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Appendix A Proofs

A.1 Proof of Lemma 2
We obtain (14) by applying this expression into the relative supply expression in (13) and the
relative demand expression in (2). We can re-write it as

Aθ−1
t =

∫ 1
lt

α(i)σ(i)st(i)di

σ(lt)θ
∫ lt

0 α(i)st(i)di

The right-hand side is strictly decreasing in lt, converges to zero as lt → 1, and converges
to infinity as lt → 0. Then, existence and uniqueness of a solution follows from applying
Bolzano’s theorem.

A.2 Proof Lemma 3
The FOC of workers’ skill-accumulation problem are:

Vt(i)−
1
ψ

(
1 + log

(
s̃t(i)
s̄t(i)

))
− λt = 0

λt

(∫ 1

0
s̃t(x)dx− 1

)
= 0

Integrating over i ∈ [0, 1], we obtain an equation characterizing λt:

log
(∫ 1

0
s̄t(i)eψVt(i)di

)
= ψλt + 1

Therefore,

s̃t(i) =
s̄t(i)eψVt(i)∫ 1

0 s̄t(j)eψVt(j)dj
.

Using the wage expressions and assignment function in Lemma 1, we can write the value
function of a worker i at time t as

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log(ws(i))ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds

=
∫ ∞

t
e−(ρ+δ)(s−t) (log(ωsσ(i)α(i))Ii≥ls + log(α(i)) (1− Ii<ls)) ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds

=
log(α(i))

ρ + δ
+
∫ ∞

t
e−(ρ+δ)(s−t)log (ωsσ(i)) Ii≥ls ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds
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By defining Qt(i) ≡ e
∫ ∞

t e−(ρ+δ)(s−t)log(ωsσ(i))Ii≥ls ds, we obtain

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
.

A.3 Proof of Theorem 1
Part 1. We start by taking a first order approximation around the stationary equilibrium of
equations (10), (12) and (14). We obtain

∂ŝt(i)
∂t

= −δŝt(i) + δ ˆ̃st(i) (A.1)

l̂t =
η

θ − 1
ŷt (A.2)

l̂t =
η

κη + θ

(∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ŝt(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
(A.3)

where

κ ≡ α(l)s(l)l∫ l
0 α(i)s(i)di

+
α(l)σ(l)s(l)l∫ 1

l α(i)σ(i)s(i)di
.

Differentiating (A.3) with respect to time, we get that

∂l̂t
∂t

=
η

κη + θ

(∫ 1

l

∂ŝt(i)
∂t

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0

∂ŝt(i)
∂t

α(i)s(i)∫ l
0 α(i)s(i)di

di

)

Applying (A.1) to this expression, we obtain

∂l̂t
∂t

= −δl̂t +
η

κη + θ
δ

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
. (A.4)

We now guess and verify that lt converges monotonically along the equilibrium path. We
establish this starting from l̂0 < 0. We omit the analogous proof for l̂0 > 0. Whenever l̂0 < 0
and increases monotonically along the equilibrium path, we have that for all s > t, types
i < lt are employed in technology L and types i > l are employed in technology H. Also, for
workers with i ∈ (lt, l), there exist a τ(i) such that they work in H for all t < s < t + τ(i) and
in L for all s > t + τ(i). Thus, given the definition of Qt(i), we get

Qt(i) =


1 i ≤ lt
e
∫ t+τ(i)

t e−(ρ+δ)(s−t)log(ωsσ(i))ds i ∈ (lt, l)

σ(i)
1

ρ+δ qt i ≥ l

(A.5)
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This implies the following expression for the optimal lottery:

s̃t(i) =


s̃(i)
s̃(l) s̃t(l)e−ψ

∫ ∞
t e−(ρ+δ)(s−t)log(ωs

ω )ds i ≤ lt

s̃(i)
s̃(l)

(
σ(i)
σ(l)

) ψ
ρ+δ (1−e−(ρ+δ)τ(i))

s̃t(l)e
−ψ

∫ ∞
t+τ(i) e−(ρ+δ)(s−t)log(ωs

ω )ds i ∈ (lt, l)
s̃(i)
s̃(l) s̃t(l) i ≥ l

(A.6)

The log-linearization of (A.6) implies

ˆ̃st(i) = ˆ̃st(l)− ψq̂tIi≤lt − ψq̂t+τ(i)Ii∈(lt,l). (A.7)

By replacing (A.7) into the expression inside the parenthesis in (A.4), we obtain

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

∫ l

0
ψ
(

q̂tIi≤lt + q̂t+τ(i)Ii≥lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

ψq̂t − ψ
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di

where the last line uses our guess that lt ≤ l for all t.
Then, given our guess that lt increases monotonically along the equilibrium path, from

(12) we see that ωt decreases monotonically along the equilibrium path. This implies that
q̂t > q̂t+τ(i) > 0 for all i and all t. So, we can show that the term inside the integral is of
second order:

0 ≤
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
∫ l

lt
q̂t

α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
maxi∈(lt,l) α(i)s(i)l∫ l

0 α(x)s(x)dx
l̂tq̂t ≈ 0.

We then obtain (17) by replacing this expression back in (A.4).
To show (18), we differentiate the definition of log(qt) with respect to time:

∂log(qt)

∂t
= −log(ωt) + (ρ + δ)log(qt).

Notice that indifference condition (A.4) immediately implies that ω̂t = −(1/η)l̂t. Then,
by log-linearizing the expression above and replacing, we obtain (18)

∂q̂t

∂t
=

1
η

l̂t + (ρ + δ)q̂t.

Part 2. We now derive the policy functions in (19), show that the equilibrium is saddle-path
stable, and verify that lt increases monotonically along the equilibrium path.

We start by guessing that the policy functions are given by ∂l̂t
∂t = −λl̂t and q̂t = ζ l̂t. By
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replacing this guess into (17)–(18), we obtain the following system:

−λ =− δ +
η

κη + θ
δψζ

−ζλ =
1
η
+ (ρ + δ)ζ.

The second equation immediately yields the expression for ζ. To get the expression for λ,
notice that substituting the expression for ζ into the first equation implies that

(δ− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0,

which yields the following solutions

λ = −ρ

2
±

√(ρ

2

)2
+ δ

(
(ρ + δ) +

ψ

κη + θ

)
.

Because the term inside the square root is always positive, two solutions always exist with
one being positive and the other negative. This implies that the equilibrium is saddle-path
stable. The positive solution is the speed of convergence of lt.

Finally, the equilibrium threshold is l̂t = l̂0e−λt. Then, if l̂0 < 0, this implies that lt increases
monotonically along the equilibrium path, which verifies our initial guess and completes the
proof of the theorem.

Part 3. Notice that
∫

s(i) ˆ̃st(i)di =
∫
(s̃t(i)− s(i))di = 0. Using (A.7) , we have that

0 =
∫ 1

0
s(i) ˆ̃st(i)di

= ˆ̃st(l)− ψ
∫ l

0

(
q̂tIi<lt + q̂t+τ(i)Ii∈(lt,l)

)
s(i)di

= ˆ̃st(l)−
(∫ l

0
s(i)di

)
ψq̂t + ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

)
s(i)di

We can use use the same arguments as in Appendix A.3 to show that the last term is of
second order. Thus,

ˆ̃st(l) =
(∫ l

0
s(i)di

)
ψq̂t

and, therefore,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l).
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To prove the result, we use the fact that q̂t+τ(i) = q̂te−λτ(i). So,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l)

= Ii>lψq̂t −
(

1−
∫ l

0
s(i)di

)
ψq̂t + ψq̂t(1− e−λτ(i))Ii∈(lt,l)

=

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂t + ot(i)

where ot(i) ≡ ψq̂t(1− e−λτ(i))Ii∈(lt,l) and has
∫

s(i)ot(i)di = 0.
Finally, the dynamics of the skill distribution and the relative value of output yt were

already derived in equations A.1 and A.2.

A.4 Proof of Proposition 1
Using the definitions yt and qt together with Theorem 1, we have

∆log(yt) = (θ − 1) (∆log(A)− ∆log(ω)− ω̂t)

= (θ − 1)
(

∆log(A)−
(

∆log(ω) + ω̂0e−λt
))

(A.8)

∆log(qt) = ∆log(q) + q̂t

=
1

ρ + δ
∆log(ω) +

1
ρ + δ + λ

ω̂0e−λt (A.9)

Furthermore,

∆log(lt) = −η∆log(ωt) = −η
(

∆log(ω) + ω̂0e−λt
)

(A.10)

We next derive the long-run change ∆log(ω) and the short-to-long-run change ω̂0

Long-run. In this case the skill distribution is given by (16), so that the equilibrium threshold
solves

Aθ−1σ(l)θ
∫ l

0
s̄(i)α(i)(α(i))

ψ
ρ+δ di =

∫ 1

l
s̄(i)α(i)σ(i)

(
α(i)

σ(i)
σ(l)

) ψ
ρ+δ

di

Consider a log-linear approximation around the final stationary equilibrium:

(θ − 1)∆log(A) +

((
θ +

ψ

ρ + δ

)
1
η
+ κ

)
∆log(l) = 0

Thus,
∆log(l) = − η(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A)
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From equation (12), ∆log(ω) = − 1
η ∆log(l) and, therefore,

∆log(ω) =
1(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A) (A.11)

Short-to-Long We start by deriving the change in the skill distribution using (16): ŝ0(i) = ŝ0(l)
if i < l and ŝ0(i) = ŝ0(l) − ψ

ρ+δ ∆log(ω) if i > l. Along the transition, the change in the
assignment threshold is determined by (14) given the change in the skill distribution:(

θ

η
+ κ

)
l̂0 = − ψ

ρ + δ
∆log(ω)

Then,

ω̂0 =
1

θ + κη

ψ

ρ + δ
∆log(ω) (A.12)

Dynamic responses We now use the derivations above to show that

∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ

δ
e−λt

)
(θ − 1)∆log(A)

where the last line uses the solution to λ from Theorem 1.

A.5 Proof of Proposition 2

We have that, because of the envelope theorem, for any τ ≥ 0−

Uτ =
∫

s̃τ(i)Vτ(i)di− 1
ψ

∫
s̃τ(i)log

(
s̃τ(i)
s̄(i)

)
di

≈
∫

s(i)(Vτ(i)−V(i))di + U∞
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Then, for τ ≥ 0

Uτ −U∞ =
∫ ∞

τ
e−(ρ+δ)(t−τ)

∫
s(i)log

(
α(i)max(ωtσ(i), 1)

Pt

)
didt

−
∫ ∞

0
e−(ρ+δ)t

∫
s(i)log

(
α(i)max(ωσ(i), 1)

P

)
didt

≈
∫ 1

l
s(i)di

(∫ ∞

τ
e−(ρ+δ+λ)(t−τ)ω̂τdt

)
−
(∫ ∞

τ
e−(ρ+δ+λ)(t−τ)P̂τdt

)
= −

(
y∞

1 + y∞

1
1− θ

ŷ0 −
∫ 1

l
s(i)diω̂0

)
1

ρ + δ + λ
e−λτ

= −
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
q̂τ

Also, for τ = 0−

U∞ −U0− ≈
(∫ 1

l
s(i)di

)
1

ρ + δ
∆log (ω∞) +

y∞

1 + y∞

1
θ − 1

1
ρ + δ

∆log(y∞)

=

(∫ 1

l
s(i)di

)
1

ρ + δ
∆log (ω∞) +

y∞

1 + y∞

1
ρ + δ

(∆log(A)− ∆log(ω∞))

=
y∞

1 + y∞

1
ρ + δ

∆log(A)−
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
∆log (q∞)

Then,

∆Ū = (ρ + δ)(U∞ −U0−) + (ρ + δ)r
∫ ∞

0
e−rτ(Uτ −U∞)dτ

≈ (ρ + δ)(U∞ −U0−)−
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
(ρ + δ)r

∫ ∞

0
e−rτ q̂τdτ

=
y∞

1 + y∞
∆log(A)−

(
y∞

1 + y∞
−
∫ 1

l
s(i)di

)
∆Ω̄

Finally, using Proposition 1,

∆Ω̄ = (ρ + δ)r
∫ ∞

0
e−rτ∆log(qτ)dτ

= (ρ + δ)∆log(q∞) + (ρ + δ)r
∫ ∞

0
e−rτ q̂τdτ

≈ (ρ + δ)∆log(q∞) + (ρ + δ)
r

r + λ
q̂0

≈ (ρ + δ)∆log(q∞) + (ρ + δ)
rλ

r + λ

∫ ∞

0
q̂τdτ

A.6 Proof of Demand-Supply representation in (25)–(27)

The demand equation in (2) immediately implies that

∆ log xt = (θ − 1)∆ log(A)− θ∆ log ωt.
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We guess and verify the responses in Proposition 1 can be derived from a relative supply
equation with the following form:

∆ log xt = ϕt log ωt.

By combining the supply and demand equations, the change in relative wage is given by

∆ log ωt =
1

ϕt + θ
(θ − 1)∆ log(A)

We now derive the expression for ∆ log ωt implied by Proposition 1. The demand equa-
tions in (2) implies that

∆ log ωt = ∆ log(A) +
1

1− θ
∆ log yt,

which combined with Proposition 1 yields

∆ log ωt =

[(
1

θ + κη

)
− ψ

χ
(1− e−λt)

1
θ + κη

]
(θ − 1)∆ log(A).

Equalizing the two expressions above for ∆ log ωt, we obtain

ϕt + θ =
θ + κη

1− ψ
χ (1− e−λt)

,

which implies that

ϕt =
κηχ + θψ(1− e−λt)

(θ + κη)(δ + ρ) + ψe−λt .

This establishes the representation in (25)–(27) that yields the same path for ∆ log ωt and
∆ log yt implied by Proposition 1. Since e−λt ≤ 1 for all t ≥ 0, this expression implies that
ϕt > 0 for all t. In addition, we can verify that ϕt is increasing over time because

∂ϕt

∂t
=

θ(θ + κη)(δ + ρ) + κηχ + θψ

((θ + κη)(δ + ρ) + ψe−λt)
2 ψλe−λt > 0.

A.7 Comparative Statics with respect to η and ψ

Proposition A.1 (Comparative statics with respect to η) Assume that θ > 1. Then,

1. Short-run adjustment

∂∆ log(y0)

∂η
> 0,

∂|∆ log(l0)|
∂η

> 0,
∂∆ log(q0)

∂η
< 0;

2. Long-run adjustment

∂∆ log(y∞)

∂η
> 0,

∂|∆ log(l∞)|
∂η

> 0,
∂∆ log(q∞)

∂η
< 0;

58



3. Rate of convergence

∂λ

∂η
< 0

4. Cumulative impulse response

∂
(∫ ∞

0 |ŷt| dt
)

∂η
< 0,

∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂η

?

S 0,
∂
(∫ ∞

0 q̂tdt
)

∂η
< 0;

Proposition A.2 (Comparative statics with respect to ψ) Assume that θ > 1. Then,

1. Short-run adjustment

∂∆log(y0)

∂ψ
= 0,

∂|∆log(l0)|
∂ψ

= 0,
∂∆log(q0)

∂ψ
< 0

2. Long-run adjustment

∂∆log(y∞)

∂ψ
> 0,

∂|∆log(l∞)|
∂ψ

< 0,
∂∆log(q∞)

∂ψ
< 0

3. Rate of convergence

∂λ

∂ψ
> 0

4. Cumulative impulse response

∂
(∫ ∞

0 |ŷt| dt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂ψ

∣∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0 q̂tdt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0

Next, we prove each of the items of the two propositions above.

1. Short-run adjustment

∆log(y0) =

(
1− θ − 1

θ + κη

)
(θ − 1)∆log(A)

∆log (q0) =
1

θ + κη + ψ
ρ+δ

λ

δ

1
ρ + δ

(θ − 1)∆log(A)

=
1

θ + κη

1
ρ + λ

(θ − 1)∆log(A)

|∆log(l0)| =
η

θ + κη
(θ − 1)∆log(A)
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The first and last lines show that ∆log(y0), |∆log(l0)| are increasing in η and independent
of ψ. Since λ is decreasing in η, the second line shows that ∆log(q0) is decreasing in η.
Since λ is increasing in ψ, the third line shows that ∆log(q0) is decreasing in ψ.

2. Long-run adjustment

∆log(y∞) =

1− θ − 1

θ + κη + ψ
ρ+δ

 (θ − 1)∆log(A)

∆log (q∞) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(θ − 1)∆ log(A)

∆log(l∞) = − η

θ + κη + ψ
ρ+δ

(θ − 1)∆log(A)

Then, it is straightforward to see that ∆log(y∞) is increasing in both η and ψ, while the
opposite holds for ∆log(q∞). Moreover, , |∆log(l∞)| is increasing in η but decreasing in
ψ.

3. Rate of convergence

From the expression for λ in Theorem 1 it is straightforward to see that is decreasing in
η and increasing in ψ.

4. Cumulative impulse response

∫ ∞

0
|ŷt|dt = − 1

λ
ŷ0 =

1
λ

ψ
ρ+δ

θ + κη + ψ
ρ+δ

θ − 1
θ + κη

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
λ

q̂0 =
1

θ + ηκ + ψ
ρ+δ

λ− δ

λ

1
δ

1
ρ + δ

(θ − 1)∆log(A)

∫ ∞

0
|l̂t|dt =

η

θ − 1

∫ ∞

0
|ŷt|dt

The second line shows that
∫ ∞

0 q̂tdt is decreasing in η, since λ is decreasing in η. Fur-
thermore,

∫ ∞
0 q̂tdt is increasing in ψ around ψ = 0. This is because λ is increasing in ψ,

λ = δ when ψ = 0, and
∂

(
1
λ

1
θ+κη+

ψ
ρ+δ

)
∂ψ is bounded.

The first line shows that
∫ ∞

0 |ŷt|dt is increasing in ψ around ψ = 0 since
∂

(
1
λ

1
ρ+δ

θ+κη+
ψ

ρ+δ

)
∂ψ is
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bounded. To show that it is decreasing in η, we show that:

∂log( 1
λ

ψ
ρ+δ

θ+κη+
ψ

ρ+δ

θ−1
θ+κη )

∂η
=

1
λ

1
ρ + 2λ

ψδκ

(θ + κη)2 −
κ

θ + κη + ψ
ρ+δ

− κ

θ + κη

= −


1− λ− δ

λ

ρ + δ + λ

ρ + 2λ︸ ︷︷ ︸
<1 because λ>δ

 1
(θ + κη)

+
1

θ + κη + ψ
ρ+δ

 κ < 0

Finally,
∫ ∞

0 |l̂t|dt is increasing in ψ around ψ = 0, since it is proportional to
∫ ∞

0 |ŷt|dt.
However, the derivative with respect to η is ambiguous. This is because the constant of
proportionality η/(θ − 1) is increasing in η while

∫ ∞
0 |ŷt|dt is decreasing in η.

A.8 Proof of Proposition 3
From the proof of Proposition A.1 in Appendix A.7, we have that

DCIR(q) =
δλ

λ + δ

∫ ∞
0 |q̂t|dt

∆log(A)
=

 1

θ + ηκ + ψ
ρ+δ

δ

λ + δ

 (λ− δ)
|θ − 1|

δ(ρ + δ)

DCIR(y) =
δλ

λ + δ

∫ ∞
0 |ŷt|dt

∆log(A)
=

δ

λ + δ

ψ
ρ+δ

θ + κη + ψ
ρ+δ

(θ − 1)2

θ + κη
=

δ

λ + δ

(ρ + δ + λ)

λ(ρ + λ)
(λ− δ)

(θ − 1)2

(θ + κη)2 .

The definition of λ in Theorem 1 implies that λ|ψ→0 = λ|θ→∞ = δ and ∂λ
∂η |ψ→0 = ∂λ

∂η |θ→∞ =

0. Taken together, they immediately imply that ∂DCIR(q)
∂η |ψ→0 = ∂DCIR(q)

∂η |θ→∞ = 0 and
∂DCIR(y)

∂η |ψ→0 = ∂DCIR(y)
∂η |θ→∞ = 0

A.9 Proof of Theorem 3
Part 1. We start by deriving the elasticity of relative employment of old generations with
respect to ∆ log(A). We first use a first-order approximation to write the log-change in relative
high-tech employment in terms of changes in the high-tech employment share:

εwithin
0 ≈ 1

∆log(A)

1
e∞(1− e∞)

(∫ 1

l0
s0(i)di−

∫ 1

l0−
s0(i)di

)
Taking a first-order approximation around l,∫ 1

l0
s0(i)di−

∫ 1

l0−
s0(i)di ≈ −s0(l)l

(
l̂t + ∆ log(l∞)

)
≈ s0(l)lη∆ log(ωt)

≈ s0(l)l
e∞(1− e∞)

η

(
− 1

θ − 1
∆ log y0 + ∆ log A

)
.
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where the last line uses the demand expression in (2).
Then, using Proposition 1,

εwithin
0 ≈ s0(l)l

e∞(1− e∞)

η

θ + κη
(θ − 1),

Thus,
∂|εwithin

0 |
∂η

=
s0(l)l

e∞(1− e∞)

θ

(θ + κη)2 |θ − 1| > 0 and
∂|εwithin

0 |
∂ψ

= 0.

Part 2. We first use a first-order approximation to write the relative high-tech employment
in terms of changes in the high-tech employment share:

εbetween
0 ≈ 1

e∞(1− e∞)

1
∆ log A

(∫ 1

l0
(s̃0(i)− s0(i))di

)
≈ 1

e∞(1− e∞)

1
∆ log A

(∫ 1

l
s(i)( ˆ̃s0(i)− ŝ0(i))di

)

To write this expression in term of fundamentals, we derive the changes in the skill distri-
bution between stationary equilibria. Using the expression for the stationary skill distribution
in (16),

s0(i) =
s̄(i)α(i)

ψ
ρ+δ (ω0−σ(i))

ψ
ρ+δ Ii>l0−∫ l0−

0 s̄(j)α(j)
ψ

ρ+δ dj +
∫ 1

l0−
s̄(j)α(j)

ψ
ρ+δ (ω0−σ(j))

ψ
ρ+δ dj

=⇒

ŝ0(i) ≈ −
(

Ii>l −
∫ 1

l
s(j)dj

)
ψ

ρ + δ
∆ log(ω)

Recall also that the third part of Theorem 1 yields

ˆ̃s0(i) =
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂0 + o0(i).

Combining the expressions above,

εbetween
0 ≈ 1

∆ log A

(
ψq̂0 +

ψ

ρ + δ
∆ log(ω)

)
≈ 1

∆ log A
ψ (q̂0 + ∆ log(q∞))

≈ 1
∆ log A

ψ∆ log(q0)

Using the expression for ∆ log(q0) in Proposition 1,

εbetween
0 ≈ ψ

(ρ + λ)(θ + κη)
(θ − 1).
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Using the expressions derived in Appendix A.8 and defining $ ≡
( ρ

2

)2
+ δ

(
(ρ + δ) + ψ

θ+κη

)
,

we obtain

∂|εbetween
0 |
∂ψ

=
1− e∞

(θ + κη)(ρ + λ)2

(
ρ + λ− ψ

∂λ

∂ψ

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2

(
ρ

2
+ $1/2 − 1

2
$−1/2 δψ

θ + κη

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2 $−1/2
(

ρ

2
$−1/2 + $− 1

2
δψ

θ + κη

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2 $−1/2
(

ρ

2
$−1/2 +

(ρ

2

)2
+ δ (ρ + δ) +

1
2

δψ

θ + κη

)
|θ − 1|,

which implies that ∂|εbetween
0 |
∂ψ > 0.

Using the expressions derived in Appendix A.8,

∂|εbetween
0 |
∂η

=− (1− e∞)
ψ

[(ρ + λ)(θ + κη)]2

(
κ(ρ + λ) + (θ + κη)

∂λ

∂η

)
|θ − 1|

=− ψ

[(ρ + λ)(θ + κη)]2
κ$−1/2

(
ρ

2
$−1/2 + $− 1

2
δψ

(θ + κη)

)
|θ − 1|

=− ψ

[(ρ + λ)(θ + κη)]2
κ$−1/2

(
ρ

2
$−1/2 +

(ρ

2

)2
+ δ(ρ + δ) +

1
2

δψ

(θ + κη)

)
|θ − 1|,

which implies that ∂|εbetween
0 |
∂η < 0.

Appendix B Extensions

This section discusses the extensions described in Section 4.4. In Section B.1, we introduce
"learning-from-others" by allowing the innate ability distribution s̄t(i) to depend on the econ-
omy’s skill distribution st(i). In Section B.2, we introduce re-training by allowing a fraction
of the older generations to make skill investment following the shock. Section B.3 introduces
population growth by allowing the birth rate to be higher than the death rate.

B.1 Learning-from-others

We relax the assumption that the reference distribution s̄τ(i) in the skill investment problem is
exogenous and fixed over time. Instead, we assume that certain skills may be easier to acquire
than others because workers can "learn from others" when such skills are already abundant in
the economy. Formally, we assume that the baseline distribution s̄τ(i) is a geometric average
of a fixed distribution ε̄(i) and the current skill distribution in the economy sτ(i) at the time
where generation τ is born,

s̄τ(i) = sτ(i)
γε̄(i)1−γ, γ ∈ [0, 1). (B.1)

Note that as γ increases it becomes easier for workers to choose skill lotteries that put
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more weight in those skill types that are already abundant in the economy. As opposed
to our benchmark case (γ = 0), this extension with γ > 0 introduces a backward-looking
element to the skill investment problem and complementarities in skill investment decisions
across generations.

In what follows, we reproduce the key steps that change in the proofs in Appendix A.3.
First, we log-linearize the extended version of (A.6). We begin by noting that the stationary
distribution exist and is

s(i) =
s(i)γε(i)1−γw(i)

ψ
ρ+δ∫ 1

0 s(j)γε(j)1−γw(j)
ψ

ρ+δ dj
=⇒ s(i) =

ε(i)w(i)
1

1−γ
ψ

ρ+δ∫ 1
0 ε(i)w(i)

1
1−γ

ψ
ρ+δ di

.

Then, we obtain that

ˆ̃st(i) = γ (ŝt(i)− ŝt(l)) + ˆ̃st(l)− ψq̂tIi<lt − ψq̂t+τ(i)Ii∈(lt,l). (B.2)

Second, we replace the above in the expression inside the parenthesis in (A.4), we obtain

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

γ
∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(x)σ(x)s(x)dx

di−
∫ l

0

(
γŝt(i)− ψq̂tIi<lt − ψq̂t+τ(i)Ii>lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

γ
κη + θ

η
l̂t + ψq̂t − ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di

where the last line uses (A.3) annd (A.2).
Third, as in the proof in Appendix A.3, we can show that the last term inside the inte-

gral is of second order. Thus, replacing the above expression back in (A.4), we obtain the
Kolmogorov-Forward equation for l̂t in the economy with learning-from-others,

∂l̂t
∂t

= −δ(1− γ)l̂t +
η

κη + θ
δψq̂t. (B.3)

Fourth, since the law of motion for q̂t is the same as in the benchmark model, this implies
that the equilibrium is saddle-path stable where the new λ in the economy with learning-
from-others is the positive solution to

(δ(1− γ)− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0.

Finally, the optimal lottery in the economy with learning-from-others is

ˆ̃st(i) = γŝt(i) +
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i).

Next, we reproduce the key steps that change in Appendices A.4 and A.7. First, from the
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expression for the stationary distribution above, note that the long-run skill supply elasticity
in the learning-from-others economy is 1

1−γ ψ as opposed to simply ψ.
This implies that the dynamic responses are

∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ(1− γ)

δ(1− γ)
e−λt

)
(θ − 1)∆log(A)

where the last line follows from the equation for the new λ.
Second, note that the short-run responses for lt and yt are identical than in the benchmark

model. The long-run responses are larger (smaller) in magnitude for yt (for lt) in the econ-
omy with learning-from-others since the long-run skill supply elasticity is larger and thus

1
θ+κη+ 1

1−γ
ψ

ρ+δ

1
1−γ

ψ
ρ+δ is larger. As for the DCIR, note that λ is smaller in the learning-from-

others economy. Together with the fact that 1
θ+κη+ 1

1−γ
ψ

ρ+δ

1
1−γ

ψ
ρ+δ is larger, they imply that the

DCIR of both yt and lt is higher in the learning-from-others economy.
Third, for qt we have that

∆log(q∞) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(θ − 1)∆log(A)

∆log(q0) =
1

θ + κη

1

(ρ + δ + ψδ
θ+κη

1
ρ+δ+λ )

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
1−γ

ψ
ρ+δ

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ + λ

1
λ

1
θ + κη

(θ − 1)∆log(A).

Then, since λ is smaller, the short- and long-run responses are smaller in magnitude and
the DCIR is larger in the economy with learning-from-others.

Finally, we note that the proofs for the comparative statics in Appendix A.7 with respect
to η and ψ are unchanged. To see this, it suffices to show that the dynamics for qt, lt, yt
in the economy with learning-from-others are equivalent to those from a re-parameterized
benchmark economy where δ′ = δ(1− γ), ψ′ = 1

1−γ ψ and ρ′ = ρ + δγ.

B.2 Old generations skill investment
We now let a fraction of workers that were present before the shock re-optimize their skill
investment "as if" they were a young generation entering at time t = 0. Formally, the skill
distribution on impact now becomes
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s0(i) = (1− β)s0−(i) + βs̃0(i),

where β is the fraction of workers in the generation present before the shock that can re-
optimize.

The first thing to note is that this does not change any of the transitional dynamics given
the new initial skill distribution on impact. As such Theorem 1 is unchanged. However, the
initial conditions and the dynamic responses do change. Next, we reproduce the key steps
that change in Appendix A.4.

The deviation from the skill distribution on impact from the new stationary distribution
is now

ŝ0(i) = ŝ0−(i) + β
(

ˆ̃s0(i)− ŝ0−(i)
)

= (1− β)

(
ŝ0(l)− Ii>l

ψ

ρ + δ
∆log(ω)

)
+ β

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂0 + βo(i)

where the long-run change ∆log(ω) is the same as in the benchmark model.
Following the same steps as in the benchmark proof, this then implies that

(
θ

η
+ κ

)
l̂0 =

∫ 1

l

σ(i)α(i)s(i)∫ 1
l σ(i)α(i)s(i)

ŝ0(i)di−
∫ l

0

α(i)s(i)∫ l
0 α(i)s(i)

ŝ0(i)di

= −(1− β)
ψ

ρ + δ
∆log(ω) + βψq̂0.

Thus,

ω̂0 = − 1
η

l̂0

=
1

θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) + ψq̂0

))
=

1
θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) +

ψ

ρ + δ + λ
ω̂0

))
=

1− β

1 + β
ψ

ρ+δ+λ
1

θ+κη

1
θ + κη

ψ

ρ + δ
∆log(ω).

Finally, using the above together with the expression for ∆log(ω) in equations (A.8)-(A.10),
we obtain:
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∆log(yt) =
1

θ + κη

(
1 + κη + (θ − 1)

ψ

χ

(
1− 1− β

1 + β λ−δ
δ

e−λt

))
(θ − 1)∆log(A)

∆log(qt) =
1
χ

(
1 +

λ− δ

δ

1− β

1 + β λ−δ
δ

e−λt

)
(θ − 1)∆log(A)

∆log(lt) = −
η

θ + κη

(
1 +

ψ

χ

(
1− β

1 + β λ−δ
δ

e−λt − 1

))
(θ − 1)∆log(A)

Then, mathematically, the dynamic responses in the economy where old generations can
re-optimize their skills are similar to those in the benchmark economy except that the function
e−λt is now multiplied by 1−β

1+β λ−δ
δ

< 1. This immediately implies that: the long-run responses

are the same in both economies, the short-run responses of y and l (of q ) are now larger
(smaller) in magnitude, and the DCIR of all variables is now smaller. Hence, in many ways,
this new economy behaves qualitatively similar to an economy with a lower degree of skill
specificity (higher η), with the exception that long-run responses are unchanged.

B.3 Population growth
We now assume that the size of entering generations is µ as opposed to δ. This implies
that the population growth rate is µ− δ. The Kolmogorov-Forward equation describing the
evolution of the skill distribution becomes

∂e(µ−δ)tst(i)
∂t

= −δe(µ−δ)tst(i) + µe(µ−δ)t s̃t(i).

Then, we have that

∂st(i)
∂t

= −µst(i) + µs̃t(i).

The remaining elements in the model remain the same. Hence, the economy with popu-
lation growth is identical to our benchmark economy except that the convergence rate λ is
higher iff µ > δ since it is now the positive solution to:

(λ− µ)(ρ + δ + λ) =
ψµ

θ + κη
.

Then, if µ > δ, the short- and long-run dynamic responses for yt, lt remain unchanged, the
short-run response of q is smaller in magnitude, and the DCIR of all variables is lower. The
opposite holds when µ < δ.
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Appendix C Empirical Analysis

This appendix presents additional empirical results that complement those presented in Sec-
tion 6. Section C.1 discusses details about the data construction procedure. Section C.2
reports the summary statistics of our baseline sample. Section C.3 presents evidence on the
types of tasks required by cognitive-intensive occupations. Section C.4 presents additional
empirical results that attest the robustness of the estimates presented in Section 6.2. Sec-
tion C.5 presents the correlation between changes in the mean age of an occupation and its
employment share in the United States over different time periods.

C.1 Data construction
The raw data in the LIAB comes in the form of entire job histories of workers in the sample.
Individual entries therefore contain worker information, as well as information on the start
and end date of a job spell for that individual, the location (establishment), and characteristics
of the job spell. We transform this data into an annual panel dataset following the steps in
Card, Heining, and Kline (2013), with minor modifications. Specifically, we sequentially
restrict our sample by selecting (i) males in West Germany, (ii) those aged 15-64 years at the
time of the job spell, and (iii) the job-spell within a calendar year with maximum earnings.
We then adjust wages by (i) deflating earnings using German CPI information from FRED
(Series id: DEUCPIALLMINMEI) and (ii) replacing daily wages with Upper Earnings Limits
in Card, Heining, and Kline (2013) for daily wages above censor limit. Finally, we impute the
district of employment using the district of the establishment if the district of employment is
missing (before 1999).

While the years represented in our data and our underlying data sample differ from those
of Card, Heining, and Kline (2013), our panel well represents the data used in that paper.
Figure B1 illustrates that the mean wage changes of job movers, classified by the mean log
wages of coworkers in their old and new establishments, is similar in our data to the main
findings in Card, Heining, and Kline (2013) (their Figure Vb).

We link our LIAB-based worker panel to the DSL access data from Falck, Gold, and
Heblich (2014) using the district identifiers in both datasets. We then construct the instru-
mental variables discussed in Section 6.2.1. Figure B2 illustrates the spatial variation of the
instruments used to estimate our baseline results.

68



Figure B1: Replication of Card, Heining, and Kline (2013)

Note. Figure illustrates the mean wage changes for job movers from the fourth and first quartile of establishments
in all quartiles of establishments. Movers are defined as workers who move jobs from a job they held for two
years before moving, and stay in the new job for two years after moving. Quartiles are defined by the mean log
wages of coworkers in the old and new establishments. The sample period is 2002-2009. transt = 3 is the year
of moving.

Figure B2: Spatial Variation in the Instrumental Variables

Note. Panel A illustrates the number of municipalities across districts in Germany that did not have access to
an MDF within the 4200m radius ("MDF Density Measure"), as described in Section 6.2.1. Panel B illustrates
the number of municipalities across districts that did not have their own MDF and did not have access to an
alternative MDF in a neighboring district "Alternative MDF Availability".
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C.2 Sample statistics
This section reports the summary statistics of our baseline sample. We begin by illustrating
the increase in inequality, measured by the standard deviation of log wages, in our sam-
ple. Figure B3 compares the overall change in inequality together with the between district-
generation-occupation component, measured using the residual log-wage dispersion from a
mincer regression including dummies for the district-generation-occupation estimated on the
sample in each year. Between 1997-2012, overall inequality in our sample increased by about
8.5 log points. As the figure illustrates, the between district-generation-occupation compo-
nent explains about half of the increase in inequality during this period. In results available
on request, we attest that each of these these characteristics alone does not account for the
inequality rise.39

Table B1 presents summary statistics underlying the FDZ microdata used in our empirical
analysis. They illustrate the evolution of the number of employees, ages and log-wage of the
baseline generations used in estimation.

Figure B3: Aggregate Trends in Log Wage Variance

Note. Estimation of the aggregate standard deviation of log wages on the full LIAB sam-
ple and the residual dispersion in log wages from a mincer regression including district-
occupation-generation dummies. Estimates are changes in dispersion relative to 1999.

39We also attest that the explanatory power of the between district-generation-occupation component is similar to that of
the between establishment component of log-wage variance, which Card, Heining, and Kline (2013) point as the main driver
of the inequality increase in Germany during this period. Notice that this is not mechanical because there are nearly 50
times as many establishments as district-occupation-generation triples in our sample.
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Table B1: Summary Statistics: German Microdata

1995 2014
Number of observations

Born before 1960 (“Old”) 185,751 96,045
Born after 1960 (“Young”) 251,451 538,590

Mean log wage
Born before 1960 (“Old”) 4.54 4.42
Born after 1960 (“Young”) 4.15 4.54

Mean age
Born before 1960 (“Old”) 44.86 60.53
Born after 1960 (“Young”) 28.22 39.56

Note. Sample of male workers in LIAB data, living in West Germany, employed
full-time with a positive wage in 120 occupations. Generations as defined in the
table.
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C.3 Cognitive intensity and use of new technologies across occupations in
Germany

This section analyzes the types of tasks required by cognitive-intensive occupations. Figure
B4 reports the correlation between the occupation’s intensity in cognitive skills and the share
of individuals in that occupation reporting they intensely perform each of the listed tasks. The
top tasks performed in cognitive-intensive occupations are directly related to technological
innovations recently introduced in the workplace: working with internet, in particular, and
with computers, more generally. On the other extreme, individuals employed in the least
cognitive-intensive occupations tend to perform routine tasks associated with manufacturing
and repairing. The results in Figure B4 are consistent with the evidence establishing the
heterogeneous impact of new technologies on different tasks performed by workers – e.g.,
Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), and Akerman,
Gaarder, and Mogstad (2015).

We then investigate whether these new technologies affected worker generations differ-
ently conditional on their occupation. We consider two generations: a young generation
aged less than 40 years and an old generation aged more than 40 years.40 Figure B5 shows
that, while internet and computer usage are biased towards cognitive-intensive occupations,
there were only small differences in the usage of these new technologies across worker co-
horts employed in the same occupation in 2012. These results are complement the finding in
Spitz-Oener (2006) that there were small between-cohort differences in the change of the task
content of German occupations in the 1990s.

C.4 Impact of new technologies on cognitive-intense occupations in Ger-
many

This section investigates the robustness of the results presented in Section 6.2.

Cognitive intensity and labor market outcomes across occupations. We first report the
impact of cognitive-intensity on occupation employment growth for different time horizons.
The estimates in Table B2 show that results are qualitatively similar for 1995-2000 and 1995-
2010.

We then investigate the impact of cognitive-intensity on occupation employment growth
with a more flexible specification that allows for different coefficients for different levels of
cognitive-intensity. As is clear from Table B3, the results in Table 1 are driven largely by an
increase in employment for all generations in the most cognitive intensive occupations (above
the 60th percentile of cognitive intensity). This increase is substantially stronger for the young
generation. Some evidence of polarization is also evident for the young generation, as they
also disproportionately enter the least cognitive intensive occupations.

Appendix Table B4 investigates the robustness of the estimates of equation (28) reported in
Table 1. Panel A of Table B4 reports similar results when we include occupation-level controls
for import and export exposure and the growth in the fraction of migrants in the occupation.
Panel B shows that results are also robust to restricting the sample to native-born German
males only. Panel C presents results where the “Young” generation is defined alternatively
as those born after 1965 or 1955. As expected, when the definition of the young generation is
further restricted to include only more recent cohorts, the coefficient on "Young" is stronger.

40Results are similar if we define young generations to include workers who are less than 30, 35 or 45 years old.
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Figure B4: Cross-occupation correlation between cognitive intensity and perfomance of different tasks

Note. Sample of 85 occupations. The occupation task intensity is the share of individuals in that occupation
reporting to intensively perform the task in the 2012 Qualification and Working Conditions Survey. The occu-
pation cognitive-skill intensity is the share of time spent on cognitive-intensive tasks in the BERUFNET dataset
(2011-2013).

Figure B5: Internet and Computer Usage by Occupation: Within- and Between-Generation

Note. Sample of 85 occupations in Working Condition Survey. For each occupation, we compute the share of individuals
reporting intensive internet and computer usage on their job. Young generations defined as workers aged below 40 years
and Old generations defined as all workers aged above 40 years. The occupation cognitive-skill intensity is the share of time
spent on cognitive-intensive tasks in the BERUFNET dataset (2011-2013). Figure reports the lowess smooth fit.
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The opposite happens if we relax the young definition to include older cohorts. Panel C also
shows that results are similar if the “Young” generation is defined as those aged below 40 in
each year (as in Figure 5).

Dynamic adjustment to broadband internet adoption across regions and occupations. We
start by examining the first-stage regression that relates the initial telephone network to DSL
access. Although the unit of observation in equation (29) is a district-occupation-generation
triple, the exogenous variation in the instrument vector comes only from cross-district varia-
tion. Therefore, to provide a clear picture of the exogenous variation underlying the first-stage
regression, we first examine the impact of the instrument vector Zi on the district’s share of
population with broadband internet access in 2005, DSLi. That is, we begin by estimating the
following linear regression:

DSIi = Ziρ + Xiγ + εi (C.1)

where Xi is the vector of district-level controls used in the estimation of (29).
Table B5 shows that districts with adverse initial conditions for internet adoption had a

lower share of households with high-speed internet in 2005. Columns (1) reports the first-
stage estimates controlling for the baseline set of district-level controls. We can see that the F
statistic of excluded variables remains high in the presence of these controls.

As discussed in Section 6, equation (29) has multiple endogenous variables since they
include DSL access interacted with occupation cognitive intensity and worker generation
dummies. To test for weak instruments in this setting, we provide the Sanderson-Windmeijer
F-statistics (Sanderson and Windmeijer, 2016) for the first stage of each specification in Table
B6. This test statistic checks for whether any of our endogenous variables are weakly instru-
mented, as well as whether there are sufficiently many strong instruments to instrument the
multiple endogenous variables. As shown in the table, we obtain uniformly high first-stage
SW F-statistics in all specifications, indicating that our instrument vector has enough power
to estimate responses for different worker cohorts.

We now turn to a more careful investigation of the robustness of the results in Figures 6.
Table B7 investigates how our baseline set of controls affects estimates. The three panels of
Table B7 present estimates for the entire post-shock period of the sample (1999-2014, Panel
A), the period during which DSL was rolled out across German regions (1999-2007, Panel B),
and the period before the shock (1996-1999, Panel C). Each panel includes the results of our
baseline specification, as well as alternative specifications in which (i) we drop the pre-trend
control, and (ii) we augment baseline controls with district-generation-year fixed effects.

Consider first the impact of the pretrend control in the second row of each panel. This
control increases the magnitude and the precision of the estimates coefficients in the period
of 1999-2007 and 1999-2014. However, it has the opposite impact on the pre-shock period of
1996-1999. In this pre-shock period, there are marginally significant negative responses. Once
those are taken into account, the impact of broadband internet adoption on more cognitive
intensive occupations is stronger.

Turning to the specification including district-generation-year fixed effects, we can see that
results are remarkably similar to our baseline estimates. This is reassuring as this specification
includes a restrictive set of controls that absorb all potential confounding shocks that affect
each district-generation pair in a year. For instance, they account for any pre-existing variation
that might have lead to differential DSL access in the district. As a result, identification in
this specification comes purely through the differential effect of the DSL access shock on
occupations with higher cognitive intensity in the district.

Table B8 investigates the robustness of the baseline estimates in Figures 6 to the sample
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specification. The two panels present estimates for the entire post-shock period of the sample
(1999-2014, Panel A), and the period during which DSL was rolled out across German regions
(1999-2007, Panel B). All specifications include the baseline set of controls.

The second row of each panel show that results are similar if we restrict the sample to
only include workers born in Germany. This suggests that the inclusion of immigrants in our
sample does not drive our baseline results.

We consider next several alternative definitions of the young generation based on (i) co-
horts groups born after 1955, 1965 or 1970, and (ii) age groups aged below 35, 40 or 45 in each
year. For all definitions, the coefficient on the cognitive intensity of the occupation for young
workers is positive and strongly significant, while that for the old generation is insignificant
and close to zero. As before, the coefficient in column (2) is stronger when we restrict the
young generation to cohorts born in more recent years. Similar patterns arise when we define
the young generation based on a lower or higher age cutoff in each year.

The last row of each panel reports estimates when we restrict the sample by excluding
workers employed in establishments belonging to the top 25 percentile of establishment sizes.
This exercise accounts for the likelihood that the largest establishments in Germany acquired
DSL earlier through specialized private connections. In this case, we would expect adjustment
in these establishments to have occurred earlier, biasing our results to zero. In line with
this intuition, estimated coefficients are stronger than the baseline for all workers in column
(1) and for the young-old gap in column (4). This indicates that our instrument seems to
generate variation in the roll-out of broadband internet that mostly affected the occupation
composition of small establishments across German districts.

Finally, Table B9 investigates the impact of early DSL adoption on investment in cognitive
skills by young workers in the district. Specifically, it reports the estimated impact, on the
growth in the number of trainees in an occupation-district, of the interaction between the
occupation’s cognitive intensity and the district’s DSL access in equation (29). The estimates
are for a single generation of working-age individuals whose employment status is a trainee
or intern in each year. Our estimates suggest that regions where DSL expansion happened
faster also experienced stronger growth in the number of trainees in more cognitive intensive
occupations. This evidence is consistent with our model’s prediction that, after the arrival of
a cognitive-intensive innovation, incoming cohorts increase their investment in the cognitive
skills used in more cognitive intensive occupations.
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Table B2: Cognitive intensity and labor market outcomes across occupations in Germany

Dependent variable: Employment Growth Real Payroll Growth Trainee
All Young Old All Young Old Growth
(1) (2) (3) (4) (5) (6) (7)

Panel A: Change in 1995-2000

Cognitive intensity 0.388*** 0.650*** 0.113*** 0.340*** 0.616*** 0.157*** 0.379*
(0.076) (0.098) (0.043) (0.048) (0.070) (0.037) (0.209)

Panel B: Change in 1995-2005

Cognitive intensity 0.778*** 1.150*** 0.290*** 0.741*** 1.158*** 0.404*** 0.545
(0.111) (0.130) (0.079) (0.086) (0.114) (0.063) (0.427)

Panel C: Change in 1995-2010

Cognitive intensity 1.110*** 1.523*** 0.454*** 1.036*** 1.525*** 0.539*** 0.768*
(0.137) (0.149) (0.125) (0.111) (0.133) (0.091) (0.430)

Panel D: Change in 1995-2014

Cognitive intensity 1.488*** 1.894*** 0.871*** 1.535*** 2.029*** 1.044*** 2.121***
(0.225) (0.234) (0.229) (0.227) (0.238) (0.223) (0.385)

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time period. Young
cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table B3: Cognitive intensity and labor market outcomes across occupations in Germany: Percentiles
specification

Dependent variable: Employment Growth Real Payroll Growth Trainee
All Young Old All Young Old Growth
(1) (2) (3) (4) (5) (6) (7)

Low: below P30 -0.012 0.286** -0.946*** 0.220* 0.590*** -0.875*** -0.790***
(0.128) (0.137) (0.129) (0.132) (0.140) (0.135) (0.178)

Medium: P30-P60 -0.054 -0.046 0.031 -0.086 -0.036 -0.014 -0.112
(0.194) (0.205) (0.208) (0.195) (0.208) (0.202) (0.274)

High: above P60 0.812*** 1.038*** 0.531*** 0 .816*** 1.099*** 0 .592*** 1.052***
(0.156) (0.166) (0.016) (0.158) (0.169) (0.157) (0.237)

Note. Sample of 120 occupations. The table reports the estimate for the dependent variable over the time period 1995-2014. Occupations
have been classified into 100 percentiles based on cognitive intensity, and separate coefficients estimated for percentiles below 30, 30-60 and
above 60. Young generation defined as all workers born after 1960 and Old generation as all workers born before 1960. Robust standard
errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table B4: Cognitive intensity and labor market outcomes across occupations in Germany: Robustness

Dependent variable: Employment Growth Trainee
All Young Old Between Growth
(1) (2) (3) (4) (5)

Panel A: Alternative control set, 1995-2014
Controls for immigration and trade 1.426*** 1.807*** 0.841*** 0.966*** 2.029***

(0.261) (0.279) (0.252) (0.376) (0.457)

Panel B: Alternative sample definition, 1995-2014
Native-born Males Only 1.396*** 1.807*** 0.778*** 1.029*** 2.194***

(0.226) (0.235) (0.231) (0.340) (0.385)
Panel C: Alternative generation definition, 1995-2014

Young: Born after 1965 1.488*** 2.137*** 0.857*** 1.280*** 2.121***
(0.225) (0.299) (0.246) (0.387) (0.385)

Young: Born after 1955 1.488*** 1.639*** 0 .967*** 0.671* 2.121***
(0.225) (0.268) (0.290) (0.395) (0.385)

Young: Aged Below 40 in each year 1.488*** 1.748*** 0.773*** 0.975** 2.121***
(0.225) (0.294) (0.246) (0.383) (0.385)

Note. Sample of 120 occupations, sample periods as defined in the table. Columns (1)–(3) report the estimated coefficient on the
occupation’s cognitive intensity in equation (28). Column (4) reports the difference between the coefficients in columns (3) and (2).
Each row defines a separate robustness exercise. The row "Controls for immigration and trade" includes a set of baseline controls:
growth in occupational exposure to exports during the sample period, growth in occupational exposure to imports during the
sample period, and growth in the fraction of immigrants in the occupation during the sample period. Robust standard errors in
parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table B5: First-stage regressions – Share of households with DSL access in 2005

(1) (2)
MDF density measure -0.020∗∗∗ -0.018∗∗∗

(0.005) (0.005)
Alternative MDF availability 0.002 -0.001

(0.001) (0.002)
Baseline controls Yes No
F statistic 26.49 43.06

Note. Sample of 323 districts in West Germany. All regressions are weighted by the district popula-
tion size in 1999. Baseline controls include the following district variables in 1999: college graduate
population share, manufacturing employment share, immigrant employment share and workforce age
composition. Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B6: First-stage SW F-statistics for estimation of equation (29) reported in Panel A of Figure 6

Instrumented Variable 1997 2007 2014
Young Generation*DSL Access 18.74 18.78 19.04
Old Generation* DSL Access 19.04 17.57 20.45
Young Generation*DSL Access*Cognitive Intensity 21.95 20.48 19.77
Old Generation*DSL Access*Cognitive Intensity 21.31 18.57 22.32

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Table reports the Sanderson-Windmeijer
F-statistic for each endogenous regressor when estimating equation (29).
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Table B7: Impact of early DSL adoption on more cognitive-intensive occupations: Alternative control
sets

Dependent variable: Employment Growth
All Young Old Between

Control Set (1) (2) (3) (4)
Panel A: 1999-2014

Baseline 0.240*** 0.482*** -0.065 0.546**
(0.085) (0.154) (0.193) (0.287)

No Pretrend Control 0.177** 0.292*** -0.026 0.319
(0.087) (0.114) (0.189) (0.222)

District-Year Effects 0.149** 0.475*** -0.035 0.510*
(0.067) (0.160) (0.203) (0.302)

Panel B: 1999-2007
Baseline 0.077* 0.223*** -0.138 0.361**

(0.043) (0.092) (0.116) (0.177)
No Pretrend Control 0.015 0.137 -0.200 0.337

(0.061) (0.085) (0.127) (0.149)

District-Year Effects 0.093 0.234** -0.134 0.368*
(0.060) (0.098) (0.125) (0.019)

Panel C: 1996-1999
Baseline -0.002 0.011 -0.019 0.029

(0.026) (0.030) (0.031) (0.049)
No Pretrend Control -0.109* -0.141* -0.074 -0.068

(0.065) (0.077) (0.084) (0.061)

District-Year Effects 0.012 0.011 -0.022 0.034
(0.032) (0.032) (0.032) (0.050)

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the ta-
ble. Column (1) reports the estimated coefficient on interaction between the occupation cognitive
intensity and district DSL access in equation (29) for a single generation of working-age employed
individuals. Columns (2)-(3) report the estimated coefficients on interaction between the occupation
cognitive intensity, generation dummies and district DSL access in equation (29) for the old and young
generations. Column (4) reports the difference between the coefficients in columns (3) and (2). Gen-
erations are the baseline generations with young workers those born after 1960. All regressions are
weighted by the district population size in 1999 and include a set of baseline district-level controls
as well as occupation-year and generation-year fixed effects. Each row defines a separate robust-
ness exercise. "District-Year Effects" are estimated as district-year fixed effects in column (1) and as
district-year-generation fixed effects in columns (2)-(4). Standard errors clustered at the district-level
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table B8: Impact of early DSL adoption on more cognitive-intensive occupations: Sample selection

Dependent variable: Employment Growth
All Young Old Between

Sample Definition (1) (2) (3) (4)
Panel A: 1999-2014

Baseline 0.240*** 0.482*** -0.065 0.546**
(0.085) (0.154) (0.193) (0.287)

Native-born Males Only 0.223*** 0.446*** 0.074 0.372**
(0.078) (0.143) (0.144) (0.208)

Young: born after 1970 0.714*** -0.048 0.789**
(0.182) (0.242) (0.371)

Young: born after 1965 0.612*** -0.171 0.783***
(0.157) (0.201) (0.303)

Young: born after 1955 0.573*** -0.298 0.871**
(0.196) (0.233) (0.355)

Young: Aged < 35 in each year 0.612*** 0.059 0.553***
(0.139) (0.139) (0.203)

Young: Aged < 40 in each year 0.529*** 0.076 0.453**
(0.164) (0.163) (0.237)

Young: Aged < 45 in each year 0.445*** 0.159 0.286
(0.170) (0.198) (0.266)

Small Establishments Only 0.309*** 0.466*** -0.128 0.594**
(0.083) (0.140) (0.183) (0.286)

Panel B: 1999-2007
Baseline 0.077* 0.223*** -0.138 0.361**

(0.043) (0.092) (0.116) (0.177)
Native-born Males Only 0.054 0.145* 0.037 0.108

(0.045) (0.092) (0.105) (0.171)
Young: born after 1970 0.449*** -0.070 0.518*

(0.120) (0.191) (0.289)
Young: born after 1965 0.298*** -0.168 0.465**

(0.092) (0.118) (0.183)
Young: born after 1955 0.203** -0.155 0.358***

(0.087) (0.115) (0.167)
Young: Aged < 35 in each year 0.118** 0.095 0.022

(0.066) (0.095) (0.130)
Young: Aged < 40 in each year 0.195** 0.030 0.165

(0.086) (0.104) (0.166)
Young: Aged < 45 in each year 0.206*** 0.091 0.115

(0.090) (0.111) (0.174)
Small Establishments Only 0.129* 0.263** -0.170 0.434**

(0.070) (0.103) (0.120) (0.181)
Note. Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the table. Column
(1) reports the estimated coefficient on interaction between the occupation cognitive intensity and district DSL
access in equation (29) for a single generation of working-age employed individuals. Columns (2)-(3) report
the estimated coefficients on interaction between the occupation cognitive intensity, generation dummies and
district DSL access in equation (29) for the old and young generations. Column (4) reports the difference
between the coefficients in columns (3) and (2). All regressions are weighted by the district population size
in 1999 and include a set of baseline district-level controls, pretrend controls, occupation-year and generation-
year fixed effects. Each row defines a separate sample selection exercise: (i) baseline sample restricted to only
Germans ("Native-born"), (ii) different definitions of young workers based on year of birth or age cutoff in each
year, and (iii) baseline sample restricted to workers employed in establishments below the 75th percentile of all
establishment sizes ("Small Establishments Only"). Standard errors clustered at the district-level in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01 79



Table B9: Impact of early DSL adoption on the number of trainees in more cognitive-intensive occu-
pations

Dependent variable: Training Growth

(1)
Panel A: 1999-2014

Baseline 0.415*
(0.237)

Panel B: 1999-2007
Baseline 0.305

(0.247)
Panel C: 1996-1999

Baseline -0.093
(0.044)

Note. Sample of 120 occupations and 323 districts. Sample periods as defined in the table. Table
reports the estimated coefficient on interaction between the occupation cognitive intensity and district
DSL access in equation (29) for a single generation of working-age individuals whose employment
status is a trainee or intern in each year. All regressions are weighted by the district population size
in 1999 and include a set of baseline district-level controls as well as occupation-year fixed effects.
Standard errors clustered at the district-level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Figure B6: Impact of early DSL adoption on employment in more cognitive-intensive occupations: Old
and Young generations

(a) Relative employment response for each generation (b) Between-generation response difference

Note. Estimation of equation (29) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment.
The left panel reports β

g
t for olf and young generations, and the right panel reports β

young
t − βold

t . All regressions are weighted by
the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline controls include the following
district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district
age composition, and the dependent variable pretrend growth in 1995-1999. Bars are the associated 90% confidence interval implied by
the standard error clustered at the district level.

Figure B7: Impact of early DSL adoption on payroll in more cognitive-intensive occupations: Old and
Young generations

(a) Relative payroll response for each generation (b) Between-generation response difference

Note. Estimation of equation (29) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment.
The left panel reports β

g
t for olf and young generations, and the right panel reports β

young
t − βold

t . All regressions are weighted by
the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline controls include the following
district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district
age composition, and the dependent variable pretrend growth in 1995-1999. Bars are the associated 90% confidence interval implied by
the standard error clustered at the district level.
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Figure B8: Impact of early DSL adoption on more cognitive-intensive occupations: All generations

(a) Relative employment response for all generations (b) Relative payroll response for all generations

Note. Estimation of equation (29) in the sample of 120 occupations and 323 districts for a single generation of working-age employed
individuals. Dependent variable: log employment (left) and log payroll (right). All regressions are weighted by the district population
size in 1999 and include occupation-time fixed-effects. Baseline controls include the following district variables in 1999: college graduate
population share, manufacturing employment share, immigrant employment share, district age composition, and the dependent variable
pre-shock growth in 1995-1999. For each year, the dot is the point estimate of βall

t , and the bar is the associated 90% confidence interval
implied by the standard error clustered at the district level.

C.5 Changes in mean age and employment share across occupations in the
United States

This section investigates the correlation between changes in the mean age of an occupation
and its employment share in the United States over different time periods. We use the U.S.
Census data downloaded from IPUMS international for 1960, 1970, 1980, 1990, 2000, 2010,
and 2015. It contains individual-level occupation information for males aged 16-64 years
old in the nine 2-digit ISCO occupation used to construct the aggregate trends reported in
Section 6.1. For each occupation o, we compute the change in the average age of its workers
between years t and t0, ∆Āo,t ≡ Āo,t − Āo,t0 and the change in the employment share in the
same period, ∆eo,t ≡ eo,t − eo,t0 . We then compute the correlation between ∆Āo,t and ∆eo,t
across the nine occupations weighted by their employment share in 1960.

Table B10 shows that, in line with Figure 5, the expanding occupations in recent periods
attracted young individuals, leading to reductions in the average age of its workers. However,
this was not the case in previous periods. Between 1960 and 1990, the correlation between
changes in average age and employment share were much weaker. In fact, our results show
that this correlation was positive in 1960-1980.
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Table B10: Changes in mean age and employment share across occupations, United States

Period Corr(∆Āo,t, ∆eo,t)

2000-2015 -0.53
1990-2010 -0.63
1980-2000 -0.60
1970-1990 -0.03
1960-1980 0.35

Note. For each period, the table reports the correlation between ∆Āo,t and ∆eo,t
across the nine 2-digit ISCO occupations (weighted by their employment share in
1960). For each occupation and period, ∆Āo,t is the change in the mean age and
∆eo,t is the change in employment share. Sample of males 16-64 years old in the
United States.

Appendix D Numerical Analysis

This appendix discusses in detail the parameterization of the model. Section D.1 presents
the theoretical impulse response functions for the relative employment of different worker
generations. Section D.2 describes the procedure to select the parameters that match the
theoretical and empirical impulse response functions. In Section D.3, we use the parametrized
model to quantitatively evaluate the dynamic adjustment to cognitive-biased technological
innovations.

D.1 Impulse response functions of relative employment by generation
As a first step to parametrize our theory using the empirical impulse response functions
in Section 6, we derive the theoretical responses of generation-specific relative employment.
To this end, we consider the same one-time permanent change in A at t = 0. We define
older generations as those born before period t = −x and younger generations as those
born at period t = −x. In period t ≥ 0, the relative high-tech employment of these worker
generations are given by

eold
t =

∫ 1
lt

s0(i)di∫ lt
0 s0(i)di

and eyoung
t =

x̃0e−δt ∫ 1
lt

s0(i)di + δ
∫ t

0 eδ(τ−t) ∫ 1
lt

s̃τ(i)didτ

x̃0e−δt
∫ lt

0 s0(i)di + δ
∫ t

0 eδ(τ−t)
∫ lt

0 s̃τ(i)didτ
,

where x̃0 ≡ 1− e−δx is the population share of the young generation at t = 0.
For both worker groups, the technology-skill assignment is identical and determined by

the threshold lt. Notice that all workers of the old generations have the pre-shock skill dis-
tribution, s0(i). However, the skill distribution of young generations combines the pre-shock
distribution, s0(i), and the post-shock lotteries, s̃τ(i). The overlapping generation structure
of the model implies that the relative share of workers in the young generation with the
pre-shock skill distribution decays at the constant rate δ.

We allow the young group to include workers born before the shock (since x ≥ 0). This
circumvents the challenge of identifying the cohorts that start adjusting their skills after the
shock, which arises because, in practice, technologies may not be adopted instantaneously
and young workers may still invest on skills after entering the labor force (in the form of
vocational training or on-the-job learning). It is also possible to allow part of the workers
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born before the shock to adjust their skills at t = 0. In this case, rather than s0(i), the
initial skill distribution would be a mix of s0(i) and s̃0(i). This extension does not alter our
main qualitative insights, but reduces the magnitude of the short-to-long adjustment in the
economy.

Relative employment of old generation. We show below that the change in the relative
employment of old generations is

∆ log eold
t ≈

η

θ + κη

1
eH

(
1− ψ

χ
(1− e−λt)

)
(θ − 1)∆ log A, (D.1)

where eH is the high-tech employment share at t = 0−.
Among old generations, the increase in the relative productivity of high-tech production

induces the reallocation of workers towards high-tech production whenever θ > 1. The ex-
pression indicates that this positive effect on relative high-tech employment becomes weaker
over time. This follows from the expansion of high-i skills among younger generations, which
displaces old workers with marginal skills from high-tech production – i.e., those with skills
i ∈ (l0, l∞). Importantly, expression (D.1) shows that the magnitude of the increase in relative
employment of older generations is decreasing in the degree of technology-skill specificity
(i.e., increasing in η).

Relative employment of young generation. Turning to the employment response among
young generations, we show below that

∆ log eyoung
t ≈ ∆ log eold

t +
ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A. (D.2)

This expression indicates that the evolution of the allocation of young workers has two
components. The first term captures the change in technology-skill assignment and, since it
is the only determinant of the relative employment of old generations, it can be approximated
by ∆ log eold

t . The second term captures the change in the skill investment decision of incoming
cohorts. At each point in time, this term is positive as young workers distort skill investment
towards high-i skills that became more valuable in high-tech production. We can also show
that the between-generation difference grows shortly after the shock. Importantly, expression
(D.1) indicates that the between-generation difference in the response of relative employment
is decreasing in the skill investment cost (i.e., it is increasing in ψ).

D.1.1 Proof of equations (D.1)–(D.2)

Proof of equation (D.1). We first use a first-order approximation to write the log-change in
relative high-tech employment in terms of changes in the high-tech employment share:

∆ log
(

eold
t

)
= log

(
eold

t

eold
0−

)
≈ 1
(1− eH,∞)eH,∞

(
eold

H,t − eold
H,0−

)
where eold

H,t =
∫ 1

lt
s0(i)di.
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Since ∆
(

1
(1−eH,∞)eH,∞

) (
eold

H,t − eold
H,0−

)
is a second order term, we get the approximation:

∆ log
(

eold
t

)
≈ 1
(1− eH,0−)eH,0−

(
eold

H,t − eold
H,0−

)
We have that

eold
H,t − eold

H,0− =
∫ 1

lt
s0(i)di−

∫ 1

l0−
s0(i)di

By approximating these expressions around l,

eold
H,t − eold

H,0− ≈ −s0(l)l
(

∆ log(l∞) + l̂t
)

≈ (s0(l)l) η∆ log(ωt)

≈ (s0(l0−)l0−) η∆ log(ωt)

≈ (1− eH,0−)η∆ log(ωt)

where the third equality follows from the fact that ∆ (s0(l)l)∆ log(ωt) is a second order term,
and the last equality follows from normalizing the initial skill distribution to be uniform
(which implies s0(l0−)l0− = 1− eH,0−).

Combining the two expressions,

∆ log
(

eold
t

)
≈ 1

eH,0−
η∆ log(ωt)

Using the demand expression in (2),

∆ log
(

eold
t

)
≈ 1

eH,0−
η

(
− 1

θ − 1
log yt + ∆ log A

)
Using the expression for the evolution of yt in Proposition 1,

∆ log
(

eold
t

)
≈ 1

eH,0−

η

θ + κη

(
−1− κη − ψ

χ
(θ − 1)(1− e−λt) + (θ + κη)

)
∆ log A

∆ log
(

eold
t

)
≈ 1

eH,0−

η

θ + κη

(
1− ψ

χ
(1− e−λt)

)
(θ − 1)∆ log A,

which is identical to (D.1).
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Proof of equation (D.2). We first use a first-order approximation to write the log-change in
relative high-tech employment in terms of changes in the high-tech employment share:

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ 1
1− eH,∞

(
eyoung

H,t − eyoung
H,0−

eH,∞
−

eold
H,t − eold

H,0−

eH,∞

)

=
1

(1− eH,∞)eH,∞

((
eyoung

H,t − eold
H,t

)
−
(

eyoung
H,0− − eold

H,0−

))
=

1
(1− eH,∞)eH,∞

(
eyoung

H,t − eold
H,t

)
where the last equality follows from the fact that before the shock old and young make
identical choices, eyoung

H,0− = eold
H,0− .

Using the definition of employment shares for each generation,

eyoung
H,t − eold

H,t ≈
1

1− (1− x̃0)e−δt

(
x̃0e−δt

∫ 1

lt
s0(i)di + δ

∫ t

0
eδ(τ−t)

∫ 1

lt
s̃τ(i)didτ

)
−
∫ 1

lt
s0(i)di

≈ 1
1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t)

∫ 1

lt
(s̃τ(i)− s0(i)) didτ

)
Thus,

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ 1
(1− eH,∞)eH,∞

1
1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t)

∫ 1

lt
(s̃τ(i)− s0(i)) didτ

)
(D.3)

We now consider the following approximation:∫ 1

lt
(s̃τ(i)− s0(i))di ≈

∫ 1

l
s(i)( ˆ̃sτ(i)− ŝ0(i))di

Then, we derive ŝ0(i) using the expression for the stationary skill distribution

s0(i) =
s̄(i)α(i)

ψ
ρ+δ (ω0−σ(i))

ψ
ρ+δ Ii>l0−∫ l0−

0 s̄(j)α(j)
ψ

ρ+δ dj +
∫ 1

l0−
s̄(j)α(j)

ψ
ρ+δ (ω0−σ(j))

ψ
ρ+δ dj

=⇒

ŝ0(i) ≈ −
(

Ii>l −
∫ 1

l
s(j)dj

)
ψ

ρ + δ
∆ log(ω)

Using the third part of Theorem 1,∫ 1

lt
(s̃τ(i)− s0(i))di ≈ eH,∞ (1− eH,∞)

(
ψq̂τ +

ψ

ρ + δ
∆ log(ω)

)
= eH,∞ (1− eH,∞)ψ (q̂τ + ∆ log(q))
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We now apply this expression into (D.3):

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ ψ

1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t) (q̂τ + ∆ log(q)) dτ

)
≈ ψ

1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t)q̂0e−λτdτ + (1− e−δt)∆ log(q)

)
≈ ψ

1− (1− x̃0)e−δt

(
δ

λ− δ
(e−δt − e−λt)q̂0 + (1− e−δt)∆ log(q)

)
Notice that Proposition 1 implies that

∆ log(q) =
1
χ
(θ − 1)∆ log A

∆ log(q0) =
1
χ

(
1 +

λ− δ

δ

)
(θ − 1)∆ log A

q̂0 = ∆ log(q0)− ∆ log(q) =
1
χ

λ− δ

δ
(θ − 1)∆ log A

Thus,

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ ψ

χ

1
1− (1− x̃0)e−δt

(
(e−δt − e−λt) + (1− e−δt)

)
(θ − 1) log A

≈ ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A,

which is equivalent to (D.2).

D.2 Parameterization by impulse response matching
We now describe how to parametrize our theory to match the empirical impulse response
functions in Section 6. To this end, we map the H technology in our theory to the set of
production activities performed by cognitive-intensive occupations. We calibrate our theory
in two steps. In the first step, we exogenously specify a subset of parameters and functions
in the theory. We set the discount rate to match an annual interest rate of 2%, ρ = 0.02. We
calibrate the elasticity of substitution across cognitive and non-cognitive intensive occupations
to θ = 3. Finally, for all welfare calculations, we specify welfare-weights re−rt with r = ρ + δ
so that the social discounting of future generations is identical to the discounting of worker’s
future utility.

We also specify functional forms for the productivity of skill types in the two technologies.
We abstract from differences in non-cognitive productivity across skills by normalizing α(i) ≡
1. This implies that, for any given worker generation, employment and payroll responses are
both driven by the degree of technology-skill specificity in the economy.41 In addition, we

41The function form of α(i) controls how labor earnings respond to changes in the employment composition across
technologies – for a discussion, see Adão (2016). Alternative specifications of α(i) can thus be used to match responses in
relative earnings for different worker generations.
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assume that σ(i) takes the form of a logistic function:

σ(i) =
eσ(i−l)

1 + eσ(i−l)

where l is the assignment threshold in the initial stationary equilibrium. This specification
is a tractable manner of capturing technology-skill specificity in the economy. It implies that
the equilibrium exists for any σ > 0 since the relative productivity is bounded. Also, by
setting the midpoint of the function to l, the parameter σ controls the elasticity of σ(i) for
the marginal skill types in the initial equilibrium (i.e., i close to l). Thus, σ specifies the
magnitude of technology-skill specificity, 1/η.

In the second step, we use the estimated responses of Section 6 to calibrate (δ, σ, ψ). In
doing so, we select the distribution of innate ability to normalize the initial skill distribution
to be uniform: s0(i) ≡ 1.42 We formally present the parametrization procedure next, along
with an analysis of the model fit. For all parameters, we assume that the shock starts with
the roll-out of broadband internet in 2003. We then select parameters to match the estimates
for the period of 2008 to 2014 in which we find statistically significant response in the relative
payroll and relative employment of cognitive-intensive occupations.

Generation size: δ and x̃0. We first set x̃0 to match the 60% share of young workers in the
national population in 1997. We then select δ to match the incline of 25 p.p. in the share of
young workers in population between 1997 and 2014. Specifically, we select x and δ such that

δ̂ =
1

2014− 1997
log(0.40/0.15)

x = −1
δ

log 0.4.

We obtain δ = 0.0574. This says that the expected work life of a worker after turning 40
years is 18 further years.

Rate of convergence: λ. Proposition 1 implies that it is possible to write the impulse response
function of relative output as

∆log(yt) = α0 + α1e−λt

where α0 > 0, α1 < 0, and λ > 0.
We select the parameter λ to match the growth in the estimates response of relative payroll

of more cognitive-intensive occupations:

λ̂ = arg min
λ

2014

∑
t=2008

[(
β̂

y
t − β̂

y
2007
)
− α1e−λ(t−2007)

]2
(D.4)

where β̂
y
t are the estimated coefficient reported in Panel B of Figure 6.

The minimization problem in (D.4) yields λ̂ = 0.135. Figure C1 shows the fit of the
calibrated model

42In this calibration, we select the distribution of innate ability distribution, s̄(i), to generate a uniform distribution of
skills in the initial equilibrium: s0(i) ≡ 1. In our theory, this normalization is innocuous since it does not affect changes in
the skill distribution for a given change in q conditional on setting η to match the short-run employment change.
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Cost of skill investment: ψ. Theorem 1 implies that

κη = ψα̂− θ (D.5)

where

α = δ

[(ρ

2
+ λ̂

)2
−
(ρ

2

)2
− δ(ρ + δ)

]−1

. (D.6)

Using expression (D.2), we have that

∆ log eyoung
t − ∆ log eold

t =
ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A.

From Proposition 1,

(θ − 1)∆log(A) = ∆ log(yt)

(
1 + κη

θ + κη
+

ψ

χ

θ − 1
θ + κη

(1− e−λt)

)−1

(D.7)

where χ = (θ + κη) (ρ + δ) + ψ.
Combining these two expressions, we get that

∆ log eyoung
t − ∆ log eold

t
∆ log yt

=
1− e−λt

1− (1− x̃0)e−δt

(
1 + κη

θ + κη

χ

ψ
+

θ − 1
θ + κη

(1− e−λt)

)−1

.

Using the expression for κη in (D.5),

∆ log eyoung
t − ∆ log eold

t
∆ log yt

=
1− e−λt

1− (1− x̃0)e−δt

(
(ρ + δ)

1 + ψα− θ

ψ
+ 1− θ − 1

ψα
e−λt

)−1

.

We then define the function:

Fψ(ψ, t) ≡ 1− e−λ̂t

1− (1− x̃0)e−δ̂t

((
ρ + δ̂

) 1 + ψα̂− θ

ψ
+ 1− θ − 1

ψα̂
e−λ̂t

)−1

.

To calibrate ψ, we first our calibrated values of (λ, δ, ρ) to compute α using (D.6). Our
baseline calibration implies that α̂ = 3.484. We then select the parameter ψ to match the ratio
of the between-generation employment response and the payroll response:

ψ̂ = arg min
ψ

2014

∑
t=2008

[
β̂

young
t − β̂old

t

β̂
y
t

− Fψ(ψ, t)

]2

(D.8)

where β̂
y
t are the estimated coefficients reported in Panel B of Figure 6, and β̂

young
t − β̂old

t is the
between-generation employment response obtained with the estimated coefficients reported
in Panel A of Figure 6.

The minimization problem in (D.8) yields ψ̂ = 0.345. Figure C2 shows the fit of the
calibrated model.
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Technology-skill specificity: η. The combination of (D.1) and (D.7) implies that

∆ log eold
t

∆ log yt
≈ η

eH,0−1

1− ψ
χ (1− e−λt)

1 + κη + ψ
χ (θ − 1)(1− e−λt)

.

Using the expression for κη in (D.5),

∆ log eold
t

∆ log yt
≈ η

eH,0−

1− (θ−1)(1−e−λt)
α(ρ+δ)+1

1 + ψα− θ + (θ−1)(1−e−λt)
α(ρ+δ)+1

.

We then define

Fη(η, t) ≡ η

eH,0−

1− θ−1
α̂(ρ+δ̂)+1

(1− e−λ̂t)

1 + ψ̂α̂− θ + θ−1
α̂(ρ+δ̂)+1

(1− e−λ̂t)
.

where (δ̂, λ̂, ψ̂) are the calibrated parameters above and eH,0− is the initial share of employ-
ment in cognitive-intensive occupations.

We select the parameter η to match the ratio of the employment response of old workers
and the payroll response:

η̂ = arg min
η

2014

∑
t=2008

[
β̂old

t

β̂
y
t
− Fη(η, t)

]2

(D.9)

β̂
y
t are the estimated coefficients reported in Panel B of Figure 6, and β̂old

t are the estimated
coefficients reported in Panel A of Figure 6.

The negative point estimates reported in Panel A of Figure 6 imply that the minimization
problem in (D.9) yields η̂ < 0. Since the employment response of old generations is small
and nonsignificant, we assume that they are identical to zero, which yields η̂ = 0. Hence, we
calibrate η = 0.01 and evaluate the model predictions under alternative specifications of this
parameter.
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Figure C1: Calibration of λ
Note. Blue dots represent the point estimates reported in Panel B of Figure 6. Black solid curve represents the bet fit line with λ = 0.135
obtained from the solution of (D.4).

Figure C2: Calibration of ψ

Note. Blue dots represent the point estimates of β̂
young
t −β̂old

t
β̂

y
t

using the estimates reported in Figures 6. Black solid curve corresponds to

Fψ(ψ̂, t) with ψ̂ = 0.354 obtained from the solution of (D.8).
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D.3 Dynamic Adjustment to cognitive-biased technological innovations
We now present the theoretical impulse response functions in our parametrized model. As
in Section 7, we evaluate a shock to A that leads to an increase in the employment share in
cognitive-intensive occupations from 20% to 50%. Figure C3 presents the predicted impulse
response functions of labor market outcomes.

Consider first the response at t = 0. Given that our theory abstracts from several additional
sources of dynamics, it would be wrong to interpret the impact adjustment as happening
instantaneously in reality. We view this short-run response as capturing changes over the
time window encompassing dynamic forces triggered by other variables that are likely to
move faster than the distribution of skills (e.g., physical capital). In other words, we prefer
to interpret the “length” of the impact adjustment as related to the time that it takes for such
faster moving variables to converge to the new long-run equilibrium. Results show that there
is a substantial increase in the relative cognitive-intensive output in the short-run. This large
response is a consequence of the large magnitude of the shock. This becomes clear when we
take into account that relative employment almost does not change at impact because of the
high technology-skill specificity (i.e., η ≈ 0). The combination of the large increase in relative
output and the small increase in relative employment translates into large changes in lifetime
inequality.

Our results also indicate that the responses in all outcomes change substantially over
time (measured in terms of worker generations, 1/δ ≈ 18yrs). Over the course of the two
generations following the shock, the responses in relative output doubles in magnitude due
to the reallocation of workers across technologies. Such a reallocation is entirely driven by
incoming generations of young workers. This pattern is a consequence of the change in the
skill distribution across generations. The bottom right panel shows that the initial spike in
lifetime inequality induces young workers to invest in high-i skills allocated to cognitive-
intensive occupations. This gives rise to substantial skill heterogeneity across generations. As
young generations replace old generations, the economy’s skill distribution becomes more
biased towards high-i types, leading to a large decline in the present value of the relative
wage in cognitive-intensive occupations (which recedes by more than 30% over the course of
two generations).

Appendix E Additional Results

E.1 Microfoundation of the Production Functions in (4)–(5)

Consider two firms: high-tech (k = H) and low-tech (k = L). Assume that the output of firm
k at time t aggregates per-worker output xkt(i),

Xkt =
∫ 1

0
xkt(i)skt(i)di,

where skt(i) is the quantity demanded of workers of type i at time t by firm k.
The output of workers of type i depends on their skills to perform cognitive and noncogni-

tive tasks, {aC(i), aNC(i)}, as well as how intensely each task is used in the firm’s production
process:

xkt(i) = aC(i)βk aNC(i)1−βk ,
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Figure C3: Transitional dynamics to a cognitive-biased innovation at t = 0

Note. The figure reports the theoretical impulse response function with a shock calibrated to increase
the employment share in cognitive-intensive occupations from 20% to 50% between stationary equilibria.
Baseline calibration described in Appendix D.2.

where βk denotes the production intensity of firm k on cognitive tasks.
In our model, technology-skill specificity arises whenever firms are heterogeneous in terms

of task intensity and workers are heterogeneous in terms of their task bundle. To see this, sup-
pose that firm H’s technology uses cognitive tasks more intensely than firm L’s technology,
βH > βL, and that a worker of type i is able to produce a higher cognitive-noncognitive task
ratio than a worker of type j, aC(i)/aNC(i) > aC(j)/aNC(j). In this case, i has a higher relative
output with the cognitive-intensive technology H than j, xHt(i)/xLt(i) > xHt(j)/xLt(j), and,
therefore, type i is more complementary to the cognitive-intensive technology H than type j.

To map this setting to the production functions in (4)–(5), we assume that high-tech pro-
duction is more intensive in cognitive tasks than low-tech production, βH > βL. We also
assume that types differ in terms of their skill bundle and, without loss of generality, impose
that high-i types are relatively better in performing cognitive-intensive tasks.

1. High-tech technology H uses cognitive tasks more intensely than Low-tech technology
L: βH > βL.

2. Define σ(i) ≡
(

aC(i)
aNC(i)

)βH−βL
and α(i) ≡ aC(i)βL aNC(i)1−βL . Assume that high-i types

have higher cognitive-noncognitive task ratio: σ(i) is increasing in i.
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E.2 Welfare Consequences of Adjustment Across Generations
This section investigates how calculations of the welfare consequences of technological shocks
are affected by the speed of adjustment of labor market outcomes along the transition to the
new equilibrium. In our theory, the transitional dynamics arise from the changes in the skill
distribution. So, in order to evaluate its consequences, we consider a static version of our
model in which we shut down any skill investment of young workers. However, we allow
this static model to match labor market responses over one particular horizon. This exercise
thus speaks directly to the risks of ignoring the adjustment across generations by focusing
on estimates of the impact of new technologies on labor market outcomes over fixed time
horizons.

To be more precise, we engage in the following thought experiment. Consider an econ-
omy subject to a one-time permanent shock ∆ log A. Suppose that this economy behaves
according to the theoretical predictions described in Section 3 with short- and long-run skill
supply elasticity given by η and ψ, respectively. We consider a researcher that relies on a
static assignment model to analyze how this economy responds to the technological shock.
Through the lens of our theory, this researcher considers a misspecified parametrization of
the economy in which the long-run elasticity equals zero. This parametrization shuts down
any dynamics in the economy because the skill distribution is the same for all generations.

We assume that this researcher observes responses in labor market outcomes over a fixed
horizon t = T. We focus on changes in lifetime inequality since this is the main endogenous
outcome entering the welfare computations in Proposition 2. We consider two ways in which
the researcher may decide to use the static model to match the observed inequality response,
∆ log qT. In the first approach, the researcher observes the true shock (∆ log A1 = ∆ log A),
and selects η1 to match ∆ log qT with ψ1 = 0. In the second, the researcher observes the true
parameter (η2 = η), and selects the size of the shock ∆ log A2 to match ∆ log qT with ψ2 = 0.

The following proposition shows that, despite matching inequality responses at time T,
this researcher misses the economy’s transitional dynamics triggered by the evolution of the
skill distribution across generations. This introduces biases in the evaluation of the welfare
consequences of the technological innovation.

Proposition 4 Consider an economy in which η and ψ are positive. Assume that ∆ log A generates
a change in lifetime inequality between t = 0 and t = T of ∆ log qT. Consider predictions under two
alternative static parametrizations of the model (ψ1 = ψ2 = 0).

1. Suppose ∆ log A1 = ∆ log A is known such that ∆ log(A)
∆ log(qT)

> θ(ρ+δ)
θ−1 . There exists η1 that matches

∆ log qT with an associated T1 such that ∆Ω̄1 > ∆Ω̄ and ∆Ū1 < ∆Ū if, and only if, T < T1.

2. Suppose η2 = η is known. There exists ∆ log A2 that matches ∆ log qT with an associated T2

such that ∆Ω̄2 > ∆Ω̄ and ∆Ū2 < ∆Ū if T < T2.

Proof. See Appendix E.2.1.

This proposition shows that there are multiple ways in which researchers can use a static
version of our model to match observed inequality responses over a fixed horizon. All ver-
sions ignore the transitional dynamics of labor market outcomes generated by changes in the
skill distribution across generations. This introduces biases in the evaluation of the welfare
consequences of new technologies. If the researcher only matches inequality responses in
short horizons (i.e. T is low), then she will think that inequality will remain high in the fu-
ture. This makes her overpredict the present value of lifetime inequality, and underpredict
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the average welfare gain. Alternatively, a researcher using the first approach would reach the
opposite conclusions if she matches inequality responses in long horizons (i.e. T is high).

Such biases will be larger when the adjustment is slower due to the larger changes in the
skill distribution along the transition. As shown in Section 4, this is the case whenever the
skill supply elasticity is low in the short-run (i.e, η is low) but large in the long-run (i.e., ψ is
large).

E.2.1 Proof of Proposition 4

We start by pointing out that, by the definition in Theorem 1, λ1 = λ2 = δ because ψ1 =
ψ2 = 0. Thus, Proposition 1 immediately implies that both parametrizations must satisfy the
condition that

∆ log(qT) =
θ − 1

(θ + κηP) (ρ + δ)
∆ log AP (E.1)

where P = 1 for the first approach or P = 2 for the second approach.
Notice also that the combination of Theorem 1 and Proposition 2 implies that

∆Ω̄ = (ρ + δ)∆ log(qT)− (ρ + δ)q̂0

(
e−λT − 1 +

λ

r + λ

)
and, therefore,

∆Ω̄ = (ρ + δ)∆ log(qT)

(
1 + λ−δ

δ
r

r+λ

1 + λ−δ
δ e−λT

)
. (E.2)

This expression implies that, because λ1 = λ2 = δ , both parametrizations entail

∆Ω̄P = (ρ + δ)∆ log(qT) (E.3)

for P = 1, 2.
We now use these expressions two establish the two parts of the proposition.

Part 1. In the first approach, we set ∆ log A1 = ∆ log A. So, by equation (E.1), we must set

κη1 =
θ − 1
ρ + δ

∆ log(A)

∆ log(qT)
− θ,

which is positive as long as ∆ log(A)
∆ log(qT)

> θ(ρ+δ)
θ−1 .

By taking the ratio between the expressions in (E.2) and (E.3),

∆Ω̄1

∆Ω̄
> 1 ⇐⇒ e−λT >

r
r + λ

⇐⇒ T < T1 ≡ 1
λ

log
(

r + λ

r

)
.

The expression of ∆Ū in Proposition 2 immediately implies that ∆Ω̄1 > ∆Ω̄ ⇐⇒ ∆Ū1 <
∆Ū whenever y∞ > e∞.

Part 2. In the second approach, we set η2 = η. So, by equation (E.1), we must set .

∆ log A2 = ∆ log(qT)
(θ + κη) (ρ + δ)

θ − 1
.
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Expressions in (E.2) and (E.3) also hold in this case, so the same steps used above guarantee
that ∆Ω̄2 > ∆Ω̄ if, and only if, T < T1. To establish the result, it is sufficient to show that
∆ log A2 ≤ ∆ log A because, by Proposition 2, ∆Ω̄2 > ∆Ω̄ and ∆ log A2 ≤ ∆ log A imply that
∆Ū2 < ∆Ū.

We now show that ∆ log A2 ≤ ∆ log A. By combining Proposition 1 and equation (E.1), we
have that

∆ log A2 =
(θ + κη)(

θ + κη + ψ
ρ+δ

) (1 +
λ− δ

δ
e−λT

)
∆ log A

and, therefore,

∆ log A2 ≤ (θ + κη)(
θ + κη + ψ

ρ+δ

) λ

δ
∆ log A.

So, ∆ log A2 ≤ ∆ log A if

F(ψ) ≡ (θ + κη)(
θ + κη + ψ

ρ+δ

) λ(ψ)

δ
≤ 1

with λ(ψ) defined in Theorem 1.
This condition always holds because λ(0) = δ, F(0) = 1 and sign

(
∂F(ψ)

∂ψ

)
< 0. To see this,

we use the expression for λ(ψ) in Theorem 1 to show that

sign
(

∂F(ψ)
∂ψ

)
=sign

(
∂λ(ψ)

∂ψ

(
θ + κη +

ψ

ρ + δ

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

δ

θ + κη

(
θ + κη +

ψ

ρ + δ

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
δ +

δ

ρ + δ

ψ

θ + κη

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
δ +

1
ρ + δ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
− δ(ρ + δ)

])
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
1

ρ + δ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
])
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
]
− λ

)
=sign

(
λ + ρ

2λ + ρ
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)

.
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