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A Review of the solution methods used in the literature

Global and local methods have been widely used in research and policy applications. Tables 1

and 2 document the usage of these methods for solving open-economy models with incomplete

markets in research articles and policy institutions. Table 1 includes 61 papers. This list is meant

to be illustrative, since constructing a complete list of the literature that uses these methods is

beyond the scope of this paper. It includes the 50 most cited papers in Google Scholar that cite

Schmitt-Grohé and Uribe (2003), excluding textbooks and review articles. It also includes all quan-

titative papers in the references of this paper that are not in that top-50 list, and several well-known

papers going back to the early 1990s when the first numerical solutions of open-economy models

with incomplete markets were produced. Table 2 lists the models used in eight policy institutions,

using information obtained from publicly available documents.

Table 1: Methods Used to Solve Open-Economy Incomplete Markets Models

Authors Year Publication Type of Solution Stationarity ψ

model method assumption

Adolfson et al. 2007 JIE SOE 1OA DEIR .145(e)

Aguiar and Gopinath 2007 JPE SOE 1OA DEIR .001(s)

Angeloni and Ehrmann 2007 BEJ Macro N = 12 1OA DEIR .1(c)

Arellano 2008 AER SOE GLB

Arellano and Mendoza 2002 NBER SOE GLB

Baxter and Crucini 1995 IER N = 2 1OA AHC

Bengui et al. 2012 JME N = 2 GLB

Benigno and Thoenissen 2008 JIMF N = 2 1OA AHC

Benigno et al. 2016 JME SOE GLB

Bergin 2006 JIMF N = 2 1OA DEIR .00384(e)

Bianchi 2011 AER SOE GLB

Bianchi and Mendoza 2018 JPE SOE GLB

Bianchi et al. 2012 IMFER SOE GLB

Bianchi et al. 2016 JIE SOE GLB

Bodenstein 2011 JIE N = 2 1OA ED

Bodenstein et al. 2011 JIE N = 2 1OA DEIR 0.0001(s)

Boz et al. 2011 JME SOE 1OA DEIR .001(s)

Boz and Mendoza 2014 JME SOE GLB

Continued on next page
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Table 1 – continued from previous page

Authors Year Journal Type of Solution Stationarity ψ

model method assumption

Buch et al. 2005 JIMF N = 2 1OA AHC

Cavallo and Ghironi 2002 JME N = 2 1OA OLG

Coeurdacier et al. 2011 AER P&P SOE RSS

Correia et al. 1995 EER SOE 1OA AHC

Corsetti et al. 2008 RESTUD N = 2 1OA ED

Cuadra and Sapriza 2008 JIE SOE GLB

Devereux et al. 2006 EJ SOE 1OA AHC

Devereux and Sutherland 2010 JMCB N = 2 1OA ED

Devereux and Sutherland 2011 JEEA N = 2 1OA ED

Durdu et al. 2009 JDE SOE GLB

Durdu and Mendoza 2006 JIE SOE GLB

Enders et al. 2011 JIE N = 2 1OA ED

Engel and Wang 2011 JIE N = 2 1OA AHC

Fernandez and Chang 2013 IER SOE 1OA DEIR .001 (s)

Fernandez-Villaverde et al. 2011 AER SOE 3OA AHC

Fogli and Perri 2006 NBER N = 2 GLB

Garcia-Cicco et al. 2010 AER SOE 1OA DEIR .001 (s),2.8(e)

Gertler et al. 2007 JMCB SOE 1OA DEIR 0.0001(s)

Ghironi 2006 JIE N = 2 1OA OLG

Ghironi and Melitz 2005 QJE N = 2 1OA AHC

Hatchondo and Martinez 2009 JIE SOE GLB

Heathcote and Perri 2002 JME N = 2 1OA AHC

Heathcote and Perri 2013 JPE N = 2 2OA, 3OA

Jaimovich and Rebelo 2008 JMCB SOE 1OA DEIR .00001(s)

Justiniano and Preston 2010 JIE SOE 1OA DEIR .01(c)

Lubik and Schorfheide 2005 NBER Macro N = 2 1OA CM

Mendoza 1991 AER SOE GLB

Mendoza 1992 IMFSP SOE GLB

Mendoza 1995 IER SOE GLB

Mendoza 2010 AER SOE GLB

Mendoza and Smith 2006 JIE SOE GLB

Mendoza et al. 2009 JPE N = 2, 3 GLB

Continued on next page
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Table 1 – continued from previous page

Authors Year Journal Type of Solution Stationarity ψ

model method assumption

Mendoza and Yue 2012 QJE SOE GLB

Monacelli 2005 JMCB SOE 1OA CM

Nason and Rogers 2006 JIE SOE 1OA DEIR .00014, .007(e)

Neumeyer and Perri 2005 JME SOE 1OA AHC

Rabanal and Tuesta 2010 JEDC N = 2 1OA AHC

Raffo 2008 JIE N = 2 1OA AHC

Rebelo and Vegh 1995 RESTUD SOE 1OA AHC

Smets and Wouters 2002 JME SOE 1OA OLG

Uribe and Yue 2006 JIE SOE 1OA AHC

Note: SOE denotes a small open economy model. N = denotes a multicountry model with N countries. 1OA,

20A and 3OA are the first-, second- and third-order approximation methods respectively, RSS is the risky steady state

method, and GLB indicates models solved with global methods (including models with standard preferences and βR <

1, endogenous discounting, or overlapping generations). The approaches used to induce stationarity when using local

methods are the debt-elastic interest rate (DEIR), asset holding costs (AHC), endogenous discounting (ED), overlapping

generations (OLG) and complete markets (CM). For cases using DEIR, (s), (c) and (e) denote whether the debt-elasticity

parameter ψ was chosen to be small, estimated, or calibrated respectively.
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Table 2: Solution Methods Used in Policy Models

Institution Model Type of Solution Stationarity ψ
name model method assumption

Bank of Canada GEM N = 5 1OA DEIR n.d.
Bank of England COMPASS SOE 1OA ED
ECB NAWM N = 2 and SOE 1OA DEIR .01(s)
European Commission QUEST SOE 1OA DEIR .02(e)
Federal Reserve Board SIGMA N = 2 1OA PAC
IMF GIMF N ≥ 2 1OA OLG
Norges Bank NEMO SOE 1OA DEIR n.d.
Riksbank RAMSES SOE 1OA DEIR .01(c)

Note: See note to Table 1 for details on abbreviations. n.d. denotes that there is no public document disclosing what

value was used.

When local methods are used, 1OA is the most common in research and is used in all eight pol-

icy models, and from the assumptions to induce stationarity, DEIR is the most common followed

by NFA adjustment costs and ED preferences. From all DEIR solutions, the ψ values range from

0.00001 to 0.01, and the most common is 0.001, which is the value proposed by Schmitt-Grohé and Uribe

(2003).1 In other cases, the value of ψ is set by calibration or obtained via estimation. In calibrated

cases (three research papers and three policy models), ψ ranges from 0.01 to 0.1, and in estimated

cases (four research papers and one policy model), the point estimates or the medians of poste-

rior distributions in Bayesian estimation range from 0.00014 to 2.8. See the main draft for more

discussion on these tables.

Global (GLB) methods are also widely used. Their use dates back to the Mendoza (1991)

RBC model of a small open economy, and there are many applications in quantitative studies of

sovereign default (e.g., Aguiar and Gopinath, 2007; Arellano, 2008), emerging markets business cy-

cles (e.g., Mendoza, 1995; Neumeyer and Perri, 2005; Uribe and Yue, 2006), global imbalances (e.g.,

Mendoza et al., 2009), Sudden Stops (e.g., Durdu et al., 2009; Mendoza, 2010; Mendoza and Smith,

2006), and financial regulation (e.g., Benigno et al., 2016; Bianchi, 2011; Bianchi and Mendoza, 2018;

Schmitt-Grohé and Uribe, 2017)

We now turn into presenting details for each of the endowment, RBC and the Sudden Stops

model.

1Note, however, that the DEIR functional forms are not always the same, so ψ values are not directly comparable.
When relevant for our quantitative analysis, we control for this by making comparisons in terms of the elasticity of the
interest rate with respect to percent deviations of NFA from steady state.
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B Endowment economy

As described in the main draft, we use a small-open-economy model with stochastic endowment

income to derive analytical results and characterize NFA dynamics under incomplete markets. The

economy is inhabited by a representative agent with preferences given by:

E0

{

∞
∑

t=0

βtu(ct)

}

, u(ct) =
c1−σt

1− σ
, (1)

where β ∈ (0, 1) is the subjective discount factor, ct is consumption and σ is the CRRA coefficient.

The economy’s resource constraint is given by

ct = ezt ȳ −A+ bt − qbt+1, (2)

where ezt ȳ is stochastic income that fluctuates around a mean ȳ with shocks zt of exponential
term ezt , bt denotes the NFA position in one-period, non-state-contingent discount bonds traded

in a frictionless global credit market at exogenous price q = 1
1+r , where r is the world real inter-

est rate, and A is a constant that represents investment and government expenditures (which is

introduced so the model can be calibrated to observed average consumption-GDP ratios). Income

shocks follow an AR(1) process: zt = ρzzt−1 + σzε
z
t where εzt is i.i.d.

For further details of the model and the definition of competitive equilibrium, see the main

draft. Now we turn to the description of the quantitative methods we used to solve this model.

B.1 Global methods

GLB methods solve the model in recursive form over a discrete state space of (b, z) pairs. Since the

competitive equilibrium is efficient, it can be represented as a dynamic programming problem:

V (b, z) = max
c,b′

{

c1−σ

1− σ
+ β

∑

z′

π(z′, z)V
(

b′, z′
)

}

, (3)

s.t. c = ez ȳ −A+ b− qb′, b′ ≥ ϕ.

The AR(1) process of income is approximated as a discrete Markov chain with transition probability

matrix π(z′, z).The solution to the Bellman equation is characterized by a decision rule b′(b, z) and

the associated value function V (b, z). This decision rule and the Markov process of the shocks

induce a joint ergodic (unconditional) distribution of NFA and income λ(b, z).

We use two alternative global solution methods: FiPIt method and Value Function Iteration
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(VFI) method.

B.1.1 FiPIt method

While using the FiPIt method, we solve for b′(b, z), by solving for the recursive equilibrium con-

ditions using a fixed-point iteration algorithm (see Mendoza and Villalvazo, 2020, for details).2 In

this case, the FiPIt method iterates on the following representation of the Euler equation:

cj+1(b, z) =

{

β (1 + r)
∑

z′

π(z′, z)

[

(

cj(b̂
′
j(b, z), z

′)
)−σ

]

}− 1
σ

. (4)

Given a conjecture of the decision rule b̂′j(b, z) in iteration j, the associated consumption function is

cj(b, z) = ez ȳ−A+b−qb̂′j(b, z). This consumption function is interpolated over its first argument in

order to determine cj(b̂
′
j(b, z), z

′), so that the above equation solves directly for a new consumption

function cj+1(b, z). Using the resource constraint, the new consumption function yields a new

decision rule for bonds b′j+1(b, z), which is re-set to b′j+1(b, z) = ϕ if b′j+1(b, z) ≤ ϕ. Then the

decision rule conjecture is updated to b̂′j+1(b, z) as a convex combination of b̂′j(b, z) and b′j+1(b, z),

and the process is repeated until b′j+1(b, z) = b̂′j(b, z) up to a convergence criterion.

B.1.2 VFI method

The VFI algorithm is implemented as follows: Given the endogenous state variable b and exoge-

nous state z = εz , the equilibrium of the endowment model is represented as the solution to this

dynamic programming problem:

V (b, z) = max
b′,c

{

c1−σ

1− σ
+ βE

[

V (b′, z′)
]

}

(5)

s.t.

c = ez ȳ −A− qbb′ + b (6)

where V (b, z) is the value function and qb = 1
1+r . The VFI algorithm solves this problem in the

following steps:

2This method solves Euler equations directly instead of using a non-linear solver. It is fast and easy to implement in
Matlab. Mendoza and Villalvazo (2020) show that it performs better than standard time iteration and endogenous grids
methods, particularly for models with two endogenous state variables and occasionally binding constraints, because
the time iteration method requires solving nonlinear equations and the endogenous grids method requires complex
interpolation techniques because the endogenous grids are irregular.
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1. Define grids for b and z with nb nodes for the bonds grid and ne nodes for the income shocks,

and set also a convergence criterion for the value function ǫ.

2. Define grids of bonds {b1, b2, b3, ..., bnb} and shocks {z1, z2, z3, ..., zne} . The bonds grid is

defined by a set of nodes with a lower bound equal to the natural or ad-hoc debt limits, and

an upper bound high enough to have zero mass in the ergodic distribution of bonds. The grid

of shocks is defined by a Markov process with ne nodes, usually constructed to approximate

an AR(1) process of an actual income process in the data using Tauchen’s quadrature method.

3. For each state (bi, zh), set a value for the initial value function (at iteration j = 0, where j is

the iteration counter) so as to construct V 0(b, z). A trivial initial condition is V 0(b, z) = 0.

4. Maximization step: Update the value function to obtain V j+1(b, z) as follows:

a For each state (bi, zh), evaluate the value of consumption if the decision rule for bonds

bii were to be assigned to each of the nb possible values it can take on the bonds grid

(i.e., for ii = 1, .., nb):

c(bi, zh; bii) = ezh ȳ −A− qbbii + bi

b Compute the value of choosing bii if the state of nature is (bi, zh), denoted W (bi, zh; bii),

by evaluating the Bellman equation as follows:

W j(bi, zh; bii) =
c(bi, zh; bii)

1−σ

1− σ
+ βEhh

[

V j(bii, zhh)
]

c For each (bi, zh), maximizeW j(bi, zh; bii) over bii. The decision rule for bonds at iteration

j is given by b′
j
(bi, zh) = argmaxbii

{

W j(bi, zh; bii)
}

and the “new” value function is

defined by V j+1(bi, zh) =W j(bi, zh; b
′j(bi, zh))

5. Compare V j and V j+1 and compute the convergence criterion d as

dj = max
i∈{1,...,nb},h∈{1,...,ne}

|V j(bi, zh)− V j+1(bi, zh)|

6. If d > ǫ, convergence has not been attained Set V j(b, z) = V j+1(b, z) and go back to step 4.

7. If d ≤ ǫ, the value funtion has converged to V (b, z) = V j+1(b, z) with associated decision

rules given by b′(b, z) = b′
j
(bi, zh).
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B.2 Local methods

This section provides a textbook treatment of the local solution methods used for the endowment

economy model: first- and second-order perturbation (1OA and 2OA, respectively); risk-adjusted

steady state (RSS); and linear-with-occasionally-binding-constraint (DynareOBC). We keep the no-

tation generic so that our description also applies to the RBC model for the first three solution

method, and the solution of the Sudden Stops model with DynareOBC. Note that all four solutions

are local in that they construct an approximation in the neighborhood of a steady state. However,

the aim of all four methods is to construct good numerical approximations of non-local features.

Notation Let the set of equilibrium conditions for the dynamic general equilibrium model we

wish to study be written as

0 = Etf (yt+1,yt,yt−1, εt) , (7)

where Et denotes the expectations operator. The vector yt of variables is of size ny and the vector εt

of shocks is of size nε. The function f mapsRny×R
ny×R

ny×R
nε intoR

ny . The vector εt is assumed

to have bounded support and be independently and identically distributed with mean zero and

with variance-covariance matrix I , the identity matrix.3 The unknown solution (or decision rule)

to the model given in (7) that we wish to approximate is of the form

yt = g (yt−1, εt) , (8)

where g maps Rny × R
nε into R

ny .

This method is slow in models with more than one endogenous state variable and cannot be

used when equilibria are inefficient, but does not require differentiability or convexity of optimiza-

tion problems. Compared to VFI, FiPIt is a fast, simple method that applies fixed-point iteration to

solve Euler equations. It can be used when equilibria are inefficient but requires differentiability

(see Mendoza and Villalvazo, 2020, for details).

B.2.1 Perturbation methods

Although linearizing around a steady state is a special version of perturbation methods and has

been used to solve dynamic equilibrium models since the early 1980s, perturbation methods were

only formerly introduced into Economics by Judd and Judd (1998). In Judd, the methods were

3This is without loss of generality since the var-cov structure of the fundamental shocks can be specified in f .
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based upon a value function formulation of the problem. In this paper, we follow Schmitt-Grohé and Uribe

(2004) in constructing a second-order perturbation method using the equilibrium conditions di-

rectly rather than a value function formulation. Toolkits for applying perturbation methods abound.

Dynare, in particular, is an efficient, user friendly, and freely available toolkit.

The basic idea of perturbation methods is to find a particular case of the model that has a known

solution and use that particular case and its solution as a starting point for computing approximate

solutions to nearby problems. This approach relies on the implicit function theorem and Taylor

series expansion. A special version of perturbation methods is linearizing around a steady state.

In particular, with perturbation methods we approximate the decision rule of the model near

the steady state of the model’s deterministic counterpart. The method then uses local information

to calculate linear and higher-order approximations of the solution near the steady state.

The result of perturbation methods is a polynomial which approximates the true solution in

the neighborhood of the deterministic steady state. To construct this approximation, we add an

auxiliary perturbation parameter, σ, to the unknown decision rule in (8) as follows

yt = g (yt−1, εt, σ) and yt+τ = g (yt+τ−1, σεt+τ , σ) for τ > 0, (9)

The perturbation parameter takes a value between 0 and 1. When σ = 1, we have the full stochastic

model in (7) and when σ = 0 we instead have the perfect-foresight analog of that model—i.e., the

model without future uncertainty.

The perturbation methods begins by finding a known solution to a nearby problem. In a dy-

namic stochastic model, this known solution is the deterministic steady state, when σ = 0, εt = 0,

and y solves

0 = f (y,y,y, 0) . (10)

Notice that when σ = 0 the expectations operator disappears because there is no future uncer-

tainty. Armed with the deterministic steady state, the perturbation method proceeds as follows.

Substituting (8) into (7) gives

0 = Etf (g (g (yt−1, εt, σ) , σεt+1, σ) , g (yt−1, εt, σ) ,yt−1, εt) . (11)
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Equation (11) can be written more concisely as

0 = EtF (yt−1, εt, σ) . (12)

Since (12) is equal to zero, all derivatives of (12) must also be equal to zero. These derivatives

provide identifying restrictions for determining the partial derivatives of g.

First-order Differentiating (12) with respect to yt−1 and εt gives

[F
y

]ij = [f1]
i
k [gy]

k
l [gy]

l
j + [f2]

i
k [gy]

k
j + [f3]

i
j = 0; i, j, k, l = 1, . . . , n

y

, (13)

[Fε]
i
m = [f1]

i
k [gy]

k
l [gε]

l
m + [f2]

i
k [gε]

k
m + [f4]

i
m = 0; m = 1, . . . , nε, (14)

respectively, where all the derivatives of f have been evaluated at the deterministic steady state:

(yt−1, εt, σ) = (y, 0, 0), and are therefore known.

A word on the notation is necessary here. The term [f3]
i
j , for example, is the (i, j) element of

the Hessian of f with respect its third argument, yt−1. Also, [f2]
i
k [gy]

k
j , for example, is short-hand

for
n
∑

k=1

∂f i

∂ykt

∂gk

∂yjt−1

. (15)

The derivatives of f evaluated at (y,y,y, 0) are known. The first expression above represents a

system of n
y

×n
y

quadratic equations in n
y

×n
y

unknowns given by the elements of g
y

. Similarly,

with g
y

known, the second expression above represents a system of n
y

× nε (linear) equations in

n
y

× nε unknowns given by the elements of gε.

Thus, using standard results on the solution of quadratic matrix equations, g
y

and gε can be

found as solutions. In general, in the neighborhood of the deterministic steady state, up to first-

order, we have that gσ = 0. This result holds because the system of equations [Fσ]
i = 0 are lin-

ear and homogenous in gσ. We do not prove the result here but direct the interested reader to

Schmitt-Grohé and Uribe (2004). This result is important though, because it says that a first-order

approximation in the neighborhood of the deterministic steady state is always certainty equivalent.

The first-order approximation of the solution in the neighborhood of the deterministic steady

state is therefore given by

g (xt, σ) = g (x, 0) + g
x

(x, 0) (xt − x) , (16)
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where, for simplicity, we write xt ≡
[

y

′
t−1, ε

′
t

]′
. It follows that the deterministic steady state, x, is

simply x = (y, 0).

Second-order Given the deterministic steady state, the first-derivatives of (12) provided identi-

fying restrictions to solve for the g
x

terms of the unknown decision rule. Similarly, we will use

second-derivatives of (12) combined with the deterministic steady state and the known values for

g
x

to derive identifying restrictions for g
xx

and gσσ. Specifically

[F
yy

]ijn =
(

[f11]
i
ko [gy]

o
p [gy]

p
n + 2 [f12]

i
ko [gy]

o
n + 2 [f13]

i
n

)

[g
y

]kl [gy]
l
j

+
(

[f22]
i
ko [gy]

o
n + 2 [f23]

i
n

)

[g
y

]kj + [f33]
i
n

+ [f1]
i
k

(

[g
yy

]klo [gy]
o
n [gy]

l
j + [g

y

]kl [gyy]
l
jn

)

+ [f2]
i
k [gyy]

k
jn = 0, (17)

[F
yε]

i
jm =

(

[f11]
i
ko [gy]

o
p [gε]

p
m + 2 [f12]

i
ko [gε]

o
m + 2 [f14]

i
m

)

[g
y

]kl [gy]
l
j

+
(

[f22]
i
ko [gε]

o
m + [f24]

i
m

)

[g
y

]kj +
(

[f31]
i
ko [gy]

o
p [gε]

p
m + [f32]

i
ko [gε]

o
m + [f34]

i
m

)

+ [f1]
i
k

(

[g
yy

]klo [gε]
o
m [g

y

]lj + [g
y

]kl [gyε]
l
jm

)

+ [f2]
i
k [gyε]

k
jm = 0, (18)

[Fεε]
i
mq =

(

[f11]
i
ko [gy]

o
p [gε]

p
q + [f12]

i
ko [gε]

o
q + [f14]

i
q

)

[g
y

]kl [gε]
l
m

+
(

[f21]
i
ko [gy]

o
p [gε]

p
q + [f22]

i
ko [gε]

o
q + [f24]

i
q

)

[gε]
k
m + [f44]

i
q

+ [f1]
i
k

(

[g
yy

]klo [gε]
o
1 [gε]

l
m + [g

y

]kl [gyε]
l
jq

)

+ [f2]
i
k [gεε]

k
mq = 0; (19)

n, o, p = 1, . . . , n
y

; q = 1, . . . , nε

The first expression above represents a system of n
y

× n
y

× n
y

linear equations in n
y

× n
y

× n
y

unknowns given by the elements of g
yy

. With g
yy

known, the second expression above represents

a system of n
y

× n
y

× nε linear equations in n
y

× n
y

× nε unknowns given by the elements of

g
yε. And, with g

yε known, the third expression above represents a system of n
y

× nε × nε linear

equations in n
y

× nε × nε unknowns given by the elements of gεε.

In general, in the neighborhood of the deterministic steady state, g
yσ = gεσ = 0. This results

because the system of equations [F
yσ]

i
j = 0 and [Fεσ]

i
j = 0 are homogenous in g

yσ and gεσ, respec-

tively. Finally, the n
y

unknowns given by the elements of gσσ can be obtained by solving the n
y

×1

linear equations

[Fσσ]
i = [f11]

i
jk [gε]

j
m [gε]

k
q [I]

q
m + [f2]

i
j [gσσ]

j + [f1]
i
j

(

[g
y

]jk [gσσ]
k + [gεε]

j
mq [I]

m
q + [gσσ]

j
)

= 0. (20)
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The second-order approximation of the decision rule in the neighborhood of the deterministic

steady state of a stochastic model differs from that of its non-stochastic counterpart only in a con-

stant term, gσσ. The second-order approximation of the solution in the neighborhood of the deter-

ministic steady state is therefore given by

[g (xt, σ)]
i = [g (x, 0)]i + [g

x

(x, 0)]ir [xt − x]r

+
1

2
[g
xx

(x, 0)]irs [xt − x]r [xt − x]s +
1

2
[gσσ (x, 0)]

i , r, s = 1, . . . , n
y

+ nε. (21)

An increase in uncertainty—increasing the standard deviation of the shock innovations—will change

gσσ and shift the mean of the endogenous variables away from the deterministic steady state.

m
th-order In principle, one can solve a polynomial approximation of g up to any order, m, using

perturbation methods. In each step, the (m− 1)th approximation of g is known and the mth deriva-

tives of (12) will provide identifying restrictions for themth coefficients of g. In each case, the system

of equations are linear. However, the number of unknowns increase rapidly in m. Thus, even for a

medium-size DSGE model, orders of approximation above 3 are computationally demanding.

B.2.2 Risk-adjusted steady state method

The risk-adjusted steady state method differs from standard perturbation methods in construct-

ing an approximate solution, not in the neighborhood of the deterministic steady state, but rather

in the neighborhood of an approximation of the full stochastic model’s steady state. In principle,

just like standard perturbation methods, an approximate decision rule can be constructed up to

any order. However, we focus attention on a first-order approximation in the neighborhood of

a risk-adjusted steady state. Several approaches to constructing such approximations have been

proposed in the literature, beginning with Collard and Juillard (2001), and with more recent con-

tributions by Coeurdacier et al. (2011), Juillard (2011), de Groot (2013), and Meyer-Gohde (2015).

The method proposed by Coeurdacier et al. (2011) is a focus of this section since they apply their

risky steady state method to solving a small open economy model as we do.

Unlike (9), the solution is not parameterized explicitly by the perturbation parameter. Rather

yt = g (yt−1, εt) and yt+τ = g (yt+τ−1, σεt+τ ) for τ > 0. (22)
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Substituting (9) into (7) gives

0 = Etf (g (g (yt−1, εt) , σεt+1) , g (yt−1, εt) ,yt−1, εt) . (23)

We can define the exact risk-adjusted steady state: When σ = 1 and ε = 0, yer is the exact risk-

adjusted steady state if it solves the problem

0 = Etf (g (y
er, εt+1) ,y

er,yer, 0) . (24)

However, this object is not very useful since the definition relies on g in order to solve for yer.

Instead, it is possible to solve jointly for an approximation of the risk-adjusted steady state and

linear dynamics.4 Equation (23) can be written more concisely as

0 = F (xt, σ) . (25)

Consider the Taylor expansion of this function up to second-order in the neighborhood of an ap-

proximate risk-adjusted steady state (yr), given by

[F (yt−1, εt, σ)]
i = [F (yr, 0, 0)]i +

1

2
[Fσσ]

i + [F
y

]ij [xt − x]j +
1

2
[F
yy

]ijk [xt − x]j [xt − x]k . (26)

All the derivatives of F are evaluated at (yr, 0, 0), although for notational simplicity this informa-

tion has been removed. So far we haven’t made much progress since even the derivatives of F are

unknown. However, for this equation to hold for any xt then it must be the case that

[F ]i +
1

2
[Fσσ]

i = 0, [F
y

]ij = 0, and [F
yy

]ijk = 0. (27)

All of these terms above have exactly the same structure as those given for the perturbation meth-

ods except [Fσσ]
i, which is given by

[Fσσ]
i = [f11]

i
jk [gε]

j
m [gε]

k
q [I]

q
m + [f1]

i
j [gεε]

j
mq [I]

m
q = 0. (28)

This shows that for a second-order approximation in σ, we get second-order terms, gεε. Thus, to

construct a linear (first-order approximation), we follow Couerdacier et al. (2011) and assume that

4The exact risk-adjusted steady state is not the mean of the ergodic distribution of y. The ergodic mean requires an
unconditional expectations operator, while in (24) the expectations operator is conditional on time t information.
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the second-order terms, gσσ, are equal to zero, and ignore the second-derivative conditions, F
yy

.

Bringing everything together, we have the following set of equations: The steady state equa-

tions

F (yr, g
x

) ≡ [f (yr,yr,yr, 0)]i + [f11]
i
jk [gε]

j
m [gε]

k
q [I]

q
m = 0, (29)

and the first-derivative conditions

[F
y

]ij = [f1]
i
k [gy]

k
l [gy]

l
j + [f2]

i
k [gy]

k
j + [f3]

i
j = 0; i, j, k, l = 1, . . . , n

y

, (30)

[Fε]
i
m = [f1]

i
k [gy]

k
l [gε]

l
m + [f2]

i
k [gε]

k
m + [f4]

i
m = 0; m = 1, . . . , nε. (31)

Since both sets of equations depend on both the steady state yr and on the linearized dynamics,

g
y

and gε, these equations need to be solved simultaneously. We use the following algorithm:

1. Use the deterministic steady state as an initial guess, y0, of the risk-adjusted steady state and

calculate the linearized dynamics, g0
x

.

2. Evaluate (29) using
(

y

0, g0
x

)

.

if
∣

∣F
(

y

0, g0
x

)∣

∣ > ǫ (where ǫ is a tolerance parameter) then update the steady state guess to

y

1 and proceed to step 3.

else STOP. A solution to the fixed-point problem has been found.

3. Use y1 to calculate the updated linearized dynamics g1
x

. Return to step 2 using
(

y

1, g1
x

)

in

the place of
(

y

0, g0
x

)

.

The linear approximation of the solution in the neighborhood of the risk-adjusted steady state is

therefore given by

g (yt−1, εt, σ) = y

r + g
y

(yr, 0) (yt−1 − y

r) + gε (y
r, 0) εt. (32)

Notice that, unlike its standard perturbation counterpart, this linear approximation of the decision

rule is not certainty equivalent. Changes in the variance-covariance of shocks will alter both the

steady state and the linearized dynamics around that steady state.

Alternative risk-adjusted approximations are possible. Juillard (2011) solves the system of equa-

tions in (27) and thus constructs a second-order approximation in the neighborhood of the deter-
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ministic steady state. In contrast, de Groot (2013) derives the second-order approximation in the

neighborhood of the deterministic steady state and takes a first-order Taylor expansion of this func-

tion to construct a linear approximation in the neighborhood of the risk-adjusted steady state. This

methods benefits from not requiring a fixed-point problem be solved.

B.2.3 Linear-with-occasionally-binding-constraint methods

In this section, we describe how perturbation solutions can handle the model with an occassionally

binding collateral constraint. Since the zero lower bound became a binding constraint for monetary

policy during the 2007-08 financial crisis, the literature has developed extensions to local approxi-

mation methods to solve models with occasionally binding constraints. There are two main compu-

tational toolkits publicly available. For the model in this paper, both approaches delivered the same

candidate solution paths for endogenous variables.5 The first, OccBin (Guerrieri and Iacoviello

(2015), exploits a piecewise linear solution technique. The second, DynareOBC (Holden (2016)), ex-

ploits the use of “news” shocks to construct a solution.6

Holden (2016): We first present the set up without the constraint. The linearized version of (7)

can be written as

0 = (C +B +A)x+ Cxt+1 +Bxt +Axt−1, (33)

wherext ≡
[

y′t, ε
′
t+1

]′
andx is the deterministic steady state. Assume the first element of the steady

state vector, x1, is positive. We will return to this assumption below. The matrices are given by

C ≡





f1 0

0 0



 , B ≡





f2 0

0 I



 , and A ≡





f3 f4

0 0



 . (34)

where, for example, f1 is the Hessian of f with respect to the first argument, evaluated at the

deterministic steady state. The solution to this problem is the linearized decision rule

xt = (I − g
x

)x+ g
x

xt−1 where g
x

= − (B + Cg
x

)−1A. (35)

5Other local approximation methods may also be amenable to solving models with occasionally binding constraints.
For extended path algorithms, see Adjemian and Juillard (2013). For penalty based methods see McGrattan (1996).

6Antecedents of this approach include Laséen and Svensson (2011) and Holden and Paetz (2012).
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The occasionally binding constraint is introduced by augmenting (33) as follows

x1,t = max (0, (C1 +B1 +A1)x+ C1xt+1 + (B1 + I1)xt +A1xt−1) , (36)

0 = (C−1 +B−1 +A−1)x+ C−1xt+1 +B−1xt +A−1xt−1, (37)

where C1, for example, denotes the first row of C and C−1 denotes C excluding the first row. The

occasionally binding constraint has been introduced using amax operator in the first equation. The

fact that the constraint has been introduced as a positivity constraint is without loss of generality

since it is always possible to rewrite a constraint in this form.

The problem that needs to be solved can be formulated as follows: Given a vector of initial

conditions, x0, find a sequence {xt}∞t=0 in R
n such that (36) and (37) hold and that xt → x as

t → ∞. Above we assume that x1 > 0. This means i) that the constraint does not bind in the

steady state and ii) we consider only solutions in which there is some T ∈ N such that for t > T

the constraint no longer binds.

The problem described above is solved by solving a complementary problem using “news”

shocks. Consider the following system

0 = (C +B +A)x+ Cxt+1 +Bxt +Axt−1 + Ic1y1,t−1 (38)

In time 0 there is a T × 1 vector, y0, of news shocks, where yt,0 is the shock t periods ahead. Thus,

yi+1,t−1 = yi,t and, for t > T , y1,t−1 = 0. Ic1 denotes the first column of the identity matrix. The

algorithm then searches for y1,t−1 such that the max operator in (36) is adhered to in all periods.

Guerrieri and Iacoviello (2015): In contrast to using news shocks to enforce the constraint, this

method concatenate decision rules to construct a piecewise-linear solution. They begin by defining

two regimes, the “unconstrained” and “constrained” regimes

0 = (C +B +A)x+ Cxt+1 +Bxt +Axt−1, (39)

0 = (C∗ +B∗ +A∗)x+ C∗
xt+1 +B∗

xt +A∗
xt−1, (40)

where the latter is the constrained regime (i.e., the first term in the max operator above). The co-

efficients of this second (constrained) set of linearized equilibrium conditions are evaluated at the
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same deterministic steady state as the first (unconstrained) set of linearized equilibrium conditions.

A solution for the model is then a function that maps xt−1 into xt such that the conditions under

the unconstrained or constrained set of equilibrium conditions hold, depending on the evaluation

of the constraint in (36). The algorithm used to solve for this time-varying decision rule employs a

guess-and-verify approach. In effect, for any initial state configuration, x0, the algorithm guesses

the periods t ≥ 0 for which the economy is in the constrained and unconstrained regimes. This

guess is characterized by a vector of 0s and 1s. Again, let T denote the last period in which the

constraint binds. For t ≥ T , the decision rule will be (35). For period T − 1, the solution for xT−1

given xT−2 can then be derived by solving the following equation

0 = (C∗ +B∗ +A∗)x+ C∗ ((I − g
x

)x+ g
x

xt−1) +B∗
xt−1 +A∗

xt−2. (41)

It is possible to iterate back in this fashion, using either (35) or (41), depending on the regime,

until x0 is reached, giving a candidate equilibrium path. Next, the max function is used to check

the vector that summarizes the initial guess of regimes against the actual outturn in the candidate

path. If the sequence of regime guesses is verified, then the solution is complete. Otherwise, the

guess for when regimes apply is updated and the process is repeated.

Next, we describe the calibration used for the endowment model and present quantitative re-

sults that highlight differences and similarities implied by the local and global solutions.

B.3 Calibration & comparison of quantitative results

B.3.1 Calibration

We use the same baseline calibration as in Durdu et al. (2009), which was based on annual data

for Mexico. The common baseline calibration parameters are set as follows: σ = 2, a standard

value, ȳ = 1 as a normalization, r = 0.059, which is the average of the Uribe and Yue (2006) real

interest rate including the EMBI spread for Mexico. The target average NFA-GDP ratio is set to −44

percent, which is the average for Mexico over the period 1985–2004 in the database constructed

by Lane and Milesi-Ferretti (2007), and the target consumption-GDP ratio is 0.692, which is the

average ratio in Mexican data for the 1965–2005 period. These parameter values and the resource

constraint imply A = ȳ+ rb− c = 0.282. The standard deviation and first-order autocorrelation of

the AR(1) income process were estimated at σz = 0.0327 and ρz = 0.597 using the HP-detrended

cyclical component of GDP computed with Mexican data. For further details of the calibration see
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the main draft Section 2.4.

B.3.2 NFA decision rule and Net Exports

In this section, we provide details on the derivations of the decision rules reported in Section 2.4

of the main draft.

Analytical solution

Assume the dynamics of NFA can be represented as a first-order autoregressive process for

which ρ, µb, and σ2B denote the autocorrelation, mean, and variance of NFA, respectively. Recall

that net exports (nxt) are equal to qbt+1 − bt, where q ≡ 1/R denotes the price of discount bonds.

The autocorrelation of nx implied by the NFA autoregressive process is derived as follows:

E [(nxt − nx)(nxt−1 − nx)] = E[nxtnxt−1]− nx2

= E[(qbt+1 − bt)(qbt − bt−1)]− µ2b(q − 1)2

= q2E[bt+1bt] + E[btbt−1]− qE[b2t ]− qE[bt+1bt−1]− µ2b(q − 1)2

= (ρσ2B + µ2b)(1 + q2)− q(σ2B + µ2b)− q
(

(1− ρ)µ2b + ρ(ρσ2B + µ2b)
)

− µ2b(q − 1)2

= σ2b (q
2ρ+ ρ− q − qρ2)

ρ(nx) =
q2ρ+ ρ− q − qρ2

1 + q2 − 2qρ
. � (42)

This relationship implies that there is a highly nonlinear relationship between autocorrelation of

net foreign assets and net exports. This nonlinear relationship is a key aspect we will refer through

out the appendix and main draft while interpreting local and global solutions.

Local solution

To derive decision rules using the local solutions, we use the following equilibrium conditions

(with ȳ = 1 and A = 0, for simplicity)

ct = ezt + bt −
bt+1

1 + rt
,

1 = βEt (ct/ct+1)
σ (1 + rt) ,

rt = r + ψ
(

eb
∗−bt+1 − 1

)

,

zt = ρzzt−1 + σzε
z
t .
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Written in the form of (7), we have

Etf (yt+1,yt,yt−1, εt) = Et











−y1
t + exp

(

y

3
t

)

+ y

2
t−1 −

y

2
t

1+r+ψ(exp(b−y2
t )−1)

−1 + β
(

y

1
t /y

1
t+1

)σ (
1 + r + ψ

(

exp
(

b∗ − y

2
t

)

− 1
))

−y3
t + ρzy

3
t−1 + σzε

z
t











, (43)

where yt ≡ [ct, bt+1, zt]
′. The deterministic steady states of NFA, bdss, is pinned down by the pa-

rameter b∗. The endowment process, zt, has a steady state of 0. The deterministic steady state of

consumption is given by cdss = 1 − bdssr/(1 + r). We can derive numerical values for the policy

functions. Using the baseline calibration, {r = 0.08571 , b∗ = −0.51, σ = 2, ψ = 0.001, ρz = 0.597,

σz = 0.0327}, the 1OA decision rule is given by





cdss

bdss



 =





.960

−.510



 and g
x

=





.084 .186

.995 .884



 , (44)

where the rows are the endogenous variables, [ct, bt+1], and the columns are the state variables,

[bt, zt]
′. The additional 2OA decision rule terms are given by

gc
xx

=





−.005 −.005
−.005 .104



 , gb
xx

=





.004 .005

.005 .972



 , and gσσ =





−4.8× 10−5

5.2× 10−5



 . (45)

For the RSS decision rules, the steady state conditions are given by

0 = −crss + 1 + brss − brss

1 + r + ψ (eb∗−brss − 1)
, (46)

0 = −1 + β
(

1 + r + ψ
(

eb
∗−brss − 1

))

(

1 +
γ (γ − 1)

2
Et (ct+1 − crss)2

)

, (47)

where Et (ct+1 − crss)2 = gczσ
2
z . Solving jointly for the risk-adjusted steady state, [crss, brss]′, and

the first-order coefficients, grss
x

, gives





ct

bt+1



 =





crss

brss



+ grss
x





bt − brss

zt



 (48)

where




crss

brss





′

=





.970

−.376



 , grss
x

=





.083 .184

.995 .886



 . (49)
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Since the DynareOBC method generates time-and-state dependent decision rules, it is not possible

to write down decision rules as we have for the perturbation and RSS methods.

Analytical results using local solutions for a simplified endowment model with log-utility and

i.i.d. shocks

It is possible derive analytical expressions for the 2OA and RSS decision rules in a simplified

endowment economy. In particular, we set b∗ = 0 so the deterministic steady state is [c, b] = [1, 0];

ρz = 0 so endowment fluctuations are i.i.d.; and σ = 1 so we have log-preferences. Finally, we set

r = 0 and β = 1. The 2OA decision rules are given by

c̃t = g (bt, zt, σ) = gbbt + gzzt +
1

2

(

gbbb
2
t + gzzz

2
t + gσσ

)

+ gbzbtzt,

bt+1 = h (bt, zt, σ) = hbbt + hyzt +
1

2

(

hbbb
2
t + hzzz

2
t + hσσ

)

+ hbzbtzt,

where c̃t ≡ log (ct). Substituting into the Euler equation and budget constraint gives

1 = Et exp (g (bt, zt, σz)− g (h (bt, zt, σz) , σzσεt+1, σ)) (1 + ψ (exp (−h (bt, zt, σz))− 1)) ,

exp (g (bt, zt, σz)) = exp (zt) + bt − h (bt, zt, σz) (1 + ψ (exp (−h (bt, zt, σz))− 1))−1 .

2OA solution

Solving for hb gives

hb (ψ) = 1− 1

2

(

√

ψ2 + 4ψ − ψ
)

,

= 1− 2
ψ

ψ +
√

ψ2 + 4ψ
< 1,

for ψ > 0. It also tells us that hb (0) = 1, h′b (ψ) < 0, h′′b (ψ) > 0, limψ→∞ hb (ψ) = 0, and

limψ→0 h
′
b (ψ) = −∞. We also have that

0 = gz − hz (gb + ψ) ,

0 = 1− gz − hz.

As a result, it is straightforward to show that hz = hb and gb = gz = 1 − hb.The 2OA coefficients
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for NFA are given by

hbb = hbz = −ψ3 +
√

ψ + 4ψ5/2 − 4ψ2 + 2
√

ψ + 4ψ3/2 − 5ψ

2
+

(ψ + 1)
√
ψ + 4

√
ψ

2(ψ + 3)
,

hzz = −ψ3 +
√

ψ + 4ψ5/2 − 4ψ2 + 2
√

ψ + 4ψ3/2 − 2ψ −
√
ψ + 4

√
ψ

ψ + 3
+ 1,

hσσ =

(

−2ψ2 + 2
√
ψ + 4ψ3/2 − 7ψ + 5

√
ψ + 4

√
ψ − 4

)

(ψ + 3)
(

ψ +
√
ψ + 4

√
ψ + 2

) .

Clearly, the coefficients quickly become complicated functions of ψ. However, hbb(0) = hbz(0) = 0,

hzz(0) = 1, and hσσ(0) = −2/3.

RSS solution

In the simplified endowment economy with i.i.d. endowment risk and a simplified DEIR function

of the form 1 + rt = (1 + r) eψ(b
∗−bt+1), the “full RSS” solution is identical to the “partial RSS”

solution described in the main paper. We begin by substituting into the Euler equation, giving

1 = β (1 + r)Et exp





−γ (c̃rss + gbbt+1 + gz (ρyzt + σzεt+1))

+γ (c̃rss + gb (bt − brss) + gzzt) + ψ (b∗ − bt+1)



 .

The steady state equation is given by

1 = β (1 + r)Et exp (−γgzσzεt+1 − ψ (brss − b∗))

= β (1 + r) exp

(

1

2
γ2g2zσ

2
z − ψ (brss − b∗)

)

.

The second line is either derived from the properties of the log-normal distribution, or by taking a

second-order expansion around σz = 0 and then applying log (1 + x) ≈ x for small x. Rearranging

gives

brss = b∗ +
γ2g2zσ

2
z

2ψ
.

When b∗ = 0 and γ = 1 (log-preferences), this simplifies to brss = g2zσ
2
z

2ψ . After setting β = 1 and

r = 0, the 1OA term, hb, is given by

hb =
1

2

(

e−bψ + (1− bψ)−
√

(e−bψ − (1− bψ))
2
+ 4e−bψψ

)

. (50)
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where, for clarity, b denotes brss. The only difference between hb under RSS and 2OA is that the

expression is evaluated at brss rather than bdss = 0. The remaining 1OA terms are given by

hz =
1

1− ebψ(hb + bψ − 1)
, gb =

ebψ(hb + bψ)− 1

(ebψ − 1) b− 1
, gz =

1− ebψ(hb + bψ)

(1− (ebψ − 1) b) (1− ebψ(hb + bψ − 1))
.

These coefficients clarify that the first-order dynamics of the RSS solution differ from the dynamics

of the 1OA solution.

B.3.3 Long-run moments & impulse response functions

In this subsection, we provide pertinent details for the results related to the long-run moments and

impulse response functions in the main draft.

The result showing that precautionary savings nearly vanish from 2OA and partial RSS solu-

tions as ψ rises implies that the terms driving the deviation of the unconditional average of b from

bdss in their decision rules are vanishing too. To shed light on why this happens, we use again

the decision rules for log utility and i.i.d. shocks (together with the quantitative result that the

quadratic and interaction terms of the 2OA solutions are negligible) to obtain these expressions:7

E[b]2OA = bdss + σ2z
hσσ

2(1− hb)
, E[b]RSS = bdss + σ2z

g2y
2ψ
, (51)

where gy is the coefficient of the consumption decision rule on income. Since hb is decreasing in ψ

for ψ < 0.5 (recall Figure 1in the main draft), the denominators in the right-hand-side of the above

expressions rise with ψ, which brings the unconditional means closer to bdss. The coefficients hσzσz

and gy also depend on ψ,

Second-order terms & moments

The main text of the paper argues that the quadratic and interaction terms of the 2OA solutions

are negligible. This section addresses this point in more detail. Figure 1 plots three rows of uncon-

ditional moments (mean, standard deviation, and persistence of NFA) from the endowment model

using Andreasen et al. (2018) pruning. Each of the three columns varies one structural parameter

at a time (ψ, σ, and ρz , respectively) while holding the rest at the baseline calibration. We compare

the true SOA solution with a “poor man’s” analog in which we set hbb = hbz = hzz = 0 (i.e., leaving

only the hσσ term from the true SOA decision rule).

7When ψ is small and hb is close to 1 (e.g., when ψ = 0.001), the other quadratic and interaction terms do matter for
the value of E[b]. However, they become negligible again if ψ > 0.01. See Online Appendix C.3.3 for details.
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The top-left panel shows that the mean-NFA under the true SOA and under the poor-man’s

SOA only diverge for small value of ψ when NFA is highly persistent. The difference is significant

for the baseline calibration (ψ = 0.001) but not for the targetted calibration (ψ = 0.047). Rows

2 and 3 show that first-order moments such as the standard deviation and persistence of NFA

are unaffected by the existence of second-order terms, except in the case when the calibration is

extreme and far from the baseline (e.g., when risk averse or the persistence of the endowment

shocks is very high).

To see why the unconditional mean-NFA is affected by second-order terms, it is helpful to write

out its analytical expression. The pruned SOA decision rule is given by

bt+1 = b1t+1 + b2t+1, (52)

b1t+1 = hbb1t + hzzt, (53)

b2t+1 = hbb2t +
1

2

(

hbbb
2
1t + hzzz

2
t + hσσ

)

+ hbzb1tzt. (54)

Taking unconditional expectations gives

E (bt+1) =
1

1− hb

1

2

(

hbbE
(

b21t
)

+ 2hbzE (b1tzt) + hzzE
(

z2t
)

+ hσσ
)

, (55)

and since

E
(

b21t+1

)

=
1

1− h2b
hz

σ2z
1− ρ2

, E (b1tzt) =
σ2z

1− ρ2z
, E

(

z2t
)

= ρz
σ2z

1− ρ2z
, (56)

we can combine these terms to give

E (bt+1) =
1

1− hb

1

2

((

hbb
1

1− h2b
hz + 2hbzρ+ hzz

)

σ2z
1− ρ2z

+ hσσ

)

(57)

The poor man’s [pm] SOA ignores all second-order terms except for hσσ. In this case:

bpmt+1 = hbb
pm
t + hzzt +

1

2
hσσ, (58)

and

E
(

bpmt+1

)

=
1

1− hb

1

2
hσσ. (59)
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Thus, the discrepancy, err, is given by

err =
1

1− hb

1

2

((

hbb
1

1− h2b
hz + 2hbzρz + hzz

)

σ2z
1− ρ2z

)

. (60)

This final expression clarifies that when hb is close to 1, that all interaction terms, but especially

hbb, gets magnified, and becomes important for accurately calculating mean-NFA.

Figure 1: Second-order terms & moments

Note: Moments calculated analytically using the Andreasen et al. (2018) pruning algorithm. The Poor man’s SOA sets
hbb = hzz = hbz = 0.

B.3.4 Spectral densities

In this section, we examine nonparametric sample periodograms of simulated data produced by

the various solution methods. A summary of our discussion here is also presented in the main

draft. The goal is to determine whether they yield different predictions about the relevance of
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fluctuations at different frequencies for overall variability. Figure 2 shows periodograms of b, c and

nx for a multivariate spectrum from long time-series simulations with 4500 periods and a Bartlett

window with the smoothing parameter set to 100.8 The y-axis shows the population spectrum,

the x-axis shows the frequency in years, and the vertical lines isolate the business cycle frequency.

The panels on the left (right) are for the baseline (targeted) calibrations. As in the previous charts,

the plots for the GLB solution are identical in both sets of plots, because the global solution has

a single calibration. In addition, as with the time-series results, the spectral density functions are

nearly identical for 2OA and RSS methods, because the local decision rules have similar hb terms

and the quadratic and interaction terms of the 2OA solutions are irrelevant.

All the periodograms are generally downward sloping because the equilibrium stochastic pro-

cesses are similar to AR(1) processes. Hence, the contribution of lower frequencies to the variances

of the variables exceeds that of business cycle and lower frequencies. The results show, however,

that the local methods under the baseline calibration overestimate the contribution of low fre-

quency movements to the total variance of all three series, which is consistent with their slower

mean-reversion and higher values of ρb relative to the GLB solution. Moreover, while the contri-

bution of fluctuations at the business cycle frequency or higher for the variability of b is slightly

higher with the local solutions than in the GLB solution, for nx the local methods overestimate

it and for c they underestimate it. In particular, the local methods underestimate significantly

the fraction of consumption fluctuations explained by business cycle and higher frequencies and

under-predict significantly the contribution of low frequencies.

For targeted calibrations, the periodograms of b are nearly the same in the global and local

solutions almost by construction, because the targeted calibrations are built to match the AR(1)

coefficient of the GLB solution. However, the periodograms of c and nx for the local solutions still

differ sharply from the GLB ones. They still underestimate significantly the contribution of con-

sumption fluctuations at business cycle and higher frequencies to overall consumption variance.

The frequency analysis shows that the results of GLB and local methods differ at most frequen-

cies, and not just in business cycle moments and long-run averages. For the endowment econ-

omy with the baseline calibrations, local methods overestimate significantly the contribution of

low-frequency movements to the variability of NFA and net exports (nx), in line with the result

indicating that they overestimate the autocorrelation of NFA. The local methods also overestimate

8We follow Hamilton (1994) in setting the value of the smoothing parameter. The results for parametric estimates
of the spectral densities are generally smoother but show similar patterns as those of the nonparametric estimates.
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Figure 2: Spectral Density Functions in the Endowment Economy Model
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA and RSS denote the global,

second-order and risky-steady state solution, respectively.

(underestimate) the contribution of low-frequency (high-frequency) movements to consumption

fluctuations. The targeted calibrations perform better at approximating the spectral density of

NFA and nx, but for consumption they still underestimate the contribution of high-frequency fluc-

tuations by a large margin. Similar results are obtained for NFA, nx and consumption in the RBC

model.
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B.3.5 Interest rate shocks

The analysis presented in Section 2.4 of the main draft featured additional results with interest

rate shocks, which are based on joint endowment and interest rate shocks. This joint process is

derived based on a Simple Persistence Markov chain estimation for the endowment and interest

rate processes. Specifically, the Simple Persistence Markov chain is defined by a set of pairs of

realizations (z, zR) and a matrix π of transition probabilities of moving across pairs in one period.

Each shock has two realizations equal to +/- one standard deviation of each shock (z1 = −z2 =

0.0327, zR1 = −zR2 = σzR , with σzR ranging from 0 to 2.5 percent). The Simple Persistence rule

produces a π matrix with elements defined by a formula such that the standard deviations of the

shocks match the realization values, and the correlation and autocorrelations of the shocks match

their calibrated values. See the main draft for the results with the interest rate shocks.

B.3.6 Alternative calibration of local solutions: Targeting mean vs. autocorrelation of NFA

In our analysis presented in the main draft, we argued that while calibrating the elasticity of the

discount factor for the local solutions, targeting the autocorrelation of NFA gives the local solution

the best chance to match the glolabl solution. In this section, we explore an alternative calibration

strategy, specifically, targeting the mean of NFA implied by the global solution. Table 3 summarizes

how local solutions would behave based on this alternative calibration strategy (see second through

fourth columns). For reference, we also report the moments for the global solution (first column)

and the moments of the local solutions for the trageted calibration reported in the main draft.

For the local solution with DEIR, recalibration of discount factor (ψ) to match the mean NFA

of GLB yields psi values of 0.002511 and 0.0005727 for 2OA and the partial RSS solutions, respec-

tively. For the full RSS solution, we recalibrated the discount factor (β), which yields 0.94413158

with beta · R nearing one (recall that the baseline value of β used for full RSS solution is 0.94, the

same value used for GLB). For the local solutions with DEIR, targeting the mean implies higher

order moments much more different than GLB, compared to targeting the autocorrelation of NFA.

For instance, variability of NFA and variability of consumption relative to that of income are much

higher with targeting the mean, relative to targeting the autocorrelation of NFA. Income correla-

tions with consumption and net exports as well as autocorrelations get closer to the global solution

by targeting the autocorrelation, relative to targeting the mean of NFA.

For the full RSS solution, although the mean NFA is now identical to the global solution, by
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Table 3: Alternative Calibration for Local Methods: Targeting Mean vs. Autocorrelation of NFA

Target mean of NFA Target autocorr. of NFA
GLB 2OA RSS 2OA RSS

DEIR βR < 1 DEIR DEIR DEIR

β 0.94 0.944 0.94413158 0.944 0.944 0.944
ψ n.a. 0.002511 n.a. 0.0005727 0.047 0.047

Averages
E(c) 0.694 0.694 0.694 0.694 0.689 0.689
E(nx/y) 0.022 0.022 0.023 0.023 0.028 0.028
E(b) -0.410 -0.410 -0.410 -0.410 -0.500 -0.506
Variability relative to variability of income
σ(c)/σ(y) 0.995 1.186 17.987 2.049 1.001 0.997
σ(nx)/σ(y) 0.663 1.087 8.674 1.611 0.730 0.730
σ(b)/σ(y) 7.497 28.051 378.184 58.465 6.647 6.576
Income correlations
ρ(y, c) 0.751 0.297 0.034 0.150 0.684 0.684
ρ(y, nx/y) 0.704 0.683 0.044 0.477 0.705 0.708
ρ(y, b) 0.266 0.190 0.009 0.094 0.489 0.488
First-order autocorrelations
ρc 0.838 0.989 0.999 0.997 0.929 0.929
ρnx 0.536 0.737 0.999 0.876 0.583 0.582
ρb 0.977 0.997 0.999 0.999 0.977 0.977

Note: GLB refers to the global solution. σ(·) denotes the coefficient of variation for c and b, and the standard deviation

for nx.

construction, all of the higher order moments are significantly different with this alternative cali-

bration relative to the baseline full RSS results shown in Table 3 of the main draft. Consumption,

NFA and net exports behave get closer to unit-root, implying very low income correlations for these

variables.

To sum up, we found that targeting the autocorrelation of NFA gives the local solutions with

DEIR their best chance to match the behavior implied by the global solution. For the full RSS,

targeting the mean of NFA requires increasing β so high that endogenous variables approach near-

unit root.

B.3.7 Alternative local solutions: 2OA vs. 3OA

In this section, we explore how third-order approximation (3OA) differ from 2OA. Table 4 summa-

rizes the long-run moments for both 2OA and 3OA. As shown in the table, with the targeted calibra-

tion, moments from pruned third-order-approximation (3OA) solutions obtained using Andreasen et al.

(2018) and 2OA solutions are the same up to the third decimal for most variables. With the baseline

calibration, moments are also generally similar, with moments continuing to be identical up to the
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third decimal for most variables and differing only slightly for variability ratios. But even for these

variables, the differences between 2OA and 3OA are not economically meaningful.

Table 4: Alternative local solutions: 2OA vs. 3OA

Baseline Calibration Targeted Calibration
2OA 3OA 2OA 3OA

ψ = 0.001 0.001 0.0469 0.0469
Averages
E(c) 0.702 0.702 0.689 0.689
E(nx/y) 0.015 0.015 0.028 0.028
E(b/y) -0.286 -0.286 -0.502 -0.502
Variability relative to variability of income
σ(c)/σ(y) 1.577 1.651 1.000 0.997
σ(nx)/σ(y) 1.335 1.379 0.730 0.730
σ(b)/σ(y) 63.033 66.854 6.648 6.641
Income correlations
ρ(y, c) 0.200 0.190 0.684 0.684
ρ(y, nx/y) 0.568 0.557 0.705 0.706
ρ(y, b) 0.126 0.119 0.489 0.489
First-order autocorrelations
ρc 0.995 0.995 0.929 0.929
ρnx 0.821 0.832 0.582 0.581
ρb 0.999 0.999 0.977 0.977

Note: σ(·) denotes the coefficient of variation for c and b, and the standard deviation for nx.

B.3.8 Comparison of DEIR vs. Endogenous Discounting

In this section, we examine the implications of endogenizing the discount factor as an alternative

approach to induce stationarity in open-economy, incomplete-markets models. Although the most-

commonly used method in the literature is the use of DEIR function, as surveyed in Tables 1 and

2, the endogenous discount factor (ED) is also widely used. We compare below local (2OA) ED

solutions with GLB solutions and 2OA solutions with DEIR for the same endowment economy

model of Section 2 in the paper.

Analytical comparison of DEIR and Endogenous Discounting (ED)

Section 8.2 of Schmitt-Grohé and Uribe (2003) presents a simplified endowment economy closed

with an endogenous discount factor without internalization (henceforth, ED) and finds that hb =

1− θc∗, where θ and c∗ are given by the functional form

β (ct) =
(1 + ct − c∗)−θ

1 + r
. (61)
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As with the DEIR model, we assume ρz = 0, σ = 1, and 1 = β (1 + r). The 1OA decision rule for

the ED specification (with r 6= 0 and c∗ = 1) is given by

hb = hz = 1− θ and gb = gz =
r + θ

r + 1
, (62)

and with r = 0, gb = gz = θ. Thus, the hb coefficient of the DEIR and ED models are identical if

r = 0, c∗ = 1 and if

θ

2
=

ψ

ψ +
√

ψ2 + 4ψ
. (63)

Thus, while there is a mapping from ψ to θ when matching hb, the relationship is nonlinear.

It is not possible to solve a SOA of the UE model when r = 0 because hσσ is undefined. Instead,

solving with r > 0, the 2OA coefficients for the ED specification are given by

hbb = hbz =
(θ − 1)θ(θ + r)2

(r + 1)(r − (θ − 2)θ)
, (64)

hzz =
(θ − 1)2

(

r2 + 3θr + r + θ(θ + 2)
)

(r + 1)(r − (θ − 2)θ)
, (65)

hσσ = −(θ + r)
(

−r2 − 3θr + r + θ((θ − 4)θ + 2)
)

r(r + 1)(r − (θ − 2)θ)
. (66)

When r = 0, we have hb = hy = 1 − θ, gb = gy = θ, hbb = hby = −(1 − θ)θ2/(2 − θ), and

hyy = (2 − 3θ + θ3)/(2 − θ) with hσσ undefined. When θ = 0, then hbb = hby = 0, hyy = 1 and

hσσ = (r − 1)/(r + 1).

Figure 3 shows the coefficients of the policy function for DEIR vs. ED under various calibra-

tions. The x-axis varies ψ (and θ for the ED model that it delivers the same hb). It shows that the

DEIR decision rule at second-order has more non-linearity arising from hbb, whereas the ED deci-

sion rule has a more significant shift term arising from hσσ. Moreover, hσσ is sensitive to small val-

ues of r for the ED decision rule. Figure 4 highlights the differences for the calibration of r = 0.005

and ψ = 0.001. Notice is that the shift term (hσσ) is very important for UE model, whereas the

DEIR model has more curvature coming from hbb.

Comparison of DEIR and Endogenous Discounting (ED) with local and global solutions

When ED is used, period utility of date t + 1 is discounted by a factor θt+1 such that θt+1 =

32



Figure 3: Coefficients of the SOA: DEIR vs. ED

Note: The x-axis is always ψ. For the ED model, θ has been chosen to match hb. Under ED, hσσ is sensitive to r and is
undefined (hσσ → −∞) for r = 0.

β(ct+1)θt where:

β(c) = (1 + c)−ψ
ED

,

and ψED denotes the elasticity of the period discount factor with respect to consumption. Prefer-

ences with this endogenous discount factor are known as Uzawa-Epstein (UE) preferences. They

feature a rate of time preference for date t that is an increasing function of the history of consump-

tion up to date t, and an “impatience effect” by which agents take into account that increasing date-t

consumption reduces the discount factor that applies to all utility flows from date-t forward. In

closing the small open economy with ED for the local solutions, Schmitt-Grohe and Uribe (2003)

proposed an alternative formulation in which the impatience effect is removed by assuming that

β(·) depends on “aggregate consumption” so that agents do not internalize the dependency of the

discount factor on consumption. We denote this formulation as SGU-ED. With this assumption,
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Figure 4: SOA decision rules: DEIR vs. ED

Note: For σz = 0.03, r = 0.008 and ψ = 0.001 and a θ that delivers the same hb. Decision rules are plotted for
z = {−0.03, 0, 0.03}. The close-to-linear decision rules are the ED specification whereas the convex decision rules are

the DEIR specification.

the Euler Equation for NFA becomes:

uc(ct) = (1 + r)β(c̃t)Et[uc(ct+1)],

where c̃t denotes aggregate consumption, which household takes as given but equals ct at equilib-

rium. Schmitt-Grohe and Uribe found that local solutions using UE or SGU-ED are nearly identical,

but SGU-ED has a much simpler representation since it removes the impatience effect. Hence our

choice to use SGU-ED for the analysis conducted here. The rest of the endowment model structure

remains the same as described in the paper.

To explore how using SGU-ED affects long-run moments and precautionary savings we com-

pare local solutions to two alternative variants of the GLB solution, one with βR < 1 preferences

and the other with Uzawa-Epstein (UE) preferences (the comparison of the GLB solutions under

these two preferences was discussed in section B.3.9). The results are shown in Table 5. For the

local solutions, we present 2OA results for the baseline DEIR case shown in the paper and for two

cases of the SGU-ED setup: Case I, which is calibrated to match the same elasticity of the discount

factor as in the GLB-UE calibration. In this case, ψED = 0.109 and the GLB-UE and 2OA-SGU-ED

solutions have the same bdss = −0.44 by construction. Case II, in which the elasticity of the dis-

count factor was set to match the deterministic steady state of NFA in the GLB-βR < 1 solution.
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Table 5: Long-run Moments: Comparison of GLB vs SGU-ED in the Endowment Economy Model

GLB 2OA
βR < 1 UE DEIR SGU-ED

UE calib βR < 1 calib

Averages
E(c) 0.694 0.694 0.701 0.694 0.690
E(nx/y) 0.023 0.022 0.015 0.023 0.027
E(b/y) -0.413 -0.415 -0.285 -0.424 -0.496
Variability relative to variability of income
σ(c)/σ(y) 0.991 0.958 1.594 0.972 0.977
σ(nx)/σ(y) 0.663 0.941 1.327 0.953 0.953
σ(b)/σ(y) 7.508 18.653 62.327 8.100 8.094
Income correlations
ρ(y, c) 0.751 0.417 0.202 0.405 0.405
ρ(y, nx/y) 0.704 0.759 0.572 0.753 0.751
ρ(y, b) 0.267 0.268 0.128 0.259 0.259
First-order autocorrelations
ρc 0.845 0.972 0.995 0.978 0.978
ρnx 0.545 0.662 0.819 0.673 0.672
ρnx/y 0.554 0.667 0.826 0.679 0.679
ρb 0.977 0.994 0.999 0.994 0.994

Note: GLB refers to the global solution, UE refers to the global solution with Uzawa-Epstein preferences, SGU-ED

denotes local solution with endogenous discounting. σ(·) denotes the coefficient of variation for variables in levels and

the standard deviation for variables in ratios (nx/y and b/y).

In this case, ψED = 0.11 and again the 2OA and GLB solutions have the same deterministic steady

state by construction but now set at bdss = −0.51.

It is important to note that the similarity of the two GLB solutions, particularly the first mo-

ments, is largely by construction and not a general result. It reflects the calibration strategy for

the two solutions that we adopted from Durdu et al. (2009). They calibrated the GLB-UE solution

by setting the elasticity of the discount factor so that the deterministic steady state, bdss, matched

the average NFA-GDP ratio (b/y) in the Mexican data (-44%), while the calibration of the βR < 1

solution was done by setting β so as to approximate the same -44% target but as the average of the

stochastic model solution (at about -42%). The deterministic steady state was set at the debt limit

(bdss = φ = −0.51) so as to match the standard deviation of consumption in the Mexican data,

jointly with the mean b/y at -44%. These two calibrations result in the mean NFA of the two GLB

solutions being very similar (-0.413 with UE vs. -0.415 with βR < 1). Still, they imply very differ-

ent results for precautionary savings (namely, for the excess of mean NFA relative to bdss), which

reaches 2.5% of GDP in the UE solution v. 9.7% in the βR < 1 solution. Moreover, as Durdu et

35



al. showed, for given parameter values, the UE setup yields significantly smaller precautionary

savings than the βR < 1 model as the variability or persistence of the income shocks rises. In

turn, as explained in Section 2.4 of the paper, precautionary savings incentives are weaker with

ED because the marginal benefit of savings falls as βt falls when agents borrow more.

We move now to compare the 2OA ED solutions with their GLB counterparts and the baseline

DEIR solution. In Case I, we find that the 2OA ED solution yields E(b/y)ED = −42.4%, which is

very close to the GLB-UE solution. Hence, in this case, the GLB and 2OA solutions have identical

deterministic steady states by construction and yield very similar mean NFA, and since mean NFA

is also close to bdss it follows that the 2OA-ED and GLB-UE solutions are similar because at the

calibrated parameters (particularly the 2.6% standard deviation of income) precautionary savings

are small in both solutions. Hence, since E(b/y) is close to bdss, the local approximations ought to

be accurate. This is akin to giving the 2OA ED solution the mean of NFA of the GLB-UE solution

as center of approximation in a setting in which precautionary savings are negligible.

Case II, which calibrates the ED elasticity in the 2OA solution to match bdss in the GLB-βR < 1

solution, also yields the result that precautionary savings are small in the local solution (the 2OA-

ED solution yields E(b/y)ED = −0.496 compared with bdss = −0.51). Relative to the GLB-βR <

1 solution, however, the 2OA solution underestimates precautionary savings, because the GLB

solution yields E(b/y)GLB = −0.413 while the local solution yields E(b/y)ED = −0.496 and both

solutions have the same bdss. Hence, the 2OA-ED solution underestimates precautionary savings

by 8.3 percentage points. Thus, once precautionary savings become relevant, the local ED solutions

display a similar shortcoming as the DEIR solutions in that they approximate poorly the stock of

precautionary savings predicted by the GLB solutions.

To provide further evidence of the above finding, we show in Figure 5 how the mean NFA

position changes as the variability of income increases in the calibrations of Cases I and II. Plot a.

on the left shows results for the comparable GLB-UE and 2OA-ED solutions, and plot b. on the right

does the same for the comparable GLB-βR < 1 and 2OA-ED solutions. In both plots, we include

horizontal lines that correspond to the bdss that is common to GLB and 2OA solutions in each

case. These plots make it clear that the 2OA solutions are similar to the GLB solutions only when

the variability of income is small enough for precautionary savings to be negligible. As income

variability rises by enough to make precautionary savings relevant in the GLB solution (either UE

or βR < 1), the 2OA solutions always underestimate both the mean of NFA and precautionary

savings. Moreover, we include in plot b. the solutions produced by the DEIR targeted calibration,
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which is the same calibration as in the 2OA-ED solution in Case II (except it uses DEIR instead of

ED to induce stationarity). The graph shows that the mean NFA predicted by both local solutions

is similar, and both underestimate significantly the comparable GLB solution. This result suggests

that ψED (which is slightly higher in plot b. than in plot a.) plays a role analogous to the higher ψ

of the targeted DEIR calibrations in that it acts to make deviations of NFA from steady state costly,

and thus results in mean NFA staying close to that steady state as income variability rises.

Figure 5: Average NFA in the endowment economy as the variability and persistence of output rise
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b. GLB-BetaR vs SGU-ED
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Note: GLB-BetaR refers to the global solution with βR < 1 preferences, GLB-UE refers to the global solution with

Uzawa-Epstein preferences, 2OA-ED denotes local solution with endogenous discounting, 2OA-DEIR denotes the local

solution with DEIR preferences and the targeted calibration ψ value of 0.0469. The horizantal black lines show the

respective deterministic steady state value of −0.44 and −0.51.

Finally, we compare the 2OA ED solutions with the baseline DEIR solution. The first- and

higher-order moments are very different. In particular, DEIR yields sharply higher mean NFA

and it also overestimates significantly the mean of NFA and the stock of precautionary savings

produced by the GLB solutions, as explained in the paper. Hence, from this perspective, and since

the first moments of the local ED solutions are closer to the GLB ones, it would appear that adopting

ED should be a preferable means to induce stationary in local solutions, instead of DEIR. However,

as explained earlier, this is not a general property but an implication of the negligible precautionary

savings in the GLB-UE solution because of its baseline calibration combined with the calibration

strategy we took from Durdu et al. (2009) that made the GLB-UE and GLB-βR < 1 solutions yield

similar mean NFA. Moreover, using ED to induce stationarity also has the disadvantage that ψED

cannot be set independently of bdss, whereas using DEIR ψED is independent of bdss. In terms of

capturing precautionary savings effects of higher income volatility, however, both ED and DEIR
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fail to yield solutions comparable to those of the GLB solutions.

B.3.9 Comparison of global solutions

In this section, we compare alternative global solutions of the endowment economy model. We

first compare the FiPIt solution v. the solution produced by a standard Value Function Iteration

(VFI) algorithm using identical calibrations.

The first three data columns of Table 6 show the comparable long-run moments of NFA, con-

sumption and net exports for the two alternative variations of FiPIt, and VFI solutions. The bonds

grid has 1,000 nodes in the VFI solution v. 200 in the FiPIt solution. The latter requires fewer nodes

because it uses interpolation of the decision rules to solve the bonds Euler equation. The income

process has 5 nodes in FiPIt-5 point column and VFI solution (see Section 2.4 of the paper for full

details about the endowment model calibration). We also report FiPIt solution with income pro-

cess approximated using 11 nodes. As the Table shows, two alternative versions of FiPIt solutions

as well as VFI method produce nearly identical moments. These results provide further evidence

of the accuracy of the FiPIt method, in addition to the evidence we provided in the paper based on

Euler equation errors for the endowment, RBC and Sudden Stops models.

We next examine the sensitivity of our baseline results to the use of 5-point Markov Chain in the

estimation of the endowment shocks using Tauchen and Hussey algorithm. To this end in figure

6 we report the implied average NFA for changes in variability of income shock when the income

shock is approximated by 5-point Markov Chain vs. 11-point Markov Chain. The results show that

increasing the number of nodes in the Markov Chain from five to 11 has virtually no effect on the

implied average NFA.

B.3.10 Linear with occasionally binding constraint method: DynareOBC

In this section, we provide details on the DynareOBC approach applied to the endowment econ-

omy model with an occasionally binding constraint (the ad-hoc debt limit) that we considered in

the main draft and also presented in Section B. We consider alternative parameterizations in which

the constraint in the reference regime (i.e., at the deterministic steady-state) is binding or not. We

use this example to illustrate how DynareOBC constructs solutions using perfect foresight paths

along a time-series simulation. This example demonstrates that unconditional mean values for en-

dogenous variables differ from the deterministic steady state even with a first-order approximation

and without the presence of precautionary savings.
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Table 6: Long-run Moments: Endowment Economy Model

GLB
βR < 1

FiPIt-5 point FiPIt-11 point VFI

Averages
E(c) 0.694 0.694 0.694
E(nx/y) 0.023 0.023 0.022
E(b/y) -0.413 -0.414 -0.411
Variability relative to variability of income
σ(c)/σ(y) 0.991 0.991 0.991
σ(nx)/σ(y) 0.663 0.664 0.660
σ(b)/σ(y) 7.508 7.522 7.456
Income correlations
ρ(y, c) 0.751 0.751 0.755
ρ(y, nx/y) 0.704 0.704 0.704
ρ(y, b) 0.267 0.267 0.268
First-order autocorrelations
ρc 0.845 0.844 0.840
ρnx 0.545 0.545 0.543
ρnx/y 0.554 0.554 0.551
ρb 0.977 0.977 0.977

Note: GLB refers to the global solution. σ(·) denotes the coefficient of variation for variables in levels and the standard

deviation for variables in ratios (nx/y and b/y). FiPIt-5 point reports the results of FiPIt solution, which uses a 5-point

Markov Chain, and the next column with FiPIt-11 point uses 11-point Markov Chain.

Figure 6: Average NFA in the endowment economy: 5-point vs. 11-point Markov Chains
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Note: This figure compares the implied average NFA endowment shock approximated with 5-point vs. 11-point

Markov Chains. The figure shows that the results are identical with two specifications.

For tractability, we rewrite the model here. Assume that the problem of the representative agent
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is given by

max
ct

∞
∑

t=0

c1−σt

1− σ
s.t. ct + qtbt+1 = ezt + bt, bt+1 ≥ ϕ, (67)

where bt+1 is bonds, ϕ is the ad-hoc debt limit, and the endowment process is zt+1 = ρzt + σzεt+1.

Denote the Langrange multiplier on the constraint by qtc
−σ
t λt. The FOC is given by

1− λt = βEt

(

ct+1

ct

)−γ

rt, (68)

where

rt = 1/qt = 1/β + ψ
(

eb
∗−bt+1 − 1

)

. (69)

b∗ denotes the bond value in the DEIR specification. Typically, this value is set to the deterministic

steady state that the model calibration targets. In this example, however, the deterministic steady

state bdss would be equal to the greater of b∗ and ad-hoc debt limit ϕ. Put differently, the steady

state (or the reference regime) is unconstrained if b∗ > ϕ and constrained if b∗ ≤ ϕ.

• Unconstrained SS: b = b∗, r = 1/β, c = 1 + (1− 1/r) b∗, λ = 0.

• Constrained SS: b = ϕ, r = 1/β + ψ
(

eb
∗−ϕ − 1

)

< 1/β, c = 1 + (1− 1/r)ϕ, λ = 1− βr > 0.

In DynareOBC the equilibrium conditions are written as follows for Regime 1:

1− λt = βEt

(

ct+1

ct

)−γ

rt, (70)

ct + qtbt+1 = ezt + bt, (71)

rt = 1/qt = 1/β + ψ
(

eb
∗−bt+1 − 1

)

, (72)

0 = max

(

ϕ, b∗ − log

(

1

ψβ

(

ct+1

ct

)σ

+ 1

))

. (73)

For illustration, Figure 7 displays a stochastic simulation of the model.9 The black line plots the

realized path for consumption and bonds, respectively. At each date, for a given state vector, xt,

DynareOBC solves for a perfect foresight path, presented by the red-dash lines. These represent the

equilibrium paths for the economy at each point in time conditional on no future shocks such that

9Note that ϕ is set to −0.1 in this example, hence the constraint is nonbinding in the deterministic steady state.
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the economy converges back to the deterministic steady-state in T periods. The red-dashed line

starting, for example, in period t is used to generate the realized economic outcome in period t+1.

For the purposes of the stochastic simulation, the rest of that perfect foresight path is discarded.

In t + 1 the economy is hit by a news shock and the state vector is given by xt+1. DynareOBC

then generates a new perfect foresight path, and so on. The bottom row of Figure 7 focuses on a

Figure 7: Perfect foresight paths for DynareOBC

single perfect foresight path from period 141 in the stochastic simulation. In solving for this perfect

foresight path, the algorithm needs to determine the periods in which the constraint is binding.

This problem is not trivial. The naive (unconstrained) perfect foresight path given by the black-

dashed line suggests that the constraint might bind immediately and continue to bind past period

180. In fact, the equilbrium perfect foresight path with the constraint is one in which the constraint

is expected to start binding in period 144 (3 periods after the shock) and remain so until only period

163. Of course, subsequent shocks meant that the constraint became unbinding even earlier in
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period 153. The implication of this analysis is that when the NFA process is highly persistent,

the method requires long extended perfect foresight paths (i.e., T needs to be sufficiently high) to

find a solution. Additionally, the number of time periods used for the simulations also need to be

sufficiently long to achieve convergence of long-run moments.10

We next illustrate how alternative values for the ad-hoc debt limit, in relation to the b∗ value in

the DEIR specification, affects the deterministic steady state and long-run value of NFA. Figure 8

shows the results. Some useful insights can be derived from this figure that can guide intuition for

our results in the main draft. The reference regime is constrained (unconstrained) when ϕ is higher

(lower) than the b∗ value of 0. Regardless of whether the reference regime is constrained or uncon-

strained the unconditional mean of NFA is always higher than the deterministic steady state value

of NFA as long as the constraint binds with a positive probability. This implied higher value of

NFA is mainly due to the model’s asymmetric (or nonlinear) response to shocks in the presence of

an occasionally binding constraint. A shock that causes the constraint to bind causes households to

lower bond holdings slower than an increase the same shock with an opposite sign would lead to.

As a result, the realized upward movements in bonds is greater than the downward movements,

causing the economy to endogenously move away from the constraint. This move away from the

constraint would be realized even without a precautionary savings incentive.

Figure 8: Comparative statics
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The shaded area illustrates the constrained region. As the constraint becomes tighter the prob-

10For the solution of the Sudden Stops model, we set the TimetoEscapeBounds option equal to 60. That is, the al-
gorithm searches for a path for the endogenous variables for which the economy returns back to the reference regime
within 60 quarters from the current period. This is necessary because, with near-unit root debt dynamics, it can take a
long period of time for the economy to revert back to the reference regime.
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ability of the constraint being binding increases monotonically as shown in the left panel. When

the ϕ is less than 0, the deterministic steady state value of NFA (shown in orange) equals b∗. When

ϕ is higher than 0, the deterministic steady state value of NFA equals ϕ. The unconditional mean

of NFA increases with ϕ and it is always higher than the deterministic steady state of NFA as long

as the probability of the constraint being binding is non-zero.

B.3.11 Analytical solution under savings-under-uncertainty framework

The models we considered for the endowment model both in the main draft and in the appendix

do not feature analytical solutions under CRRA preferences. So, it is not possible to assess how

GLB solution compares to an analytical or true solution, although our premise is that GLB is nearly

identical to the true solution. To understand this issue better, we analyze how global and local solu-

tions compare to the true solution using Levhari and Srinivasan (1969) savings-under-uncertainty

framework, which features an analytical solution. We start with describing the model.

At each period t, a household either consumes his entire wealth bt or invests part of it using

a risky asset. Denoting consumption as ct, investment will then be bt − ct. The random return

on investment from the risky asset is given by an exogenous interest rate Rt. The objective of the

household then is to maximize

E

[

∞
∑

t=0

βt
c1−σt

1− σ

]

s.t. (74)

bt+1 = (bt − ct)Rt+1, (75)

where b0 is given and bt ≥ ct ≥ 0. The optimality conditions for this model is given as

c−σt = βEt
(

c−σt+1Rt+1

)

, (76)

bt+1 = (bt − ct)Rt+1, (77)

where log (Rt+1) = µ + σεεt+1, εt+1 ∼ (0, 1). This model is different from the other models we

considered in the main draft in that the true solution is a random walk, hence long-run averages

for variables in levels (consumption or investment) are not well-defined. However, we can solve

this model by detrending. In particular, we can normalize the variables by bt to give

x−σt = βEt
(

x−σt+1g
−σ
t+1Rt+1

)

, (78)
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gt+1 = (1− xt)Rt+1, (79)

where xt ≡ ct/bt and gt = bt/bt−1. Substituting the constraint into the Euler equation gives

x−σt = βEt
(

x−σt+1 (1− xt)
−σ R1−σ

t+1

)

. (80)

The model contains neither endogenous nor exogenous state variables. Thus, the decision rule is

a constant: xt = λ, and the exact analytical solution is given by

λEXA = 1− β1/σ exp

(

1− σ

σ
µ

)

exp

(

(1− σ)2

σ

σ2ε
2

)

. (81)

For the solution of the model, note that variance matters but persistence does not, and as we

mentioned above, there is no long-run average of the model in levels. The ones in detrended form

are well defined. Now we discuss how we can derive the global and local approximations for this

model.

Global solution The global solution to this problem can easily be derived by implementing FiPIt for

the Euler Equation (80). The solution will start with a guess of xj in iteration j to be plugged in to

the right hand side of the Euler equation to derive an updated guess of xj+1. If ||xj+1−xj ||< ǫ then

the solution is achieved, otherwise we update our guess with xj+1 and iterate to convergence. We

found that for all parameterizations, the GLB solution converges to the exact analytical solution.

First-order approximation and risk-adjusted steady state solution To derive the first-order ap-

proximation (1OA) and RSS solution we follow the following steps.

Step 1: Substitute the decision rule into the equilibrium condition to give

F (σε) ≡ βEt (exp ((1− σ) (µ+ σεεt+1)))− (1− λ)σ = 0. (82)

Step 2: For RSS, take a second-order approximation with respect to σε to give

0 = F (0) +
σ2ε
2
F ′′ (0) , (83)

= β exp ((1− σ)µ)

(

1 + (1− σ)2
σ2ε
2

)

− (1− λ)σ . (84)
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Rearranging gives the following 1OA and analytical RSS solution:

λ1OA = 1− β1/σ exp

(

1− σ

σ
µ

)

, (85)

λRSS = 1− β1/σ exp

(

1− σ

σ
µ

)(

1 + (1− σ)2
σ2ε
2

)1/σ

. (86)

Higher-order perturbation approximation Define the decision rule as xt = f (σε). The second-

order approximation (2OA) around the deterministic steady state is given by λ2OA = f (0) +

f ′′ (0) σ
2
ε

2 (since odd-derivatives are generically zero). The methodology proceeds as follows:

Step 1: Substitute the decision rule into the equilibrium condition to give

F (σε) ≡ βEt exp ((1− σ) (µ+ σεε))− (1− f (σε))
σ = 0, (87)

Step 2: F (0) = 0 gives

β exp ((1− σ)µ)− (1− f (0))σ = 0, (88)

f (0) = 1− β1/σ exp

(

1− σ

σ
µ

)

(89)

Step 3: F ′′ (0) = 0 gives

0 = (1− σ)2 + σ (1− f (0))−1 f ′′ (0) , (90)

f ′′ (0) = −(1− σ)2

σ
(1− f (0)) . (91)

Combining these results gives

λ2OA = 1− β1/σ exp

(

1− σ

σ
µ

)

(

1 +
(1− σ)2

σ

σ2ε
2

)

. (92)

In fact, perturbation methods produce a Taylor expansion of the exact decision rule. Thus, the 4OA

is given by

λ4OA = 1− β1/σ exp

(

1− σ

σ
µ

)(

1 + θσ2ε +
θ2

2
σ4ε

)

, (93)

where θ ≡ (1− σ)2 /(2σ).
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To illustrate how local solutions differ from the analytical (or GLB) solution, we plot the savings

rate implied by each solution as we vary the variance parameter σε (see panel (a) in Figure 9).11 We

also plot the ratio of the savings rate implied by the GLB solution to each of the local solution

(see pane (b)). In the graphs, the vertical black line corresponds to the level of σε above which

the implied GLB savings rate becomes infeasible. This is the point at which the GLB savings rate

crosses the horizontal red line in panel (a). At this level of σε implied savings rate reaches 1, hence

consumption equals 0. Further increases in σε would imply negative consumption. As can be seen

from both panels, 1OA, 2OA or RSS solutions all imply significantly different savings rate relative

to the GLB solution for a wide range of σε values. 4OA solution is quite close to the GLB solution

for virtually all σε values.

To further illustrate the discrepancy implied by local solutions relative to the GLB, we next plot

the simulated series for the logarithm of bond decisions and logarithm of consumption for σε value

set to 0.4601. With this parameterization, the implied savings rate for each solution is as follows:

GLB=0.99577, 1OA=0.70314, RSS=0.86118, 2OA=0.94825, and 4OA=0.99045. Figure 10 show the

bond decisions on the left and consumption on the right.12 Rearranging the budget constraint and

using the optimality decision rule for consumption, we can show that the bond decision behaves

as a random walk with drift

log(bt+1) = log(1− λ) + log(bt) + log(Rt). (94)

With the exception of 4OA, the drift component (log(1− λ)) yields large differences for local solu-

tions relative to the GLB.

The analysis in this section shows that GLB is identical to the true analytical solution, but all the

local solutions with the exception of 4OA imply large differences relative to the analytical solution.

However, the accuracy of 4OA we see for this model does not extend to the models in the main draft,

because in those models, the center of approximation is not known with local approximations,

hence they need to be induced by imposing DEIR.

11We set the other parameters as follows. β is 0.94, mean interest rate is 1.7. As we increase σε, we recompute
µ = 1.7− σ2

ε/2, so that we implement a mean preserving spread increase in interest rate.
12For each simulation, the time interval is annual and we start with the same initial conditions and burn the first 200

years.
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Figure 9: Implied savings rate
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Note: These graphs show the implied savings rate 1 − λ in panel a and the ratio of the GLB savings rate to the local

solution savings rate in panel b. The vertical line in each chart shows the level of σε above which the savings rate becomes

infeasible for the analytical solution. This point is reached when the GLB line crosses the red horizontal line in panel a.

C The RBC and Sudden Stops models

This section presents a complete description of the Sudden Stops model used for local solutions.

The RBC model has the same set of optimality conditions but shuts down the occasionally bind-

ing borrowing constraint. The equations are written consistent with using a Dynare compatible

toolbox. There are 26 variables

bt+1, cat, ct, gt, it, lt, λt, r
k
t , Rt, tbt+1, νt, wt, y

gdp
t , yt, st, qt, kt+1, bt+1

εAt , ε
P
t , ε

r
t , µt, ebt+1, x1,t, x2,t, levt,
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Figure 10: Time-series simulation of bond decisions and consumption

Note: This figure shows the simulated series of bond decisions and consumption in log terms for all solution methods.

and 26 equations, (95)—(119), given below. Equation (95) is the occasionally binding constraint,

written using a max operator. The first term inside the max operator shows the value of capital

consistent with the borrowing constraint binding. The second term shows the optimal value of

capital derived from the capital Euler equation (equation 98) and the capital demand equation

(equation 103) when the Lagrange multiplier on the borrowing constraint, µt = 0.

Borrowing constraint:

kt+1 = max





φRt

(

wtlt + eε
P
t pνt

)

− bt+1

Rt

κqt
,

(

x2,t
x1,t

) 1
α−1



 (95)

Aggregate resource constraint:

ct + it + gt = bt − bt+1/Rt + yt − eε
P
t pνt − (Rt − 1)φ

(

wtlt + eε
P
t pνt

)

(96)

Bond Euler equation:

1 = βRtEtλt+1/λt + µt/λt (97)

Capital Euler equation:

1 + a

(

kt − kt−1

kt−1

)

= βEt
λt+1

λt

(

rkt+1 + 1− δ + a

(

kt+1 − kt
kt

)

+
a

2

(

kt+1 − kt
kt

)2
)

+
µt
λt
κqt (98)
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Marginal utility of consumption and labour supply:

λt (1 + g) =

(

ct − θ
lωt
ω

)−γ

, (99)

λtwt = θlω−1
t (ct − θlωt /ω) (100)

Capital accumulation:

it = δkt−1 + (kt+1 − kt)

(

1 +
a

2

(

kt+1 − kt
kt

))

(101)

Labour demand:

wt = ηAeε
A
t kαt l

η−1
t ν1−α−ηt − (Rt − 1)φwt −Rtφwtµt/λt (102)

Capital demand:

rkt = αAeε
A
t kα−1

t lηt ν
1−α−η
t (103)

Intermediate input demand:

eε
P
t p = (1− α− η)Aeε

A
t kαt l

η
t ν

−α−η
t − (Rt − 1)φeε

P
t p−Rtφe

εPt pµt/λt (104)

Debt-elastic interest rate:

Rt = eε
R
t (1 + r) + ψ

(

e

(

b∗

ygdp
−

bt+1

ygdp

)

− 1

)

(105)

Auxiliary equations:

x1,t = βEt
λt+1

λt
αAeε

A
t lηt+1ν

1−α−η
t+1 , (106)

x2,t = 1 + a

(

kt − kt−1

kt

)

− βEt
λt+1

λt

(

1− δ + a

(

kt+1 − kt
kt

)

+
a

2

(

kt+1 − kt
kt

)2
)

(107)

Excess borrowing:

ebt = bt+1/Rt −Rtφ
(

wtlt + eε
P
t pνt

)

+ κqtkt+1 (108)
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Current account, net exports and domestic savings:

cat = −bt+1 + bt, (109)

nxt = yt − eε
P
t pνt − ct − it − gt, (110)

st = (−bt + bt+1) + it (111)

GDP and production function:

ygdpt = yt − eε
P
t pνt (112)

yt = Aeε
A
t kαt l

η
t ν

1−α−η
t (113)

Price of capital and government spending:

qt = 1 + a

(

kt − kt−1

kt−1

)

, (114)

gt = g × ct (115)

Leverage:

levt =

bt+1

Rt
−Rtφ

(

wtlt + eε
P
t pνt

)

qtkt+1
(116)

Shocks:

εAt = ρaε
A
t−1 + σaǫ

1
t + σarǫ

3
t (117)

εPt = ρpε
P
t−1 + σpǫ

2
t (118)

εrt = ρrε
r
t−1 + σarǫ

1
t + σrǫ

3
t , (119)

where
(

ǫ1t , ǫ
2
t , ǫ

3
t

)

are mean zero i.i.d. random variables with variance-covariance matrix I3.

C.1 FiPIt Global Solution Method

This section provides a short description of the fixed-point iteration method we used to solve the

RBC and Sudden Stops models. This method is developed by Mendoza and Villalvazo (2020) (see

article for full details, a users guide and Matlab codes). FiPIt has two major advantages over other
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global methods that are used for solving models with more than one endogenous state variable: It

solves Euler equations without requiring a non-linear solver (unlike standard time iteration meth-

ods that need to solve them as a non-linear system) and it uses simple multi-linear interpolation

(unlike the endogenous grids method that needs interpolation techniques for irregular grids such

as Delaunay interpolation). We summarize the algorithm focusing on the Sudden Stops model.

The RBC algorithm is the same but with the κ parameter set high enough so that the collateral

constraint never binds (in which case the algorithm never enters step 5 in the description provided

below).

The FiPIt method is in the class of “Euler equation” methods that solve for recursive equilibria

using a model’s optimality conditions in recursive form. For the RBC and SS models we solved, the

state space consists of two endogenous states, [b, k], and three exogenous states ε =
[

εA, εR, εP
]

.13

The optimality conditions in recursive form are the following:

(

c(b, k, ε)− L(b, k, ε)

ω

)−σ

=λ(b, k, ε)(1 + τ) (120)

αAkγL(b, k, ε)α−1υ(b, k, ε)η =w(b, k, ε)

(

1 + φ(R− 1) +
µ(b, k, ε)

λ(b, k, ε)
φR

)

(121)

αAkγL(b, k, ε)αυ(b, k, ε)η−1 =p

(

1 + φ(R− 1) +
µ(b, k, ε)

λ(b, k, ε)
φR

)

(122)

λ(b, k, ε) =RβE[λb′(b, k, ε), k′(b, k, ε), ε′)] + µ(b, k, ε) (123)

λ(b, k, ε) =
1

q(b, k, ε)
βE[λ[b′(b, k, ε), k′(b, k, ε), ε′)(d(b′(b, k, ε), k′(b, k, ε), ε′)

(124)

+ q′(b′(b, k, ε), k′(b, k, ε), ε′))] + µ(b, k, ε)κ

d(b, k, ε) =γAkγ−1L(b, k, ε)αυ(b, k, ε)− δ
a

2

(k′(b, k, ε)− k)2

k2
(125)

q(b, k, ε) =1 + a

(

k′(b, k, ε)− k

k

)

(126)

w(b, k, ε) =L(b, k, ε)ω−1(1 + τ) (127)

(1 + τ)c(b, k, ε) + i(b, k, ε) =eε
A

F (k, L, υ)− eε
P

pυ − φ(R− 1)(wL(b, k, ε) (128)

+ eε
P

pυ(b, k, ε))− qbb′(b, k, ε) + b

where i(b, k, ε) = δk+(k′(b, k, ε)−k)
[

1 + a
2

(

k′(b,k,ε)−k
k

)]

, F (k, L, υ) = AkγLαυη with 0 ≤ α, γ, η ≤

13We used the same method to solve the endowment model, in which case bonds are the only endogenous state
variable and endowment income is the only exogenous shock. The model reduces to a single recursive equilibrium
condition, which is the bonds Euler equation (see Mendoza and Villalvazo (2020) for details).
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1, α+ γ+ η = 1, and A > 0. Finally, 1/qb ≡ eε
R
R, and q denotes Tobin’s q. The algorithm proceeds

in the following eight steps:

1. Define the discrete state space: We use a grid of bonds with M nodes and a grid of capital

withN nodes. The size of the grids for the shocks depends on the approach used to construct

the Markov processes of the shocks. In the paper, we used the same Markov processes as in

Mendoza (2010), which feature two realizations for each of the three shocks. Hence, the state

space has M ×N × 8 elements.

2. Initial conjectures for iteration j: For each iteration j, define conjectured functions for the

price of capital q̂j(b, k, ε), the decision rule for bonds B̂j(b, k, ε),and the multiplier ratio ˆ̃µj(b, k, ε)

which is the ratio of the multiplier on the borrowing constraint, µ, to the multiplier on the

budget constraint, λ. For the first iteration, the conjectures are: ˆ̃µj(b, k, ε) = 0, q̂j(b, k, ε) = 1

andBj(b, k, ε) = b (i.e., the credit constraint does not bind, Tobin’s q is at the value consistent

with a capital decision rule equal to the current state, and the bonds decision rule is also set

equal to the current state).

3. Compute iteration-j implied decision rules. The conjectures set above and the recursive

equilibrium conditions imply the following decision rules:

Kj(b, k, ε) =
k

a
[q̂j(b, k, ε)− 1 + a] (129)

ij(b, k, ε) = (Kj(b, k, ε)− k)

[

1 +
a

2

(

Kj(b, k, ε)− k

k

)]

− δk (130)

vj(b, k, ε) =

{

eε
A
Akβη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + ˆ̃µj(b, k, ε)φR]

}

ω
ω(1−η)−α

, (131)

Lj(b, k, ε) =

{

α

η(1 + τ)
pvj((b, k, ε)

} 1
ω

, (132)

yj(b, k, ε) = eε
A

AkβLj(b, k, ε)
αvj(b, k, ε)

η, (133)

(1 + τ)cj(b, k, ε) = yj(b, k, ε)− pvj(b, k, ε)− φ(R− 1) [(1 + τ)Lj(b, k, ε)
ω + pvj(b, k, ε)]

− ij(b, k, ε)−
B̂j(b, k, ε)

R
+ b. (134)

4. Solve for “new” (i.e., j + 1) decision rules assuming the credit constraint does not bind.

Assume ˆ̃µj+1(b, k, ε) = 0, and proceed as follows:

• The optimality conditions for factor allocations and the production function can be
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solved separately from the rest of the solution to obtain:

vj+1(b, k, ε) =

{

eε
A
kβη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1)]

}

ω
ω(1−η)−α

(135)

Lj+1(b, k, ε) =

{

α

η(1 + τ)
pvj+1(b, k, ε)

} 1
ω

(136)

yj+1(b, k, ε) = eε
A

AkβLj+1(b, k, ε)
αvj+1(b, k, ε)

η (137)

• cj+1 is solved directly from the bonds Euler equation (this step uses fixed-point itera-

tion):

cj+1(b, k, ε)

=

{

βRE

[(

cj(B̂j(b, k, ε),Kj(b, k, ε), ε
′)−Lj(B̂j(b, k, ε),Kj(b, k, ε), ε

′)ω

ω

)−σ]}− 1
σ

+
Lj+1(b, k, ε)

ω

ω
(138)

Bi-linear interpolation of the labor and consumption functions is used to determine the

values of cj(B̂j(b, k, ε),Kj(b, k, ε), ε
′) and Lj(B̂j(b, k, ε),Kj(b, k, ε), ε

′).

• Solve for Bj+1(b, k, ε) using the resource constraint:

Bj+1(b, k, ε)/R = yj+1(b, k, ε)− pvj+1(b, k, ε)− φ(R− 1) [(1 + τ)Lj+1(b, k, ε)
ω + pvj+1(b, k, ε)]

− ij(b, k, ε)− (1 + τ)cj+1(b, k, ε) + b (139)

• Evaluate if the collateral constraint binds. If

Bj+1(b, k, ε)

R
− φR [(1 + τ)Lj+1(b, k, ε)

ω + pvj+1(b, k, ε)] + κq̂j(b, k, ε)Kj(b, k, ε) ≥ εb

(140)

for small εb, the constraint does not bind at the point (b, k, ε), the functions with j + 1

subscripts are saved, and the algorithm jumps to step 6. Otherwise, the constraint binds,

the j + 1 functions are discarded and we move to Step 5.

5. Solve for j + 1 decision rules when the credit constraint binds. Now we impose that the

collateral constraint holds with equality for the coordinate (b, k, ε) at which the constraint

binds in the previous step. Since q̂j(·) has not changed, we use the same j-indexed functions

53



K ′
j(·) and ĩj(·) as before. This step requires a non-linear solver to solve for the values of

Lj+1(·), vj+1(·), cj+1(·), Bj+1(·), µ̃j+1(·) by solving the following equation system formed by

the recursive optimality conditions, expressed as a function of µ̃ for simplicity:14

v(µ̃) =

{

eε
A
Akβη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + µ̃φR]

}

ω
ω(1−η)−α

(141)

L(µ̃) =

{

α

η(1 + τ)
pv(µ̃)

} 1
ω

(142)

B(µ̃)

R
= −κq̂jKj + φRpv(µ̃)

[

1 +
α

η

]

(143)

(1 + τ)c(µ̃) = eε
A

AkβL(µ̃)αv(µ̃)η − pv(µ̃)− φ(R− 1)pv(µ̃)

[

1 +
α

η

]

− ij −
B(µ̃)

R
+ b (144)

In addition to the above four equations, the non-linear system also includes the following

condition for µ̃j+1(b, k, ε) that represents the Euler equation for bonds:

µ̃j+1(b, k, ε) = 1−
βRE

[

(

cj(B̂j(b, k, ε),Kj(b, k, ε), ε
′)− Lj(B̂j(b,k,ε),Kj(b,k,ε),ε

′)ω

ω

)−σ
]

(

c(µ̃j+1(b, k, ε))− L(µ̃j+1(b,k,ε))ω

ω

)−σ (145)

The numerator in the right-hand-side of this expression is using again fixed-point iteration

because it uses j-indexed functions to compute the entire expected marginal utility term. The

values of the functions cj(B̂j(b, k, ε),Kj(b, k, ε), ε
′) and Lj(B̂j(b, k, ε),Kj(b, k, ε), ε

′) are again

determined by bi-linear interpolation.

Algebraic manipulation of the five equations in the nonlinear system reduces the system to

14The non-linear solver is needed only because when the constraint binds the value of µ̃ needs to be solved together
with the allocations and prices. If the multiplier could be solved separately, as it is the case for a large class of credit
constraints, FiPIt does not need a non-linear solver anywhere (see Mendoza and Villalvazo (2020) for details).
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a single nonlinear equation in µ̃j+1(.) for each coordinate (b, k, ε) where the constraint binds:

(146)

(1− µ̃j+1(·))
{

C
ω

(1−η)ω−α

1

[

α

1 + φ(R− 1) + µ̃j+1(·)φR

]
ηω+α

(1−η)ω−α

−
[

αC1

1 + φ(R− 1) + µ̃j+1(·)φR

] ω
(1−η)ω−α

C2

−
(

ij(·)− κq̂j(·)Kj(·)− b

1 + τ

)

}−σ

= βRE

[(

cj(B̂j(·),Kj(·), ε′)−
Lj(B̂j(·),Kj(·), ε′)ω

ω

)−σ]

where:

C1 ≡
(

1

1 + τ

)1−η

eε
A

Akβ
(

η

αp

)η

and C2 ≡
1

ω
+
η

α
+ φ

(

1 +
η

α

)

(2R− 1). (147)

Once µ̃j+1(b, k, ε) is solved, the rest of the functions can be updated to their j+1 forms using

the previous equations as follows:

vj+1(b, k, ε) =

{

eε
A
Akβη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + µ̃j+1(b, k, ε)φR]

}

ω
ω(1−η)−α

(148)

Lj+1(b, k, ε) =

{

α

η(1 + τ)
pvj+1(b, k, ε)

} 1
ω

(149)

Bj+1(b, k, ε) = R

{

−κq̂j(b, k, ε)Kj(b, k, ε) + φRpvj+1(b, k, ε)

[

1 +
α

η

]}

(150)

(151)
(1 + τ)cj+1(b, k, ε) = eε

A

AkβLj+1(b, k, ε)
αvj+1(b, k, ε)

η

− pvj+1(b, k, ε)− φ(R− 1)pvj+1(b, k, ε)

[

1 +
α

η

]

− ij(b, k, ε)−
Bj+1(b, k, ε)

R
+ b

The functions with j + 1 subscripts are saved, and we move to Step 5.

6. Complete iteration-j solutions for the entire state space: Return to Step 3 and repeat for all

triples (b, k, ε) in the state space.
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7. Compute the new capital pricing function: The new pricing function is solved for by apply-

ing the new decision rules for cj+1(·), Lj+1(·), b′j+1(·), µ̃j+1(·) to the Euler equation for capital

and solving it so as to obtain the following analytical solution for qj+1(b, k, ε):

qj+1(b, k, ε)

=

βEt

[

(

cj+1

(

b′j+1(·), k′j(·), ε′
)

− Lj+1(b′j+1(·),k
′

j(·),ε
′)

ω

ω

)−σ
[

d′ (·) + q̂j

(

b′j+1(·), k′j(·), ε′
)]

]

(

cj+1(·)− Lj+1(·)ω

ω

)−σ
(1− κµ̃j+1(·))

(152)

where

d′
(

b′j+1(·), k′j(·), ε′
)

= γA′k′j(·)γ−1Lj+1

(

b′j+1(·), k′j(·), ε′
)α
vj+1

(

b′j+1(·), k′j(·), ε′
)η

− δ +
a

2

(k′j(b
′
j+1(·), k′j(·), ε′)− k′j(·))2

k′j(·)2

This step also uses fixed-point iteration, because the capital price used in the right-hand-side

of (152) is the conjecture set in step 2, and since all the functions in the right-hand-side are

known, the equation solves directly for qj+1(b, k, ε). The values of cj+1

(

b′j+1(·), k′j(·), ε′
)

),

Lj+1

(

b′j+1(·), k′j(·), ε′
)

and q̂j

(

b′j+1(·), k′j(·), ε′
)

are determined by bi-linear interpolation.

The value of d′(·) is obtained by applying bi-linear interpolation to evaluateLj+1

(

b′j+1(·), k′j(·), ε′
)

,

vj+1

(

b′j+1(·), k′j(·), ε′
)

and k′j(b
′
j+1(·), k′j(·), ε′). Notice that the decision rule setting the value

of bt+1 at which all these functions are interpolated is a j+1-indexed function but over the

capital dimension we are still using the j-indexed decision rule.

8. Check convergence: Evaluate the convergence of the relevant functions using the following

criteria, for small εf :

||qj+1(b, k, ε)− q̂j(b, k, ε)||≤ εf (153)

||Bj+1(b, k, ε)− B̂j(b, k, ε)||≤ εf (154)

||µ̃j+1(b, k, ε)− ˆ̃µj(b, k, ε)||≤ εf (155)

If all of these conditions hold, the recursive equilibrium of the Sudden Stops model has been

solved. If convergence fails, update the conjectured functions using a convex combination of

the last conjectures and the new functions to dampen possible overshooting using:

x̂newj (b, k, ε) = ρx̂j(b, k, ε) + (1− ρ)xj+1(b, k, ε) (156)
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for x = q,B, µ̃ and some −1 ≤ ρ ≤ 1. Set x̂j(b, k, ε)=x̂
new
j (b, k, ε) for all functions, return to

step 2 and repeat until convergence is attained.

C.2 Calibration of the RBC and Sudden Stops models

Calibration of the RBC model follows the approach used for the Sudden Stops model presented in

the main paper except for a few variables (see Table 7). κ is set to a very low value so the collateral

constraint never binds. We set β and the lower bound of the NFA grid so the model solution is close

to the target data moments, and express ϕ as a ratio of that lower bound to ydss. Setting β = 0.92

and ϕ = −0.764 (implied by a NFA lower bound of -300) we obtain E(b/y) = −0.372 (v. -0.44 in

the data) and a variability ratio of consumption to GDP of 1.29 (v. 1.25 in the data).

For the Sudden Stops model, we set κ = 0.2 as in Mendoza (2010) and set the lower bound

of the bonds grid to solve the SS model at -200 (i.e., a tighter ϕ than in the RBC solution), which

yields bdss/ydss = −0.51, because strong precautionary savings due to the credit constraint imply

that bt+1/yt never falls below −0.19 in the SS model’s ergodic distribution. Hence, we can increase

ϕ so as to use fewer nodes in the bond grid to make the algorithm more efficient.

The TFP, price and interest-rate shock processes follow the same diagonal VAR structure and

calibration structure described in Section 3 of the paper and taken from Mendoza (2010). In the GLB

solution of both the RBC and SS model, the shocks are approximated using symmetric two-point

Markov processes defined with the Simple Persistence Rule. These processes are defined by a set E

that includes all triples of realizations of the shocks εt = (εAt , ε
R
t , ε

P
t ), and a matrix π that includes

the transition probabilities of moving from εt to εt+1. Each shock has two realizations equal to

+/- one-standard-deviation of their corresponding data counterparts: εA1 = −εA2 = 0.0134, εR1 =

εR2 = 0.0196, εP1 = −εP2 = 0.0335, so E contains 8 triples. The Simple Persistence Rule produces

an 8x8 matrix π which yields variances, correlations and autocorrelations for all the shocks that

match those in the data, except that the procedure requires shocks that are correlated (i.e., εA and

εR) to have the same autocorrelation. As noted above, we set ρA = ρR = 0.555. This restriction

is immaterial, because the two shocks have very similar autocorrelation coefficients in the data

(ρA = 0.537, ρR = 0.572).

C.3 Quantitative results of the RBC Model

This section presents quantitative results of the RBC model without the occasionally binding col-

lateral constraint. We first highlight additional details on the solution method, describe the cali-
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Table 7: Calibration of the RBC Model

Notation Parameter/Variable Value

1. Common parameters
σ Coefficient of relative risk aversion 2.0
R Gross world interest rate 1.0857
α Labor share in gross output 0.592
γ Capital share in gross output 0.306
η Imported inputs share in gross output 0.102
δ Depreciation rate of capital 0.088
ω Labor exponent in the utility function 1.846
φ Working capital constraint coefficient 0.2579
a Investment adjustment cost parameter 2.75
τ Consumption tax 0.168
κ Collateral constraint coefficient 0.20
ydss GDP at the deterministic steady state 396

2. RBC global solution parameters
β Discount factor 0.920
ϕ Ad-hoc debt limit as a share of ydss −0.758

3. RBC local solution parameters
Common Parameters
β Discount factor 0.9211
bdss/ydss NFA/GDP at the deterministic steady state −0.758

Baseline Calibration
ψ Inessential DEIR coefficient 0.001

Targeted Calibration
ψ DEIR coefficient for 2OA 0.0109
ψ DEIR coefficient for RSS 0.008

Note: 2OA and RSS denote the second-order and risky-steady state solutions, respectively.

bration parameters and then present the results.

We solve the RBC model using the same methods as the Sudden Stops model described in the

main paper. For the GLB solution, we use FiPIt with a state space consisting of grids of k and b

with 30 and 80 nodes, respectively. The algorithm iterates to convergence on the decision rule for

bonds and the pricing function for capital. Mendoza and Villalvazo (2020) provide full details and

Matlab code.

For local solutions, the DEIR function depends on NFA ratios to steady-state GDP (ydss):

1 + rt = eε
R

R̄+ ψ

[

e
B∗

ygdp
−

bt+1

ydss − 1

]

, (157)

The local model is calibrated such thatB∗/ygdp = ϕ = −0.758, the deterministic steady state bond-

to-GDP ratio in the GLB model. The elasticity of the interest rate with respect to (small) percent
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deviations of bt+1 from bdss is ηr ≈ ψbdss/ydss. This facilitates comparisons across calibrations of

global and local solutions, since ydss is not equal to 1 (as in the endowment model).

C.3.1 Coefficients of RBC decision rules

This section gives the numerical values for the RBC decision rules based on local solutions. To

facilitate the comparison of coefficients, we report the decision rule coefficients for (kt+1 − k)/k

and (bt+1 − b)/|b| with the state vector as follows: xt ≡
[

(kt − k)/k, (bt − b)/|b|, εAt , εPt , εRt
]′

. The

coefficients of the RSS decision rules are given by

gk
x

=
[

0.8760 0.0039 0.0890 −0.0170 −0.5860
]

,

gb
x

=
[

0.1013 0.9980 0.3164 −0.0222 0.7237
]

.

For 2OA:

gk
x

=
[

0.8757 0.0006 0.0894 −0.0164 −0.5840
]

, (158)

gb
x

=
[

0.3387 0.9961 1.0643 −0.0748 1.0676
]

, (159)

gk
xx

=























−0.0733 −0.0008 0.0522 −0.0096 −0.3959

−0.0008 −0.0009 −0.0021 0.0002 −0.0014

0.0522 −0.0021 0.0532 −0.0080 −0.0943

−0.0096 0.0002 −0.0080 0.0013 0.0198

−0.3959 −0.0014 −0.0943 0.0198 0.9408























, (160)

gb
xx

=























−0.0373 0.0067 0.6618 −0.0588 0.8642

0.0067 0.0034 0.0103 −0.0013 0.9158

0.6618 0.0103 2.2172 −0.2094 1.2487

−0.0588 −0.0013 −0.2094 0.0181 −0.1721

0.8642 0.9158 1.2487 −0.1721 −3.1692























, (161)

gσσ =
[

0.0064 −0.0029
]

. (162)

Both the RSS and 2OA decision rules for capital have negligible coefficients on lagged NFA. A

relevant statistic on how the GLB decision rule for capital behaves in the bonds dimension is the
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following elasticity:
∂k′(b, k, ε)

b
× b

k

Excluding the state space in which the ad-hoc debt limit binds, the maximum value of this elasticity

is 0.088 and the mean value (computed using the ergodic distribution of the GLB solution) is 0.001.

These imply a negligible 1% change in bonds imply 0.001 % (mean) and 0.088% (max) change in k′.

C.3.2 Long-run moments and performance metrics

Table 8 presents unconditional moments of GLB, 2OA and RSS solutions. 1OA results are omitted

because, as with the endowment model, second- and higher-order moments are nearly identical to

those obtained with 2OA.15 First, we highlight the differences between the RBC and endowment

results in the GLB solutions: The RBC model predicts higher variability of consumption relative

to GDP and countercyclical net exports, both of which bring the model closer the data. These

changes are due to the presence of the working capital constraint and capital accumulation. The

former amplifies the effects of TFP and input price shocks, and induces higher imports of inputs

during expansions in response to the countercyclical interest-rate shocks. Capital accumulation

also incentivizes higher imports and external deficits during expansions, because of the positive

autocorrelation of the model’s three shocks: “Good times,” (high TFP, low input prices and in-

terest rates), have positive persistence, which makes it optimal to borrow from abroad to finance

investment due to the expectation that favorable realizations of the shocks will continue in the near

future. The countercyclical net exports due to these effects contributes to the excess variability in

consumption relative to GDP.

Compare next the RSS and 2OA solutions under the baseline calibration. The moments for

consumption, net exports and NFA differ slightly between these two solutions in the endowment

model, but in the RBC model the differences are larger. This is, however, consistent with the argu-

ments presented earlier, because brss and bdss differ sharply in the RBC model (36 v. -76 in percent

of GDP), while in the endowment model the difference was too small to matter. The first-order

coefficients of the decision rules are again similar for 2OA and RSS(see Appendix C.4.1), and the

second-order coefficients of the 2OA solution yield again negligible effects, but the large difference

between brss and bdss yields larger differences in long-run moments. This is particularly the case for

the means of the ratios of net exports and NFA to GDP, which are -4.2 and 73.2 percent respectively

15As reported in Appendix C.4.1, the first-order coefficients of the 1OA and 2OA decision rules are identical, and
those for higher-order terms in the 2OA solution, except the variance, are negligible again.
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in the 2OA solution v. -18.5 and 255.9 percent in the RSS solution.

Comparing GLB v. local solutions under the baseline calibration, the performance of the latter

at approximating the GLB solution for E(b/y) worsens markedly in the RBC model v. the endow-

ment model. In particular, while for the endowment model the 2OA and RSS methods produced

E(b/y) values of -0.28 and -0.45, relative to -0.41 in the GLB solution, in the RBC model they pro-

duce positive ratios of 0.73 and 2.56 respectively (i.e., the economy is a net lender) relative to -0.37 in

the GLB solution. Hence, the precautionary savings motive is sharply overstated by the local solu-

tions. This is partly because the RBC model includes interest-rate shocks, and we documented ear-

lier that when these shocks are included 2OA and RSS solutions overestimate significantly E(b/y),

even in the endowment model.16 These findings are also in line with results reported by de Groot

(2014), showing large, positive mean NFA-GDP ratios of 3.6 and 41 in the two stable equilibria

produced by the full RSS method for an endowment economy.17

For second- and higher-order moments, the results are largely in line with those obtained for

the endowment model. In particular, the local solutions overestimate the persistence of net ex-

ports. The GLB solution generates an autocorrelation of net exports around 0.71 whereas both local

methods generate values around 0.85. This occurs again because NFA is a near-unit root process

and small differences in its autocorrelation (0.997 in GLB v. 0.999 in 2OA and 0.998 in RSS) imply

large differences in the autocorrelation of net exports. Moreover, the local solutions overestimate

markedly again the variability of consumption, net exports and NFA relative to GDP.

Despite the differences in the moments for consumption, net exports and NFA, the cyclical

moments for investment, capital, imported inputs, labor and output are similar across solutions.

For investment and the capital stock, this occurs because, as shown in Mendoza (1991) the Fisherian

separation of investment from savings and consumption decisions that holds strictly under perfect

foresight, holds approximately in the RBC model. Intuitively, the RBC model is in the wide class

of models consistent with negligible equity premia, and in the limit with zero premium Fisherian

separation holds exactly. In addition, the GHH structure of preferences prevents consumption

and savings from affecting labor supply, and hence output and all factors of production. The near-

Fisherian separation property is verified in the negligible coefficients of the capital decision rules on

lagged NFA in the 2OA and RSS solutions and the near-zero numerical derivatives of the decision

rule for k′(b, k, ε) with respect to b in the GLB solutions (the largest of which was 0.0064).

16In the endowment model with σzR = 0.025, 2OA (RSS) yields E(b/y) of 0.806 (0.942), v. -0.38 in the GLB solution.
17Interestingly, de Groot (2014)’s analysis showing spurious multiplicity of the full RSS solution shows an additional

weakness of this method, namely that it can produce two stable solutions whereas the global solution is unique.
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Consider next the local solutions with targeted calibrations. Matching the GLB value of ρb

required ψ = 0.0109 and ψ = 0.008 in the 2OA and RSS solutions, respectively (see Table ??).

These are smaller than the value needed for the targeted calibrations of the endowment economy

(0.0469 for both 2OA and RSS). These differences, together with the different NFA-GDP ratios in

the deterministic steady states of the endowment and RBC models, imply values of ηr of 0.0083 and

0.0061 for the 2OA and RSS solutions of the RBC model respectively, lower by a factor of 3 than the

0.0239 for the endowment model solutions. This is the case mainly because the GLB solution of ρb

is higher in the RBC than in the endowment model (0.996 v. 0.977).

The lower ψ values for the targeted calibrations of the RBC model v. the endowment model

also imply that the mean of NFA can now rise above the deterministic steady state by non-trivial

margins, because the implicit cost of deviating from bdss is smaller. This is even more the case for

the targeted RSS solution, which has a lower ψ than the 2OA solution and thus allows E(b/y) to

rise by more (−0.397 v. −0.62 in the 2OA solution and −0.758 in the deterministic steady state).

The gap between brss and bdss in the RSS and 2OA solutions narrows in the targeted calibrations

relative to the baseline calibrations: brss is now −0.591, compared with −0.758 for bdss. With this

smaller difference, we recover the result that the decision rules for RSS and 2OA yield similar

second- and higher-order moments and similar impulse response functions, as shown below.

As with the endowment model, targeted calibrations generally yield moments closer to the GLB

solution than baseline calibrations. It is still the case, however, that targeted calibrations require

knowing the GLB solution for ρb. Targeted RSS performs markedly better than 2OA in that it yields

E(b/y) much closer to the GLB solution. 2OA yields −0.62, nearly 24 percentage points lower

than the global value (−0.38), whereas RSS yields about −0.4, just 1.3 percentage points below the

global value. The targeted RBC calibrations, however, do not get as close to the other GLB solution

moments as in the case of the endowment model, even with the RSS solution: The variability of the

NFA-GDP ratio is roughly half of what the GLB solution yields and its correlation with GDP is 3.5

times bigger. The leverage ratio is also much less variable and has a much lower correlation with

GDP. Fisherian separation continues to approximately hold, so moments for output, investment,

and factors of production are similar in the targeted calibrations and the GLB solution.

In terms of execution times, the local solutions take about 2/3rds of the time taken up by the

GLB solution (which takes 61 seconds). 1OA and 2OA have similar execution times and, as ex-

plained earlier, yield similar second- and higher-order moments.18 Local methods show similar

18Execution time reported for RSS solution reflects pre-processing and solution steps taken by Schmitt-Grohe-Uribe
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limitations in terms of accuracy as with the endowment model: they yield much larger Euler

equation errors (for capital and NFA with RSS and for capital with 2OA), the average (maximum)

differences in the decision rules for k and c are in the 1.7–1.9 (5.1–6.6) percent range, and those

for NFA are much larger at above 8 (50) percent for the average (maximum) respectively. These

large differences occur at the debt limit ϕ, because local methods do not handle it as occasionally

binding.

We conducted a robustness analysis of the results reported here by altering the values of some

of the model’s key parameters (see Appendix C.3.5). We examined scenarios increasing the vari-

ability of TFP, input price and interest-rate shocks one at a time, as well as increasing the coefficient

of relative risk aversion, the correlation between interest rate and TFP shocks, and the subjective

discount factor. As in the case of the endowment model, local solutions with a fixed value of ψ

calibrated to match ρb in the baseline GLB solution are not useful for analyzing the effects of any of

these parameter changes, because they yield solutions that differ sharply from the GLB solutions

for the same parameter variations. In particular, the local solutions continue to perform poorly

at capturing precautionary savings effects (i.e., the GLB solution for E(b/y) differs sharply from

what the local solutions yield).19 In addition, the local solutions underestimate the variability of

NFA and net exports, overestimate (underestimate) the correlations of NFA and consumption (net

exports) with GDP, and underestimate the autocorrelation of net exports. The local solutions are

closer to the GLB solutions if we re-calibrate ψ to target the new value of ρb from the GLB solution

for each new parameterization, but this implies obtaining the GLB solution first and in addition

the long-run moments are not as close to those of the GLB solution as with the endowment model.

C.3.3 Impulse response functions

Figures 11 and 12 show impulse response functions to a negative one-standard-deviation TFP

shock.20 All impulse responses return to zero in about 500 periods, but only the first 100 are shown

to highlight the differences across the solutions. As in the endowment model, 1OA and 2OA im-

pulse responses are nearly identical under baseline and targeted calibrations. This occurs because

again the first-order coefficients of decision rules are identical, and the second-order terms (other

than the variance terms) are quantitatively irrelevant.

toolbox. These times are indicative and alternative toolboxes, such as Dynare, might have faster solution times.
19The only exception was the experiment doubling the variability of input price shocks. This has minor effects be-

cause imported inputs are only 10 percent of gross output, so that their share in GDP net of working capital is 11 percent
(0.1/(1− 0.1) = 0.11). Thus, rising σǫp from 3.4 to 6.8 percent increases net income variability just a notch.

20We examine impulse response functions for interest-rate and input price shocks in Appendix D.
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Table 8: Long-run Moments: RBC model

Baseline Calibration Targeted Calibration
GLB 2OA RSS 2OA RSS

ψ = na 0.001 0.001 0.0109 0.008
Averages
E(y) 393.847 397.269 396.190 397.370 397.210
E(c) 264.021 295.599 342.850 259.519 265.420
E(i) 67.53 68.631 67.747 68.666 68.063
E(nx/y) 0.045 -0.042 -0.185 0.065 0.046
E(b/y) -0.372 0.732 2.559 -0.620 -0.397
E(lev.rat.) -0.286 -0.237 -1.100 0.400 0.295
E(υ) 42.649 43.009 42.852 43.021 42.975
E(L) 18.433 18.523 18.499 18.525 18.528

Variability relative to variability of GDP
σ(y) 0.040 0.039 0.039 0.041 0.040
σ(c)/σ(y) 1.291 1.752 1.412 1.252 1.212
σ(i)/σ(y) 3.386 3.448 3.493 3.305 3.388
σ(nx/y)/σ(y) 0.885 1.389 1.212 0.718 0.731
σ(b/y)/σ(y) 7.589 15.064 12.909 3.822 4.269
σ(lev.rat.)/σ(y) 3.614 7.149 6.084 1.884 2.053
σ(υ)/σ(y) 1.481 1.493 1.504 1.461 1.482
σ(L)/σ(y) 0.596 0.600 0.600 0.597 0.598

Correlations with GDP
ρ(y, c) 0.773 0.613 0.509 0.928 0.904
ρ(y, i) 0.640 0.632 0.628 0.660 0.648
ρ(y, nx/y) -0.227 -0.280 0.026 -0.476 -0.381
ρ(y, b/y) 0.090 0.207 -0.160 0.508 0.343
ρ(y, lev.rat.) 0.112 0.212 0.150 0.528 -0.366
ρ(y, υ) 0.834 0.831 0.830 0.839 0.835
ρ(y, L) 0.995 0.995 0.995 0.995 0.995

First-order autocorrelations
ρ(y) 0.830 0.825 0.820 0.841 0.853
ρ(b) 0.996 0.999 0.998 0.996 0.996
ρ(c) 0.885 0.947 0.918 0.874 0.862
ρ(i) 0.516 0.511 0.509 0.519 0.513
ρ(nx/y) 0.711 0.869 0.843 0.560 0.563
ρ(lev.rat.) 0.997 0.999 0.998 0.991 0.995
ρ(υ) 0.780 0.777 0.774 0.788 0.782
ρ(L) 0.808 0.803 0.799 0.819 0.810

Performance metrics
Time in sec. 61.0 2.5 40.6 2.5 39.6

ratio rel. to GLB 1.0 0.620 0.666 0.621 0.649
Max. Abs. b Euler eq. error 1.17E-07 1.33E-07 6.21E-04 1.43E-07 1.13E-03
Max. Abs. k Euler eq. error 3.84E-16 4.52E-07 8.92E-05 3.95E-07 6.59E-05
Decision rule diff b 0.089 (0.546) 0.089 (0.546) 0.081 (0.505) 0.081 (0.505)
Decision rule diff k 0.017 (0.051) 0.017 (0.051) 0.017 (0.049) 0.017 (0.049)
Decision rule diff c 0.019 (0.066) 0.019 (0.066) 0.019 (0.077) 0.019 (0.077)

GLB, 20A and RSS refer to the global, second-order and risky steady state solutions, respectively. σ(·) denotes the

coefficient of variation for variables in levels and the standard deviation for variables in ratios (nx/y, b/y and the leverage

ratio lev/rat.). Euler equation errors and decision rule differences are computed for all (b, z) pairs in the state space of

the GLB solution. Decision rule differences in the last two rows are differences between the local and GLB solutions in

percent of the latter. We report mean and maximum (maximum in brackets) differences conditional on bond values that

have positive probability in the ergodic distribution of the GLB solution.

64



Figure 11: RBC Impulse Response Functions to a Negative TFP shock: Baseline Calibration
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Note: GLB, 1OA, 2OA, RSS refer to the global, first-order, second-order and risky-steady state solution, respectively.

GLB impulse responses are forecast functions of the equilibrium Markov processes of the endogenous variables with

initial conditions set to E[b], E[k] and a value of TFP equal to a one-standard-deviation shock. Variables are plotted as

percent deviations from long-run means, with the exception of NFA and net exports, which are plotted as differences

relative to their long-run means (since these variables are measured as GDP ratios, and hence are already in percent).
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Figure 12: RBC Impulse Response Functions to a Negative TFP Shock: Targeted Calibration
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Note: GLB, 1OA, 2OA, RSS refer to the global, first-order, second-order and risky-steady state solution, respectively.

For the baseline calibration, RSS yields markedly different responses for b/y (panel a.), con-

sumption (panel b.) and the net exports-GDP ratio (nx/y) (panel c.) than 2OA. This is because, as

noted earlier, the gap between brss and bdss is large enough to affect the results. However, since

near-Fisherian separation still holds, the other variables (capital, investment, labor, imported in-

puts and GDP) display similar responses in the two local solutions.

2OA and RSS baseline impulse responses differ sharply form those of the GLB solution. In

particular, RSS overestimates the initial rise in b/y while 2OA underestimates it (see panel a.). In

fact, RSS yields above-average b/y for the first 17 periods, while in both GLB and 2OA the NFA

position is always below average. After the 15th period, the local solutions predict mean devia-

tions of b/y that remain uniformly above the GLB solution until mean reversion is attained. These

differences in NFA are reflected in differences in consumption and net exports (see panels b. and

c.). Initially, the mean deviation of consumption under the GLB solution is lower (higher) than in

the RSS (2OA) solution. After the 30th period, the GLB solution yields smaller mean deviations of
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consumption than the two local solutions and the opposite is observed for the net exports-GDP ra-

tio. Differences in investment, output and factors of production are smaller because near-Fisherian

separation holds, but still capital falls slightly more initially in the GLB than in the local solutions,

and then between periods 15 and 80 the GLB solution rises above the local ones. Since there is no

wealth effect on labor supply, these differences in capital dynamics yield qualitatively similar but

quantitatively smaller differences in labor, imported inputs and GDP.

Under the targeted calibrations (Figure 12), the gap between brss and bdss becomes again too

small to make a difference for 2OA and RSS impulse responses. Hence, our findings for the endow-

ment and RBC models indicate that, if the choice is limited to local methods, 1OA is simpler and

nearly identical to 2OA and RSS. Relative to the GLB solution, targeted local solutions still fail to

match important features of GLB impulse responses. Initial differences are smaller than with the

baseline solutions, and now b/y always shows negative deviations from its mean in all three solu-

tions. Beyond the 15th to 20th period, however, b/y, consumption and the net exports-GDP ratio

in the targeted solutions differ sharply from the GLB solution, with similar qualitative features as

with respect to the baseline solutions, and in some cases with even larger quantitative differences.

The reason for this is that, even tough the targeted calibrations force the same ρb across global and

local solutions, the required higher values of ψ imply that NFA has much less variability than in

the GLB solution (see Table 8). The higher volatility with similar persistence in the GLB solution

yield an impulse response for b/y that rises more initially and then drops more before returning

to zero in the long run. In contrast, in the local solutions the high ψ values make large mean de-

viations in b/y too costly, and hence b/y never falls more than about 2 percentage points below its

mean (v. about 7 percentage points in the GLB solution).

Next we complete the analysis of impulse response functions by adding to the analysis of TFP

shocks described above a discussion of the impulse response functions for the other shocks. Fig-

ures 13 to 16 show the impulse responses to one-standard-deviation positive interest rate and one-

standard-deviation negative imported input price shocks for both baseline and targeted calibra-

tions. The results generally echo the findings obtained with TFP shocks. Focusing on the baseline

calibration results, RSS yields markedly different responses for the NFA-GDP ratio (Panel a.), con-

sumption (Panel b.) and the net exports-GDP ratio (Panel c.) than 2OA. This is because, as noted

earlier, the gap between brss and bdss is sufficiently large to affect the results. However, since near-

Fisherian separation still holds, the other variables (capital, investment, labor, imported inputs and

GDP) display similar responses in the two local solutions.
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Figure 13: Impulse Response Functions to Interest Rate shocks: Baseline Calibration
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Note: These graphs show the impulse responses. GLB refers to global solution, 2OA refers to second-order solution,

RSS refers to risky-steady state solution.
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Figure 14: Impulse Response Functions to Interest Rate shocks: Targeted Calibration
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Note: These graphs show the impulse responses. GLB refers to global solution, 2OA refers to second-order solution,

RSS refers to risky-steady state solution.
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Figure 15: Impulse Response Functions to Imported Input Price shocks: Baseline Calibration
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Note: These graphs show the impulse responses. GLB refers to global solution, 2OA refers to second-order solution,

RSS refers to risky-steady state solution.
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Figure 16: Impulse Response Functions to Imported Input Price shocks: Targeted Calibration
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Note: These graphs show the impulse responses. GLB refers to global solution, 2OA refers to second-order solution,

RSS refers to risky-steady state solution.

Impulse responses produced by baseline 2OA and RSS solutions differ sharply form those of the

GLB solution. In particular, RSS overestimates the initial deviation of the NFA-GDP ratio relative to

71



its long-run mean while 2OA underestimates it (see panel a.). The local solutions remain uniformly

above the GLB solution until mean reversion is attained. These differences in NFA are reflected

in differences in consumption and net exports (see panels b. and c.). Differences in investment,

output and factors of production are less noticeable because near-Fisherian separation holds, but

still the capital stock declines slightly more initially in the GLB solution than in the local solutions.

Since there is no wealth effect on labor supply, these differences in capital stock dynamics translate

into qualitatively similar but quantitatively smaller differences in labor, intermediate goods and

GDP. Under the targeted calibrations, the gap between brss and bdss becomes again too small to

make a difference for the 2OA and RSS results, so impulse responses for both look about the same.

Relative to the GLB solution, the targeted local solutions still fail to match important features of the

GLB impulse response functions. Initial differences are smaller than with the baseline solutions,

and now the NFA-GDP ratio always shows negative deviations from its mean in all three solutions.

C.3.4 Spectral analysis

Figures 17 and 18 show nonparametric periodograms for key variables of the RBC model. As with

the endowment model, all the periodograms are downward sloping, indicating that lower frequen-

cies contribute more to the variability of the simulated data than business cycle and higher frequen-

cies. In contrast with the endowment model, however, 2OA and RSS yield different periodograms

for NFA, consumption and net exports under the baseline calibration, because in the RBC baseline

calibration the gap between brss and bdss is large enough for 2OA and RSS results to differ. The

other periodograms for 2OA and RSS are similar because of the near-Fisherian-separation prop-

erty noted earlier. Relative to the GLB solution, 2OA and RSS periodograms show differences that

are less stark than for the endowment model, but RSS still overstates the contribution of business

cycle and higher frequencies to the variability of NFA, and 2OA and RSS still overstate the contri-

bution of very low frequencies to the variability of NFA, consumption and net exports, as well as

the contribution of business cycle and higher frequencies to GDP variability.
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Figure 17: Spectral Density Functions for the RBC model: Baseline Calibration
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA, and RSS refer to the global,

second-order and risky-steady state solution, respectively.
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For the targeted calibrations, the 2OA and RSS periodograms are nearly identical, reflecting the

result that in this case the gap between brss and bdss is too small to affect the results. Relative to

the GLB solution, both RSS and 2OA yield periodograms that approximate their GLB counterparts

better than under the baseline calibration, in line with what we found for the endowment model.

The local methods underestimate slightly overall NFA and GDP variability. The periodograms for

investment and factors of production are very similar to those under both the GLB solution and

the local baseline calibrations, again because of the near-Fisherian-separation property.

In summary, the RBC model yields several key results in line with those obtained with the

endowment model: Local methods do poorly at quantifying the effects of precautionary savings.

Local methods with baseline calibrations yield very different results than the global solution for

consumption, net exports and NFA. Targeted calibrations perform better but targeting ψ requires

solving the model globally to determine the value of ρb, and this needs to be re-done for any pa-

rameter variation. 1OA and 2OA yield nearly identical results (other than first moments), because

they have identical first-order terms and the second-order terms of the 2OA solution (other than

the variance term) are quantitatively irrelevant.

The RBC results differ from the endowment model results in that 2OA and RSS solutions with

baseline calibrations differ significantly, because brss and bdss differ enough to yield non-negligible

differences in first-order coefficients of the decision rules. In the targeted calibrations, however, brss

and bdss are close again, and hence 2OA and RSS solutions are very similar. Thus, with targeted

calibrations, 1OA, 2OA and RSS solutions differ only in their first moments, while higher-order

moments, impulse responses and spectral density functions are nearly identical. This makes 1OA

the preferable local method if first moments are not being studied. A second important difference

relative to the endowment model results is that the targeted local solutions are less accurate at

approximating the GLB solution results for NFA, consumption and net exports. This is because

the required ψ values make fluctuations in NFA costly, which reduces NFA variability to about

half of that in the GLB solution. Investment, output and factor allocations are similar across global

and local solutions because Fisherian separation of savings and investment nearly holds.

C.3.5 Sensitivity Analysis

Table 9 compares the targeted calibration results shown in the paper (Panel (a)) with results for

experiments doubling the standard deviation of TFP, interest rate and input price shocks, one at a

time keeping the other two at their calibrated values (Panels (b), (c) and (d)). Doubling the vari-
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ability of imported input prices has minor effects on all the cyclical moments (compare Panels (a)

and (d)). This is because imported inputs are only 10 percent of gross output, so that their share

in GDP net of working capital costs is 11 percent (0.1/(1− 0.1) = 0.11). Thus, increasing σǫp from

3.4 to 6.8 percent increases net income variability just a notch.21

Comparing Panels (b) and (c) with Panel (a) yields findings similar to those obtained for the en-

dowment model: Higher TFP and interest rate variability increases income variability, and there-

fore induces a large increase in the average NFA-GDP ratio because of a stronger precautionary

savings motive, which the local solutions fail to capture (except the RSS solution for the higher

variability of interest rate shocks). In the global solutions, doubling the standard deviation of TFP

(interest rate) shocks increases the variability of GDP from 4 to 6.1 (5.7) percent, and the mean

NFA-GDP ratio rises by 45.6 (81.4) percentage points. The RSS and 2OA solutions yield similar

increases in GDP variability (again because Fisherian separation nearly holds), but underestimate

significantly the increase in the mean NFA-GDP ratio (except for the RSS case in Panel (c)). In

addition, the local solutions underestimate the variability of NFA and net exports, overestimate

(underestimate) the correlations of NFA and consumption (net exports) with GDP, and underesti-

mate the autocorrelation of net exports. In short, changing the variability of the shocks worsens

markedly the ability of the local solutions with targeted calibrations to approximate the global

solutions.

We also conducted robustness analysis for variations in the coefficient of relative risk aversion,

the correlation between interest rate and TFP shocks, and the subjective discount factor (see Table

10). The implications are similar as those described above. A higher CRRA coefficient or higher β

strengthen precautionary savings, resulting in much larger increases in the mean NFA-GDP ratio

with the global solutions than the local solutions with targeted calibrations. For changes in β

particularly, the local solutions remain unchanged because they cannot accommodate variations

in the discount factor that deviate from the inverse of the steady-state interest rate.

In summary, this sensitivity analysis of the RBC model shows that, as was the case with the

sensitivity analysis of the endowment model, local solutions with a fixed value of ψ (set to match

the value of ρb in the baseline GLB solution) are not useful for analyzing the effects of parameter

changes, because they yield solutions that differ sharply from GLB solutions for the same param-

eter variations. Keeping the local solutions close to the GLB solutions would require solving the

21With inelastic labor, one can show that 1.2% (0.112) of σ2
ǫp is added to the variance of GDP net working capital

costs.
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model globally each time a parameter is altered to pin down the corresponding new value of ρb,

and then re-targeting the value of ψ in the local solutions to match it.
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Figure 18: Spectral Density Functions for the RBC model: Targeted Calibrations
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA, and RSS refer to the global,

second-order and risky-steady state solution, respectively.
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Table 9: RBC Model Sensitivity Analysis: Higher Varibility of Shocks

(a) Targeted Calibration (b) High TFP Vol. (c) High Int. Rate Vol. (d) High Inp. Price Vol.
GLB 2OA RSS GLB 2OA RSS GLB 2OA RSS GLB 2OA RSS

Average
E(b/y) -0.372 -0.62 -0.397 0.149 -0.552 -0.231 0.422 -0.312 0.45 -0.339 -0.617 -0.39

Variability
σ(y) 0.04 0.041 0.04 0.061 0.064 0.062 0.055 0.061 0.058 0.041 0.043 0.042

σ(c)/σ(y) 1.291 1.268 1.212 1.206 1.214 1.163 1.109 1.302 1.008 1.3 1.263 1.213
σ(i)/σ(y) 3.386 3.32 3.388 2.406 2.359 2.378 4.652 4.272 4.479 3.275 3.191 3.254

σ(nx/y)/σ(y) 0.885 0.712 0.731 0.827 0.514 0.544 1.246 0.962 0.979 0.894 0.693 0.716
σ(b/y)/σ(y) 7.589 3.758 4.269 9.012 4.099 4.817 9.48 3.333 3.231 8.01 3.847 4.433

σ(lev.rat.)/σ(y) 3.614 1.849 2.053 4.269 1.995 2.306 4.518 1.647 1.465 3.809 1.887 2.129
σ(υ)/σ(y) 1.481 1.463 1.482 1.254 1.233 1.244 1.353 1.304 1.329 2.157 2.142 2.185
σ(L)/σ(y) 0.596 0.596 0.598 0.581 0.579 0.579 0.623 0.611 0.616 0.594 0.592 0.593

Correlations with GDP
ρ(y, c) 0.773 0.929 0.904 0.671 0.911 0.877 0.579 0.926 0.887 0.752 0.925 0.898
ρ(y, i) 0.64 0.661 0.648 0.726 0.773 0.753 0.558 0.55 0.533 0.634 0.658 0.644

ρ(y, nx/y) -0.227 -0.476 -0.381 0.034 -0.43 -0.278 0.023 -0.402 -0.157 -0.189 -0.456 -0.359
ρ(y, b/y) 0.09 0.511 0.343 0.025 0.595 0.429 -0.408 0.358 -0.427 0.087 0.527 0.365

ρ(y, lev.rat.) 0.112 -0.532 -0.366 0.041 -0.552 -0.401 -0.432 -0.459 0.362 0.106 -0.537 -0.378
ρ(y, υ) 0.834 0.839 0.835 0.9 0.908 0.904 0.893 0.904 0.898 0.732 0.734 0.732
ρ(y, L) 0.995 0.995 0.995 0.998 0.998 0.998 0.989 0.99 0.99 0.995 0.995 0.995

Autocorrelations
ρ(y) 0.83 0.841 0.832 0.732 0.763 0.747 0.905 0.913 0.903 0.827 0.84 0.831
ρ(b) 0.996 0.996 0.996 0.999 0.997 0.998 0.993 0.99 0.976 0.997 0.996 0.996
ρ(c) 0.885 0.873 0.862 0.896 0.879 0.872 0.847 0.865 0.791 0.893 0.879 0.87
ρ(i) 0.516 0.519 0.513 0.515 0.54 0.525 0.507 0.508 0.503 0.517 0.522 0.515

ρ(nx/y) 0.711 0.555 0.563 0.885 0.722 0.742 0.657 0.482 0.465 0.737 0.569 0.581
ρ(lev.rat.) 0.997 0.991 0.995 0.998 0.995 0.997 0.992 0.984 0.985 0.998 0.992 0.996

ρ(υ) 0.78 0.788 0.782 0.729 0.752 0.74 0.834 0.846 0.836 0.762 0.767 0.763
ρ(L) 0.808 0.819 0.81 0.723 0.753 0.738 0.869 0.88 0.868 0.807 0.82 0.811

Note: GLB, 20A and RSS refer to the global, second-order and risky-steady state solutions, respectively. Panel (a) shows the targeted calibration results. Panels (b),

(c) and (d) show results doubling the standard deviations of shocks to TFP, interest rate and input prices relative to their calibrated values.

78



Table 10: RBC Model Sensitivity Analysis: Changes in Preference Parameters and TFP-Interest Rate Correlation.

(a) Targeted Calibration (b) Higher CRRA (c) Higher TFP Int. Rate Corr. (c) Higher β
GLB 2OA RSS GLB 2OA RSS GLB 2OA RSS GLB 2OA RSS

Average
µ(b/y) -0.372 -0.62 -0.397 -0.255 -0.587 -0.324 -0.365 -0.613 -0.379 0.111 -0.62 -0.397

Variability
σ(y) 0.04 0.041 0.04 0.04 0.042 0.04 0.041 0.042 0.041 0.039 0.041 0.04

σ(c)/σ(y) 1.291 1.268 1.212 1.356 1.303 1.237 1.299 1.28 1.218 1.547 1.268 1.212
σ(i)/σ(y) 3.386 3.32 3.388 3.383 3.282 3.371 3.337 3.281 3.349 3.438 3.32 3.388

σ(nx/y)/σ(y) 0.885 0.712 0.731 0.904 0.705 0.729 0.789 0.673 0.687 1.208 0.712 0.731
σ(b/y)/σ(y) 7.589 3.758 4.269 9.133 4.392 5.01 7.47 3.739 4.206 13.178 3.758 4.269

σ(lev.rat.)/σ(y) 3.614 1.849 2.053 4.348 2.169 2.413 3.563 1.85 2.031 6.232 1.849 2.053
σ(υ)/σ(y) 1.481 1.463 1.482 1.481 1.448 1.475 1.469 1.449 1.469 1.495 1.463 1.482
σ(L)/σ(y) 0.596 0.596 0.598 0.597 0.595 0.597 0.6 0.599 0.601 0.599 0.596 0.598

Correlations with GDP
ρ(y, c) 0.773 0.929 0.904 0.713 0.921 0.888 0.791 0.939 0.916 0.541 0.929 0.904
ρ(y, i) 0.64 0.661 0.648 0.637 0.666 0.65 0.688 0.707 0.696 0.625 0.661 0.648

ρ(y, nx/y) -0.227 -0.476 -0.381 -0.121 -0.503 -0.385 -0.223 -0.562 -0.462 0.002 -0.476 -0.381
ρ(y, b/y) 0.09 0.511 0.343 0.083 0.548 0.369 0.106 0.524 0.351 -0.053 0.511 0.343

ρ(y, lev.rat.) 0.112 -0.532 -0.366 0.094 -0.565 -0.388 0.117 -0.55 -0.379 -0.056 -0.532 -0.366
ρ(y, υ) 0.834 0.839 0.835 0.834 0.843 0.836 0.841 0.846 0.842 0.831 0.839 0.835
ρ(y, L) 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996 0.996 0.995 0.995 0.995

Autocorrelations
ρ(y) 0.83 0.841 0.832 0.832 0.847 0.835 0.838 0.848 0.838 0.825 0.841 0.832
ρ(b) 0.996 0.996 0.996 0.996 0.997 0.997 0.996 0.997 0.997 0.997 0.996 0.996
ρ(c) 0.885 0.873 0.862 0.915 0.899 0.889 0.886 0.873 0.861 0.929 0.873 0.862
ρ(i) 0.516 0.519 0.513 0.517 0.525 0.515 0.517 0.52 0.513 0.511 0.519 0.513

ρ(nx/y) 0.711 0.555 0.563 0.821 0.605 0.612 0.774 0.568 0.573 0.883 0.555 0.563
ρ(lev.rat.) 0.997 0.991 0.995 0.998 0.994 0.997 0.998 0.992 0.996 0.999 0.991 0.995

ρ(υ) 0.78 0.788 0.782 0.781 0.793 0.784 0.783 0.791 0.784 0.777 0.788 0.782
ρ(L) 0.808 0.819 0.81 0.812 0.826 0.813 0.813 0.822 0.812 0.805 0.819 0.81

Note: GLB, 20A and RSS denote the global, second-order and risky-steady state solutions, respectively. Panel (a) shows the targeted calibrations results, (b) increases

the CRRA coefficient to 2.5 from 2.0, (c) increases the correlation of TFP and interest rate shocks to −0.8 from −0.669, and (c) increases the discount factor to 0.921

from 0.920.
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C.4 Quantitative results of the Sudden Stops model

The main results for the Sudden Stops model is presented in the main draft. Here we discuss

additional quantitative results.

C.4.1 Spectral analysis

Figure 19 shows the nonparametric periodograms for the DynareOBC and GLB solutions. As in

the endowment and RBC models, since all of the variables follow AR(1)-like processes, the peri-

odograms are generally downward sloping, indicating that low frequencies account for a larger

fraction of the variance of the variables than business cycle and higher frequencies. Moreover, the

periodograms for the GLB solution are very similar to those for the RBC GLB solution, in line with

the finding that the GLB impulse responses of the RBC and SS models are similar because the credit

constraint binds infrequently. The periodograms of the DynareOBC solution differ from those of

the 2OA and RSS solutions of the RBC model, so the local methods fail to match the property of

the GLB solutions that spectral densities of the RBC and SS models are similar.

The DynareOBC periodograms for NFA, consumption, net exports, investment and labor differ

sharply from the GLB results. Consumption has the highest variance in the GLB solution (121.4),

followed by DynareOBC-DEIR (119.2) and DynareOBC-βR < 1 with a much lower variance (65.8).

In contrast, the autocorrelation of consumption is highest in DynareOBC-DEIR (0.91) and about the

same in GLB and DynareOBC-βR < 1 (0.83). As a result, the consumption periodograms for the

latter two have the same intercept but the one for GLB is uniformly higher otherwise, while the pe-

riodogram for DynareOBC-DEIR has the highest intercept but is generally below the periodogram

for GLB. The DynareOBC solutions assign significantly less consumption variability to business

cycle and lower frequencies than the GLB solution. Net exports also show higher persistence in

the DynareOBC-DEIR solution while DynareOBC-βR < 1 and GLB have similar persistence, and

opposite from what we observe for consumption, the GLB solution has less overall variance and

less variability at all frequencies. Investment has higher variance and persistence in the GLB than

in the local solutions, and it has uniformly higher variability at all frequencies.

C.4.2 FiPIt v. DynareOBC speed comparisons

Table 11 provides additional comparisons of execution times for alternative specifications of the

DynareOBC and FiPIt solutions. As explained in the paper, on one hand, FiPIt suffers from the
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Figure 19: Spectral Density Functions for the Sudden Stops Model
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curse of dimensionality typical of GLB methods related to the number of state variables, and more

so if the model specification requires using a root-finder when the constraint binds. But once the

decision rules are solved for, generating stochastic time-series simulations is very fast. On the

other hand, the number of state variables is much less of an issue for DynareOBC, but execution
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time rises with the required length of extended perfect-foresight paths for each date-t solution,

the length of the full time-series simulation needed for convergence of long-run moments, and the

iterations required to compute the news-shocks sequences that implement the constraint.

Table 11: Execution Times: Sudden Stops model

Execution time

Baseline
GLB 268.0
DynareOBC 243.5

150,000 period simulations
GLB 268.0
DynareOBC 350.9
κ 0.3
GLB 137.3
DynareOBC 228.4

TFP shock only
GLB 41.7
DynareOBC 229.9

Note: This table shows the execution times with alternative assumptions for the GLB and DynareOBC with βR < 1

solutions. See Table 5 in the main text for the information on the hardware used to record these metrics.

The above tradeoffs between the two algorithms is illustrated by the results shown in Table 11.

First-order DynareOBC is much slower than FiPIt if the simulation length rises to 150,000 periods

(350 seconds v. 268 seconds) or with fewer exogenous shocks so that the curse of dimensionality is

less severe for the global solution (with TFP shocks only, FiPIt solves in 42 seconds v. 230 seconds

with DynareOBC). Increasing borrowing capacity by setting κ to 0.3 also results in FiPIt solving

much faster than DynareOBC (137 v. 228 seconds).

C.4.3 Financial premia & quintile analysis for Sudden Stops model

The financial premia for the FiPIt solution are computed using their recursive representations. For

each coordinate in the state space (b, k, ε), we used the recursive representation of equations (20)

and (21) of the paper and the recursive optimal decision rules to obtain the following expressions

for the shadow interest premium (SIP ), the equity premium (EP ), the risk component of the

equity premium (RP ) and the covariance between marginal utility and equity returns (COV ):

SIP (b, k, ε) =
Rµ(b, k, ε)(1 + τ)

u′(c(b, k, ε))− µ(b, k, ε)(1 + τ)
, (163)
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EPε′(b, k, ε)(b, k, ε) = Eε′ [R
q(b′(b, k, ε), k′(b, k, ε), ε′)]−R, (164)

COVε′(b, k, ε) = Eε′
{[

u′(c(b′(b, k, ε), k′(b, k, ε), ε′)− Eε′
(

u′(c(b′(b, k, ε), k′(b, k, ε), ε′)
)]

×
[

Rq(b′(b, k, ε), k′(b, k, ε), ε′)− E′
ε

(

Rq(b′(b, k, ε), k′(b, k, ε), ε′)
)]}

(165)

RPε′(b, k, ε) ≡ − COVε′(b, k, ε)

Eε′ [u′(c(b′(b, k, ε), k′(b, k, ε), ε′))]
. (166)

The conditional expectations and covariance terms in the above expressions are calculated taking

expectations over ε′ using the Markov transition probabilities π(ε, ε′):

The means of the financial premia conditional on the quintile distribution of µ > 0 reported in

the paper are constructed as follows: First, we construct the quintile distribution of µ(b, k, ε) > 0

using the ergodic distribution P (b, k, ε) produced by the FiPIt algorithm. To compute this quintile

distribution, we start by sorting the values of µ(b, k, ε) by size removing all those that are zero.

The ergodic distribution of µ(b, k, ε) > 0 is given by P (b, k, ε)/Σ{(b,k,ε):µ(b,k,ε)>0}P (b, k, ε). The as-

sociated cumulative ergodic distribution of µ(b, k, ε) > 0 is denoted CumPµ>0(b, k, ε). Then we

assign the values of µ(b, k, ε) > 0 into quintiles by identifying the values of µ associated with the

quintile boundaries at which CumPµ>0(b, k, ε) = 0.2, 0.4, 0.6, 0.8, 1 and then allocating each value

of µ(b, k, ε) > 0 into its corresponding quintile using these boundaries. Each value of µ(b, k, ε) > 0

has associated with it a value for each of the financial premia indicators shown above, since both

µ and the financial premia are recursive functions of the state variables. Hence, once the quin-

tile distribution of µ(b, k, ε) > 0 is formed, the means of the financial premia for each quintile are

computed by taking averages using the probability distribution of (b, k, ε) within each quintile (i.e.,

ergodic distributions scaled by the cumulative probability of being in each quintile) and we can also

compute means across the entire quintile distribution, which are the same as means conditional

on µ(b, k, ε) > 0.

For DynareOBC, we use time-series simulations to construct the financial premia indicators. It

is not feasible to construct conditional expectations, so we use realized values over the time-series

simulations. To construct the quintile distribution of µ > 0, we find the quintile boundaries for

the subset of the full time-series simulation solution for which µt > 0, and associate with each

value µt allocated to each quintile the corresponding values of SIPt, EPt, COVt, RPt. Then we

compute within-quintile means of these financial premia as the averages of the values allocated to

each quintile, and we can also compute averages across all five quintiles which are equivalent to

averages conditional on µt > 0.
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