi) = σ2

q̄ + σ2
∆qi
,

where we use the cov(q̄,∆qi) = 0.8 Since q̄ is collinear with p with a constant of proportionality of

β ·N , we can use (
mome3
22) to directly show that:

σ2
q̄ =

ρ2
θ̄p
σ2
θ̄

(β ·N + 1 + λ)2
. (57) dpkpd

Multiplying (
ffoc
44) by qi, and taking expectations, we get:

E[q2
i ] =

E[θiqi]− E[p · qi]
1 + λ

(58) smp1

Multiplying (
focf
45) by µq on both sides and subtracting it from (

smp
52):

E[q2
i ]− µ2

q =
E[θi · qi]− µq · µθ − (E[p · qi]− µp · qi)

1 + λ
(59) smp2

Hence, we have that:

σ2
q =

cov(θi, qi)− cov(p, qi)

1 + λ
. (60) kol4

Dividing (
ojdod
54) by β · N and using that p and q̄ are collinear with a constant of proportionality of

β ·N , we have that:
σ2
q̄ =

cov(θi, q̄)− cov(p, q̄)

1 + λ
. (61) kol5

8To check that cov(q̄,∆qi) = 0, simply note that cov(q̄,∆qi) = cov(q̄, qi − q̄) = cov(q̄, qi)− cov(q̄, q̄) = 0.
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Subtracting (
kol5
61) from (

kol4
60), and using (

dpkpd
57) we get:

σ2
∆q =

cov(∆θi,∆qi)

1 + λ
.

Hence, we have that:

σ∆q =
ρ∆q∆θ · σ∆θi

(1 + λ)
. (62) std2

Using (
dpkpd
57) and (

std2
62), we have that:

σ2
q = σ2

q̄ + σ2
∆q =

ρ2
θ̄p
σ2
θ̄

(β ·N + 1 + λ)2
+
ρ2

∆q∆θ · σ2
∆θi

(1 + λ)2

Hence, we prove the result.

Proof of Lemma
polol22
5. From (

dodo
56) we have that σp is positive if and only if ρpθ̄ is positive. The

standard deviation of any random variables is always positive, hence, we get (
mome5
25). From (

std2
62) we

have that σ∆q is positive if and only if ρ∆θ∆q is positive. The standard deviation of any random

variables is always positive, hence, ρ∆θ∆q ∈ [0, 1]. Using (
corrdeltas
24) we get (

mome6
26).

Proof of Lemma
all
3. The random variables (∆θi, θ̄,∆qi, p, ) is a linear combination of the

random variables (θi, θ̄, qi, p, ). Hence, if the distribution of (∆θi, θ̄,∆qi, p) is completely determined

by (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞) × [0, 1] × [0, 1], then the distribution of (θi, θ̄, qi, p) is completely

determined by (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1].

We now show that the distribution of (∆θi, θ̄,∆qi, p) is given by:
∆θi

θ̄

∆qi

p

 ∼ N
(

0

µθ̄

0

µp

 ,


σ2

∆θ 0 ρ∆q∆θσ∆θσ∆q 0

0 σ2
θ̄

0 ρpθ̄σθ̄σp

ρ∆q∆θσ∆θσ∆q 0 σ2
∆q 0

0 ρpθ̄σθ̄σp 0 σ2
p


)
. (63) distri

To check this, not that:

E[∆θi] = E[θi − θ̄] = E[θi]−
1

N

∑
j∈N

E[θj] = 0,

where in the last equality we used the symmetry of the distribution (that is, E[θj] = E[θi]). Hence,

µ∆θ = 0. Similarly, µ∆q = 0. For the terms in the variance covariance matrix, note that:

cov(∆qi, θ̄) = cov(qi −
1

N

∑
j∈N

qj,
1

N

∑
j∈N

θj) =
1

N

∑
j∈N

cov(qi, θj)−
1

N2

∑
j∈J

∑
`∈N

cov(q`, θj) = 0.
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where once again we just used the symmetry of the distribution and the colinearity of the covariance.

Similarly,

cov(∆qi, q̄) = cov(∆θi, θ̄) = cov(∆θi, q̄) = 0.

For a given (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1], it is clear that µp and σ
2
p are determined

by (
mome1
21) and (

mome3
22). On the other hand, σ2

q is determined by (
mome4
23) and we have that:

σ2
∆θ = σ2

q − σ2
q̄ = σ2

q −
σ2
p

(βN)2
.

Hence, σ2
∆θ is also determined by (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞) × [0, 1] × [0, 1]. Looking at (

distri
63) it is

clear that (λ, ρpθ̄, ρ∆q∆θ) ∈ (−1/2,∞)× [0, 1]× [0, 1] (plus (
mome1
21), (

mome3
22), (

mome4
23)) determines the complete

distribution of (
distri
63), and hence, also the distribution of (θi, θ̄, qi, p).

Proof of Proposition
prp
4. To be completed.

Proof of Proposition
prq
5. To be completed.

Proof of Proposition
public
6. Using Lemma

lne
6, in any linear Nash equilibrium agents submit

demand functions:

xi(p) =
E[θi|s1, ..., sN , p]− p

1 + λ

Let ϕi be defined as follows:

ϕi , E[θi|s1, ..., sN ].

That is, ϕ̄i is the best prediction of θi, given all the signals. Hence, we can rewrite agents’demand

functions as follows:

xi(p) =
E[ϕi|s1, ..., sN , p]− p

1 + λ

Hence, we can replicate the argument in Proposition
kpd
1, but using ϕi instead of θi.

In any equilibrium with market power λ, the equilibrium price and the equilibrium quantity

bought by agent i is given by:

p∗ =
β ·N · ϕ̄+ (1 + λ) · α

(1 + λ+ β ·N)
and qi =

ϕ̄− α
(1 + λ+ β ·N)

+
ϕi − ϕ̄
1 + λ

(64) out12

We clearly have that:

corr(p∗, θ̄) = corr(ϕ̄, θ̄) = corr(E[θ̄|s1, ..., sN ], θ̄) =
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

.
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corr(∆qi,∆θi) = corr(∆ϕi,∆θi) = corr(E[∆θi|s1, ..., sN ],∆θi) =
σ2

∆θ

σ2
∆θ + σ2

∆ε

.

Hence, the induced equilibrium outcome is determined by the market power λ ∈ [−1/2,∞) and the

parameters:

(ρpθ̄, ρ∆q∆θ) = (
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

,
σ2

∆θ

σ2
∆θ + σ2

∆ε

). (65) lpd

We note that:

σ2
θ̄ =

Nρθθ + (1− ρθθ)
N

and σ2
∆θ =

(N − 1)(1− ρθθ)
N

,

and similarly for σ2
ε̄ and σ

2
∆ε. Hence, it is easy to check that for any (ρpθ̄, ρ∆q∆θ) ∈ [0, 1], there

exists (σ2
ε, ρεε) ∈ [0,∞] × [ −1

N−1
, 1] such that (

lpd
65) is satisfied. Hence, for any (λ, ρpθ̄, ρ∆q∆θ) ∈

[−1/2,∞)×[0, 1]×[0, 1], there exists a set of public signals indexed by (σ2
ε, ρεε) ∈ [0,∞]×[ −1

N−1
, 1] and

an equilibrium selection index by λ, such that the equilibrium outcome is given by the parameters

(λ, ρpθ̄, ρ∆q∆θ).

Proof of Proposition
pub
7 . Before we provide the proof, we note that:

si = θi + εi + (γ − 1)(θ̄ + ε̄) = (∆θi + ∆εi) + γ(θ̄ + ε̄).

Consistent with the notation previously defined, we define:

s̄ , γ · (θ̄ + ε̄) and ∆si , ∆θi + ∆εi.

We note that the random variables (θ̄, ε̄, s̄) are orthogonal to (∆θi,∆εi,∆si) (see Lemma
all
3). Hence,

the expectation can be written as follows:

E[θi|si, s̄] =
σ2

∆θ

σ2
∆θ + σ2

∆ε

·∆si +
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

· 1

γ
· s̄

This can be rewritten as follows:

E[θi|si, s̄] =
σ2

∆θ

σ2
∆θ + σ2

∆ε

· si + (1− γ̃)

(
σθ̄

σθ̄ + σε̄

1

γ
s̄

)
, (66) expec

where γ̃ is defined as in (
tgamm
31).

In any linear Nash equilibrium, the equilibrium price must be a linear function of the signals

{si}i∈N . Using the symmetry of the conjectured equilibrium, we have that in any symmetric linear
Nash equilibrium, there exists constants ĉ0, ĉ1 such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1 · (
1

N

∑
i∈N

si).
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We note that:

E[θi|si, p∗] = E[θi|si, s̄].

Hence, agent i in equilibrium buys a quantity:

q∗i =
E[θi|si, s̄]− p∗

1 + λ
, (67) dkod

for some λ ≥ −1/2. Using the market clearing condition, we must have that the equilibrium price

is given by:

p∗ =
(1 + λ)α + β ·N · ( σ2

θ̄

σ2
θ̄
+σ2

ε̄
· 1
γ
· s̄)

1 + λ+ β ·N . (68) jodijd2

Given the equilibrium price in (
jodijd2
68) (as a function of λ), we can find an expression for the

expected value of θi conditional on the private information of agent i and the equilibrium price:

E[θi|p∗, si] =

(
σ2

∆θ

σ2
∆θ + σ2

∆ε

· si + (1− γ̃)

)
p∗

β ·N · (1 + λ+ β ·N)− (1 + λ)α

β ·N

)
.

This corresponds to rewriting (
expec
66) in terms of p∗ instead of s̄. Remember that in equilibrium agent

i submits demand function:

xi(p) =
E[θi|p∗, si]− 1

1 + λ
.

Hence, the slope of the demand submitted by agent i is equal to:

m =
1− (1− γ̃) 1

β·N · (1 + λ+ β ·N)

1 + λ
.

Yet, λ is determined by (
kdod
39). Hence, we have that λ is the root to a quadratic equation:

λ =
1

2

(
− 1−N · β · γ̃(N − 1)− 1

γ̃(N − 1) + 1
±

√(
N · β · γ̃(N − 1)− 1

γ̃(N − 1) + 1

)2

+ 2 ·N · β + 1

)
. (69) lam22

Only the positive root is a valid solution as the negative root yields a λ < −1/2, and hence, this

is not an equilibrium. Hence, for a fixed γ̃, there is a unique symmetric linear Nash equilibrium.

Additionally, inverting (
lam22
69) (using the positive solution), we have that γ̃ as a function of λ is given

by (
gamm
9). Hence, if γ̃ is given by (

gamm
9) there is a unique linear Nash equilibrium in which the equilibrium

market power is λ.

Note that the equilibrium outcome (
dkod
67) and (

jodijd2
68) is the same as the outcome of an equilibrium

with public signals for any λ ≥ −1/2. Hence, using Proposition
public
6 we have that all equilibrium

outcomes can be decentralized as a unique linear Nash equilibrium with a one-dimensional signal

as in (
one
29).
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