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1 Introduction

Many key questions in economics (and in other areas) require knowledge of how health and mortality
evolve with age. A large literature in medicine, demography, sociology and economics documents for
example that circumstances early in life affect health and mortality throughout the lifetime (for recent sum-
maries see Almond and Currie, 2011 and Almond et al., 2017). Understanding of the full consequences of
early circusmtance, as well as of programs aimed to address them, requires a full accounting of their long
term effects. When and how to distribute resources over the lifetime depends crucially on both short and
long term impacts. Yet there is no known parametric model of the evolution of health over time that can
be used to trace how early insults affect the evolution of health and mortality. The key intuition in this
paper is that, if mortality depends on health, then the age-profile of mortality imposes strong restrictions
for models of the evolution of the health stock over the lifetime. And cohort mortality rates exhibit a re-
markably consistent pattern, high in infancy and old age, and low but variable during reproductive ages.
The stability and consistency of this shape across humans and primates, suggests there exists an underlying
“law of mortality” and health (Gompertz, 1871, Carnes et al. 1996, Bronikowski et al., 2011). Yet a simple
model of mortality for all ages has proved elusive.1

In this paper we provide a unified law of mortality that tracks health and mortality from birth to death.
It is a simple dynamic model of the evolution of the health stock that accounts for the basic features of
mortality and can be characterized by only five parameters. In the spirit of the classic demographic work
by Vaupel et al. (1979), populations are born with an initial distribution of health (or frailty), and individuals
with low levels of health die. This distribution of health is dynamic over the lifetime: the environment can
increase (or decrease it) it by providing (health) resources, though these are not equally distributed in the
population. But health also deteriorates at a deterministic and increasing rate with age. Finally individuals
can also die from external causes, unrelated to “biological” processes and health status–this last force is not
necessary to explain the basic age-profile of mortality. But these external shocks play an important role in
explaining observed deaths during the reproductive period, while biological processes are most visible in
childhood and old age.

This basic framework can be used to investigate how temporary shocks at a given age, or changes in
permanent circumstances, affect survival at subsequent ages. There are no easily computable analytical
solutions for the parameters of the model, or for the mortality rate at a point in time. But we can characterize
the behavior of mortality at all ages as a function of the parameters, and we can estimate these parameters
using the method of simulated moments.

We use high-quality data from cohort life tables provided in the Human Mortality Database (HMD) to
estimate these parameters. The estimation recovers five (or more) parameters from each cohort table and
results in relatively accurate prediction of life expectancy. We independently estimate the parameters of all
cohorts born between 1860 and 1945 in France, and report their evolution. The results suggest that the main
sources of mortality gains for these cohorts were driven by increases in the level of health at birth, increases
in the level of resources and decreases in the variance of these resources. We also estimate parameters for
primates using data from Kohler et al. (2006). Relative to other primates, humans have substantially highe
initial health, but very similar aging rates.

1Most notably Gompertz (1820), Gompertz (1825), Gompertz (1862), Gompertz (1871) noted log mortality is linear after 45. Models
that succesfully predict mortality from birth to death typically model the hazard rates (or some function of the rates, like survival
or probabilities of dying in a given interval) using complex mathematical models. Carriere (1992) for instance shows a mixture of
gompertz, Weibull, inverse Gompertz and Inverse Weibull can fit the data nicely. We provide an more in depth discussion of how our
model compares to others in the literature later in the paper.
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We use our model to investigate the effects of temporary and permanent shocks on lifetime mortality.
We estimate the effects of WWII and find it had long lasting effects on mortality, consistent with lower
investments in war times possibly due to lower GDP, lower availability of food, and a worsening of sanitary
conditions during the 1939-1945 years. We are also able to rationalize excess mortality during reproductive
ages, which can best be characterized as an increase in the accident rate in the population. We also use the
model to replicate and intepret findings in the literature, such as the recent those by Case and Deaton (2015).

Finally we derive optimal investment profiles by age. If we assume that resources are independent of
health, we find that health investments are u-shaped: they are highest at birth, fall with age and rise again
with age. We consider extensions of this optimal investment model, including making per period resources
depend on health. Although optimal investments affect the shape of mortality, they do not fundamentally
change it–mortality remains highest at young and old ages. The model also implies that lifetime investment
and initial stocks are complementary, and there are also strong “dynamic” complementarities between in-
vestments at different ages, as in Cunha and Heckman (2007). We discuss implications for compensation of
populations that experience negative shocks.

This paper is organized as follows. We first describe the data and the basic observations that motivate
our model. We then describe the model and its properties in its simplest form. To assess the fit of the model
we estimate its parameters and study their evolution. We also investigate how shocks affect the evolution of
health and mortality. Then we investigate implications for optimal investments. We finish by considering
some applications of the model, and how it can be used to understand findings in the literature.

2 Basic mortality patterns from the Human Mortality Database

To study mortality over the lifetime we make use of the Human Mortality Database (HMD) which provides
mortality rates by age, birth year, country and gender. These are constructed using birth counts based
from birth certificates, death counts from death certificates, as well as population estimates derived from
censuses. Age-specific mortality rates become available the year a country enters the database, which occurs
when the census and vital registration system is deemed to be almost 100% complete. These data constitute
the highest quality and largest data available to study cohort mortality. The most significant limitation of
the data is that it does not account for migration patterns, but no data are available to correct mortality rates
appropriately.

In this paper we use the life tables of six countries (Belgium, Denmark, Iceland, France, Netherlands,
Norway, and Sweden) with complete mortality data for a large number of cohorts. We look at men and
women born between 1860 and 1940. For all these cohorts we observe mortality rates from birth to age 90,
except for post-1920 cohorts who can only be followed to age 80. This results in 83,934 observations–there
are a few missing data points, particularly for war years.2

We focus specific on France for convenience. It has the longest time series of cohorts that can be followed
from birth to age 90, except for Sweden. The data pertain to very large populations, the 1860 birth cohort
had almost 900,000 individuals in France, but less than 200,000 in the other counties. Finally France had 2
very deadly wars and high maternal mortality which we also study.

In France, life expectancy at birth increased from 30 to 45 from 1800 to 1900, and reached 80 in 2004
2There are a maximum of 14,236 observations per country. The Netherlands, Norway, and Sweden have no observation missing

while for France, Belgium, and Denmark there are a few missing data points. In the case of France many correspond to war years:
there is almost no observation in 1914, 1939, 1943, 1945, 1946 for any male or female cohort. This brings down to 13,334 the number of
observations for France.
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(Pison, 2005). Figure 1 plots the log of the mortality rate by age for all cohorts of men and women born in
France between 1860 and 1940. It shows that (the logartihm of) mortality has almost the shape of a “tick
mark”: it starts very high early in life, plummets to very low but variable levels in adolescence and young
adulthood, and then rises with age starting in middle age. If we examine the data by decade as in Appendix
Figure 17, we see that this pattern is the norm across all cohorts. Appendix Figures 17 show that although
there is some variation across countries, the shape of mortality is also very similar across countries for a
given cohort.

Several other features of the shape of mortality are noteworthy. First after middle age, log mortality
rises almost linearly with age–this regularity was first noted by Gompertz in 1820 and has since led to the
“search for a unified law of mortality”. Moreover the slope after age 45 appears to have remained relatively
unchanged. Mortality decreases across cohorts result in downward shifts of the curves–in old age these
declines appear to shift the lines in almost parallel fashion. What is remarkable about this feature is that
one might have hypothesized when infant mortality fell (infant mortality in France fell from roughly 17
percent in 1860 to about 8 percent in 1940), it left frailer individuals alive, and could have resulted in higher
mortality in older ages. But this is not what we observe, the curves do not cross–the mortality rate in old
age is lower for cohorts with lower infant mortality rates, as has been noted by Finch and Crimmins (2004).

Second, the greatest deviations (in logs or proportional terms) from the tick-mark shape occurs during
reproductive ages. For both men and women, there are visible “spikes” corresponding to war years, as
can be seen for cohorts born around 1920 who experienced WWII during ages 19-25. Even in the absence
of wars, for example for the cohorts born in 1860, there is a visible rise in mortality after age 15, which
demographers refer to as a “hump” (Preston et al. 2000). Two causes of death have been documented to
account for a large fraction of deaths for ages 15-45 in non-war times: maternal mortality and “external”
causes, which include traffic accidents, poisoning and violent deaths (including suicide and murder) .

Lastly for the most recent 1940 cohort, there is almost no humps and there are no visible spikes. This
cohort has not experienced a war. In most Western nations there has been substantial declines in violents
deaths in the last century (Pinker, 2011), consistent with a decrease in the bump for men. Also maternal
mortality disappeared after 1930, also possibly explaining the disappearance of the bump for women for
the most recent cohorts. In France maternal mortality between 1850 and 1890 is estimated to be around 5
per 1,000 births (Bardet et al. (1981)) and to have remained at that level until the 1920s, it fell rapidly after
the mid 1930s (Loudon 1992). And indeed for women born in 1940 (having children between 1960 and
1980) there is no apparent “excess mortality”, consistent with the almost complete elimination of maternal
mortality.3 The tick-shape is most clearly visible for the most recent cohort. This observation motivates our
basic model which seeks to describe “natural” mortality in the absence of “external” causes that depend on
choices such as whether to have children or events like war.

3 A parsimonious model of health and death

In this section we provide a characterization of health and mortality based on frailty, in the spirit of Vaupel
et al. (1979) (and similar to the idea of vitality in recent work by Li and Anderson, 2013). But here the distri-
bution of frailty is dynamic over the lifetime, similar to models of in-utero shocks (Bozzoli et al., 2009 and
Bruckner and Catalano, 2007). Health is treated like a stock, affected by investments and subject to depreci-
ation, as in models of human capital (Grossman 1972 and Cunha and Heckman 2007). This basic model can

3in 1970 maternal mortality was around 28 per 100,000 (Bouvier-Colle et al. 2008)
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Figure 1: Mortality rates in France, for cohorts born 1860-1940
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predict the evolution of mortality in the absence of external causes–we examine the role of external causes
later.

3.1 A model of “natural mortality”

Assume individuals are born with an initial health level H0. This initial health endowment differs across
individuals in the population and follows a normal distribution N(µH ,�2

H).4 Every period the environment
provides average resources denoted by I that can increase or decrease H . Individuals in the environment are
more or less lucky and experience an idiosincratic shock "t to their resources. For example in a stationary
environment I characterizes the mount of food that a given country produces, but a given person might
receive less if for instance rain was unusually low in their location. The variance of "t captures how unequal
the distribution of resources within the population is. These idiosyncractic shocks are assumed to be i.i.d.
and the are drawn from a normal distribution N(0,�2

") every period. Finally the health stock is subject
to depreciation every period–in other words there is a negative shock every period akin to a user cost,
reflecting cumulative death cell and organ damage. This depreciation increases more than linearly with
age, at rate �t↵. Together these forces determine the evolution of the health stock.

People die when their stock of health first crosses a threshold H , which is fixed throughout the lifetime
and identical for all individuals. Formally let Dt = I(Ht  H) denote the random variable equal to one
if the individual dies in period t, and define the mortality rate at time t as MRt = E(Dt) = P (Dt =

1|Dt�s = 0 8s < t). Therefore we have that the population’s health and mortality can be characterized by
the following dynamic system

H0 ⇠ N(µ0,�
2
0)

Ht = Ht�1 + I � �t↵ + "t

"t ⇠ N(0,�2
")

MRt = P (Ht < H|Ht�s > H, 8s < t� 1)

(1)

with � 2 (0,1),↵ 2 (0,1), and I 2 R.5

In this model health is a latent unobserved construct that determines observed mortality. Figure 18 il-
lustrate the dynamic relationship between population health and mortality rates implied by this model for
the first two periods (and Appendix X gives the mathematical expression for the corresponding mortality
rates). The initial distribution is normal. In the first period it moves right (ifI is positive and larger than
the aging term) and gets wider (because of "t). Then the individuals to the left of the threshold, die (these
individuals were either born frial or had large negative shocks). The mortality rate (the fraction of individ-
uals that die in the first period) is given by the area under the curve below the threshold. Individuals with
low initial health or large shocks die. In the second period this truncated distribution moves right again.
And the population receives a new shock, generating mortality again. Notice that in the absence of a shock
there would be no deaths in period 2 – or in any period thereafter until the depreciation term becomes large

4Birth weights and other traits measured at birth follow a normal distribution Wilcox and T RUSSELL (1983).
5We could impose some restrictions on these parameters. For example the share of individuals that survive to reproductive ages is

never been observed to be much below fifty percent–this would appear to be a requirement of species that do not disappear.
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enough to push the distribution below the threshold. This illustrates that stochastic nature of the process
is essential to generate mortality at every age, and it is one key feature that differentiates this model from
previous ones like the Grossman (1972) model. An implication is that the distribution of health at any age
(and therefore the mortality rate) is a function of the entire history of shocks and investments.

The second key feature of the model is the accelarating aging component, which eventually moves the
distribution closer and closer to the threshold, guaranteeing the eventual death of the entire population. The
continuous-time analogue of our model would be a Brownian motion with a nonlinear drift, where death
occurs at the first time this diffusion process hits a threshold set at zero. These kinds of models are used to
model companies’ default probability and to price securities in finance (eg Lando 2004). This literature has
established that except for the particular case of constant, linear, drift, these models do not admit a closed-
form solutions for the parameters. In our model the downward drift increases at an increasing rate with
age, similar to what was first proposed by Grossman, and consistent with biological models of senescence
(Armitage-Doll, 1954 ot Pompei Wilson, 2002) In addition we are also tracking the distribution of such
Brownian motions, rather than individual ones.

This model has 7 parameters. But notice that the expression for mortality is just the standard expression
for the Probit model, which requires a scale and location normalization: the threshold H and the standard
deviation of the initial distribution �2

H are not identified: at any age, we can substract H and divide by �2
H on

both sides of the expression determining the probability of dying and leave the mortality rate unchanged. So
without loss of generality we set H = 0 and �2

H = 1.6 Thus in its simplest form, this model characterizes the
biological evolution of health and mortality of a cohort by age using 5 (rescaled) parameters: one for initial
conditions (µ0), two govern the aging process (�,↵), and two characterize the effects of environment, in the
form of average investments (I) and the variance of these investments or shocks (�2

" ). We then intrepret µH

as the distance from the threshold of the initial distribution in standard deviations of the initial distribution.
All other parameters are also expressed in “standard deviation” units, except for ↵ which is “scale free”– it
does not depend on the initial distribution.

Although we do not observe health, we can sometimes observe disease and disability rates which are
also functions of health. The model has implications for the age profile of morbidity, where we define mor-
bidity as having a level of health that is above the dying threshold but below some other arbitrary threshold.
Conceptually this definition captures both temporary (acute) and permanent (chronic) conditions. The key
difference between morbidity and mortality is that mortality is an absobing state whereas morbidity is not.
If we denote Hd the morbidity threshold, then the morbidity rate at a give age is the number of individuals
that are alive whose health is below that threshold

DRt = Pr (0 < Ht  Hd)

3.2 The behavior of health and mortality over the lifetime

We now describe the behavior of this model and then go on to analyze the effect of changes in each of its
underlying parameters. Let ˆHt ⌘ E [Ht | Ht > 0] denote the average health in the living population with
age t and �Ht ⌘ V ar [Ht | Ht > 0] the variance of health among the living.

Proposition 1 Basic Properties of the model: see appendix for proofs
6More precisely we need to normalize 2 out of three parameters. We find it more intuitive to normalize the threshold rather thanthe

initial mean, but this choice is arbitrary.
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Figure 2: The evolution of the health distribution over lifetime
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@�Ĥt
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t � t3 .

Figure 2 illustrates (for a specific set of parameters, roughly matching the 1860 Belgium cohort mortality)
the evolution of the distribution of the health stock as cohorts age in this model. This distribution at age
1 is truncated at the threshold, it moves right and broadens until age 40. Then it starts moving left and
eventually becomes triangular at the threshold. At any given age after infancy and before old age, the
distribution of health is very close to a normal distribution despite truncation, because it is approximately
equal to a sum of normal distributions. This is consistent with the observation that health related stocks like
heights, which grown from birth until maturity are close to normally distributed (Limpert et al 2001).

Figure 3 shows that the model reproduces the age-profile of mortality well: (log) mortality starts high
and plummets to very low levels by adolescence. It remains low and variable until around age 40, and then
it starts rising linearly with age. The initially high infant mortality rate is mostly a result of many infants
born with low health endowment, though there are also unlucky babies with large negative shocks. In
childhood, mortality rates depend mostly on the the variance of the shock, and the size of the mean invest-
ment level which pulls the distribution away from the threshold. But eventually the depreciation process
becomes larger than the investment and an increasing number of individuals fall below the threshold.

The figure also shows the evolution of health and morbidity. Over the lifetime, health and mortality
are moving in opposite directions. Average population health increases and reaches a peak late in mid-
life. This pattern is consistent with the evolution of self-reported health by age for recent US (Deaton and
Paxson, 1998) and UK cohorts (Contoyannis et al. 2004). The variance of health increases and then falls,
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due to selective mortality. This behavior is similar to the behavior of consumption: cohort consumption
inequality increases with age, so long as shocks to consumption are not perfectly correlated across individ-
uals (Deaton and Paxson 1994, Deaton and Paxson, 1997). Finally morbidity is u-shaped, being high among
children, reaching low levels from ages 20 to 60, and increasing thereafter. Contemporary data also show
that hospitalization days (a rough proxy for morbidity) are indeed u-shaped.7

There have been several attempts in the demographic literature to generate a unified model of mortal-
ity. Our model differs in several important dimensions. Many models, like Gompertz’, only account for
mortality after a certain age (Li and Anderson, 2013). Therefore these models do not lend themselves to a
formal exploration of how early conditions affect mortality later in life. A very popular model proposed by
Heligman and Pollard (1980)uses 8 parameters to describe the probability of dying at a given age. More re-
cently Sharrow and Anderson (2016) propose a 6 parameter model and Palloni and Beltrán-Sánchez (2016).
However these models are difficult to interpret and it is not clear how to use them to investigate the long
term cumulative effect of insults.

4 The determinants of mortality

The five parameters in our basic model affect the shape of the mortality curve in different ways. Proposition
2 summarizes the main qualitative insights.

4.1 Basic comparative statics for mortality

Proposition 2: Comparative statics (see Appendix 2 for proofs)

1. Increasing the investment Ior the average health at birth µ0 unambigously decreases mortality at all
ages:8 @MRt

@I  0 , @MRt

@µ0
 0.

2. Investment and health at birth are complements: @2MRt

@I@µ0
 0.

3. Increasing any of the aging parameters, � or ↵, unambigously increases mortality at all ages: @MRt

@� �
0,@MRt

@↵ � 0.

4. Changes in �2
"and �2

H can increase or decrease the mortality rate at a given age.

5. On impact, an increase in �2
H before the middle age increases the mortality rate: @MRt

@�2
Ht

� 0 if �t↵  I .

6. Ultimately, an increase in �2
H generates selection and reduces mortality in the very old age: 9For some

t� , @MRt+s

@�2
Ht

< 0, 8s>t� .

We illustrate these effects graphically for a specific set of parameters, chosen to roughly describe the Belgian
1860 cohort. Figure 4 shows how changing each parameter by 50% changes the age-specific log mortality
rates. The figure plots the baseline log mortality rate and it compares it to the mortality rate of the pop-
ulation for which a single parameter has been changed. The appendix shows the gaps in both levels and
percentage terms directly.

7hospitalization rates by age for the US are available here https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2014_SHS_Table_P-
10.pdf

8Changing the threshold also affects mortality rates negatively throughout the lifetime.
9Typically, in our simulation, the crossover in mortality rates occurs between ages 60 and 80 depending on the magnitude of the

change.
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Figure 3: Age profile of population health and mortality
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Figure 4: Comparative statics for log mortality
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Lowering initial health results in markedly higher infant and adult mortality though the effects decline
with age (panel a).10 Lowering the average annual investment results in higher mortality at all ages (panel
b). But the effects are not monotonic in age. In levels the effects are u-shaped: they are large at birth,
decrease in middle age, and start increasing monotonically after middle age. But in percentage terms the
effects are hump-shaped, increasing until middle ages and declining thereafter (see appendix).

Increasing the variance of the random shocks has ambiguous effects results in a “cross over”. The
population with high variance has higher mortality at younger ages but lower mortality at older ages. This
occurs because when the variance is higher many more die initially. But in the population with greater
variance, many individuals are also the lucky recipients of greater positive shocks, and these individuals
will live longer as a result. A variance shock can be conceptualized as a “infectious disease shock with
immunity” – that is a shock that kills many but makes a few individuals hardier later in life.

Finally increasing the depreciation rate � results in higher level of mortality all throughout life, but the
effects are imperceptible for many years, and then rise rapidly with age.11

Figures 5 illustrate the effects of changing the parameters on the average health of the living. A lower
initial initial stock (panel a) lowers health at all ages, but the pattern is hump-shapped, with a large initial
decline initially, almost no impact for many years thereafter and larger impacts as individuals age (in levels
and percentage terms). Lower investments (panel b) also lower the average health at all ages. But the
effects is u-shaped: it increases from birth to old age, and then starts declining once mortality starts rising.
Increasing the variance of shocks (panel c) increases the health of the surviving population at all ages,
and the effects get bigger with age. Lastly increasing the depreciation rate (panel d) lowers health at an
increasing rate with age, except for old age.

In Utero shocks. The results in the this section can be used to interpret a large literature that has investi-
10Increasing the threshold throughout the lifetime has a similar effect.
11Changing ↵ has similar effects but we do not show them here. In our estimations we find that ↵ has remained unchanged.
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Figure 5: Comparative statics for health
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gated the effect of in utero shocks, such as famines, pandemics, wars, and stress (Almond and Currie, 2011
and Almond et al., 2017). Negative in utero shocks are equivalent to lower initial mean levels of health.
The model predicts that these shocks will result in markedly higher infant and adult mortality and lower
health throughout the lifetime. This is entirely consistent with the empirical evidence from this literature.
What our model implies that has not been noted before is that the age when the effects of the shocks are
measured will have a significant impact of the size of the estimated effect. For instance effects of the shock
on mortality will not be large in old age, but there will be large and growing effects on disability in old age.
Because these effects are present throughout the lifetime, cross-sectional estimates will necessarily under-
estimate the full effect of these shocks, which are best summarized by how they affect (health adjusted) life
expectancy.

Socio-economic status and mortality. A large literature documents large and persistent differences in
health and mortality by education, income and other permanent markers of socio-economic status such as
occupation and race (Cutler et al., 2012). If education and incomes are indicative of higher average resources
throughout the lifetime (I), then the model predicts that mortality rates gaps (or “gradients”) that are large
at birth, fall to zero among young adults and then grow with age. In logs (or percentage terms) the gaps
will be positive but fall after middle age. This results in log-mortality curves that are roughly parallel but
slowly converge at very old ages after age 45. This is consistent with findings from Chetty et al. (2016)
on the relationship between earnings at age 40 (a measure of permanent income) and mortality thereafter.
This prediction is also consistent with the literature that has documented that the effects of education on
mortality fall with age, in percentage terms (Hummer and Lariscy 2011).

The model also predicts that among the living the health gap between rich and poor will in fact rise
with age and then fall, following a hump-shape. These predictions are consistent with evidence in Case et
al. (2002) or Currie and Stabile (2003), who show that the gaps in self-reported health status between those
born in poor and rich families grow with age, and decline after 65.
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4.2 Adding accidents to the model

In our baseline model, mortality is purely driven by health and luck. However, many deaths, like accidents
and homocides, strike regardless of the health status of an individual. To account for these “extrinsic”
causes of death in the simplest possible way, we extend our baseline model with an “accident shock”.

Suppose that a random fraction  2 [0, 1] of the population is killed by an accident in every period.
This accident rate is assumed to be constant over the lifetime and independent of health. Each individual
experiences i.i.d. shock ⌫t drawn uniformly between 0 and 1 every period. Then model becomes:

H0 ⇠ N(µH ,�2
H)

Ht = 1{⌫t>} · [Ht�1 + I � �t↵ + "t]

"t ⇠ N(0,�2
") , ⌫t ⇠ U [0, 1]

MRt = P (Ht < H|Ht�s > H, 8s < t� 1)

(2)

Accidents increase mortality rates at all ages, but more so during reproductive ages (Appendix Figure
X). Around reproductive ages, when biological causes of death are dampened, accidents become the dom-
inant source of death (in percentage terms). This is consistent with empirical evidence that external causes
of death (unintentional injury, suicide and homicide) account for a larger share of mortality during these
ages today.12 Around birth and in old age, when the average health stock is low, accidents account for a
diminishing fraction of deaths, because many individuals die due to natural causes anyway (competing
risks). The behavior of the model with the addition of accident-deaths is unaffected. This extended model
shares all the features shown in Proposition 1. Intutively this random accident rate places a floor in the level
of mortality that is constant by age: if all health related deaths were eliminated, then we would observe this
accident rate at every age and its level would uniquely determine the longevity of the population (1/).

5 Model estimation and results

5.1 Simulated methods of moments

To estimate the parameters for a given cohort we use the simulated method of moments13. We simulate
mortaliy rates for a given set of parameters and compare the simulated rates to the observed rates. We then
iterate until we find the parameters that can best predict the data, that is those that result in the smallest pre-
diction error. More precisely we chose the parameters by minimizing the distance between actual survival
and predicted survival at each age:

min

✓
kSRt � SRt (✓)k

where ✓ = {↵, �, I, µ0,�✏,}.
Ideally the objective function that we choose to target for estimation would not affect the estimated

parameters. This is not the case however. If we minimize the error in the level of mortality, we give equal
12https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_age_group_2014_1050w760h.gif
13Because we observe only the mortality – and not the distribution of health – for each cohort every year, we cannot use simulated

maximum likelihood methods. There is no empirical counterpart to the distribution of Ht, only the fraction that is below the threshold.
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Figure 6: 1945 French women’s mortality profile
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Note: Estimation using MATLAB’s particleswarm routine. Life expectancy until age 62 is 60.2 in the data and 60.1 in our simulation.

weight to errors at all ages and penalize large deviations in levels (at very young and very old ages). If we
minimize the errors in logs, then we minimize deviations in percentage terms–this effectively gives more
weight to errors that are large relative to baseline, so in effect it weights reproductive ages more heavily.
Ultimately the choice matters. Not only for estimation (different objective functions weight mortality at
different ages differently), but because this choice implicitly reflects some welfare criteria.

We target the survival curve, which is equivalent to matching life expectancy. Life expectancy weights
early ages very heavily because early deaths result in large losses in terms of years lived, and conversely
it weights mortality in old ages less. This is a commonly used criteria in epidemiology and the results
are easily interpretable: we can summarize the fit of the model based on how far the predictions are from
observed life expectancy, and compare our fit to alternative models using this metric.

Although standard errors can be bootstrapped, we do not report them here. Because each curve is traced
out from complete population data the standard errors are effectively negligible, as as been noted elsewhere
(?). Other estimation details are in the Appendix. In this non-linear model mortality rates at all ages are a
function of all the parameters, and conversely the parameters are functions of the mortality rates at all ages.
But the comparative static results give intuition about which mortality rates identify the parameters of the
model.

5.2 Results for a baseline cohort

We first apply our estimation procedure to a single cohort with the smallest excess mortality in reproductive
ages: French women born in 1945. The results in Figure 6, show that we can predict the evolution of
mortality rates over the lifetime well, particularly for women. The parameters are shown in Appendix ??.
Our estimates result in a life expectancy between 0 and age 62 of of 60.1–the actual number if 60.2. So the
model provides a very good fit.

However visual inspection suggests that there is remaining error in estimation. There are at least three
sources of error. First we estimate a model that assumes a stationnary environment with constant annual
resources. But if health resources are related to GDP, then resources are growing over the lifetime along
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Figure 7: Survival curve for apes
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Source: Kohler et al. for the life table of the Apes group.

with GDP. Indeed if we allow I to grow at a fix rate (of 2%) then our fit improves. However since we do
not know how to map health resources to GDP (we consider this below) we consider these only suggestive.
Second if health expenditures are “optimally allocated” over the lifetime then our assumption of a constant
investment is also incorrect–we also address this later on. Lastly, the log curve reveals that there is still
visible excess mortality during reproductive ages. We study this next.

5.3 Estimates for primates.

Additionally, our natural baseline model is not unique to humans and so far simply describes biological
disease and aging processes. The literature on biological aging suggests that primates and human have
similar mortality profiles, particularly in old age. In this section we use data for primate populations to
estimate our model. The data is taken from Kohler et al. (2006) who draw on the International Species
Information System, a network of North American and European zoos. Kohler et al report period tables
for several of phylogenic groups in captivity.14 The Ape group comprises four species: Gorilla, Orangutan,
Siamang, and White-cheeked gibbon. The survival rates for apes are computes for a population of 2,069
animals in total.

While our estimation procedure for humans relied on the cohort mortality rates at every age, Kohler
et al report the survival rates only for ages 1, 2, 5, 10, 15, 20, and 25. We use just these 7 moments in our
estimation.15 Figure shows that the fit is remarkably good, though this is not surprising given that we have
7 moments and 5 parameters. But the estimated parameters in Table 1 are of interest. Collectively apes have
much lower initial mean health, and substantially larger variance in annual resources. Most interestingly,
↵, the only scale free parameter, is very similar across humans and apes.

14Unfortunately these are not cohort tables, but arguably the gap between cohort and period tables is much less problematic than for
humans, particularly for animals in captivity. There are some cohort data for apes that have been recently collected but unfortunately
these do not include data on infant mortality.

15Kohler et al. also report the 1 week survival rate, for which we do not have a direct counterpart in our discrete time annual model.
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Figure 8: Effect of exogenous temporary shocks at age 20 on log mortality
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Note: Simulations for two populations of 500,000 individuals each. The shock lasts ten years. The baseline parameters are the same as
in Figure 3.

6 Understanding shocks: Accounting for mortality during reproduc-
tive ages

Our basic model does not account for the large variation in mortality rates observed during reproductive
ages. Most cohorts display what looks like a smooth “hump” in reproductive ages. There are also large
“spikes” during war years, which are also most visible during the reproductive years. Also there are dif-
ferences between men and women. The spikes are larger for men and correspond to war years. And the
bumps have different shapes, they are appear to last longer for women, and be more concentrated in the
early reproductive years for men. If we interpret these as “exogenous shocks” then the model should be
able to rationalize these as changes in the underlying parameters. In this section we investigate this.

6.1 Simulations

To explore whether changes in parameters can generate these patterns, we simulate 4 types of temporary
shocks: an increase in the variance, a decrease in the annual investment level, an increase in the threshold
and finally an increase in the accident rate.16 We start with a baseline model without accidents. Figure 8
illustrates the effects of a shock starting at age 20 and lasting 10 years.

Each type of shock leaves a unique imprint on the mortality profile of the affected cohort. Temporary
decreases in investment levels generate spikes in mortality, similar to those observed for wars. When in-
vestment falls, mortality rates start to rise, they peak the last year of the shock and they fall back thereafter.
But mortality rates remain elevated throughout the lifetime (relative to the counterfactual of no shock) thus
generating “scaring”. By contrast, temporary increases in accidents temporarily increase mortality but have

16We do not simulate an increase in the aging parameters because they would not result in a large immediate spike in mortalit–their
effects would be most visible at older ages (results available upon request).
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no permanent effects: mortality goes back to its initial path immediately after the shock ends.
Increases in the variance result in a sustained increase in mortality during the shock period. But after

the shock ends, mortality falls below couterfactual levels–this is the result of having individuals with large
positive shocks. Finally, an increase in the threshold appears to generate “harvesting”– earlier deaths for
the frail. It results in very high mortality in the first year of the shock. But it starts dropping before the shock
ends. Once the shock ends, it dips below counterfactual mortality and then rises back up and converges
to its counterfactual level. This is because all frail individuals are killed when the threshold first increases.
And when the threshold is restored to its original (lower) level mortality falls substantially because there
are very few individuals close to the threshold.

6.2 The effects of WWII

To test the predictions of the model we analyze the effects of wars. Wars correspond to the largest temporary
change in mortality rates over time across cohorts for individuals aged 20.17 We focus on WWII because
individuals who were young at the onset of WWI also experienced large mortality increases in mortality in
their 40s and 50s during WWII. Also WWII is the longest conflict in our sample lasting six years. The main
disadvantage of looking at WWII is that there is very little data on mortality by age during this period–in
fact we have information for 1940, 41, 42 and 44 but not for 1939, 43, 45 and 46. to estimate the model we
use the same procedure we employed to estimate parameters for apes.

WWII is estimated to have killed around 600,000 individuals in France, about 1.4% of the 1939 popula-
tion.We hypothesize that this war can be best understood as a change in the average level of (health-related)
resources or inputs, I . GDP, food supplies and sanitary conditions declined substantially during the war.18

Infant mortality rates, which are very sensitive to these inputs, rose substantially, as can be seen in Appendix
Figure 18.

Appendix Figure 20 shows the mortality profiles of French cohorts born in 1920 who were 19 when the
war started. We also show the profiles for Sweden–the only country in the sample that did not participate
in the war. Compared to Sweden mortality rates in France are substantially more elevated during the
war years, and they remain elevated for many years after the war, similar to the simulated effect of an
investment decline. However these comparisons are imperfect because Swedish mortality rates before the
war are different than the French’s. We assess the effect of the war using our model instead.

We estimate the structural parameters of the 1920 cohort explicitely allowing for a shock lasting six
years. We estimate the model four times, corresponding to the four type of shocks simulated above. If the
war is like a decrease in the annual investment, then this model should provide the best fit for the data.
This is precisely what we find (see Appendix Table 2). In 9 we show the results for the best fitting model
along with the “counterfactual” mortality–what we would have observed in the absence of the war. Using
the counterfactual mortality curve we can estimate the “true” life expectancy-cost of the war. We find that
the war lowered life expectancy by approximately 5.5 years for the 1920 cohort.

17Appendix Figure X shows the evolution of mortality rates in France for age 0, 20, and 40.
18GDP declined substantially during the war–this is shown in appendix Figure X. Moreover Occhino et al. (2006)estimate that

between 20 to 55% of GDP was appropriated by Germans every year of the occupation. There was also a substantial decrease in
the availability of food–food rationing began in 1940. There was also a deterioration in sanitary conditions in France. For example
diphteria cases among school-aged children rose per 100,000 increased from 32.3 (in 1940) to 110 in 1943 (Stuart 1945).
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Figure 9: WW2 as an investment shock. French Men born in 1920.
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6.3 Accounting for maternal mortality and reproductive age mortality in non-war times

In peaceful times, there is still visible excess mortality during reproductive ages that manifests itself in a
bump. We now investigate this.

For women, maternal mortality was one of the largest causes of death during reproductive ages in the
past, and it was high in France in 1860. Maternal mortality risk is only incurred with childbirth. Appendix
Figure 22 shows that in fact the age profile of fertility is strongly correlated with the extent of excess mor-
tality during reproductive ages. We have no data on the age at maturity or for fertility rates by age for the
oldest cohorts in the data. So instead we consider a model that changes the parameters arbitrarily at age 13.
Although this is couterfactual, it provides a natural starting point.19

It is unclear how to best conceptualize maternal mortality risk in terms of the parameters of the model.
Loudon (2000) argues that historically poor hygiene and obstetric practices were mostly responsible for
infections (spesis) and hemorrage–the main reasons why women died during childbirth. In countries where
poor obstetric practices were widespread, maternal mortality was large and it killed both rich/healthy and
poor/unhealthy women. Based on this evidence we hypothesize that maternal mortality can be thought
of as an increase in the accident rate and should be largest during prime reproductive ages. But again we
estimate four models (increase in threshold, increase in accident rate, decrease in annual resources, and
increase in variance) to see which one matches the data best.

Appendix Table 3 shows the results from this exercise. It shows that although all models improve the fit,
accidents improve the fit the most. Figure 10 illustrates the results for an increase in accidents along with
counterfactual mortality. Maternal mortality is estimated to have lowered female life expectancy by around
5.7 years for the 1870 cohort. If we allow for the onset of maturity to be normally distributed then out model
results in further improvements–this can be seen in Appendix Figure X for the 1870 cohort for whom we
estimate the onset of maturity to be 14.5 years of age on average.

19We investigate the simplest case here. We can in fact do better by allowing the onset of maturity to follow a normal distribution in
the population. But this would add two more parameters to all our estimations.
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Figure 10: Accounting for maternal mortality and excess mortality among women
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7 Evolution of parameters over time

We now estimate the parameters for successive cohorts born from 1860 to 1940, accounting for both wars
and reproductive age mortality. Appendix Table 4 reports estimates for selected cohorts, and summary
statistics across cohorts. We succesfully replicate life expectancy increases over time, and level differences
between men and women.

Figure 7 show the evolution of the parameters across birth cohorts when we estimate the parameters
without accounting for reproductive age mortality. It shows some remarkable patterns. Initial health only
starts rising around the turn of the century. This parameter is hard to interpret as purely driven by initial
health as it could capture improvements in utero as well as shocks that affect only those under age 1. But the
results are entirely consistent with the intuition that changes in initial conditions are mostly pinned down
by infant mortality: Appendix Figure 18 in the appendix shows that infant mortality in France started
dropping sharply around the turn of the century, and demographic work has attributed these declines to
improvements in sanitation and water quality. . The correlation between estimated initial levels and infant
mortality rates is high.

The level of annual investment I increases throughout the period showing that lifetime resources were
increasing for all cohorts since 1860, at a rather constant rate. This is consistent with increasing levels fo
GDP per capita throughout and the estimated correlation between I and GDP is also high. We estimate that
the variance of annual shocks has increased but the baseline accident rate has fallen.

We estimate two parameters for aging, one which is a function of the scale of the intial distribution (�)
and one which is not (↵). � increases a little bit following mean investment increases. On the other hand
the parameter governing the acceleration of depreciation with age is constant throughout, consistent with
it capturing a biological parameter. It is conforting that this parameter does not change despite changes
in initial conditions and investments–this parameter is “scale free” (unaffected by our scale and location
normalization) and thus should not vary with the changes in initial health of annual resources.
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Figure 11: Evolution of estimated parameters, France 1860-1940 female cohorts
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Figure (TBD shows the evoluation of parameters if we account for wars and humps in estimation (the
parameters are shown in Appendix Table 4). Accounting for the shocks significantly affects the parameter
estimates–most significantly we find that the estimated annual investment is much larger once shocks are
accounted for. But all parameters are affected. This underscores the importance of fully accounting for
the history of shocks. However the main qualitative conclusions about the trends in these parameters are
unaffected.

Men and women (TBD).
Secular trends in morbidity and mortality. The historical literature analyzing secular trends in mor-

bidity and mortality has found that morbidity and mortality have fallen in tandem (Costa, 2005). This is
consistent with our finding that investments have increased, because greater investments lead to both im-
proved health and lower mortality. This is indeed the interpretation of the historical evidence by Fogel
(1994), who documents that the improved availability of food led to increases in heights, and to declines in
morbidity and mortality.

8 Implications for optimal investment profiles

For now we have assumed a constant investment profile over the lifetime. But would that be an optimal
allocation of resources over the lifetime? In this section we show that a social planner concerned with
maximizing the life-expectancy of a population would choose an investment profile that generates patterns
of mortality with striking similar shapes of the ones studied in the previous sections. We then go on to
re-estimate our parameters alowing for investment to be chosen optimally to assess how much our basic
parameters are affected, and evaluate the life expectancy gains resulting from optimization.

First we develop notation to describe the problem that would face benevolent social planner. The sur-
vival function tracks the probability of surviving over time. It is naturally expressed as a function of the cdf
of health in the population. The probability of surviving until the end of period t is St = 1 � Ft (0) . Life
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expectancy at birth is conveniently related to the survival function

LE =

1
X

t=1

St

Several observations are in order. First, in practice, this is a finite sum.Second, contrast this concept with
the “period” life expectancy usually computed. If the distribution where stationary over time, then the two
concepts would coincide. But as the data shows and our estimates corroborate, the mortality rates are not
stationary.

Now suppose that instead of keeping I constant that the social planner can choose an investment path
I = {It} that is age-dependent. Also assume that the budget (B) over the lifetime is fixed but that the
planner can move resources over time periods costlessly, as if a perfect annuity were available.20 The opti-
mization problem takes the form

max

I
LE (I) = max

{It}

1
X

t=1

St (I)

s.t.

1
X

t=1

It·St (I)  B

The first order conditions for this maximization are given by:

1
X

s=t

@Ss (I)
@It

� �

"

St (I) + It
@St (I)
@It

+

1
X

s>t

Is
@Ss (I)
@It

#

= 0

where is the Lagrange multiplier and it represents the shadow cost for the social planner of an additional
year of life expectancy.

The FOC imply that on the optimal investment path, the marginal effect of increasing investment at a
given age must be equalized across all ages. Increases in life expectancy (the first term on the left-hand),
must be balanced by the losses incurred by having to tighten the budget at subsequent period to keep the
budget balanced (the term in brackets).

All the terms in the bracket are positive.

8.1 Timing of optimal investments, polynoms

A full nonparametric approach for the optimal investment profile over the lifetime would require optimiz-
ing over a hundred or so parameters (one for each age) for each cohort. In the absence of a closed-form
solution, this is impractical. It is also not feasible since we have 90 data points: if we allow for a unique
investment level at every age we are under-identified (we would have 90 data points and 95 parameters to
estiamte). Instead, we follow a lower-dimensional sieves estimation method.

We start with by approximating the investment profile over age with a second order polynomial. We
impose the constraint that the total spending per cohort is the same as in the constant investment case.
Given a budget B we run a grid search to find the quadratic investment profile that maximizes the life
expectancy of the cohort.

The results of this exercise are in Figure 12. We find that a U-shape investment profile is optimal to
maximize the average life-expectancy in the population (panel a). Notice that although our original model

20This is a standard assumption in this type of models, for example see Murphy and Topel (2006).
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Figure 12: Optimal Investment Levels by Age

sets I to be constant in levels, in percentage terms, relative to the baseline level of health at a given age,
I was already U-shaped. What we find is that the optimal investment is even more U-shaped – that is, it
transfers additional resources to the young and the old, away from the middle-aged individuals.

Panel b shows the mortality curve before and after optimization–it has the same basic shape we have
observe. But there are gains from optimization: these are shown in panels c and d (levels and percent
changes). When we move from a fixed to an optimal profile then we decrease child and elderly mortality.
Interestingly health care expenditures by age in most countries actually follow this age-profile.

These results show that optimal health investments are largest when health is at its lowest, that is at very
young and very old ages. This is consistent with empirical findings Wagstaff (1986).

8.2 Other Properties of investments

8.2.1 Dynamic complementarities

Each investment profile, I = {It} , generates a sequence of distributions of health, FHt
(I), and its associated

mortality rates, MRt (I) . How are investment decisions at different ages related? We show in the following
proposition that investment in health are dynamic complements.

Proposition 4 Optimal investments in health are dynamic complements throughout lifetime. 8t1, t2 t1 <

t2,
@2MRt2 (I)
@It1@It2

 0

The complementarity arise through the health accumulation process. A higher investment at time t

pushes the distribution of health up moving more individuals away from the threshold. Additional invest-
ments make it more unlikely that negative shocks will push individuals below the threshold.
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8.2.2 Compensation

We can now study optimal compensation: if a cohort suffers from an unlucky shock and the planner wishes
to compensate them so that survivors can enjoy the same mortality rates they would have in the absence of
the shock, how can the planner achieve this, and how does this vary with the level and timing of the shock?
Our results imply that negative shocks need to be more than compensated for, because of complementarity.
In other words a decrease in investments needs to be followed by an increase investment level that is greater
than than the loss to give the survivors the mortality profile they would have experienced in the absence of
a shock.

• Currie versus Chetty.

8.2.3 Extension 1: optimization when budgets depend on health.

We have solved the optimization problem under the (strong) assumption that resources are not a function
of population health. But if food and other resources are produced rather than taken from the environment,
health is likely to impact resources by affecting the work capacity of the population. Indeed nutrition levels
and disease rates have been shown to affect productivity and wages (Thomas et al., 2004). They also affect
inputs into wages such as cognition and education (Field et al., 2009). Many empirical studies report a
strong correlation between income and health (Cutler et al., 2012). While our baseline model embeds the
effect of resources of health, a causal link going in the other direction is also at play: people who get sick
suffer a drop in income (Smith, 1999).

The simplest way to incorporate this channel in our setting is to assume that people whose health lower
than some disability or disease level, hD , are unable to participate in production and thus generate zero
income while people whose health is high enough generate income w .

max

I
LE (I) = max

{It}

1
X

t=1

St (I)

s.t.
1
X

t=1

It·St (I)  B =

1
X

t=1

w [1� FHt
(hd; I)] ·St (I)

Again here we assume either an annuity market, or some pooling across cohorts in a stationary envi-
ronment such that it is the cohort budget that matters, not the the within-cohort, per-period one. The first
order condition is:

1
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@It

+ �
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or

1
X
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w
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1
X
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#

8t > 1

First notice that @FHs (hd;I)
@It

< 0 for all t. (cf Proposition 1) and @Ss(I)
@It

> 0 .
The resulting optimal investments by age, and associated mortality profiles are shown in Figure X. TBD.
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8.2.4 Extension 2: optimizations when inputs into health are required.

A second important simplification in our analysis so far is that we have assumed that it is possible to directly
manipulate or choose I . But I is measured in this model in health units. Individuals cannot in fact directly
chose levels of I . Instead, like in the Grossman model, they chose inputs into health: they decide how much
food exercise medicine alcohol to consume, based on how much utility they derive from these items directly
and on how these affect their health.

Suppose that spending C(h) unit of money delivers h units of health. Then the planner’s problem can
be refomulated as follows:

maxI LE (I) = maxIt

1
X

t=1

St (I)

s.t.

1
X

t=1

R1
0 C (It(h)) dFHt

(h; I)  B

Here we must assume that the production function is concace, otherwise individuals could buy their
immortality. The resulting investment profile is not much affected so long as this concavity is the same for
every age. However this model is still too simple: we are only allwoing one input into health. But since we
have no data to estimate this model for the cohorts we consider we leave this to future research.

9 Applications

Recent increases in white mortality in the US. Case and Deaton (2015) documented that in the US mortality
rates among whites ages 40 and above have started to rise, particularly among those with low education.
Case and Deaton (2017) further show that the age profile of mortality and morbidity have become steeper
with each successive birth cohort born after 1950. They investigate possible reasons and conclude that “The
data are consistent with long-run processes influencing outcomes, rather than contemporaneous shocks
affecting health.” They propose this health decline is caused by one (or two) latent negative factor that
affect all cohort member when they enter the labor market and stays with them for the rest of their lives.

To investigate whether our model can replicate these findings we simulate the effects of permenent
changes in the parameters that occur at age 20. Figure 13 show the results for mortality and morbidity.
Lower annual resources or larger depreciation fit the facts: they result in steeper age profiles. Higher ac-
cident rates, higher variance and higher threshold (not shown) do not. Case and Deaton argue that “The
data are consistent with long-run processes influencing outcomes, rather than contemporaneous shocks af-
fecting health”. Our model is entirely consistent with their conclusions, as there is no temporary change,
whether at age 20 or 40, that can produce what Case and Deaton observe. An just like them we find that
there are two unobserved underlying factors that can possibly explain the patterns: lower annual resources
and higher depreciation. The model is explicit about why lower resources lead to poor health and higher
mortality. What might cause higher deterioration rates? Several hypothesis are available in the literature,
the two most prominent ones concern the effect of low rank and its effects on the immune system (Sapol-
sky, 2004) and another is the weathering hypothesis that suggests that continuous exposire to hazardous
environments results in accelerated aging (Geronimus et al., 2006).

Income and GDP puzzle. Preston first showed that life expectancy rises with GDP, albeit at a declining
rate among the richest countries. Yet many studies have demonstrated that changes in GDP are not strongly
predictive of changes in life expectancy, and moreover in the short run, recessions are linked to lower (not
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Figure 13: Permanent changes at age 20
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higher) mortality (Ruhm 2000).21 Our model can be used to think about why short and long term effects of
income differ. We provide two possible resolutions of this puzzle.

The first explanation is suggested by the simulations above. Increases in the variance of resources in-
crease mortality in the short term but decreases it in the long term. If recessions lower both the level of
resources (I) and the variance of its distribution (�e) then the model can generate the pattern we observe. If
the decline in income is not too large relative to the decline in the variance, then in the short term mortality
will fall. In the long term mortality will rise however. This is due to 3 effects. First there is scaring caused
by short term decline in resources (as with the war case). The second is that variance changes generate
selection effects: fewer frailer individuals die in the short run. Lastly lower variance also generates fewer
lucky recipients of large positive shocks which also causes mortality to rise in the long term.

A second possible resolution of the puzzle comes from thinking more carefully about the production
of health. We treat I as a constant–it represents annual health investments. But as noted in Section X,
individuals cannot directly buy I , it needs to be produced with inputs like food and exercise. Cutler et
al. 2016 argue that recessions increase both good and bad inputs into health. In bad economic times food
consumption falls but alcohol consumption falls too, and so does pollution. The net short term impact of
these changes in inputs on health is ambiguous. And their long term impacts on I is also ambiguous and
can differ in sign–this depends a great deal on whether the changes in inputs are temporary or permanent.
Cutler et al. 2016 use the model provided here to provide mathematical derivation of these results in their
appendix.

Period age and cohort effects. Our model places parametric restrictions on the evolution of health and
mortality by age. A parametric model of health and mortality by age has many advantages. A long literature
in demography and economics has struggled to separately identify age, period and cohort effects, which are
not non-parametrically identified. Because age effects are parametric here, cohort and period effects can be
separately and non-parametrically identified. This is in fact illustrated here: we provide separate estimates
by cohort, and we also estimate period effects like wars, separately for each cohort, and at different ages.

Epidemiologists and economists alike often use period tables to study mortality and make predictions
about future life expectancy. The data suggests however that the conclusions drawn from cross-sectional
period tables can be quite misleading. Figure X below shows mortality rates for females in France born
in 1945 or alive in 1945. As can be seen the shape of the profile is very different. Indeed if we estimate
our model using the period tables instead of the cohort table then we obtain very different parameters, as
shown in Table X.

The persistance of health and other implications for individual panel data analysis. This model has
some attractive features relative to the standard and widely used Grossman model. We do not assume a
fixed horizon–the age at death is naturally determined by health and health investments.

It also has implications for analysis using individual panel (longitudinal) data which track individual
income, health and mortality over time. Our model predicts that changes in resources and changes in
health will be related but only weakly, aprticularly when health is measured in discrete units. But measures
of permanent resources will be strongly predictive of mortality. (TBD).

21For a longer discussion of this evidence see Cutler et al. 2006
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Figure 14: Cohort and period mortality rates for 1945
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Note: the figure shows the mortality rates of the 1945 birth cohort (from cohort tables) and of individuals
alove in 1945 (period tables).

10 Conclusion

This paper proposes a simple model of the evolution of health and mortality over the life course. This model
is inspired by the basic observation that the age-profile of mortality is remarkably constant over time and
cohorts. If health leads to mortality then we can learn about the underlying evolution of health by observing
mortality rates. The basic model has five parameters and can be easily simulated. It can approximate quite
well the mortality profile of cohorts born 1860 to 1940.

We use the model to study the short and long term effect of shocks occuring at different points in the
lifetime. And to study the cumulative effect of permanent circumstances over the life course. This model
can be used to investigate many interesting questions that we have not considered. For example if can
be used to study correlations in health across generations in an over-lapping generations setting. It can
also be used to think about the age profile of mortality among the oldest old. Its implications for wages,
consumption and health care expenditures can be improved and taken to data for more recent cohorts.

This paper has some important limitations. First and foremost health is treated as an unobserved la-
tent variable–we only demonstrate that our model of health delivers a mortality age-profile that is consis-
tent with observed cohort mortality. Secondly there is a scale and location normalization that cannot be
avoided–there are 2 parameters of the model that cannot be identified. This makes it is difficult to inter-
preting parameters across cohorts and countries: increases in initial health really could come from lower
threshold or changes in standard deviation. Lastly our model does not provide closed form solutions and
must be estimated using numerical methods. These methods are very sensitive to initial conditions and
methodology.
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Figure 17: Mortality rates across Europe for 1860 and 1940 cohorts
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Figure 18: Health and mortality in the first two years of life
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Figure 19: Age-Specific Fertility Rates, France 1910-1940 cohorts
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Figure 20: Trends in Mortality rates by age for France
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Figure 21: Comparative statics for mortality: level and percentage gaps
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Note: Simulated data for two population of 500,000 individuals each. The figures show the effect of changes relative to the baseline
model, which is simulated using the same parameters we used for Figure 3.

Figure 22: Comparative statics for health: level and percentage gaps
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Note: Simulated data for a population of 500,000 individuals. The figures show the effect of changes relative to the baseline model,
which is simulated using the same parameters we used for Figure 3.
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Figure 23: Effect of exogenous temporary shocks at age 20: level and percentage gaos

0

.002

.004

.006

.008

G
ap

 in
 m

or
ta

lit
y

0 20 40 60 80 100

0

.5

1

1.5

%
 g

ap
 in

 m
or

ta
lit

y

0 20 40 60 80 100

50% Investment decline

-.002

0

.002

.004

.006

G
ap

 in
 m

or
ta

lit
y

0 20 40 60 80 100

0

.5

1

1.5

%
 g

ap
 in

 m
or

ta
lit

y

0 20 40 60 80 100

50% Accident increase

-.015

-.01

-.005

0

.005

G
ap

 in
 m

or
ta

lit
y

0 20 40 60 80 100

0

.5

1

1.5

%
 g

ap
 in

 m
or

ta
lit

y

0 20 40 60 80 100

50% Variance increase

-.005

0

.005

.01

.015

G
ap

 in
 m

or
ta

lit
y

0 20 40 60 80 100
-1

0

1

2

3

%
 g

ap
 in

 m
or

ta
lit

y

0 20 40 60 80 100

50% Threshold increase

Note: Simulations for two populations of 500,000 individuals each. The shock lasts ten years. The baseline parameters are the same as
in Figure 2.

Figure 24: Evolution of GDP
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Figure 25: Effect WWII on mortality for 1920 cohort
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Figure 26: Effect of WWI and WWII on 1895 cohort
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Appendix A2: Proofs omitted in the text

Mortality rates in periods 1 and 2

In the first period the (infant) mortality rate MR1 is given by

MR1 = P (H1  H) = P (H0 + I(Y1, B1)� � + "1  H)

= P ("1  '1) = F ('1)

where '1 = H�I(Y1, B1)+1�H0 captures the threshold for dying in period 1 in terms of the random shock.
Investments lower this threshold (lower mortality) and depreciation increases it (increases mortality).

Consider now the probability of dying at age t = 2. This is given by the probability that the stock falls
below H at age 2, conditional on having survived to age 2, which can be expressed as:

MR2 = E(D2 = 1|D1 = 0) = P (H2 < H|H1 > H)

=

P (H2 < H,H1 > H)

P (H1 > H|g1, g2)
=

P ("2 < '2 � "1, "1 > '1)

1� F ('1)

=

K('2,'1)

1� F ('1)
(3)

where '2 = H � I(Y1, B1) � I(Y2, B2) + 1 + 2

↵ �H0 captures the threshold for dying in period 2, and
K('2,'1) =

R1
"1='1

R '2�"1
"2=�1 f("1)f("2)d"1d"2. K('2,'1) is the density right above the old threshold and

below the new threshold, that is the fraction of survivors who dies as a result of a new small shock. It is

increasing in the current threshold
@K

@'2
> 0 and decreasing in the past threshold

@K

@'1
< 0. The denominator

is the fraction of survivors, and it is a negative function of the previous thresholds (because F 0
('1) > 0).

Proof for Proposition 1 basic features of the model (preliminary)

1) Everyone dies
Consider the process {H⇤

t }
1
t=1, defined by H⇤

0 = H0 ⇠ N (µ0,�0) and the recurrence relation:

H⇤
t = H⇤

t�1 + I � � · t↵ + ✏t , ✏t ⇠ N (0,�✏)

Notice that for t > 1 , we can reformulate the mortality process in our basic model as:

Ht =

8

<

:

H⇤
t if H⇤

t > 0 and Ht�1 > 0

0 otherwise

Therefore 0  P (Ht > z)  P (H⇤
t > z) for any z 2 R.

Now for any t � 2 H⇤
t is normally distributed with mean

µH⇤
t
= I · t� �

t
X

k=1

k↵
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and standard deviation
�H⇤

t
=

q

�2
0 + t·�2

✏

As t ! 1 , we have µH⇤
t
⇠ I · t� � · t↵+1

↵+1 and �H⇤
t
⇠

p
t · �✏.

Therefore if ↵ > 0,
µH⇤

t

�H⇤
t

! �1 as t ! 1.

Finally, P (H⇤
t > z) = 1� �(

�µH⇤
t

�H⇤
t

) ! 0, where � is the cdf of the standard normal distribution.
2) U-shaped mortality rates
MRt =

FHt (0)�FHt�1 (0)

1�FHt�1 (0)

first, as long as �✏ small enough, then MR1 > MR2

then again we need �,↵ to be small enough relative to �✏ so that the aging is not too strong, otherwise
MR increases immediately at age 2

3) Average health has inverted Ushape
The average health of a cohort at age t is given by

E [Ht |Ht > 0 ] = E [Ht�1 + I � �t↵ + "t |Ht > 0 ]

= I � �t↵ + E [Ht�1 |Ht > 0 ]

= I � �t↵ + E [E [Ht�1 |Ht�1 > 0 ] |Ht > 0 ]

by the law of iterated expectations.
Hence

E [Ht |Ht > 0 ]� E [Ht�1 |Ht�1 > 0 ] = I � �t↵

+ E [E [Ht�1 |Ht�1 > 0 ] |Ht > 0 ]

� E [Ht�1 |Ht�1 > 0 ]

The second term is always positive because if we know that the individual will survive the next period
as well, because the shock are iid, we can infer that her health today is above average. Suppose that we can
bound

0 E [E [Ht�1 |Ht�1 > 0 ] |Ht > 0 ]� E [Ht�1 |Ht�1 > 0 ]  c+ o(t↵)

then the result follows (except in the middle region where I � �t↵ is close to c . To do so, by definition,

E [Ht�1 |Ht�1 > 0 ] =

Z 1

0
xfHt�1 (x) dx

Now,

P (Ht�1  x | Ht > 0) = P (Ht�1  x | Ht > 0, Ht�1 > 0)

=

P (Ht�1x,Ht>0|Ht�1>0)
P (Ht>0|Ht�1>0)

=

1�FHt�1 (0)

1�FHt (0)

R x

0 fHt�1 (u) [1� � (�t↵ � I � u)] du

hence
E [Ht�1 |Ht > 0 ] =

Z 1

0
xfHt�1 (x)

⇢

1� FHt�1 (0)

1� FHt (0)

[1� � (�t↵ � I � x)]

�

dx

and finally
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E [E [Ht�1 |Ht�1 > 0 ] |Ht > 0 ]� E [Ht�1 |Ht�1 > 0 ]

=

R1
0 xfHt�1 (x)

n

1�FHt�1 (0)

1�FHt (0)
[1� � (�t↵ � I � x)]� 1

o

dx

Fix ✏ > 0, for any t there is an x(t) such that x > x(t) ) � (�t↵ � I � x) < ✏

for large values of x the term in square bracket goes to 0 very fast. so focus on small values of x.

Proof for Proposition 2 comparative statics Let at = I � �t↵. The random variable Ht has a mass point
at z = 0 but is continuous on (0,+1). FHt

(0) is the probability of not surviving until age t while for any
z > 0, the cdf can be expressed

FHt
(z) =

Z 1

x=0
�

✓

z � x� at
�✏

◆

fHt�1 (x) dx+ FHt�1 (0)

Equivalently, after integration by parts, one obtains:

FHt (z) = � 1

�✏

Z 1

x=0
�

✓

z � x� at
�✏

◆

FHt�1 (x) dx+ FHt�1 (0)

Hence the mortality rate at age t, which is the probability of dying at age t conditional on surviving until
age t, can be written:

MRt =
FHt

(0)� FHt�1 (0)

1� FHt�1 (0)

Suppose that for every t we increase the constant investment level I to some level I 0 > I . Following
the expression above, the impact can be be decomposed in two: first, a direct effect on the probability of
dying at age t (the numerator) and, second, a compounded effect carried through the distribution of health
for those attaining age t.We show that, for any t, both effects go in the same direction: an increase in I

simultaneously increases the probability of surviving untill age t (hence increases the denominator) and
reduces the probability of dying at age t (the numerator goes down). We prove the following lemma.

Lemma 1 For all t, we have i) 8z > 0, @FHt (z; I)
@I  0 and ii) @MRt

@I  0

We prove these inequalities jointly and by induction.
Notice that @FHt (·; I)

@I  0 signifies that the cdf’s are ranked by first order stochastic dominance. The
higher the I , the further the distribution is pushed to the right, which decreases the value of the cdf at any
point x as I increases.

At t = 0: FH1 (z; I) = �

⇣

z�µ0

�0

⌘

hence @FH1 (z; I)
@I = 0. MRt = FHt

(0) = �

⇣

z�µ0

�0

⌘

which, again, is
non-increasing with I .

For any t � 1, suppose that
@FHt�1

@I  0 and @MRt�1

@I  0.
Let’s first focus on the first claim:

@FHt
(z; I)

@I
=

@

@I



� 1

�✏

Z 1

x=0
�

✓

z � x� at
�✏

◆

FHt�1 (x) dx

�

+

@FHt�1 (0; I)

@I

43



The second term is negative, by assumption, while the first term is equal to

1

�2
✏

Z 1

x=0
�0

✓

z � x� at
�✏

◆

FHt�1 (x) dx� 1

�✏

Z 1

x=0
�

✓

z � x� at
�✏

◆

@FHt�1 (z; I)

@I
dx

Again, by assumption,
@FHt�1 (z; I)

@I  0, which takes care of the rightmost term.
Now, consider the change of variable u =

z�x�at

�✏
. We can rewrite the leftmost term:

� 1

�3
✏

Z

z�at
�✏

u=�1
�0

(u)FHt�1 (z � at � �✏u) du

There are two cases. If z�at

�✏
 0 then the integrand is always positive as �0 > 0 for negative real numbers,

and we conclude that @FHt (z; I)
@I  0 . If z�at

�✏
> 0 then we can split the integral in three terms:

� 1
�3
✏

R � z�at
�✏

u=�1 �0
(u)FHt�1 (z � at � �✏u) du

� 1
�3
✏

R 0
u=� z�at

�✏

�0
(u)FHt�1 (z � at � �✏u) du

� 1
�3
✏

R

z�at
�✏

u=0 �0
(u)FHt�1 (z � at � �✏u) du

= � 1
�3
✏

Z � z�at
�✏

u=�1
�0

(u)FHt�1 (z � at � �✏u) du

� 1
�3
✏

Z 0

u=� z�at
�✏

�0
(u)

⇥

FHt�1 (z � at � �✏u)� FHt�1 (z � at + �✏u)
⇤

du

(as �0
(�u) = ��0

(u) and the cdf FHt�1 is non-decreasing ). This proves that @FHt (z; I)
@I  0 for any z 2 R.

With that result in hand, it is easy to prove that @MRt

@I  0 . Setting z = 0, it follows directly that the
denominator decreases with I . Regarding the numerator we have

@
@I

⇥

FHt (0; I)� FHt�1 (0; I)
⇤

=

@FHt (0; I)
@I � @FHt�1 (0; I)

@I

=

@
@I



� 1
�✏

Z 1

x=0
�
⇣

x�at

�✏

⌘

FHt�1 (x) dx

�

 0

since this is the same integral analyzed at the previous step, with z = 0.
By induction, i) and ii) hold for any t � 1.
1-3 The exact same proof applies for � and ↵as their impact on FHt through the aging function at is

similar to the effect of I .
1-2 for µH same proof, except effect on first period distribution. The successive cdf inherit the first order

stochastic dominance property
4 It can be seen right away that this proof will not work for �✏ nor �0. Increasing any of these variances,

- a mean-preserving spread - will not give rise to the first order stochastic ranking of the cdf’s that we have
used

5. Increasing MR on impact. The numerator of the MRt is given by

FHt
(0; I)� FHt�1 (0; I) =

Z 1

x=0
�

✓

�t↵ � I � x

�✏

◆

fHt�1 (x) dx

Since � is nondecreasing, if one decreases �✏ at time t, and at this period only, then this expression is
necessarily decreasing in �✏ if �t↵  I .

6. This follows from the fact that a higher �✏,t will generate a fatter right-hand tail. For instance,
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limx!+1
fHt (x;�✏)
fHt (x;�

0
✏)

= 0. Now if �✏,t is changed only at period . From then on, the distributions are modified
through a similar process. It can be shown that the fatter right-hand tail property will be preserved. In the
very old age, only the popupulation in the right-tail have survived, hence the result.

to prove that the fatter right-hand tail property is preserved. by inference.

Remark 1 Lemma 1 is actually a subcase of the following result, which is slightly stronger:
Suppose that the level of investment is allowed to change at every period, and denote I = {I1, I2, ..., }

and I 0
= {I 01, I 02, ..., }two investment sequences. The following holds:

8s � 1, I 0s � Is =) 8t � 1, 8z > 0, FHt
(z; I)  FHt

(z; I 0
) and MRt (I)  MRt (I 0

)

The mechanics of the proof is almost exactly similar. Increasing investment at any period generates a
persistent relation of first-order stochastically dominance in the cdf of health.

Proposition 3 Morbidity The morbidity rates can be expressed in terms of the cdf:

MbRt =

FHt (Hmb)�FHt (0)
1�FHt (0)

= 1� 1�FHt (Hmb)
1�FHt (0)

= 1 +

FHt (Hmb)�1
1�FHt (0)

We know from Proposition 2 that increasing Iwill lead to an decrease in FHt
(0) resulting in an increase

in denominator. Using FOSD again FHt
(Hmb) decreases with I . This will hold as long as the mode of the

distribution is greater than the morbidity threshold.

Proposition 4 Dynamic complementarity going back to the proof of Proposition 1

@2FHt2
(z; I)

@It1@It2
=

@
@It1

@
@It2

h

� 1
�✏

R1
x=0 �

⇣

z�x�It2+�(t2)
↵

�✏

⌘

FHt2�1 (x, I) dx
i

+

@
@It1

@FHt2�1 (0; I)
@I2

=

@
@It1

h

1
�2
✏

R1
x=0 �

0
⇣

z�x�at

�✏

⌘

FHt2�1 (x, I) dx
i

+ 0

=

1
�2
✏

R1
x=0 �

0
⇣

z�x�at

�✏

⌘

@
@It1

FHt2�1 (x, I) dx
 0

because @
@It1

FHt2�1 (x, I)  0 ( increasing investment at time 1 creates a FOSD distribution)
And as a consequence the denominator 1� FHt2�1 (0) goes up as well.

Proposition 4 mu_0 and I are complement Exactly the same as in Proposition 2 as a change in µ0 is
observationally equivalent to a change in I1.
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