Fund Tradeoffs

Ľuboš Pástor (Chicago Booth)
Rob Stambaugh (Wharton)
Luke Taylor (Wharton)
Motivation

- **US mutual funds**
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed
Motivation

- **US mutual funds**
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed

- Many studies examine active funds’ performance
Motivation

- US mutual funds
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed

- Many studies examine active funds’ performance

- Our focus: active funds’ behavior/characteristics
Motivation

- US mutual funds
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed
- Many studies examine active funds’ performance
- Our focus: active funds’ behavior/characteristics
- Novel insights into economics of mutual funds
Motivation

- US mutual funds
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed

- Many studies examine active funds’ performance
- Our focus: active funds’ behavior/characteristics
- Novel insights into economics of mutual funds
- Scale diseconomies in active management
 - Berk and Green (2004): expected performance (alpha) is zero
 - inherent challenge for performance-based evidence
Motivation

- US mutual funds
 - manage $21 trillion dollars
 - hold 25% of corporate equity
 - nearly 70% of equity-fund AUM is actively managed

- Many studies examine active funds’ performance

- Our focus: active funds’ behavior/characteristics

- Novel insights into economics of mutual funds

- Scale diseconomies in active management
 - Berk and Green (2004): expected performance (alpha) is zero
 - inherent challenge for performance-based evidence

- Fund characteristics: strong evidence of scale diseconomies
Main contributions

- Equilibrium model linking key fund characteristics
 - fund size, expense ratio, turnover, portfolio liquidity

Strong empirical evidence of implied tradeoffs consistent with scale diseconomies

Introduce portfolio liquidity, the product of:
 - average liquidity of the stocks held
 - diversification of the portfolio

New diversification measure, the product of:
 - coverage: number of stocks held vs. benchmark
 - balance: weights on stocks held vs. market-cap weights

Fund activeness: combines portfolio liquidity and turnover
Fund scale: combines activeness as well as fund size
Main contributions

- Equilibrium model linking key fund characteristics
 - fund size, expense ratio, turnover, portfolio liquidity
- Strong empirical evidence of implied tradeoffs
 - consistent with scale diseconomies
Main contributions

- Equilibrium model linking key fund characteristics
 - fund size, expense ratio, turnover, portfolio liquidity
- Strong empirical evidence of implied tradeoffs
 - consistent with scale diseconomies
- Introduce portfolio liquidity, the product of
 - average liquidity of the stocks held
 - diversification of the portfolio
- Fund activeness: combines portfolio liquidity and turnover
- Fund scale: combines activeness as well as fund size
Main contributions

- Equilibrium model linking key fund characteristics
 - fund size, expense ratio, turnover, portfolio liquidity
- Strong empirical evidence of implied tradeoffs
 - consistent with scale diseconomies
- Introduce portfolio liquidity, the product of
 - average liquidity of the stocks held
 - diversification of the portfolio
- New diversification measure, the product of
 - coverage: number of stocks held vs. benchmark
 - balance: weights on stocks held vs. market-cap weights
Main contributions

- Equilibrium model linking key fund characteristics
 - fund size, expense ratio, turnover, portfolio liquidity
- Strong empirical evidence of implied tradeoffs
 - consistent with scale diseconomies
- Introduce portfolio liquidity, the product of
 - average liquidity of the stocks held
 - diversification of the portfolio
- New diversification measure, the product of
 - coverage: number of stocks held vs. benchmark
 - balance: weights on stocks held vs. market-cap weights
- Fund activeness: combines portfolio liquidity and turnover
Main contributions

- Equilibrium model linking key fund characteristics
 ▶ fund size, expense ratio, turnover, portfolio liquidity
- Strong empirical evidence of implied tradeoffs
 ▶ consistent with scale diseconomies
- Introduce portfolio liquidity, the product of
 ▶ average liquidity of the stocks held
 ▶ diversification of the portfolio
- New diversification measure, the product of
 ▶ coverage: number of stocks held vs. benchmark
 ▶ balance: weights on stocks held vs. market-cap weights
- Fund activeness: combines portfolio liquidity and turnover
- Fund scale: combines activeness as well as fund size
Implied fund tradeoffs supported by our evidence

- Smaller fund, higher fee, lower turnover \Rightarrow less-liquid portfolio
Implied fund tradeoffs supported by our evidence

- Smaller fund, higher fee, lower turnover \Rightarrow less-liquid portfolio
- Above three plus less diversified portfolio \Rightarrow more liquid stocks
Implied fund tradeoffs supported by our evidence

- Smaller fund, higher fee, lower turnover ⇒ less-liquid portfolio
- Above three plus less diversified portfolio ⇒ more liquid stocks
- Lower coverage, controlling for the above ⇒ higher balance
Implied fund tradeoffs supported by our evidence

- Smaller fund, higher fee, lower turnover \Rightarrow less-liquid portfolio
- Above three plus less diversified portfolio \Rightarrow more liquid stocks
- Lower coverage, controlling for the above \Rightarrow higher balance
- Smaller fund, higher fee \Rightarrow higher activeness
Implied fund tradeoffs supported by our evidence

- Smaller fund, higher fee, lower turnover \Rightarrow less-liquid portfolio
- Above three plus less diversified portfolio \Rightarrow more liquid stocks
- Lower coverage, controlling for the above \Rightarrow higher balance
- Smaller fund, higher fee \Rightarrow higher activeness
- Smaller fund \Leftrightarrow higher fee
Literature

- Our focus on fund characteristics seems novel
- Involves some familiar concepts
Literature

- Our focus on fund characteristics seems novel
- Involves some familiar concepts
- Decreasing returns to scale in active management
 - Several papers relate fund size to performance
 - We relate fund size to multiple fund characteristics

- Portfolio diversification
 - Common measures: Number of stocks, Herfindahl index of weights
 - Our measure blends both ideas, has strong theoretical motivation
 - We explore what kinds of funds are more likely to diversify
Literature

- Our focus on fund characteristics seems novel
- Involves some familiar concepts
- Decreasing returns to scale in active management
 - Several papers relate fund size to performance
 - We relate fund size to multiple fund characteristics

- Portfolio diversification
 - Common measures: Number of stocks, Herfindahl index of weights
 - Our measure blends both ideas, has strong theoretical motivation
 - We explore what kinds of funds are more likely to diversify
Introducing portfolio liquidity

- Portfolio is more liquid \iff less costly to trade a fraction of it
Introducing portfolio liquidity

- Portfolio is more liquid ⇔ less costly to trade a fraction of it
- Simple trading cost function ⇒

\[L = \left(\sum_{i=1}^{N} \frac{w_i^2}{m_i} \right)^{-1} \]

N: number of stocks in portfolio

*w*_{*i*}: portfolio’s weight on stock *i*

*m*_{*i*}: weight on stock *i* in a value-weighted benchmark
Introducing portfolio liquidity

- Portfolio is more liquid \iff less costly to trade a fraction of it
- Simple trading cost function \Rightarrow

$$L = \left(\sum_{i=1}^{N} \frac{w_i^2}{m_i} \right)^{-1}$$

- N: number of stocks in portfolio
- w_i: portfolio’s weight on stock i
- m_i: weight on stock i in a value-weighted benchmark

- $L \in (0, 1]$
- Least liquid portfolio: single, smallest stock in the benchmark
- Most liquid portfolio: the benchmark portfolio ($L = 1$)
Introducing portfolio liquidity

Assumption: larger trades have higher proportional costs:

\[C_i = c \frac{D_i}{M_i} \]

- \(C_i \): cost per dollar traded of stock \(i \)
- \(D_i \): dollar amount traded of stock \(i \)
- \(M_i \): stock \(i \)'s market cap
- \(c \): same for all stocks in the portfolio’s benchmark
Introducing portfolio liquidity

- Assumption: larger trades have higher proportional costs:

\[C_i = c \frac{D_i}{M_i} \]

- \(C_i \): cost per dollar traded of stock \(i \)
- \(D_i \): dollar amount traded of stock \(i \)
- \(M_i \): stock \(i \)'s market cap
- \(c \): same for all stocks in the portfolio’s benchmark

- If \(D \) is the total dollar amount of the portfolio traded

\[D_i = Dw_i \]
Introducing portfolio liquidity

- Total cost of trading that dollar amount D of the portfolio:

$$C = \sum_{i}^{N} D_i C_i$$

$$= \sum_{i}^{N} (Dw_i) \left(c \frac{Dw_i}{M_i} \right)$$

$$= \left(\frac{c}{M} \right) D^2 \left(\sum_{i=1}^{N} \frac{w_i^2}{m_i} \right)$$

$(M$: market capitalization of all stocks in the benchmark$)$
Introducing portfolio liquidity

- Total cost of trading that dollar amount D of the portfolio:

$$C = \sum_{i}^{N} D_i C_i$$

$$= \sum_{i}^{N} (Dw_i) \left(c \frac{Dw_i}{M_i} \right)$$

$$= \left(\frac{c}{M} \right) D^2 \left(\sum_{i=1}^{N} \frac{w_i^2}{m_i} \right)$$

L^{-1}

(M: market capitalization of all stocks in the benchmark)
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^\gamma T^\lambda L^{-\phi} \)
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^\gamma T^\lambda L^{-\phi} \)
- Expected gross return: \(a = \mu g(T, L) \)
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^\gamma T^\lambda L^{-\phi} \)
- Expected gross return: \(a = \mu g(T, L) \)
- Fund maximizes fee revenue \(F = fA \) (fee rate × AUM)
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^\gamma T^\lambda L^{-\phi} \)
- Expected gross return: \(a = \mu g(T, L) \)
- Fund maximizes fee revenue \(F = fA \) (fee rate \(\times \) AUM)
- Zero net alpha in equilibrium: \(\alpha = a - C/A - f = 0 \)
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^{\gamma} T^\lambda L^{-\phi} \)
- Expected gross return: \(a = \mu g(T, L) \)
- Fund maximizes fee revenue \(F = fA \) (fee rate \(\times \) AUM)
- Zero net alpha in equilibrium: \(\alpha = a - C/A - f = 0 \)

\[\Rightarrow F = \left(\frac{1}{\theta} T^{-\lambda} L^{\phi} \left[\mu g(T, L) - f \right] f^{\gamma-1} \right)^{\frac{1}{\gamma-1}} \]
Fund characteristics in equilibrium

- Fund’s expected trading cost: \(C = \theta A^\gamma T^\lambda L^{-\phi} \)
- Expected gross return: \(a = \mu g(T, L) \)
- Fund maximizes fee revenue \(F = fA \) (fee rate \(\times \) AUM)
- Zero net alpha in equilibrium: \(\alpha = a - C/A - f = 0 \)

\[F = \left(\frac{1}{\theta} T^{-\lambda} L^\phi [\mu g(T, L) - f] f^{\gamma^{-1}} \right)^{\frac{1}{\gamma-1}} \]

- FOC for \(f \) implies

\[\ln L = b_0 + b_1 \ln A - b_2 \ln f + b_3 \ln T \]

- \(b_0, b_1, b_2, \) and \(b_3 \) are positive constants
- they don’t depend on fund-specific skill, \(\mu \)
Empirical evidence

- 2,789 active U.S. domestic equity mutual funds, 1979–2014
- Combine CRSP, Morningstar, Thomson Reuters
 - Check accuracy across databases
 - Exclude index funds, non-equity funds, international funds, industry funds, target-date funds, funds of funds, funds with size < $15 million
Empirical evidence

- 2,789 active U.S. domestic equity mutual funds, 1979–2014
- Combine CRSP, Morningstar, Thomson Reuters
 - Check accuracy across databases
 - Exclude index funds, non-equity funds, international funds, industry funds, target-date funds, funds of funds, funds with size < $15 million
- Panel regression, fund $i/quarter$ t,

$$ (\ln L)_{i,t} = a_0 + a_1 (\ln A)_{i,t} + a_2 (\ln f)_{i,t} + a_3 (\ln T)_{i,t} + \epsilon_{i,t} $$
Empirical evidence

- 2,789 active U.S. domestic equity mutual funds, 1979–2014
- Combine CRSP, Morningstar, Thomson Reuters
 - Check accuracy across databases
 - Exclude index funds, non-equity funds, international funds, industry funds, target-date funds, funds of funds, funds with size < $15 million
- Panel regression, fund i/quarter t,

$$(\ln L)_{i,t} = a_0 + a_1(\ln A)_{i,t} + a_2(\ln f)_{i,t} + a_3(\ln T)_{i,t} + \epsilon_{i,t}$$

- Sector-quarter fixed effects, essentially treating
 - the model as cross-sectional
 - L as defined using a sector-specific benchmark
 - c as constant within a given sector and quarter
- Cluster by funds
Empirical evidence

- 2,789 active U.S. domestic equity mutual funds, 1979–2014
- Combine CRSP, Morningstar, Thomson Reuters
 - Check accuracy across databases
 - Exclude index funds, non-equity funds, international funds, industry funds, target-date funds, funds of funds, funds with size < $15 million
- Panel regression, fund \(i \)/quarter \(t \),

 \[
 (\ln L)_{i,t} = a_0 + a_1 (\ln A)_{i,t} + a_2 (\ln f)_{i,t} + a_3 (\ln T)_{i,t} + \epsilon_{i,t}
 \]

- Sector-quarter fixed effects, essentially treating
 - the model as cross-sectional
 - \(L \) as defined using a sector-specific benchmark
 - \(c \) as constant within a given sector and quarter
- Cluster by funds
- **Expect** \(a_1 > 0, a_2 < 0, a_3 > 0 \)
Explaining mutual funds’ portfolio liquidity

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fund Size</td>
<td>0.157</td>
<td></td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(17.77)</td>
<td></td>
<td>(13.76)</td>
<td></td>
</tr>
<tr>
<td>Expense Ratio</td>
<td>-0.766</td>
<td></td>
<td>-0.608</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-13.29)</td>
<td></td>
<td>(-11.26)</td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td>0.0408</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.93)</td>
<td>(4.93)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>88925</td>
<td>89017</td>
<td>81892</td>
<td>76928</td>
</tr>
<tr>
<td>R^2</td>
<td>0.627</td>
<td>0.623</td>
<td>0.591</td>
<td>0.652</td>
</tr>
<tr>
<td>R^2 (FEs only)</td>
<td>0.594</td>
<td>0.588</td>
<td>0.591</td>
<td>0.598</td>
</tr>
</tbody>
</table>
Components of portfolio liquidity

- Decomposition of portfolio liquidity

\[L = \frac{1}{N} \sum_{i=1}^{N} L_i \times \left(\frac{N}{N_M} \right) \left[1 + \text{Var}^* \left(\frac{w_i}{m_i^*} \right) \right]^{-1} \]

- Stock Liquidity

- Diversification

\[L_i = M_i / \overline{M}, \text{ a measure of stock } i\text{'s liquidity} \]

\[\overline{M}: \text{ average market cap of stocks in the benchmark} \]

\[N_M: \text{ number of stocks in the benchmark} \]

\[\text{Var}^* (\cdot) : \text{ variance using the measure defined by the weights } m_i^* \]

\[m_i^* = m_i / \sum_{i=1}^{N} m_i \]
Components of portfolio liquidity

- Decomposition of diversification

\[
\text{Diversification} = \left(\frac{N}{N_M} \right) \times \left[1 + \text{Var}^* \left(\frac{w_i}{m_i^*} \right) \right]^{-1}
\]

- Coverage: fraction of available (benchmark) stocks held
- Balance: closeness to market-cap weights on stocks held
- Diversification, Coverage, Balance are all \(\in (0, 1] \)
Portfolio liquidity has doubled...
...because diversification has tripled
Both components of diversification have trended up
Funds are holding more and more stocks
Explaining the components of portfolio liquidity

<table>
<thead>
<tr>
<th></th>
<th>(1) Diversification</th>
<th>(2) Coverage</th>
<th>(3) Balance</th>
<th>(4) Stock Liq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fund Size</td>
<td>0.134</td>
<td>0.0940</td>
<td>0.0452</td>
<td>0.0122</td>
</tr>
<tr>
<td></td>
<td>(15.00)</td>
<td>(12.08)</td>
<td>(7.54)</td>
<td>(2.35)</td>
</tr>
<tr>
<td>Expense Ratio</td>
<td>-0.622</td>
<td>-0.408</td>
<td>-0.238</td>
<td>-0.132</td>
</tr>
<tr>
<td></td>
<td>(-11.00)</td>
<td>(-9.33)</td>
<td>(-6.95)</td>
<td>(-5.26)</td>
</tr>
<tr>
<td>Turnover</td>
<td>0.122</td>
<td>0.102</td>
<td>0.0247</td>
<td>-0.0146</td>
</tr>
<tr>
<td></td>
<td>(5.96)</td>
<td>(6.37)</td>
<td>(1.92)</td>
<td>(-1.32)</td>
</tr>
<tr>
<td>Stock Liquidity</td>
<td>-0.621</td>
<td>-0.337</td>
<td>-0.308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-21.61)</td>
<td>(-14.21)</td>
<td>(-14.90)</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td></td>
<td>-0.0447</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-2.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td></td>
<td>-0.0343</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.09)</td>
<td></td>
</tr>
<tr>
<td>Diversification</td>
<td></td>
<td></td>
<td></td>
<td>-0.264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-24.49)</td>
</tr>
<tr>
<td>Observations</td>
<td>76928</td>
<td>76928</td>
<td>76928</td>
<td>76928</td>
</tr>
<tr>
<td>R^2</td>
<td>0.465</td>
<td>0.336</td>
<td>0.286</td>
<td>0.882</td>
</tr>
<tr>
<td>R^2 (FEs only)</td>
<td>0.240</td>
<td>0.163</td>
<td>0.172</td>
<td>0.857</td>
</tr>
</tbody>
</table>
Fund activeness

- Recall fund’s gross return: $a = \mu g(T, L)$
- Depends positively on
 - skill, μ
 - activeness, $g(T, L)$
- Expect $g(T, L)$ to be
 - increasing in T
 - decreasing in L
- Empirical measure of activeness:
 $$g(T, L) = TL^{-1/2}$$
 - motivated by g as a choice variable, plus
 - simplest specification of cost-function parameters
- Model implies activeness is
 - increasing in f
 - decreasing in A
Explaining fund activeness

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fund Size</td>
<td>-0.138</td>
<td>-0.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-13.23)</td>
<td>(-9.53)</td>
<td></td>
</tr>
<tr>
<td>Expense Ratio</td>
<td>0.712</td>
<td>0.558</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.14)</td>
<td>(10.12)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>76928</td>
<td>76928</td>
<td>76928</td>
</tr>
<tr>
<td>R^2</td>
<td>0.392</td>
<td>0.398</td>
<td>0.415</td>
</tr>
<tr>
<td>R^2 (FEs only)</td>
<td>0.356</td>
<td>0.356</td>
<td>0.356</td>
</tr>
</tbody>
</table>
Correlations among fund characteristics

- Model also motivates observed simple correlations

<table>
<thead>
<tr>
<th>Variables (logs)</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-sectional</td>
</tr>
<tr>
<td>1. Larger funds are cheaper</td>
<td>Fund Size, Expense Ratio</td>
</tr>
<tr>
<td>2. Funds that trade less are larger and cheaper</td>
<td>Turnover, Fund Size</td>
</tr>
<tr>
<td></td>
<td>Turnover, Expense Ratio</td>
</tr>
<tr>
<td>3. Funds with more liquid portfolios are larger and cheaper</td>
<td>Port. Liquidity, Fund Size</td>
</tr>
<tr>
<td></td>
<td>Port. Liquidity, Expense Ratio</td>
</tr>
</tbody>
</table>
Cross-sectional correlations over time

- Corr(Portfolio Liquidity, Fund Size)
- Corr(Turnover, Expense Ratio)
- Corr(Portfolio Liquidity, Expense Ratio)
- Corr(Fund Size, Expense Ratio)
Example: Fidelity’s Magellan fund
Example: Fidelity’s Magellan fund
Conclusion

- Model & document strong relations among fund characteristics
 - Smaller fund, higher fee, lower turnover \Rightarrow less-liquid portfolio
 - Above three plus less diversified portfolio \Rightarrow more liquid stocks
 - Lower coverage, controlling for the above \Rightarrow higher balance
 - Smaller fund, higher fee \Rightarrow higher activeness
 - Smaller fund \Leftrightarrow higher fee

- Introduce concept of portfolio liquidity
 - Portfolio Liquidity $=\text{Stock Liquidity} \times \text{Diversification}$
 - Derive simple measures of portfolio liquidity and diversification