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Here, we provide omitted proofs of some results from the main text. All numbered

references for figures, equations, lemmas, etc. refer to the main text. References that

start with “a” refer to corresponding objects in this Appendix.

Proof of Theorem 2:

We start by showing that prices must be bounded away from zero:

LEMMA A.1. Let p(t) be a corresponding sequence of equilibrium prices for any equi-

librium with Y (t) ! 1. Then for each good i, lim inft pi(t) > 0.

Proof. Since input prices are always positive, p(t) � 0 for every t, so demands

are well-defined. If the Lemma is false, then by Well-Behaved Preferences, there is

a subsequence of dates (retain original index t) and a good i with pi(t) ! 0 and

limt dim(p(t)) > 0 for every m.

Because Y (t) ! 1, it is easy to see that expenditures on final goods for some type m

must also grow to infinity. Therefore total demand for good i, which is bounded below

by dim(p(t))zm(t), must grow to infinity. Moreover, because the price of this good

converges to zero, the labor input price �i(t) ! 0. It follows that the labor-capital ratio

in this sector must be bounded away from 0 in t (it goes to infinity, in fact). Because the

amount of human labor is finite, robot use in this sector goes to infinity. In particular

the production of robots goes to infinity. By (17), labor input prices in the robot sector

are bounded above, so the labor input in the robot sector goes to infinity. But then the

finiteness of the human labor endowment in the economy implies that the robot sector

must eventually be automated, and pr(t) = p⇤r for all large t. Returning to sector i,
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and remembering that i is automated for large enough t, we now have a contradiction to

pi(t) ! 0, because prices of both inputs (capital and labor) are constant for all large t.

LEMMA A.2. Let S be the set of all infinite-dimensional nonnegative vectors s ⌘
(s1, s2, . . .), with components in [0, 1] and with

P1
j=1 sj = 1. Let s(t) be a sequence

in S indexed by t, and suppose that there is ŝ 2 S such that s(t) converges point-

wise to ŝ = (ŝj). Let  (t) be a corresponding convergent sequence with components

( 1(t), 2(t), . . .), where  j(t) 2 [0, 1] for every j and t, with  j(t) ! 0 as t ! 1
for every j with ŝj > 0. Then

(a.1) lim
t!1

1X

j=1

 j(t)ŝj(t) = 0.

Proof. For any n, let J be some positive integer such that for ŝ in the statement of the

lemma,
PJ

j=1 ŝj � 1� (1/2)n+2. Then there exists T1(n) such that along the sequence

{s(t)},
JX

i=1

si(t) � 1� (1/2)n+2 � (1/2)n+2 = 1� (1/2)n+1

for t � T1(n), using pointwise convergence on the finite set {1, . . . , J}. Because

 i(t) 2 [0, 1] for all i and t and
P

j sj(t) = 1 for every t, it follows that for t � T1(n),

(a.2)
1X

j=J+1

 j(t)sj(t) 
1X

j=J+1

sj(t) < (1/2)n+1.

Because  j(t) ! 0 as t ! 1 for every j with ŝj > 0, we know that  j(t)sj(t) ! 0.

Therefore there exists T (n) � T1(n) so that in addition to (a.2),

(a.3)
JX

i=1

 i(t)si(t)  (1/2)n+1

for t � T (n). Combining (a.2) and (a.3), we must conclude that
1X

j=1

 j(t)sj(t) < (1/2)n.

for t � T (n). Because n can be made arbitrarily large, the proof is complete.
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Now return to the main proof.

Part (i). Call a sector consequential if its output goes to 1 along a subsequence. We

claim that there is a consequential final-goods sector. By the singularity condition and

Proposition 1, all equilibrium prices are bounded above:

(a.4) pj(t) = cj(1,�j(t))  cj(1, ⌫
�1
j pr(t))  cj(1, ⌫

�1
j p⇤r).

Using a diagonal argument, extract a convergent subsequence of equilibrium prices that

converges pointwise (but retain original index t) to some price vector p⇤. By Lemma

A.1, p⇤ � 0, and so, applying Well-Behaved Preferences, we have dm(p(t)) converging

pointwise to dm(p⇤). It is easy to see that per-capita consumption expenditures on final

goods must go to 1. Pick any type m for whom zm(t) ! 1. Obviously, dim(p⇤) > 0

for some good i. Combining all this information, we must conclude that for at least one

final good sector, demand must go to infinity along this subsequence. The rest of the

proof is identical to that of part (i) in Theorem 1.

Part (ii). Notice that

 j(t) =
hj(t)

⌫jrj(t) + hj(t)
=

wj(t)hj(t)

pr(t)rj(t) + wj(t)hj(t)

for every sector j and every date t.⇤ If �(t) denotes the share of human labor in national

income, it follows that

�(t) =

P
j wj(t)hj(t)

Y (t)
=

P
j  j(t)[pr(t)rj(t) + wj(t)hj(t)]

Y (t)


P
j  j(t)pj(t)yj(t)

Y (t)

=


Z(t)

Y (t)

� P1
i=1 i(t)pi(t)yi(t)

Z(t)

�
+

P
j=e,r,k j(t)pj(t)yj(t)

Y (t)
(a.5)

at every date t, where Z(t) stands for economy-wide per-capita current expenditures on

final goods. Because there are finitely many homothetic preference groups indexed by

m, we can write for every final good i and date t:

(a.6)
pi(t)yi(t)

Z(t)
=

X

m

⇣m(t)smi(t)

⇤This is trivial when either rj(t) or hj(t) equals zero; but when both are positive, pr(t) = ⌫jwj(t).
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where ⇣m(t) is the expenditure share of preference type m in total expenditure, and

smi(t) is the corresponding expenditure share of good i for preference group m. Because

each of the terms ⇣m(t) are bounded above by 1, we may combine (a.5) and (a.6) to write:

(a.7) �(t)  Q(t) ⌘ Z(t)

Y (t)

1X

i=1

 i(t)

"
X

m

⇣m(t)smi(t)

#
+

P
j=e,r,k j(t)pj(t)yj(t)

Y (t)

for all t. We will show that the right hand side of (a.7) — defined to be Q(t) — converges

to 0 as t ! 1. To this end, pick any subsequence of dates (but retain original notation)

so that Q(t) converges. Exploiting the fact that the number of sectors is countable,

using a diagonal argument to extract a further subsequence (again retain notation) so

that each of the sequences  j(t), ⇣m(t), smi(t), pj(t), Z(t)/Y (t) and [pj(t)yj(t)]/Y (t)

also converge. The last term in Q(t) pertains only to three sectors: e, r and k. For any of

these sectors, call it j,  j(t) ! 0 along any subsequence for which j is consequential,

and on any other subsequence pj(t)yj(t) must be bounded. Putting these observations

together with Y (t) ! 1, we must conclude that the last term in Q(t) converges to 0.

Now for the first term. If Z(t)/Y (t) ! 0, we are done, so assume in what follows

that Z(t)/Y (t) has a strictly positive limit. Let M be the set of all indices for which

limt ⇣m(t) > 0 for the subsequence under consideration. Then, using the fact that the

interchange of a finite and infinite sum is always valid, we have
1X

i=1

 i(t)

"
X

m

⇣m(t)smi(t)

#
=

X

m

⇣m(t)

" 1X

i=1

 i(t)smi(t)

#

=
X

m2M

⇣m(t)

" 1X

i=1

 i(t)smi(t)

#
+

X

m 62M

⇣m(t)

" 1X

i=1

 i(t)smi(t)

#


X

m

" 1X

i=1

 i(t)smi(t)

#
+

X

m 62M

⇣m(t)

" 1X

i=1

 i(t)smi(t)

#
.(a.8)

Because ⇣m(t) ! 0 for all m /2 M , the second term on the right hand side of this

equation converges to 0. It remains to show that same is true of the first term. It will

suffice to show that for each m 2 M ,

(a.9)
1X

i=1

 i(t)smi(t) ! 0
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as t ! 1 along our chosen subsequence. Because limt ⇣m(t) > 0 for m 2 M , and

given that Z(t) ! 1 (after all, Z(t)/Y (t) has a positive limit and Y (t) ! 1) it

follows that expenditures diverge to infinity for a positive measure of individuals of type

m. Let Zm(t) be the aggregate income of type m and xmi(t) the aggregate demand for

good i by this type. Homotheticity guarantees that

(a.10)

ŝmi ⌘ lim
t
smi(t) = lim

t

pi(t)xmi(t)

Ym(t)
= lim

t

pi(t)dmi (p(t))Ym(t)

Ym(t)
= lim

t
pi(t)d

m
i (p(t)),

By Lemma A.1 and Well-Behaved Preferences, it follows that ŝmi forms a “bonafide

share vector” with
P

i ŝmi = 1. So the conditions in Lemma A.2 are satisfied (ignore

index m). Therefore this Lemma implies (a.9), and the income share of human labor

must converge to zero. Because (27) holds unchanged, the income share of capital

converges to 1.

Part (iii). Let {p(t)} be the sequence of equilibrium prices. Given the bound (a.4), we

can use a diagonal argument to extract a convergent subsequence {p(ts)} which con-

verges pointwise to some price sequence p⇤ as s ! 1. By Lemma A.1, p⇤ � 0, and so

applying Well-Behaved Preferences, we see that for each type m, dm(p(t)) ! dm(p⇤)

pointwise along this subsequence. By Positive Demand, dmi(p⇤) > 0 for an infinite

number of indices i. Putting all these arguments together and invoking homotheticity,

we see that an infinite number of final goods sectors must be consequential.

We now claim that for any number W , however large, there exists a time T such that for

all dates t � T , wj(t) � W for every sector j for which hj(t) > 0. For suppose that this

claim is false; then there exists some sector q and a subsequence of dates (retain original

notation t) such that supt wq(t) ⌘ Wq < 1, but hq(t) > 0. Next, pick a consequential

final goods sector ` with the property that

(a.11) ⌫�1
` p⇤r > Wq + p̄e sup

j0
|Ej0` � Ej0q|,

where p̄e is the upper bound on education prices given by (a.4). The existence of such a

sector is guaranteed, first, by recalling that there is an infinite number of consequential
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sectors, then invoking Increasing Protection (⌫i ! 0), and finally by Bounded Educa-

tion Costs, which guarantees that the supremum in (a.11) is finite. Because sector ` is

consequential, it is automated after some finite date so there exists T 0 such that for all

t � T 0 along the subsequence identified above, we have w`(t) � ⌫�1
` p⇤r . Combining this

information with (a.11), we must conclude that for every sector j, and for t � T 0,

w`(t) � ⌫�1
` p⇤r > Wq + p̄e sup

j0
|Ej0` � Ej0q| � wq(t) + pe(t)[Ej` � Ejq],

so that

w`(t)� pe(t)Ej` > wq(t)� pe(t)Ejq.

But this inequality proves that while sector ` might lie along a least-cost educational

path, no individual can ever want to enter sector q at large dates, which implies that

hq(t0) = 0 for all large enough t0 along the subsequence, a contradiction.

Proof of Theorem 3. Consider the following infinite-horizon problem and case (i) (in

case (ii) it is evident that the proof can be modified with � denoting a lower bound

on the return to capital). Suppose that an individual has a constant discount factor �

and a (possibly time-varying) sequence of smooth, concave one-period utility indicators

ut(z), each defined on a single consumption good z with unbounded steepness at zero.

Suppose that the individual has F0 units of a financial asset at date 0, receives a (fully

anticipated) sequence of strictly positive incomes {y(t)}, and faces a constant return

factor � on financial holdings. She chooses a sequence {z(t), F (t)} of consumptions

and financial assets to maximize lifetime utility
1X

t=0

�tut(z(t))

subject to the constraint that for every t � 0, F (t) � B (a credit limit), lim inf F (t) � 0,

and

y(t) + F (t) = z(t) + [F (t+ 1)/�].

Assume that an optimum is well-defined, and assume �� > 1. Then we claim that

(a.12) lim
t!1

u0
t(z(t)) = 0.
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The proof follows on observing that the Euler equation holds (with an appropriate in-

equality if there is a borrowing constraint):

u0
t(z(t)) � ��u0

t+1(z(t+ 1))

for all t.† Because �� > 1 by assumption, it follows that u0
t(z(t)) must decline (geomet-

rically in fact) to zero.

We can transplant this problem easily to our setting, provided we view incomes here as

wages net of education costs. Identifying ut(z) with vm(z,p(t)) for each individual m,

it follows that in any equilibrium, if �m� > 1 (where � is defined in (29)), we have

(a.13) lim
t!0

v0m(zm(t),p(t)) = 0.

But vm is strictly increasing and concave for every p. Moreover, every final goods price

is bounded above; see (a.4), Therefore (a.13) can only hold if zm(t) ! 1 as t ! 1,

and by our assumption, this must occur for a positive measure of individuals. With a

bounded credit limit on the rest, it is easy to conclude that per-capita income Y (t) as

defined in (26) must go to infinity.

Proof of Lemma 1. Part (a). This follows immediately on inspecting equation (34).

Part (b). Suppose, on the contrary, that for some pair of sectors i and j, R(t) ⌘
⇡i(t)/⇡j(t) ! 1 along a subsequence of dates. We first claim that for any m satis-

fying 1
� < m < 1, there is a date tm such that

(a.14) R(tm) > R(tm � 1) > m

To establish this claim, note first that given any m, we can obviously select a subse-

quence {ts} such that (i) m < R(ts), (ii) R(ts) < R(ts+1) and (iii) R(ts) ! 1.

Next, note that given such a subsequence, we can also select a subsequence which satis-

fies besides (i) – (iii) the following additional property: (iv) R(ts) > R(ts�1). To show

this, proceed iteratively as follows, starting with the original subsequence satisfying (i)–

†The opposite inequality cannot hold because the utility indicators have unbounded steepness at zero.
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(iii). Suppose s0 is the smallest s where (iv) is violated, and R(t0s � 1) � R(ts). Then

redefine ts to equal t̂s, the smallest t that maximizes R(t) in the set {t : ts�1  t  ts},

so that by construction (i) and (iv) holds at s. Next redefine ts+1 by selecting the next

s” � s + 1 with R(ts”) > R(t̂s), and setting ts+1 equal to t̂s+1, the smallest t that

maximizes R(t) in the set {t : t̂s  t  ts”}. By construction we ensure (i), (ii) and

(iv) in the redefined subsequence, and also (iii) because the value of R is raised in every

corresponding element.

We are now in a position to prove the claim using the subsequence satisfying (i) –(iv).

For if it were false, R(ts � 1)  m for all s. This would imply

(a.15) R(ts)�R(ts � 1) ! 1.

On the other hand, because the difference in productivity growth rates of the factor in

the two sectors cannot exceed ⇢̄:

⇡i(ts)

⇡i(ts � 1)
� ⇡j(ts)

⇡j(ts � 1)
 ⇢̄,

This implies that for all s,

R(ts)�R(ts � 1)  ⇢̄
⇡i(ts � 1)

⇡j(ts)
= ⇢̄


⇡i(ts � 1)

⇡j(ts � 1)

� 
⇡j(ts � 1)

⇡j(ts)

�
 ⇢̄m,

given the contrary presumption that R(ts � 1)  m and given that ⇡j(ts � 1)  ⇡j(ts).

This contradicts (a.15) and establishes the claim in (a.14).

Returning to the main proof, let ai(t) ⌘ ⇢i(t)⇡i(t) be the absolute productivity advance

in any sector i, and, for some fixed pair of sectors i and j, let A(t) ⌘
P

k 6=i,j ak(t) be the

aggregate productivity advance in all sectors apart from i and j. Consider first the case

in which

(a.16)
1

⇡i(tm)
�[aj(tm) + A(tm)] � ⇢̄.

Then ⇢i(tm) = ⇢̄. Hence aj(tm) + �A(tm) > �[aj(tm) + A(tm)] � ⇢̄⇡i(tm), while

⇡i(tm) > m⇡j(tm) > ⇡j(tm) by (a.14). Therefore (a.16) implies that

1

⇡j(tm)
[aj(tm) + �A(tm)] > ⇢̄
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so that productivity growth rate in sector j must also equal ⇢̄, which contradicts (a.14).

So (a.16) cannot hold, and therefore

(a.17)
⇡i(tm + 1)

⇡i(tm)
� 1 = ⇢i(tm) +

1

⇡i(tm)
�[aj(tm) + A(tm)].

Moreover, the rate of growth of productivity in sector j must be smaller than ⇢̄, otherwise

(a.14) is contradicted again. So (a.17) also holds for sector j:

(a.18)
⇡j(tm + 1)

⇡j(tm)
� 1 = ⇢j(tm) +

1

⇡j(tm)
�[aj(tm) + A(tm)],

and moreover, the right hand side of (a.18) must be smaller than the right hand side of

(a.17); i.e.:

⇢i(tm) +
1

⇡i(tm)
�[aj(tm) + A(tm)] > ⇢j(tm) +

1

⇡j(tm)
�[ai(tm) + A(tm)].

By (a.14) and m > 1
� > 1, and also recalling the definition of ai(t), this inequality

implies:

(a.19) ⇢i(tm)


1� �

⇡i(tm)

⇡j(tm)

�
> ⇢j(tm)


1� �

⇡j(tm)

⇡i(tm)

�

But (a.19) cannot hold: its right hand side is positive (because ⇡j(tm)
⇡i(tm) <

1
m < 1) while its

left hand side is negative (as � ⇡i(tm)
⇡j(tm) > �m > 1). This contradiction proves the lemma.

Proof of Lemma 2. The proof relies on the following claim, which is parallel to Propo-

sition 1. For any (✓r, ⌫r) with ⌫r � ⌫r(0), there is a unique solution p⇤r(✓r, ⌫r) to the

equation

(a.20) pr = cr

✓
1

✓r
,
pr
⌫r

◆
,

and in any equilibrium, pr(t)  p⇤r(✓r(t), ⌫r(t)) for all t.

No change in the proof of Proposition 1 is needed to prove this claim. We only note that

(31) implies the singularity condition (17) for every ⌫r � ⌫r(0).



10

With this claim in hand, we first establish (35) for j = r. Write p⇤r(t) ⌘ p⇤r(✓r(t), ⌫r(t)).

For any t, (a.20) tells us that

p⇤r(t) = cr

✓
1

✓r(t)
,
p⇤r(t)

⌫r(t)

◆
.

Define ⌘(t) ⌘ ⌫r(t)/p⇤r(t)✓r(t) for all t. Then, using the linear homogeneity of cr, the

above equality can be rewritten as

(a.21) ⌫r(t) = cr(⌘(t), 1),

for all t. It follows that

⌫r(t+ 1)� ⌫r(t) = cr(⌘(t+ 1), 1)� cr(⌘(t+ 1), 1)  c1r(⌘(t), 1)[⌘(t+ 1)� ⌘(t)],

where c1r stands for the partial derivative of cr with respect to its first argument, and the

inequality above follows from the concavity of the unit cost function cr. Using (a.21)

again, it is easy to see that for every t,

⌘(t+ 1)� ⌘(t)

⌘(t)
� ⌫r(t+ 1)� ⌫r(t)

⌫r(t)


cr(⌘(t), 1)

c1r(⌘(t), 1)⌘(t)

�
� ⌫r(t+ 1)� ⌫r(t)

⌫r(t)
,

where the last inequality is a consequence of the fact that cr is concave. Notice also that

(31) and (a.21) together guarantee that ⌘r(0) > 0. Putting all this information together,

there exists br > 0 such that ⌘r(t) � br⌫r(t) for all t. Inverting this inequality, defining

Br ⌘ b�1
r < 1, recalling the definition of ⌘(t), and noting that pr(t)  p⇤r(t) by the

claim, we must conclude that

(a.22) ✓r(t)pr(t)  ✓r(t)p
⇤
r(t)  Br < 1

for all t, which establishes (35) for j = r. To complete the proof for all j, we recall part

(b) of Lemma 1, which bounds the productivity ratios of each factor across sectors. That

means we can replace ✓r(t) by ✓j(t) in the inequality (a.22) — adjusting Br suitably to

a new bound Bj — without jeopardizing boundedness.
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Proof of Lemma 3. Pick some sector i satisfying Condition F (or F0). We know that in

any competitive equilibrium and at any date t

(a.23) pi(t)✓i(t)
@fi

@[✓iki]
(t) = pi(t)✓i(t)g

0
i(ei(t)) = 1,

where we recall the intensive form gi(e) = fi(e, 1) already defined. It follows that:

pi(t)yi(t) =
yi(t)

✓i(t)g0i(ei(t))
=


yi(t)

✓i(t)ki(t)g0i(ei(t))

�
ki(t).

Dividing above and below in this expression by the second input (human or robotic), we

see that

(a.24) pi(t)yi(t) =


gi(ei(t))

ei(t)g0i(ei(t))

�
ki(t).

We claim next that under condition F, the sequence of input ratios {ei(t)} is bounded

above and below by strictly positive, finite numbers. To this end, recall that

pi(t) = ci(✓
�1
i (t),�⇤

i (t)),

where — following earlier notation — we let �⇤
i stand for the price of the second input

in efficiency units. Therefore

(a.25) pi(t)✓i(t) = ci(1, ✓i(t)�
⇤
i (t)) � ✏

for some ✏ > 0, by F. It follows from (a.23) that ei(t) must be bounded below by a

strictly positive number.

Moreover, using (a.25) and recalling that �⇤
i (t)  pr(t)⌫

�1
i (t), we also see that

pi(t)✓i(t)  ci(1, ✓i(t)pr(t)⌫
�1
i (t))  ci(1, pr(t)✓i(t)⌫

�1
i (0))  ci(1, Bi⌫

�1
i (0)),

where the very last inequality uses Lemma 2. Therefore pi(t)✓i(t) is bounded above in

t. It follows from (a.23) that ei(t) must also be bounded above, establishing the claim.

It follows from this claim that the elasticity ei(t)g0i(ei(t))/gi(ei(t)) is bounded below

by some strictly positive number; call it a. (Notice that this is true by assumption if
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Condition F0 is satisfied, without any need for the derived bounds on ei(t).) Using this

information in (a.24), we must conclude that for all t,

(a.26) ki(t) � api(t)yi(t).

Given our growth assumption, per-capita income goes to infinity. It follows from Con-

dition E that the right hand side of (a.26) goes to infinity as well. So ki(t) ! 1, as

claimed.


