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Abstract

Market-wide trading halts, also called circuit breakers, have been proposed

and widely adopted as a measure to stabilize the stock market when experiencing

large price movements. We develop an intertemporal equilibrium model to examine

how circuit breakers impact the market when investors trade to share risk. We

show that a downside circuit breaker tends to lower the stock price and increase

its volatility, both conditional and realized. Due to this increase in volatility,

the circuit breaker’s own presence actually raises the likelihood of reaching the

triggering price. In addition, the circuit breaker also increases the probability of

hitting the triggering price as the stock price approaches it – the so-called “magnet

effect.” Surprisingly, the volatility amplification effect becomes stronger when the

wealth share of the relatively pessimistic agent is small.
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1 Introduction

Large asset price swings in the absence of significant public news often raise questions

about the confidence in financial markets from both market participants and policy

makers. While the cause of this type of swings are far from being well understood,

various measures have been proposed and adopted to interrupt trading during when

facing extreme price movements in the hope to stabilize prices and maintain proper

liquidity provision and price discovery. These measures, sometimes referred to as throwing

sand in the gears, range from market-wide trading halts, price limits on the whole market

or individual assets, to limits on order flow, positions, and transaction taxes. Yet, the

merits of these measures, from both a theoretical and an empirical perspective, remain

largely unclear.

Probably one of the most prominent of these measures is the market-wide circuit

breaker in the U.S., which was first advocated by the Brady Commission (Presidential

Task Force on Market Mechanisms, 1988) following the Black Monday of 1987 and

subsequently implemented in 1988. It temporarily halts trading in all stocks and related

derivatives when a designated market index drops by a significant amount.1 Following

this lead, various forms of circuit breakers have been widely adopted by equity and

derivative exchanges around the world.2 Since its introduction, the U.S. circuit breaker

was triggered only once on October 27, 1997. At that time, the threshold was based on

points movement of the DJIA index. At 2:36 p.m., a 350-point decline (4.54%) in the

DJIA led to a 30-minute trading halt on stocks, equity options, and index futures. After

trading resumed at 3:06 p.m., prices fell rapidly to reach the 550-point circuit breaker

level at 3:30 p.m., leading to early market closure for the day (for a detailed review of this

event, see Securities and Exchange Commission, 1998). But the market stabilized the

next day. This event led to the redesign of the circuit breaker rules, moving from point

1In its current form, a market-wide circuit breaker can be triggered at three thresholds: 7% (Level
1), 13% (Level 2), both of which will halt market-wide trading for 15 minutes when the decline occurs
between 9:30 a.m. and 3:25 p.m. Eastern time, and 20% (Level 3), which halts market-wide trading for
the remainder of the trading day (the triggers are based on the prior day’s closing price of the S&P 500
Index).

2According to a 2016 report, “Global Circuit Breaker Guide” by ITG, over 30 countries around the
world have rules of trading halts in the form of circuit breakers, price limits and volatility auctions.
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Figure 1: Circuit breakers in the U.S. stock market. This graph plots the DJIA
index on Oct 27, 1997, when the market-wide circuit breaker was triggered, first at 2:36
p.m., and then at 3:30 p.m. The blue circle denotes the closing price on Oct 24, 1997.

drops of DJIA to percentage drops of S&P 500, with a considerably wider bandwith.

After experiencing extreme prices movements in the Chinese stock market in 2015,

the China Securities Regulatory Commission (CSRC) introduced a market-wide circuit

breaker in January 2016, with a 15-minute trading halt when the CSI 300 Index falls

by 5% (Level 1) from previous day’s close, and market closure after a 7% decline (Level

2).3 On January 4, 2016, the first trading day after the circuit breaker was put in place,

both thresholds were reached (Figure 2, left panel), and it took only 7 minutes from the

re-opening of the markets following the 15-minute halt for the index to reach the 7%

threshold. Three days later, on January 7, both circuit breakers were triggered again

(Figure 2, right panel), and the entire trading session lasted just 30 minutes. On the

same day, the CSRC suspended the circuit breaker rule.

These events have revived debates about the benefits and costs of circuit breakers.

What are the justifications for interrupting or slowing down the market? What are the

concrete goals for introducing circuit breakers? How to assess their success or failure?

3The CSI 300 index is a market-cap weighted index of 300 major stocks listed on the Shanghai Stock
Exchange and the Shenzhen Stock Exchange, compiled by the China Securities Index Company, Ltd.
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Figure 2: Circuit breakers in the Chinese stock market. The two panels plot the
CSI300 index on January 4 and January 7 of 2016, when the circuit breaker was triggered.
Trading hours for the Chinese stock market are 9:30-11:30 and 13:00-15:00. Level 1 (2)
circuit breaker is triggered after a 5% (7%) drop in price from the previous day’s close
(marked by the blue circles).

How may their effectiveness depend on the specific markets, the actual design, and

specific market conditions?

Commonly stated rationales often started with a market with imperfections of various

forms such as asymmetric information and inefficient liquidity provision (see, for example,

Greenwald and Stein (1991) and Subrahmanyam (1994)). Under these circumstances,

market mechanism may fail, which then calls for external intervention. Such an approach

has several shortcomings. First, its starting point is very close to the end point. Second, it

understates the benefits from the market in the first place, namely liquidity provision and

price discovery. Third, in order to properly analyze the influence of market imperfections,

one would need to start with a proper model capturing the most basic trading needs of

market participants, which is liquidity or risk-sharing.

In this paper, we start with a market with no imperfections. We explicitly model

investors’ intertemporal trading needs for liquidity/risk-sharing. We then examine how

the introduction of a downside circuit breaker affects investors’ trading behavior and
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the equilibrium prices. In particular, we show its impact on price levels, volatility, and

dynamics. We show that a downside circuit breaker not only reduces welfare by reducing

risk sharing, but also tends to lower price levels, increase conditional and realized volatility

and increase the likelihood of hitting the triggering point. Moreover, our model not only

demonstrates these potential costs of circuit breakers, but also provides a basic setting

to further incorporate market imperfections and examine the full cost and benefits of

circuit breakers.

In our model, two (classes of) investors have log preferences over terminal wealth and

have heterogeneous beliefs about the dividend growth rate. Without circuit breakers,

the stock price is a weighted average of the prices under the two agents’ beliefs, with the

weights being their respective shares of total wealth.

However, the presence of circuit breakers makes the equilibrium stock price dispro-

portionately reflect the beliefs of the relatively pessimistic investor. To understand this

result, first consider the scenario when the stock price has just reached the circuit breaker

threshold. Immediate market closure is an extreme form of illiquidity, which forces the

relatively optimistic investor to refrain from taking on any leverage due to the inability

to rebalance his portfolio and the risk of default it entails. As a result, the pessimistic

investor becomes the marginal investors, and the equilibrium stock price has to entirely

reflect his beliefs, regardless of his wealth share.

The threat of market closure also affects trading and prices before the circuit breaker

is triggered. Compared to the case without circuit breakers, the relatively optimistic

investor will preemptively reduce his leverage as the price approaches the circuit breaker

limit. For a downside circuit breaker, the price-dividend ratios are driven lower throughout

the trading interval. Thus, a downside circuit breaker tends to drive down the overall

asset price levels.

In addition, in the presence of a downside circuit breaker, the conditional volatilities

of stock returns can become significantly higher. These effects are stronger when the

price is closer to the circuit breaker threshold, when it is earlier during a trading session.

Surprisingly, the volatility amplification effect of downside circuit breakers is stronger
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when the initial wealth share for the irrational investor (who tends to be pessimistic at

the triggering point) is smaller, because the gap between the wealth-weighted belief of

the representative investor and the belief of the pessimist is larger in such cases.

Our model shows that circuit breakers have multifaceted effects on price volatility.

On the one hand, almost mechanically, a (tighter) downside circuit breaker limit can

lower the median daily price range (measured by daily high minus low prices) and reduce

the probabilities of very large daily price ranges. Such effects could be beneficial, for

example, in reducing inefficient liquidations due to intra-day mark-to-market. On the

other hand, a (tighter) downside circuit breaker will tend to raise the probabilities of

intermediate price ranges, and can significantly increase the median of daily realized

volatilities as well as the probabilities of very large conditional and realized volatilities.

These effects could exacerbate market instability in the presence of imperfections.

Furthermore, our model demonstrates a “magnet effect.” The very presence of

downside circuit breakers makes it more likely for the stock price to reach the threshold

in a given amount of time than when there are no circuit breakers (the opposite is true

for upside circuit breakers). The difference between the probabilities is negligible when

the stock price is sufficiently far away from the threshold, but it generally gets bigger

as the stock price gets closer to the threshold. Eventually, when the price is sufficiently

close to the threshold, the gap converges to zero as both probabilities converge to one.

This “magnet effect” is important for the design of circuit breakers. It suggests that

using the historical data from a period when circuit breakers were not implemented can

lead one to severely underestimate the likelihood of future circuit breaker triggers, which

might result in picking a downside circuit breaker limit that is excessively tight.

Prior theoretical work on circuit breakers primarily focuses on their role in reducing

excess volatility and restore orderly trading by improving the availability of information

and raising confidence among investors. For example, Greenwald and Stein (1991)

argue that, in the presence of informational frictions, trading halts can help make

more information available to market participants and in turn improve the efficiency

of allocations. On the other hand, Subrahmanyam (1994) argue that circuit breakers
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can increase price volatility by causing investors with exogenous trading demands to

advance their trades to earlier periods with lower liquidity supply. Furthermore, building

on the insights of Diamond and Dybvig (1983), Bernardo and Welch (2004) show that,

when facing the threat of future liquidity shocks, coordination failures can lead to runs

and high volatility in the financial market. Such mechanisms could also increase price

volatility in the presence of circuit breakers. As mentioned above, by building a model

to capture investors’ fundamental trading needs in an intertemporal setting, our work

complements these studies in two important dimensions. First, it captures the cost of

circuit breakers, in welfare, price level and volatility. Second, it provides a basic setting to

further incorporate different forms of market imperfections such asymmetric information,

strategic behavior, failure of coordination, which are needed to justify and quantify the

benefits of circuit breakers.

In this spirit, our paper is very much related to Hong and Wang (2000), who study

the effects of periodic market closures in the presence of asymmetric information. The

liquidity effect caused by market closures as we see here is qualitatively similar to what

they find. By modeling the stochastic nature of a circuit breaker, we are able to fully

capture its impact on market dynamics.

While our model focuses on circuit breakers, our main result about the impact of

disappearing liquidity on trading and price dynamics is more broadly applicable. Besides

market-wide trading halts, other types of market interruptions such as price limits,

short-sale ban, trading frequency restrictions (e.g., penalties for HFT), and various forms

of liquidity shocks can all have similar effects on the willingness of some investors to take

on risky positions, which results in depressed prices and amplified volatility. In fact, the

set up we have developed here can be extended to examine these interruptions.

In summary, we provide a new competitive benchmark to demonstrate the potential

costs of circuit breakers, including welfare, price level and volatility. Such a benchmark

is valuable for several reasons. First, information asymmetry is arguably less important

for deep markets, such as the aggregate stock market, than for shallow markets, such

as markets for individual securities. Thus, the results we obtain here should be more

definitive for market-wide circuit breakers. Second, we show that with competitive
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investors and complete markets, the threat of (future) market shutdowns can have rich

implications such including volatility amplification and self-predatory trading, which will

remain present in models involving information asymmetry and strategic behavior. Third,

our model sheds light on the behavior of “noise traders” traders in models of information

asymmetry, where these investors trade for liquidity reasons but their demands are

treated as exogenous. In fact, our results suggest that the behavior of these liquidity

traders can be significantly affected by circuit breakers.

The rest of the paper is organized as follows. Section 2 describes the basic model for

our analysis. Section 3 provides the solution to the model. In Section 4, we examine the

impact of a downside circuit breaker on investor behavior and equilibrium prices. Section

5 discusses several extensions of the basic model to different types of trading halts. In

Section 6, we illustrate that our results are robust with respect to some of our modelling

choices such as continuous-time trading and no default. Section 7 concludes. All proofs

are given in the appendix.

2 The Model

We consider a continuous-time endowment economy over the finite time interval [0, T ].

Uncertainty is described by a one-dimensional standard Brownian motion Z, defined

on a filtered complete probability space (Ω,F , {Ft},P), where {Ft} is the augmented

filtration generated by Z.

There is a single share of an aggregate stock, which pays a terminal dividend of DT

at time T . The process for D is exogenous and publicly observable, given by:

dDt = µDtdt+ σDtdZt, D0 = 1, (1)

where µ and σ > 0 are the expected growth rate and volatility of Dt.
4 Besides the stock,

there is also a riskless bond, which is in zero net supply. Each unit of the bond yields a

4For brevity, throughout the paper we will refer to Dt as “dividend” and St/Dt as the “price-dividend
ratio,” even though dividend will only be realized at time T .
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terminal pays off of one at time T .

There are two competitive agents A and B, who are initially endowed with θ and 1−θ

shares of the aggregate stock, with 0 ≤ θ ≤ 1. Both agents have logarithmic preferences

over their terminal wealth at time T :

ui(W
i
T ) = ln(W i

T ), i = {A,B}. (2)

There is no intermediate consumption.

The two agents have heterogeneous beliefs about the terminal dividend. Agent A has

the objective beliefs in the sense that his probability measure is consistent with P (in

particular, µA = µ). Agent B’s belief about the growth rate is:

µBt = µ+ δt, (3)

where the difference in belief δt follows an Ornstein-Uhlenbeck process:

dδt = −κ(δt − δ̄)dt+ νdZt, (4)

where κ ≥ 0 and ν ≥ 0. Notice that δt is driven by the same Brownian motion as the

aggregate dividend. Agent B becomes more optimistic following positive shocks to the

aggregate dividend, and the impact of these shocks on his belief decays exponentially

at the rate κ. Thus, the parameter ν controls how sensitive B’s conditional belief is

to realized dividend shocks, while κ determines the relative importance of shocks from

recent past vs. distant past. The average long-run disagreement between the two agents

is δ̄. In the special case with ν = 0 and δ0 = δ̄ > 0, the disagreement between the two

agents remains constant over time. In the case with δ̄ = 0, the disagreement between the

two agents is stochastic but mean-reverting to zero.

It is worth pointing out that allowing heterogeneous beliefs is a simple way to intro-

duce heterogeneity among agents, which motivates trading. The heterogeneity in beliefs

can easily be interpreted as heterogeneity in utility, which can be state dependent. For

example, time-varying beliefs could represent behavioral biases (“representativeness”) or
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a form of path-dependent utility that makes agent B more (less) risk averse following

negative (positive) shocks to fundamentals. Alternatively, we could introduce heteroge-

neous endowment shocks to generate trading (see, e.g., Wang (1995)). In all these cases,

trading allows agents to share risk.

Agent B’s probability measure is PB, which we shall suppose is equivalent to P.5 We

assume that the two agents are aware of each others’ beliefs but “agree to disagree.” (We

do not explicitly model learning here.)

Let the Radon-Nikodym derivative of the probability measure PB with respect to P

be η. Then from Girsanov’s theorem, we get

ηt = exp

(
1

σ

∫ t

0

δsdZs −
1

2σ2

∫ t

0

δ2
sds

)
. (5)

Intuitively, since agent B will be more optimistic than A when δt > 0, those paths with

high realized values for
∫ t

0
δsZs will be assigned higher probabilities under PB than under

P.

Because there is no intermediate consumption, we use the riskless bond as the

numeraire. Thus, the price of the bond is always 1.

Circuit Breakers. To capture the essence of a circuit breaker rule, we assume that

the stock market will be closed whenever the price of the stock St falls below a threshold

(1−α)S0, where S0 is the endogenous initial price of the stock, and α ∈ [0, 1] is a constant

parameter determining the bandwidth of downside price fluctuations during the interval

[0, T ]. Later in ??, we extend the model to allow for market closures for both downside

and upside price movements, which represent price limit rules. The closing price for the

stock is determined such that both the stock market and bond market are cleared when

the circuit breaker is triggered. After that, the stock market will remain closed until

time T . The bond market remains open throughout the interval [0, T ].

In practice, the circuit breaker threshold is often based on the closing price from

the previous trading session instead of the opening price of the current trading session.

5More precisely, P and PB are equivalent when restricted to any σ-field FT = σ({Dt}0≤t≤T ).
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For example, in the U.S., a cross-market trading halt can be triggered at three circuit

breaker thresholds (7%, 13%, and 20%) based on the prior day’s closing price of the S&P

500 Index. However, the distinction between today’s opening price and the prior day’s

closing price is not crucial for our model. The circuit breaker not only depends on but

also endogenously affects the initial stock price, just like it does for prior day’s closing

price in practice.6

Finally, we impose usual restrictions on trading strategies to rule out arbitrage.

3 The Equilibrium

3.1 Benchmark Case: No Circuit Breakers

In this section, we solve for the equilibrium when there are no circuit breakers. To

distinguish the notations from the case with circuit breakers, we use the symbol “̂” to

denote variables in the case without circuit breakers.

In the absence of circuit breakers, markets are dynamically complete. The equilibrium

allocation in this case can be characterized as the solution to the following planner’s

problem:

max
ŴA
T , Ŵ

B
T

E0

[
λ ln

(
ŴA
T

)
+ (1− λ)ηT ln

(
ŴB
T

)]
, (6)

subject to the resource constraint

ŴA
T + ŴB

T = DT . (7)

6Other realistic features of the circuit breaker in practice is to close the market for m minutes and
reopen (Level 1 and 2), or close the market until the end of the day (Level 3). In our model, we can
think of T as one day. The fact that the price of the stock reverts back to the fundamental value XT at
T resembles the rationale of CB to “restore order” in the market.
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From the first-order conditions and the resource constraint we then get:

ŴA
T =

λ

λ+ (1− λ)ηT
DT , (8a)

ŴB
T =

(1− λ)ηT
λ+ (1− λ)ηT

DT . (8b)

Thus, as it follows from the intuition we have for the Radon-Nikodym derivative ηt, the

optimistic agent B will be allocated a bigger share of the aggregate dividend under those

paths with higher realized growthes in dividend.

The state price density under agent A’s beliefs (i.e., the objective probability measure

P) is

π̂At = Et
[
ξu′(ŴA

T )
]

= Et
[
ξ(ŴA

T )−1
]
, 0 ≤ t ≤ T (9)

for some constant ξ. Then, from the budget constraint for agent A we see that the

planner’s weights are equal to the shares of endowment, λ = θ.

The following proposition summarizes the pricing results:

Proposition 1. When there are no circuit breakers, the price of the stock is:

Ŝt =
θ + (1− θ)ηt

θ + (1− θ)ηtea(t,T )+b(t,T )δt
Dte

(µ−σ2)(T−t), (10)

where

a (t, T ) =

(
κδ − σν
ν
σ
− κ

+
ν2

2
(
ν
σ
− κ
)2

)
(T − t)− ν2

4
(
ν
σ
− κ
)3

(
1− e2( νσ−κ)(T−t)

)
+

(
κδ − σν(
ν
σ
− κ
)2 +

ν2(
ν
σ
− κ
)3

)(
1− e(

ν
σ
−κ)(T−t)

)
, (11a)

b (t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ
− κ

. (11b)

From Equation (10), we can then derive the conditional volatility of the stock σ̂S,t in

closed form, which we present in the appendix.

Next, we turn to the wealth distribution and portfolio holdings of individual agents.
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At time t ≤ T , the shares of total wealth of the two agents are:

ω̂At =
ŴA
t

Ŝt
=

θ

θ + (1− θ)ηt
, ω̂Bt = 1− ω̂At . (12)

The number of shares of stock θ̂At and units of riskless bonds φ̂At held by agent A are:

θ̂At =
θ

θ + (1− θ)ηt
− θ(1− θ)ηt

[θ + (1− θ)ηt]2
δt

σσ̂S,t
= ω̂At

(
1− ω̂Bt

δt
σσ̂S,t

)
, (13)

φ̂At = ω̂At ω̂
B
t

δt
σσ̂S,t

Ŝt, (14)

and the corresponding values for agent B are θBt = 1− θAt and φBt = −φAt .

As Equation (13) shows, there are several forces affecting the portfolio positions.

First, all else equal, agent A owns fewer shares of the stock when B has more optimistic

beliefs (larger δt). This effect becomes weaker when the volatility of stock return σ̂S,t is

high. Second, changes in the wealth distribution (as indicated by (12)) also affect the

portfolio holdings, as the richer agent will tend to hold more shares of the stock.

We can gain more intuition on the stock price by rewriting Equation (10) as follows:

Ŝt =
1

θ
θ+(1−θ)ηtEt

[
D−1
T

]
+ (1−θ)ηt

θ+(1−θ)ηtE
B
t

[
D−1
T

] =

(
ω̂At

ŜAt
+
ω̂Bt

ŜBt

)−1

, (15)

which states that the stock price is a weighted harmonic average of the prices of the

stock in two single-agent economies with agent A and B being the representative agent,

ŜAt and ŜBt , where

ŜAt = e(µ−σ
2)(T−t)Dt, (16)

ŜBt = e(µ−σ
2)(T−t)−a(t,T )−b(t,T )δtDt, (17)

and the weights (ω̂At , ω̂
B
t ) are the two agents’ shares of total wealth. For example,

controlling for the wealth distribution, the equilibrium stock price is higher when agent

B has more optimistic beliefs (larger δt).

One special case of the above result is when the amount of disagreement between the
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two agents is the zero, i.e., δt = 0 for all t ∈ [0, T ]. The stock price then becomes:

Ŝt = ŜAt =
1

Et[D−1
T ]

= e(µ−σ
2)(T−t)Dt, (18)

which is a version of the Gordon growth formula, with σ2 being the risk premium for the

stock. The instantaneous volatility of stock returns becomes the same as the volatility of

dividend growth, σ̂S,t = σ. The shares of the stock held by the two agents will remain

constant and be equal to the their endowments, θ̂At = θ, θ̂Bt = 1− θ.

Another special case is when the amount of disagreement is constant over time (δt = δ

for all t). The results for this case are obtained by setting ν = 0 and δ0 = δ̄ = δ in

Proposition 1. In particular, Equation (10) simplifies to:

Ŝt =
θ + (1− θ)ηt

θ + (1− θ)ηte−δ(T−t)
e(µ−σ

2)(T−t)Dt. (19)

3.2 Circuit Breaker

In the presence of circuit breakers, there are two possible scenarios, (i) the circuit breaker

is not triggered between 0 and T ; (ii) the circuit breaker is triggered at time τ < T .

Thus, markets remain dynamically complete over the interval [0, τ ∧ T ], and we can still

characterize the equilibrium allocation at τ ∧T using the planner’s problem. Our solution

strategy is to solve for the optimal allocation at τ ∧T for any exogenously given stopping

time τ , and compute the corresponding stock price. The equilibrium is then the fixed

point whereby the stopping time is consistent with the initial price S0 (i.e., the stock

price at the stopping time satisfies Sτ = (1−α)S0). Before doing so, we first characterize

the agents’ indirect utility function at the time of market closure when τ < T .

Suppose agent i has wealth W i
τ at time τ . Since the two agents behave competitively,

they take the stock price Sτ as given and choose the shares of stock θiτ and bonds φiτ to

maximize their expected utility over terminal wealth, subject to the budget constraint
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and the constraint on non-negative terminal wealth:

V i(W i
τ , τ) = max

θiτ , φ
i
τ

Eiτ
[
ln(θiτDT + φiτ )

]
(20)

s.t. θiτSτ + φiτ = W i
τ ,

W i
T ≥ 0,

where V i(W i
τ , τ) is the value function for agent i at the time when the circuit breaker is

triggered.

The market clearing conditions are for all τ :

θAτ + θBτ = 1, (21a)

φAτ + φBτ = 0. (21b)

For any τ < T , the non-negative terminal wealth constraint implies that θiτ ≥ 0, φiτ ≥ 0.

That is, neither agent will take short or levered positions in the stock. This result is due to

the inability to rebalance one’s portfolio after market closure, which is an extreme version

of illiquidity. It then follows from the market clearing conditions above that in equilibrium

neither agent will have any bond positions, which helps with the characterization of the

equilibrium. The results are summarized in the following proposition.

Proposition 2. Suppose the stock market closes at time τ < T . In equilibrium, both

agents will hold all of their wealth in the stock, θiτ = W i
τ

Sτ
, and hold no bonds, φiτ = 0. The

market clearing price is:

Sτ = min{ŜAτ , ŜBτ } =

 e(µ−σ
2)(T−τ)Dτ , if δτ > δ(τ)

e(µ−σ
2)(T−τ)−a(τ,T )−b(τ,T )δτDτ , if δτ ≤ δ(τ)

(22)

where Ŝiτ denotes the stock price in a single-agent economy populated by agent i,

δ(t) = −a(t, T )

b(t, T )
, (23)

and a(t, T ), b(t, T ) are given in Proposition 1. Furthermore, Sτ = Sastτ is the unique
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equilibrium in the limit of a sequence of economies with bond supply ∆ going to zero.

We note that the market clearing prices Sτ only depends on the belief of one of the

two agents — the relatively pessimistic agent. Due to the non-negative wealth constraint,

the market clearing price must be such that the relatively pessimistic agent (the one

with lower valuation of the stock) is willing to invest all his wealth in the stock. Here,

having the lower expectation of the growth rate at the current instant is not sufficient to

make the agent marginal. One also needs to take into account the two agents’ future

beliefs and the risk premium associated with future fluctuations in the beliefs, which are

summarized by δ(t).7

It follows from the definition of the circuit breaker and the continuity of stock prices

that the stock price at the time of the trigger must satisfy Sτ = (1−α)S0. This condition

together with Equation (22) implies that we can characterize the stopping time τ using

a stochastic threshold for dividend Dt.

Lemma 1. Take the initial stock price S0 as given. Define a stopping time:

τ = inf{t ≥ 0 : Dt = D(t, δt)}, (24)

where

D(t, δt) =

 αS0e
−(µ−σ2)(T−t), if δt > δ(t)

αS0e
−(µ−σ2)(T−t)+a(t,T )+b(t,T )δt , if δt ≤ δ(t)

(25)

Then, the circuit breaker is triggered at time τ when τ < T .

Having characterized the equilibrium at time τ < T , we plug the equilibrium portfolio

holdings into (20) to derive the indirect utility of the two agents at τ :

V i(W i
τ , τ) = Eiτ

[
ln

(
W i
τ

Sτ
DT

)]
= ln(W i

τ )− ln (Sτ ) + Eiτ [ln(DT )]. (26)

7Strictly speaking, with zero bond supply, any price S′τ ≤ Sτ will clear the market. In fact, the price
level Sτ is such that the marginal agent is indifferent between investing all his wealth or a bit more in
the stock (if the no-leverage constraint is not binding). For any price S′τ < Sτ , the marginal investor
would prefer to invest more than 100% of his wealth in the stock, but is prevented from doing so by the
no-leverage constraint. Thus, the market for the stock will still clear at these prices. However, these
alternative equilibria are ruled out if the net bond supply ∆ is small but nonzero. This is because the
relatively pessimistic agent will need to hold the bonds in equilibrium, which means his no-leverage
constraint is not binding. Thus, we will focus our analysis on Sτ .
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The indirect utility for agent i at τ ∧ T is then given by:

V i(W i
τ∧T , τ ∧ T ) =

 ln(W i
T ), if τ ≥ T

ln(W i
τ )− ln (Sτ ) + Eiτ [ln(DT )], if τ < T

(27)

These indirect utility functions make it convenient to solve for the equilibrium

allocation in the economy with circuit breakers through the following planner problem:

max
WA
τ∧T ,W

B
τ∧T

E0

[
λV A(WA

τ∧T , τ ∧ T ) + (1− λ)ηTV
B(WB

τ∧T , τ ∧ T )
]
, (28)

subject to the resource constraint:

WA
τ∧T +WB

τ∧T = Sτ∧T , (29)

where

Sτ∧T =

 DT , if τ ≥ T

(1− α)S0, if τ < T
(30)

From the planner’s problem we get the wealth of agent A at time τ ∧ T :

WA
τ∧T =

θSτ∧T
θ + (1− θ) ητ∧T

. (31)

The SPD for agent A at time τ ∧ T is proportional to his marginal utility of wealth,

πAτ∧T =
ξ

WA
τ∧T

=
ξ [θ + (1− θ)ητ∧T ]

θSτ∧T
(32)

for some constant ξ. The price of the stock at time t ≤ τ ∧ T is:

St = Et
[
πAτ∧T
πAt

Sτ∧T

]
=
(
ωAt Et

[
S−1
τ∧T
]

+ ωBt EBt
[
S−1
τ∧T
] )−1

, (33)

where ωit is the share of total wealth owned by agent i. The expectations in (33) are

straightforward to evaluate, at least numerically. Unlike in the case without circuit

breakers, these expectations are no long simply the inverse of the stock prices from the
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respective representative agent economies.

From the stock price, one can then compute the conditional mean µS,t and volatility

σS,t of stock returns, which are given by

dSt = µS,tStdt+ σS,tStdZt. (34)

In Appendix A.3, we provide the closed-form solution for St in the special case with

constant disagreements (δt = δ).

So far we have been taking the initial stock price S0 as given when characterizing

the threshold for the circuit breaker. Thus, the stock price St in (33) is a function of S0

through its dependence on τ and Sτ∧T , both of which depend on S0. By evaluating St at

time t = 0, we can finally solve for S0 from the following fixed point problem,

S0 = F (τ(S0), Sτ∧T (S0)), (35)

where F (·) is the function implied by Equation (33).

Proposition 3. There is a unique solution to the fixed-point problem in (35) for any

α ∈ [0, 1].

Finally, we examine the impact of circuit breakers on the wealth distribution. The

wealth shares of the two agents at time t ≤ τ ∧T are the same as in the economy without

circuit breakers,

ωAt =
WA
t

St
=

θ

θ + (1− θ)ηt
, ωBt = 1− ωAt . (36)

However, the wealth shares at the end of the trading day (time T ) will be affected by the

presence of circuit breakers. This is because if the circuit breaker is triggered at τ < T ,

the wealth distribution after τ will remain fixed due to the absence of trading. Since

irrational traders on average lose money over time, market closure at τ < T will raise

their average wealth share at time T . This “mean effect” implies that circuit breakers

will help “protecting” the irrational investors in this model. How strong this effect is
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depends on the amount of disagreement and the distribution of τ . In addition, circuit

breakers will also make the tail of the wealth share distribution thinner as they put a

limit on the amount of wealth that the relatively optimistic investor can lose over time

along those paths with low realizations of Dt.

4 Impact of Circuit Breakers on Market Dynamics

We now analyze the quantitative implications of our model. First, in Section 4.1 we

examine the special case of the model with constant disagreement, i.e., δt = δ for all t,

which is more transparent in demonstrating the main mechanism through which circuit

breakers affect asset prices and trading. Then, in Section 4.2 we examine a version of

the model with time-varying disagreements that mimic the behavior of investors facing

leverage constraints.

4.1 Constant Disagreements

For calibration, we normalize T = 1 to denote one trading day. We set µ = 10%/250 =

0.04%, which implies an annual dividend growth rate of 10%, and we assume daily

volatility of dividend growth σ = 3%. The circuit breaker threshold is set at 5%

(α = 0.05). For the initial wealth distribution, we assume agent A (with rational beliefs)

owns 90% of total wealth (θ = 0.9) at t = 0. Finally, for the amount of disagreement,

we set δ = −2%. Thus, the irrational agent B is relatively pessimistic about dividend

growth in this case.

In Figure 3, we plot the price-dividend ratio St/Dt (left column), the stock holding for

agent A (middle column), and the bond holding for agent A (right column). The stock

and bond holdings for agent B can be inferred from those for agent A based on the market

clearing conditions, namely θBt = 1 − θAt , φBt = −φAt . To demonstrate the time-of-day

effect, we plot the solutions at three different points in time, t = 0.25, 0.5, 0.75. In each

panel, the solid line denotes the solution for the case with circuit breakers, while the

dotted line denotes the case without circuit breakers.
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Let’s start by examining the price-dividend ratio. As shown in (15), the price of the

stock in the case without circuit breakers is the weighted (harmonic) average of the prices

of the stock from the two representative-agent economies populated by agent A and B,

respectively, with the weights given by the two agents’ shares of total wealth. Under our

calibration, µ− σ2 is very close to zero, implying that the price-dividend ratio is close to

one for any t ∈ [0, T ] in the economy with agent A only (denoted by the upper horizontal

dash lines in the first column), while it is approximately eδ(T−t) ≤ 1 in the economy with

agent B only (denoted by the lower horizontal dash lines in the first column). Thus, the

gap between the price-dividend ratios from the two representative-agent economies will

be at most about 2% (since δ = −2%) under our calibration, which is fairly modest.

As the left column of Figure 3 shows, the price-dividend ratio in the economy without

circuit breakers (red dotted line) indeed lies between the price-dividend ratios ŜAt /Dt

and ŜBt /Dt for the two representative-agent economies (and thus always below 1). Since

agent A is relatively more optimistic, he chooses to hold levered position in the stock

(see the plots for θAt in the middle column of Figure 3), and his share of total wealth will

become higher following positive shocks to the dividend. As a result, as dividend value

Dt rises (falls), the share of total wealth owned by agent A increases (decreases), which

make the equilibrium price-dividend ratio approach the value ŜAt /Dt (ŜBt /Dt). Finally,

the price-dividend ratio becomes higher (converges to one) as t approaches T , as shorter

horizon reduces the impact of agent B is pessimistic beliefs on stock price.

In the case with circuit breakers, the price-dividend ratio (blue solid line) still lies

between the price-dividend ratios from the two representative agent economies, but it is

always below the price-dividend ratio without circuit breakers for a given level of dividend.

The gap between the two price-dividend ratios is negligible when Dt is sufficiently high,

but it widens as Dt approaches the circuit breaker threshold D(t).

The reason that the stock price declines more rapidly with dividend in the presence

of circuit breakers is as follows. As explained in Section 3.2, upon triggering the circuit

breaker, neither agent (agent A in particular) will be willing to take a levered position

in the stock due to the complete illiquidity of the stock. As a result, the relatively

pessimistic agent (agent B in this case) becomes the marginal investor. That is, the
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market clearing stock price has to be such that agent B is willing to hold all of his wealth

in the stock, regardless of his share of total wealth. As a result, we see the price-dividend

ratio with circuit breakers converges to ŜBt /Dt when Dt = D(t), while the price-dividend

ratio without circuit breakers is still a weighted average of ŜAt /Dt and ŜBt /Dt at this

point. The lower equilibrium stock valuation at the circuit breaker threshold also drives

the value of the stock lower before reaching the threshold, although the effect dissipates

as we move further away from the threshold. Furthermore, because the gap between

ŜAt /Dt and ŜBt /Dt shrinks as t approaches T , the impact of circuit breakers on the

price-dividend ratio also becomes smaller as t increases. For example, at t = 0.25, the

price-dividend ratio with circuit breakers can be as much as 1.2% lower than the level

without circuit breakers. At t = 0.75, the gap is at most 0.3%.

We can also analyze the impact of the circuit breakers on the equilibrium stock price

by connecting it to how circuit breakers influence the equilibrium portfolio holdings of

the two agents. Let us again start with the case without circuit breakers (red dotted lines

in middle and right columns of Figure 3). The stock holding of agent A (θAt ) continues

to rise as Dt falls to D(t) and beyond. This is the result of two effects: (i) with lower

Dt, the stock price is lower, implying higher expected return under agent A’s beliefs;

(ii) lower Dt also makes agent B (who is shorting the stock) wealthier and thus more

capable of lending to agent A to take on a levered position (ωAt becomes more negative).

With circuit breakers, while the stock position θAt takes on similar values for large

values of Dt, it becomes substantially lower than the value without circuit breakers

when Dt is sufficiently close to the circuit breaker threshold, and can eventually become

decreasing as Dt drops. Accordingly, the amount of borrowing by agent A (−ωAt ) also

eventually decreases as Dt drops. This is because agent A becomes increasingly concerned

with the rising return volatility at lower Dt, which dominates the effect of the increase in

the expected stock return (we analyze the expected return and volatility in more detail

in Figure 4). Finally, θAt takes a discrete drop to 1 when Dt = D(t). The cutting back of

stock position (deleveraging) by agent A before the circuit breaker is triggered can be

interpreted as a form of “self-predatory” trading, and the stock price in equilibrium has

to fall enough such that agent A has no incentive to sell more of his stock holdings.
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Next, Figure 4 shows the conditional return volatility and the conditional expected

returns under the two agents’ beliefs. Compared to the relatively modest effects on stock

price levels, the impact of circuit breakers on the conditional volatility of stock returns

can be much more sizable. Without circuit breakers, the conditional volatility of returns

(red dotted lines in the left column) peaks at about 3.2%, only slightly higher than the

fundamental volatility of σ = 3%. The excess volatility comes from the time variation in

the wealth distribution between the two agents, which peaks when the wealth shares of

the two agents are about equal and is small in magnitude.

With circuit breakers, the conditional return volatilities (blue solid lines in the left

column) are close in value to the conditional return volatilities without circuit breakers

when Dt is high, but it becomes substantially higher as Dt approaches D(t). Furthermore,

the volatility amplification effect of the circuit breaker becomes stronger when the circuit

breaker is triggered earlier during the day. When t = 0.25, the conditional volatility

reaches 6% at the circuit breaker threshold, almost twice as high as the return volatility

without circuit breakers. When t = 0.75, the conditional volatility peaks at 4.5% at

the circuit breaker threshold, compared to the return volatility of 3% without circuit

breakers.

The middle column of Figure 4 show the conditional expected returns for the stock

under agent A’s beliefs (the objective probability measure). Again, we start with the

case without circuit breakers. The expected returns (red dotted lines) are positive for

the rational agent (A) and negative for the pessimist (agent B). Under agent A’s beliefs,

the expected return is higher when Dt is lower. This is because his share of total wealth

is smaller and his leverage ratio is higher when the level of dividend is lower. As a result,

his marginal value of wealth becomes more volatile, which leads to higher conditional

Sharpe ratio. The higher Sharpe ratio, combined with relatively stable conditional return

volatility, then implies higher expected returns for the stock.

In the presence of circuit breakers, the conditional Sharpe ratio for agent A rises

even faster with lower Dt than without circuit breakers. Since the conditional return

volatility also rises faster in this case, we get the conditional expected return (blue solid

lines) under agent A’s beliefs to rise more rapidly with lower Dt. However, as Dt gets
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Figure 5: Distribution of terminal wealth share. Blue solid lines are for the case
with circuit breakers. Red dotted lines are for the case without circuit breakers. The
grey vertical bars denote the circuit breaker threshold D(t).

sufficiently close to D(t), the threat of market closure leads agent A to reduce his stock

holdings since the increase in conditional volatility is large enough to dominate the effect

of higher conditional expected return.

We now to turn the impact of circuit breakers on the wealth distribution. As shown

in Equation (36), at any time before market closure (t < τ ), the wealth shares of the two

agents (ωAt , ω
B
t ) are only functions of ηt and will thus be identical to the wealth shares in

the economy without circuit breakers (given the same initial wealth distribution and the

same history of dividend shocks). However, after market closure, the wealth shares in

the economy with circuit breakers will remain fixed, whereas the wealth shares in the

economy without circuit breakers will continue to evolve due to dynamic trading. As a

result, the wealth distribution at the end of the trading day T can become different with
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circuit breakers.

In particular, the mean of the terminal wealth share for the irrational (rational) agent

should become higher (lower) with circuit breakers, as market closure helps protect the

irrational agents by preventing them from betting on the wrong beliefs. Additional

differences in the terminal wealth distribution depend on the distribution of τ , specifically

how frequently and when the circuit breaker will be triggered.

In Figure 5, we plot the distribution of terminal wealth share for the two agents

without (red dotted line) and with (blue solid line) circuit breakers. Recall that agent A

starts the trading day with 90% total wealth. In the economy without circuit breakers,

the distribution of agent A’s terminal wealth share, ω̂AT , is unimodal, with the mean

(0.9043) and the median (0.94) above 0.9 due to the fact that agent A has correct beliefs

and gains wealth on average from agent B.

With circuit breakers, the distribution of agent A’s terminal wealth share, ωAT , does

have a lower mean (0.9036). In addition, the distribution becomes bimodal, with the new

mode resulting from the circuit breaker trigger. Notice that the new mode is more than

10% below the initial wealth share, which is a significant amount of loss in wealth for agent

A in just one trading day. In addition, the left tail of the distribution for ωAT becomes

thinner. Thus, the presence of circuit breakers eliminates the possibility of extreme

losses for the rational agent, but at the cost of substantially increasing the likelihood

of significant losses. Correspondingly, circuit breakers will increase the likelihood of

significant gains in wealth for the irrational agent B. These states with significant wealth

gains for agent B are also the states with large price distortions. Thus, while circuit

breakers do protect the irrational agents from losing too much wealth, which might be a

justifiable objective for a paternalistic social planner (regulator), our model shows an

additional side effect of circuit breakers on price distortion.

Through its impact on the conditional price-dividend ratio, conditional volatility, and

the wealth distribution post market closure, circuit breakers also affect the distribution

of daily average price-dividend ratios, daily price ranges (defined as daily high minus

low prices), and daily return volatilities (the square root of the quadratic variation of
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log(St) over [0, T ]). We examine these effects in Figure 6. The top panel shows that the

distribution of daily average price-dividend ratio is shifted to the left in the presence of

circuit breakers, which shows that circuit breakers indeed lead to more downside price

distortion in this model.

Next, the results for the daily price range distribution show that circuit breakers can

reduce the probabilities of having very large daily price ranges (those over 6.5%), but

they would raise the probabilities of daily price ranges between 4.5 and 6.5%. Moreover,

circuit breakers generate significant fatter tails for the distributions of daily realized

volatilities (in addition to the larger conditional volatilities shown earlier).8 The results

of these two volatility measures both show that the effect of circuit breakers on return

volatility is far more intricate than what the naive intuition would suggest.

“The Magnet Effect” “The magnet effect” is a phenomenon that is often associated

with circuit breakers and price limits. Informally, it refers to the acceleration of price

movement towards the circuit breaker threshold (price limit) as the price approaches

the threshold (limit). We try to formalize this notion in our model by considering the

conditional probability that the stock price, currently at St, will reach the circuit breaker

threshold (1− α)S0 within a given period of time h. In the case without circuit breakers,

we can again compute the probability of the stock price reaching the same threshold over

the period h. As we will show, our version of “magnet effect” refers to the fact that the

very presence of circuit breakers increases the probability of the stock price reaching the

threshold in a short period of time, with this effect becoming stronger when the stock

price is close to the threshold.

In Figure 7, we consider three different horizons, h = 10, 30, 90 minutes. When St is

sufficiently far from (1− α)S0, the gap between the conditional probabilities with and

without circuit breakers indeed widens as the stock price moves closer to the threshold,

which is consistent with the “magnet effect” defined above. This effect is caused by the

significant increase in conditional return volatility in the presence of circuit breakers.

However, the gap between the two conditional probabilities eventually starts to narrow,

8Realized volatility is measured as the square root of the quadratic variation in log price.
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because both probabilities will converge to 1 as St reaches (1−α)S0. Looking at different

horizons h, we see that the largest gap in the two conditional probabilities occurs closer

to the threshold when h is small. Moreover, the increase in probability of reaching the

threshold is larger earlier during the trading day.

The volatility amplification effect and the initial wealth share θ In our bench-

mark calibration, we assume the rational agent initially owns θ = 90% of total wealth. It

appears quite intuitive that allocating more wealth initially (smaller θ) to the irrational

agent should increase their price impact through the trading day. While this intuition is

correct for the price level, the effects on return volatility is just the opposite, especially

near the circuit breaker threshold.

In the left panel of Figure 8, we examine the the volatility amplification effect of

circuit breakers by plotting the ratio of conditional return volatilities for the cases with

and without circuit breakers at the threshold D(t) as a function of θ. As the graph

shows, the amplification effect is in fact stronger the less wealth the irrational agent owns

initially.

This seemingly counterintuitive result is due to the extreme illiquidity caused by

market closure. Recall that the stock price with circuit breakers will be close to the price

without circuit breakers when Dt is sufficiently far away from D(t), and the latter is a

wealth-share weighted average of the price-dividend ratios under the two agents’ beliefs.

Upon triggering the circuit breaker, the inability to rebalance the portfolio prevents the

rational agent A from holding a levered position in the stock, and the stock price has

to fully agree with the pessimistic agent B’s beliefs in order to clear the market. Thus,

the less wealth the irrational agent has initially, the more abruptly the stock price’s

change will be from mostly reflecting the beliefs of agent A (when Dt is large) to entirely

reflecting the beliefs of agent B (at D(t)). This elevated sensitivity of stock price to

changes in Dt then translates into a stronger volatility amplification effect.

The impact of circuit breaker limit α So far we have considered a single level of

circuit breaker limit of α = 5%. In Figure 9, we examine how different levels of circuit
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breaker limits affect the distributions of price-dividend ratios and volatility. We see that

tighter circuit breaker thresholds tend to reduce price-dividend ratios, which corresponds

to larger price distortions. Furthermore, while tighter circuit breaker thresholds do tend

to reduce daily price ranges, they can significantly increase realized volatilities.

Finally, in Panel D, we examine the probability of triggering the circuit breaker within

the trading day as the limit changes. The probability of the stock price falling to a given

threshold is a nonlinear function of the limit. Importantly, this probability rises more

rapidly as the threshold becomes tighter when there is a circuit breaker than when there

is not. This result suggests that using historical data from a period when circuit breakers

have not been implemented can lead one to underestimate the likelihood of triggering a

circuit breaker, especially when the threshold is relatively tight.

4.2 Time-varying Disagreements

So far we have been studying the setting with constant disagreement between the two

agents. To illustrate the impact of time-varying disagreements, we consider the case

where the difference in beliefs δt follows a random walk, i.e., κ = 0 and ν = 0.5σ, and we

set δ0 = 0 such that initially there is no bias in agent B’s belief.

Agent B’s belief under this calibration resembles the “representativeness” bias in

the behavioral finance literature. He adjusts his belief excessively by extrapolating

short-term trends in fundamentals, becoming overly optimistic following large positive

dividend shocks and panicking following large negative dividend shocks. Such beliefs

could also represent the behavior of constrained investors, who become effectively more

(less) pessimistic or risk averse as the constraint tightens (loosens).

Figure 10 shows the price-dividend ratio and portfolio holdings, while Figure 11 shows

the conditional return volatility and expected returns. We again start with the results for

the case without circuit breakers. First, the price-dividend ratio has a wider range than

in the constant disagreement case. Agent B becomes more optimistic (pessimistic) as Dt

rises (falls) from the initial level, and δt can take on a wide range of values as a result.

Naturally, the effect of time-varying disagreement becomes more limited as t approaches
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T , and the price-dividend ratio eventually converges to 1.

Second, the conditional return volatility now reflects the joint effects of the wealth

distribution and the changes in the amount of disagreement. It not only tends to become

higher when the distribution of wealth between the two agents is more even, but also

when the amount of disagreement is high (large |δt|). The result is a U-shaped conditional

volatility as function of Dt, which is more pronounced when t is small.

Next, in the presence of circuit breakers, when Dt is above the circuit breaker

threshold, the price-dividend ratio is again lower than the value without circuit breakers.

This is consistent with our finding in the constant disagreement case. However, the

circuit breaker does rule out some extreme values for the price-dividend ratio during the

trading session. This result could have significant consequences when there are intra-day

mark-to-market requirements for some of the market participants, as a narrower range of

price-dividend ratio can help lower the chances of forced liquidation when the stock price

falls by a large amount. Thus, one of the benefits of having circuit breakers could be to

limit the range of price-dividend ratio in this case.

Similar to the constant disagreement case, circuit breakers in the case of time-varying

disagreement amplify the conditional volatility by a significant amount when Dt is close

to the threshold Dt, especially when t is small. A difference is that the conditional

volatility is lower with circuit breakers than without when Dt is sufficiently large. As Dt

becomes large, so does δt, which makes return more volatile. However, the optimistic

agent B is made less aggressive by the threat of market closure and loss of liquidity,

which is why volatility is dampened in the presence of circuit breakers.

5 Upper and Lower Boundary

In this section we extend our analysis to the case of the two-sided circuit breakers;

i.e. the circuit breaker is triggered when the stock price reaches either (1 − αD)S0 or

(1 + αU)S0 (whatever happens first); αU , αD > 0. We assume that agents have constant

disagreement in beliefs and consider the same numerical parameters as in Section 4.1

with αU = αD = 5%.
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Figure 12 is the counterpart of Figure 3 for the two-sided circuit breaker case. As

before in the left column we present the plots of the price-dividend ratio St/Dt as a

function of Dt. In the two-sided circuit breaker case the St/Dt ratio still lies between

the price-dividend ratios ŜAt /Dt and ŜBt /Dt for the two representative-agent economies.

Now, however, it has an inverse ‘U’ shape. For small and intermediary values of Dt

price-dividend ratio is an increasing function of Dt. As in one-sided circuit breaker case

St/Dt equals ŜBt /Dt when Dt = D(t) and approaches the price-dividend ratio in the

economy without circuit breakers for intermediate values of Dt. For higher values of Dt

though, St/Dt decreases with Dt and again equals ŜBt /Dt when the dividend reaches the

boundary value that triggers the circuit breaker. Interpretation of this behavior of the

price-dividend ratio for high values of Dt is similar to the one-sided circuit breaker case.

When the circuit breaker is triggered none of the agents is willing to hold either leveraged

or short position in stock. In this situation the most pessimistic agent is the marginal

investor regardless of whether the stock price has reached the upper or lower boundary.

This behavior of the price-dividend ratio manifests itself in the dependence of condi-

tional volatility on dividend presented in the left column of Figure 13 (the counterpart of

Figure 4 in the one-sided circuit breakers case). Conditional volatility is the highest for

low values of Dt when St/Dt is increasing in Dt. Conditional volatility gradually decreases

with Dt as the slope of St/Dt decreases. Finally conditional volatility approaches its

lowest value when Dt equals its highest (boundary) value.

This analysis reveals similarities and differences between circuit breakers imposed on

the stock price from below and circuit breakers imposed on the stock price from above.

In both cases in the presence of circuit breakers price-dividend ratio declines relative to

the complete markets economy. The impact on volatility is asymmetric though: lower

price boundary tends to amplify volatility, while upper boundary dampens it.

6 Is Continuous Time Special?

In our model, time is continuous and the dividend follows a geometric Brownian motion.

Thus, in a finite time interval ∆, Dt+∆ can in principle take any value on the interval
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(0,∞), as does the stock price St+∆, no matter how small ∆ is. This feature along with

logarithmic utility imply that the agents in our model need to completely deleverage and

close out any short positions the moment the circuit breaker is triggered to ensure that

their wealth remains positive. As discussed above, the complete de-leveraging by the

relatively optimistic agents is critical for the pessimists to become the marginal investors

upon market closure. This is also why the volatility amplification effect is the strongest

when the wealth share of pessimists is approaching zero.

In this section, we examine the robustness of the above results. On the one hand, if

shocks to dividend have a finite range in a given time interval (e.g., from the time of

circuit breaker trigger τ to T ), then the optimistic (pessimistic) agents will be able to

maintain some levered (short) positions during market closures. On the other hand, the

size of the cumulated shocks becomes larger over an extended period of market closure,

which will put a constraint on the leverage/short positions.

One way to capture such a feature is to consider a binomial tree setting. Specifically,

we consider a discrete time setting where Dt is modeled using a binomial tree with finite

number of steps between 0 and T , and the tree is calibrated to match the mean and

volatility of dividend growth of our continuous time model.9 We consider a tree with 500

steps. As a result, the minimum and maximum values that DT can take are 0.51 and

1.95 correspondingly.

Before presenting the full solution of this binomial tree model, we first consider the

problem at the instant before market closure. Suppose the stock market will close at (an

exogenously given) time τ with fundamental value Dτ . We allow trading at time τ , but

after that the agents have to hold onto their portfolios until time T . We then calculate

equilibrium price of the stock at τ .

In Figure 14, we plot the equilibrium price as a function of the wealth share of agent

A (relatively more optimistic agents) for τ = 0.25 and Dτ = 0.95 (the solid lines). For

comparison, we also plot the price under complete markets (dash lines). The left panel is

for the case with dividend volatility σ = 3%, the same as in the continuous time model.

9This economy converges to the continuous time model when the number of steps in the binomial
tree goes to infinity.
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The right panel is for the case with higher volatility.

When the optimist’s share of total wealth is not too high, the incomplete markets

price is lower than its complete markets counterpart, but the opposite occurs when

the optimist’s wealth share is sufficiently high. The intuition is as follows. As is the

case in continuous time, the equilibrium price under complete markets is a weighted

average of the optimist and pessimist valuations, with the weight determined by their

respective wealth shares. When markets are incomplete, even though agent A will no

longer deleverage completely in this binomial model, his leverage is limited by the largest

amount the dividend (and price) can drop from τ to T . Similarly, agent B can now take

on some short positions, but the short positions are limited by the largest increase in

dividend from τ to T .

When the optimist’s wealth share θ is sufficiently low, his leverage constraint is

binding, as he will not be able to hold all the stocks even at maximum leverage. Then

the market clearing price has to agree with the pessimist’s private valuation, just as in

the continuous time model. One difference from the continuous time model is that the

valuation of the pessimist in the binomial tree model increases slowly with θ (instead

of remaining constant). This is because the pessimist’s portfolio becomes less risky

(the fraction of riskless bonds increases relative to the stock) as the optimist becomes

wealthier, leading him to value the stock more. Next, when the optimist’s wealth share

becomes sufficiently high, his leverage constraint is no longer binding. He would hold

more than the entire market, while the pessimistic agent takes on a short position. There

is an intermediate range of wealth share such that both agents become marginal, as

neither is facing a binding constraint (on leverage or short position). Finally, as the

optimist’s wealth share continues to increase, the constraint on the pessimist’s short

position eventually binds, and the market clearing price has to agree with the optimist’s

private valuation.

The above analysis offers much of the intuition regarding the impact of circuit breakers

on the stock price in the binomial tree setting. It is easy to see what might move the

binomial model closer to the continuous time model in terms of its implication on stock

price. Either when the number of steps in the binomial tree or the volatility of the
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dividend process becomes large, the minimal realization of DT gets closer to 0. As a

result, agent A’s leverage constraint in incomplete markets tightens, and the equilibrium

price in that case will converge to the pessimist valuation. For example, the effect of

high volatility is illustrated in the right panel of Figure 14.

In Figure 15, we plot the price-dividend ratios (left column) and conditional return

volatility (right column) as a function of Dt for three different values of optimist wealth

share at time t = 0: θ = 0.3, θ = 0.6 and θ = 0.9. Red dotted line corresponds to the

complete markets case, solid blue line – to the case with circuit breakers on a binomial

tree with n = 500 steps, dashed orange – to the case with circuit breakers for the baseline

model in continuous time (we present it here again for easier comparison). The presented

graphs exactly reflect the intuition discussed in the static example. For θ = 0.3 and

θ = 0.6 circuit breakers both in discrete and continuous time tend to dampen the prices

and amplify volatility. When θ = 0.9 circuit breakers in the continuous time model and

discrete time model have qualitatively opposite effect price level and volatility.

In summary, when the share of wealth owned by the optimist is not too high, circuit

breakers will lower price level (relative to complete markets) and increase conditional

volatility. The magnitude of the effects is also similar to that in the continuous time

model. The opposite happens when the share of wealth owned by the optimist becomes

sufficiently high. In that case, circuit breakers can actually inflate prices relative to the

complete markets case and reduce return volatility. Taken together, these results suggest

that the results about the impact of circuit breakers from the continuous time model are

robust when the wealth share of the optimistic agents is not too high so that they face

binding leverage constraint upon market closure.

7 Conclusion

In this paper, we build a dynamic model to examine the mechanism through which

market-wide circuit breakers affect trading and price dynamics in the stock market. As

we show, circuit breakers tends to lower the price-dividend ratio, reduce daily price

ranges, but increase conditional and realized volatilities. They also raise the probability
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of the stock price reaching the circuit breaker limit as the price approaches the threshold

(a “magnet” effect). The effects of circuit breakers can be further amplified when some

agents’ willingness to hold the stock is sensitive to recent shocks to fundamentals, which

can be due to behavioral biases, institutional constraints, etc. Finally, using historical

data from a period when circuit breakers have not been implemented can lead one to

underestimate the likelihood of triggering a circuit breaker, especially when the threshold

is relatively tight.
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Appendix

A Proofs

A.1 Proof of Proposition 1

When there are no circuit breakers, the stock price is

Ŝt = Et

[
π̂ATDT

Et
[
π̂AT
]] =

Et [θ + (1− θ) ηT ]

Et
[
D−1
T (θ + (1− θ) ηT )

] =
θ + (1− θ) ηt

θEt
[
D−1
T

]
+ (1− θ)Et

[
D−1
T ηT

] , (37)

where

Et
[
D−1
T

]
= D−1

t e−(µ−σ2)(T−t), (38)

and

Et
[
D−1
T ηT

]
= ηtEt

[
D−1
T

ηT
ηt

]
= ηtEBt

[
D−1
T

]
. (39)

Define the log dividend xt = logDt. Under measure PB, the processes for xt and δt are

dxt =

(
µ− σ2

2
+ δt

)
dt+ σdZBt , (40a)

dδt =
(
κδ +

(ν
σ
− κ
)
δt

)
dt+ νdZBt . (40b)

Define Xt = [xt δt]
′, then Xt follows an affine process,

dXt = (K0 +K1Xt) dt+ σXdZ
B
t , (41)

with

K0 =

µ− σ2

2

κδ

 , K1 =

0 1

0 ν
σ − κ

 , σX =

σ
ν

 . (42)

We are interested in computing

g (t,Xt) = EBt
[
eρ
′
1XT

]
, with ρ1 = [−1 0]′ . (43)

By applying standard results for the conditional moment-generating functions of affine processes
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(see, .e.g., Singleton 2006), we get

g (t,Xt) = exp
(
A (t, T ) +B (t, T )′Xt

)
, (44)

where

0 = Ḃ +K ′1B, B (T, T ) = ρ1 (45a)

0 = Ȧ+B′K0 +
1

2
tr
(
BB′σXσ

′
X

)
, A (T, T ) = 0 (45b)

Solving for the ODEs gives

B (t, T ) =

[
−1

1− e(
ν
σ
−κ)(T−t)

ν
σ − κ

]′
, (46)

and

A (t, T ) =

(
µ− σ2 − κδ − σν

ν
σ − κ

− ν2

2
(
ν
σ − κ

)2
)

(t− T )− ν2

4
(
ν
σ − κ

)3 (1− e2( νσ−κ)(T−t)
)

+

(
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
)(

1− e(
ν
σ
−κ)(T−t)

)
(47)

After plugging the above results back into (37) and reorganizing the terms, we get

St =
θ + (1− θ) ηt

θ + (1− θ) ηtH (t, δt)
Dte

(µ−σ2)(T−t), (48)

where

H (t, δt) = ea(t,T )+b(t,T )δt , (49a)

a (t, T ) =

(
κδ − σν
ν
σ − κ

+
ν2

2
(
ν
σ − κ

)2
)

(T − t)− ν2

4
(
ν
σ − κ

)3 (1− e2( νσ−κ)(T−t)
)

+

(
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
)(

1− e(
ν
σ
−κ)(T−t)

)
, (49b)

b (t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ − κ

. (49c)
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Finally, to compute the conditional volatility of stock returns, we have

dŜt = µ̂S,tŜtdt+ σ̂S,tŜdZt

= o (dt) + Ŝt
dDt

Dt

+ηtDte
(µ−σ2)(T−t) θ (1− θ) (1−H (t, δt))

(θ + (1− θ) ηtH (t, δt))
2

dηt
ηt

−Dte
(µ−σ2)(T−t) (θ + (1− θ) ηt) (1− θ) ηtH (t, δt) b (t, T )

(θ + (1− θ) ηtH (t, δt))
2 dδt.

After collecting the diffusion terms, we get

σ̂S,t = σ +
Dte

(µ−σ2)(T−t)

Ŝt

(
θ (1− θ) (1−H (t, δt))

(θ + (1− θ) ηtH (t, δt))
2

δtηt
σ

−(θ + (1− θ) ηt) (1− θ) ηtb (t, T )H (t, δt)

(θ + (1− θ) ηtH (t, δt))
2 ν

)
. (50)

A.2 Proof of Proposition 2

Suppose market closes at time τ . Since bonds are zero net supply,

W1,τ +W2,τ = Sτ

Then the agents’ problems at time τ are

V 1 (W1,τ ) = max
θ1,b1

E1
τ [ln (θ1DT + b1)]

s.t. θ1Sτ + b1 ≤ W1,τ

θ1 ≥ 0, b1 ≥ 0

and

V 2 (W2,τ ) = max
θ2,b2

E2
τ [ln (θ2DT + b2)]

s.t. θ2Sτ + b2 ≤ W2,τ

θ2 ≥ 0, b2 ≥ 0
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The Lagrangian:

L = E1
τ [ln (θ1DT + b1)] + ζ1 (W1,τ − θ1Sτ − b1) + ξ1

aθ1 + ξ1
b b1

FOC:

Eiτ

[
DT

θiDT + bi

]
− ζiSτ + ξia = 0

Eiτ

[
1

θiDT + bi

]
− ζi + ξib = 0

Suppose agent 1 is less optimistic than agent 2. Then we can quickly examine following

three cases:

1. It could be an equilibrium when the price is sufficiently low such that both agents want

to take levered positions (putting more than 100% of their wealth in the stock) but are

constrained from borrowing. In this case, both agents submit demands proportional to

their wealth,

θ∗i =
Wi,τ

Sτ

ξ1
a = ξ2

a = 0

ξ1
b > 0, ξ2

b > 0

and the market for the stock clears. In this case,

Sτ =
E1
τ

[
DT

θ1DT+b1

]
E1
τ

[
1

θ1DT+b1

]
+ ξ1

b

=
1

E1
τ

[
1
DT

]
+ ξ1

b θ1

<
1

E1
τ

[
1
DT

] = S∗τ .

2. It could be an equilibrium when agent 1 (pessimist) finds it optimal to hold all his wealth

in the stock, while agent 2 (optimist) is constrained from borrowing:

θ∗i =
Wi,τ

Sτ

ξ1
a = ξ2

a = 0

ξ1
b = 0, ξ2

b > 0
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Then from agent 1,

E1
τ

[
DT

θ1DT + b1

]
− ζ1Sτ = 0

E1
τ

[
1

θ1DT + b1

]
− ζ1 = 0

This implies

Sτ =
E1
τ

[
DT

θ∗1DT+b∗1

]
E1
τ

[
1

θ∗1DT+b∗1

] =
E1
τ

[
1
θ∗1

]
E1
τ

[
1

θ∗1DT

] =
1

E1
τ

[
1
DT

] = Dτe
(µ−σ2)(T−τ) = S∗τ

The latter follows from the fact that market clearing for bonds implies that b∗1 = b∗2 = 0,and

θ∗1 > 0 as long as W1,τ > 0. Let’s check whether this is this consistent with agent 2.

E2
τ

[
DT

θ2DT + b1

]
− ζ2Sτ = 0

E2
τ

[
1

θ2DT + b2

]
− ζ2 + ξ2

b = 0

Sτ =
E2
τ

[
DT

θ∗2DT+b∗2

]
E2
τ

[
1

θ∗2DT+b∗2

]
+ ξ2

b

=
E2
τ

[
1
θ∗2

]
E2
τ

[
1

θ∗2DT

]
+ ξ2

b

=
1

E2
τ

[
1
DT

]
+ ξ2

b θ
∗
2

.

Since agent 2 is more optimistic,

E1
τ

[
1

DT

]
> E2

τ

[
1

DT

]
,

which implies

ξ2
b =

E1
τ

[
1
DT

]
− E2

τ

[
1
DT

]
θ∗2

> 0.

3. For any Sτ > S∗τ , agent 1 will prefer to hold less than 100% of the wealth in the stock.

This would require agent 2 to take levered position, which cannot be an equilibrium.

We will restrict our attention to equilibriums of type 2.
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A.3 Special Case: Constant Disagreement

The stock price can be computed in closed form in the case of constant disagreement, δt = δ.

Without loss of generality, we focus on the case where agent B is relatively more optimistic,

δ ≥ 0. The results are summarized below.

Proposition 4. Take S0 as given. With δ ≥ 0, the stock price time t ≤ τ ∧ T is

St =
(
ωAt Et[S−1

τ∧T ] + ωBt EBt [S−1
τ∧T ]

)−1
, (51)

where

Et[S−1
τ∧T ] =

1

αS0

(
N

(
dt − σ(T−t)

2√
T − t

)
+ eσdtN

(
dt + σ(T−t)

2√
T − t

))

+D−1
t e−(µ−σ2)(T−t)

(
N

(
−
dt + σ(T−t)

2√
T − t

)
− e−σdtN

(
dt − σ(T−t)

2√
T − t

))
, (52)

EBt [S−1
τ∧T ] =

1

αS0

(
N

(
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

)
+ e(σ+ 2δ

σ )dtN

(
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

))

+D−1
t e−(µ−σ2+δ)(T−t)

(
N

(
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

)

−e(
2δ
σ
−σ)dtN

(
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

))
, (53)

and

dt =
1

σ

(
log

(
αS0

Dt

)
−
(
µ− σ2

)
(T − t)

)
. (54)

Proof. As show in Section 3.2, the stock price at time t ≤ τ ∧ T is

St =
Et
[
πAτ∧TSτ∧T

]
πAt

=
θ + (1− θ) ηt

Et
[
θ+(1−θ)ητ∧T

Sτ∧T

]
=

1

θ
θ+(1−θ)ηtEt

[
S−1
τ∧T
]

+ (1−θ)ηt
θ+(1−θ)ηtEt

[
ητ∧T
ηt

S−1
τ∧T

]
=

1
θ

θ+(1−θ)ηtEt
[
S−1
τ∧T
]

+ (1−θ)ηt
θ+(1−θ)ηtE

B
t

[
S−1
τ∧T
] . (55)

The second equality follows from Doob’s Optional Sampling Theorem, while the last equality

follows from Girsanov’s Theorem.
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Now consider the case when δt = δ. Taking S0 as given and imposing the condition for

stock price at the circuit breaker trigger, we have

Et
[
S−1
τ∧T
]

=
1

αS0
Pt (τ ≤ T ) + Et

[
D−1
T 1{τ>T}

]
, (56)

EBt
[
S−1
τ∧T
]

=
1

αS0ηt
Et
[
ητ1{τ≤T}

]
+

1

ηt
Et
[
ηTD

−1
T 1{τ>T}

]
. (57)

The following standard results about hitting times of Brownian motions are helpful for

deriving the expressions for the expectations in (56)-(57) (see e.g., Jeanblanc, Yor, and Chesney,

2009, chap 3). Let Zµ denote a drifted Brownian motion, Zµt = µt + Zt, with Zµ0 = 0. Let

T µy = inf {t ≥ 0 : Zµt = y} for y < 0. Then

Pr
(
Tµy ≤ t

)
= N

(
y − µt√

t

)
+ e2µyN

(
y + µt√

t

)
, (58)

E
[
e−λT

µ
y 1{Tµy ≤t}

]
= e(µ−γ)yN

(
y − γt√

t

)
+ e(µ+γ)yN

(
y + γt√

t

)
, (59)

where γ =
√

2λ+ µ2.

Recall the definition of the stopping time τ in Equation (24), which simplifies in the case

with constant disagreement,

τ = inf
{
t ≥ 0 : Dt = αS0e

−(µ−σ2)(T−t)
}
. (60)

Through a change of variables, we can redefine τ as the first hitting time of a drifted Brownian

motion for a constant threshold. Specifically, define

yt =
1

σ
log
(
e−(µ−σ2)tDt

)
, (61)

then y0 = 0,

yt = Z
σ
2
t =

σ

2
t+ Zt. (62)

Moreover,

T
σ
2
d = inf {t ≥ 0 : yt = d} a.s.= τ, (63)
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where the threshold is constant over time,

d =
1

σ
log
(
αS0e

−(µ−σ2)T
)
. (64)

Conditional on yt and the fact that the circuit breaker has not been triggered up to time t,

the result from (58) implies

Pt (τ ≤ T ) = Pt

(
T

σ
2
dt
≤ T − t

)
= N

(
dt − σ(T−t)

2√
T − t

)
+ eσdtN

(
dt + σ(T−t)

2√
T − t

)
, (65)

where

dt = d− yt =
1

σ

(
log

(
αS0

Dt

)
−
(
µ− σ2

)
(T − t)

)
. (66)

The threshold dt is normalized with respect to yt so as to start the drifted Brownian motion

Z
σ2

2 from 0 at time t.

Next,

Et
[
D−1
T 1{τ>T}

]
(67)

= D−1
t e
−
(
µ−σ

2

2

)
(T−t)Et

[
e−σ(ZT−Zt)1{τ>T}

]
= D−1

t e−(µ−σ2)(T−t)Et
[
e−σ(ZT−Zt)−σ

2

2
(T−t)

1{τ>T}

]
= D−1

t e−(µ−σ2)(T−t)EQ
t

[
1{τ>T}

]
= D−1

t e−(µ−σ2)(T−t)

[
N

(
−
dt + σ(T−t)

2√
T − t

)
− e−σdtN

(
dt − σ(T−t)

2√
T − t

)]
.

The third equality follows from Girsanov’s Theorem, and the fourth equality again follows from

(58). Under Q, Zσt = Zt + σt is a standard Brownian motion, and

yt = −σ
2
t+ Zσt . (68)

Next, it follows from (61) and the definition of τ that

yτ = yt +
σ

2
(τ − t) + (Zτ − Zt) = d. (69)
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Thus,

Zτ − Zt = dt −
σ

2
(τ − t) . (70)

With this result, we can evaluate the following expectation,

Et
[
ητ1{τ≤T}

]
= Et

[
ηte

δ
σ

(Zτ−Zt)− δ2

2σ2
(τ−t)

1{τ≤T}

]
= ηte

δdt
σ Et

[
exp

(
−
(
δ

2
+

δ2

2σ2

)
(τ − t)

)
1{τ≤T}

]
= ηt

(
N

(
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

)
+ e(σ+ 2δ

σ )dtN

(
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

))
,

where the last equality follows from an application of (59).

Finally,

Et
[
ηTD

−1
T 1{τ>T}

]
= Et

[
ηte

δ
σ

(ZT−Zt)− δ2

2σ2
(T−t)D−1

t e
−
(
µ−σ

2

2

)
(T−t)−σ(ZT−Zt)

1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)Et

[
e(

δ
σ
−σ)(ZT−Zt)−

( δσ−σ)
2

2
(T−t)

1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)EQ̃

t

[
1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)

(
N

(
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

)

−e(
2δ
σ
−σ)dtN

(
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

))
.

The third equality follows from Girsanov’s Theorem, and the fourth equality follows from (58).

Under Q̃, Z
σ− δ

σ
t = Zt +

(
σ − δ

σ

)
t is a standard Brownian motion, and

yt =

(
δ

σ
− σ

2

)
t+ Z

σ− δ
σ

t . (71)

A.4 Proof of Proposition 3

Sketch of the proof: Consider the function f(s) as the time 0 stock price in an economy where

the stock market closes the first time when the stock price reaches some exogenous threshold s.
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When s = 0, there are effectively no circuit breakers. Thus,

f(0) = Ŝ0 ≥ min
(
D0e

(µ−σ2)T , D0e
(µ−σ2)T−a(0,T )−b(0,T )δ0

)
≡ s̄.

The inequality follows from the fact that Ŝ0 is the weighted harmonic average of the prices

of the stock in two single-agent economies. Next, it can be shown that f(s) is a continuous

function and moreover is decreasing in s. The intuition is that as s increases, the circuit breaker

constraint becomes more binding, making it more likely for the stock price to converge to the

lower valuation between the two agents. Finally, when s rises to s̄, the stock market will close

immediately, which means f(s̄) = s̄. Now it is easy to see that f(s) and s
α will have a single

crossing in the region (0, s̄) for any α ∈ [0, 1].

B Constant Disagreements: δ > 0

Analogous to Figure 3 - Figure 6, Figure 16 - Figure 19 present the set of results for the case of

constant disagreement with δ = 2%.
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Figure 6: Distributions of price-dividend ratio, daily price range, and realized
volatility. Solid line: circuit breaker is on; dashed line: complete markets.
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Figure 7: The “magnet effect”. Probabilities for the stock price to reach the circuit
breaker limit within 10 and 30 minutes.
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Figure 14: Stock price upon market closure: binomial tree model. Blue solid
lines are for the case with circuit breakers. Red dotted lines are for the case without
circuit breakers. Left panel is for the case with dividend volatility σ = 3%. Right panel
is for the case with σ = 9%.
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Figure 18: Distribution of terminal wealth share. Blue solid lines are for the case
with circuit breakers. Red dotted lines are for the case without circuit breakers. The
grey vertical bars denote the circuit breaker threshold D(t).
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Figure 19: Distributions of price-dividend ratio, daily price range, and realized
volatility. Solid line: circuit breaker is on; dashed line: complete markets.
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