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Abstract

In this appendix, we provide details about the data construction for all variables used in

the main text. We then present a battery of tests and additional analysis demonstrating the ro-

bustness of the relationship between the real rate and PV St . In addition, we show that roughly

90% of the covariation between the real rate and PV St stems from the fact that the real rate

forecasts future returns on the vol-sorted portfolio. We also relate PVS to objective and sub-

jective measures of expected risk for aggregate macroeconomic variables and the aggregate

stock market, showing that PVS is related to expected risk, and that this connection is most

evident for subjective measures of risk that reflect both public and private firms. . Moreover,

we offer complementary VAR and local projection evidence that shocks to risk perceptions, as

measured by PV St , lead to a boom in the real economy. We also document that periods of high

risk perceptions coincide with investor outflows from high-volatility mutual funds. Finally, we

provide proofs for the propositions contained in the model section of the main text.
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A1 Data Construction
In this section we provide details on how we construct our main variables. We then provide details

on the variables used in each table of the main text.

Construction of PV St

Valuation Ratios

Our valuation ratios (book-to-market) derive from the CRSP-COMPUSTATmerged databases. We

augment CRSP-COMPUSTAT with the book value data used in Davis, Fama, and French (2000).

We provide additional details of our variable construction below, but at a high level our procedure

is as follows: for a given firm f on date t, we look for a valid value of book equity in COMPUSTAT

Quarterly, then COMPUSTAT Annual, and finally the book values contained in Davis, Fama, and

French (2000). We assume balance sheet information is known with a one-quarter lag. Finally,

we combine the aforementioned book value with the trailing 6-month average of equity market

capitalization to form a book-to-market ratio for firm f . We have confirmed that our results are not

sensitive to these variable definition choices.

COMPUSTAT Quarterly: From COMPUSTAT Quarterly (COMPQ). Specifically, we obtain in-

formation on all firms (INDFMT = INDL) with a standardized data format (DATAFMT = STD)

that report financial information at a consolidated level (CONSOL = C). In order to avoid the well-

known survival bias in COMPUSTAT, we only include firms once they have at least 2 years of

data.

We define book common equity (BE) according to the standard Fama and French (1993) defi-

nition. Specifically, BE is the COMPUSTAT book value of shareholder equity, plus balance-sheet

deferred taxes and investment tax credit, minus the book value of preferred stock. We use the par

value of preferred stock in COMPQ to estimate the value of preferred stock.

COMPUSTAT Annual: When using COMPUSTAT Annual (COMPA) for balance sheet infor-

mation, we obtain information on all firms (INDFMT = INDL) with a standardized data format

(DATAFMT = STD) that report financial information at a consolidated level (CONSOL = C). In

order to avoid the well-known survival bias in COMPUSTAT, we only include firms once they have

at least 2 years of data. For firms that change fiscal year within a calendar year, we take the last

reported date when extracting financial data. This leaves us with one set of observations for each

firm (gvkey) in each year.

We define book common equity (BE) according to the standard Fama and French (1993) defi-

nition. Specifically, BE is the COMPUSTAT book value of shareholder equity, plus balance-sheet

deferred taxes and investment tax credit, minus the book value of preferred stock. Following Fama

and French (1993), we use the redemption, liquidation, or par value (in that order) to estimate the

value of preferred stock.

Defining Valuation Ratios: We then build book-to-market ratios at end of each quarter t as follows:

• The book equity comes from COMPQ, and we assume this data is known with a 3-month

lag. This means we add three months to the DATADATE field in COMPQ to define the
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“KNOWNDATE”. Then at the end of each quarter, we take the book equity on the last avail-

able KNOWNDATE. For instance, this means that in June of a given year, we are using the

book value of equity from COMPQ as of March in that same year. We prefer this definition

because it uses up-to-date balance sheet information, while still allowing for reasonable lags

to ensure the information was actually known by market participants at each date.

• If COMPQ does not have a valid book value, we obtain book equity from COMPA, again

assuming a one-quarter information lag for balance sheet information. If COMPA also does

not have a valid book value for a firm, we check the book equity values from Davis, Fama,

and French (2000), which we downloaded from Ken French’s website. For the book equity

in Davis, Fama, and French (2000), we use their assumption that book values are known as

of June 30 of the “Last_Moody_Year” variable.

• For the purposes of computing book-to-market ratios, we use the trailing 6-month average

of market capitalization using CRSP Monthly. For instance, in June of a given year we

take the average end-of-month market capitalization from January through June of that year.

We prefer this definition because it smoothes out any high-frequency movements in equity

valuations.

Book-to-market ratios for a given firm then follow naturally. We have also used the Fama and

French (1993) definition of book-to-market ratios and obtain very similar results. Fama and French

(1993) assume a more conservative lag in terms of when balance sheet is known and also use lagged

market capitalization (e.g. in June of a year, use the previous December’s market capitalization).

Volatility Used for Portfolio Sorts

At the end of each quarter, we compute each firm’s stock return volatility as the standard deviation

of ex-dividend returns (variable RETX) using daily data from the previous twomonths. We exclude

firms that do not have at least 20 observations over this time frame. This approach mirrors the

construction of variance-sorted portfolios on Ken French’s website.1

Computing PVS

At the end of each quarter t, we sort all stocks in the NYSE, AMEX, and NASDAQ into quintiles

based on their total volatility. Total volatility is computed as described above. We then form equal-

weighted portfolios based on the quintiles of volatility. Our measure of risk perceptions is defined

as:

PV St ≡
(

B/M
)

low vol,t
−
(

B/M
)

high vol,t

In words, PV St is the average book-to-market ratio of firms in the low-volatility quintile minus the

average book-to-market ratio of firms in the high-volatility quintile. Thus, PV St is high when the

market valuations of high-volatility firms is large relative to low-volatility firms.

Finally, we define the aggregate book-to-market ratio for our universe of firms as the their total

book value divided by their total market capitalization at time t.

1Our long-short portfolio effective replicates the one on Ken French’s website. If we regress our portfolio on his,

the point estimate is 0.84, the constant in the regression is statistically indistinguishable from zero, and the R2 is 96%.
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A1.1 Table 1 - Summary Statistics for Volatility-Sorted Portfolios and the
Real Rate

The one-year real interest rate is the one-year constant maturity nominal Treasury rate from the

U.S. Federal Reserve minus the one-year expectation of inflation (GDP deflator) from the Survey

of Professional Forecasters. We linearly detrend the one-year real rate for all of our analysis in the

main text, though we show that our analysis is robust to no detrending and alternative detrending

methods in Section A2 of this appendix.

A1.2 Table 2 - PVS and Investor Risk Perceptions
This table looks at the contemporaneous correlation between PV St and several measures of ex-

pected risk. Most of the measures are defined in the main text and in the caption in the table. Here,

we elaborate on our risk expectation measures that come from analyst forecasts and option prices.

Note that our portfolio-level risk measures take the difference between high and low volatility

firms.

IBES BasedMeasures Two of the measures we use derive from analyst forecasts of earnings-

per-share (EPS) that come from Thompson Reuters IBES data. More specifically, we use the unad-

justed summary file from WRDS. Data in IBES is organized by firm i, estimation date d, earnings
announcement date u, and earnings type t. The two earnings types that we consider are annual and
quarterly. We require at least two analyst forecasts for each (i,d,u, t). For this particular cut of

the IBES data, we start the sample in 1989. Prior to 1989, the number of high-volatility firms that

have a match in IBES fluctuates wildly, but steadily increases from 1989 onward.

For each firm i, quarter t, earnings announcement date u, we first select the last estimation date

d that occurs prior to t. We then define the quarter t dispersion of firm i’s earnings at time u > t:

σ s
i,t(EPSu) =

Range EPS Forecastsi,d(u)
Median EPS Forecastsi,d(u)

.

This is our proxy for analyst time-t expectations of earnings volatility at time u. We exclude firms

where the median EPS forecast is zero. In addition, because σi,t(u) can be large for low median

EPS forecasts, we winsorize it at its 5% and 95% tails.

In the table, we consider two different forecast horizons u. First, for quarterly earnings, we

select u for each firm such that the earnings announcement corresponds to the next fiscal quarter

(fpi = 6). We denote this case by σ s
i,t(EPSu=t+1). For annual earnings, we choose u such that the

earnings announcement corresponds to two fiscal periods from t (fpi = 2). For our annual IBES

measure, the average difference between u and t is five quarters, but it can vary depending on fiscal
reporting periods and the availability of analyst forecasts. We denote this firm-level measure by

σ s
i,t(EPSu=t+5).
Finally, σt(EPSt+1) is the median σ s

i,t(EPSt+1) for high-volatility firms minus the median for

low-volatility firms. σt(EPSt+5) is assembled the same way from σ s
i,t(EPSt+5) at the firm level.

In all cases, our classification of whether a firm is high or low-volatility at time t matches the

portfolios used to compute PV St .
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Option-Based Measure Our options data comes derives from the Standardized Volatility

Surface from OptionsMetrics on WRDS. For each firm, date, and horizon, the volatility surface

contains at-the-money (ATM) put and call options. We define the expected return volatility on

date d for horizon h as the average of the put and call implied volatilities. We denote this quantity

by σ IV
i,d (Rett,t+h). For this particularly analysis, we use h = 4 quarters. Option-based measures of

expected volatility typically use the entire spectrum of option strike prices (i.e. the VIX). Due to

the relatively scarcity of out-of-the-money options, especially for the high-volatility firms in our

sample, we instead use ATM implied volatilities.

For each firm i and quarter t, we find the last available σ IV
i,d (Rett,t+4) from the OptionMetrics

database, requiring that the implied volatility was computed no more than 21 days prior to t. To
aggregate to the portfolio level, we take median σ IV

i,t (Rett,t+4) for high-volatility firms minus the

median of low-volatility firms. The resulting variable is what we define in the table as σt(Rett,t+4).
This measure begins in 1996Q3 because, prior to this date, we do not have any matches in Option-

sMetrics for our high-volatility firms.

Statistical ForecastingModel for “ObjectiveMeasure” The variable “Objective σt(Rett,t+1)”
comes from a simple statistical forecasting model. Define the average realized volatility of high-

volatility stocks in the portfolio at time t as rvH,t , where each firm’s volatility is computed as the

daily standard deviation of returns in quarter t. rv,t is the same object for low-volatility firms and

rvt ≡ rvH,t − rvL,t . We fit an AR(1) process to rvt using the full sample of returns. The estimated

AR(1) coefficient for this series is 0.92, so rvt is relatively persistent. The AR(1) model also fits

the data well in terms of forecasting, as a simple regression of rvt+1 on rvt yields an R2 of 85%.

Finally, the variable Model-Based σt(Rett,t+1) is defined as the Et [rvt+1] that emerges from the

AR(1) model.

A1.3 Table 3 - The Real Rate and PVS
The caption contains complete details on the variables used in the table.

A1.4 Table 4 - Robustness: The Real Rate and PVS
Panel A

Value-Weighted Version of PV St The value-weighted version of PV St is the value-weighted

average book-to-market ratio of low-volatility stocks at time t minus the value-weighted average

book-to-market ratio of high-volatility stocks at time t. The value weights are determined by

market capitalizations at the end of quarter t.

PV St Based on Two-Year Volatility The variable “2-Year Volatility” listed under “Alterna-

tive Constructions” in the table uses each firm’s trailing 2-year volatility to form our volatility-

sorted portfolios. We use monthly return data from CRSP to compute this measure of volatility.

Off-the-Run Minus On-the-Run Treasury Yields The off-the-run minus on-the-run Trea-

sury yield spread is the difference between the continuously compounded 10-year off-the-run and
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on-the-run bond yields. On-the-run bond yields are from the monthly CRSP Treasury master file.

The off-the-run bond yield is obtained by pricing the on-the-run bond’s cash flows with the off the-

run bond yield curve of Gürkaynak et al. (2007). For details of the off-the-run spread construction

see Kang and Pflueger (2015).

Other Variables Used in Horse Races For a description of the other variables used in the

horse races contained in Table 3, see Section A2.7 of this appendix.

Panel B

Panel B of Table 4 in the main text compares PV St to other measures of financial market con-

ditions. Most of the variables are described in the caption of the table. Here, we focus on our

measure of the time-t expectation of excess aggregate stock market returns from t to t +4, denoted

Et [Mkt-Rft,t+4]. We obtain a statistically optimal measure of expected excess returns following

the methodology developed in Kelly and Pruitt (2013). Specifically, we use the three-pass regres-

sion filter (3PRF) in Kelly and Pruitt (2013). In particular, we use the entire sample to estimate the

3PRF and assume two latent factors. In our experimentation with the procedure, using two factors

balances the desire to have a good in-sample predictor of market returns against overfitting.2

The variables that we use as the predictors in the Kelly and Pruitt (2013) procedure are five BM

ratios from sorting on each of the following variables: size, BM ratios, cash-flow duration (Weber

(2016)), leverage, cash-flow beta with respect to aggregate cash flows, leverage, beta with respect

to the aggregate market (using a 5-year window and a 10-year window), and total volatility. We

construct BM ratios based on these sorts in the same way we do for PV St . In addition, we include

the aggregate BM ratio, aggregate dividend yield, and CAY from Lettau and Ludvigson (2004).

This gives us a total of 43 predictors that we feed into the 3PRF to forecast annual excess market

returns. The R-squared in the forecasting regression is 14.2%. As a point of comparison, we are

able to nearly double the forecasting power (in-sample) of CAY alone, which gives a forecasting

R-squared of 7.5%. The sample size for this analysis is 180, and is lower than our main sample

(N = 185) because the duration sorted portfolios that we include as predictor variables have a

shorter sample.

A1.5 Table 5 - Volatility-Sorted Returns and Monetary Policy Surprises
See the main text and the table caption.

A1.6 Table 6 - PVS, the Real Rate, and Future Returns to Volatile Assets
Panel A

Panel A of the table uses PV St and the one-year real rate to forecast returns and earnings surprises.

Columns (1) and (2) forecast stock returns on the low-minus-high volatility portfolio. Columns

(3) and (4) forecast this portfolio’s accounting return on equity (ROE), which is defined according

the clean-surplus accounting formula from Cohen et al. (2003). For each firm i and date t, we

2We have tried a truly out-of-sample version of the 3PRF and obtain similar conclusions regarding the correlation

with the real rate.
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compute future annual ROE based on the next four quarters of financial statements after date

t. Financial statement information is from the COMPUSTAT quarterly file. Because firms have

different reporting periods, the calendar time over which we compute annual ROE differs across

firms. Once we compute the future annual ROE for each firm i in quarter t, we aggregate to the

portfolio level by taking the equal-weighted averages within each volatility quintile. Columns (5)

and (6) uses PV St and the real rate to forecast excess returns on the CRSP Value-Weighted Index,

which we obtained from Ken French’s website.

Panel B

In Panel B of the table, we use both PV St and the one-year real rate to forecast returns on the

low-minus-high volatility trade in other asset classes. To do so, we use the test assets from He

et al. (2017), henceforth HKM. We focus on the following asset classes from HKM: equities, U.S.

corporate bonds, sovereign bonds, options, credit default swaps (CDS), commodities, and foreign

exchange (FX). We refer the reader to HKM for more detail on each of these portfolios.

Within each asset class, we form a portfolio that is long the low volatility portfolio in that asset

class, and short the high-volatility portfolio. For each portfolio in each asset class, we compute the

volatility at each quarter using the trailing 5-year history of monthly portfolio returns, requiring

a minimum of four years of data. We are constrained to use monthly data because HKM do not

have daily asset class data. For example, suppose we want to form the low-minus-high volatility

portfolio for U.S. corporate bonds in quarter t.3 We then compute the volatility of each of the 10

HKM corporate bond portfolios over the previous 5 years. We then go long the portfolio with the

lowest trailing volatility and short the portfolio with the highest volatility. We hold this long-short

portfolio for one quarter, and then repeat the process. Denote the returns to this long-short strategy

as LMHV c
t , where the superscript c denotes the asset class we are studying and the subscript de-

notes time of the return. The forecasting regressions in Panel B of the table use PV St or Real Ratet
to forecast LMHV c

t+1 for several different c.

A1.7 Table 7 - PVS and Real Outcomes
For both panels, see the main text and the table captions.

A1.8 Table 8 - What occurs in the rest of the economy during the build up
of PVS?

We compute the trailing annual ROE (LMH-Vol ROEt−4→t) of the low-minus-high volatility port-

folio in the same manner as described in Section A1.6. The variable Bank Net Chargeoffst is

computed using data from bank call reports. Because banks have a one-year window over which

they can report loan charge-offs, we define Bank Net Chargeoffst as the average of the reported

charge-off rate at time t, t +1, t +2, and t +3, though our results are qualitatively the same if we

just use the reported charge-off rate at time t. All of the other variables in the table are defined in

the caption.

3This corresponds to US_bond11 through US_bond20 in HKM’s data.
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A1.9 Table 9 - PVS and Revisions in Expectations of Risk
Our analysis of revisions in expected risk builds off the variable construction described in Section

A1.2. In row (1), the variable σt+2(EPSt+3)−σt(EPSt+3) proxies for the revision in expected

earnings volatility for earnings at time t+3. Let’s start with how we construct σt(EPSt+3). At time

t and for each firm i, we find the set of IBES forecasts corresponding to earnings that are three fiscal

quarters away (fpi = 9). Again, in calendar time, this ends up corresponding to quarterly earnings

realized at t + 3 for most firms. For this forecast horizon, we then build our dispersion measure,

denoted by σ s
i,t(EPSu=t+3), as in Section A1.2. We also apply the same filters and methodology

as described in that section. For each firm, we then hold fixed the date on which earnings will be

realized and recompute our dispersion measure at time t + 2. This delivers us σ s
i,t+2(EPSt+3)−

σ s
i,t(EPSt+3), which is the news between time t and t+2 about expected earnings volatility at t+3.

Again, our working assumption here is that our dispersion measure is a good proxy for expected

earnings volatility. To aggregate this the portfolio level, we take the median σ s
i,t+2(EPSt+3)−

σ s
i,t(EPSt+3) for high-volatility firms in the portfolio at time t minus the median for low-volatility

firms. The resulting variable is defined as σt+2(EPSt+3)−σt(EPSt+3).
The measure σ IV

t+3(Rett+4)− σ IV
t (Rett+4) comes from options data. At time t and for each

firm i, we define σ IV
i,t (Rett+4) as the implied volatility of stock returns in quarter t + 4. We use

the term structure of option-implied volatilities to compute this measure. Specifically, we take the

implied variance of 365-day options at time t and subtract off the implied variance of 273-day

options at time t, which we then convert to an implied volatility measure.4 This is a valid approach

to estimating the option-implied expected volatility between in quarter t + 4 so long as there is

negligible return autocorrelation at the quarterly frequency. For each firm, σ IV
i,t+3(Rett+4) is the

90-day implied volatility at time t+3. This allows us to construct σ IV
i,t+3(Rett+4)−σ IV

i,t (Rett+4) for
each firm, which we then aggregate to the portfolio level by taking the median across high-volatility

firms minus the median for low-volatility firms.

Finally, the realized risk measure Δ4σt+4(HML-Vol) is constructed as follows. For each firm

in the high-volatility quintile at time t, we take its realized quarterly stock return volatility at time

t +4 and subtract its realized quarterly stock return volatility at time t based on daily stock returns
within each quarter. We then average this difference across high-volatility firms and then repeat the

entire process for low-volatility firms. Δ4σt+4(HML-Vol) is the resulting spread between the two

groups and it measures the average change in volatility for high-volatility firms minus the average

change for low-volatility firms.

A1.10 Table 10 - PVS and Implied Volatility Forecast Errors
See the main text and the table caption. For the time-t implied volatility of returns between t + 3

and t+4, we use the same firm-level measure σ IV
i,t (Rett+4) defined in Section A1.9 of this appendix.

4Implied volatilities from OptionMetrics standardized volatility surfaces are annualized, so we first translate them

to annualized implied variances. We take the 365-day implied variance minus 0.75 times the 273-day variance. This

provides an unannualized estimate of return variance between t +3 and t +4, which we then annualize by multiplying

by 4 and then take the square root to arrive at an implied volatility measure.
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A1.11 Table 11 - High-Volatility and Low-Volatility Firm Investment
The caption contains complete details on the variables used in the table.

A2 Robustness: PVS and the Real Rate
The purpose of this section is to conduct several robustness tests to ensure that our statistical

inference regarding the relationship between the real rate and PV S is not driven by specific choices

in defining our main variables. We begin by discussing alternative methods of filtering the real

rate (e.g. using a deterministic versus stochastic trend). We then show that our results are largely

unchanged with these alternative filters or if we simply study the raw real rate. We conclude the

section by exploring several ways of adjusting the standard errors in our regressions of the real

rate on PV S that account for the fact that these variables are persistent. The main takeaway of

the section is that there is a robust relationship - both in economic and statistical terms - between

the real rate and PV St . For the remainder of this appendix, we use Rt to denote the raw, i.e.

non-detrended, real rate.

A2.1 Filtering the Raw Real Rate
The top panel of Figure A.1 plots the raw real rate Rt from 1970Q2 to 2016Q2. The downward

trend in Rt has received recent attention from many macroeconomists who argue that it reflects a

form of economic secular stagnation (e.g. Summers (2015)). In this paper, we do not focus on the

longer-run trend in Rt , but rather the large cyclical variation around this trend. Our goal is to better

understand the determinants of cyclical (i.e., quarterly) movements in the real rate.

To achieve this goal, we need to empirically extract the cyclical component of the real rate. In

the main text, we use a simple linear deterministic trend to do so:

Rt = β0+β1t + rt (1)

Here, the detrended real rate rt is just the sequence of residuals from the regression. We chose this

approach because it is simple and transparent. Still, it is fair to wonder whether a deterministic

(downward) linear trend is a plausible model of the economy’s real interest rate. No economic

theory would predict the real rate to tend towards negative infinity over the next fifty years. A

natural alternative that we explore now is to allow for a stochastic drift in the real interest rate. In

short, real rates look extremely similar whether we remove a linear or stochastic trend, consistent

with the finding that it is extremely difficult to distinguish between deterministic and stochastic

trends in finite samples (Campbell and Perron (1991)).5

Specifically, we follow Hamilton (2017) to extract the cyclical component of Rt in the presence

of a potentially stochastic drift. For quarterly data, Hamilton (2017) recommends the following

regression to achieve the filter:

Rt = k0+ k1×Rt−8+ k2×Rt−9+ k3×Rt−10+ k4×Rt−11+ r̃t (2)

5We think of the stochastic or non-stochastic drift as a simple way of controlling for long-run output growth. For

example, Holston et al. (2016) embed this type of thinking in their statistical model of the natural rate of interest. They

model the natural rate of interest as the sum of two random walks, one of which also drives the stochastic drift of

potential output growth.
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where the cyclical component of Rt is captured by the regression residuals, denoted here by r̃t .

Importantly, this filtering methodology is relatively agnostic about the underlying trend driving

the series.6 This is particularly useful in our context because, again, we are not interested in

understanding longer-run trends in Rt . Hamilton (2017) also provides an extensive argument for

why regression (2) is superior to the more standard Hodrick-Prescott filter.

The bottom panel of Figure A.1 plots the linearly detrended real rate (rt) and what we call the

Hamilton-filtered real rate (r̃t). A visual inspection shows that rt and r̃t are quite similar. That is,

linearly detrending and using the Hamilton-filter appear to give similar estimates for the cyclical

component of the real rate. A regression of one on the other, run in both levels and first-differences,

confirms this intuition:

r̃t = 0.002 + 0.71 × rt , R2 = 0.56
(0.01) (8.56)

Δr̃t = −0.01 + 0.99 × Δrt , R2 = 0.85
(−0.29) (40.44)

where Newey-West t-statistics with five lags are listed below point estimates. Both specifications

indicate that the linearly detrended real rate is fairly close to the Hamilton-filtered rate. The con-

stant in both regressions is near zero, the point estimate on rt is near one, and the R-squared’s are

pretty large. As a result, we focus on the simpler, linearly detrended real rate in the main text and

repeat our core analysis on the Hamilton-filtered rate now. To be certain that detrending (in any

fashion) is not driving our conclusions, we also show our results using the raw real rate Rt below.

A2.2 Results Using r̃t and the Raw Real Rate
A2.2.1 The Real Rate and PVS

Table A.1 shows regressions of the form:

Yt = a+b×PV St +θ
′
Xt+ξt

where Xt is a vector of control variables and Yt is either the Hamilton-filtered rate r̃t or the raw rate

Rt . In all cases, we standardize PV St to have a mean of zero and variance one. We do the same to

the aggregate book-to-market ratio when it is included as a control variable.

Results with r̃t Columns (1)-(6) run the regression for the Hamilton-filtered real rate, r̃t . The

control variables that we use are the aggregate book-to-market ratio, the output gap, and the infla-

tion rate. For consistency, we extract the cyclical components of these variables using Hamilton

(2017) before including them in the regression. Echoing our results in the main text, the relation-

ship between PV S and r̃t is robust across level and first-difference specifications, and is not altered

much by the addition of our control variables. Column (2) adds the aggregate book-to-market ratio

as a control to the regression, which has very little effect on both the point estimate on PV S, as well
as the R2 in the regression. Indeed, a univariate regression of r̃t on the aggregate book-to-market

6In fact, Hamilton (2017) argues that it is still a useful method for extracting the cyclical component of a series that

has a deterministic time trend.
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yields an R2 of less than 1%. In terms of economic significance, a one-standard deviation move in

PV St impacts r̃t nearly three times as much as a one-standard deviation in the aggregate book-to-

market. Column (3) of Table A.1 adds the output gap and inflation to the level regression of r̃t on

PV S. Again, we include these variables to check whether PV S is just picking up on Taylor (1993)

rule variables. The Hamilton-filtered rate does load positively and significantly on the output gap,

which is what we would expect if the central bank follows some version of a Taylor (1993) rule.

The important thing though is that the inclusion of these variables does not impact the point esti-

mate or statistical significance of PV S in the regression. The results using the Hamilton-filtered

rate also compared favorably to those using the simple linear detrending in the main text.

Results with Rt Columns (7)-(9) repeat the analysis for the raw real rate Rt . Importantly, in

this case, we do also not do any filtering to the control variables – these regressions only use raw

variables. Column (7) runs a univariate regression of the raw real rate on PV S. The regression

coefficient of 1.42 is economically comparable to the point estimate of we get when using the

detrended real rate (see Table 3 in the main text). The R-squared is also comparable to our main

results at 0.38. Columns (8) and (9) add the aggregate book-to-market and the output gap and in-

flation as control variables. While the aggregate book-to-market enters significantly, the R-squared

in columns (7) and (8) is almost the same, indicating that the explanatory power of PV St for the

real rate is much stronger than that of the aggregate book-to-market. A univariate regression of

the raw real rate on the raw aggregate book-to-market ratio delivers an R2 of less than 10%, much

less than when using PV St . More importantly, none of our conclusions regarding the relationship

between the real rate and PV S are impacted.

A2.2.2 The Real Rate and the Aggregate Stock Market

In the previous section, there were some specifications where the point estimate on the aggregate

book-to-market ratio was estimated with some measure of statistical precision. Overall though,

there is very little evidence suggesting that the valuation of the aggregate stock market contains

meaningful information about the dynamics of the real interest rate. For one, the aggregate book-

to-market ratio explains a very small amount of variation in the real rate. This is true regardless

of how or whether we detrend these variables. Moreover, the relationship is nonexistent when we

difference the data and when we linearly detrend the real rate and the aggregate BM ratio, as we do

in the main text. In addition, there is ample empirical evidence that variation in the aggregate value

of the stock market is largely disconnected from real rate variation (e.g. Campbell and Ammer

(1993)). In sum, we do not view the evidence in Section A2.2.1 to reveal a robust link between

the real rate and the aggregate BM ratio. In unreported results, we draw similar conclusions if we

instead use Shiller’s CAPE ratio or CAY from Lettau and Ludvigson (2004).

Even if there is a weak relationship between the real rate and the aggregate value of the stock

market in our sample, it is likely unrelated to risk premia. Standard Gordon growth model logic

suggests that the aggregate dividend-yield is driven by the risk-free rate r f , the market risk pre-
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The simple formula immediately illustrates the mechanical relationship between the risk-free rate

and the dividend-yield. Of course, D/P and r f may also correlate if the risk-free rate is also

related to the market risk premium or aggregate dividend growth. However, Table 6 in the main

text and Panel A of Table A.2 demonstrate that the real rate contains no forecasting power for

excess market returns. Moreover, in Table A.1, in the cases where the aggregate book-to-market

enters significantly for the real rate, the point estimate is positive. This is the opposite of what we

would expect if risk perceptions drive both the aggregate market and the real risk-free rate. On the

contrary, the positive point estimates are consistent with a simple Gordon growth formula above.

Furthermore, Panel A of Table A.2 also demonstrates that both the Hamilton-filtered and raw

real rate still forecast returns on the low-minus-high volatility portfolio. In Panel B of Table A.2,

we show that the real rate – both the Hamilton-filtered and raw series – has no forecasting power for

aggregate real earnings growth or aggregate real dividend growth. In conclusion, the link between

the aggregate BM ratio and the real rate appears unrelated to risk perceptions, and statistically

unreliable.

A2.3 Time-Series Inference
The AR(1) coefficients of the Hamilton-filtered rate r̃t , the linearly detrended rate rt , and PV St are

0.81, 0.85, and 0.88, respectively. While the persistence of PV St may appear high, it is useful to

keep in mind that it is much less persistent than the aggregate valuation ratios, where persistent

regressor biases have found the most attention in asset pricing (Stambaugh (1999)). While PV St
has a quarterly AR(1) coefficient of 0.88, corresponding to a half-life of about 1.5 years, the

aggregate book-to-market has an AR(1) coefficient of 0.98, corresponding to a much longer half-

life of around 10 years. This simple comparison already suggests that inference problems from

persistent regressors are likely to be much less severe in our setting than for aggregate valuation

ratios.

Nonetheless, we use a battery of approaches to formally establish that the relationship between

the real rate and PV St is not driven by serially correlated regressors. First, we run all our main

results in differences, as shown throughout the main text and the appendix. In this section, we

explore several ways of adjusting standard errors, GLS, and a bootstrap simulation exercise.

Note: For this particular analysis, we leave PV St in its natural units, though for most of the

analysis in the main text and in the rest of the appendix we standardize it to have mean zero and

variance one.

7A similar argument holds for the aggregate book-to-market ratio, but the dividend-price ratio is easier for the

purposes of this illustration. As an empirical matter, the two are 98% (60%) correlated in levels (first-differences) for

our sample.
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A2.3.1 Standard Error Corrections

Our baseline univariate regression of the linearly detrended real rate (rt) on PV S yields the follow-

ing estimates:
rt = 0.62 + 3.44 × PV St

(5.02) (11.41)
[2.64] [5.36]

where the parenthesis below the point estimates contain OLS t-statistics and the square brackets

contain Newey-West t-statistics with five lags. The first thing to note from this simple regression is

that Newey-West correction still indicates the point estimate on PV S is statistically significant. The

second thing to note is that the nonparametric Newey-West correction shrinks the OLS t-statistic
by a factor of nearly two. This owes in part to the fact that the regression residuals have a first-order

autocorrelation of 0.76. We address this persistence directly by using a standard parametric cor-

rection based on on the estimated residual autocorrelation. Specifically, we multiply the standard

errors in the regression by a factor of C = (1+ρ)/(1−ρ), where ρ is the autocorrelation of the

regression residuals. ρ = 0.76 means that C ≈ 7.3, thereby implying that the OLS t-statistics need
to be divided by a factor of

√
C = 2.71. The parametric correction therefore shrinks the t-statistic

on PV S from 11.41 to 4.21, so the point estimate is still statistically significant.

For completeness, we repeat the analysis using the Hamilton-filtered real rate r̃t . In this case, a

univariate regression of r̃t on PV St gives:

r̃t = 0.59 + 3.28 × PV St
(5.11) (11.57)
[2.73] [6.53]

The first-order autocorrelation of the residuals for this specification is 0.69, implying that the OLS

t-statistic of 11.57 should be adjusted to 4.96.
The broader takeaway here is that no matter how we adjust our standard errors, we are still able

to comfortably reject the null that the point estimate on PV S is equal to zero.

A2.3.2 Generalized Least Squares (GLS)

For statistically efficiency and to account for the role of outliers, we also estimate the relation-

ship between the linearly detrended real rate and PV S using generalized least squares. This is

just a Prais-Winsten regression, which amounts to quasi-differencing the data before running the

regression. GLS gives the following estimates:

rt = 0.44 + 2.47 × PV St
(1.32) (6.15)

where the GLS t-statistics are listed below point estimates. We also estimate the same system using

the Hamilton-filtered real rate r̃t :

r̃t = 0.49 + 2.59 × PV St
(1.90) (6.35)

Regardless of the detrending method, the relationship between the real rate and PV S remains eco-

nomically and statistically significant when using GLS.
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Moreover, if we run the regression using data up until the financial crisis (pre-2009), we get

fairly similar point estimates on PV S across simple OLS and GLS estimation methods. For ex-

ample, when using the Hamilton-filtered real rate, OLS gives a point estimate on PV S of 3.44 and

GLS gives a point estimate of 3.28.

A2.3.3 Simulation Evidence

Finally, one might be concerned that our results are biased in a Granger-Newbold sense. We use

simulations to show that the standard error and R2 from our baseline regression are not just a result

of regressor persistence. Specifically, we fit independent AR(1)-GARCH(1,1) models to rt and

PV S and simulate these processes mimicking the persistence properties of rt and PV St and with

identical sample length as in the data. In the simulated data, where by construction rt and PV St are

unrelated, we regress rt on PV St , retaining the Newey-West corrected t-statistic (five lags) for PV S
and the R2 in the simulated regression. Figure A.2 presents histograms of the simulated t-statistics
and R2 from this exercise for 10,000 independent simulations. The plot also shows the actual t-
statistic on PV S and the R2 that we estimate in the data. The p-values listed in the plot are just

the proportion of simulations where the t-statistic (or R2) exceed the actual t-statistic we estimate

in the data. For both the t-statistic and R2, less than 0.5% of simulations can match the regression

of the real rate on PV S that we estimate using actual data. Combined with the other analysis in

the paper, this tells us that under the null of no relation between PV St and rt it would be highly

unlikely to observe the t-statistics and R2s that we see in the data. This simulation once again adds

to our evidence that the relation between PV St and rt is a real feature of the data and not just an

erroneous statistical artifact.

A2.4 Subsample Stability
Our main sample runs from 1970Q2 through 2016Q2. In this subsection, we study the sub-sample

stability of the relationship between the real rate and PV St . We start by showing that our results are

not dependent on the period from 1977 to 1987, a time when the U.S. suffered unusually high in-

flation and the Federal Reserve – led by Paul Volcker – tightened monetary policy to regain control

over inflation. In addition, we expand our sample back to 1953Q2 and show the relationship be-

tween PV St and the real rate is equally strong in this longer sample. The beginning of this extended

sample coincides with the beginning of the series for the constant maturity nominal one-year rate

that is available from the St. Louis FRED database. The Survey of Professional Forecasters in-

flation forecasts are not available prior to 1970Q2, so to construct a one-year real rate series from

1953Q2 to 1970Q2, we use the four-quarter moving average of realized inflation as our measure

of expected one-year inflation. This approach for forming expected inflation forecasts is motivated

by the findings of Atkeson and Ohanian (2001).8 To extend PV St back to 1953Q2, we use the ac-

counting data from Davis et al. (2000). Specifically, we look for book values from COMPUSTAT

quarterly, then COMPUSTAT annual, then Davis et al. (2000), in that order and depending on data

availability.

In all cases, we run regressions of the following form, in both levels and first differences:

8There is a large body of research that studies optimal inflation forecasts, with varying conclusions depending

on the subsample of interest. The four-quarter random walk benchmark studied in Atkeson and Ohanian (2001) is

surprisingly successful and we use it here due to its simplicity.
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Real Ratet = a+b×PV St + εt

Table A.3 collects the results of our subsample analysis. For reference, column (1) of the table

presents the level-regression results using the baseline sample in the main text. In column (2), we

find similar results when we exclude the period from 1977 to 1987, providing some comfort that

our results are not dependent on the so-called “Volcker period”. Column (3) runs the regression

over 1953Q2-2016Q2. For this sample, we use the raw real rate because it appears stationary

during this time period.9 Here, we once again see that the correlation between the real rate and

PV St is present in the longer sample. In column (4), we focus on the portion of the longer sample

that precedes the Volcker period, again confirming a strong link between the real rate and PV St .

Columns (5)-(8) indicate that we obtain similar conclusions when running these regressions in

first-differences. Overall, the main takeaway from Table A.3 is that the relationship between PV St
and the real rate is robust across subsamples.

A2.5 Inflation Expectations and the Taylor Rule
Our construction of the one-year real interest rate is simply the nominal one-year Treasury rate

minus expected one-year inflation from the Survey of Professional Forecasters. Thus, PV St can

correlate with our real rate variable because it correlates with one of these components. To explore

this potential further, we decompose the real rate into its constituent parts and regress both on PV St .

Table A.4 contains the results, and in all regressions, PV St is standardized to have zero mean and

unit variance. For sake of comparison, we present the results of regressing the detrended real rate

and the raw real rate on PV St in rows (1)-(2) of the table, respectively. In rows (3) and (4), we

decompose the raw real rate into the one-year nominal Treasury bill rate and inflation expectations,

so that the difference between the coefficients in row (3) and row (4) equals the coefficient in row

(2). This decomposition shows that the correlation between PV St and the real rate primarily comes

from the nominal rate, not inflation expectations.

In rows (5)-(8), we try to separate movements in the real rate that can be attributed to the Taylor

(1993) rule, which sets the real short-term interest rate as a function of inflation and the output gap.

Specifically, we decompose the real rate into a Taylor (1993) rule component and a residual. We

explore two versions of this decomposition. First, in rows (5) and (6), we use the original monetary

policy coefficients on the output gap and inflation from Taylor (1993). Specifically, we compute

Taylor1993t = 0.5× (Out putGapt)+0.5× (In f lationt−2)+2

where Taylor1993t is the real rate that obtains if the central bank follows the Taylor rule exactly.

We define the residual as the raw real rate minus Taylor1993t . Rows (5) and (6) show that in this

construction the explanatory power of PV St for the real rate comes from its explanatory power for

Taylor (1993) rule residuals. In rows (7) and (8), we do a second version of the decomposition,

where we estimate the coefficients on the output gap and inflation. Specifically, we run a regres-

sion of the raw real rate on the output gap and inflation and call the fitted value the Taylor rule

component. Rows (7) and (8) show that in this construction, the explanatory power of PV St for

9For this sample, the augmented Dickey-Fuller test rejects the null of a random walk with no drift at conventional

significance levels.
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the real rate again comes from its explanatory power for the residuals. These results indicate that

PV St does not simply capture the reaction of monetary policy along a standard Taylor (1993) rule.

A2.6 The Real Rate and Alternative Constructions of PVS
In this subsection, we investigate alternatives ways of constructing PV St and whether these al-

ternatives are also correlated with the real rate. For our baseline measure, we prefer to use a

2-month window to measure volatility because it mirrors the construction of volatility-sorted port-

folios on Ken French’s website, making the returns from the portfolios that comprise PV St directly

comparable to his. When computing book-to-market ratios, our approach to averaging market cap-

italizations is motivated by our assumption that book values are known with at least a one-quarter

lag. Thus, smoothing market capitalizations over 6-month windows is designed to roughly match

the timing of our accounting data.

Here, we consider the following alternative approaches to constructing PV St :

1. Measure volatility over a trailing 2-month window and use the last available market capital-

ization to compute book-to-market ratios (PV SLast)

2. Measure volatility over a trailing 2-month window and use the median market capitalization

over the same window to compute book-to-market ratios (PV S2M)

3. Use the same measurement windows as in the baseline version of PV St„ but define PV St , as

the market-to-book of high-volatility firms minus the market-to-book of low-volatility firms

(PV SMB)

4. Use the same measurement windows as in the baseline version of PV St , but sort stocks into

terciles based on volatilities instead of quintiles. PV STerc is the average book-to-market ratio

of firms in the low tercile minus the average book-to-market of the high-volatility tercile.

5. Measure volatility over a 2-year trailing window and use the same approach to book-to-

market ratios as in the baseline PV St

Table A.5 shows the correlation of these various PV S measures with each other and with the

one-year real rate (linearly detrended). The table shows the correlations in both levels and first-

differences. The first takeaway is that our baseline construction of PV S is highly correlated with

all of these alternatives, both in levels and first-differences. Moreover, the correlation between the

real rate and PV St is largely the same across the different construction approaches. We therefore

conclude that the informational content of PV St is robust to different construction methods.

A2.7 The Real Rate and Other Valuation Spreads
A2.7.1 Univariate Analysis

We now explore alternative explanations for the empirical relationship between the real rate and

PV St . This analysis complements our findings in Section 3.1.2 of the main text. Specifically,

we examine the possibility that volatility is simply correlated with another characteristic that is

more important for explaining the real rate. We sort stocks along a variety of dimensions and
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form book-to-market spreads based on the sorting variable. For instance, when examining size

as a characteristic, we sort stocks in quintiles based on their market capitalization, then compute

the difference between the book-to-market ratio of the smallest (i.e., the lowest quintile of market

capitalization) and the largest stocks. Recall that PV St is the book-to-market spread that emerges

when the characteristicY is trailing 60-day volatility. We then run the following regression relating

the real rate to the spread in book-to-market based on each sort:

Real Ratet = a+b×Yt + εt (3)

where Yt is the book-to-market spread based on sorting on characteristic Y . In all cases, we stan-

dardize Yt to have a mean of zero and a variance of one. For reference, column (1) of Table 3

of the main text runs regression (3) with PV St as the explanatory variable. There, we find that a

one standard deviation increase in PV St is associated with a 1.27 percentage point increase in the

one-year real rate and PV St alone explains 41% of real rate variation over our main sample.

The results are displayed in Table A.6. In row (1), we relate the real rate to the spread in

book-to-market sorting stocks based on the expected duration of their cash flows. If high volatility

stocks simply have higher duration cash flows than low duration cash flows, then their valuations

should fall more when real rates rise. This is one sense in which low volatility stocks may be more

“bond-like” than high volatility stocks (e.g., Baker and Wurgler (2012)). In this case, a mechanical

duration effect could explain the relationship between the real rate and PV S. To examine this

possibility, we followWeber (2016) and construct the expected duration of cash flows for each firm

in our data. We then sort stocks based on this duration measure and calculate the spread in book-

to-market between high and low duration stocks. As row (1) shows, the relationship between this

duration spread and the real rate is negative. However, it is not consistently statistically significant

across specifications and is in general much smaller in magnitude than PV S.
Row (2) displays the same exercise when looking at the relative valuations of low-leverage

versus high-leverage stocks. We define leverage as the book value of long-term debt divided by

the market value of equity. It seems natural to think that high-leverage firms have high volatility,

and since these firms effectively are short bonds, their equity may suffer disproportionately from a

decrease in the real rate. The positive coefficient in row (2) indicates that this intuition bears out in

the data. When the real rate falls, the book-to-market spread between low-and-high leverage firms

also falls. In other words, high-leverage firms become cheaper when the real rate falls.

In rows (3)-(5), we sort stocks based on three types of market (CAPM) betas:

1. The first CAPM beta we compute is a two-year rolling beta. In a given quarter, we use the

previous twenty-four months worth of monthly return data to compute a CAPM beta. In

order to have a valid two-year beta, a firm must have at least 80% of its observations over

the previous two years.

2. The second CAPM beta we compute is a “long-run” beta. We first aggregate monthly returns

into six-month returns. Then at the end of each quarter we use the previous ten years worth of

data to compute betas from our six-month return series (e.g. 20 observations per regression).

Once again, firms must have 80% of their observations in order to have a valid long-run beta.

3. The third CAPM beta we compute uses a two-month window. For each firm, we use daily

stock data from the previous two months to compute a high-frequency measure of CAPM

beta. We exclude firms that do not have at least 20 observations over this time frame.
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In all cases, our benchmark index is the CRSP Value-Weighted Index. For the first two measures

of CAPM Beta, all of our individual firm data derives from the CRSP Monthly dataset. We deal

with delisted returns as in Shumway (1997) by setting missing delisted returns with codes 400-591

to a value of -30%.

Row (3) indicates that the book-to-market spread based on a two-year CAPM beta is correlated

with the real rate. Row (4) sort stocks based on CAPM betas that we compute using long-horizon

returns. The motivation for studying longer-run CAPM betas is that long-horizon returns are more

plausibly driven by cash flow news rather than discount rate news. Thus, long horizon CAPM betas

can be viewed as a measure of aggregate cash flow beta. Row (4) indicates a positive relationship

between the book-to-market spread based on long-run CAPM beta in levels, but the relationship

is not particularly strong in a statistical sense when moving to first-differences. Row (5) uses our

measure of CAPM beta that is computed using daily data over rolling 60-day windows. This con-

struction mimics how we compute volatility (and hence PVS). There is again a positive relationship

between 2-month beta and the real rate, but not one that is robust across specifications.

In row (6), we sort stocks on the estimated beta of their cash flows with respect to aggregate

cash flows. Specifically, cash flow betas are computed via rolling twelve quarter regressions of

quarter-on-quarter EBITDA growth on quarter-on-quarter national income growth. EBITDA is

defined as the cumulative sum of operating income before depreciation (series oibdpq from COM-

PUSTAT quarterly). We require a minimum of 80% of observations in a window to compute a cash

flow beta. If high volatility stocks have higher cash flow betas than low volatility stocks, then their

valuations should fall more when aggregate growth expectations are low. In this case, our results

using PV S could be explained by changes in aggregate growth expectations rather than change in

the precautionary savings motive. Row (6) shows that the book-to-market based on cash flow betas

is not significantly correlated with the real rate.

Keep in mind that the preceding regressions are all univariate. The relevant question for us is

whether PV S is just picking up on the information carried in these various book-to-market spreads.

Two pieces of evidence strongly suggest that PV S carries independent information about the real

rate. For one, in Table 4 of the main text, we run bivariate horse races of PV S against each of

these alternative sorting variables. None of these alternative sorting variables drive out PV S from

the regression. This is true when running the horse races in levels, first differences, and across

different subsamples.

As a second piece of evidence, in row (9) of Table A.6 we run a “kitchen-sink” regression of

the following form:

Real Ratet = a+bPV S×PV S+θ
′
Xt + εt

where Xt contains all of the valuation spreads discussed above. Row (9) of the table reports the

estimated bPV S, its associated t-statistic, and the adjusted R2 from the regression. The simple

takeaway from the kitchen-sink regression is that none of the control variables drive out the ex-

planatory power of PV S for the real rate. The coefficient on PV S remains statistically significant

in both the levels and first-differenced specifications, and the point estimate compares favorably to

those found in the main text. If anything, including the other control variables increases the eco-

nomic relationship between PV S and the real rate. These results suggest that the relative valuation

of high and low-volatility stocks contains unique information about the real rate.
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A2.7.2 Double-Sorted Versions of PV St

In this subsection, we create double-sorted versions of PV St as an alternative way to address the

possibility that volatility just proxies for another characteristic whose price is correlated with the

real rate. More precisely, consider characteristic Y. We construct a Y-neutral version of PV St
by first grouping stocks at time t based on whether they have above or below median values of

characteristic Y. We define “low Y” firms as those firms with below-median values of Y and “high

Y” firms are defined analogously. Next, within low-Y firms, we further sort firms into terciles

based on volatility. PV SL,Y
t is defined as the average book-to-market ratio of low-volatility and

low-Y firms minus the average book-to-market value of high-volatility and low-Y firms. PV SH,Y
t

is defined in the same manner, except for high-Y firms. Finally, the Y-neutral version of PV St
is defined as (PV SL,Y

t + PV SH,Y
t )/2. This spread measures the difference in valuations of low

volatility and high volatility stocks that have similar values of characteristic Y.

For example, suppose the characteristic that we are interested in is CAPM-Beta. We then split

stocks into low and high beta firms based on the median CAPM-Beta at time t. Then within each

CAPM-Beta bucket, we compute the difference in book-to-market ratios of low and high volatility

stocks. Finally, we average the spread between low- and high-volatility stocks across low and high

CAPM-Beta firms. This procedure delivers us a version of PV S that is immunized to CAPM-Beta

but differentially exposed to volatility. The sorting variables we use are described in Section A2.7

of this appendix. In addition, we construct an industry-neutral version of PV St in the same way

by first grouping stocks into industries based on their SIC codes and the 48 industry definitions

on Ken French’s website. We also form PV St in the subset of dividend paying and non-dividend

paying stocks, where we define a dividend-paying stock at time t as one that has paid a divided any
time in the previous two years.10

After we build double-sorted versions of PV St , we run the following regression in both levels

and first differences:

Real Ratet = a+b×Y-Neutral PVSt + εt (4)

In all cases, we standardize the double-sorted version of PV St (or its first difference) to have a

mean of zero and a variance of one. Table A.7 contains the point estimates of b, their associated
t-statistics, and the adjusted R2 from these regressions. Echoing our analysis from Section A2.7.1,

we find that all of the double-sorted versions of PV St exhibit an economically and statistically

significant positive correlation with the real interest rate. By and large, the point estimate on the

Y-neutral version of PV St is comparable to what we obtain in the main text when using the raw

version of PV St . The fact that the industry-adjusted version of PV St continues to explain a large

fraction of real rate variation indicates that PV St does not just load up on industries that are more

exposed to interest rate movements. A similar conclusion holds when looking at dividend versus

non-dividend paying stocks. Overall, these facts lend further support of the idea that volatility is

the key characteristic underlying the construction of PV St .

A2.7.3 Total Volatility vs. Alternative Measures of Risk

As discussed in the main text, we use total volatility of stock returns because it is a robust measure

of risk. Intuitively, volatility increases with stocks’ exposure to any risk factors that investors care

10We determine dividend yields by looking at the total return and the ex-dividend return in CRSP.
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about, and PV St captures how much of a price discount investors require for holding risky stocks.

To confirm that our results are robust to variations in how we measure risk, we verify that the

spread in book-to-market ratios is similar when we sort stocks by their CAPM betas instead of

total stock return volatility. The CAPM beta captures systematic risk provided that investors are

well-diversified and that investors’ aggregate wealth portfolio equals the aggregate stock market.

Indeed, we find that PV St and the beta-sorted book-to-market spread are 82% correlated in levels

and 51% correlated in first-differences. As our preceding analysis shows, the link between the real

risk-free rate and the spread in book-to-market ratios when sorting on two-year CAPM betas is

similar, albeit weaker, than our baseline results for PV St .

Of course, investors may care about risk factors other than the aggregate stock market. To

allow for a broader set of factors, we sort firms into quintiles based on the volatility of the fitted

value from a regression of daily stock returns on the Fama and French (1993) factors. To match the

construction of our benchmark sorting variable, i.e. total volatility, we use trailing 60-day returns

at the end of each quarter t. As expected, the resulting book-to-market spread is even more closely

correlated with PV St , with correlations of 87% in levels and 84% in first-differences. Overall, we

find that PV St is not sensitive to small variations in our measure of risk. We use total volatility

as our benchmark sorting variable because it does not require us to take a stand on the underlying

risk-factors that investors care about.

A3 Additional Results

A3.1 Monetary Policy Shocks - All announcements
In Section 3.1.2 of the main text, we show that monetary policy shocks do not differentially affect

high-volatility stocks. In the main text, we exclude unscheduled FOMC meetings because surprise

policy changes made outside of regularly scheduled meetings may be driven by financial market

conditions. Here we examine the full sample of FOMC meetings for robustness. The results are

in Table A.8. As discussed in the paper, if discretionary monetary policy was an omitted variable

driving the positive covariance between the observed real rate and PV St , we should see negative

coefficients in Table A.8. Generally the coefficients in Table A.8 are statistically insignificant with

inconsistent signs. Using daily returns, we find a positive correlation that is borderline statistically

significant for some specifications. However, this is the opposite of what we would expect if

monetary policy acted as an omitted variable for our findings in Table 3 in the main paper. Instead,

a positive correlation is consistent with the Fed scheduling additional meetings to cut interest

rates in times and stabilizing high-volatility stocks in times of market turmoil. Consistent with

this interpretation, in untabulated results we find that the positive correlation is entirely driven by

surprise changes in 2001. In that year, the Fed cut rates aggressively outside of regularly scheduled

meetings in the aftermath of the technology bubble.

A3.2 Decomposing Comovement between the Real Rate and PV St

Section 3.2 of the paper establishes that both the real rate and PV St forecast future returns on

volatile stocks. In this subsection, we use a present-value decomposition to argue that this return

predictability has implications for interpreting the contemporaneous correlation between the real
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rate and PV St . Vuolteenaho (2002) derives the following relation tying a firm i’s log book-to-

market ratio to its future log return and log accounting return (ROE):

θi,t = ri,t+1− ei,t+1+ρθi,t+1+νit

where θi is the log book-to-market of firm i, ri,t+1 is its log stock return, and ei,t+1 is the log ROE.

ρ is a log-linearization constant and νi,t is an approximation error, such that θi,t ≈ ri,t+1− ei,t+1+
ρθi,t+1. To map this expression to the current setting, we define the log version of PV St , denoted

by pvst , as follows:

pvst ≡
[

1

NL,t
∑

i∈Low Volt

θi,t

]
−
[

1

NH,t
∑

i∈High Volt
θi,t

]

where, for example, NL,t is the number of firms in the low vol portfolio at time t. The Vuolteenaho
(2002) decomposition then implies that:

pvst ≈ rPV S
t+1 − ePV S

t+1 +ρ× pvst+1

rPV S
t+1 ≡

[
1

NL,t
∑

i∈Low Volt

ri,t+1

]
−
[

1

NH,t
∑

i∈High Volt
ri,t+1

]

ePV S
t+1 ≡

[
1

NL,t
∑

i∈Low Volt

ei,t+1

]
−
[

1

NH,t
∑

i∈High Volt
ei,t+1

]
(5)

In addition, we assume that pvst follows an AR(1) process, pvst+1 = a+ φ pvst + ξt+1. Next,

combining the AR-process with Equation (5), plus some rearranging yields:

Cov(Real Ratet , pvst)≈ (1−ρφ)−1× [Cov
(
Real Ratet ,rPV S

t+1

)
−Cov

(
Real Ratet ,ePV S

t+1

)
+ρCov(Real Ratet ,ξt+1)]

Dividing both sides by Cov(Real Ratet , pvst) delivers a simple covariance decomposition:

1= Ψr−Ψe +Ψξ (6)

where Ψr ≡ (1−ρφ)−1×Cov
(
Real Ratet ,rPV S

t+1

)
/Cov(Real Ratet , pvst), and so forth.

Equation (6) states that covariation between today’s real rate and pvst can arise for three rea-

sons: (i) today’s real rate forecasts future returns to the volatility-sorted portfolio, rPV S; (ii) today’s

real rate forecasts future cash flows on the same portfolio, ePV S; or (iii) today’s real rate forecasts

future innovations in tomorrow’s pvs.
To operationalize the decomposition, we need to first estimate φ and ρ . We fit a simple AR(1)

for pvs and find that φ = 0.88 for quarterly data. With regards to ρ , we consider a range of values
from 0.9 to 0.97.11 All of the other components needed for the covariance decomposition are

11Vuolteenaho (2002) sets ρ = 0.967 for annual data. We use a range of values to get a sense of how sensitive our

decomposition is to the approximation constant.
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estimated from simple covariances in the data, namely one-quarter ahead forecasting regressions

of returns and ROEs on PV St .
12

For all of the ranges of ρ that we consider, Ψr is never less than 70% and approaches 100%

for larger values of ρ . Moreover, for all of the ranges of ρ considered in Vuolteenaho (2002), Ψr
is never below 90%. This is rather unsurprising given that the real rate does not forecast future

ROE for the low-minus-high volatility portfolio. We therefore conclude that a large majority of

the covariation (around 90%) between PV St and the real rate can be attributed to the real rate

forecasting future returns on the volatility-sorted portfolio. Put differently, PV St and the real rate

correlate because discount rate shocks to high-volatility stocks coincide with shocks to the real

rate. This result is consistent with the interpretation of PV St as a measure of risk perceptions

rather than expected cash flows.

A3.3 Robustness: PVS and Real Outcomes
A3.3.1 Evidence from VARs

The observed real rate mixes two components – the natural rate of interest and discretionary mon-

etary policy – as we show in Eqn. (16) in the paper. We would expect these two components to

have offsetting correlations with real investment:

• The natural rate of interest is positively correlated with investment through risk perceptions

according to our model.

• Discretionary monetary policy tends to push towards a negative correlation between the real

risk-free rate and real investment, as an exogenous increase in the real interest rate is gener-

ally thought to be contractionary (e.g. Christiano et al. (1999)).

Consistent with this interpretation, the evidence in Section 3.3 suggests that it is possible to sepa-

rate these forces using a measure of risk perceptions like PV St . Figure 3 in the main paper isolates

the first channel, showing that investment increases following an increase in PV St , conditional on

holding the real risk-free rate constant. We now further disentangle the two channels driving the

real rate-investment relationship. When we estimate a standard VAR that includes both PV St and

the real rate, we find that a contractionary monetary policy shock increases the real risk-free rate

and decreases investment, while a shock to PV St increases the real risk-free rate and increases

investment, exactly as expected.

We estimate a VAR that is as simple and transparent as possible, while following a common set

of recursiveness assumptions, similar to Sims (1980), Bernanke and Mihov (1998) and Gilchrist

12Note that in estimating Cov
(
Real Ratet ,ePV S

t+1

)
by forecasting future ROE with PV St , we are imposing that in-

vestors have rational expectations of the cash flows of high-volatility versus low-volatility firms. As discussed later in

Section A3.4, this assumption is justified by the fact that PV St does not forecast surprises in ROE based on analyst

forecasts, nor does it correlate with analyst expectations of cash flows. To be clear, it could be that movements in the

expected return of high-versus-low volatility stocks are still driven by behavioral forces and irrational expectations of

risk. Indeed, this is precisely what we find in the main text.
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and Zakrajšek (2012). We use the following strategy for measuring dynamic effects:

Yt =
k

∑
i=1

BiYt−i +
k

∑
i=1

CiPt−i +Ayvy,t (7)

Pt =
k

∑
i=0

DiYt−i +
k

∑
i=0

GiPt−i +Ap
[

vPV S,t
vMP,t

]
. (8)

Here, Yt is a vector of quarterly non-policy variables, consisting of unemployment, the investment-

to-capital ratio, and detrended inflation. Pt is a vector of policy variables consisting of PV St and

the detrended real rate. Eq. (7) describes a set of structural relationships in the economy, where

macroeconomic variables depend on lagged values of macroeconomic and policy variables. Eq.

(8) describes the stance of monetary policy conditional on contemporaneous macroeconomic vari-

ables. Our baseline estimation uses k = 1 lag.

We estimate the structural policy shocks under the restriction that vPV S,t does not respond to

vMP,t contemporaneously, but vMP,t may respond to vPV S,t , consistent with the Federal Reserve

actively monitoring macroeconomic and financial variables. It is plausible that investors’ risk

perceptions shift gradually over time and do not jump in response to monetary policy actions.

Indeed, this identification restriction is supported by our analysis of monetary policy shocks in the

main text.13 Following Bernanke and Mihov (1998), structural innovations in the real rate and

PV St shocks are assumed to affect output, inflation, and precautionary savings demand with a lag.

As a baseline, the left panel of Figure A.3 shows responses to an unexpected tightening by the

Federal Reserve. Consistent with the long literature on monetary policy shocks, summarized in

Christiano et al. (1999), unemployment increases and and inflation decreases after a one-standard-

deviation shock to the real interest rate. The effect on the investment-to-capital ratio is not statis-

tically different from zero. Interestingly, PV St does not respond to monetary policy shocks with

tight 95% confidence intervals, consistent with our prior finding that monetary policy does not act

as an omitted variable driving the relation between the observed real rate and PV St .

The right panel of Figure A.3 shows that a positive PV St shock (corresponding to a decline

in risk perceptions) significantly decreases unemployment and increases real investment, despite

being associated with a similar increase in the real rate as the MP shock. The contrasting responses

across the left and right panels in Figure A.3 are exactly what we would expect if PV St isolates

risk perceptions.

Shocks to PV St are both statistically significant and quantitatively important for unemploy-

ment and investment, as shown by forecast error variance decompositions. Ten quarters after the

shock, PV St shocks explain 14% of variation in the unemployment rate and 38% of the variation

in investment-to-capital ratios. It is intuitive that risk perceptions shocks should matter most for

real investment, since it is the interface between financial market attitudes towards risk and the real

economy. For comparison, the monetary policy shocks explain 17% of variation in unemployment

and only 5% of variation in the investment-to-capital ratio.

13This identification restriction is not crucial to our findings. As we show below, our conclusions are unchanged if

instead we make the opposite identification assumption that PV St responds to the real rate contemporaneously, but the

real rate reacts to risk perceptions with a lag. This second identification assumption is different from saying that the

Fed does not pay attention to the stock market. It merely requires that the Fed historically did not react instantaneously

to the cross-sectional valuation spread newly documented in this paper. Impulse responses are also robust to excluding

the post-crisis period and to including additional lags.
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Robustness Figure A.4 shows that impulse responses look similar to Figure A.3 if we use the

pre-crisis sample. Figure A.5 shows that our findings are not dependent on the specific identifica-

tion assumption. We see that unemployment and investment responses are similar if we make the

alternative identification assumption that PV St is faster than the real rate. Under this alternative

identification restriction, we estimate α freely while assuming that φ = 0.

Figure A.6 shows that again the conclusion is similar if instead of estimating a VAR(1) we

include additional lags in our estimation and base the impulse responses on a VAR(4). Finally,

Figure A.7 shows that we obtain similar results if we replace the unemployment rate by the output

gap. Of course, the output gap responses have the opposite signs of the unemployment responses in

our baseline specification, because the output gap decreases in recessions, whereas unemployment

increases. So, our results linking shocks to risk perceptions and the real economy are not specific

to a particular measure of economic activity.

A3.3.2 Evidence from Jordà (2005) Local Projections

In Section 3.3 of the main text, we use Jordà (2005) local projections to show that an increase in

PV St forecasts a boom in investment, an expansion of output, and a decline in unemployment. In

that analysis, we control for lagged outcome variables and the real interest rate. Here, we explore

the robustness of those local projections by running the following sequence of regressions:

yt+h = a+bh
PV S×PV St +bh

RR×RealRatet +bh
y× yt +bh

mkt×Agg BMt +bh
cp×CPt + εt+h

where h is the forecast horizon. yt+h is either the investment-to-capital at time t+h, the real output
gap at t+h, or the change in the unemployment rate between t and t+h. In this regression, we also
control for the aggregate book-to-market ratio (Agg BMt) and the Cochrane and Piazzesi (2005)

bond risk-factor, the latter of which we construct using quarterly data and forward rates from

Gürkaynak et al. (2007). We include the aggregate book-to-market ratio and the Cochrane and

Piazzesi (2005) factor to test whether PV St reflects redundant information embedded in measures

of financial market activity from aggregate stock and bond markets.

Figure A.8 displays the results of these local projections. The main thing to notice is the

magnitude of the response of the macroeconomy to a risk perceptions shock is very similar in

these specifications compared to those shown in Figure 3 of the main text. Following an increase

in PV St , investment and the output gap both rise and unemployment falls, even when controlling

for the value of the aggregate stock market and the Cochrane and Piazzesi (2005) factor. These

results therefore suggest that PV St contains information about the real side of the economy that

are not contained in these alternative financial market indicators.

A3.3.3 Firm-Level Investment

Our motivating model from Section 2.1 of the main text suggests that a decline in risk perceptions

should disproportionately affect real investment at high-risk firms. To examine this prediction, we

run firm-level regressions in Compustat data of investment on indicators for the firm’s volatility

quintile, PV St , and the interactions between PV St and the quintile dummies:

CAPXi,t→t+4

Ai,t
= ai+at +

5

∑
q=1

bq ·1q
it +bPV S×PV St +

5

∑
q=2

bq,pvs ·1q
it×PV St +bCF

CFi,t→t+4

Ai,t
+εi,t+4.
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where 1
q
it is an indicator that firm i is in volatility quintile q at time t. ai and at are firm and time

fixed effects, respectively. The variable CAPXi,t→t+4/At captures investment for the firm from

time t to t +4 and CFi,t→t+4/At controls for the cash flows of the firm over the same period. The

coefficient of interest in the regression is the interaction between the firm’s volatility quintile and

PV St . Table A.9 reports the regression results: as predicted by the model, the investment of higher-

volatility firms is more sensitive to PV St than the investment of lower-volatility firms. This result

is also robust across pre- and post-2000 subsamples.

A3.3.4 Private versus Public Firms

Our measure of risk perceptions derives from the pricing of volatile stocks. These firms generally

account for a small portion of the value of the aggregate stock market, which explains why PV St
has a low correlation with the valuation of the aggregate stock market. However, given that volatile

firms are a small part of the market, it is perhaps surprising that movements in their price can

impact aggregate economic outcomes like unemployment and real investment. The resolution of

this apparent tension is that private firms make up a significant part of the overall real economy,

and they behave more like high-volatility public firms than low-volatility public firms.

More specifically, previous studies have found that private firms make up roughly 50% of ag-

gregate non-residential fixed investment, 70% of private-sector employment, 60% of sales, and

50% of pre-tax profits (Davis et al. (2007) Asker et al. (2014) and Zwick and Mahon (2017)). We

see a similar pattern in our data. In Figure A.9, we plot the imputed share of U.S. investment com-

ing from private firms. We compute private firm investment as the difference between aggregate

investment and the investment of publicly traded firms, which we measure in COMPUSTAT.14 The

figure shows that private firms account for roughly half of aggregate investment, and their share is

relatively stable over time.

Moreover, private firms are more similar to high-volatility public firms than low-volatility pub-

lic firms. A first simple way to make this point is to compare firm characteristics. Asker et al.

(2014) show that private firms are smaller, less profitable, and invest more than public firms. In Ta-

ble A.10, we show that a similar pattern holds when comparing high-volatility public firms to low-

volatility public firms. Over our COMPUSTAT quarterly sample (1982Q1-2016Q2), the median

high-volatility public firm is much smaller, with $32 million in nominal assets compared to $722

million in assets for low-volatility public firms. In terms of profitability, the median high-volatility

public firm had an annual return on assets (ROA) of 0.8%, whereas the median low-volatility pub-

lic firm had an ROA of 11.8%. And, in terms of investment, the median high-volatility public firm

invested at a rate of 7.4% compared to 5.3% for low-volatility public firms. Thus, much like private

firms, high-volatility public firms are smaller, less profitable, and invest more than low-volatility

public firms.

A second way to make the point that that private firms are more like high-volatility firms is to

examine their investment behavior. Table 11 in the main text displays the correlation between ag-

14After 1990, we use COMPUSTAT quarterly to compute total public-firm investment, as it provides more up-to-

date accounting information. In each quarter t and for each firm f , we take the last observation in the data within a

year of t. We then compute total investment for publicly traded firms by summing over all firms. Prior to 1990, we

compute aggregate investment using COMPUSTAT annual because coverage is poor in COMPUSTAT quarterly. We

chose 1990 as the cutoff because this was the date when total public-firm investment from COMPUSTAT quarterly

and COMPUSTAT annual converged to roughly the same level.
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gregate investment and the investment rates of publicly traded firms based on their volatility tercile.

The table indicates that aggregate investment is much more correlated with the investment rates

of high-volatility stocks (71% correlation) compared to low-volatility stocks (41% correlation).

Because private firm investment is such a large share of aggregate investment, these correlations

reinforce the notion that private firms are more like high-volatility firms.

More directly, in Figure A.10 we decompose the response of aggregate investment to a PVS

shock into the portion driven by private-firm investment and public-firm investment. We do so

by stripping out COMPUSTAT investment from aggregate investment. This analysis mirrors the

Jorda (2005) local projections from Section 3.3 of the paper and Section A3.3.2 of this appendix.

The main takeaway from the figure is that private-firm investment is a key part of the response to a

shock to PVS, consistent with the idea that private firms behave more like volatile public firms.

Overall, this analysis suggests that private firms are an important component of the real econ-

omy, and PVS likely captures the risk perceptions of this subset of firms. PVS does not forecast the

aggregate stock market – yet still forecasts aggregate investment and economic expansions – be-

cause the aggregate stock market is tilted towards safer “bond-like” stocks that are fundamentally

different than private firms.

A3.4 Additional Analysis of Expectations
A3.4.1 Contemporaneous Cash-Flow Expectations

In Section 2.4 of the main paper, our regression analysis indicates that PV St is highly correlated

with several measures of expected risk. One concern with these results is that expectations of risk

may comove with expectations of the future cash flows. We deal with this potential issue in the

main text by directly controlling for contemporaneous cash-flow expectations in our regressions.

We now show more directly through a series of univariate regressions that PV St is only weakly cor-

related with cash-flow expectations. Specifically, in Table A.11 Panel A, we run contemporaneous

regressions of PV St on expectations of future cash flows constructed from the Thompson Reuters

IBES dataset of equity analyst forecasts. For each stock, we construct the consensus analyst fore-

cast of ROE.We then compute the difference between the median forecast for high-volatility stocks

and the median forecast for low-volatility stocks. We regress PV St on this spread in expected cash

flows. In column (1), we use analyst forecasts for the next quarter, in column (2), we examine an-

nual forecasts, and in column (3) we use analyst forecasts for long-term growth.15 We standardize

both PV St and the explanatory variables. The sample for these regressions is shorter because IBES

data is only reliable for our cross section after the early 1990s, and the number of observations

varies across columns because different forecasts are available starting at different dates. We find

similar results if we restrict the sample to the common period where all variables are available.

As one would expect, expectations of future cash flows are positively correlated with PV St .

When investors expect high cash flows for high-volatility stocks, PV St tends to be high. However,

the correlation is quite weak – across the three specifications, expectations of cash flows explain at

most 15% of the variation in PV St . Mechanically, this means that the remaining 85% of variation

in PV St must be explained by variation in expectations of future returns (Campbell and Shiller

(1988)). This accords with our results in Section A3.2, where we concluded that nearly 90% of the

15IBES defines long-term growth as the “expected annual increase in operating earnings over the company’s next

full business cycle”, a period ranging from three to five years.
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comovement between the real rate and PV St arises because the real rate forecasts future returns to

volatility-sorted stocks. The main takeaway here is that variation in PV St is primarily driven by

investor expectations of returns, not their expectations of cash flows.

A3.4.2 Forecasting Revisions in Expectations of Future Cash Flows

In Section 3.2 of the main text we document that PV St negatively forecasts future returns on a

portfolio that is long low-volatility stocks and short high-volatility stocks. We concluded from

that analysis that PV St reflects changes in the cost-of-capital at high-volatility firms: when PV St
is low, high-volatility firms need to offer investors higher returns on capital because investors

perceive these firms as especially risky. An alternative explanation for these forecasting results

is that investors have biased beliefs about future cash flows. If investors are overly optimistic

about the future earnings of volatile stocks, they will bid up the prices of those stocks and hence

PV St . When high future earnings are not realized, PV St will fall as investors revise their beliefs

downwards and realized returns on high-volatility stocks will be low. This behavioral story would

match the fact that high values of PV St forecasts future returns on high-volatility stocks.

To examine the possibility that investors have biased beliefs about expected cash flows, we

once again use analysts forecasts from the Thompson Reuters IBES dataset. We define a stock’s

quarterly ROE surprise as the difference between its realized ROE and the analyst consensus ROE

forecast. The annual ROE surprise is the average surprise over the previous four quarters. Row

(1) of Table A.11 Panel B shows that there is no evidence that PV St forecasts earnings surprises.

In row (2), we examine revisions in expectations of future cash flows. We study how analyst

expectations for quarterly earnings at quarter t +3 evolve from quarter t to t +2. We choose these

horizons based on data availability in IBES. Row (2) shows that PV St does not forecast revisions

in expected earnings. These results reiterate the point that PV St is largely driven by expectations

of risk, and not by incorrect beliefs about the future cash flows of volatile firms.

A3.4.3 PVS and Direct Measures of Expected Risk

In Section 2.4 of the main text, we showed that PV St is negatively correlated with direct mea-

sures of expected risk: (i) subjective expectations of earnings volatility of high-volatility stocks

(relative to low-volatility) from analyst forecasts; (ii) expected return volatility of high-volatility

stocks based on option prices; (iii) objective expectations of return volatility for high-volatility

stocks, where objective expectations are defined from the perspective of a statistical forecasting

model; (iv) the percent of loan officers loosening lending standards, which is plausibly related to

their subjective expectations of risk; (v) small business optimism; and (vi) the Baker et al. (2016)

economic policy uncertainty measure. Our main finding is that PV St is highly correlated with

subjective measures of risk and weakly correlated with objective measures of risk from statistical

forecasting models.

We complement the evidence in Section 2.4 with additional results in Table A.12, where we

relate PV St to objective and subjective measures of expected risk for aggregate macroeconomic

variables and the aggregate stock market. Overall, Table A.12 further supports the conclusion that

PV St is related to expected risk, and that this connection is most evident for subjective measures of

risk that reflect both public and private firms. The first set of columns in Table A.12 uses univariate

regressions to investigate the link between PV St and other measures of expected risk. The second
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set of columns links the one-year real interest rate with the same measures of expected risk. In

row (1), we build a measure of the expected volatility of the aggregate stock market. From 1986

onward, we follow Bloom (2009) and use the VXO implied volatility index of the S&P 100, which

is highly correlated with the popular VIX index. Options data is not available prior to 1986, so

we use the one-step ahead forecast from fitting an AR(1) model to the within-quarter realized

volatility of the aggregate stock market, which we scale to create a smooth series when the VXO

becomes available. The regression results show that PV St is lower when the expected volatility

of the aggregate stock market is high. However, the relationship is not statistically significant,

emphasizing the importance of using a measure of risk that does not overweight low-volatility

public firms.

In row (2), we construct an objective measure of risk designed to reflect the whole economy,

not just those firms that dominate the aggregate stock market. Specifically, we an fit ARMA(1,1)-

GARCH(1,1) model to industrial production growth and then define the objective expectation of

risk as the one-period forecast of volatility from the GARCH component of the model. We find a

negative relationship between the expected risk of industrial production and PV St , though this rela-

tion is not statistically insignificant. In untabulated results, we observe similar patterns when using

GDP growth or consumption growth. Using a similar measure of macroeconomic risk, Hartzmark

(2016) finds a statistically significant relation with interest rate over a sample period that includes

the Great Depression. Our finding of a weak result during our post-war sample emphasizes the

importance of relating PV St to subjective measures of macroeconomic risk.

In row (3), we again find little relation between PV St and the macroeconomic uncertainty index

from Jurado et al. (2015), again emphasizing the need to relate PV St to subjective measures of risk.

Jurado et al. (2015) define the uncertainty of a macroeconomic series as the conditional volatility

of the purely unforecastable component of that series. They employ sophisticated econometric

techniques to compute uncertainty measures for a wide range of macroeconomic and financial

series, and then combine them into a single aggregate index of macroeconomic uncertainty.

Rows (2) and (3) focus on objective measures of macroeconomic risk, whereas asset prices and

macroeconomic activity should reflect subjective expectations over a broad cross-section of private

and public firms. Motivated by this observation, in row (4) of Table A.12 we create an index

of macroeconomic uncertainty using forecast dispersion of growth rates in real GDP, industrial

production, real private fixed nonresidential investment, and corporate profits. Specifically, we

obtain 1-quarter, 2-quarter, and 4-quarter forecasts from the Survey of Professional Forecasters

for 1985 onwards, which is when real growth rates were asked for instead of imputed. We then

apply a Hodrick-Prescott filter to each series, standardize, and take a cross-sectional average to

arrive at our SPF Macroeconomic Uncertainty index. A univariate regression of PV St on this SPF

Macroeconomic Uncertainty index confirms that it is low when macroeconomic survey uncertainty

is high. The point estimate in the regression is measured precisely and is large relative to the other

measures in the table. Similarly, SPF Macroeconomic Uncertainty is negatively correlated with

the real rate, though less than PV St itself (Table 3 of the main text). Overall, these results reinforce

the idea that PV St reflects subjective expectations of risk that are relevant for macroeconomy, in

part because PV St captures risk perceptions relevant to private and public firms, and not just the

risks of low-volatility public firms that are relatively overweighted in the aggregate stock market.
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A3.4.4 Subjective Expectations of Risk and Realized Risk

In both Section 2.4 of the main text and Section A3.4.3 of this appendix, we showed that PV St is

more correlated with subjective expectations of risk than objective expectations. In Section 4.2 of

the main text, we argued that this fact is consistent with our other evidence that risk expectations

may not be fully rational. To be clear, this is not to say that subjective expectations of risk that

drive PV St are completely disconnected from reality. Indeed, the model of diagnostic expectations

in the main text is based on the assumption that subjective expectations reflect a kernel of truth.

To show that this is the case, we build on our finding from Section 2.4 that PV St is correlated

with subjective expectations of risk that are embedded in the options of high-volatility firms. In

particular, we test whether option-implied volatilities are rooted in reality by checking whether they

forecast subsequent realized volatilities. We do so via the following panel forecasting regression

of future firm-level realized volatility on current implied volatility:

Realized Volatilityi(t + k, t +h) = a+b× IVi,t(t + k, t +h)+ εi,t

where Realized Volatilityi(t + k, t + h) is the realized volatility of firm i from t + k to t + h. IVi,t
is the implied volatility of firm i measured at time t for returns from t + k to t + h.16 Table A.13

contains the results of these regressions, which again are run only for firms that are classified as

high-volatility as of time t. In column (1), we test whether time-t implied volatilities based on

options with a one-year maturity forecast realized volatility over the subsequent year. Column (2)

of the table runs the panel forecasting regression with industry-by-time fixed effects to account

for any potential variance risk premiums embedded in the options of firms in the same indus-

try. Columns (3) and (4) focus on the sample preceding the 2008-09 financial crisis. The point

estimates in the pre-crisis sample are generally higher than their full-sample counterparts, likely

reflecting dislocations in the options markets during the crisis. Columns (5)-(8) run similar re-

gressions for k = 3,h = 4. In all cases, the point estimates and their standard errors indicate that

implied volatilities forecast for future realized volatility.

There are two key takeaways from these predictive regressions. First, expectations of volatil-

ity embedded in the options of high-volatility firms do reflect information about future realized

volatility. As the paper shows, these expectations are also a key driver of movements in PVS. Sec-

ond, however, these expectations are biased estimates of future volatility. To see why, note that if

option-implied volatilities were an unbiased estimate of future realized volatility, these regressions

would deliver a constant of zero and a point estimate on implied volatilities of one. However, in

all of our specifications, we can comfortably reject this null hypothesis.

In the main text, we show that the degree of bias in risk expectations has predictable temporal

patterns. In particular, we use PVS to forecast implied volatility forecast errors, defined as the

difference between realized volatility and implied volatility. We find that when PVS is high, real-

ized volatility consistently exceeds expected volatility from options, especially for high-volatility

stocks. Taken together then, our analysis paints a simple picture. PVS is at least partially driven by

expectations of risk. These expectations are based in some truth, as evidenced by the fact that they

forecast future volatility. At the same time, these expectations are often biased in the sense that

16We obtain implied volatilities at the firm level from the standardized volatility surface produced by OptionMetrics.

For a given maturity, we compute the implied volatility for each firm by averaging all available strikes in the standard-

ized volatility surface dataset. We chose this route for its convenience and simplicity, though a more precise approach

would build VIX-like measures at the firm level.
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periods where PVS is high are reliably followed by periods in which realized volatility exceeds

expected volatility.

A3.4.5 Revisions in Expected Risk

In the main text, we use options to study revisions from quarter t to t +3 in the expected volatility

of stock returns that will be realized between t + 3 and t + 4. In particular, we test whether PV St
can forecast these revisions, which we infer from the implied volatility embedded in option prices.

To formalize our approach, first define the time-t conditional variance of returns between t + k
and t +h, denoted by Rt+k,t+h, as:

Vt
(
Rt+k,t+h

)≡ Et+k
[
R2

t+k,t+h
]−E

2
t+k

[
Rt+k,t+h

]
= Et

[
Vt+k

(
Rt+k,t+h

)]
+Vt

(
Et+k

[
Rt+k,t+h

])
(9)

where the second equality follows from the law of total variance.

Next, define the news about variance between t and t + k as:

ηt+k ≡ Et+k
[
Vt+k

(
Rt+k,t+h

)]−Et
[
Vt+k

(
Rt+k,t+h

)]
= Vt+k

(
Rt+k,t+h

)−Et
[
Vt+k

(
Rt+k,t+h

)]
(10)

Our approach in the main text effectively focuses on the following object:

θt+k ≡ Vt+k
(
Rt+k,t+h

)−Vt
(
Rt+k,t+h

)
,

which we can easily construct using option prices at time t and t + k. θt+k is not exactly the same

as the news about expected variance, but is close. To concretely relate the two, substitute Eq. (9)

into Eq. (10) and rearrange to get:

θt+k = ηt+k−Vt
(
Et+k

[
Rt+k,t+h

])
(11)

In the data, we use PV St to forecast θt+k. However, to ensure our point estimates on PV St are not

biased in this regression, we should also control for Vt
(
Et+k

[
Rt+k,t+h

])
. Thus, the remaining task

is to construct Vt
(
Et+k

[
Rt+k,t+h

])
in the data. To do so, let’s focus on the case where k = 3 and

h = 4, as we do in the main text. Next, notice that we can write:

Vt(Et+3[Rt+3,t+4]) = Et
{
E
2
t+3[Rt+3,t+4]

}−E
2
t [Rt+3,t+4] (12)

We can form an estimate of Et+3[Rt+3,t+4] by regressing Rt+3,t+4 on PV St+3. In turn, the square

of the fitted value from this forecasting regression provides an estimate of Et
{
E
2
t+3[Rt+3,t+4]

}
.

Similarly, we can construct an estimate E2
t [Rt+3,t+4] based on the square of the fitted value from

a regression of Rt+3,t+4 on PV St . Combining the two yields an proxy for Vt
(
Et+k

[
Rt+k,t+h

])
,

which we then add as a control to our forecasting regression. The results are presented below:

θt+3 = a + b1 × PV St + b2 × Vt (Et+3 [Rt+3,t+4])
0.05 0.47 0.004
(0.28) (2.99) (5.05)
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where point estimates are listed below the coefficients and t-statistics based on Newey-West stan-

dard errors with five lags are in parenthesis. As is clear from the regression, controlling for the

time-t variance of expected returns at t + 3 does not change the main conclusion that PV St fore-

casts revisions in risk. Moreover, if we just regress θt+3 onto PV St , the point estimate is basically

unchanged at 0.48. With this in mind, and to keep the exposition as simple as possible, in the main

text we focus on predicting revisions in volatility as opposed to variance. In addition, we do not

control for the time-t variance of expected returns at t +3.

A3.5 PVS, the Real Rate, and Mutual Fund Flows
Throughout the main text, we inferred investor preferences from asset prices, which have the ad-

vantage of aggregating over a broad range of investors, including households, institutions, firms,

and international investors. In this subsection, we provide evidence that a specific but important

class of investors, namely mutual funds investors, behaves consistently with the evidence from

prices. If real rate variation indeed reflects time variation in risk perceptions, we expect investors

to leave high-volatility mutual funds when the real rate is low. Specifically, an increase in risk

perceptions should lead to outflows from high-volatility mutual funds, an increase in the demand

for bonds, and a drop in the real rate. Mutual fund flows are also useful because they allow us to

separately verify our baseline results in a completely different data set.

Our sample is the CRSP mutual fund data base, from which we have monthly return data

from 1973q2 through 2015q3. We first need to determine whether some mutual funds are more

exposed to high-volatility stocks than others. We use two simple measures. First, we estimate the

return beta of each fund with respect to the high-volatility portfolio. Second, we simply calculate

the volatility of the fund’s returns. We use the full sample of monthly return data available for

each fund to minimize measurement error. We then compute quarterly fund flows for each fund,

winsorizing at the 5th and 95th percentiles, and restrict our data set to fund-quarter observations

where the fund has total net assets of over $100 million to ensure that our results are not driven by

small funds.17

Panel A of Table A.14 contains summary statistics for our sample of mutual funds. The average

fund appears in our sample for 31 quarters and has around $750 million in assets under manage-

ment. We find substantial heterogeneity in mutual funds’ exposure to volatile stocks, regardless

of how we measure exposure. The average fund has an annualized return volatility of about 12%,

though this ranges from 4.6% to 17.3% when moving from the 25th to 75th percentile of fund

volatility. Similarly, the beta of fund returns with respect to the high-volatility portfolio is 0.30 for

the average fund, with a cross-sectional standard deviation of 0.24. This cross-sectional dispersion

in volatility exposure allows us to study how movements in risk perceptions differentially impacts

our sample of mutual funds.

In Panel B of Table A.14, we explore the relationship between fund flows, the real rate, and

fund volatility. Specifically we run

Flows f ,t = α f +θ1Real Ratet +θ2Real Ratet×VolExp f + ε f ,t ,

where VolExp f is a measure of the fund’s exposure to high-volatility stocks. In columns (1)-(3)

VolExp f is the beta of the fund’s returns with respect to the high-volatility portfolio. In columns

17We obtain similar results if we use the full sample.
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(4)-(6), it is the volatility σ f of the fund’s returns. For all regressions, we use Driscoll-Kraay

standard errors, clustered by fund and time with five lags.18

Panel B of Table A.14 shows that mutual fund flows indeed tell the same story as our baseline

results. The magnitudes are economically meaningful. In column (1), a one percentage point drop

in the real rate is associated with a 0.9 percentage point outflow for a fund with zero exposure to

the high-volatility portfolio. A one-standard deviation increase in the fund’s volatility exposure

increases the impact of the real rate by over 50%: a one percentage point drop in the real rate is

now associated with a 1.4 percentage point outflow.19 Column (2) shows the results are robust to

including time fixed effects. Column (3) shows that they are robust to controlling for the fund’s

contemporaneous and lagged performance, so we are not simply picking up a performance-flow re-

lationship. Similarly, Columns (4) through (6) show that mutual funds with higher overall volatility

tend to experience outflows when the real rate is low.

Overall, the results in this section show that investor behavior, as measured by mutual fund

flows, is consistent with our main results and support the interpretation that PV St is a good measure

of risk perceptions. An obvious caveat to our mutual fund analysis is that there must be a buyer

for every seller, meaning outflows do not necessarily have to lead to a change in the price of high-

volatility securities. Nonetheless, there is ample evidence that mutual fund outflows cause price

pressure in equity markets (e.g., Coval and Stafford (2007)). Furthermore, we are not claiming that

flows out of high-volatility equity mutual funds are solely responsible for the contemporaneous fall

in real rates. These results simply provide a glimpse into the behavior of investors that we think is

representative of the broader economy. Indeed, the fact that the real rate forecasts returns on the

low-minus-high volatility trade in other asset classes suggests that investors in those asset classes

likely behave similarly.

A4 Model Appendix
In this appendix, we provide proofs for the model propositions.

A4.1 Risk
Consumption growth is described by the following process:

Δct+1 = εt+1, (13)

εt+1 = exp(a−bεt)ηt+1, (14)

where ηt+1 is iid standard normal, so the conditional variance of log output growth is Vt (εt+1) =
exp(a−bεt).

Taking the comparative static in the vicinity of εt = 0 then gives Proposition 2 a):

dVt (εt+1)

dεt
= −exp(a)b < 0. (15)

18We have also tried double clustered errors by fund and time and are reporting the more conservative standard

errors.
19Because we include fund fixed effects, the base effect of the fund’s volatility is absorbed.
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A4.2 Real Risk-Free Rate
The stochastic discount factor can be written as:

Mt+1 = β
(

Ct+1

Ct

)−λ
, (16)

= β exp(−λεt+1) . (17)

The time-t log real risk-free rate is then given by the asset pricing Euler equation:

1 = Et
[
exp(r f t)Mt+1

]
, (18)

= exp(r f t)β exp

(
1

2
λ 2

Vt (εt+1)

)
, (19)

implying that

r f t = − ln(β )− 1

2
λ 2

Vt (εt+1) . (20)

Taking the comparative static of r f t in the vicinity of εt = 0 gives:

dr f t

dεt
= −1

2
λ 2dVt (εt+1)

dεt
. (21)

Substituting in for
dVt(εt+1)

dεt
from equation (15) gives Proposition 2 d):

dr f t

dεt
=

1

2
λ 2 exp(a)b > 0. (22)

A4.3 Risky Returns
The marginal return to capital in firm i is the marginal benefit of an additional unit of investment

divided by the marginal cost:

Rit+1 =

(
dYit+1

dKit+1

)
/

(
dΦit

dIit

)
, (23)

= exp

(
siεt+1− 1

2
s2i Vt (εt+1)

)
/φ ′

(
Iit

Kit

)
. (24)

Taking the expectation conditional on information known at time t shows:

Et [Rit+1] = 1/φ ′
(

Iit

Kit

)
. (25)

Substituting for Rit+1 into the asset pricing Euler equation, 1= Et [Mt+1Rit+1], gives:

1 =
Et

[
Mt+1 exp

(
siεt+1− 1

2s2i Vt (εt+1)
)]

φ ′
(

Iit
Kit

) , (26)

=
β exp

(
1
2

(
(λ − si)

2− s2i
)
Vt (εt+1)

)
φ ′

(
Iit
Kit

) , (27)
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so the log expected return on capital must equal:

ln(Et [Rit+1]) = ln

(
1/φ ′

(
Iit

Kit

))
,

= − lnβ − 1

2

(
(λ − si)

2− s2i
)
Vt (εt+1) . (28)

Combining this with the expressions for the real risk-free rate (20) gives Eq. (8) in the main

paper:

ln(Et [Rit+1])− r f t = si×λ ×Vt (εt+1) . (29)

Taking the difference of the expression (28) for high- vs. low-volatility firms gives:

ln [EtRHt+1]− ln [EtRLt+1] = λ (sH− sL)Vt (εt+1) . (30)

We then take the comparative static of (30) with respect to εt in the vicinity of εt = 0 and apply

the chain rule with (15) to obtain Proposition 2 c):

d (ln [EtRHt+1]− ln [EtRLt+1])

dεt
= −λ (sH− sL)exp(a)b. (31)

A4.4 Valuation Ratios and PV Smodel
t

We next solve for book-to-market ratios and PV Smodel
t . Because of our assumption that each firm

produces only for one period, firm i’s market-to-book ratio equals:

Vit−Dit

Kit+1
=

Et [Mt+1Dit+1]

Kit+1
(32)

= Et

[
Mt+1 exp

(
siεt+1− 1

2
s2i Vt (εt+1)

)]
(33)

With the expression for expected returns (25) and the asset pricing Euler equation (26) it fol-

lows that the market-to-book ratio is directly inversely related to expected returns:

Vit−Dit

Kit+1
= φ ′

(
Iit

Kit

)
, (34)

=
1

Et [Rit+1]
. (35)

We can therefore write PV Smodel
t as:

PV Smodel
t = ln

(
KLt+1

VLt−DLt

)
− ln

(
KHt+1

VHt−DHt

)
, (36)

= −(ln [EtRHt+1]− ln [EtRLt+1]) . (37)

Proposition 2 b) then follows directly from Proposition 2 c).
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A4.5 Real Investment
Finally, we use the functional form for φ to solve for real firm investment. Because adjustment

costs are assumed to be quadratic, we have:

φ ′
(

Iit

Kit

)
= 1+

Iit

Kit
. (38)

Equating the return on real investment (25) with the return required by risk-averse investors

(28) then gives:

invit = ln

(
1+

Iit

Kit

)
, (39)

= lnβ +
1

2

(
(λ − si)

2− s2i
)
Vt (εt+1) , (40)

Taking the comparative static with respect to εt in the vicinity of εt = 0 and applying the chain

rule gives:

dinvit

dεt
=

1

2

(
λ 2−2λ si

) dVt (εt+1)

dεt
(41)

= −1

2

(
λ 2−2λ si

)
exp(a)b. (42)

Propositions 2 e) and 2 f) then follow.

A4.6 Diagnostic Expectations
Our derivation of the subjective distribution follows Gennaioli and Shleifer (2018), Chapters 5 and

6. Their Proposition 1 in Chapter 5 states the following:

Suppose that lnX̃ |I0 ∼ N
(
μ0,σ2

0

)
and lnX̃ |I−1 ∼ N

(
μ−1,σ2

−1
)
. Then, provided

(1+ θ)σ2
−1− θσ2

0 > 0, the distorted density hθ (X̃ |I0) is also lognormal with mean

μ0(θ) and variance σ2
0 (θ) given by:

μ0 (θ0) = μ0+
θσ2

0

σ2
−1+θ

(
σ2
−1−σ2

0

) (μ0−μ−1) , (43)

σ2
0 (θ) = σ2

0

σ2
−1

σ2
−1+θ

(
σ2
−1−σ2

0

) (44)

As in Gennaioli and Shleifer (2018), Chapter 6, we assume that agents’ reference distribution is

the distribution at the state vector in the absence of news. That is, the reference distribution for

εt+1 before learning εt is the distribution at the conditional average of εt , i.e. at Et−1 (εt) = 0. This

gives μ−1 = 0, σ2
−1 = exp(a), μ0 = 0, and σ2

0 = exp(a−bεt).
20 Substituting into the Proposition

20We follow Bordalo et al. (2018) in considering the distribution at the conditional average of εt as the refer-

ence distribution for simplicity and tractability. Alternatively, we could also consider the case where the reference

distribution equals the conditional distribution of εt+1 conditional on knowing εt−1. This would give μ−1 = 0 and

σ−1 =
√

exp(a+ 1
2b2σ2

t−1). This would make the solution more complicated but preserve the main qualitative feature

that the subjective variance Vθ
t (εt+1) reacts more to εt than the objective variance Vt (εt).
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gives the subjective mean and variance for εt+1 after having learned εt :

E
θ
t (εt+1) = 0, (45)

V
θ
t (εt+1) = exp(a−bεt)

1

1+θ (1− exp(−bεt))
, (46)

=
Vt (εt+1)

1+θ (1− exp(−bεt))
. (47)

The subjective variance is therefore distorted relative to the objective variance by a factor of
1

1+θ(1−exp(−bεt))
.21

The derivations for the real risk-free rate (20), log expected excess returns (29), and log real

firm investment (40) go through with Vt (εt+1) replaced by V
θ
t (εt+1) everywhere. This proves

Proposition 1′.
To prove Proposition 2′ a), we find the comparative static of Vθ

t (εt+1) with respect to εt in the

vicinity of εt = 0:

dVθ
t (εt+1)

dεt
= −(1+θ)bexp(a)

= (1+θ)
dVt (εt+1)

dεt
. (48)

To show Proposition 2′ b), note that Propositions 2 b) through f) were all proved using the chain
rule for

dVt(εt+1)
dεt

. Replacing
dVt(εt+1)

dεt
by

dVθ
t(εt+1)
dεt

throughout shows that the comparative statics in

Proposition 2 b) through f) scale up by a factor 1+θ under diagnostic expectations.

To prove Proposition 3, we apply the chain rule with respect to PV Smodel
t to take the derivative

in the vicinity of εt = 0:

d
(
Vt (εt+1)−V

θ
t (εt+1)

)
dPV Smodel

t
=

d
(
Vt (εt+1)−V

θ
t (εt+1)

)
dεt

1

dPV Smodel
t

dεt

(49)

= θ exp(a)b
1

λ (sH− sL)(1+θ)exp(a)b
(50)

=
θ

1+θ
1

λ (sH− sL)
> 0. (51)

This completes the model proofs.

21Technically the proposition only applies if 1+ θ (1− exp(−bεt)) > 0, or if the variance does not increase ex-

cessively. We follow Bordalo et al. (2018) in imposing this condition, which holds with probability one in the the

perfectly rational limit with θ → 0.
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APPENDIX FIGURES

Figure A.1: Comparing Filtering Methods for the Real Rate

Notes: The top panel of the figure plots the raw one-year real rate. The raw real rate is the one-year Treasury bill rate net of one-year survey

expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage terms. The bottom panel of

the figure compares two different methods for extracting the cyclical component of the real rate. The first just uses a deterministic time trend. The

second uses the methodology of Hamilton (2017), with full details in Section A2.1. Data is quarterly and spans 1970Q2-2016Q2. Shaded bars

indicate NBER recessions.

39



Figure A.2: Simulated t-statistics and R2
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Notes: This figure plots simulated t-statistics and R2 for a univariate regression of the real rate on PV S. We independently fit AR(1)-GARCH(1,1)

processes to each series and simulate each 10,000 times. Within each simulation, we regress the real rate on PV S, saving the Newey-West t-statistic
(with five lags) and the R2. The top panel of the figure shows the distribution of the t-statistics from this procedure and the bottom panel shows the

R2. The red bar shows the actual estimate of each statistic in the data. The p-values listed in the plot are computed as the proportion of simulations

that have a t-statistic (or R2) that exceeds the actual value in the data. The one-year real rate is the one-year Treasury bill rate net of one-year survey

expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. See the

Section A1 for details on how we construct PV S.
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Figure A.3: Impulse Responses to Monetary Policy and PVS Shocks (Traditional VAR)
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PVS shocks (right panel). Impulse responses to one-

standard deviation shocks are estimated from a five-variable VAR(1) in unemployment, the investment-capital ratio, inflation, PVS, and the linearly

detrended real rate with one lag using quarterly data 1970Q-2016Q2. Unemployment is the civilian unemployment rate (UNRATE). The investment-

capital ratio is computed as private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private

nonresidential assets (K1NTOTL1ES000). Following Bernanke and Mihov (1998), structural innovations in the real rate are assumed to affect

output, inflation, and PVS with a lag. PVS shocks are assumed to affect output and inflation with a lag, but have a contemporaneous effect on the

real rate. Dashed lines denote 95% confidence bands, generated by simulating 1000 data processes with identical sample length as in the data from

the estimated VAR dynamics.
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Figure A.4: Impulse Responses Pre-Crisis

-0.2
0

0.2
0.4

U
ne

m
p

-0.2

0

0.2

In
ve

st
m

en
t

-0.2

0

0.2

In
fla

tio
n

-0.2

0

0.2

PV
S

0 2 4 6 8 10

0

0.5

1

R
ea

l R
at

e

0 2 4 6 8 10

Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It corresponds to Figure A.3 of this

appendix, but uses the pre-crisis sample that ends in 2008Q4.
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Figure A.5: Impulse Responses Alternative Ordering
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this

appendix in that here we construct impulse responses under the assumption that PV St reacts to the real rate immediately, but the real rate reacts to

PV St with a lag.
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Figure A.6: Impulse Responses for VAR(4)
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this

appendix in that impulse responses are based on a VAR(4) instead of a VAR(1).
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Figure A.7: Impulse Responses with Output Gap
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Notes: This figure plots impulse responses to monetary policy shocks (left panel) and PV S shocks (right panel). It differs from Figure A.3 of this

appendix in that it uses the output gap instead of the unemployment rate.
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Figure A.8: Impulse Responses of the Macroeconomy to PVS Shocks (Local Projections)

Notes: This figure plots the estimated impulse response (and its associated 95% confidence band) of several macroeconomic variables to a one-

standard deviation shock to PV St using local projections. We compute impulse responses using Jordà (2005) local projections of each macroe-

conomic outcomes onto PVSt . In all cases, we run regressions of the following form: yt+h = a+ bh
PV S ×PV St + bh

RR ×RealRatet + bh
y × yt +

bh
mkt ×Agg BMt + bh

cp ×CPt + εt+h, where Agg BMt is the aggregate book-to-market ratio and CPt is the Cochrane and Piazzesi (2005) bond

risk-factor. We consider three different macroeconomic outcomes for the y-variable. The first is the investment-to-capital ratio, defined as the level

of real private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private nonresidential assets

(K1NTOTL1ES000). The second is the real output gap, defined as the percent deviation of real GDP from real potential output. The third is the

change in the U.S. civilian unemployment rate. When forecasting the investment-capital ratio, yt+h is the level of the investment-capital ratio at

time t + h. For the output gap, yt+h is the level of the output gap at time t + h. Finally, for the unemployment rate, yt+h is the change in the

unemployment rate between t and t + h, and yt is the change between t− 1 and t. All macroeconomic variables come from the St. Louis FRED

database and are expressed in percentage points. PV St is defined as in the main text. The real rate is the one-year Treasury bill rate net of one-year

survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended.

For all regressions, we use Newey-West standard errors with five lags. Data is quarterly and spans 1970Q2-2016Q2.
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Figure A.9: The Share of Aggregate Investment from Private Firms
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Notes: This figure plots the share of U.S. fixed non-residential investment (excluding government investment) coming from private firms. Aggregate

U.S. investment is defined as the level of real private nonresidential fixed investment (PNFI), which we obtain from the St. Louis FRED database.

We measure the level of investment from publicly traded firms using data on U.S. listed firms from COMPUSTAT. After 1990, we use COMPUSTAT

quarterly to compute total public-firm investment, as it provides more up-to-date accounting information. In each quarter t and for each firm f , we
take the last observation in the data within a year of t. We then compute total investment for publicly traded firms by summing over all firms. Prior

to 1990, we compute aggregate investment using COMPUSTAT annual because coverage is poor in COMPUSTAT quarterly. We chose 1990 as the

cutoff because this was the date when total public-firm investment from COMPUSTAT quarterly and COMPUSTAT annual converged to roughly

the same level. The level of private-firm investment is defined as aggregate investment minus public-firm investment. The figure then plots private

firm investment scaled by aggregate investment, expressed in percentage points. Data is quarterly and spans 1970Q2-2016Q2.
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Figure A.10: Decomposing the Aggregate Investment Response to PVS Shocks

Notes: This figure plots the estimated impulse responses of aggregate investment, investment by private firms, and investment by public firms to a

one-standard deviation shock to PVS using local projections. We compute impulse responses using Jordà (2005) local projections of each variable

onto PV St via regressions of the following form: yt+h = a+bh
PV S×PV St +bh

RR×RealRatet +bh
y × yt + εt+h, where yt is the aggregate investment

rate at time t. Aggregate investment is defined as the level of real private nonresidential fixed investment (PNFI) divided by the previous year’s

current-cost net stock of fixed private nonresidential assets (K1NTOTL1ES000). Public-firm investment is total investment from COMPUSTAT

(CAPX + R&D) divided by the previous year’s current-cost net stock of fixed private nonresidential assets. Private-firm investment is the difference

between aggregate investment and public-firm investment. Data is quarterly and spans 1970Q2-2016Q2.
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Table A.2: The Real Rate and the Aggregate Stock Market

Panel A: Return Forecasting

Vol-Sorted Rett→t+1 Mkt-Rft→t+1

(1) (2) (3) (4)

Hamilton-Filtered Real Rate (r̃t) 1.49** -0.19

(2.56) (-0.49)

Raw Real Rate 1.17** -0.24

(2.55) (-0.88)

Adj. R2 0.03 0.03 -0.00 -0.00

N 184 184 184 184

Panel B: Aggregate Earnings and Dividend Growth Forecasting

Dep. Variable: gE
t,t+1 gE

t,t+4 gD
t,t+1 gD

t,t+4

(1) (2) (3) (4) (5) (6) (7) (8)

r̃t -4.32 -11.45 0.10 -0.06

(-0.68) (-1.51) (0.19) (-0.10)

Rt -3.68 -7.45 -0.64 -0.75

(-0.90) (-1.47) (-1.64) (-1.56)

Adj R2 0.00 0.00 0.06 0.04 -0.00 0.04 -0.01 0.07

N 184 184 181 181 184 184 181 181

Notes: Panel A of this table uses the one-year real interest rate to forecast returns on either the low-minus-high volatility equity portfolio or the

excess returns on the aggregate stock market. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter

using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Volatility-sorted returns

are returns on the lowest minus highest volatility quintile portfolios. Vol-Sorted Ret in the forecasting regression corresponds to returns on this

low-minus-high volatility portfolio. When forecasting the aggregate stock market, we use the excess return of the CRSP Value-Weighted index

obtained from Ken French’s website. For quarterly regressions, standard errors are computed using Newey-West (1987) with two lags. Panel B
of the table reports forecasting regressions of real aggregate earnings growth (gE ) or real aggregate dividend growth (gD) using the the one-year

real rate. Real earnings and real dividends come from Robert Shiller’s website. The one-year real rate is the one-year Treasury bill rate net of

one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent. In the table, r̃t is

the cyclical component of the real rate, extracted using Hamilton (2017). See Section A2.1 for more details on the procedure. Rt is simply the raw

real rate. Standard errors are computed using Newey-West (1987) with two lags for quarterly regressions and five lags for annual. * indicates a

p-value of less than 0.1 and ** indicates a p-value of less than 0.05. For both panels, all regressions have a constant, but we omit the estimates to

save space. Data is quarterly and spans 1970Q2-2016Q2. Growth rates and returns and expressed in percentage terms.
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Table A.4: Decomposition of the Real Interest Rate and PV St

Regression on PVS

One-Year Real Rate Decomposition b t(b) Adj. R2

(1) Baseline Detrended Real Rate 1.27 5.36 0.41

(2) Baseline Raw Real Rate 1.42 5.65 0.38

(3) Nominal 1-Year Rate 1.91 3.22 0.27

(4) Expected Inflation 0.49 1.19 0.06

(5) Fixed Taylor Rule Implied Rate (Taylor, 1993) 0.32 0.97 0.03

(6) Residual 1.10 2.84 0.23

(7) Fitted Taylor Rule Implied Rate 0.16 0.82 0.03

(8) Residual 1.27 4.66 0.35

Notes: This table reports univariate regressions of several variables on PV S. Section A1 of the internet appendix contains full details on how we

compute PV St , defined as the difference in book-to-market ratios between low and high volatility stocks. In Row (1), the dependent variable in the

regression is the linearly detrended one-year real rate. The dependent variable in Row (2) is the raw one-year real rate. The one-year real rate is

the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,

expressed in percent. Rows (3) and (4) decompose the raw one-year real rate into the one-year nominal rate and expected inflation. Rows (5) and (6)

decompose the raw one-year real rate into a Taylor (1993) rule component and a residual component. The Taylor (1993) rule component is defined

as Taylor1993t = 0.5× (Out putGap)+0.5× (In f lation−2)+2. The output gap is the percentage deviation of real GDP from the CBO’s estimate

of potential real GDP. Inflation is the annualized percentage four-quarter growth in the GDP price deflator from the St. Louis Fed (GDPDEF). The

Taylor (1993) rule residual used in Row (5) is then Raw Real Ratet −Taylor1993t . Rows (7) and (8) use the same decomposition, where the fitted

Taylor rule is defined as the fitted value from a regression of the raw real rate on the output gap and inflation. The Fitted Taylor Rule residual in Row

(8) is the residual from the aforementioned regression. Standard errors are computed using Newey-West (1987) with five lags. Data is quarterly and

the full sample spans 1970Q2-2016Q2. In all cases, PV St is standardized to have a mean of zero and a variance of one.
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Table A.6: The Real Rate and Valuation of Other Characteristic-Sorted Portfolios

Real Ratet = a+b×Xt + εt

Levels First-Differences

b t(b) Adj. R2 b t(b) Adj. R2

Univariate:
(1) Duration -0.69 -2.65 0.12 -0.22 -1.64 -0.01

(2) Leverage 0.54 2.20 0.07 0.17 2.00 0.02

(3) Beta 1.20 5.81 0.37 0.13 1.56 0.01

(4) LR Beta 1.12 6.18 0.32 0.13 1.83 0.01

(5) 2M-Beta 0.35 1.40 0.03 0.36 2.56 0.11

(6) CF Beta -0.02 -0.08 -0.01 -0.04 -0.64 -0.00

(7) Size -1.12 -5.75 0.32 -0.25 -2.25 0.05

(8) Value 0.69 3.33 0.12 0.18 2.02 0.02

Kitchen-Sink:
(9) PVS 2.18 4.09 0.60 0.45 2.80 0.17

Notes: This table reports regression estimates of the one-year real rate on the book-to-market spreads of portfolios formed on various sorting

characteristics. Rows (1)-(8) run the following regression, in both levels and first-differences: Real Ratet = a+ b×Y-Sorted BM Spreadt + εt ,

where Y-Sorted BM Spreadt is the spread in book-to-market ratios between stocks sorted on characteristic Y. Our main variable of interest in the

study is the spread in book-to-market ratios between high volatility and low volatility stocks (PV St ). For all NYSE, AMEX, and NASDAQ firms in

CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based

on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio. PV St is defined as the difference in BM

ratios between the bottom and top quintile portfolios. We form book-to-market spreads in the same fashion for other sorting variables. The sorting

variables we use are: (1) Duration (Weber (2016)); (2) Leverage, measured as long-term debt from COMPUSTAT divided by market equity; (3)

CAPM Beta, measured using monthly data over rolling 5 year windows; (4) Long-Run (LR) CAPM Beta, measured using semi-annual data over a

rolling ten year window; (5) 2M-Beta, computed at the end of each quarter using the previous sixty days of daily returns; (6) Cashflow (CF) Beta,

which is measured by regressing EBITDA growth on national income growth; (7) market capitalization; and (8) book-to-market ratios themselves

(value). Spreads are always between the high quintile and the low quintile of the sorting variable. In Row (9), we run a kitchen-sink regression of

the real rate on PV St plus all of the book-to-market spreads in rows (1)-(8) and report the estimated coefficient on PV St . The real rate is the one-year

Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in

percent and linearly detrended. In all cases, we normalize all book-to-market spreads (or their first-difference) to have mean zero and variance one.

Standard errors are computed using both Newey-West (1987) with five lags. Italicized point estimates indicates a p-value of less than 0.1 and bold

point estimates indicate a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.
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Table A.7: The Real Rate and Double-Sorted Versions of PVS

Real Ratet = a+b×Y-Neutral PVSt + εt

Levels First-Differences

Characteristic Y b t(b) Adj. R2 b t(b) Adj. R2

(1) Duration 0.81 4.02 0.16 0.36 2.91 0.10

(2) Leverage 1.16 5.27 0.35 0.38 2.95 0.12

(3) 2M-Beta 1.30 5.79 0.43 0.24 2.52 0.04

(4) Size 1.23 5.04 0.39 0.38 2.76 0.12

(5) Value 1.10 5.12 0.31 0.34 2.50 0.09

(6) Industry-Adjusted 1.15 5.42 0.34 0.29 2.58 0.06

(7) Div. Payers 1.22 6.86 0.38 0.27 2.93 0.06

(8) Non-Div. Payers 0.63 2.46 0.10 0.31 2.42 0.08

Notes: This table reports a battery of robustness exercises for our main results. Specifically, we report time-series regression results of the following

form, in both levels and first-differences: Real Ratet = a+ b×Y-Neutral PVSt + εt . For rows (1)-(5), the variableY-Neutral PVSt is constructed

by sorting all NYSE, AMEX, and NASDAQ firms in CRSP into two bins based on the median value of characteristic Y at time t. Within the

high-Y (above median) firms, we further sort firms into terciles based on their volatility over the previous sixty days. Within each tercile, we

compute the average book-to-market (BM) ratio between the low and high-volatility firms. We repeat this procedure for firms in the low-Y bucket.

Y-Neutral PVSt is then defined as (BMt of Low-Volatility − BMt of High-Volatility with High Y)/2 + (BMt of Low-Volatility − BMt of High-

Volatility with Low Y)/2. In row (6), we compute an industry-adjusted version of PV St by first sorting stocks into industries based on their SIC code

and the 48 industry definitions on Ken French’s website. Within each industry i we sort firms into quintiles based on their trailing 60-day volatility

and then define PV Si,t as the average BM ratio of low-volatility firms in industry i minus the average BM ratio of high-volatility firms in industry i.
The industry-adjusted PV St is defined as the equal weighted PV Si,t across all 48 industries. In row (7), we construct PV St only for the set of firms

who have paid a dividend over the past twenty-four months. Row (8) repeats the exercise for the set of firms that have not paid a dividend over the

past twenty-four months. See Section A2.7.2 of this appendix for more details on how we construct each of these versions of PV St . In all cases, we

standardize PV St (or its first difference) to have a mean of zero and a variance of one. The one-year real rate is the one-year Treasury bill rate net

of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly

detrended. Standard errors are computed using Newey-West (1987) with five lags. Italicized point estimates indicates a p-value of less than 0.1 and
bold point estimates indicate a p-value of less than 0.05. Data is quarterly and the full sample spans 1970Q2-2016Q2.
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Table A.9: PVS and Firm-Level Outcomes

Dependent Variable % CAPXAnn
i,t+4/Ai,t

Full Sample 1983Q1-1999Q4 2000Q1-2016Q2

(1) (2) (3) (4) (5) (6)

% CFAnn
i,t+4/Ai,t 0.08** 0.07** 0.09** 0.09** 0.05** 0.05**

(17.96) (16.95) (14.30) (13.79) (13.06) (13.88)

PV St 0.65** 0.51** 0.33**

(6.58) (3.13) (5.50)

PV St ×1
q=2
it 0.15** 0.17** 0.20** 0.17* 0.13** 0.13**

(4.15) (4.62) (2.03) (1.69) (3.67) (3.79)

PV St ×1
q=3
it 0.23** 0.29** 0.30** 0.30** 0.27** 0.28**

(5.35) (6.35) (2.50) (2.36) (5.58) (5.67)

PV St ×1
q=4
it 0.28** 0.38** 0.45** 0.47** 0.36** 0.38**

(4.49) (6.32) (2.95) (3.09) (6.76) (6.67)

PV St ×1
q=5
it 0.16* 0.33** 0.39** 0.45** 0.42** 0.45**

(1.77) (4.11) (2.50) (2.62) (5.99) (5.80)

FE i (i, t) i (i, t) i (i, t)
R2 0.57 0.59 0.59 0.59 0.68 0.69

# of Firms 9,356 9,356 6,792 6,792 5,604 5,604

N 315,333 315,333 155,080 155,080 160,073 160,073

Notes: This table studies how firm-level investment interacts with PVS. We measure firm i’s investment at time t as the running four-quarter total

CAPX (denoted CAPXAnn
i,,t ) divided by the book value of assets at time t − 4 (denoted Ai,t−4). CFAnn

i,t is the running four-quarter total cash flow

for the firm, computed as depreciation and amortization plus income before extraordinary items. Both are winsorized at their 1% tails. We run

regressions of the form: CAPXAnn
i,t+4/Ai,t = FE +∑5

q=2 aq ·1q
it +b1×CFAnn

i,t+4/Ai,t +∑5
q=1 cq×1

q
it +d2×PV St +∑5

q=2 dq×PV St ×1
q
it + εi,t+4, where

1
j
it is an indicator function for whether firm i is in volatility-quintile j at time t. PV St is average book-to-market ratio of low-minus-high volatility

stock and in all regressions is standardized to have mean zero and variance one for the period 1970q2-2016q2. FE is a set of fixed effects as indicated

in the table. We use all firms in the CRSP-COMPUSTAT merged database where the value of book assets is greater than $10 million. We exclude

financial firms and firms with negative investment. t-statistics are listed below point estimates and are double-clustered by firm and by quarter. *

indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. The full sample runs from 1983Q1-2016Q2. The total size of the

subsamples does not match the full sample because we drop fixed-effect groups of size one.
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Table A.10: Characteristics of Low versus High-Volatility Firms

Low-Vol Firms High-Vol Firms

Total Assets ($ mm) Mean 10,821 722

Median 1,323 32

ROA (%) Mean 12.2 -6.9

Median 11.8 0.8

Investment Rate (%) Mean 6.9 13.9

Median 5.3 7.4

Notes: This table shows statistics on the nominal size (total assets), profitability (return on assets, or ROA), and investment rates of firms sorted

into volatility quintiles. At each date t, we compute the trailing 60-day volatility of each firm in the CRSP-COMPUSTAT merged database and

them sort stocks into quintiles based on their volatility. ROA is defined as the trailing four-quarter sum of earnings before operating income before

depreciation, scaled by the book value of assets at t−4. The investment rate for each firm is defined as the trailing four-quarter sum of CAPX and

R&D, scaled by the book value of assets at t−4. We winsorize ROA and investment rates at their 1% tails to mitigate the impact of outliers. Data

is quarterly and spans 1983Q1-2016Q2.
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Table A.11: PVS and Investor Expectations of Cash Flows

Panel A: Contemporaneous Relationship with Expectations of Cash Flows

Dependent Variable PV St

(1) (2) (3)

High-Minus-Low Volatility Stocks:
Et [ROEt+1] 0.28**

(2.40)

Et [ROEt+1→t+4] 0.30**

(2.31)

Et [Long-Term Growth] 0.34*

(1.70)

Adj. R2 0.10 0.11 0.15

N 102 110 110

Panel B: PVS, Cash-Flow Surprises, and Future Revisions in Expectations

Y = a+b×PV St + ε
b t(b) Adj. R2 N

Expected Cash Flows:
(1) ROE Surpriset+1→t+4 0.14 1.03 0.00 94

(2) Et+2 [ROEt+3]−Et [ROEt+3] -0.09 -0.94 -0.00 102

Notes: Panel A of this table shows contemporaneous regressions of PV St on investor expectations of cash flows. In column (1), for each firm i
and date t, we use the time-t expectation of quarterly accounting return on equity (ROE) at time t +1, denoted Et [ROEi,t+1], from the Thompson

Reuters IBES dataset. At the portfolio level, Et [ROEt+1] is the cross-sectional median for high-volatility stocks minus the median for low-volatility

stocks, where stocks are designated as high or low volatility at time t based on their past 60 days of realized returns. In column (2), we mirror the

expected ROE measure in column (1) but instead use the annual ROE forecast from IBES for the next fiscal year. Column (3) again follows the

same approach, but instead uses the “long-term growth” estimate provided by IBES. PV St is the average book-to-market ratio of low-minus-high-

volatility stocks. We include a constant in all regressions and all variables are standardized to have mean zero and unit variance. t-statistics are
computed using Newey-West (1987) standard errors with five lags. In Panel B, we use PV St to forecast future revisions in expected cash flows and

risk. In row (1), we forecast the median return on equity (ROE) surprise for low-volatility stocks minus the median ROE surprise for high-volatility

stocks, where ROE surprises are computed using Thomson Reuters IBES data. The time horizon for our ROE surprises is time t +1 to t +4. In row

(2), we compute revisions in expected ROEt+3 based on the Thompson Reuters IBES database of analyst forecasts. Specifically, for each firm i and
date t, we use the median forecast of ROE time t +3, denoted Et+2 [ROEi,t+3]. For each (i, t), we choose the shortest forecast horizon h such that

the quarterly earnings are at least two fiscal quarters away, which in calendar time is generally between 3 and 4 quarters from date t. For each firm i,
we then define the revision in expected ROE at time (t +2) as Et+2 [ROEi,t+3]−Et [ROEi,t+3]. At the portfolio level, Et+2 [ROEt+3]−Et [ROEt+3]
is the cross-sectional median revision for high-volatility stocks minus the median revision for low-volatility stocks. In all cases, data is quarterly

and depends on data availability, though the full sample for PV St spans 1970Q2 to 2016Q2.
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Table A.14: The Real Rate and Mutual Fund Flows

Panel A: Summary Statistics

Mean Std. Dev. p25 p50 p75 Min Max # Funds

Quarterly Obs./Fund 31 28 11 24 43 2 170 20,253

AUM ($ mm) 754 2,049 155 266 597 100 65,339 20,253

Net Inflows (%) 5.55 8.53 0.49 3.21 7.80 -19.70 66.54 20,253

Quarterly Return (%) 1.47 2.32 0.65 1.38 2.34 -38.77 58.76 20,253

Annual Volatility (%) 11.84 7.92 4.57 12.61 17.29 0.31 36.62 20,253

β f ,HVOL 0.30 0.24 0.02 0.32 0.49 -0.05 0.83 20,253

Panel B: High Volatility Funds and the Real Rate

Dependent Variable Flows f ,t

(1) (2) (3) (4) (5) (6)

Real Ratet 0.92** 0.94**

(4.56) (4.27)

Real Ratet×β f ,HVOL 2.08** 2.09** 1.52**

(4.11) (4.17) (4.30)

Real Ratet×σ f 0.04** 0.04** 0.03**

(3.09) (3.12) (2.87)

Ret f ,t 0.22** 0.23**

(6.47) (6.46)

Ret f ,t−1 0.22** 0.22**

(6.85) (6.84)

FE f ( f , t) ( f , t) f ( f , t) ( f , t)
Adj. R2 0.11 0.15 0.16 0.11 0.14 0.16

N 630,592 630,592 630,592 630,592 630,592 630,592

Notes: This table studies whether high-volatility mutual fund flows are more sensitive to real rate movements, relative to low-volatility mutual

funds. In Panel B, our baseline regression is Flow f ,t = FE( f )+b1Real Ratet +b2Real Ratet ×β f ,HVOL +ε f ,t . Flow f ,t is the net percentage inflow

into fund f at time t, computed as the dollar inflow divided by assets under management. Flows are winsorized at the 5% tails. β f ,HVOL is the beta

of fund f ’s return with respect to a portfolio of high-minus-low volatility stocks. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute

volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of

volatility. Betas of each fund are computed using the high-minus-low volatility portfolio return over the life of the fund. σ f is the return volatility

of the fund, computed using the full sample of year-quarter observations. We drop fund with assets under management of under $100 mm. Panel

A presents summary statistics for the funds in our sample. We first compute statistics for each fund (across time), and then report summary stats

across funds. In Panel B, t-statistics are listed below point estimates in parentheses and are computed using Driscoll-Kraay (1998) standard errors

with five lags within each fund cluster. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Quarterly mutual fund data

derives from CRSP and spans 1973Q2-2015Q3. Returns are in percentage terms.
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