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PRELIMINARY

We build a framework that models the behavior of both exporters and transportation agents (ships);

its spatial equilibrium determines world trade costs and flows. Our framework has two novel features: (i)

trade costs are endogenous and determined jointly with trade flows and as a result they depend on the

entire network of trade linkages across countries; (ii) search frictions between exporters and ships limit

trade. The model features geography, search frictions, and forward-looking optimizing ships and exporters.

We collect a unique dataset of shipping contracts, global vessel movements from satellites and sea weather

conditions. The data reveal large trade imbalances and asymmetric trade costs. We provide an empirical

strategy to flexibly obtain the matching process between ships and exporters in a setup where searching

exporters are unobserved and the researcher takes no stance on the presence of search frictions. Our

estimated framework is then used to address a number of questions: What are the world trade elasticities

with respect to transport costs? How do shocks propagate through the network of countries? We consider

the impact of a slow-down in China as well as the opening of the Northwest Passage. Finally, we quantify

the trade lost due to search frictions.
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1 Introduction

About 90% of international trade is carried by the global shipping industry.1 To export, an exporter has

to find an available vessel and contract for a voyage and a price.2 In turn, the ship is optimally choosing

its travels in search of cargo, thinking about its future options. This spatial equilibrium between exporters

and ships determines the trade costs that different countries face, as well as the trade flows between

different regions of the world. What is the role of geography (i.e. country locations, natural inheritance

of goods) in determining trade costs and flows? Is the matching process between exporters and ships

efficient? How does ship behavior affect the behavior of exporters?

In this paper, we build a framework that models the behavior of both exporters and transportation

agents (ships). The spatial equilibrium of this model determines world trade. Our framework has two novel

features. First, trade costs are endogenous and determined jointly with trade flows. As such, trade costs

depend on the entire network of trade linkages across countries, rather than just the bilateral (distance

between) trading partners. We show that equilibrium trade costs provide a novel link to understand trade

patterns. Second, search frictions between exporters and ships can limit trade. We estimate this model

using unique data on shipping contracts and global vessel movements; our empirical strategy allows us

to flexibly recover the matching process between ships and exporters, as well as obtain the main model

primitives of interest (ship costs, exporter valuations and costs). We use our framework to tackle a number

of questions of interest: What is the size of world trade elasticities with respect to transportation costs?

How do shocks propagate through the world; for instance, how would a Chinese slow-down trickle through

the network of countries, or how would the opening of the Northwest Passage affect trade costs and trade

flows? Finally, what is the loss due to search frictions between exporters and ships?

We focus on dry bulk ships, which carry mostly commodities (grain, ore, coal, etc.) and whereby an

exporter hires the entire vessel for a specific voyage. We construct a unique database that allows us to

study international trade through the lens of the shipping industry. In particular, we combine (i) a dataset

of shipping spot contracts involving the ship, dates, trip origin/destination and price; (ii) satellite data

reporting every 6 minutes ships’ positions, speed, and level of draft; the draft allows us to distinguish

loaded from empty (ballast) trips; (iii) weather conditions at world oceans.

We first use our data to uncover some novel facts about (i) world trade flows; (ii) trade costs; (iii)

search frictions between ships and exporters. First, the satellite data reveals that most countries are either
1Source: International Chamber of Shipping.
2Different segments of shipping function differently. In this paper we focus on bulk shipping, where exporters of bulk

commodities fill up an entire vessel and hire it for a single trip (much like a taxi driver or a rental car); see Section 2.2.
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net importers or net exporters of commodities transferred by dry bulk vessels. Related to this, at any point

in time a staggering 40% of ships are traveling without a cargo (ballast). We show that this natural trade

imbalance, often overlooked in the trade literature, is a key driver of trade costs, which in turn feedbacks

into the trade patterns. Second, we find substantial asymmetry of shipping prices across locations: as

an example, shipping from China to Australia costs about 7,500 US dollars per day, while shipping from

Australia to China costs substantially more, at 10,000 US dollars per day. Part of this asymmetry can be

explained by the ships’ matching opportunities in the destination: all else equal, the prospect of having to

ballast after the destination port leads to higher prices. To illustrate using the example above, Australia

is an exporter to China, whose imports in raw materials have grown dramatically in recent decades (to

build infrastructure), whereas its exports are considerably lower. As a result, prices to ship goods to China

are considerably higher, as matching opportunities are limited there. Third, we find evidence of search

frictions between ships and exporters. More specifically, using our satellite data we find that at a given

time, in most countries there are simultaneously ships arriving empty, while other ships are leaving empty,

even though ships are homogeneous. This suggests social wastefulness: the cargo picked up by the ship

that arrived empty, could have been transferred by the ship that left empty instead. In addition, again

consistent with the presence of search frictions, shipping prices exhibit substantial dispersion, within a

time/origin/destination triplet, indicating that the law of one price does not hold in this market.

We build a dynamic spatial search model of the global shipping industry. The model features three key

ingredients: (i) geography; (ii) search frictions; (iii) forward-looking ships and exporters that optimally

choose their travels and exporting destinations respectively. Geography enters the model through different

trip durations across different ports. In addition to this natural geography, locations differ in their economic

geography, namely their natural inheritance in commodities of different value. Exporters and ships match

randomly, and search frictions prevent the matching of all possible pairs. Prices are determined by Nash

bargaining. Ships are homogeneous and forward looking: when negotiating a trip they also take into

account matching opportunities at the destination. If unmatched, ships decide whether to wait at their

location or travel empty (ballast) someplace else, taking into account their expected discounted stream of

profits at each location.

We estimate our model using the collected data. There are two sets of core model primitives: (i) the

matching function between ships and exporters, as well as the global distribution of searching exporters;

and (ii) exporter valuations and exporting costs, as well as ship sailing and port waiting costs. Using data

on the number of ships and matches, as well as the weather, we obtain the former, while using data on
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shipping prices, as well as ship ballast choices and exporter destination choices, we estimate the latter.

In particular, we adopt a novel approach to flexibly recover both the matching function, as well the

searching exporters. A sizable literature has estimated matching functions in several different contexts

(e.g. labor markets, taxicabs).3 For instance, in labor markets, one can use data on unemployed workers,

vacancies and matches to recover the underlying market matching function. In the market for taxi rides,

one observes taxis and their rides, but not hailing passengers; in recent work, Frechette, Lizzeri and

Salz (2015) and Buchholz (2015) have used such data, coupled with a parametric assumption on the

matching function, to recover the passengers. In our case, similar to the taxi industry, we observe ships

and matches, but not searching exporters. Our approach draws from the literature on nonparametric

identification (Matzkin (2003)). In particular, we show how to recover nonparametrically the matching

function, as well as the global distribution of exporters relying on the joint density of matches and ships,

as well as sea weather as an instrument that exogenously changes arriving ships. To provide intuition,

consider the following test for search frictions: weather shocks exogenously shift ship arrivals at port; in

markets with more exporters than ships, this should not affect matches unless there are search frictions.

We show that here, matches are indeed affected by weather shocks, which both suggests again that search

frictions are present and allows us to obtain the curvature of the matching function. In summary, we make

two contributions. First, unlike the existing literature, we do not take a stance on the presence of search

frictions. When one side of the market (in this case exporters) is unobserved or mismeasured, it is difficult

to discern whether search frictions are present. Second, we avoid parametric restrictions on the matching

function; this is important, as here parametric restrictions are directly linked to welfare implications.

The remaining primitives are obtained from ship and exporter choices and prices. In particular, first

we recover ship sailing and port wait costs via Maximum Likelihood, based on their optimal ballast choice

probabilities. As ships are forward looking this is a dynamic discrete choice problem and we solve for ship

value functions inside the likelihood (similar to Rust (1987)). Then, we obtain exporter valuations directly

from prices: once ship primitives are known, we employ the surplus sharing condition derived from Nash

bargaining to back out each valuation corresponding to each individual contract price. We can thus obtain

the distribution of valuations (conditional on an origin and a destination) nonparametrically. Finally, we

use trade flows (loaded trips) to recover exporter costs by destination.

Our model provides a unique framework to study how international trade costs and flows are deter-

mined. The novel feature here is that trade costs are endogenous and our counterfactuals reveal that
3See Petrongolo and Pissarides (2001) for a survey.
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taking this into account is important. For instance, a decline in the cost of sailing, leads to an increase in

exports in some regions, but a decline in others: the decline in the sailing cost not only increases the value

of a match between a ship and an exporter, but also makes ballasting less costly for ships. As a result

ships are now less likely to wait in port after unloading a cargo and more likely to travel empty towards

large exporters. On net this pushes up the exports of net exporters like Brazil and reduces the exports of

net importers like China.

We also illustrate the importance of trade networks and market conditions in neighboring countries, by

considering a slow-down in China. In particular, the reallocation of ships over space amplifies the effect of

the slow-down in neighboring markets. Besides the direct effect to countries whose exports relied heavily

on the growth of the Chinese economy, our model points out that there is a secondary effect driven by

the reduced supply of ships in that region of the world: the many ships that ended up in China are no

longer around. This impacts negatively both China’s own exports (import-export complementarity), but

also neighboring countries’ toward which these ships would ballast. Large exporters further away such as

Brazil and North America benefit from this increased ship availability and increase their exports to other

destinations.

We also show how the opening of the Northwest Passage affects trade not only for countries whose

routes are directly affected, but also other countries through network linkages. Finally, we also quantify

the trade lost due to search frictions and showcase how in counterfactual world with no frictions, there is

a shift to trading more valuable commodities.

Related Literature We relate equally to three broad strands of literature: (i) trade and geography;

(ii) search and matching; (iii) industry dynamics.

First, our paper endogenizes trade costs and so naturally it relates to the large literature in international

trade studying the importance of trade costs in explaining trade flows between countries (e.g. Anderson

and Van Wincoop (2003)). In much of this literature, trade costs are treated as “residuals” that explain

the gap between actual bilateral trade flows between countries and predicted trade flows conditional on

variables such as size, distance, common border/language, importer/exporter fixed effect, etc. Here, we

consider what happens to trade flows when transport prices (a substantial component of trade costs)

are determined in equilibrium, jointly with trade flows. In addition, we document important features of

trade costs, which are often not taken into account in standard trade models; for instance, trade costs

are asymmetric and not proportional to distance. Waugh (2010) has argued that asymmetric trade costs
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are necessary to explain some empirical regularities regarding trade flows and prices across rich and poor

countries. We also contribute to a literature that has considered the role and features of the (container)

shipping industry; e.g. Hummels and Skiba (2004) explore the relationship of exporter product prices at

different destinations and shipping costs; Hummels, Lugovskyy and Skiba (2008) explore market power in

container shipping; Wong (2017) incorporates container shipping prices featuring a “round-trip” effect in a

trade model.4 Finally, recent work has explored the matching of importers and exporters under frictions

(Eaton, Jinkins, Tybout and Xu (2016)).

Our paper is also related to both old and new work on the role of geography in international trade

(Krugman (1991), Head and Meyer (2004), Allen and Arkolakis (2014)), as well as the impact of trans-

portation infrastructure and networks (Donaldson (2012), Allen and Arkolakis (2016). We extend this

literature by exploring how the location of each country and all its neighbors interact with the functioning

of transportation agents and thus shape up trade costs and flows. We illustrate that both a country’s

location (i.e. distances from all other countries) and raw material inheritance are key features of the

equilibrium. The latter is, to our understanding, novel and it ends up being particularly important as it

leads to imbalanced trade; this natural asymmetry is crucial in determining a country’s exports and trade

costs. One feature of the trade literature that our paper is missing is that we do not determine commodity

prices and input prices in equilibrium. The latter may be reasonable as we focus only on commodities

and so wages and capital prices may be taken as exogenous. The former would require additional data on

exporters and is an interesting avenue for future research.

Second, our paper relates to the search and matching literature (see Rogerson, Shimer and Wright

(2005) for a survey of the literature). On one hand, our model is essentially a search model in the spirit

of Mortensen and Pissarides (1994) where firms and workers (randomly) meet subject to search frictions

and Nash bargain over a wage. An important addition in our case is the spatial nature of our setup: there

are several interconnected markets at which agents (ships) can search. Lagos (2000, 2003) and Buchholz

(2016) have also adopted similar spatial search models for taxi cabs; an important difference here is that

prices are set in equilibrium, while in the taxi market prices are exogenously set by regulation. In our

setup this is important, since by endogenizing the trade costs we can consider how they change trade flows

in the different counterfactuals.
4Wong (2017) is also exploring the impact of endogenous trade costs, but her approach is different and complementary

to ours. She is looking at container, rather than bulk shipping and uses market-level US rather than micro-level world data.
Moreover, the paper mostly explores how allowing for the “round-trip effect” in bilateral trade costs changes the theoretical
predictions of a standard trade model. The “round-trip effect” refers to the fact that containerships have specific itineraries
and are thus forced to make return trips.
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Third, we relate to the literature on industry dynamics (Hopenhayn (1992), Ericson and Pakes (1995),

etc.). Consistent with this research agenda, we study the long-run industry equilibrium properties, in our

case the spatial distribution of ships and exporters. Moreover, our empirical methodology borrows from

the literature on the estimation of dynamic setups (e.g. Rust (1987), Aguirregabiria and Mira (2007),

Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007)) in matching conditional choice

probabilities that involve value functions (applications include Ryan (2012) and Collard-Wexler (2013)).

Buchholz (2016) and Frechette, Lizzeri and Salz (2016) also explore dynamic decisions in the context of

taxi cabs’ search choices and shift ending decisions respectively. Finally, Kalouptsidi (2014) has also looked

at the shipping industry, albeit at the entry decisions of shipowners and the resulting investment cycles in

new ships.

The rest of the paper is structured as follows. Section 2 provides a description of the industry and the

datasets used. Section 3 presents a number of facts that document the importance of geography, establish

price patterns and explore the presence of search frictions. Section 4 describes the model. Section 5 lays

out our empirical strategy, while Section 6 presents the estimation results. In Section 7 we provide the

counterfactuals and in Section 8 we conclude. The Appendix provides additional tables and figures, proofs

to our propositions, as well as further data and estimation details.

2 Industry and Data Description

2.1 Trade in Dry Bulk Commodities

Dry bulk shipping involves vessels designed to carry a homogeneous unpacked dry cargo, for individual

shippers on non-scheduled routes. The entire cargo belongs to one cargo owner (the exporter). Bulk

carriers operate like taxi cabs: a specific cargo is transported individually in a specific ship, for a trip

between a single origin and a single destination. Dry bulk shipping involves mostly commodities, such as

iron ore, steel, coal, bauxite, phosphates, but also grain, sugar, chemicals, lumber and wood chips.5

There are four different categories of dry bulk carriers based on size: Handysize (10,000–40,000 DWT),

Handymax (40,000–60,000 DWT), Panamax (60,000–100,000 DWT) and Capesize (larger than 100,000

DWT). The industry is unconcentrated, consisting of a large number of small shipowning firms (see

Kalouptsidi (2014)): the maximum fleet share is around 4% (3% for Handysize, 7% for Handymax, 3%
5It is worth noting that bulk ships are very different from containerships, which operate like buses: containerships carry

cargos (mostly manufactured goods) from many different cargo owners in container boxes, along prespecified itineraries. It
is technologically impossible to substitute bulk with container shipping.
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for Panamax, 5% for Capesize), while the firm size distribution features a large tail of small shipowners.

Moreover, shipping services are largely perceived as homogeneous. In his lifetime, a shipowner will contract

with hundreds of different exporters, carry a multitude of different products and visit numerous countries;

we discuss this further in Section 3.

Trips are realized through individual contracts: shipowners have vessels for hire, exporters have cargo

to transport and brokers put the deal together.6 Ships carry at most one freight at a time: the exporter

fills up the hired ship with its own cargo. In this paper, we focus on spot contracts and in particular the

so called “trip-charters”, in which the shipowner is paid in a per day rate.7 The exporter who hires the

ship is responsible for the trip costs (e.g. fueling), while the shipowner incurs the remaining ship costs

(e.g. crew, maintenance, repairs, insurance).

2.2 Data

In this paper we combine a number of different datasets to create a unique database of ship contracts and

movements.

First, we employ a dataset of dry bulk shipping contracts, from 2001 to 2016, collected by Clarksons

Research, a major global shipbroking firm. An observation is a transaction between a shipowner and

a charterer, for transportation of a specific cargo, on specific dates, from a specific origin to a specific

destination. We observe the name and age of the vessel, the identity of the charterer who hires the ship,

the contract signing date, the agreed loading and unloading dates, the agreed upon trip price in dollars

per day, as well as some information on the origin and destination (see below and the Appendix).

Second, we use satellite AIS (Automatic Identification System) data from exactEarth Ltd (from now

on, EE) from 2009 to 2016, that we match to the Clarksons dataset and thus track the movements of these

vessels. AIS transceivers automatically broadcast information, such as the ships’ positions (longitude and

latitude), speed, and level of draft (i.e. the vertical distance between the waterline and the bottom of the

ship’s hull), at regular intervals of at most 6 minutes. The level of draft allows us to determine whether a

ship is loaded or not at any point in time. We use the EE dataset to construct the history of trips (empty

or loaded) for each ship.

The EE dataset is useful for two reasons. First, it provides more accurate information on origins and
6Some shipowners have in-house brokers while others collaborate with independent brokers. Oftentimes, multiple brokers

are involved in a negotiation from both sides.
7Trip-charters are the most common type of contract. Long-term contracts (“time-charters”), however, do exist: on

average, about 10% of contracts signed are long-term. Interestingly, though, ships in long-term contracts, are often “relet”
in a series of spot contracts, suggesting that arbitrage is possible.
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destinations for the Clarksons contracts, since we can find the exact location of the ship under contract on

the loading and unloading dates specified by the contract (see the Appendix for details on how trips and

stops are constructed). Second, it allows us to determine when ships decide to travel someplace empty

(ballast) to find cargo and when ships stay put in their current location.

We also use the ERA-Interim archive, from CMWF (European Centre for Medium-Range Weather

Forecasts), to collect global data on daily sea weather. This allows us to construct weekly data on the

wind speed (in each direction) on a 0.75◦ grid across all oceans. Finally, we employ several time series

from Clarksons on e.g. the total fleet and fuel prices, as well as country-level imports/exports, production

and commodity prices from numerous sources (e.g. UNCTAD, FAO, IEA, Comtrade).

Summary statistics Our final dataset involves 5,410 ships between 2012 and 2016.8 We end up

with 7,652 shipping contracts, for which we know the price, as well as the exact origin and destination. As

shown in Table 1, the average price is 10,000 dollars per day (or 140,000 dollars if we take the trip duration

into account), with substantial variation (the standard deviation is 5,000 dollars per day; more on this in

Section 3). We have 233,580 ship-week observations at which the ship decides to either ballast someplace

empty or stay at its current location. Loaded trips last on average 2.3 weeks, with little variation within

an origin-destination pair. Ballast trips last less, 1.72 weeks on average. Contracts are signed on average

6 days prior to the loading date.9 Upon signing a contract, about 42% of ships are already in the loading

port. Ships that do not find a cargo, remain in their current port with probability 76%. Clarksons reports

the product carried in a small subsample of the contract dataset (about 20%). The main commodity

categories are grain (23%), iron ore (20%), coal (20%), alumina ore (6%), chemicals/fertilizer (6%) and

minor bulks like wood chips and sands. Finally, it is worth noting that our sample period is one of low

shipping demand and severe ship oversupply due to high ship investment between 2005 and 2008 (see

Kalouptsidi (2014, 2016)).

8We only use contracts during the period that we also have satellite data. Moreover, to estimate the matching function
we drop the first two years (2009-2011), as during this period, the geographic regions covered by satellites is growing as new
satellites are launched.

9As practitioners say, “a ship is not a train”; it is not possible for a ship to promise too far in advance arrival to load at
a specific port, due to the uncertainties of prior travels (predominantly weather conditions, but also port/canal congestion,
port strikes, etc.).
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Mean St. Dev Median Min Max

Contract price per day (105 US dollars) 0.105 0.054 0.095 0.01 0.7
Contract trip price (105 US dollars) 1.417 9 1.17 0.07 8.315
Contracts per ship 2.108 1.445 2 1 12
Loaded trip duration (weeks) 2.50 2.06 2.02 0.14 10.41
Empty trip (ballast) duration (weeks) 1.74 1.63 1.29 0.09 8.98
Days between contract signing and loading date 6.11 6.686 4 0 28
Ship size (1,000 DWT) 74 35 74 13 455
Prob of ship staying at port conditional on being unmatched 0.77 0.12 0.76 0.59 0.95

Table 1: Sample summary statistics.

3 Facts

In this section, we present a number of novel facts about the bulk shipping industry and world seaborne

trade more generally. We provide some key features of vessel movements, we document geographic patterns

of trade, we explore the nature of trade costs (i.e. shipping prices), and finally we discuss some descriptive

evidence of search frictions in this market. Our findings here guide the model formulation in Section 4.

3.1 Trade Flows, Geography and Ballasting

Figure 1 plots the message count from each location of the globe during a 10 day period. It reveals that

some of the most frequent voyages are between Australia and China, Brazil and China, as well as Northwest

America and China. This graph does not distinguish between loaded and ballast voyages; Figure 15 in

the Appendix presents a chart of the loaded trips between world regions. The most popular loaded trip

is from Australia to China (around 5% of loaded trips in our dataset). The most popular ballast trip is

the reverse, from China to Australia (5.7% of ballast trips). It is no accident that China dominates the

observed flows: in recent years, Chinese growth has led to massive imports of raw materials for industrial

expansion and infrastructure building. In turn, Australia, Brazil and Northwest America are big exporters

of minerals, grain, coal, etc.

China’s example suggests that global trade features a substantial imbalance, partly owing to the natural

inheritance of different countries in raw materials. Indeed, we next illustrate that most countries in the

world are either net importers or net exporters of commodities. Figure 2 depicts the difference between

the number of ships departing loaded minus the number of ships arriving loaded, over the sum of the two.
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Figure 1: Number of AIS signals received in a ten day period.

A positive ratio indicates that a country is a net exporter of dry bulk commodities, while a negative ratio

suggests that the country is a net importer; a ratio close to zero implies balanced trade. As shown, trade

flows in most countries in the world are considerably imbalanced, rather than balanced. Australia, Brazil

and Northwest America are big exporters, whereas China and Europe are big importers. This feature

of trade is not unique to raw materials; container shipping exhibits similar asymmetries; the direction of

the imbalance, however, may be different (e.g. China is a big exporter in containers rather than a big

importer).

As a consequence of the imbalanced nature of international trade, ships spend much of their time

traveling ballast, i.e. without cargo. The fraction of the miles a ship travels ballast over the total miles

traveled while present in our dataset is about 40%.

The imbalanced nature of trade, although an important empirical feature, is often overlooked in the

trade literature. In this paper, we do not assume balanced trade and in fact this asymmetry is a key driver

of our model and empirical findings.

3.2 Trade Costs (Shipping Prices)

We next turn to the nature of trade costs that exporters face. A quick inspection of the data reveals that

trade costs are asymmetric: for instance, a trip from China to Australia costs on average 7,500 dollars per

day, while a trip from Australia to China costs substantially more, at 10,000 dollars per day on average,

net of fuel costs.10 In fact, most trips exhibit substantial asymmetry: the average ratio of the price from
10This price asymmetry has been documented also in container shipping; see for instance Wong (2016) and references

therein.
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Figure 2: Trade Imbalance. Difference between exports (ships leaving loaded) and imports (ships leaving
empty) over total trade (all ships).

origin i to destination j to the price from j to i (highest over lowest), is equal to 1.6 and can be as high

as 4.1.11 This empirical pattern suggests that bilateral distance is not the only determinant of trade costs

and travel direction matters.

More generally, shipping prices are determined by the entire network of origins and destinations,

rather than just bilateral distances. Although this will be properly documented via our structural model

of Section 4 later on, we present here some regressions to identify some determinants of prices. The

first column presents the results of a log-price regression on ship types and country of origin fixed effects

which already account for 66% of the price variation, suggesting that geography is important in explaining

trade costs. This is not surprising, as local demand and supply at the origin (products that the location

produces, the number of ships present etc.) are clearly important determinants of shipping prices. The

second column adds destination fixed effects and, interestingly, the fraction of price variation increases.

This suggests that ships may demand a premium to travel towards a destination with low exports, to

compensate for the difficulty of finding a new cargo originating from that destination (and vice versa for

destinations with high exports). To control more directly for this effect, in the third column of Table

2 instead of a destination fixed effect, we include (i) the probability that a ship leaves ballast from the

destination specified in the contract; and (ii) conditional on leaving ballast, the miles a ship travels ballast
11This is calculated using the 15 geographical regions employed in our empirical exercise below (see Section 6), to guarantee

sufficient data per origin/destination.
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from the destination on average. As expected, we find that both variables are positive and significant and

lead to substantially higher prices. Indeed, a 1% increase in the average distance traveled ballast after

the destination, is associated to an increase prices by 0.16%; while exporting to a destination where the

probability of a ballast trip afterwards is ten percentage points higher, costs on average 2.3% more.12

Finally, this is a good point to emphasize that ship heterogeneity is not an important consideration.

First, even in our small dataset, the majority of ships (80%) are seen carrying at least 2 of the 3 main

products (coal, ore and grain), which suggests that ships do not specialize on certain products. Similarly, we

observe that most ships travel to most regions, suggesting that they do not specialize geographically either.

Ship fixed effects have no explanatory power in either price regressions or ballast probability regressions.

Finally, this is consistent with much of the evidence provided in Kalouptsidi (2014); for instance hedonic

regressions of ship resale prices suggest that unobserved heterogeneity is not an important consideration.

3.3 Search Frictions

In this section we present some descriptive evidence suggesting that search frictions inhibit the matching of

all available ships and exporters. Overall, it is not straightforward to know a priori whether a market (here,

the market for sea transport) suffers from search frictions. In labor markets, where search frictions are

generally thought to be present, there are two main empirical regularities that are offered as evidence: (i)

the coexistence of unemployed workers and vacant firms; and (ii) wage inequality among observationally

identical workers. In this section we show that a similar set of empirical conditions hold in shipping,

suggesting that search frictions are present here as well.

We first consider whether there is evidence of unrealized matches. While in labor markets the coexis-

tence of unemployed workers and vacant firms in labor markets is strong evidence of the presence of search

frictions, our data reports only ships and matches, not searching exporters, so we cannot make a similar

argument; we can however consider a different moment that has a very similar flavor.

Figure 3 displays the weekly number of ships that arrive in a country empty and load, as well as the

number of ships that leave a country empty, for the case of Norway and Chile. Both countries are net

exporters. In Norway, several ships arrive empty and load, but almost no ship departs empty. In Chile,

however, the picture is quite different: we see both ships that arrive empty to load, as well as ships that

depart empty. In other words, an empty ship arrived, picked up cargo, while at the same time another

ship departed empty. This fact suggests the presence of search frictions in Chile: why didn’t the ship that
12To confirm that the result is not driven by the different composition of products exported toward different destinations,

the last column of Table 2 also controls for the type of product carried for the subsample of contracts reporting the product.
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I II III IV

log(price)

Handyamax -0.148∗∗ -0.136∗∗ -0.123∗∗ 0.027
(0.014) (0.014) (0.014) (0.120)

Handysize -0.397∗∗ -0.330∗∗ -0.343∗∗ -0.209∗∗

(0.017) (0.018) (0.017) (0.124)
Panamax -0.223∗∗ -0.214∗∗ -0.212∗∗ -0.117

(0.013) (0.013) (0.013) (0.119)
Coal 0.088∗∗

(0.045)
Fertilizer 0.245∗∗

(0.051)
Grain 0.131∗∗

(0.048)
Ore 0.124∗∗

(0.045)
Steel 0.135∗∗

(0.049)
Probability of ballast 0.234∗∗ 0.556∗∗

(0.030) (0.081)
Average duration of ballast trip (log) 0.166∗∗ 0.065∗∗

(0.014) (0.032)
Constant 10.304∗∗ 10.284∗∗ 9.127∗∗ 8.915∗∗

(0.068) (0.103) (0.099) (0.408)
Destination FE No Yes No No
Origin FE Yes Yes Yes Yes
Product FE No No No Yes
Quarter FE Yes Yes Yes Yes

Obs 11,014 11,014 11,011 1,662
R2 0.663 0.694 0.674 0.664

**p < 0.05, *p < 0.1

Table 2: Trade costs (shipping price) regressions.
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Figure 3: Flow of ships arriving empty and ships leaving empty within 2 weeks intervals

departed empty, pick up the cargo, instead of having another ship arrive from elsewhere to pick it up?13

We next perform this exercise for all exporting countries, by computing the bi-weekly ratio of the

incoming empty and loading ships over the outgoing empty ships for a given country. If there are no

search frictions this ratio should be close to zero for countries that are net exporters. However, as shown

in Figure 4 which depicts the histogram of these ratios, most countries are more similar to Chile, than

Norway. Indeed, the average ratio is well above zero and for some countries it is even above 0.5. In

addition, this pattern has proved very robust in a number of dimensions.14 While in labor markets, as

some researchers have argued, observed or unobserved heterogeneity may explain part of the co-existence

of unemployment and vacancies (a vacancy for a chemical engineer may not be of interest to a high school

dropout), in this market the importance of heterogeneity is much more limited: as discussed above ships

are widely considered to offer homogeneous services and do not specialize geographically or in terms of

products.
13Recall that contracts are signed 6 days on average before the loading date and that with probability 42% the ship is

already in the loading port.
14This figure is robust to alternative market definitions, time periods and ship types. Figure 16 in the Appendix presents this

histogram by ship type: Capesize vessels exhibit somewhat larger mass towards zero, consistent with the higher concentration
of charterers and the ships’ ability to approach fewer ports. The figure is also the same if done by port rather than country.
As mentioned above, ships tend to carry all products; thus we do not believe this pattern is explained by product switching.
Labor contracts are usually about 5-8 months long and the crew flies between their home and the relevant port. To control
for repairs we remove stops longer than 6 weeks. Finally, we only consider as “ships arriving empty” the ships arriving empty
and sailing full toward another market, and we consider as “ships leaving empty” ships sailing empty toward a different
country. This definition also implies that refueling cannot explain the fact either; although there are very small differences
in fuel prices across space anyway (less than 10%).
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Again inspired by the labor literature, we investigate a second aspect of this market that is suggestive of

search frictions: dispersion in prices. In markets with no frictions, the law of one price holds so that there

is a single price for the same service. This does not hold in labor markets, where there is substantial wage

dispersion among workers who are observationally identical. This observation has generated a substantial

and widely influential literature on frictional wage inequality, i.e. wage inequality that is driven by search

frictions.15

In the shipping market a similar empirical regularity is present. As we already saw in Table 2 there is

substantial price dispersion in shipping spot contracts. More specifically, at best we can account for about

70% of price variation, controlling for ship size, as well as quarter, origin and destination fixed effects.

Moreover, the coefficient of variation of prices within a given quarter, origin and destination triplet is

about 30% (23%) on average (median).16 For instance, in the most popular trip from Australia to China

the coefficient of variation is on average 37% and ranges from 21% to 55% across quarters.

In addition, it is worth noting that the type of product carried affects the price paid and overall more

valuable goods lead to higher contracted prices.17 In the absence of frictions, if there are more ships than
15See for instance Burdett and Mortensen (1998), Postel-Vinay and Robin (2002), Mortensen (2005) and references therein.
16Again here we use the 15 geographical regions employed in our empirical exercise below (see Section 6), to guarantee

sufficient data per origin/destination. Results are robust if we only keep quarter-origin-destination triplets with more than
10 observations.

17Recall that we have significantly fewer contract observations for which the product is reported, so the results in the last
column of Table 2 are less precise.
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exporters (as is the case arguably during our sample period), we would expect prices to be bid down to

the marginal ship’s costs. In contrast, in markets with frictions and bilateral bargaining, this is no longer

true and as shown formally in the model of Section 4, the buyer’s outside option affects the price she pays.

In the context of the shipping market, our model predicts that exporters with higher valuations pay more

when there are matching frictions, consistent with evidence shown in Table 2.

Finally, we perform a simple “dispatcher” simulation to quantify the extent of search frictions. We

simply assign every exporter to the ship that is geographically closest to it. If there are no frictions, the

simulation should lead to an allocation not far from the observed. That is not the case however. Figure

5 plots the histogram of the fraction of distance a ship ballasts in the simulation and compares it to the

actual one. We find that in the data ships ballast significantly more. Note that this simulation does not

employ the model of Section 4, so ships do not optimally choose where to search; we return to this in the

counterfactuals of Section 7.18

We revisit search frictions in Section 5.1, where we both provide further reduced form evidence, and

we estimate a non-parametric matching function, thus flexibly measuring the extent of search frictions.

We close this section by briefly discussing what the nature of search frictions may be. The mere existence

of brokers suggests that search frictions have been an issue in this market. Information frictions may still

prevail though; when a ship is searching in a certain geographical region (e.g. east Americas) her broker
18The initial condition in the simulation is the ships’ first registered position. Then, we assign every observed loaded trip

to the ship that was closest to the trip’s originating port, rather than the ship that actually executed the trip. We force ships
to wait for cargo at the port at which they arrived loaded and only ballast when assigned to a cargo, rather than choose to
ballast towards a more desirable destination.
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may not “meet” the broker of a specific exporter in one of the ports. It can also be the case that a broker

receives many messages and he may not be able to sort through them efficiently in time, similarly to an

unemployed worker who cannot sort through all available vacancies that are posted on the various job

finding websites. In a market with a small number of large exporters, it might be easier to for them to be

matched to the existing ships. Consistent with this, we find that price dispersion is negatively correlated

with the Herfindahl Index of the observed ship charterers.

4 Model

We next introduce a dynamic spatial search model of the global shipping industry. Geography enters the

model through different trip durations across different locations. There are two types of agents: exporters

(or freights) and ships. Exporters choose whether and where to export, subject to different exporting

costs by destination. Following the search and matching literature we model frictions between exporters

and ships using a matching function, essentially a “black box” that captures the implications of frictions

in the trading environment, in a parsimonious fashion (Pissarides (2000)). Prices are determined by Nash

bargaining. Ships are homogeneous and forward looking: when negotiating a trip they also take into

account matching opportunities at the destination. If unmatched, ships decide whether to wait at their

location or ballast someplace else, taking into account their expected discounted stream of profits at each

location. We describe first the environment of the model and then the behavior of the agents.

4.1 Environment

Exporters Time is discrete. There are I locations/markets and each location is denoted by i ∈

{1, 2, ..., I}. At each location i and period t, there are fit freights that need to be delivered to another

location. We use the words freight, exporter and cargo interchangeably. Exporters have heterogeneous

valuations, v, received upon delivery to their destination. The valuation of a freight going from i to j is

drawn from the distribution F vij with mean µij . Unmatched freights survive with probability δ > 0. Each

period, at each location i, Ei potential exporters decide whether and where to export, and pay production

and export costs, κij .
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Ships There are S ships in the world.19,20 Ships are homogeneous, risk neutral and have discount

factor β. In every period, a ship is either traveling loaded or ballast, from some location i to some location

j, or it is at port in some region i. A ship at port in location i incurs cost cui , while a ship sailing from i

to j incurs cost csij . The duration of a trip between region i and region j is stochastic: a ship arrives at

region j within a period with probability ξij , so that the average duration of the trip is 1/ξij .21

Matching Freights can only be delivered to their destination by ships and each ship can carry (at

most) one freight. In each region, freights and ships need to search for each other and search is random.

Every period a ship (freight) can match with at most one freight (ship). The number of new matches at

time t and market i is given by the matching function,

mit = mi (fit, sit)

where fit is the number of unmatched freights searching in i and sit is the number of unmatched ships

searching in i. The matching functionmi (.) is increasing in both arguments. Let λit denote the probability

with which an unmatched ship in location i meets a freight; λit = mit/sit. Similarly, let λfit denote the

probability with which an unmatched freight meets a ship; λfit = mit/fit.

Search frictions generate rents to realized matches that are split between the freight and the ship via

the price-setting mechanism. We assume that the price paid to the ship delivering a freight of valuation v

from region i to destination j, πijv, is determined by generalized Nash bargaining, with γ ∈ (0, 1) denoting

the exporter’s bargaining power. The price is paid upfront and the ship commits to begin its voyage

immediately to region j.22

Timing The timing of each period is as follows:
19We follow Kalouptsidi (2014) and assume constant returns to scale so that a shipowner is a ship. Similarly, a freight

owner is a freight, so that he does not choose the export tonnage. We also ignore the different ship sizes in the model; as
described in Section 6 estimating the model separately for each ship type yields similar results.

20In this paper, we do not model ship entry or exit. Exit is overall very small, while due to long construction lags in
shipbuilding, the fleet is close to being fixed in the short run (see Kalouptsidi (2014, 2016)).

21Recall that there is little variation in the duration of a trip from i to j (see Section 2.2). The above assumption preserves
model tractability without changing any of the results compared to a model with deterministic trip duration. In particular,
ships are risk neutral so it does not affect their value functions. In addition, the law of large numbers implies that in the
steady state the number of ships that arrive/depart from a market every period is equal to that in a model with deterministic
trip duration.

22Note that since all unmatched ships at a port are homogeneous, an exporter (v, j) either forms a match with any ship it
meets or cannot agree to a mutually acceptable price with any ship in a steady state. In what follows we restrict attention
to freights that are acceptable and thus always sign a contract once a meeting takes place. More generally, since no failed
negotiations are observed, it would not be possible to allow for this feature in the empirical analysis; during our sample
period, which is characterized by severe ship oversupply, we do not expect freights to be rejected by ships.
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1. In each market i, existing ships and exporters match.

2. In each market i, unmatched ships pay a cost to stay in port and draw additive iid preference shocks

ε = [ε1, ..., εI ] from distribution F ε for each market and decide whether to (i) stay in their current

region and wait for freight; or (ii) ballast toward some destination j (i.e. sail empty and look for

cargo in j)23

3. Unmatched ships from each market that decided to ballast away begin traveling to their chosen

destination. All ships already traveling from i to j arrive at j with probability ξij .24 Existing

exporters disappear with probability 1− δ.

4. In each market i, Ei potential exporters decide whether and to which destination to export. The

exporters that do enter the market draw their valuations from F vij , and join the pool of searching

exporters next period.

States and Transitions The state variable of a ship in region i includes its current location i, as

well as the vector (st, ft, s
w
t ) where st = [s1t, ..., sIt], ft = [f1t, ..., fIt] and the I2 − I dimensional vector

swt , with entries swtij , denotes the number of ships traveling from i to j in period t. The state variable of

an existing exporter in i includes his location i, valuation v and destination j (chosen upon entry), as well

as the vector (st, ft, s
w
t ). Exporters in market i at time t transition as follows:

fit+1 = δ (fit −mi (sit, fit)) + di (1)

with di the (endogenous) flow of new freights (discussed below). Ships at location i transition as follows:

sit+1 = (sit −mi (sit, fit))Pii +
∑
j 6=i

ξjis
w
jit (2)

where Pij is the probability of an unmatched ship ballasting from i to j (determined endogenously from

ship choices, see below). In words, out of sit searching ships, mit ships get matched and leave i, while

out of the ships that did not find a match, Pii percent chooses to remain at i rather than ballast away;
23Ships do indeed sail towards a destination without having already signed a contract (recall that the average trip duration

is 2-3 weeks, while contracts are signed on average 6 days in advance). According to practitioners, this is mostly due to the
uncertainties of traveling and arrival times (see also Footnote 9), though it is overall intuitive- why would the ship wait in
a region where chances of reloading are slim (unlike airplanes, it is very costly to let the ship wait in a port)? Note also,
that in our empirical exercise we will focus on broad geographical regions so that one can think of ships as searching there
(although even at the port level, 42% of ships are already in the loading port when signing a contract).

24Note that a ship that begins traveling today cannot arrive in the same period.
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moreover, out of the ships traveling towards i, ξij percent arrive. Finally, ships that are traveling from i

to j, swijt evolve as follows:

swijt+1 = (1− ξij) swijt + Pij (sit −mi (sit, fit)) +Gijmi (sit, fit) (3)

where Gij is the probability of going loaded from i to j (determined endogenously from exporter choices,

see below). In words, ξij percent of the traveling ships arrive, Pij percent of ships that remained unmatched

in location i chose to ballast to j and finally, Gij of ships matched in i depart loaded to j.

4.2 Behavior

We derive the optimal behavior of exporters and ships, as well as the equilibrium prices. In this paper,

we consider the steady state of this model.25 This assumption makes sense for the data at hand, which

covers a period (2012-2016) that is uniformly characterized by ship oversupply and relatively low demand

for shipping services. More specifically, we assume that agents view the spatial distribution of ships and

freights as fixed and make decisions based on their steady-state values: it does not feel unreasonable that

they ignore aggregate long-run shocks when making weekly ballasting decisions.

Ships Let Wij denote the value of a ship traveling from i to j (empty or loaded). Then:

Wij = −csij + ξijβUj + (1− ξij)βWij (4)

In words, the ship that is traveling from i to j, pays per period cost of transit csij ; with probability ξij it

arrives at its destination j, where it will begin unmatched with value Uj defined below; finally, with the

remaining probability (1 − ξij) the ship does not arrive at its destination and keeps traveling. The ship

arrives at destination j after 1/ξij periods on average.

Consider now a ship in market i. This ship obtains:

Ui = −cui + λiEi,vVijv + (1− λi)Ji (5)

In words, the ship is matched with probability λi, in which case it obtains the value of a matched ship Vijv

defined below. The ship takes expectation over the type of freight it meets, i.e. its value and destination.
25Given that a ship can travel to most ports in the world in under a month, any transition dynamics to a new steady state

will be very short. This is very convenient in our counterfactual analysis of Section 7, where we are able to compare steady
states without worrying about the transition dynamics.
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With the remaining probability, 1 − λi, the ship does not find a freight and it obtains the value Ji also

defined below. Note that the probability of finding a cargo is given by the matching function and depends

on the number of ships and cargos available in that market. Finally, the ship pays the per period port

cost cui .

If matched with an exporter with destination j and value v, the ship receives the agreed upon price

and begins traveling, so that:

Vijv = πijv +Wij (6)

If the ship remains unmatched, it faces the choice of either staying at i and matching there the following

period with probability λi, or ballasting away from i in search of better opportunities. In the latter case,

the ship can choose among all possible destinations. In particular, if unmatched, the ship receives a vector

of iid preference shocks ε, for all possible destinations j, as well as its current location i, drawn from a

double exponential distribution F ε, with mean zero and variance σ. The unmatched ship’s value function

is :

Ji(ε) = max

{
βUi + σεi,max

j 6=i
Wij + σεj

}
(7)

and let:

Ji ≡ EεJi(ε) = σ log

exp
βUi
σ

+
∑
j 6=i

exp
Wij

σ

+ σγeuler

where γeuler is the Euler constant.26 In words, if the ship stays in its current market i, it searches in i

again the following period, thus obtaining value Ui; otherwise the ship chooses another market and begins

its trip there. Let Pii = Pr(i|i) denote the probability that a ship in location i chooses to remain there,

while Pij = Pr(j|i) denote the probability that a ship at location i chooses to ballast to j. Since ε is iid

and and follows a double exponential, we can write:

Pii =
exp (βUi/σ)

exp (βUi/σ) +
∑

l 6=i exp (Wil/σ)
(8)

and

Pij =
exp (Wij/σ)

exp (βUi/σ) +
∑

l 6=i exp (Wil/σ)
. (9)

26The formula for the ex ante value function Ji = EεJi(ε) is the closed form expression for the expectation of the maximum
over multiple choices, and is obtained by integrating Ji(ε) over the double exponential distribution of ε.
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Exporters We start with existing exporters and then consider exporter entry. The value of an

unmatched exporter in market i, with destination j and valuation v is,

Jfijv = λfi V
f
ijv +

(
1− λfi

)
βδJfijv. (10)

In words, the exporter gets matched with probability λfi and gets the value of being matched, V f
ijv (defined

below); with the remaining probability he remains unmatched; in that case, he survives with probability

δ and waits for next period.

An exporter that is matched in market i receives value:

V f
ijv = v − πijv, (11)

in words, he obtains his delivery value, v and pays the agreed price, πijv, which is discussed below.

There are Ei ex ante homogeneous potential exporters in market i in each period. Each potential

entrant n in market i, makes a discrete choice between not exporting, as well as which destination j to

export to, subject to production and exporting costs κij , as well as random preference shocks εfnj , all

j which are distributed according to a double exponential distribution.27 Upon deciding to become an

existing exporter in i with destination j, the entrant draws a valuation v from F vij . Therefore, potential

entrant n solves:

Jefi = max

{
εfn0, max

j 6=i

{
βEvJ

f
ijv − κij + εfnj

}}
where we denote with 0 the (outside) option of not exporting and normalize the payoff in that case to

zero.28

Potential exporter n’s behavior is given by the choice probabilities:

G̃ij ≡
exp

(
Jfij − κij

)
1 +

∑
l 6=i exp

(
Jfil − κil

) (12)

and

G̃i0 ≡
1

1 +
∑

l 6=i exp
(
Jfil − κil

) (13)

27Since each exporter is one shipment, they do not export to multiple destinations. Adding independent exporter data to
further study the intensive margins of exporting (e.g. multiple destinations, size of shipments) is an interesting avenue for
future research.

28It is also possible to allow the potential exporters to know their valuations (across destinations) before making their
exporting choice. It would simply make estimation computationally somewhat more demanding.
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where Jfij ≡ EvJ
f
ijv.

The number of entrant exporters in i ends up being:

di = Ei
(

1− G̃i0
)

(14)

It is worth noting that the distribution of export destinations conditional on exporting used is given

by

Gij ≡
G̃ij

1− G̃i0
(15)

This is the distribution that ships employ when forming expectations over the potential matches in

different markets in equation (5).29

Prices As discussed above, the rents generated by a match between a freight and a ship, are split

via Nash bargaining. This implies the usual surplus sharing condition:

γ (Vijv − Ji) = (1− γ)
(
V f
ijv − J

f
ijv

)
(16)

We use the above condition to solve out for the equilibrium price πijv, in the following lemma:

Lemma 1. The price agreed upon between a ship and an exporter with valuation v and destination j in

location i is given by:

πijv =
γ
(

1− βδ
(

1− λfi
))

1− βδ
(

1− γλfi
) (Ji −Wij) +

(1− γ) (1− βδ)

1− βδ
(

1− γλfi
)v (17)

Proof. Substitute Vijv, V
f
ijv, J

f
ijv and Ui in (16).

In other words, the price is a linear combination of the exporter’s value, v, and the difference between

the ship’s value of delivering the freight, Wij , and its outside option, Ji.

It is worth noting that if the value of a ship traveling from i to j, Wij , is low, then, all else equal,

the price is higher. It is worth remembering that Wij = − cs
1−(1−ξij)β +

ξijβ
1−(1−ξij)βUj , includes both the

conditions at the destinations through Uj , but also the importance of distance captured by ξij . In other

words destinations that are unappealing to ships because there are few freights there and the probability of
29In this paper, we assume away from the determination of commodity prices; in other words, we take µij to be exogenous.

µij is meant to capture the revenue of the exporter in i that sells her commodity in j. To determine this object in equilibrium
would require additional data on exporters; this is an interesting avenue for future research.
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ballasting afterwards is high, would command higher prices. This is consistent with the evidence presented

in Table 2. The same holds for destinations that are further away (low ξij). In addition, note that the

price between i and j depends on all countries rather than just i and j through the outside option of the

ship, Ji. Therefore, in a model of endogenous trade costs, the shipping price from region i to region j

depends on all countries, rather than just i and j. This feature will be important in counterfactuals, as

shown in Section 7.

In addition, exporters that have a higher value, v, pay higher prices, again consistent with evidence in

Table 2. As discussed in Section 3.3, this is true because of search frictions and the fact that the law of

one price no longer holds.

Steady State Equilibrium We next define equilibrium for this model and prove that a steady state

equilibrium exists.

Definition. A steady state equilibrium, (s∗, f∗, sw∗), is a distribution of ships and exporters over markets,

that satisfies the following conditions:

(i) Ships’ optimal behavior, Pij (s∗, f∗) follows (8) and (9) and expectations employ (15).

(ii) Potential exporters’ behavior, G̃ij (s∗, f∗), follows (12) and (13) and entrants are determined from

(14).

(iii) Prices are determined by Nash bargaining, according to (17).

(iv) Ships and freights satisfy the following steady state equations:

s∗i =
∑
j

Pji (s∗, f∗)
(
s∗j −mj

(
s∗j , f

∗
j

))
+
∑
j 6=i

Gji (s∗, f∗)mj

(
s∗j , f

∗
j

)
(18)

f∗i = δ (f∗i −mi (s∗i , f
∗
i )) + Ei

(
1− G̃i0 (s∗, f∗)

)
(19)

sw∗ij =
1

ξij
(Pij (s∗, f∗) (s∗i −m∗i ) +Gij (s∗, f∗)m∗i )

Proposition 1. Suppose that the matching function is continuous, the preference shocks ε and εf have

full support, Ei and S are finite and fi ≤ Ei/(1− δ). Then, an equilibrium exists.

Proof. See the Appendix.
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Finally, we characterize the steady state trade flow between regions i and j, which is equal to:

EiG̃ij = Ei
exp

(
Jfij − κij

)
1 +

∑
l 6=i exp

(
Jfil − κil

) = Ei
exp (αi (µij − πij)− κij)

1 +
∑

l 6=i exp (αi (µil − πil)− κil)

where αi = λfi /
(

1− βδ
(

1− λfi
))

, since in the steady state:

Jfij ≡ EvJ
f
ijv = Ev

λfi (v − πijv)

1− βδ
(

1− λfi
) =

λfi (µij − πij)

1− βδ
(

1− λfi
)

where πij = Evπijv and µij is the average valuation from i to j. This equation is reminiscent of a “gravity

equation”; it delivers the trade flow (in quantity rather than value) from i to j as a function of two

components. First, the primitives {λfi , µij , κij , Ei} not just for i, j but for all countries; this is reminiscent

of the analysis in Anderson and Van Wincoop (2003) who show that the gravity equation in a trade model

needs to include a country’s overall trade disposition. Second, the endogenous trade costs, πij , for all

j. The important addition here is that the trade flow depends on all countries through the endogenous

trade cost πij ; indeed, recall from the price equation (17) that the shipping price πij depends on all

possible destinations from i through the outside option of the ship that can ballast anywhere. Therefore,

the network of countries affects bilateral trade flows not just directly through the primitives, but also

indirectly through the endogenous trade cost.

5 Empirical Strategy

In this section we lay out the empirical strategy followed to estimate the model of Section 4. The main

model primitives we wish to recover are: the matching function and searching exporters, the ship costs of

traveling and waiting at different ports, as well as the distribution of exporter valuations and their costs.

We exploit data on the numbers of ships, the numbers of matches and weather conditions to recover the

matching function and exporters. Then, using the ballast decisions of ships, the prices and the flows of

loaded trips, we recover the remaining primitives. Here, we describe this empirical strategy, while Section

6 presents the results.
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5.1 Matching Function Estimation

A sizable literature has estimated matching functions in several different contexts (e.g. labor markets,

marriage markets, taxicabs).30 For instance, in labor markets, one can use data on unemployed workers,

job vacancies and matches to recover the underlying matching function. In the market for taxi rides, one

observes taxis and their rides, but not hailing passengers; in recent work, Buchholz (2015), and Frechette,

Lizzeri and Salz (2016) have used such data, coupled with a “parametric” assumption on the matching

function to recover the hailing passengers.31

Similar to the taxi market, we observe ships and matches, but not searching exporters. Here, we adopt

a novel approach to simultaneously recover both exporters, as well as a nonparametric matching function.

Our approach makes two contributions to the literature. First, we do not take a stance on the presence

and magnitude of search frictions in the industry. Why is this important? Consider the case of no search

frictions, so that the matching function is

mit = min (sit, fit) (20)

In words, all potential matches are realized. In contrast, if there are search frictions, we have:

mit = m (sit, fit) ≤ min (sit, fit) (21)

so that some potential matches are not realized. If one side of the market is unobserved (in this case

freights) or mismeasured (arguably, in labor markets searching workers are imperfectly measured due to

on-the-job search, unobserved search effort or noisy participation decisions; Lange and Papageorgiou (in

progress)) it is not straightforward to differentiate (20) from (21). Indeed, when a ship/taxi is traveling

empty is it because no exporter/passenger was searching or because an exporter/passenger was there but

did not get to meet the ship/taxi due to frictions? Our approach, allows us to disentangle the two.

Our second contribution is to avoid imposing parametric restrictions on the matching function. The

literature has imposed functional forms such as the Cobb-Douglas. The desire to be non-parametric is not

just “stylistic” when it comes to matching functions: parametric restrictions are directly linked to welfare

implications. For instance, it has been shown in a wide class of labor market models, that the condition
30See Petrongolo and Pissarides (2001) for a survey in the context of labor markets.
31Buchholz (2016) assumes an “urn-ball” matching function. Frechette, Lizzeri and Salz (2015) construct a numerical

simulation of taxi drivers that randomly meet passengers over a grid that resembles Manhattan; this spatial simulation
essentially corresponds to the matching function, and can be inverted to recover hailing passengers.
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for constrained efficiency depends crucially on the elasticity of the matching function with respect to the

search input (Hosios (1990)). In most of the matching function estimation literature this elasticity has

been restricted to be constant.32

Our approach borrows from the literature on nonparametric identification (Matzkin (2003)) and de-

livers both a nonparametric matching function, as well as the number of searching exporters. Roughly,

the method leverages (i) an invertibility assumption between matches and freights, (ii) the observed re-

lationship between ships and matches, (iii) an instrument that shocks the ships exogenously, and (iv) a

restriction on the matching function that allows us to disentangle monotonic transformations. To provide

some intuition, we outline a simple version of the methodology. We then formalize the argument. We refer

the interested reader to Matzkin (2003) for further details.

Suppose that (i) the matching function mi(si, fi) is continuous and strictly increasing in fi and, (ii)

that si is independent of fi. The first assumption is natural in our context: increasing the number of

freights should lead to more matches, all else equal. The second assumption will prove useful in presenting

the estimation methodology, but it is likely not valid in our case, as the spatial distribution of ships and

freights is determined jointly in equilibrium; we relax this assumption below.

Let Fm|s denote the distribution of matches conditional on ships, and Ff the distribution of freights,

f . Then at a given point (sit, fit,mit) we have:

Fm|s (mit|sit) = Pr (m (s, f) ≤ mit|sit)

monotonicity = Pr
(
f ≤ m−1 (s,mit) |sit

)
independence = Pr

(
f ≤ m−1 (sit,mit)

)
= Ff (fit) (22)

In words, the conditional distribution of matches (outcome) on ships (observed covariate) at a point

(mit, sit) is equal to the distribution of freights at the corresponding (unobserved) point fit. Equation (22)

is our main relationship for the identification and estimation of both freights and the matching function.

However, (22) alone is not sufficient: it is not possible to distinguish monotonic transformations of f and

m(·). To do so, a restriction on either the distribution Ff or the matching function is required. In this paper

we assume that the matching function is homogeneous of degree one, so that: mi(αsi, αfi) = αmi(si, fi),
32Petrongolo and Pissarides (2001)
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all α > 0.33 The intuition behind the identification argument is as follows: the correlation between si and

mi informs us on ∂mi(si, fi)/∂si, since the sensitivity of matches to changes in ships is observed; then,

due to homogeneity, this derivative also delivers the derivative ∂mi(si, fi)/∂fi; and once these derivatives

are known, so is the matching function, which can now be inverted to provide the freights as well.34

Finally, as mentioned above, independence of ships and freights is not a natural assumption in our

setting. We do, however, have a plausibly valid instrument: sea weather shifts the arrival of ships in

a port without affecting the number of freights. Hence, we instrument with weather conditions. We

assume that ships s are a function of the instrument z and a shock η such that ships and freights are

independent conditional on η. This allows us to modify (22) by conditioning on η̂ as well as on s to obtain

the distribution of freights.

Proposition 2 formalizes these arguments:

Proposition 2. (i) Suppose that m(s, f) is continuous, (positively) homogeneous of degree 1 and strictly

increasing in f . Suppose further that s and f are independent. Finally, suppose that m is known for a

specific pair (s∗, f∗) so that m∗ = m(s∗, f∗), with m∗ 6= 0. Then, the function m(·) is identified.

(ii) Suppose there exists an instrument z such that

s = h(z, η) (23)

with z independent from (f, η). Assume that proper conditions hold so that η can be uniquely recovered

from (23). Then, s and f are conditionally independent given η. The distribution Ff and the matching

function can be recovered from:

Ff |η(φ) = F
m|s= φ

f∗ s
∗,η

(
φ

f∗
m∗
)

Ff (φ) =

∫
Ff |η(φ)fη(η)dη

m(s, φ) =

∫
F−1m|s,η(Ff |η(φ))fη(η)dη

In Section 6, we implement this methodology separately for each market and present the results.35

33In the labor search literature, where there have numerous studies estimating matching functions, most estimates find
support for constant returns to scale (see Petrongolo and Pissarides, 2001). Given that the nature of search frictions is
not that different (in both cases it is a shortcut for information frictions about which ships/freights may be available), we
consider this a reasonable starting point.

34We could alternatively impose an assumption on the distribution Ff . For example, if we assume that Ff is uniform on
[0, 1], we can use (22) to recover fit pointwise by the conditional distribution of m on s; once freights are recovered, we also
instantly know the (inverse) matching function. Bajari and Benkard (2005) employ this methodology to nonparametrically
estimate hedonic price equations and unobserved product quality in the case of personal computers.

35We interpret the observed time-series variation as driven by short-run deviations from the steady state values. Ships and
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5.2 Ship Costs

We next turn to the ships’ sailing cost, csij , and port costs, cui , as well as the variance of the shocks, σ.36

We obtain the parameters of interest, θ = {csij , cuj , σ}, from the ships’ optimal ballast choice probabilities

given by (8) and (9). As shown in these two conditions, ships’ ballast choice probabilities depend on the

ships’ value functions (Ui,Wij), which in turn depend on the parameters of interest, θ. We estimate θ via

Maximum Likelihood. We use a nested fixed point algorithm to solve for the ship value functions at every

guess of the parameter values (Rust (1987)), compute the predicted choice probabilities and then calculate

the likelihood.

Since our model features a number of inter-related value functions (W,U, V ), it does not fall strictly

into the standard Bellman formulation. Hence, we provide Lemma 2, which proves that our problem is

characterized by a contraction map and thus the value functions are well defined.

Lemma 2. For each value of the parameter vector θ, the map Tθ : Rn → Rn, U → Tθ(U) with,

Tθ(U) = −cui + λiπi + λi
∑
j 6=i

Gij

[
−

csij
1− β (1− ξij)

+ βξij
Uj

1− β (1− ξij)

]
+ (1− λi) Ji(θ, U)

is a contraction and U(θ) is the unique fixed point.

Proof. See the Appendix.

In brief, our estimation algorithm proceeds in the following steps:

1. Guess an initial set of parameters {csij , cui , σ}.

2. Solve for the ship value functions via a fixed point:

(a) Set an initial value U0. Then at each iteration m:

(b) Solve for Wm from:

Wm
ij =

−csij + ξijβU
m
i

1− β (1− ξij)

(c) Update Jm from:

Jmi = σ log

exp
βUmi
σ

+
∑
j 6=i

exp
Wm
ij

σ

+ σγeuler

freight make their decisions based on the long-run, steady state distributions (s∗, f∗, sw∗).
36Note that here σ is identified because the observed prices pin down the scale of utility (in dollars).
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(d) Update Um+1 from:

Um+1
i = −cui + λiEv,jπijv + λi

∑
j 6=i

GijW
m
ij + (1− λi) Jmj

where we use the actual average prices from i to j, i.e., Ev,jπijv =
∑

j 6=iGijπij , where πij is

the average observed price from i to j. Note that λi is known (it is simply the average ratio

mi/si). Similarly, the matrix Gij , whose element (i, j) is the probability that an exporter ships

from i to j (conditional on exporting), is obtained directly from the data, simply by computing

frequencies of trade flows (loaded trips); we further discuss this in Section 5.3.

3. Form the likelihood using the choice probabilities:

L =
∑
i

∑
j

∑
m

yijm logPij(θ) (24)

where yijm is 1 if ship m chose to go from i to j, and Pij(θ) are given by (8) and (9).37

Identification As is always the case in dynamic discrete choice models, not all parameters of interest

are identified and some restriction needs to be imposed. Here, we have I2 + 1 parameters and I2 − I

choice probabilities, so we require I + 1 restrictions; we show this formally, borrowing from the analysis

of Kalouptsidi, Souza-Rodrigues and Scott (2016) in the Appendix. The additional restrictions amount

to using the observed fuel price to determine csij ; details in Section 5.2. We estimate the waiting costs

cu1 , ..., c
u
I , which may be capturing heterogeneous costs that are difficult to measure (actual port wait costs,

ability to wait outside of port, etc.), as well as σ.

We present our results in Section 6.

5.3 Exporter Valuations and Exporting Costs

We begin with exporter valuations v, and then turn to their costs κ. Due to the data on shipping prices,

we are able to back out exporter valuations flexibly and in a straightforward manner. Indeed, consider
37We assume that our data comes from one steady state. During our sample period of 2012-2016 the industry did not

experience any major shocks. Moreover, we estimate the model separately by season to allow for seasonal time variation and
find our results to be robust (see Section 6).
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the equilibrium price (17) solved with respect to the exporter’s valuation:

v =
1− βδ

(
1− γλfi

)
(1− γ) (1− βδ)

πijv −
γ
(

1− βδ
(

1− λfi
))

(1− γ) (1− βδ)
(Ji −Wij) (25)

Notice that once θ = {csij , cui , σ} is known, so is Ji and Wij . Moreover, πijv is observed, while λfi is

known from the matching function estimation (λfi is the average ratio 1
T

∑
mit/fit where fit is estimated).

We calibrate the freight survival probability to δ = 0.99 so that freights survive with high probability; and

we calibrate the discount factor to β = 0.995. Now, equation (25) has two unknowns: the value v and

the bargaining coefficient γ. Our approach amounts to obtaining γ using some prior knowledge on the

average value of commodity trading and then using this parameter to recover v from (25) pointwise. In

particular, we collect information on the average price of the five most common commodities and multiply

it with the average tonnage carried by a bulk carrier; this resulting average value is 7 million dollars. We

take the average of (25) over i, j and solve for γ, finding that γ = 0.3.38 Now, given this estimate, we

recover exporter valuations point-wise from (25) and obtain their distribution, F vij , nonparametrically.39

Note that valuations are drawn from an origin-destination specific distribution, which allows for arbitrary

correlation between a cargo’s valuation and destination.

The exporter costs κij capture both the cost of production as well as any export costs beyond shipping

prices and are estimated from exporters’ chosen destination given by the choice probabilities G̃ij defined

in (12). Indeed, given G̃ij we can recover κij as follows (see Berry (1994)):

κij = Jfij −
(

ln G̃ij − ln G̃i0

)
(26)

where Jfij is now known: use (10) and the recovered distribution F vij

Jfij ≡ EvJ
f
ijv = Ev

λfi (v − πijv)

1− βδ
(

1− λfi
) =

λfi (µij − πij)

1− βδ
(

1− λfi
)

38We collect the average price during our sample period for iron ore, coal, grain, steel and urea from Index Mundi, and
obtain µ̄ as their weighted average based on each commodity’s frequency in shipping contracts. The average cargo load
is equal to the average bulker size times its utilization rate (see Footnote 53). Then, solving (25) with respect to γ and
averaging over i, j, v yields:

γ =
(1 − βδ) (µ− π)

βδEijvλ
f
i πijv + (1 − βδ)µ− Eij

(
1 − βδ

(
1 − λfi

))
(Ji −Wij)

where µ is calculated from above to equal 7 million US dollars and π is the average observed price.
39We have implicitly assumed that the exporter obtains zero payoff when he does not find a match. It is not possible to

separately identify valuations from such inventory costs or scrap values; the assumption that the exporter obtains zero payoff
when he does not find a match means that valuations are interpreted with reference to inventory costs or scrap values.
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where πij = Evπijv and µij is the average valuation from i to j. G̃ij corresponds to the observed frequency

of loaded trips going from i to j. We do however need to determine the probability of the outside option;

as described in detail in Section 6, we use external data on the total commodity production by country.

6 Results

In this section we present the results from our empirical analysis. Throughout the estimation, we consider

15 geographical regions.40 To determine these regions, we employ a clustering technique that minimizes the

distance between individual ports.41 Figure 17 in the Appendix depicts the constructed regions. Pointwise

confidence intervals and standard errors are computed via bootstrap samples.

6.1 Matching Function

Search Frictions Test Before presenting the main results, we provide some further reduced-form

evidence for search frictions, inspired by the model and the empirical methodology outlined in Section

5.1. Suppose that for some market i, it is known that there are more ships than exporters (sit > fit),

i.e. min (fit, sit) = fit. If there are no search frictions, so that mit = min (fit, sit) = fit, exogenously

changing the number of ships does not affect the number of matches. In contrast, if there are search

frictions, any exogenous change in the number of ships changes the number of matches. We can thus

test for search frictions by using unpredictable changes in ocean weather conditions to explore whether

changing the number of ships in markets with a lot more ships than exporters affects the realized number

of matches. To proxy for weather conditions, we employ the unpredictable component of wind at sea in

all directions.42 Table 4 in the Appendix presents the results for the west coast of South America, which

reveal that indeed, matches seem to be affected by weather conditions, and that thus search frictions

are present in this market. We run similar regressions for all markets with significantly more ships than
40The trade-off here is that we need a large number of observations per region, while allowing for sufficient geographical

detail. The markets are: west coast of North America, east coast of North America, Central America, west coast of
South America, east coast of South America, West Africa, Mediterranean, North Europe, South Africa, Middle East, India,
Southeast Asia, China, Australia, Japan-Korea. We ignore inter-regional trips.

41We have 1492 ports. Let D denote a matrix of distances, so that Dij represents the sea distance among each region
pair i, j. We use D as an input to cluster ports through a hierarchical clustering algorithm: in each iteration, the algorithm
produces clusters that minimize within-region dispersion.

42In particular, we divide the sea surrounding each market into at most 4 different zones. For each zone we use information
on the wind speed at different distances from the coast and in different directions. To obtain the unpredictable component of
weather we run a VAR regression of these weather indicators on their lag component and season fixed effects. We experiment
with the lag structure and the results are overall robust. Finally, the results are robust to running the VAR jointly for
neighboring zones.
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Figure 6: Average weekly number of exporters.

freights, and find similar results.43

Matching Function Estimates We now turn to the results from using our main methodology of

Section 5.1.44 Figure 6 presents the weekly average number of exporters in the world. Exporters are

concentrated in Australia, the east coast of South America and Southeast Asia; while India, Africa and

central America have the lowest freights available. This is consistent with the raw data patterns of Section

3 which documents the global trade imbalance. To evaluate our results, we collect external country-level

data on total commodity exports and find that they in fact correlate well with our estimated exporters

(see Figure 19 in the Appendix).

To visualize the matching function, Figure 7 plots matching rates for ships and exporters, for the west

coast of South America as one example. The top panel plots the matching rate for exporters, λf , as a

function of the number of exporters searching and for different levels of ships. Note that, as expected, λf

declines as the market gets crowded with exporters looking for a ship. Similarly, the bottom panel plots

the probability that a ship finds a match, λ, as a function of the number of ships and for different levels
43It is not straightforward to interpret the signs of the coefficients as each region may have ports facing different directions

and so wind from a certain direction will affect them differently.
44Following Proposition 2, we need a known point (m∗, s∗, f∗), such that m(αs∗, αf∗) = αm∗. We choose 1 = m(s∗, 1), so

that one exporter is always matched when there are s∗ ships. We set s∗ such that in all markets mi ≤ fi and we iterate over
s∗. Note that this approach delivers a conservative bound on search frictions, since in principle we could allow for higher
levels of exporters.
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Figure 7: Estimated match finding probabilities for ships and exporters, λ and λf in the west coast of
South America. “High” corresponds to 40th percentile, while “low” corresponds to 60th percentile.

of exporters. Again, this probability declines in the number of searching ships. It is also worth noting,

that exporters have substantially higher chances of finding a match than ships, consistent with our sample

period of high ship supply and low demand, as well as our conservative scale restriction on the exporters

(see footnote 44). This is true for all markets.

To measure the extent of search frictions in different markets, we compute the average percentage of

weekly “unrealized” matches; i.e. (min{si, fi} −mi) /min{si, fi}. The results are plotted in Figure 8 and

reveal that search frictions are heterogeneous over space and may be sizable, with up to 20% of potential

matches “unrealized” weekly in regions like west Africa and parts of South America and Europe. On

average, 17.2% of potential matches are “unrealized”.45,46

We use the ratio of unrealized matches to evaluate our results. First, we find that the ratio of “un-

realized” matches correlates well with the ratio of incoming and outgoing ships, which, as discussed in
45Results are overall robust if instead of imposing that the matching function is homogeneous of degree one, we fix the

distribution of f ; see Footnote 34. In our case, a [0, 1] uniform distribution for freights does not sound plausible since we
need to also satisfy mit ≤ fit for all i, t. Therefore, we instead experimented with a more flexible distribution (normal, log-
normal) and calibrated its parameters so that this inequality is always just satisfied- this again yields the most conservatively
estimated level of search frictions.

46It is worth noting that this does not imply that in the absence of search frictions we would have 17.2% more matches;
this is simply a measure of the severity of search frictions in different markets. In Section 7 we address this question by
shutting down search frictions and examining the corresponding change in trade.
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Figure 8: Average weekly share of unrealized matches due to search frictions.

Section 3.3, is also consistent with the presence of search frictions. As an example, comparing Figure

3 to Figure 8 we see that a substantial share of potential matches are unrealized in Chile, while fewer

are unrealized in Norway. Second, the ratio of unrealized matches, is also positively correlated with the

observed within-market price dispersion, another indicator of search frictions. These findings suggest that

our estimates for the matching function and the searching exporters are reasonable. Finally, we estimate

the matching function separately for Capesize (biggest size) and Handysize (smallest size) vessels and find

that Capesize have somewhat lower ratios of unrealized matches; this is makes sense as the market for

Capesize is thinner (results are overall robust across ship types).

6.2 Ship Costs

In our baseline specification, we construct seven groups for the sailing cost csij roughly based on the

continent and coast of the origin, and we estimate all port wait costs cui , for all i.47 Note that csij is the

per week sailing cost from i to j and its major component is the cost of fuel.48 We set this cost for one

of the groups (for trips originating from the east coast of North and South America) equal to the average
47The seven groups are: (i) Central America, west coast Americas; (ii) east coast Americas; (iii) west and south Africa;

(iv) Mediterranean, Middle East and Baltic; (v) India; (vi) Australia and southeast Asia; (vii) China, Japan and Korea.
48The ship also incurs operating costs (crew, maintenance, etc.). However, these are fixed costs of operation; as such they

do not affect the ships’ decisions and can be ignored.
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fuel price. 49 Note also that since the fuel cost is paid by the exporter when the ship is loaded, we add it

to the observed prices.50

The first two columns of Table 3 report the results. Not surprisingly perhaps, sailing costs are fairly

homogeneous. Port wait costs are more heterogeneous and large, ranging between 260,000 and 130,000 US

dollars per week. Consistent with industry narratives, it is costly to let a ship waiting at port. Ports in

the Americas are the most expensive, while ports in China, India, Southeast Asia, the Middle East are the

cheapest. The estimate of the standard deviation of the preference shocks, σ, is about 11,000 US dollars,

roughly 10% of price, which implies that the preference shocks do not account for a disproportionately

large part of utility. As shown in Figure 18 of the Appendix, the fit is very good, as our predicted choice

probabilities are very close to the observed ones. The results are robust when the estimation is performed

separately for each ship type. Results are also robust when we estimate the costs separately by season.51

Port Costs (cu) Cost of Travelling (cs) Exporters Valuations (µv) σ

North America West Coast 2.604 0.692 15.962
North America East Coast 2.269 0.691 17.196
Central America 1.846 0.692 12.711
South America West Coast 2.004 0.692 11.525
South America East Coast 2.562 0.691 24.689
West Africa 1.435 0.641 12.041
Mediterranean 1.642 0.568 11.174
North Europe 1.4 0.568 7.9
South Africa 2.514 0.641 17.855
Middle East 1.278 0.568 7.108
India 1.482 0.624 15.109
South East Asia 1.67 0.56 10.331
China 1.445 0.558 11.729
Australia 2.646 0.56 13.849
Japan-Korea 1.554 0.558 10.626

0.1173
Note: all the estimates are in 100,000 USD

Table 3: Ship costs and exporter valuation estimates.

49We have experimented heavily with different types of identification restrictions and the results are robust. In particular,
we have considered (i) one csij = cs; (ii) coarser and finer groups; (iii) csij clustered by the distance between i and j and
clustered by the weather between i and j (both capture nonlinear effects of distance on the sailing cost).

50The average weekly price of fuel is 69,100$.
51As our data comes from a period of historically low shipping prices and our estimated value functions are negative.

This is partly due to the fact that we are not modeling ships’ expectations so shipowners do not realize that under a mean-
reverting demand for seaborne trade prices will go up eventually (see Kalouptsidi (2014)). If we compute the equilibrium
under higher exporter valuations that lead to prices closer to the ones observed before 2010, the ship value function indeed
becomes positive.
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6.3 Exporter Valuations and Costs

In Figure 9 we plot the average exporter valuations across origins, while the third column of Table 3

reports the estimates. There is substantial heterogeneity in valuations across space. South and North

America have the highest valuations, while India and southeast Asia have the lowest. This ranking is

reasonable, as for instance, Brazil exports grain which is expensive, while Southeast Asia exports mostly

coal, which is one of the cheapest commodities. We generalize this example by focusing on grain, the

most expensive frequently shipped commodity. In particular, we use the small subsample of contracts that

report the product shipped and explore whether countries that have a high share of grain exports tend to

have higher estimated valuations. The results, shown in Figure 10 reveal that indeed there is a positive

correlation between the two, suggesting that exporters with higher valuations may be producers of more

expensive products.52 Of course, there may be other factors determining the valuation of an exporter such

as inventory control, just in time production, etc. On average, the average price πij is equal to 5% of the

average valuation µij , consistent with other estimates in the literature (e.g. Hummels, Lugovskyy and

Skiba (2008)).
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Figure 9: Average exporter valuations.
52As discussed in Section 3.3, the dependence of prices on the type of good is suggestive of search frictions in the market.

In our estimation we are able to back out the valuations given our estimates for search frictions. The external validation
discussed in this paragraph also supports our conclusions that search frictions are present in these markets.
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Figure 10: Average exporter valuations and share of exports in grain. The size of the circle proxies the
number of observations.

Finally, we turn to exporter costs. We back out the cost of entering into exporting from origin i to

destination j, κij , from (26). As discussed above, the satellite data provides direct information on the

frequencies Gij ; indeed, Gij is equal to the proportion of loaded trips going from i to j (see Figure 15 of

the Appendix). To obtain κij though we also need the share of the outside option, or equivalently the

number entrants di and potential entrants Ei. We obtain the number of entrants by solving for di from the

freight transition (1) and taking the average. The number of potential entrants Ei is set equal to the total

production of the relevant commodities for each region i.53 The share of the outside option is on average

62%. China and India feature the highest outside share, consistent with their large imports, while South

America, Southeast Asia and Australia have the lowest outside share.

The estimated exporter costs exhibit substantial heterogeneity across destinations from a given origin,

as well as across origins. On average κij is the same order of magnitude as the average valuation µij .

Moreover, we find that exporter costs are lower between an origin i and a destination j if the same

language is spoken at i and j, which is reasonable since κij includes both production costs, as well as other

exporting costs.
53We collect annual country-level production quantity data for grain (FAO), coal (EIA), iron ore (US Geological Survey),

fertilizer (FAO), steel (World Steel Association). To transform the production tons into shipments, we divide by the total
fleet times the average “active” ship size; a ship operates on average 340 days per year (due to maintenance, repair, etc.) and
has a deadweight utilization of about 65%. A region’s total production serves as an upper bound to the region’s exports.
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7 Counterfactuals (prelim)

In this section, we use our estimated model to explore a number of questions of interest through the lens

of endogenous trade costs. We calculate the trade elasticity with respect to transportation costs. We shed

light on how shocks propagate through the entire network of countries; in particular, we ask how a Chinese

slow-down affects the world. We compute the impact of the opening of the Northwest Passage on trade

costs and flows. Finally, we quantify the social loss and the trade reduction due to search frictions.

To perform the counterfactuals, we compute the steady state spatial equilibrium distribution of ships

and exporters defined in Proposition 1. In the Appendix, we provide the computational algorithm em-

ployed.54

7.1 Trade Elasticity with respect to Transport Cost

We first consider how a decrease in the cost of shipping, cs, affects shipping prices, π and trade flows. In

particular, we reduce the sailing cost, cs, by 10%. This change in transportation costs has two effects:

First, there is a direct increase in the surplus of all matches, since now a match between a ship and a

freight is more valuable.55 All else equal, this reduces export prices, π, which in turn increases the value

of an unmatched exporter, Jf , and thus induces more potential entrants to enter the export market.

That’s not all, however. Reducing cs, implies that ballasting is now cheaper and ships can reallocate

across space more freely. Therefore, their “outside option”, J is now higher. Since Nash bargaining requires

that both parties receive their outside option plus a share of the surplus, an increase in the ship’s outside

option leads, all else equal, to an increase in prices, π (see the price equation (17)). Put differently, reduced

transportation costs implies that ships are less “tied” to the particular market and freights’ monopsony

power is reduced. This effect tends to mitigate the increase in freight entry driven by the direct effect on

the surplus.

Figure 11 presents the results and showcases that there is substantial heterogeneity in different regions’

reaction to a change in transportation costs. The Americas (especially the east coast), Australia and

Europe see a 5-15% increase in exporting and a 2-12% decrease in export prices, consistent with the first

effect. In contrast, China, India and Japan/S.Korea experience a 5-20% decline in exporting and a 7%
54Our algorithm always converged to the same solution, even from quite different starting values.
55Formally, using the ship and freight value functions, the match surplus is given by

Sijv = v −
csij

1 − (1 − ξi,j)β
+

ξijβ

1 − (1 − ξij)β
Uj − Ji − Jfijv.

A decline in csij directly increases Sll′v.
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Figure 11: Change in exporting and trade costs under a 10% decline in transportation costs

increase in export prices, suggesting that here the second effect dominates. It is no accident that net

exporters see their exporting rise, while net importers see their exporting fall. Ships ending a trip at net

importing countries now face lower ballast costs and will thus tend to wait less to get a cargo; their outside

option is higher and they can command higher prices. In contrast, net exporters benefit from the increased

willingness of ships to ballast, as they see an increase in the number of ships ballasting there. In addition,

we see that more distant exporters (South America) benefit more than non-remote exporters (Australia).

Similarly, distant importers (India) are hurt more. Overall, consistent with the second effect, we observe

that ships are more willing to ballast towards higher value destinations (e.g. east cost of North America,

as well as Brazil): as transport costs, and thus distance, now matter less, freight valuations, v, become a

relatively more important determinant of ships’ decisions.

7.2 Chinese Slow-down

We next explore how shocks propagate in a world where trade costs are endogenous by considering a

Chinese slow-down. In particular, we reduce µi,china by 10%. Figure 12 presents the resulting trade costs

and trade flows across the world.

We begin discussing the results by looking at China itself: shipping prices from China increase by 2%,

while exporting declines by 7%. This nicely illustrates the complementarity between imports and exports:

the large Chinese imports, led to a large number of ships ending their trip in China and looking for freight

there, which reduced the exporting costs for Chinese exporters. Therefore, when imports decline, fewer
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ships end up in China and Chinese exporters are hurt.

Second, as Figure 12 indicates, China’s neighbors including Australia, South-East Asia and India also

see their exports fall substantially (between 20 and 39% ). On one hand, these countries export to China;

therefore, they now lose an important trading partner in both volume and value. This will tend to reduce

exporting. It also pushes down prices, both because China is a relatively expensive destination (high

µi,China), but also because ships’ outside option is now lower. Again, however, that is not all. This

region of the world consisted of some close-by large exporters (Australia, South-East Asia) and importers

(China, India) and thus benefited from a “cheap” supply of ships that are stuck in the area ballasting

and trading between these countries. China’s slow-down tends to reduce this ship glut; this second effect

may dampen or amplify the increase (decrease) in trade costs (trade flows). In particular, Australia and

South-East Asia, as big net exporters can still attract these ships to export to other destinations (mainly

they substitute to India). In contrast, India is a net importer who exported mostly to China; therefore,

ships are even less willing now to go to India, which substitutes its exporting activities to the Middle East,

an unattractive destination for ships; India thus sees its exporting prices increase. Indeed, if ships were

not able to reallocate, India’s decline in exporting would have been 19% rather than 39%, while Australia’s

would have been 41% rather than 35%.

Finally, distant countries are also affected by China’s slow-down. The Americas, Europe and Africa

experience a 2-10% decline in exporting. Similarly to above, the Americas lose a large and valuable trading

partner and this non-surprisingly pushes down their exporting. At the same time, however, they are able

to attract the ships that left China and its neighbors. Therefore, although overall their exporting declines,

if shipping prices were held fixed, this decline would have been much larger (21% rather than 10% for

Brazil, 14% rather than 6% for North America).

7.3 Opening the Northwest Passage

The Northwest Passage is a sea route connecting the northern Atlantic and Pacific Oceans through the

Arctic Ocean, along the northern coast of North America. This route is not easily navigable due to Arctic

sea ice; with global warming and ice thinning, there is public discussion about opening the passage to be

exploited for shipping. The Northwest Passage would reduce the distance between America and the Far

East.

To simulate the opening of the Northwest Passage, we reduce the distance between the East Coast of

North America and China/Japan/S.Korea, as well as the distance between Europe and China/Japan/S.Korea
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Figure 12: Change in exporting and trade costs under a Chinese slow-down

by 20%.56 Figure 13 presents the resulting change in trade costs and exporting by region. Naturally, the

East Coast of North America sees its exporting rise. Interestingly, China and Japan/S.Korea see their

export prices rise and their exports fall. Why? On one hand, the import and export complementarity

suggests that exports should increase when imports increase. On the other hand, ballasting is now less

costly for ships and when in China ships can now ballast to America more cheaply; this increases shipping

prices and decreases exporting. In this case, the second effect dominates.

Finally, Figure 13 reveals that other countries, not directly affected by the opening of the Northwest

Passage experience changes in their trade. Strikingly, shipping prices in India increase and exports fall.

Ships arriving loaded in India are now less likely to remain in port waiting for a cargo, as they can ballast

to nearby exporters (Southeast Asia, Australia) and from there load to go to China, which is now a

more attractive destination (Uchina is higher since ships can then more easily ballast to North America).

In contrast, other countries benefit from the Northwest passage; for instance, in Brazil and Australia

shipping prices fall and exporting rises: as these countries export more to China and China is a more

attractive destination now, ships require lower payment to go there. These effects are present because of

the endogenous trade cost and demonstrate the spillover of such policy changes through the network of

countries.
56Sailing distances between New York and Shanghai via the Northwest Passage are obtained from Østreng et al 2013, while

to approximate the best alternative route we use an online voyage calculator (http://sea-distances.com/).
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Figure 13: Change in exporting and trade costs if the Northwest Passage was a viable commercial route.

7.4 The Cost of Search Frictions

Finally, we quantify the trade lost because of search frictions. To do so, we shut down search frictions

by setting m(s, f) = min{s, f}. We find that exporting would be 10-60% higher across different regions

in the world. While countries that experience more severe frictions, as captured in Figure 14, see large

increase in exports, this is not always the case. In particular, one has to take into account the mechanisms

illustrated in the previous counterfactuals and how eliminating search frictions affects the entire network

of countries. For instance, high value exporters like Brazil and the east coast of North America experience

disproportionally large increases in exports, as differences in frictions across markets are no longer relevant

and value, µ, becomes a much more important determinant of trade. Indeed the correlation between the

change in exports and µij is 0.71.57

57The p-value for the correlation coefficient is 0.
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Figure 14: Change in exporting in a world without search frictions.

8 Conclusion

In this paper, we build a dynamic spatial search model for world ships and exporters. Using unique data on

shipping contracts and ship movements we recover the main primitives of interest: the matching function

between ships and freights, the distribution of searching exporters, ship costs, exporter valuations. Our

methodology allows us to obtain the matching process flexibly, without relying on assumptions regarding

the extent of search frictions or the parametric form of the matching function. We demonstrate that

accounting for the endogeneity of trade costs is important in both descriptive analysis (e.g. elasticities,

shock propagation), as well as policy analysis (e.g. transportation infrastructure planning). Finally, we

find that search frictions substantially reduce world trade.
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9 Appendix

9.1 Construction of Ship Travel Histories

Here, we describe how the travel history of ships is constructed. The first task is to identify stops that

ships make, using EE data, which provides the exact location of ships every 6 minutes. A stop is defined

as an interval of at least 24 hours during which (i) the average speed of a ship is below 5 mph (the sailing

speed is between 15 and 20 mph) and, (ii) the ship is located within 250 miles from the coast. A trip is

the travel between two stops.

The second task is to identify whether a trip is loaded or ballast. To do so, we use the ship’s draft:

high draft indicates that a larger portion of the hull is submerged and therefore the ship is loaded. The

distribution of draft for a given vessel is roughly bimodal, since as described in Section 2, a hired ship is

usually fully loaded. Therefore, we can assign a “high” and a “low” draft level for each ship and consider

a trip loaded if the draft is high (in practice, low draft is 70% of the highest draft). The data on draft is

not as complete as that on location, as not all satellite signals contain the draft information. We therefore

consider a trip ballast (loaded) if we observe a signal of low (high) draft during the period that the ship

is sailing. If we have no draft information during the sailing time we consider the draft at adjacent stops.

Finally, we exclude stops longer than 6 weeks, as such stops may be related to maintenance or repairs.

The third and final task is to refine the origin and destination information provided in the Clarksons

contracts. Although the majority of Clarksons contracts provide some information on the origin and des-

tination of the trip, this information is often vague (e.g. “Far East”, “Japan-SKorea-Singapore”), especially

in terms of destination. We use the EE data to refine the contracted trips’ origins and destinations by

matching each Clarksons contract to the identified stop in EE, that is closest in time and, when possible,

location.58 First we use the loading date annotated on each contract to find a stop in the ship’s movement
58Some contracts require a ship to ballast from a “delivery port” to a “loading port” (ballast leg). In this case, we consider

as origin the loading port.
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history that corresponds to the beginning of the contract. This is done by finding the stop that is closest

in time to the loading date. While we have good data about the beginning of the contract, the data on on

the date or port in which the cargo is to be discharged is somewhat more noisy. Therefore, we search the

ships history for a stop that we can classify as the end of the contract. In particular, we consider all stops

within a three months window since the beginning of the contract. Among these stops we eliminate all

those that (i) are in the same country in which the ship loaded the cargo and (ii) are in Panama, South

Africa, Gibraltar or at the Suez canal and in which the draft of arrival is the same as the draft of departure

(to exclude cases in which the ship is waiting to pass through a strait or a canal) 59. To select the end of

the contract among the remaining options we consider the following possibilities:60

1. If the contract reports a country of arrival and if there are stops in this country, select the first of

these stop as the end of the trip;

2. If the country of arrival is “Japan-SKorea-Singapore”, and if there are stops in either Japan, China,

Korea, Taiwan or Singapore, we select the first among these as the end of the trip;

3. If the contract doesn’t report a country of arrival and there are stops in which the ship arrives full

and leaves empty, we select the first of these as the end of the trip;

9.2 Construction of Searching Ships

Here we describe how the vector of searching ships st = [st1, ..., stI ] and the vector of matches mt =

[mt1, · · · ,mtI ] are constructed, where sit denotes the number of ships in market i and week t that are

available to transport a cargo and mit the realized matches in market i and week t. To construct sit we

consider all ships that ended a trip (loaded or ballast) in market i and week t − 1. We exclude the first

week post arrival in the market to account for loading/unloading times. To construct mit, we consider the

number of ships that began a loaded trip from market i in week t.

9.3 Additional Figures and Tables

59For the contracts that call for a ballast leg from a “delivery port” to a “loading port”, we look for a stop following the
start of the contract in which the ship arrives empty and leaves full, and eliminate all the preceding stops.

60We check the performance of the algorithm by comparing the duration of common trips obtained in this way with
distances provided by https://sea-distances.org/, and find that we match trip durations well.
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Figure 15: Flows of loaded trips. The colored bar along the perimeter of the circle is proportional to the
total number of incoming and outgoing loaded ships for each market. The number of outgoing loaded
ships from a market are represented as rays of the same color as the color bar, and are directed toward
the market of destination. The width of each outgoing ray is proportional to the number of loaded ships
headed from the market of origin to the market of destination.
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Figure 16: Histogram of the ratio of incoming and outgoing empty ships in net exporting countries, by
ship types.

●
●

●● ●●
●
●
●
●
●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●

●●

●●

●
●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●
●

●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●
●

●

●

●

●●
●●●●

●

●● ●

●●
●

●

●

●

●

●

●●

●●

●

●● ●● ●
●●

● ●

●●●
● ●

●
●

●

●

●
● ●●

●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●● ●●●

●

●

●

●
●●●●

●
●●

●

●●●

●●

●

●

●● ●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●●
●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

● ●

●

●

●

●

●●●

●

●

●●●● ●
●

● ●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●●

●
●

●● ●●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●●

●
●● ●

●
●

● ●
●

●

●

● ●

●

●●●
●

● ●
●

●
●●
●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●● ●
●●

●

●
●●

●

●●

●

●●

●
●

●

●●
●

●

●●
●
●●

●

●
●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●
●

● ●● ●

●

● ●●●
●

●
●

●●

●●

●

●
●
●●
●●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●●
●●

●
●

●●
●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

● ●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●●●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●
●

●
●●

●●

●

●
●●

●
●

●

●
●●
●

●

●
● ●

●

●●

●

●
●●

●

●●●

●

●

●

●

●
●

●●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●
●●●
●

●●

●●
●

●●●● ●
●

●
●

●

●●

●
●

●●
●

●
●

●●

●

●●●
●

●

●

●●
●

●
●

●

●

●

●
●●●●●●

●
●

●
●

●
● ●● ●●
●

●● ●

●

●

●
●

●

●●

●

●
● ●

●●

●
●

●●
●

●
●

●

●
●

● ●
● ●

●
●●●

−50

0

50

−100 0 100 200

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Australia
Central America
China
India
Japan−Korea
Mediterranean
Middle East
North America EC
North America WC
North Europe
South Africa
South America EC
South America WC
South East Asia
West Africa

Figure 17: Definition of markets. Each color depicts on of the 15 geographical regions.

51



Figure 18: Estimated and simulated probability of waiting in port
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Figure 19: Correlation between the estimated number of exporters and external data on country level
commodity exports. We download commodity export data (comtrade and EIA). We then divide the value
of exports by the average price for the commodity, to proxy for the total volume (in metric tons). As this
measure involves non-seaborne trade as well, it is potentially a good proxy for the number of exporters.
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matches mit

South America West Coast

N/S component in t, from NW, at sea 26.448∗∗ 25.135∗∗

(0.534) (0.644)
N/S component in t-1, from NE, at coast -0.512 -1.248∗∗

(0.366) (0.465)
N/S component in t-1, from SE, at sea 0.832∗∗ 0.601

(0.403) (0.49)
E/W component in t, from NW, at coast 0.498∗∗ 0.53∗

(0.223) (0.275)
E/W component in t, from SW, at sea 1.173∗∗ 0.828

(0.533) (0.659)
E/W component in t-1, from NE, at coast -0.762∗ -0.708

(0.413) (0.473)
E/W component in t-1, from SE, at sea -0.476∗∗ -0.464∗

(0.228) (0.268)
E/W component in t-1, from SW, at sea 1.258∗∗ 1.667∗∗

(0.52) (0.679)

Obs 200 145
R2 0.336 0.413
Joint Significance 0 0
F stat 2.645 2.465

**p < 0.05,*p < 0.1

Table 4: Regression of the number of matches on current and lagged wind speed. Column I: weeks such
that ships are at least 1.5 times higher than matches. Column II: weeks such that ships are at least two
times higher than matches. As regressors we use the unpredictable component of weather in different zones
of the sea sourrounding the west coast of South America. In particular, we divide the sea surrounding the
coast into 8 different zones (North East, South East, South West and North West both close to the coast
and in open sea), and we use the speed of the horizontal (E/W) and vertical (N/S) component of wind in
each of these zones to proxy for the weather. Finally we run a VAR regression of these weather proxies
on their lag component and season fixed effects and use the residuals in the above regression.
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ships sit
North America East Coast South America East Coast South East Asia China

E/W component in t, from NE, at coast 1.466 0.673 - -
(2.083) (0.71) - -

E/W component in t, from NE, at sea -3.231∗∗ 5.539∗∗ - -
(1.118) (1.863) - -

E/W component in t, from NW, at coast -1.091 - - -5.555∗∗

(0.772) - - (1.998)
E/W component in t, from NW, at sea - -1.194 - -12.241∗

- (0.737) - (6.238)
E/W component in t, from SW, at coast - 1.144 - -

- (1.024) - -
E/W component in t-1, from NE, at coast -2.828 - - -0.927

(1.794) - - (0.677)
E/W component in t-1, from NE, at sea -1.056 - - -

(0.774) - - -
E/W component in t-1, from NW, at coast - - - -0.888

- - - (0.704)
E/W component in t-1, from NW, at sea - -1.107 - -

- (1.02) - -
E/W component in t-1, from SW, at coast - -3.396∗ - -

- (1.881) - -
E/W component in t-1, from SW, at sea - 5.708∗∗ - -

- (1.857) - -
N/S component in t, from NE, at coast - 1.628 - 1.065

- (1.142) - (0.731)
N/S component in t, from NW, at sea - - 207.974∗∗ -

- - (2.008) -
N/S component in t, from SE, at sea 112.49∗∗ 157.273∗∗ - 321.98∗∗

(1.513) (2.442) - (2.321)
N/S component in t-1, from NE, at coast - - - 1.052

- - - (0.728)
N/S component in t-1, from NW, at coast - - -5.461∗∗ -6.207∗∗

- - (1.6) (1.997)
N/S component in t-1, from NW, at sea - - -3.186∗∗ -12.027∗

- - (1.232) (6.121)
N/S component in t-1, from SE, at sea -3.258∗∗ 3.295∗∗ - 1.004

(1.102) (1.658) - (0.864)
N/S component in t-1, from SW, at sea - 1.611 - -

- (1.676) - -

Obs 200 200 200 200
R2 0.106 0.178 0.081 0.176
Joint Significance 0.003 0 0.001 0
F stat 3.255 3.710 5.768 4.045

***p < 0.01, **p < 0.05, *p < 0.1

Table 5: First Stage, Matching Function Estimation
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9.4 Proof of Proposition 1

We first derive (18) and (19). Suppose fit, sit, swijt approach fi, si, s
w
ij , di as t→∞. Then (2) becomes:

si = (si −mi (si, fi))Pii +
∑
j 6=i

ξjis
w
ji (27)

while for a ship traveling from j to i, (3) becomes:

swji = (1− ξji) swji + Pjisj + (Gji − Pji)mj (si, fi) (28)

or

ξjis
w
ji = Pjisj + (Gji − Pji)mj = Pji (sj −mj) +Gjimj

where mi = mi (si, fi). Summing this with respect to j 6= i we obtain:

∑
j 6=i

ξjis
w
ji =

∑
j 6=i

Pji (sj −mj) +
∑
j 6=i

Gjimj

and replacing in (27) we get (18).

Equation (19) is a direct consequence of (1) and (14).

The steady state equations (18) and (19) have a fixed point over a properly defined subset of R2I ,

by the Leray-Schauder-Tychonoff theorem (Bertsekas and Tsitsiklis (2003)) which states that if X is a

non-empty, convex and compact subset of R2I and h : X → X is continuous, then h has a fixed point.

Indeed, let h : R2I → R2I , h = (hs, hf ) with:

hsi (s, f) =

I∑
j=1

Pji (s, f) (sj −mj (sj , fj)) +
∑
j 6=i

Gjimj (s, f)

hfi (s, f) = δ (fi −mi (si, fi)) + Ei
∑
j 6=0,i

G̃ij (s, f)

for i = 1, ..., I. Let X =
∏I
i=1 [0, Ei/(1− δ)]×∆s, where ∆s =

{
si ≥ 0 :

∑I
i=1 si ≤ S

}
. X is nonempty,

convex and compact, while h is continuous on X We assume that the matching function is such that

λ, λf are zero at the origin and continuous. It remains to show that F (X) ⊆ X. Let (s, f) ∈ X. Then,
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fi ≤ Ei/(1− δ) and
∑I

i=1 si ≤ S. Now,

hsi (s, f) =

I∑
j=1

Pji (s, f) (sj − λj (sj , fj) sj) +
∑
j 6=i

Gjiλj (s, f) sj

or

Proof.

hsi (s, f) =
I∑
j=1

sj [Pji (s, f) (1− λj (sj , fj)) +Gjiλj (s, f)]

where for convenience let Gii = 0 (we do not allow for inter-market trips). Summing over i gives:

I∑
i=1

hsi (s, f) =

I∑
j=1

sj

[
I∑
i=1

Pji (s, f) (1− λj (sj , fj)) +

I∑
i=1

Gjiλj (s, f)

]

or
I∑
i=1

hsi (s, f) =
I∑
j=1

sj [1− λj (sj , fj) + λj (s, f)] ≤ S

Hence hsi (s, f) ∈ ∆s.

Finally, consider hf ; since mi ≥ 0, we have

hfi ≤ δfi + Ei
∑
j 6=0,i

G̃ij (s, f) ≤ δfi + Ei ≤ δ
Ei

1− δ
+ Ei =

Ei
1− δ

Hence hfi (s, f) ∈ [0, Ei/(1− δ)] .

9.5 Proof of Proposition 2

(i) Following Matzkin (2003), two matching functions m(·) and m̃(·) are observationally equivalent if there

a exists a strictly increasing and differentiable function g(·) such that:

m̃(s, f) = m(s, g(f))

Let λ > 0 and fix s̄, f̄ . Then

m̃(λs̄, λf̄) = λm̃(s̄, f̄) = λm̄

Furthermore,

m̃(λs̄, λf̄) = m(λs̄, g(λf̄)) = λm(s̄,
1

λ
g(λf̄))
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Therefore,

m̄ = m̃(s̄, f̄) = m(s̄,
1

λ
g(λf̄))

Invertibility implies that f̄ = m̃−1(s̄, m̄) and 1
λg(λf̄) = m−1(s̄, m̄), or

g(λf̄) = λm−1(s̄, m̄)

Differentiate with respect to λ to obtain f̄g′(λf̄) = m−1(s̄, m̄), which for λ = 1 becomes g′(f̄)f̄ =

m−1(s̄, m̄) = g(f̄). Therefore, the Euler condition is satisfied and g(·) is homogeneous of degree 1. Since

g(·) is a function of a real variable, the only possibility is g(f) = cf with c > 0, a constant. Finally, we

use the a priori knowledge of the point m∗ = m(s∗, f∗) to establish that c = 1. Indeed, by definition,

m(s∗, f∗) = m̃(s∗, f∗) = m∗. But also, m(s∗, cf∗) = m̃(s∗, f∗). Therefore, cf∗ = f∗ and since f∗ 6= 0,

c = 1.

(ii) Conditional on η, s is a function of z which in turn is by assumption independent from f . It follows

that s and f are conditionally independent given η. At a point φ we have that:

Ff |η(φ) = Pr (f ≤ φ|η) = Pr (f ≤ φ|η, s) = Pr (m(s, f) ≤ m(s, φ)|η, s) = Fm|s,η (m(s, φ))

Hence,

m(s, φ) = F−1m|s,η(Ff |η(φ))

which we integrate over η to obtain the result. Let φ = φ
f∗ f

∗. Then,

Ff |η(φ) = F
m|s= φ

f∗ s
∗,η

(
m

(
φ

f∗
s∗,

φ

f∗
f∗
))

= F
m|s= φ

f∗ s
∗,η

(
φ

f∗
m∗
)

9.6 Proof of Lemma 2

Fix θ. Let φij = 1
1−β(1−ξij) . The map Tθ(U) is differentiable with respect to U with Jacobian:

∂Tθ(U)

∂U
= β (DG+ (I −D)P )� Z (29)

where D is a diagonal matrix with λi it’s i diagonal entry; P is the matrix of choice probabilities, G is the

matrix of matched trips, Z is an L× L matrix whose (i, j) element is φijξij and � denotes the pointwise
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product. Indeed, the (i, j) entry of ∂T
∂U is

(
∂T

∂U

)
ij

= 1 {i = j} − βλiGijξijφij − (1− λi)
∂Ji
∂Uj

Now,
∂Ji
∂Uj

= σ
1∑

k e
Wik
σ

e
Wij
σ
∂Wij

∂Uj
= βPijξijφij

and thus (
∂T

∂U

)
ij

= 1 {i = j} − β (λiGij + (1− λi)Pij) ξijφij

which in matrix form becomes (29) (as a convention set ξii = 1). Let H = (DG + (I −D)P ) � Z. Take

||H|| = maxi
∑

j |Hij |. Note that G,P are stochastic matrices and the diagonal matrix D is positive with

entries smaller than 1. Thus DG+ (I −D)P is stochastic. It is also true that 0 < ξijφij ≤ 1. Thus,

∑
j

|Hij | =
∑
j

(λiGij + (1− λi)Pij) ξijφij ≤
∑
j

(λiGij + (1− λi)Pij) ≤ 1

and therefore ||H|| ≤1. We deduce that ||∂Tθ(U)
∂U || 5 β < 1. The mean value theorem then implies

||Tθ(U)− Tθ(U ′)|| ≤ β||U − U ′||

9.7 Identification of Ship Port and Sailing Costs

Proposition 3. Given the choice probabilities Pij(θ), the parameters { c
s
ij

σ ,
cui
σ ,

1
σ} satisfy a (I2−I)×(I2+1)

linear system of equations of full rank I2 − I. Hence, (I + 1) additional restrictions are required for

identification.

Proof. Let φij = 1
1−β(1−ξij) . The Hotz and Miller (1993) inversion states:

σ log
Pij
Pii

= Wij(θ)−Wii(θ)

Substituting from (4)-(5) we obtain:

σ log
Pij
Pii

= −φijcsij + βξijφijUj(θ) + cui − βUi(θ) (30)
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It also holds that (see Kalouptsidi, Scott and Souza-Rodrigues (2016)):

logPij =
Wij

σ
− Ji
σ

+ γeuler

or:

σ logPij = −φijcsij + βξijφijUj(θ)− Ji + σγeuler (31)

and

σ logPii = βUi(θ)− Ji + σγeuler (32)

Now, replace Wij from (31) into the definition of U , (5) to get:

Ui(θ) = −cui + λiπi + σλi
∑
j 6=i

Gij logPij − σλiγeuler + Ji

and substitute Ji from (32):

Ui(θ) = − 1

1− β
cui +

σ

1− β

(1− λi)γeuler + λi
∑
j 6=i

Gij logPij − logPii

+
1

1− β
λiπi

so that given the CCP’s, Ui is an affine function of cu and σ. Next, we replace this into the Hotz-Miller

inversion (30) to obtain:

csij =
β

φij(1− β)
cui −

β

1− β
ξijc

u
j+

+σ

 β

1− β

ξij
(1− λj)γeuler + λj

∑
l 6=j

Gjl logPjl − logPjj

− 1

φij

(1− λi)γeuler + λi
∑
l 6=i

Gil logPil − logPii

−
− σ

φij
log

Pij
Pii

+
β

1− β
ξijλjπj −

β

(1− β)φij
λiπi

Note that
1

(1− β)φij
=

1− β(1− ξij)
1− β

= 1 +
βξij

1− β

and set ρij =
βξij
1−β , then

1
(1−β)φij = 1 + ρij .

We divide by σ:
csij
σ

= β (1 + ρij)
cui
σ
− ρij

cuj
σ
− [β (1 + ρij)λiπi − ρijλjπj ]

1

σ
+
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+ρij

(1− λj) γeuler + λj
∑
l 6=j

Gjl logPjl − logPjj

−β(1+ρij)

(1− λi) γeuler + λi
∑
i 6=j

Gil logPil − logPii



− 1

φij
log

Pij
Pii

This is a linear system of full rank in the parameters { c
s
ij

σ ,
cui
σ ,

1
σ}, since

csij
σ can be expressed with respect

to { c
u
i
σ ,

1
σ}.

9.8 Algorithm for computing the steady state equilibrium

In this appendix we describe the algorithm employed to compute the steady state of our model to obtain

the counterfactuals of Section 7.

1. Make an initial guess for {s0, f0, U0}.

2. At each iteration m, inherit {sm, fm, Um}

(a) Update the ship’s and exporter’s optimal policies using the following steps for K times.61

i. Solve for Wm+1 from:

Wm+1
ij =

−csij + ξijβU
m
i

1− β (1− ξij)

ii. Update Jm+1 from:

Jm+1
i = σ log

exp
βUmi
σ

+
∑
j 6=i

exp
Wm
ij

σ

+ σγeuler

iii. Compute the equilibrium prices using

πmij = (1− γ)

(
1− β

1− β + γβλf,mi

)
µij + γ

1− β
(

1− λf,mi
)

1− β + γβλf,mi

(
Jm+1
i −Wm+1

ij

)
,

iv. Update G̃:

G̃m+1
ij ≡

exp

(
λfi (µij−π

m
ij )

1−βδ
(
1−λfi

) − κij
)

1 +
∑

l 6=i exp

(
λfi (µij−πmij )
1−βδ

(
1−λfi

) − κil
)

61K is chosen to accelerate the convergence, in the spirit of standard modified policy iteration methods.
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v. Update Um:

Um+1
i = −cui + λiEv,jπijv + λi

∑
j 6=i

(
G̃m+1
ij

1− G̃m+1
i0

)
Wm+1
ij + (1− λi) Jm+1

j

vi. Obtain the ships ballast choices
(
Pm+1
ij

)
i=1:I,j=1:I

3. Update to {s̃m+1, f̃m+1} from:

f̃m+1
i = δi (fmi −mm

i ) + Ei
(

1− G̃m+1
i0

)

and

s̃m+1
i =

∑
j

Pm+1
ji

(
smj −mm

j

)
+
∑
j

G̃m+1
ij

1− G̃m+1
i0

Gm+1
ji mm

j

4. If
∥∥s̃m+1 − sm

∥∥ < ε,
∥∥∥f̃m+1 − fm

∥∥∥ < ε and
∥∥Um+1 − Um

∥∥ < ε, stop, otherwise update freights and

ships as follows:

sm+1 = αsm + (1− α) s̃m+1

fm+1 = αfm + (1− α) f̃m+1,

where α is a smoothing parameter.
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