
Online Appendices

A Planners Problem

This appendix derives the necessary conditions for the planner’s problem in (1). We consider

a finite horizon version of the planner’s problem with terminal time T and salvage values.

Taking the limit as T goes to infinity characterizes the infinite horizon problem. With salvage

value of a gasoline vehicle cg and an electric vehicle ĉx (in current value), the finite horizon

planner’s problem is

max
g,x

cge−rTG(T ) + ĉxe−rTX(T ) + ∫
T

0 e−rt (U(G,X) − cgg − cxx − δgG − δxX)dt

s.t. Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

g ≥ 0,

x ≥ 0

where Gss is the initial steady state stock of gasoline vehicles.

Let α̃ and β̃ be the adjoint variables corresponding to the state equations for G and X.

The Hamiltonian is

H = α̃(−aG + g) + β̃(−aX + x) + e−rt (U(G,X) − cgg − cxx − δgG − δxX) .

From the Maximum Principle1 the necessary conditions for the optimal control are the state

equations, the initial conditions, and

− ˙̃α + α̃a − e−rt (UG − δg) = 0 (adjoint equations)

− ˙̃β + β̃a − e−rt (UX − δx) = 0

α̃(T ) = cge−rT (adjoint final conditions)

β̃(T ) = ĉxe−rT ,

In addition, the controls g and xmust maximize the Hamiltonian subject to the nonnegativity

1See for example Kamien and Schwartz (2012).
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constraints. Because the Hamiltonian is linear in the controls, we use the Kuhn-Tucker

necessary conditions for the controls:

g ≥ 0 α̃ − e−rtcg ≤ 0 (α̃ − e−rtcg)g = 0 (necessary condition for g)

x ≥ 0 β̃ − e−rtcx ≤ 0 (β̃ − e−rtcx)x = 0 (necessary condition for x)

Using the change of variables α = ertα̃ and β = ertβ̃ (i.e. current values instead of present

values) the adjoint equations become

α̇ = (a + r)α −UG + δg ;α(T ) = cg.

β̇ = (a + r)β −UX + δx ;β(T ) = cx

The necessary conditions for interior g and x become

g ≥ 0 α − cg ≤ 0 (α − cg)g = 0 (necessary condition for g)

x ≥ 0 β − cx ≤ 0 (β − cx)x = 0 (necessary condition for x)

B Analysis of Gap Solution

The gap solution is characterized first by gasoline vehicle production, then by no vehicle

production (the gap) and finally by electric vehicle production. During [0, tg], gasoline

vehicles are produced in steady state with gasoline stock equal to Gss and interior gasoline

production g = aGss > 0. At time tg, production of gasoline vehicles stops and from then on,

the stock of gasoline vehicles decreases exponentially so G(t) = Gsse−a(t−tg) for all t > tg. At

time te, production of electric vehicles starts with interior x determined so that X satisfies

(5) with G(t) = Gsse−a(t−tg).

The next proposition characterizes the transition times te and tg in the gap solution. In

this case, the transition times must be solved for jointly.

Proposition 4. In the gap solution, the transition times te and tg are the solutions to the
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system of equations described by

UX(Gsse−a(t
e−tg),0) = (a + r)cx(te) + δx(te) − ċx(te) (A-1)

and

cg = ∫
te

tg
e−(a+r)(τ−t

g)(UG(Gsse−a(τ−t
g),0)−δg)dτ+∫

∞

te
e−(a+r)(τ−t

g) [UG(Gsse−a(τ−t
g),Xgap(τ)) − δg]dτ.

(A-2)

where Xgap(t) satisfies UX(Gsse−a(t−tg),Xgap(t)) = (a + r)cx + δx − ċx for all t > te.

Similar to what we found in the simultaneous solution, (A-1) shows that electric vehicle

production begins when the full marginal cost of the electric vehicle falls to the marginal

benefit of an electric vehicle. However because of the gap in production, the stock of gasoline

vehicles decreases and the marginal benefit of an electric vehicle is higher than the initial

steady state value. Thus the gap in production increases the marginal benefit of an electric

vehicle and causes their production to begin earlier. Notice that (A-1) is a function of both

te and tg so the marginal benefit depends on the stock of gasoline vehicles, which in turn

depends on how long it has been since production of these vehicles was stopped. Equation

(A-2) shows that at time tg, the production cost of the vehicle equals the discounted net

benefits of an additional gasoline vehicle at each time in the future. This equation is similar

to (7) except that it depends on te because the production paths and hence the marginal

benefit of a gasoline vehicle change when electric vehicle production begins. Thus equations

(A-1) and (A-2) each depend on both tg and te.

The gap solution has a period of time in which no vehicles are produced. Because this

is counterintuitive, it is useful to point out that the gap solution can occur for reasonable

parameterizations of the model. The next proposition shows that the gap solution obtains

in the rather important special case in which gasoline and electric vehicles are perfect sub-

stitutes.

Proposition 5. If the benefit function is U(G,X) = u(G + ηX) with u concave, then the

solution to the planner’s problem has tg < te.

The perfect substitutes case provides a useful benchmark for the analysis of the transition
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from gasoline to electric vehicles. The planner accounts for the decreasing damages and

production costs of electric vehicles when determining the optimal time to introduce them.

If electric vehicles are perfect substitutes for gasoline vehicles, there is no loss in benefit from

stoping gasoline vehicle production if they are replaced by electric vehicles. In this case, the

planner stops production of gasoline vehicles before beginning production of electric vehicles

because gasoline vehicles produced today remain in the fleet for some time, and they will

cause more damages than the increasingly clean electric vehicles. In addition, stopping

production of gasoline vehicles increases the marginal benefit of an electric vehicle, thus

leading to an earlier introduction of electric vehicles.

If vehicles are not perfect substitutes, either the gap or simultaneous solution may occur.

Loosely speaking, if electric cars are good substitutes for gasoline vehicles, then the gap

solution occurs. If, however, the vehicles are not good substitutes, then the planner accounts

for this by extending the production of gasoline vehicles past the point at which electric

vehicles are introduced and we have the simultaneous solution.

Proof of Proposition 4

Proof. After tg, the gasoline vehicle stock is simply G(t) = Gsse−a(t−tg). So at te we have

UX(Gsse−a(t
e−tg),0) = (a + r)cx(te) + δx(te) − ċx(te)

This equation is a function of both te and tg, so we need another equation to pin down the

transition times.

The other equation comes from the continuity of α(t). For t ∈ [0, tg], we have α(t) = cg.

For t ∈ [tg, te] and for t ∈ [te,∞], α(t) evolves according to two different differential equations,

which we can solve using Lemma 1. Continuity at te gives the additional equation.

For the interval [tg, te], the adjoint equation can be solved using (12) from Lemma 1 with

the initial condition α(tg) = cg as

α(t) = e(a+r)t [∫
t

tg
e−(a+r)τ [δg −UG(Gsse−a(τ−t

g),0)]dτ + cge−(a+r)t
g] (A-3)
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for the interval [tg, te]

For the interval [te,∞), the adjoint equation can be solved using (13) from Lemma 1 as

α(t) = e(a+r)t [∫
∞

t
e−(a+r)τ [UG(Gsse−a(τ−t

g),Xgap(τ)) − δg]dτ] (A-4)

for t ≥ te. Since (A-3) and (A-4) must both hold at te, we have the result

cg = ∫
te

tg
e−(a+r)(τ−t

g)(UG(Gsse−a(τ−t
g),0)−δg)dτ+∫

∞

te
e−(a+r)(τ−t

g) [UG(Gsse−a(τ−t
g),Xgap(τ)) − δg]dτ

Proof of Proposition 5.

Proof. First we show that both g and x cannot be interior during the same time interval.

For U(G,X) = u(G + ηX), we have UG = u′ and UX = u′η If g is interior, (4) can be written

u′ = (a + r)cg + δg. Similarly, if x is interior, (5) can be written u′η = (a + r)cx + δx − ċx.

Combining these implies

η[(a + r)cg + δg] = (a + r)cx(t) + δx(t) − ċx(t).

Since the left side of this equation is constant but the right side is decreasing, both g and x

cannot be interior over an open interval, which implies tg ≤ te.

We now show that tg < te. Suppose that tg = te. Because g is interior, α = cg on the

interval [0, tg]. In particular, α(tg) = cg. However, using (13) from Lemma 1, we have

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [u′(G(τ) + ηX(τ)) − δg]dτ

when we substitute in UG = u′. Because u′η = (a + r)cx + δx − ċx after te, we have that u′ is

decreasing after te. This implies that

α(tg) = e(a+r)tg ∫
∞

tg
e−(a+r)τ [u′(G(τ) + ηX(τ)) − δg]dτ
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< e(a+r)tg ∫
∞

tg
e−(a+r)τ [u′(G(tg)) − δg]dτ

= e(a+r)tg[u′(G(tg)) − δg]∫
∞

tg
e−(a+r)τdτ

= e(a+r)tg[(a + r)cg]e−(a+r)t
g/(a + r) = cg

which is a contradiction.

C Temporary cessation of gasoline vehicle production

It may be optimal to stop producing gasoline vehicles and draw down the existing vehicle

stock even if gasoline vehicles must eventually be produced in the terminal steady state. To

illustrate the possibilities, assume the condition UG(0,X∗) > (a+r)cg+δg from Proposition 1

holds so that gasoline vehicle production is positive in the terminal steady state. It may

be optimal to temporarily cease gasoline vehicle production if electric vehicles are good

substitutes for gasoline vehicles for most uses, but are not good substitutes for other uses.

For example, the benefit function

U = u(min{(n + 1)G,X +G})

has kinked indifference curves and implies that gasoline and electric vehicles are perfect

substitutes if G >X/n but that the marginal benefit of an electric vehicle is zero if G <X/n.

In this example, if electric vehicles become cheaper than gasoline vehicles, the planner stops

producing gasoline vehicles and begins to produce electric vehicles because the vehicles are

perfect substitutes when G > X/n = 0. Over time, the stock of gasoline vehicles depreciates

and the stock of electric vehicles grows. When G = X/n, the planner optimally restarts

production of gasoline vehicles to hold production at the kink of the indifference curve where

G =X/n. Thus gasoline vehicle production may be ceased temporarily if the substitutability

of the vehicles depends on the stock of vehicles.

Temporarily ceasing gasoline vehicle production can also be optimal if the full marginal

costs of electric vehicles are falling dramatically enough. To illustrate, suppose that both

A.6



gasoline and electric vehicles are being produced so that both (4) and (5) hold. Taking the

time derivative of these equations gives

UGXẊ +UGGĠ = 0

and

UXXẊ +UGXĠ = (a + r)ċx + δ̇x − c̈x.

Solving this system for Ġ gives

Ġ = (a + r)ċx + δ̇x − c̈x
−UXXUGG

UGX
+UGX

(A-5)

which is negative implying that the gasoline stock is decreasing. However, the decrease of

the stock of gasoline vehicles is limited by the retirement rate. If Ġ in (A-5) is more negative

than −aG, then implied gasoline vehicle production would be negative. In this case, it is

optimal to cease production of gasoline vehicles temporarily even though they are eventually

produced in the steady state. Because the numerator on the right-hand-side of (A-5) is the

time derivative of the full marginal cost of electric vehicles, a temporary cessation of gasoline

vehicle production arises if the full marginal cost of electric vehicles is falling sufficiently fast

relative to the depreciation rate of gasoline vehicles.

D Extensions

This appendix analyzes learning by doing and investment in charging infrastructure. To

account for charging infrastructure, the benefit function becomes U(G,X,W ) where W

is the stock of charging infrastructure and UW > 0 and UXW > 0. As W increases, electric

vehicles become better substitutes for gasoline vehicles. Charging infrastructure grows based

on investment, w, which costs cw per unit and increases the stock according to the state

equation Ẇ = w (which assumes investments do not depreciate). To account for learning by

doing, assume the cost for producing an electric vehicle depends on the cumulative number

of electric vehicles produced, Z, which follows the state equation Ż = x. The cost per electric
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vehicle then becomes

cx = f(Z),

where f ′(Z) ≤ 0 and f(∞) = ĉx. For notational convenience, assume f is not a function of

time.

The finite horizon planner’s problem with terminal time T is

max
g,x,w

cge−rTG(T ) + f(Z(T ))e−rTX(T ) + ∫
T

0 e−rt (U(G,X,W ) − cgg − f(Z)x − cww − δgG − δxX)dt

s.t. Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

Ẇ = w ; W (0) = 0

Ż = x ; Z(0) = 0

g ≥ 0

x ≥ 0

w ≥ 0

Let α̃, β̃, and φ̃, and λ̃, be the adjoint variables corresponding to the system equations

for G,X,W and Z. The Hamiltonian is

H = α̃(−aG+g)+ β̃(−aX +x)+ φ̃w+ λ̃x+e−rt (U(G,X,W ) − cgg − f(Z)x − cww − δgG − δxX) .

If T is long enough (and/or Z(T ) is big enough) so that f(Z(T )) = ĉx and f ′(Z(T )) = 0,

using the change of variables α = ertα̃, β = ertβ̃, φ = ertφ̃, and λ = ertλ̃ (i.e. current values

instead of present values) the adjoint equations become

α̇ = (a + r)α −UG + δg ;α(T ) = cg

β̇ = (a + r)β −UX + δx ;β(T ) = ĉx

φ̇ = rφ −UW ; φ(T ) = 0.

λ̇ = rλ + f ′(Z)x ;λ(T ) = 0
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and the Kuhn-Tucker necessary conditions for g, x, and w become

g ≥ 0 α − cg ≤ 0 (α − cg)g = 0 (necessary condition for g)

x ≥ 0 λ + β − f(Z) ≤ 0 (λ + β − f(Z))x = 0 (necessary condition for x)

w ≥ 0 φ − cw ≤ 0 (φ − cw)w = 0 (necessary condition for w)

(A-6)

For interior investment in charging infrastructure, w > 0 implies that φ = cw. Taking the

time derivatives shows that φ̇ = 0. The adjoint equation then implies that

UW = rcw (A-7)

whenever charging infrastructure is positive.

For positive electric vehicle production, Eq. 5 in the main paper must be modified to

account for the benefit of electric vehicle production on costs through learning. If x > 0, then

λ+β = f(Z) and taking the time derivative implies that λ̇+ β̇ = f ′(Z)x. Substituting in the

adjoint equations implies that

UX = (a + r)β + δx + rλ. (A-8)

Unfortunately, both λ and β cannot be eliminated from this equation because there is only

one choice variable. Thus the analog to Eq. 5 cannot be expressed independently of the

shadow values.

Charging Infrastructure

This section focuses on charging infrastructure and ignores learning by doing. Assume that

UW (G,0,W ) = 0, which implies that the marginal benefit of charging stations is zero when

there are no electric vehicles. Let tw be the time at which the planner begins production of

charging stations. We now prove a proposition that relates tw and te.

Proposition 6. If tw is the time at which investment in charging infrastructure begins, then

tw > te.

Proof. Suppose tw ≤ te. By assumption at tw, w is interior which implies that UW (G,X,W ) =
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rcw. But because tw ≤ te, we have X(tw) = 0, so rcw = UW (G(tw),X(tw),W (tw)) =

UW (G(tw),0,W (tw)) = 0 which is a contradiction because r > 0.

The proposition implies that electric vehicle production optimally begins before invest-

ment in charging infrastructure occurs. Because there is no benefit from charging infrastruc-

ture in the absence of electric vehicles, the planner waits until there are sufficient electric

vehicles to warrant infrastructure investment. This result relies on the assumption of con-

stant costs of infrastructure investment. If costs are convex, the planner may optimally

invest in charging infrastructure earlier. In fact, with a capacity constraint on infrastructure

investment, the planner may begin infrastructure investment strictly before any electric cars

are built. In this case, investment would occur at its maximum rate until after electric car

production begins.

Learning By Doing

This section focuses on learning by doing and ignores charging infrastructure. We begin by

showing a few facts about the adjoint variables.

Lemma 2. 1. For all t ∈ [0, T ] we have λ ≥ 0 and φ ≥ 0.

2. If x is interior, then β̇ = −rλ.

3. If x is zero for t ∈ [0, ts) and interior for t ∈ [ts, T ] for some ts, then β(ts) < f(0) and

β ≥ cg for t ∈ [ts, T ].

Proof. Suppose that at some point in time λ < 0. Because f ′(Z)x ≤ 0, it follows from the

adjoint equation for λ that λ̇ < 0. Thus λ must continue to fall for the rest of the time

period. But this is a contradiction with λ(T ) = 0. The proof for φ is similar.

Next suppose that x is interior. Take the time derivative of (A-6). This gives

λ̇ + β̇ = f ′(Z)x.

Using the adjoint equation for λ this implies

rλ + f ′(Z)x + β̇ = f ′(Z)x.
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Simplifying gives the desired result that

β̇ = −rλ.

The fact that β(ts) < f(0) follows directly from (A-6) and the fact that λ ≥ 0. To prove

that β ≥ cg, we combine

β̇ = −rλ ≤ 0.

with β(T ) = cg.

Now assume the benefit function is u(G + ηX) so that gasoline and electric vehicles are

perfect substitutes. The main text showed that such a benefit function leads to the gap

solution. The next proposition shows this result is robust to the having the cost of electric

vehicles be determined by learning by doing.

Proposition 7. Consider the model with learning by doing. Suppose that benefit function is

given by u(G + ηX). Then the solution to the planner’s problem has tg < te.

Proof. First we show that both g and x cannot be interior during the same time interval.

Suppose both g and x are interior during some time interval. Because g is interior, (4)

implies

u′ = (a + r)cg + δg.

Because x is interior, (A-8) implies

u′η = r(λ + β) + aβ + δx. (A-9)

Substituting the value for u′ from above and using (A-6) gives

rf(Z) + aβ + δx = ((a + r)cg + δg)η.

Taking the time derivative gives

rf ′(Z)x + aβ̇ + δ̇x = 0 (A-10)
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From Lemma 2 we know that

β̇ = −rλ.

So we have

rf ′(Z)x + δ̇x = arλ.

The first expression on the left-hand-side is non-positive and the second expression is nega-

tive. This implies that λ is negative, which contradicts Lemma 2.

So far we have shown that tg ≤ te. So we must rule out the case that tg = te. Suppose

that tg does indeed equal te. In steady state with g interior, we have α = cg, thus α̇ = 0, and

hence u′ − (a + r)cg − δg = 0. These equations hold at t = tg. Because tg = te, we are also

producing electric vehicles with interior x. From (A-9) and (A-6) we have

r(f(Z)) + aβ + δx = u′η. (A-11)

Taking the time derivative gives

ηu̇′ = rf ′(Z)x + aβ̇ + δ̇x.

Every term on the right hand side is negative, hence u̇′ is negative. Thus marginal benefit

is decreasing over time.

Now consider some point in time t̃ = tg + ε. Because α̇ = 0 at tg, we have α = cg at t̃. So

at t̃, the adjoint equation for α is

α̇ = −(u′ − (a + r)cg − δg).

Because marginal benefit is decreasing over time, u′ is less at t̃ than it is at tg. At tg we have

u′ − (a + r)cg − δg = 0. So at t̃ we have u′ − (a + r)cg − δg < 0. Hence at t̃ we have α̇ > 0. So

this implies α will become greater than cg in the next time instant. But, from the necessary

conditions, if α > cg then it is optimal for g to be positive (equal to the maximum production

level.) This contradicts the definition of tg.
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E Calibration Details

Gasoline vehicles

To understand the implications of our assumption that usage costs for gasoline vehicles are

constant over time, consider evidence about various components of these usage costs. The

externality component is equal to the product of damage valuation per unit of emissions

and the emissions rates per mile driven. Damage valuations (in particular, the social cost of

carbon) have been increasing over time, but emission rates have been declining. Historical

emission rates from gasoline vehicles for 5 pollutants (VOC, CO2, SO2, PM2.5, and NOx)

are given Table A. Many of these values simply reflect the emissions regulations in place at

various points in time.2

Although the pattern of declining emissions over time can be seen in the data in Table A,

converting emissions to a single measure of damages illustrates this more clearly. Following

the methodology of Holland et al (2016) and Holland et al (2018), we combine the emissions

in grams per mile with the estimates of damage valuations in dollars per gram by county

using the AP3 integrated assessment model which assumes a $9 million value of statistical

life (VSL), the EPA social cost of carbon (SCC) of $45 per ton, and VMT by county. We

then conduct an experiment in which we assume the 2015 fleet of vehicles has the polluting

characteristics of, say, 1975 vintage passenger vehicles. Repeating this for each year in our

historical time series gives the results shown in Figure A. In this figure, the damage valuations

of pollutants are kept constant. The only thing that is changing is the emissions rates of the

vehicles. The major improvements in emission reductions occur in the late 1970’s and the

1990’s, although there continues to be improvement over the recent decade, with damages

decreasing approximately two percent per year.

Next consider the operating cost component. These costs depend on vehicle miles trav-

2For 1975-2003, the NOx standard comes from data in Mondt (2000). After 2003 the NOx standard is
average for Tier 2 bins phased in from 2004 to 2009. VOC emissions include tailpipe and evaporation. For
1975-2003, the tailpipe VOC emissions come from Lee et al (2010) and after 2003 tailpipe VOC emissions
come from Tier 2 Bin 5. Evaporation VOC is fixed at the value specified GREET (2013). PM2.5 includes
tailpipe emissions (Tier 2 bin 5 standard) and tire and break wear from GREET 2013. Emissions of CO2

are derived from fleet average MPG figures (EPA 2015, Table 9.1). SO2 emissions are calculated from fleet
average MPG figures and the sulphur content in gasoline (GREET 2013 and EPA (1999)).
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Table A: Historical Emissions from Gasoline Vehicles (g/mile)

Model Year CO2 SO2 PM2.5 VOC NOx
1975 658 0.20881 0.0173 1.557 3.1
1976 596 0.18919 0.0173 1.557 3.1
1977 570 0.18071 0.0173 1.557 2
1978 526 0.16680 0.0173 1.557 2
1979 517 0.16390 0.0173 1.557 2
1980 444 0.14095 0.0173 1.557 2
1981 415 0.13173 0.0173 0.467 1
1982 400 0.12698 0.0173 0.467 1
1983 402 0.12756 0.0173 0.467 1
1984 397 0.12585 0.0173 0.467 1
1985 386 0.12257 0.0173 0.467 1
1986 375 0.11895 0.0173 0.467 1
1987 373 0.11845 0.0173 0.467 1
1988 369 0.11697 0.0173 0.467 1
1989 375 0.11895 0.0173 0.467 1
1990 381 0.12099 0.0173 0.467 1
1991 380 0.12047 0.0173 0.467 1
1992 385 0.12203 0.0173 0.467 1
1993 378 0.11996 0.0173 0.467 1
1994 381 0.12099 0.0173 0.307 0.6
1995 380 0.08192 0.0173 0.307 0.6
1996 381 0.08227 0.0173 0.307 0.6
1997 380 0.08192 0.0173 0.307 0.6
1998 380 0.08192 0.0173 0.307 0.6
1999 386 0.08334 0.0173 0.307 0.3
2000 388 0.04924 0.0173 0.307 0.3
2001 386 0.04903 0.0173 0.307 0.3
2002 385 0.04881 0.0173 0.307 0.3
2003 383 0.04860 0.0173 0.307 0.3
2004 385 0.02929 0.0173 0.132 0.07
2005 378 0.02159 0.0173 0.132 0.07
2006 381 0.00726 0.0173 0.132 0.07
2007 369 0.00702 0.0173 0.132 0.07
2008 366 0.00696 0.0173 0.132 0.07
2009 350 0.00666 0.0173 0.132 0.07
2010 344 0.00656 0.0173 0.132 0.07
2011 347 0.00661 0.0173 0.132 0.07
2012 328 0.00624 0.0173 0.132 0.07
2013 319 0.00606 0.0173 0.132 0.07
2014 319 0.00606 0.0173 0.132 0.07
2015 313 0.00596 0.0173 0.132 0.07
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Figure A: Damages from Emissions of Gasoline Vehicles over Time

elled (VMT), the miles per gallon of the vehicle, and the price of gasoline, which have stayed

fairly constant over the last decade. Putting all of these elements together, our assumption

that usage costs are constant is implicitly assuming that reductions in emissions rates over

time just balance out increasing damage valuations for carbon and other pollutants. In par-

ticular, each new vintage of automobile must improve enough such that the usage costs from

the entire stock of vehicles stays constant. This may be overly optimistic about the rate of

improvements in gasoline technology.

To calibrate the externality component of the our usage costs, we use the emission rates

the most recent vintage (2015) gasoline vehicle. The above procedure gives an externality

component of usage costs of 2.3 cents per mile or $345 per vehicle per year assuming 15,000

miles per year. To calibrate the operating cost component of the usage costs, we use the

American Automobile Association (2017) estimate of 18.18 cents per mile for the average

gasoline vehicle in 2017 which corresponds to $2726 per year.3

3This is based on a gasoline price of $2.33 per gallon and includes costs for maintenance, repair, and tires
of 7.91 cents per mile. We do not include costs for insurance, license, registration, or taxes which are quite
similar across electric and gasoline vehicles. Depreciation and finance charges are modeled explicitly in the
production cost of the vehicle.
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For the production cost of gasoline vehicles, cg, Kelley Blue Book (2017) reports the

average transaction price for light duty vehicles of approximately $35000, which we adopt

as our baseline value. This average is across all vehicle segments (e.g., including SUVs and

electric vehicles) so is probably a high estimate for the production cost of passenger vehicles.

To calibrate the stock of gasoline vehicles and their retirement rate, note that the 2015

stock of light duty vehicles is 190 million (Bureau of Transportation Statistics 2017) and

approximately 58 percent of all light duty production from 1976 to 2016 is passenger cars

(Bureau of Economic Analysis 2017). Assuming that passenger cars and light trucks retire

at the same rate implies that the stock of passenger cars is 110 million. In steady state the

retirement rate is the annual production divided by the stock. Over the period from 2012 to

2016, the average production of passenger cars is 7.4 million (Bureau of Economic Analysis

2017) which implies a = 7.4/110 = 0.067.

Electric vehicles

As with gasoline vehicles, usage costs for electric vehicles are comprised of externality cost

and operating cost. The externality cost depends on VMT, electricity use per mile, and the

marginal damage from the electricity usage. Estimates from Holland et al (2018) for the

East show that damages per year are declining at approximately 5 percent per year and are

equal to $332 dollars per year in 2017.4 Converting this to the base year gives the externality

cost function 605e(−0.05t), where t is relative to 2005. The estimates in Holland et al (2018)

do account for increasing damage valuations over time, but as with gasoline vehicles, our

assumptions are likely optimistic about the rate of improvements from electric technology.

Holland et al (2018) point out that the time period in their analysis is characterized by unusu-

ally rapid decreases in emissions. Our externality cost function assumes this rate of decline

continues such that the externality cost approaches zero in the limit. Using a methodology

similar to that for gasoline vehicles, the American Automobile Association (2017) estimate

the operating cost of electric vehicle in 2017 to be 10.23 cents per mile or $1535 per year.5

4Marginal damages are 6.5 cents per kWh and VMT-weighted electricity use is 0.341kWh per mile.
5Again this includes maintenance costs of 6.55 cents per mile, but we do not include costs for insurance

and fees.
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For the production cost of electric vehicles, we assume that most of the changes in cost

is due to decreased cost for the batteries. Data on prices and production of Lithium ion

batteries, expressed in 2015 dollars, comes from Kittner, Lill, and Kammen (2017) and is

shown in Table B. The general procedure for specifying cx is to determine an initial cost

premium in conjunction with an exponential decay function that is a function of time and

cumulative production. We assume that electric vehicles have a 60 KWh battery and convert

the units of cumulative production into millions of vehicles (divide MWh by 60,0000) to be

consistent with the rest of the parameters. We then estimate the following model for battery

prices

ln(Price) = constant + αYear + β ln(Cumulative Production) + ε.

Using OLS, we obtain α = −0.06 (Std. Err. 0.01) and β = −0.16 (Std. Err. 0.02). For the

simulation, we start in year 2005. Under the assumption that costs are a function of time

alone we get

cx = cg + 1.04 ∗ 60 ∗ 351.95e−0.06t,

where 1.04 converts from 2015 dollars to 2017 dollars, 60 is the size of the battery, 351.95 is

the cost of batteries in 2005, and 0.06 is the estimate of α. Adding learning by doing gives

cx = cg + 1.04 ∗ 60 ∗ 351.95e−0.06t−0.16 ln(Z+1),

where Z is the cumulative production of electric vehicles. In this formulation, learning by

doing combines with exogenous decreases in costs over time, and, when Z = 0, the cost is

the same as in the specification in which costs are a function of time alone.

Our calibration shows that the initial annual usage costs in 2005 of electric vehicles,

$2167, is less than the usage cost for the gasoline vehicle, $3022. But initial full marginal

costs for electric vehicles, $9000, are higher than full marginal costs of gasoline vehicles,

$7000, due to the higher production costs of electric vehicles. In the limit, full marginal

costs of electric vehicles fall to a level about $1000 lower than gasoline vehicles.
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Table B: Price and Cumulative Production of Lithium Ion Batteries

Year Price Cumulative Production
(2015 Dollars per KWh) (MWh)

1991 5394.66 0.13
1992 4392.33 1.68
1993 3444.54 14.55
1994 2718.82 50.08
1995 2566.13 121.13
1996 1888.28 547.42
1997 1329.07 1257.9
1998 872.46 2288.09
1999 711.34 3815.63
2000 619.38 5982.59
2001 508.85 8504.79
2002 487.47 12092.71
2003 437.97 17350.26
2004 401.51 24526.11
2005 351.95 33371.58
2006 317.43 44916.87
2007 320.07 58806.74
2008 319.25 75616.08
2009 298.29 94954.08
2010 260.87 119308.1
2011 231.81 149029.1
2012 185.82 183816.1
2013 183.14 226555.1
2014 170.2 276384.1
2015 150 337871.1

Benefit Function

We use observed data on prices and quantities in 2018 to calibrate the benefit function

parameters A, η, and γ. The necessary conditions (4) and (5) are two suitable equations if

we modify the costs to reflect the actual costs faced by consumers.6 For the third equation, we

first determine a formula for the cross-price elasticity εGpX = px/G ⋅dG/dpx. Then, using data

from Xing et al (2019), we determine a numerical value of 0.01 for the cross price elasticity,

which we adopt as our baseline value (see below for the details of these steps). Setting our

cross-price elasticity formula equal to 0.01 gives a third equation, which allows us to solve

for the three benefit function parameters. Note that our functional form and calibration

imply an own price elasticity of approximately -1, which is reasonable but smaller than

many estimates. We could alternatively calibrate based on own-price elasticity estimates.

However, due to the importance of the substitutability of electric and gasoline vehicles in

our theory, we prefer to calibrate using the cross-price elasticity.7 This calibration yields the

6In particular, the calibration ignores the externality costs and reduces the electric vehicle cost by $7500
to reflect existing subsidies.

7The more flexible functional form allows us to match an own- and cross-price elasticity but does not
change the results substantially.
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Table C: Benefit parameters as a function of cross-price elasticity

Parameter εGpX = 0.01 εGpX = 2 εGpX = 5.5 εGpX = 8
A 750,376 755,413 756,277 756,449
η 0.00974529 0.749591 0.875532 0.900464
γ 0.892332 0.00254949 0.000863579 0.000585756

baseline values in the first column of Table C. The other columns show parameter values for

different assumed values of the cross-price elasticity.

To determine the formula for the cross-price elasticity, we start with the benefit function:

U(G,X) = A ln(G + ηX + γηGX). (A-12)

Setting the marginal rate of substitution equal to the price ratio implies:

pX(1 + γηX) = pG(η + γηG) (A-13)

where pX and pG are the prices of electric and gasoline vehicles. Setting the marginal benefit

of a gasoline vehicle equal to its price implies that

A(1 + γηX) = pG(G + ηX + γηGX).

Using [A-13] to eliminate X implies that the demand for G is implicitly defined by

A = pGG + pG
γ
− pX

(1 + γG)γη
.

Taking the derivative of this equation, we can derive the cross-price elasticity formula:

εGpX = pX
G

dG

dpX
= pX
G

1 + γG
γ[η(1 + γG)2pG + pX]

.

Xing et al (2019) analyze the state of the market for electric vehicles as of 2014. We use

several pieces of information from this study to determine the numerical value for the cross-

price elasticity. Table 8 in Xing et al (2019) shows the effect of removing the $7500 subsidy
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for electric vehicles is a 0.23% increase in the sales of gasoline vehicles. Table D.2 in Xing et

al (2019) shows that the average electric vehicle pre-subsidy price in their data is $32,580,

so the average post-subsidy price is $25080. Removing the subsidy thus increases the price

of electric cars to consumers from $25,080 to $32,580. Hence the cross price elasticity is

0.23
7500
25080

= 0.0077,

which we round to 0.01.

F Changes in Substitutability

To account for endogenous changes in substitutability, we assume that the benefit function

is given by

U(G,X,W ) = A ln(G + η(W )X + γ(W )η(W )GX)

where W is the stock of infrastructure and the substitutability parameters η(W ) and γ(W )

are functions of W with limits η(∞) = 1 and γ(∞) = 0 such that electric and gasoline

vehicles approach perfect substitutes as the investment in charging infrastructure increases.

(For endogenous increases in substitutability, we simply replace W with φt.) We assume

that γ exponentially decreases as W increases:

γ = γoe−W .

As discussed in the main text, as γ changes, we adjust η such that the MRS at a particular

point (Gq,0) stays equal to a constant value q. Given our benefit function U(G,X) =

A ln(G + ηX + γηGX) we have

MRS = 1 +Xγη
η +Gγη

. (A-14)

Solving MRS = q for η gives

η = 1

−Xγ + q(1 +Gγ)
.
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Substituting in (Gq,0) gives

η = 1

q(1 +Gqγ)
.

This equation specifies how η changes as γ changes, and, in conjunction with (A-14), how η

changes as W changes. It remains to define the values of Gq and q. Let (Gq,0) be on the

same indifference curve as the initial point (G2018,X2018) = (110,1). Thus Gq satisfies

Gq + η0(0) + γ0η0Gq(0) = 110 + η0(1) + γ0η0110(1).

It follows that Gq = 110.966309. We find q by evaluating the MRS at (Gq,0) using η0, and

γ0 corresponding to cross-price elasticity of 0.01. This gives q = 1.02594397.

G Additional Second Best Policies

In this section we analyze several additional second best policies. For purchase subsidies on

electric vehicles, consider the price path

c̃x = (cg − ψ1) + (21961 − ψ2)e−(0.06−ψ3)t.

In the main text, we set ψ2 and ψ3 equal to zero and selected the value of ψ1 to minimize

deadweight loss, which gave us the results for the EV Subsidy policy. By setting ψ1 and ψ3

equal to zero an selecting the value of ψ2 to minimize deadweight loss, we get the results

in the EV Initial Price Subsidy rows in Table D. Similarly, the results in the EV Decay

Subsidy rows reflect the optimization with respect to ψ3, and the results in the EV Two

Parm Subsidy rows reflect the joint optimization over ψ1 and ψ2. As would be expected, the

policy in which two parameters are optimized has the lowest deadweight loss. There is no

consistent ranking between the single parameter policies.

Next we consider a GV Flexible Quota policy that is a generalization of the GV Quota

policy in the main text. Consider the state equation

Ḣ = g − κ.
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In the main text, we assumed that κ = 0 and placed a constraint G on the state variable

H. Thus H was interpreted as cumulative production of gasoline vehicles. The GV Flexible

Quota policy allows for a constraint on instantaneous production (when G = 0) as well as a

hybrid policy (when both G and κ are positive). The results for this policy are shown in the

GV Flexible Quota rows. In panels C and D, the GV Flexible Quota policy essentially has

no impact. The optimal value of κ is zero or close to zero, and so the results are essentially

the same as with the GV Quota policy. In panel A, the optimal policy is a constraint on

instantaneous production. This policy dramatically decreases the deadweight loss because

it is acting similar to a first best Pigovian tax on the externality from gasoline vehicles. In

panel B the optimal policy has positive values for both G and κ.

The final point to make about Table D is about the GV Quota rows in Panels A and B.

Even though the first best solution allows positive production of gasoline cars in the long

run steady state, a quota can lower deadweight loss for a given terminal time.

Table E shows the results of the additional policies for the increasing substitutability

cases. In all three panels the optimal quota policy yields a constraint on instantaneous

production. This does not mean that gasoline vehicles are produced over the whole time pe-

riod. Rather the constraint only binds in the early years, and eventually gasoline production

ceases.

Finally, Table G shows the sensitivity results for the additional policies.
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Table D: Second Best Policy Results: Additional Policies

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: Low cross-price elasticity: εGpX = 0.01
First Best n.a. 0 2031.4 n.a. 104.5 17.3
BAU n.a. 18.5 2028.4 n.a. 109.8 17.7
EV Subsidy ψ1= -762 18.0 2030.0 n.a. 109.8 15.7
EV Initial Price Subsidy ψ2= -4604 17.9 2031.5 n.a. 109.8 17.4
EV Decay Subsidy ψ3= 0.007 18.0 2030.6 n.a. 109.8 16.9
EV Two Parm Subsidy ψ1= -81 ψ2= -4190 17.9 2031.4 n.a. 109.8 17.2
GV Ban tg = n.a. (no ban) 18.5 2028.4 n.a. 109.8 17.7
GV Quota G = 469* 15.8 2028.4 2069.9 90.9 17.9
GV Flexible Quota G = 0 κ= 7.0 0.6 2028.3 n.a. 104.5 17.8

Panel B: Medium cross-price elasticity: εGpX = 2
First Best n.a. 0 2027.8 n.a. 68.7 53.9
BAU n.a. 20.9 2028.9 n.a. 81.0 42.9
EV Subsidy ψ1= 1090 18.3 2026.8 n.a. 76.3 50.2
EV Initial Price Subsidy ψ2= 3255 19.6 2026.3 n.a. 80.6 43.5
EV Decay Subsidy ψ3= -0.009 19.0 2026.6 n.a. 79.9 44.5
EV Two Parm Subsidy ψ1= 1668 ψ2= -2984 18.1 2027.9 n.a. 74.2 53.6
GV Ban tg = n.a. (no ban) 20.9 2028.9 n.a. 81.0 42.9
GV Quota G = 348* 15.9 2028.2 2064.4 42.7 81.1
GV Flexible Quota G = 53 κ= 4.7 7.5 2025.0 n.a. 71.4 51.8

Panel C: High cross-price elasticity: εGpX = 5.5
First Best n.a. 0 2027.3 2036.9 5.6 125.7
BAU n.a. 28.9 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1419 18.6 2026.4 n.a. 13.6 121.2
EV Initial Price Subsidy ψ2= 4263 23.4 2025.6 n.a. 28.8 100.7
EV Decay Subsidy ψ3= -0.012 21.3 2026.1 n.a. 26.6 103.7
EV Two Parm Subsidy ψ1= 1988 ψ2= -2873 18.0 2027.4 n.a. 7.8 129.1
GV Ban tg = 2026.5 18.7 2028.7 2026.5 6.1 125.7
GV Quota G = 161 8.7 2026.5 2026.4 5.1 126.8
GV Flexible Quota G = 160 κ= 0.0 8.7 2026.5 n.a. 5.4 126.5

Panel D: Very high cross-price elasticity: εGpX = 8
First Best n.a. 0 2025.3 2025.0 4.5 127.1
BAU n.a. 23.7 2028.9 2028.8 6.1 125.8
EV Subsidy ψ1= 1125 17.0 2025.7 2025.5 4.9 130.3
EV Initial Price Subsidy ψ2= 4181 16.4 2025.4 2025.3 4.9 127.5
EV Decay Subsidy ψ3= -0.010 16.6 2025.5 2025.4 4.9 128.0
EV Two Parm Subsidy ψ1= -330 ψ2= 5315 16.4 2025.3 2025.3 4.8 126.7
GV Ban tg = 2023.8 18.1 2026.2 2023.8 5.0 127.0
GV Quota G = 141 8.3 2024.2 2023.7 4.3 127.9
GV Flexible Quota G = 141 κ= 0.0 8.3 2024.2 2023.7 4.3 127.9

Notes: For subsidy policies, the price path formula is c̃x = (cg − ψ1) + (21961 − ψ2)e
−(0.06−ψ3)t, with default

values ψ1 = 0, ψ2 = 0, ψ3 = 0. The EV Two Parm Subsidy policy selects ψ1 and ψ2 to minimize deadweight

loss and keeps ψ3 fixed, the EV Subsidy policy optimizes ψ1 and keeps ψ2 and ψ3 fixed; the EV Initial Price

Subsidy policy optimizes ψ2 and keeps ψ1 and ψ3 fixed; and so on. For GV Ban tg indicates the year in

which the ban is implemented. For GV Quota, G is the cumulative allowed production of gas vehicles. “*”

indicates that the value is sensitive to the assumed 70 year finite horizon. GT and XT are the values at the

end of the finite horizon.
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Table E: Increasing Substitutability: Additional Policies

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: Exogenous φ = 0.1
First Best n.a. 0 2030.6 2060.4 36.1 91.1
BAU n.a. 19.2 2028.3 2064.0 45.9 81.2
EV Subsidy ψ1= 357 19.0 2027.6 2063.4 44.3 83.8
EV Initial Price Subsidy ψ2= -1143 19.1 2029.1 2064.0 46.1 80.9
EV Decay Subsidy ψ3= 0.000 19.2 2028.3 2064.0 45.9 81.2
EV Two Parm Subsidy ψ1= 1865 ψ2= -10581 17.9 2031.4 2061.4 40.0 91.8
GV Ban tg = 2057.6 18.9 2028.3 2057.6 40.9 86.5
GV Quota G = 341 13.0 2028.1 2055.3 29.3 98.8
GV Flexible Quota G = 0 κ= 6.9 3.7 2027.7 2064.0 45.9 81.2

Panel B: Exogenous φ = 0.2
First Best n.a. 0 2028.1 2029.3 5.9 125.0
BAU n.a. 18.0 2027.8 2030.8 6.8 124.6
EV Subsidy ψ1= 734 16.9 2026.5 2030.1 6.4 126.9
EV Initial Price Subsidy ψ2= 2828 17.0 2025.7 2030.4 6.5 125.1
EV Decay Subsidy ψ3= -0.007 16.8 2026.2 2030.2 6.4 125.5
EV Two Parm Subsidy ψ1= 670 ψ2= 284 16.9 2026.4 2030.1 6.4 126.8
GV Ban tg = 2028.2 17.3 2029.3 2028.2 6.5 124.9
GV Quota G = 167 7.9 2026.6 2027.9 5.5 125.9
GV Flexible Quota G = 0 κ= 7.0 5.0 2025.8 2031.1 6.8 124.6

Panel C: Endogenous (infrastructure)
First Best n.a. 0 2019.2 2017.9 2.8 128.2
BAU n.a. 18.7 2021.0 2019.9 3.4 128.1
EV Subsidy ψ1= 766 15.8 2019.6 2018.5 3.0 130.5
EV Initial Price Subsidy ψ2= 2092 15.2 2019.3 2018.3 3.0 128.6
EV Decay Subsidy ψ3= -0.006 15.5 2019.5 2018.4 3.0 129.0
EV Two Parm Subsidy ψ1= -558 ψ2= 3414 15.1 2019.2 2018.2 3.0 127.2
GV Ban tg = 2017.1 16.2 2019.9 2017.1 3.1 128.4
GV Quota G = 91 7.8 2018.3 2016.9 2.7 128.8
GV Flexible Quota G = 0 κ= 6.8 7.1 2020.5 2020.4 3.2 128.2

Notes: For subsidy policies, the price path formula is c̃x = (cg − ψ1) + (21961 − ψ2)e
−(0.06−ψ3)t, with default

values ψ1 = 0, ψ2 = 0, ψ3 = 0. The EV Two Parm Subsidy policy selects ψ1 and ψ2 to minimize deadweight
loss and keeps ψ3 fixed, the EV Subsidy policy optimizes ψ1 and keeps ψ2 and ψ3 fixed; the EV Initial Price
Subsidy optimizes ψ2 and keeps ψ1 and ψ3 fixed; and so on. For GV Ban, tg indicates the year in which the
ban is implemented. For GV Quota, G is the cumulative allowed production of gas vehicles. GT and XT are
the values at the end of the finite horizon.
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Table F: LBD: Additional Policies

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

First Best n.a. 0 2019.3 2019.8 3.2 129.5
BAU n.a. 28.8 2021.0 n.a. 25.9 104.6
EV Subsidy ψ1= 931 20.0 2018.5 n.a. 15.0 119.3
EV Initial Price Subsidy ψ2= 2533 25.9 2018.9 n.a. 25.6 105.0
EV Decay Subsidy ψ3= -0.012 23.5 2018.8 n.a. 24.5 106.6
EV Two Parm Subsidy ψ1= 1673 ψ2= -4393 17.8 2019.7 n.a. 6.7 130.6
GV Ban tg = 2018.6 16.7 2019.9 2018.6 3.5 129.7
GV Quota G = 105 9.3 2018.3 2018.7 3.1 130.1
GV Flexible Quota G = 105 κ= 0.0 9.3 2018.3 2018.7 3.1 130.1

Notes: For subsidy policies, the price path formula is c̃x = (cg − ψ1) + (21961 − ψ2)e
−(0.06−ψ3)t, with default

values ψ1 = 0, ψ2 = 0, ψ3 = 0. The EV Two Parm Subsidy policy selects ψ1 and ψ2 to minimize deadweight
loss and keeps ψ3 fixed, the EV Subsidy policy optimizes ψ1 and keeps ψ2 and ψ3 fixed; the EV Initial Price
Subsidy policy optimizes ψ2 and keeps ψ1 and ψ3 fixed; and so on. For GV Ban, tg indicates the year in
which the ban is implemented. For GV Quota, G is the cumulative allowed production of gas vehicles. GT

and XT are the values at the end of the finite horizon.
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Table G: Sensitivity Results: Additional Policies

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: εGpX = 5.5 Very High SCC
First Best n.a. 0 2021.6 2021.1 3.2 127.7
BAU n.a. 256.2 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 3445 155.1 2022.7 2022.6 4.1 138.0
EV Initial Price Subsidy ψ2= 9161 198.5 2020.1 n.a. 27.3 102.8
EV Decay Subsidy ψ3= -0.038 175.3 2021.5 n.a. 23.8 107.4
EV Two Parm Subsidy ψ1= 2706 ψ2= 2835 153.0 2021.9 2025.5 3.9 136.1
GV Ban tg = 2018.3 157.8 2022.9 2018.3 3.9 128.2
GV Quota G = 91 59.2 2018.7 2017.8 2.8 129.4
GV Flexible Quota G = 91 κ= 0.0 59.2 2018.8 2017.8 2.8 129.4

Panel B: εGpX = 5.5 High SCC
First Best n.a. 0 2027.0 2029.3 5.2 126.1
BAU n.a. 38.6 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1649 24.4 2025.9 n.a. 10.9 124.9
EV Initial Price Subsidy ψ2= 4794 31.0 2025.0 n.a. 28.7 101.0
EV Decay Subsidy ψ3= -0.014 28.1 2025.6 n.a. 26.2 104.2
EV Two Parm Subsidy ψ1= 2186 ψ2= -2749 23.7 2027.0 2049.1 6.2 131.5
GV Ban tg = 2025.8 24.5 2028.2 2025.8 5.8 125.9
GV Quota G = 154 11.1 2025.7 2025.6 4.8 127.1
GV Flexible Quota G = 154 κ= 0.0 11.1 2025.7 2025.6 4.8 127.1

Panel C: εGpX = 5.5 Low SCC
First Best n.a. 0 2027.7 2055.2 6.6 124.6
BAU n.a. 20.4 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1180 13.4 2026.8 n.a. 16.4 117.4
EV Initial Price Subsidy ψ2= 3629 16.7 2026.1 n.a. 29.0 100.5
EV Decay Subsidy ψ3= -0.010 15.3 2026.6 n.a. 27.1 103.1
EV Two Parm Subsidy ψ1= 1690 ψ2= -2625 13.0 2027.8 n.a. 11.3 124.4
GV Ban tg = 2027.4 13.7 2029.3 2027.4 6.4 125.3
GV Quota G = 168 6.6 2027.3 2027.3 5.5 126.4
GV Flexible Quota G = 158 κ= 0.3 6.5 2027.0 n.a. 9.8 121.5

Notes: For subsidy policies, the price path formula is c̃x = (cg − ψ1) + (21961 − ψ2)e
−(0.06−ψ3)t, with default

values ψ1 = 0, ψ2 = 0, ψ3 = 0. The EV Two Parm Subsidy policy selects ψ1 and ψ2 to minimize deadweight
loss and keeps ψ3 fixed, the EV Subsidy policy optimizes ψ1 and keeps ψ2 and ψ3 fixed; the EV Initial Price
Subsidy policy optimizes ψ2 and keeps ψ1 and ψ3 fixed; and so on. For GV Ban, tg indicates the year in
which the ban is implemented. For GV Quota, G is the cumulative allowed production of gas vehicles. GT

and XT are the values at the end of the finite horizon. Baseline SCC ($45.23), High SCC ($56.27) , and
Low SCC ($34.20) correspond to the values used in Holland et al 2018. Very High SCC ($200) is similar to
the value used in Moore and Diaz (2015).
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