Online Appendix for
 An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data

Robert J. Hodrick*

February 5, 2020

[^0]
1 Estimation of the Morley, Nelson, and Zivot (2003) Model with U.S. Real GDP per Capita

Estimating the model for the full sample from 1947:1 to 2019:1 using the natural logarithm of U.S. real GDP per capita gives

$$
\begin{equation*}
\Delta y_{t}=\underset{(0.036}{0.211}+\underset{(0.077)}{1.330} \Delta y_{t-1}-\underset{(0.058)}{0.776} \Delta y_{t-2}+\epsilon_{t}-\underset{(0.085)}{1.099} \epsilon_{t-1}+\underset{(0.062)}{0.663} \epsilon_{t-2} . \tag{1}
\end{equation*}
$$

These parameter estimates are relatively close to the estimates in the main paper, and the implied long-run impulse response coefficient from this estimation is also quite similar to the estimate in the main paper:

$$
\begin{equation*}
A_{0}=\phi(1)^{-1} \theta(1)=(1-1.099+0.663) /(1-1.340+0.776)=1.290 \tag{2}
\end{equation*}
$$

References

Baxter, M. and R. G. King (1999). Measuring business cycles: approximate band-pass filters for economic time series. Review of Economics and Statistics 81(4), 575-593.

Clark, P. K. (1987). The cyclical component of us economic activity. Quarterly Journal of Economics 102(4), 797-814.

Hamilton, J. D. (2018). Why you should never use the Hodrick-Prescott filter. Review of Economics and Statistics 100(5), 831-843.

Hodrick, R. J. and E. C. Prescott (1997). Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 1-16.

Morley, J. C., C. R. Nelson, and E. Zivot (2003). Why are the Beveridge-Nelson and unobserved-components decompositions of gdp so different? Review of Economics and Statistics 85(2), 235-243.

Table 1: Statistics on U.S. Real GDP per Capita
The table presents two sets of statistics on data from the natural logarithm of U.S. real GDP per capita. The sample period is 1947:1 to 2019:1. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999), and the statistics are the standard deviations of the cyclical components and the standard deviations of the changes in the trends. Panel B reports the square roots of the Variance Ratios.

Panel A: Standard Deviations								
	H	HP	BK					
Standard Deviation of Cycle	3.348	1.562	1.504					
Standard Deviation of Δ Trend	1.034	0.233	0.246					
Panel B: Square Roots of Variance Ratios								
k	10	20	30	40	50	60	70	80
$\sqrt{V_{k}}$	1.328	1.277	1.248	1.209	1.140	1.112	1.106	1.056

Table 2: Simulated Statistics from a Random Walk
The table presents sample means of statistics from 5,000 simulations of length 578 of a random walk with drift calibrated such that the drift and the standard deviation coincide, respectively, with the sample mean and sample standard deviation of the rate of growth of GDP. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Panel A: Standard Deviations, Correlations, and RMSEs								
H		HP	BK	In Sim				
Standard Deviation of Cycle	2.590	1.197	1.075	2.616				
Standard Deviation of Δ Trend	0.912	0.187	0.193	0.933				
Correlation of Cycles	0.990	0.655	0.627					
Correlation of Δ Trends	0.980	0.151	0.156					
RMSE of Cycles	0.441	2.063	2.071					
		B: R	ressio	iagn				
		HP	BK					
Slope Coefficient		1.000	1.001					
R^{2}		0.968	0.971					
	anel C:	Square	Roots of	Varian	Ratios			
k	10	20	30	40	50	60	70	80
$\sqrt{V_{k}}$	1.000	1.000	1.000	0.999	0.998	0.998	0.998	0.998

Table 3: Simulated Statistics from an ARIMA model
The table presents sample means of statistics from 5,000 simulations of length 578 from the ARIMA($2,1,2$) model of Morley et al. (2003) estimated with GDP data for the full sample. The model is

$$
\Delta y_{t}=0.320+1.271 \Delta y_{t-1}-0.682 \Delta y_{t-2}+\epsilon_{t}-0.979 \epsilon_{t-1}+0.540 \epsilon_{t-2}
$$

and ϵ_{t} is distributed $N(0,0.7236)$. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Panel A: Standard Deviations, Correlations, and RMSEs								
H		HP	BK	In Sim				
Standard Deviation of Cycle	3.304	1.535	1.474	3.334				
Standard Deviation of Δ Trend	1.096	0.234	0.243	1.076				
Correlation of Cycles	0.988	0.679	0.671					
Correlation of Δ Trends	0.963	0.158	0.167					
RMSE of Cycles	0.601	2.577	2.612					
		B: R	ression	iagno				
		HP	BK					
Slope Coefficient		0.991	0.992					
R^{2}		0.960	0.962					
	anel C	Square	Roots of	Varian	Ratios			
k	10	20	30	40	50	60	70	80
$\sqrt{V_{k}}$	1.271	1.267	1.263	1.260	1.258	1.257	1.256	1.256

Table 4: Simulated Statistics from a Model with Constant Unconditional Mean Change in Trend
The table presents sample means of statistics from 5,000 simulations of length 578 in which the simulated time series is the sum of a stochastic trend and a stochastic cycle,

$$
y_{t}=g_{t}+c_{t}
$$

The trend is modeled as an $\operatorname{ARIMA}(1,1,0)$. The change in the trend is

$$
\Delta g_{t}=0.07786+0.900 \Delta g_{t-1}+\nu_{t}
$$

and the innovations are drawn from a $N(0,0.002)$. The cyclical component is modeled as an ARIMA (2,0,0)

$$
c_{t}=1.25 c_{t-1}-0.45 c_{t-2}+\epsilon_{t}
$$

and the innovations are drawn from a $N(0,0.6385)$. The innovations in the trend and cycle are uncorrelated. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Panel A: Standard Deviations, Correlations, and RMSEs								
	H	HP	BK	In Sim				
Standard Deviation of Cycle	2.444	1.432	1.367	1.755				
Standard Deviation of Δ Trend	0.790	0.105	0.118	0.100				
Correlation of Cycles	0.739	0.885	0.853					
Correlation of Δ Trends	0.046	0.570	0.515					
RMSE of Cycles	1.653	0.840	0.943					
Panel B: Regression Diagnostics								
		HP	BK					
Slope Coefficient		0.086	0.151					
R^{2}		0.034	0.076					
Panel C: Square Roots of Variance Ratios								
k	10	20	30	40	50	60	70	80
$\sqrt{\overline{V_{k}}}$	0.911	0.708	0.638	0.604	0.582	0.567	0.557	0.549

Table 5: Simulated Statistics from the Clark (1987) Unobserved Components Model
The table presents sample means of statistics from 5,000 simulations of length 578 generate from the Clark (1987) model estimated on the full sample. The simulated time series is the sum of a stochastic trend and a stochastic cycle,

$$
y_{t}=g_{t}+c_{t} .
$$

The change in the trend has a conditional mean,

$$
\Delta g_{t}=d_{t-1}+0.545 w_{t}
$$

and the conditional mean is a random walk with a relatively small standard deviation of its innovation,

$$
d_{t}=d_{t-1}+0.021 u_{t}
$$

The cyclical component is modeled as an $\operatorname{ARIMA}(2,0,0)$,

$$
c_{t}=1.510 c_{t-1}-0.565 c_{t-2}+0.603 v_{t}
$$

and the three innovations, u_{t}, w_{t}, and v_{t}, are standard normal random variables. The three innovations are uncorrelated. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Table 6: Simulated Statistics from a Model with a Changing Unconditional Mean Change in Trend

The table presents sample means of statistics from 5,000 simulations of length 578 in which the simulated time series is the sum of a stochastic trend and a stochastic cycle,

$$
y_{t}=g_{t}+c_{t} .
$$

The trend is modeled as an $\operatorname{ARIMA}(1,1,0)$ with three different intercepts, $\mu_{1}=0.1$ for the first third of the simulated data, $\mu_{2}=0.07786$ for the second third, and $\mu_{3}=0.0554$ for the final third. The change in the trend is

$$
\Delta g_{t}=\mu_{i}+0.900 \Delta g_{t-1}+\nu_{t}
$$

and the innovations are drawn from a $N(0,0.002)$. The cyclical component is modeled as an ARIMA (2,0,0)

$$
c_{t}=1.25 c_{t-1}-0.45 c_{t-2}+\epsilon_{t}
$$

and the innovations are drawn from a $N(0,0.6385)$. The innovations in the trend and cycle are uncorrelated. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Table 7: Simulated Statistics from a Model with a Slowly Changing Unconditional Mean Change in Trend
The table presents sample means of statistics from 5,000 simulations of length 578 in which the simulated time series is the sum of a stochastic trend and a stochastic cycle,

$$
y_{t}=g_{t}+c_{t}
$$

The trend is modeled as an $\operatorname{ARIMA}(1,1,0)$ with a changing unconditional mean. The change in the trend is

$$
\Delta g_{t}=0.07786+0.04428(145-t) / 289+0.900 \Delta g_{t-1}+\nu_{t}
$$

where t ranges from 1 to 289 , and the innovations are drawn from a $N(0,0.002)$. The cyclical component is modeled as an ARIMA $(2,0,0)$

$$
c_{t}=1.25 c_{t-1}-0.45 c_{t-2}+\epsilon_{t}
$$

and the innovations are drawn from a $N(0,0.6385)$. The innovations in the trend and cycle are uncorrelated. In Panel A the columns labeled "H", "HP", and "BK" refer to the respective methods of decomposing a time series into trend and cycle of Hamilton (2018), Hodrick and Prescott (1997), and Baxter and King (1999). The column labeled "In Sim" is the sample mean of the realized values of the row statistic in the simulations. Panel B presents the slope coefficient and R^{2} in the regression of the simulated cycle minus the HP or BK cycle on a constant and the H cycle minus the HP or BK cycle. Panel C presents the square roots of the Variance Ratios.

Panel A: Standard Deviations, Correlations, and RMSEs								
	H	HP	BK	In Sim				
Standard Deviation of Cycle	2.436	1.431	1.365	1.754				
Standard Deviation of Δ Trend	0.792	0.162	0.168	0.158				
Correlation of Cycles	0.739	0.884	0.853					
Correlation of Δ Trends	0.145	0.821	0.778					
RMSE of Cycles	1.648	0.840	0.944					
Panel B: Regression Diagnostics								
		HP	BK					
Slope Coefficient		0.051	0.152					
R^{2}		0.034	0.076					
Panel C: Square Roots of Variance Ratios								
k	10	20	30	40	50	60	70	80
$\sqrt{V_{k}}$	0.991	0.912	0.953	1.013	1.075	1.135	1.192	1.245

[^0]: *Hodrick is the Nomura Professor of International Finance at the Columbia Business School, a Research Associate at the NBER, a Visiting Fellow at the Hoover Institution, and a Visiting Scholar at the Federal Reserve Bank of San Francisco. e-mail: rh169@gsb.columbia.edu.

