Sustainable Investing in Equilibrium

Lubos Pastor (Chicago Booth)
Rob Stambaugh (Wharton)
Luke Taylor (Wharton)
Overview

- Growing interest in **sustainable investing**
 - Objectives: Financial + ESG (Environmental, Social, Governance)

- We build a simple **equilibrium model** of sustainable investing

- Analyze **financial and real effects** of sustainable investing
Main Theoretical Results

- Greener assets have lower **alphas**
 - Because agents have green tastes & green assets hedge **climate risk**
 - Green assets have negative alphas, brown assets have positive alphas
Main Theoretical Results

- Greener assets have lower **alphas**
 - Because agents have green tastes & green assets hedge **climate risk**
 - Green assets have negative alphas, brown assets have positive alphas

- Greener assets outperform when **ESG factor** performs well
 - ESG factor captures shifts in customers’ and investors’ tastes
 - **Two-factor pricing**: Market + ESG factor
Main Theoretical Results

- **Greener assets have lower alphas**
 - Because agents have green tastes & green assets hedge *climate risk*
 - Green assets have negative alphas, brown assets have positive alphas

- **Greener assets outperform when ESG factor performs well**
 - ESG factor captures shifts in customers’ and investors’ tastes
 - **Two-factor pricing**: Market + ESG factor

- **ESG-motivated investors earn lower expected returns**
 - But they earn an “investor surplus”
Main Theoretical Results

- Greener assets have lower **alphas**
 - Because agents have green tastes & green assets hedge **climate risk**
 - Green assets have negative alphas, brown assets have positive alphas

- Greener assets outperform when **ESG factor** performs well
 - ESG factor captures shifts in customers’ and investors’ tastes
 - **Two-factor pricing**: Market + ESG factor

- ESG-motivated investors earn lower **expected returns**
 - But they earn an “investor surplus”

- ESG **industry’s size** increases with dispersion in ESG preferences
Main Theoretical Results

- Greener assets have lower **alphas**
 - Because agents have green tastes & green assets hedge **climate risk**
 - Green assets have negative alphas, brown assets have positive alphas

- Greener assets outperform when **ESG factor** performs well
 - ESG factor captures shifts in customers’ and investors’ tastes
 - **Two-factor pricing**: Market + ESG factor

- ESG-motivated investors earn lower **expected returns**
 - But they earn an “investor surplus”

- ESG **industry’s size** increases with dispersion in ESG preferences

- Sustainable investing leads to **positive social impact**
 - Green firms invest more, brown firms less
 - Firms become greener
Model Overview

FIRMS
Model Overview

FIRMS

INVESTORS
FIRMS

INVESTORS
FIRMS
Model Overview

FIRMS

INVESTORS
Model Overview

FIRMS

INVESTORS

HIGH

LOW
Model Overview

\[g_n < 0 \quad \text{FIRMS} \quad g_n > 0 \]

INVESTORS

\[
\begin{array}{cc}
\text{Heart} & \text{Sad}\ \\
\text{Snowflake} & \text{Happy}
\end{array}
\]
Model Overview

\[g_n < 0 \quad \text{or} \quad g_n > 0 \]

FIRMS

INVESTORS

\[d_i > 0 \]

\[d_i = 0 \]
Model

- **One period** (from 0 to 1)
- **Firms** $n = 1, \ldots, N$
 - ESG characteristics g ($N \times 1$)
 - $g_n > 0$: “green” firm, positive externalities
 - $g_n < 0$: “brown” firm, negative externalities
 - Excess stock returns $\tilde{r} = \mu + \tilde{\epsilon}$, where $\tilde{\epsilon} \sim N(0, \Sigma)$
Model

- One period (from 0 to 1)
- **Firms** $n = 1, \ldots, N$
 - ESG characteristics g ($N \times 1$)
 - $g_n > 0$: “green” firm, positive externalities
 - $g_n < 0$: “brown” firm, negative externalities
 - Excess stock returns $\tilde{r} = \mu + \tilde{\epsilon}$, where $\tilde{\epsilon} \sim N(0, \Sigma)$

- **Agents** i (continuum), with CARA utility $-e^{-A_i \tilde{W}_{1i}} - b_i'X_i$
 - A_i: Absolute risk aversion of agent i
 - $\tilde{W}_{1i} = W_{0i} (1 + r_f + X_i'\tilde{r})$: Wealth of agent i at time 1
 - X_i: Portfolio weights of agent i ($N \times 1$)
 - $b_{i,n} = d_i g_n$: Nonpecuniary benefit agent i derives from holding stock n
 - $d_i \geq 0$ is agent i’s “ESG taste”
Equilibrium Expected Returns: Market-Level

- **Equity premium:**

\[
\mu_M = a \sigma_M^2
\]
where \(\mu_M = x'\mu\), \(\sigma_M^2 = x'\Sigma x\), \(x\) = market portfolio weights, \(\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i\) (i.e., \(\bar{d} \equiv \int_{w_i}^1 w_i d_i\)), \(x'g > 0 \Rightarrow \mu_M\) is decreasing in \(\bar{d}\), \(x'g < 0 \Rightarrow \mu_M\) is increasing in \(\bar{d}\), and assume \(x'g = 0\) (market portfolio is ESG-neutral).
Equilibrium Expected Returns: Market-Level

- **Equity premium:**

\[\mu_M = a \sqrt{\sigma^2_M} - \frac{\bar{d}}{a} x'g \]

where \(\mu_M = x'\mu, \sigma^2_M = x'\Sigma x \), \(x = \) market portfolio weights, \(\bar{d} = \) average \(d_i \) across agents (i.e., \(\bar{d} \equiv \int_i w_i d_i di \), \(w_i \equiv \frac{W_{0i}}{\int_i W_{0i} di} \))

- \(x'g > 0 \Rightarrow \mu_M \) is decreasing in \(\bar{d} \)
- \(x'g < 0 \Rightarrow \mu_M \) is increasing in \(\bar{d} \)

- Assume \(x'g = 0 \) (market portfolio is ESG-neutral)
Equilibrium Expected Returns: Firm-Level

- Expected excess stock returns:

\[\mu = \mu_M \beta - \frac{d}{a}g \]

- Greener stocks have lower alphas:

\[\alpha_n = -\frac{d}{g_n} < 0 \]

- Green stocks have negative alphas
 Brown stocks have positive alphas
Equilibrium Expected Returns: Agent-Level

- Expected excess return on agent \(i \)'s portfolio:

\[
E(\tilde{r}_i) = \mu_M - \delta_i \left(\frac{d}{a^3} g' \Sigma^{-1} g \right) > 0
\]

where \(\delta_i \equiv d_i - \bar{d} \). Note:

- \(\delta_i \uparrow \Rightarrow E(\tilde{r}_i) \downarrow \)
- \(\delta_i > 0 \Rightarrow E(\tilde{r}_i) < \mu_M \)
- \(\delta_i < 0 \Rightarrow E(\tilde{r}_i) > \mu_M \)
Portfolio Tilts

- Agent i’s equilibrium portfolio weights:

$$X_i = x + \frac{\delta_i}{a^2} (\Sigma^{-1} g)$$

“ESG tilt”

- Three-fund separation:
 1. Riskless asset
 2. Market portfolio, x
 3. “ESG portfolio”, $\Sigma^{-1} g$

- Agents with $\delta_i > 0$ (i.e., $d_i > \bar{d}$) go long the ESG portfolio
- Agents with $\delta_i < 0$ (i.e., $d_i < \bar{d}$) go short the ESG portfolio
- Agents with $\delta_i = 0$ (i.e., $d_i = \bar{d}$) hold the market
Two types of agents:

- ESG investors: $d_i = d > 0 \ldots$ Fraction λ of total wealth
- Non-ESG investors: $d_i = 0 \ldots$ Fraction $1 - \lambda$ of total wealth
Example

- Two types of agents:
 - **ESG** investors: \(d_i = d > 0 \) ... Fraction \(\lambda \) of total wealth
 - **Non-ESG** investors: \(d_i = 0 \) ... Fraction \(1 - \lambda \) of total wealth

- Parameters:
 - \(\mu_M = 0.08, \sigma_M = 0.20 \) per year, market model \(R^2 = 30\% \)
 - \(\Sigma = \sigma^2 u' + \eta^2 I_N, \quad x = (1/N) \iota, \beta = \iota, \quad g'g = 1 \)

- Vary \(\lambda \) and \(\Delta = \) maximum certain return ESG investor is willing to sacrifice to invest in her desired portfolio rather than in \(M \)
 - \(\Delta \equiv r^*_{esg} - r^*_M \), where \(r^*_{esg} \) is the ESG investor’s certainty equivalent excess return when investing in the optimal ESG portfolio, and \(r^*_M \) is her certainty equivalent if forced to hold the market instead
ESG vs. Non-ESG Expected Portfolio Return

\[\mathbb{E}\{\tilde{r}_{esg}\} - \mathbb{E}\{\tilde{r}_{non}\} = -2\lambda\Delta \leq 0 \]
Alphas of ESG Investors: The Role of λ

$$\alpha_{esg} = -2\lambda(1 - \lambda)\Delta \leq 0$$
Alphas of ESG Investors: The Role of Δ

$$\alpha_{esg} = -2\lambda(1 - \lambda)\Delta \leq 0$$

Graph showing the relationship between α_{ESG} and Δ for different values of λ. The graph includes lines for $\lambda = 0.1$ or 0.9, $\lambda = 0.2$ or 0.8, $\lambda = 0.3$ or 0.7, and $\lambda = 0.5$.
Investor Surplus

\[I \equiv \alpha_{esg} - (-\Delta) = \Delta[1 - 2\lambda(1 - \lambda)] \geq 0 \]
Alphas of Non-ESG Investors

\[\alpha_{\text{non}} = 2\lambda^2 \Delta \geq 0 \]
Size of the ESG Industry (\(=\) Aggregate ESG Tilt)

\[
\text{Aggregate ESG tilt} = 0.04 = 0.03 = 0.02 = 0.01
\]
Agent i’s utility:

$$-e^{-A_i \tilde{W}_i - b'_i X_i - c_i \tilde{C}}$$

where \textbf{climate} $\tilde{C} \sim N(0, 1)$

- $c_i \geq 0 \Rightarrow$ Agents dislike low realizations of \tilde{C}
- Let $\bar{c} \equiv \int_i w_i c_i di$
Expected excess returns in equilibrium:

\[\mu = \mu_M \beta - \frac{d}{a} g + \bar{c} \left(1 - \rho_{MC}^2 \right) \psi \]

\[\text{where } \psi = \text{slopes on } \tilde{C} \text{ in a regression of } \tilde{\epsilon} \text{ on both } \tilde{C} \text{ and } \tilde{\epsilon}_M\]
Expected excess returns in equilibrium:

$$\mu = \mu_M \beta - \frac{\tilde{d}}{a} g + \bar{c} (1 - \rho_{MC}^2) \psi (1 - \rho_{MC}^2) \psi$$

where $\psi = \text{slopes on } \tilde{C} \text{ in a regression of } \tilde{\epsilon} \text{ on both } \tilde{C} \text{ and } \tilde{\epsilon}_M$

Greener stocks likely better hedge climate risk: $\text{Corr}(\psi_n, g_n) < 0$

- If $\psi_n = -\xi g_n$, where $\xi > 0$, then

$$\alpha_n = - \left[\frac{\tilde{d}}{a} + \bar{c} (1 - \rho_{MC}^2) \xi \right] g_n$$

Greener stocks have lower alphas for two reasons: tastes and risk
Strength of ESG concerns can change over time

- “Investor” channel: \tilde{d} shifts ($\Delta \tilde{d}$)
- “Customer” channel: Demand for firms’ products shifts (\tilde{z}_g)
Extension: ESG Factor

- Strength of ESG concerns can change over time
 - “Investor” channel: \tilde{d} shifts ($\Delta \tilde{d}$)
 - “Customer” channel: Demand for firms’ products shifts (\tilde{z}_g)

- We show: $\tilde{\epsilon} = \tilde{z}_h h + \tilde{f}_g g + \zeta$, where the ESG factor has two components:

 $\tilde{f}_g = \tilde{z}_g + \frac{1}{a} (\Delta \tilde{d})$

- Green (brown) stocks perform better (worse) than expected if ESG concerns strengthen unexpectedly via either channel
Two-Factor Asset Pricing Model

- Corr(\tilde{f}_g, \tilde{C}) < 0 (bad climate news \Rightarrow tastes shift toward green)

- If Corr(\tilde{f}_g, \tilde{C}) = −1 then **two-factor pricing** holds:

 \[
 \tilde{r} = \theta \tilde{r}_M + g(\tilde{f}_g + \mu_g) + \tilde{\nu}
 \]

 where $\theta = h/x'h$ and

 \[
 \mu_g = \mu_M \beta_g - \bar{d}/a - \bar{c}(1 - \rho_{MC}^2)
 \]

- If Corr(\tilde{f}_g, \tilde{C}) \neq −1 then **multiple factors** capture ESG risk
Social impact of firm n:

$$S_n \equiv g_n K_n$$

where K_n is the firm’s operating capital
Extension: Social Impact

- **Social impact** of firm n:

 $$S_n \equiv g_n K_n$$

 where K_n is the firm’s operating capital

- **Firm maximizes its market value** by choosing ΔK_n and Δg_n
 - Firm is endowed with capital $K_{0,n}$ and ESG characteristic $g_{0,n}$

- Firm’s cash flows at time 1: $\Pi_n K_n$ minus adjustment costs
 - Capital adjustment costs: $\frac{k_n}{2} (\Delta K_n)^2$
 - ESG adjustment costs: $\frac{\omega_n}{2} (\Delta g_n)^2$
Green tastes have **positive social impact**:

\[S_n(\bar{d}) > S_n(0) \]

- **Green firms invest more** (cost of capital ↓)
 Brown firms invest less (cost of capital ↑)

- All firms choose to become **greener**
Firm-Level Social Impact

- Green firms invest more, brown less

\(S_\alpha(\tilde{\alpha}) - S_\alpha(0) \)

\(g_{0,n} \)
Aggregate Social Impact: The Role of λ

Firms become greener
Green firms invest more, brown less
Aggregate Social Impact: The Role of Δ

Firms become greener
Green firms invest more, brown less
Agents Care about Aggregate Social Impact

- Assume each agent’s utility is increasing in $S ≡ \sum_{n=1}^{N} S_n$:

$$U(\tilde{W}_{1i}, X_i, S) = V(\tilde{W}_{1i}, X_i) + h_i(S)$$

- Original utility function $V(\tilde{W}_{1i}, X_i)$
- Addition $h_i(S)$ does not affect asset prices, investment, or S
- Because agents are infinitesimally small

$$\Rightarrow \text{Social impact is caused by the inclusion of } X_i, \text{ not } S, \text{ in } U$$
Conclusions

In our equilibrium model of sustainable investing,

- Greener assets have lower **alphas**
 - Because agents have green tastes & green assets hedge **climate risk**
 - Green assets have negative alphas, brown assets have positive alphas

- Greener assets outperform when **ESG factor** performs well
 - ESG factor captures shifts in customers’ and investors’ tastes
 - **Two-factor pricing**: Market + ESG factor

- ESG-motivated investors earn lower **expected returns**
 - But they earn an “investor surplus”

- ESG **industry’s size** increases with dispersion in ESG preferences

- Sustainable investing leads to **positive social impact**
 - Green firms invest more, brown firms less
 - Firms become greener