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A Derivations and proofs

We are the first to derive analytic power calculation formulas for panel data models under non-i.i.d.
error structures, accounting for (i) heterogeneous error structures across panel units, and (ii) random
time shocks. In this section, we derive power calculation analytics for cross-sectional, difference-
in-differences (DD), collapsed data, and analysis of covariance (ANCOVA) estimators. We present
the resulting equations in Section 2 of the main text.

We first re-derive well-known power calculation formulas, for both a cross-sectional experiment
and a panel experiment that applies the difference-in-differences estimator, under the assumption
that error terms are uncorrelated. We then relax this assumption to consider the difference-in-
differences estimator applied to a panel experiment in which the error structure of the data exhibits
an arbitrary form of serial correlation. This resembles the most general model derived by Frison
and Pocock (1992), while incorporating two features characteristic of panel data in economics: (i)
error structures that vary across individual panel units; and (ii) random time series shocks that are
common to all panel units. We then consider a collapsed data research design, and demonstrate
that collapsing to a single pre/post observation for each panel unit ex post does not obviate the need
to account for non-constant within-unit serial correlation ex ante. We also conduct a parallel series
of derivations using the ANCOVA estimator, which underscores the strong assumptions required to
achieve analytical tractability in this regression model.

Next, we prove Lemma 1 presented in the main text. We also prove an analogous Lemma A1
for a cross-sectional model. These lemmas show that the above power calculation formulas can be
applied even in the presence of cross-sectional correlations, so long as treatment is randomly assigned
at the unit level. In particular, Lemma 1 states that the variance estimator we derive, which accounts
for non-constant serial correlation, gives an unbiased estimate of the ex ante expected variance under
unit-level randomization, even when cross-sectional correlations exist. In other words, our newly
derived power calculation formula can be applied to any panel experiment setting, regardless of the
true error structure of the data, so long as treatment is randomly assigned to units.

Finally, we demonstrate that replacing unit and/or time fixed effects with a Treati and/or Postt
dummy, respectively, does not alter the statistical power of the DD estimator, as long as researchers
implement the CRVE ex post. This analysis complements our simulation results presented in Section
2.2.2 of the main text.

A.1 Cross sectional experiments

Model There are J units randomly assigned a treatment status Di, with proportion P in treat-
ment (Di = 1) and proportion (1− P ) in control (Di = 0). The units are indexed so i ∈ [1, PJ ] is
treated and j ∈ [PJ + 1, J ] is a control. We make standard assumptions for randomized trials:

Assumption A1 (Data generating process). The data are generated according to the following
model:

Yi = β + τDi + εi (A1)

where Yi is the outcome of interest for unit i; β is the expected outcome of non-treated units; τ is
the treatment effect which is homogeneous across all units; Di is a treatment indicator; and εi is an
idiosyncratic error term distributed i.i.d. N (0, σ2

ε).
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Assumption A2 (Strict exogeneity). E[εi | X] = 0, where X = [1 D]. In practice, this follows
from random assignment of Di.

Coefficient estimate The coefficient estimates from an OLS regression are(
β̂

τ̂

)
= (X′X)−1X′Y

=

(
J PJ

PJ PJ

)−1( ∑J
i=1 Yi∑J

i=1DiYi

)

=
1

P (1− P )J2

PJ (∑J
i=1 Yi −

∑J
i=1DiYi

)
J
(∑J

i=1DiYi − P
∑J

i=1 Yi

)
=

(
1

(1−P )J

∑J
i=PJ+1 Yi

1
PJ

∑PJ
i=1 Yi −

1
(1−P )J

∑J
i=PJ+1 Yi

)

Defining the mean outcome in the treatment and control groups, respectively, as

Y T =
1

PJ

PJ∑
i=1

Yi

Y C =
1

(1− P )J

J∑
i=PJ+1

Yi

gives coefficient estimates of

β̂ = Y C

τ̂ = Y T − Y C

Variance of coefficient estimate The variance of the estimate of the treatment effect, τ̂ , is

Var (τ̂ | X) = Var
(
Y T | X

)
+ Var

(
Y C | X

)
− 2 Cov

(
Y T , Y C | X

)
= Var

(
Y T | X

)
+ Var

(
Y C | X

)
(A2)

The first term of Equation (A2) is

Var
(
Y T | X

)
= Var

(
1

PJ

PJ∑
i=1

Yi | X

)

=
σ2
ε

PJ
(A3)

Similarly, the second term of Equation (A2) is

Var
(
Y C | X

)
=

σ2
ε

(1− P )J
(A4)
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Substituting Equations (A3) and (A4) into Equation (A2) gives

Var(τ̂ | X) =
σ2
ε

PJ
+

σ2
ε

(1− P )J

=
σ2
ε

P (1− P )J
(A5)

The variance estimator produced by an OLS regression of Equation (A1) is an unbiased estimator
of this variance.

Minimum detectable effect The minimum detectable effect (MDE), or the smallest treatment
effect we have the power to detect, is

MDE =
(
tJ−2
1−κ + tJ−2

α/2

)√
Var (τ̂ | X)

=
(
tJ−2
1−κ + tJ−2

α/2

)√ σ2
ε

P (1− P )J
(A6)

where κ is the power of the hypothesis test, α is the significance level, and the critical values are
drawn from t-distributions with J − 2 degrees of freedom.

A.2 Panel experiments

A.2.1 Independent error structure

Model In this model, P proportion of the J units are again randomized into treatment. The
researcher collects the outcome Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For units in the treatment group, Dit = 0 in pre-treatment periods and
Dit = 1 in post-treatment periods; for units in the control group, Dit = 0 in all (m+ r) periods.

Assumption A3 (Data generating process). The data are generated according to the following
model:

Yit = β + τDit + υi + δt + ωit (A7)

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ);

δt is a time-specific disturbance distributed i.i.d. N (0, σ2
δ ); and ωit is an idiosyncratic error term

distributed i.i.d. N (0, σ2
ω).

Assumption A4 (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, J−1 unit dummies, and (m+r)−1 time dummies.
This again follows from random assignment of Dit.

Assumption A5 (Balanced panel). The number of pre-treatment observations, m, and post-
treatment observations, r, is the same for each unit, and all units are observed in every time
period.
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Coefficient estimate The treatment effect, τ , can be estimated by OLS with unit and time
fixed effects. In a balanced panel, this is equivalent to de-meaning at both the unit and time levels.
Define

Ÿit = Yit − Y i − Y t + Y (A8)

D̈it = Dit −Di −Dt +D (A9)
ω̈it = ωit − ωi − ωt + ω (A10)

where

Y i =
1

m+ r

r∑
t=−m+1

Yit

Y t =
1

J

J∑
i=1

Yit

Y =
1

J(m+ r)

r∑
t=−m+1

J∑
i=1

Yit

withDi,Dt,D, ωi, ωt, and ω defined analogously. Substituting Equations (A8)–(A10) into Equation
(A7) and simplifying gives the de-meaned DGP

Ÿit = τD̈it + ω̈it

The estimate of the treatment effect is

τ̂ = (D̈′D̈)−1D̈′Ÿ

=

(
J∑
i=1

r∑
t=−m+1

D̈2
it

)−1 J∑
i=1

r∑
t=−m+1

D̈itŸit

=
m+ r

P (1− P )Jmr

[
J∑
i=1

r∑
t=−m+1

D̈itYit −
J∑
i=1

Y i

r∑
t=−m+1

D̈it −
r∑

t=−m+1

Y t

J∑
i=1

D̈it + Y
J∑
i=1

r∑
t=−m+1

D̈it

]

=
m+ r

P (1− P )Jmr

J∑
i=1

r∑
t=−m+1

D̈itYit

=
m+ r

P (1− P )Jmr

[
PJ∑
i=1

(
(1− P )m

m+ r

r∑
t=1

Yit −
(1− P )r

m+ r

0∑
t=−m+1

Yit

)

+
J∑

i=PJ+1

(
Pr

m+ r

0∑
t=−m+1

Yit −
Pm

m+ r

r∑
t=1

Yit

)]
=
(
Y
A

T − Y
B

T

)
−
(
Y
A

C − Y
B

C

)
(A11)
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where

Y
A

T =
1

PJr

PJ∑
i=1

r∑
t=1

Yit

Y
B

T =
1

PJm

PJ∑
i=1

0∑
t=−m+1

Yit

Y
A

C =
1

(1− P )Jr

J∑
i=PJ+1

r∑
t=1

Yit

Y
B

C =
1

(1− P )Jm

J∑
i=PJ+1

0∑
t=−m+1

Yit

Variance of coefficient estimate The variance of the estimate of the treatment effect, τ̂ , is

Var(τ̂ | X) = Var
(
Y
A

T | X
)

+ Var
(
Y
B

T | X
)

+ Var
(
Y
A

C | X
)

+ Var
(
Y
B

C | X
)

− 2 Cov
(
Y
A

T , Y
B

T | X
)
− 2 Cov

(
Y
A

T , Y
A

C | X
)

+ 2 Cov
(
Y
A

T , Y
B

C | X
)

+ 2 Cov
(
Y
B

T , Y
A

C | X
)
− 2 Cov

(
Y
B

T , Y
B

C | X
)
− 2 Cov

(
Y
A

C , Y
B

C | X
)

= Var
(
Y
A

T | X
)

+ Var
(
Y
B

T | X
)

+ Var
(
Y
A

C | X
)

+ Var
(
Y
B

C | X
)

− 2

[
Cov

(
Y
A

T , Y
B

T | X
)

+ Cov
(
Y
A

T , Y
A

C | X
)

+ Cov
(
Y
B

T , Y
B

C | X
)

+ Cov
(
Y
A

C , Y
B

C | X
)]

(A12)

The first term of Equation (A12) is

Var
(
Y
A

T | X
)

= Var

(
1

PJr

PJ∑
i=1

r∑
t=1

Yit | X

)

= Var

(
1

PJ

PJ∑
i=1

υi | X

)
+ Var

(
1

r

r∑
t=1

δt | X

)
+ Var

(
1

PJr

PJ∑
i=1

r∑
t=1

ωit | X

)
=

1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω

)
(A13)

Similarly, the remaining variance terms of Equation (A12) are

Var
(
Y
B

T | X
)

=
1

PJm

(
mσ2

υ + PJσ2
δ + σ2

ω

)
(A14)

Var
(
Y
A

C | X
)

=
1

(1− P )Jr

(
rσ2

υ + (1− P )Jσ2
δ + σ2

ω

)
(A15)

Var
(
Y
B

C | X
)

=
1

(1− P )Jm

(
mσ2

υ + (1− P )Jσ2
δ + σ2

ω

)
(A16)
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The first covariance component of Equation (A12) is

Cov
(
Y
A

T , Y
B

T | X
)

= E
[
Y
A

TY
B

T | X
]
− E

[
Y
A

T | X
]

E
[
Y
B

T | X
]

= β(β + τ) +
1

PJ
E
[
υ2
i | X

]
− β(β + τ)

=
σ2
υ

PJ
(A17)

Similarly, the remaining covariance terms of Equation (A12) are

Cov
(
Y
A

T , Y
A

C | X
)

=
σ2
δ

r
(A18)

Cov
(
Y
B

T , Y
B

C | X
)

=
σ2
δ

m
(A19)

Cov
(
Y
A

C , Y
B

C | X
)

=
σ2
υ

(1− P )J
(A20)

Substituting Equations (A13)–(A20) into Equation (A12) gives

Var (τ̂ | X) = 2
σ2
υ

P (1− P )J
+ 2

(m+ r)σ2
δ

mr
+

(m+ r)σ2
ω

P (1− P )Jmr
− 2

[
σ2
υ

P (1− P )J
+

(m+ r)σ2
δ

mr

]
=

(
σ2
ω

P (1− P )J

)(
m+ r

mr

)
(A21)

The variance estimator produced by an OLS regression of Equation (A7) is an unbiased estimator
of this variance.

Minimum detectable effect The MDE is

MDE =
(
tJ1−κ + tJα/2

)√
Var (τ̂ | X)

=
(
tJ1−κ + tJα/2

)√( σ2
ω

P (1− P )J

)(
m+ r

mr

)
This is the standard Frison and Pocock (1992) result (page 1693), also referenced by McKenzie
(2012), and is shown as Equation (3) in the main text. We assume J degrees of freedom to be
consistent with the assumptions of the CRVE; alternatively, J(m + r) − (J + m + r) degrees of
freedom would be consistent with the assumptions of OLS standard errors. Note that this model
differs slightly from Frison and Pocock (1992) and McKenzie (2012), which both assume σ2

δ = 0.

A.2.2 Serially correlated error structure

Model There are J units, P proportion of which are randomized into treatment. The researcher
again collects outcome data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment periods and Dit = 1 in
post-treatment periods; for control units, Dit = 0 in all periods.
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Assumption A6 (Data generating process). The data are generated according to the following
model:

Yit = β + τDit + υi + δt + ωit (A22)

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ);

δt is a time-specific disturbance distributed i.i.d. N (0, σ2
δ ); and ωit is an idiosyncratic error term

distributed (not necessarily i.i.d.) N (0, σ2
ω).

Assumption A7 (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, J−1 unit dummies, and (m+r)−1 time dummies.
This again follows from random assignment of Dit.

Assumption A8 (Balanced panel). The number of pre-treatment observations, m, and post-
treatment observations, r, is the same for each unit, and all units are observed in every time
period.

Assumption A9 (Independence across units). E[ωitωjs | X] = 0, ∀ i 6= j, ∀ t, s.

Assumption A10 (Symmetric covariance structures). Define:

ψB ≡ 2

Jm(m− 1)

J∑
i=1

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis | X)

ψA ≡ 2

Jr(r − 1)

J∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis | X)

ψX ≡ 1

Jmr

J∑
i=1

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis | X)

to be the average pre-treatment, post-treatment, and across-period covariance between different error
terms of the same unit, respectively. Define ψBT , ψAT , and ψXC analogously, where we consider
only the PJ treated units; also define ψBC , ψAC , and ψXC analogously, where we consider only the
(1− P )J control units. Using these definitions, assume that ψB = ψBT = ψBC ; ψA = ψAT = ψAC ; and
ψX = ψXT = ψXC .1

Coefficient estimate The treatment effect estimator is the same as Equation (A11):

τ̂ =
(
Y
A

T − Y
B

T

)
−
(
Y
A

C − Y
B

C

)
1. We choose the letters “B” to indicate the Before-treatment period, and “A” to indicate the After-treatment

period. We index the m pre-treatment periods {−m + 1, . . . , 0}, and the r post-treatment periods {1, . . . , r}. In
a randomized setting, E

[
ψB
]
= E

[
ψBT
]
= E

[
ψBC
]
, E
[
ψA
]
= E

[
ψAT
]
= E

[
ψAC
]
, and E

[
ψX
]
= E

[
ψXT
]
= E

[
ψXC
]
,

making this a reasonable assumption ex ante. However, it is possible for treatment to alter the covariance structure
of treated units only.
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Variance of coefficient estimate With a serially correlated error structure, Equation (A12) is
still correct by Assumption A9, but Equations (A13)–(A20) no longer hold. With serially correlated
errors, the first term of Equation (A12) is

Var
(
Y
A

T | X
)

= Var

(
1

PJr

PJ∑
i=1

r∑
t=1

Yit | X

)

= Var

(
1

PJ

PJ∑
i=1

υi | X

)
+ Var

(
1

r

r∑
t=1

δt | X

)
+ Var

(
1

PJr

PJ∑
i=1

r∑
t=1

ωit | X

)

=
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω

)
+

2

(PJr)2

PJ∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωis | X)

=
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω + (r − 1)ψA
)

(A23)

Similarly, with serial correlation, the remaining variance terms of Equation (A12) are

Var
(
Y
B

T | X
)

=
1

PJm

(
mσ2

υ + PJσ2
δ + σ2

ω + (m− 1)ψB
)

(A24)

Var
(
Y
A

C | X
)

=
1

(1− P )Jr

(
rσ2

υ + (1− P )Jσ2
δ + σ2

ω + (r − 1)ψA
)

(A25)

Var
(
Y
B

C | X
)

=
1

(1− P )Jm

(
mσ2

υ + (1− P )Jσ2
δ + σ2

ω + (m− 1)ψB
)

(A26)

With serial correlation, the first covariance component of Equation (A12) is

Cov
(
Y
A

T , Y
B

T | X
)

= E
[
Y
A

TY
B

T | X
]
− E

[
Y
A

T | X
]

E
[
Y
B

T | X
]

= β(β + τ) +
1

PJ
E
[
υ2
i | X

]
+

1

(PJ)2mr

PJ∑
i=1

0∑
t=−m+1

r∑
s=1

E[ωitωis | X]− β(β + τ)

=
σ2
υ

PJ
+

1

(PJ)2mr

PJ∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωis | X)

=
1

PJ

(
σ2
υ + ψX

)
(A27)

Similarly, with serial correlation, the remaining covariance terms of Equation (A12) are

Cov
(
Y
A

T , Y
A

C | X
)

=
σ2
δ

r
(A28)

Cov
(
Y
B

T , Y
B

C | X
)

=
σ2
δ

m
(A29)

Cov
(
Y
A

C , Y
B

C | X
)

=
1

(1− P )J

(
σ2
υ + ψX

)
(A30)
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Substituting Equations (A23)–(A30) into Equation (A12) and simplifying gives

Var (τ̂ | X) =
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω + (r − 1)ψA
)

+
1

PJm

(
mσ2

υ + PJσ2
δ + σ2

ω + (m− 1)ψB
)

+
1

(1− P )Jr

(
rσ2

υ + (1− P )Jσ2
δ + σ2

ω + (r − 1)ψA
)

+
1

(1− P )Jm

(
mσ2

υ + (1− P )Jσ2
δ + σ2

ω + (m− 1)ψB
)

− 2

[
1

PJ

(
σ2
υ + ψX

)
+
σ2
δ

r
+
σ2
δ

m
+

1

(1− P )J

(
σ2
υ + ψX

)]
=

(
1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
(A31)

Equation (A31) differs from Equation (A21), the variance of τ̂ that is estimated by an OLS re-
gression, due to the presence of the ψ terms that describe the serially correlated error structure.
This error structure alters the true variance of the treatment effect estimator such that the OLS
estimator of the variance is not correct. The cluster-robust variance estimator must be used for
correct inference.

Minimum detectable effect With serial correlation, the MDE is

MDE =
(
tJ1−κ + tJα/2

)√
Var (τ̂ | X)

=
(
tJ1−κ + tJα/2

)√( 1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
This is the serial-correlation-robust (SCR) power calculation formula, found in Equation (2) in the
main text. Note that ψB, ψA, and ψX are likely to depend on the length of the pre- and post-
treatment periods, m and r; serial correlation often diminishes as time periods become further
apart, so larger values of m and r will result in less correlation on average and smaller parameter
values. These parameters do not depend in a systematic way on the number of experimental units,
J , however.

A.2.3 Serially and cross-sectionally correlated error structure

Randomization at the unit level justifies Assumptions A9 and A10, but we can also characterize the
full variance without this random assignment assumption. This highlights the type of correlation
structures that a researcher might face when wanting to perform a power calculation for a quasi-
experimental design.

Model There are J units, P proportion of which are randomized into treatment. The researcher
again collects outcome data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment periods and Dit = 1 in
post-treatment periods; for control units, Dit = 0 in all periods.
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Assumption A11 (Data generating process). The data are generated according to the following
model:

Yit = β + τDit + υi + δt + ωit

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ);

δt is a time-specific disturbance distributed i.i.d. N (0, σ2
δ ); and ωit is an idiosyncratic error term

distributed (not necessarily i.i.d.) N (0, σ2
ω).

Assumption A12 (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, J−1 unit dummies, and (m+r)−1 time dummies.
This again follows from random assignment of Dit.

Assumption A13 (Balanced panel). The number of pre-treatment observations, m, and post-
treatment observations, r, is the same for each unit, and all units are observed in every time period.

Assumption A14 (Independence across units at different times). E[ωitωjs | X] = 0, ∀ i 6= j, t 6= s.

Define ψi to be the average serial correlation parameters previously defined in Appendix A.2.2, with
the subscript i denoting the correlation is within-unit serial correlation. Also define ψt to be the
comparable parameters characterizing cross-sectional correlations, with the subscript t denoting
the correlation is cross-sectional within a time period. For example, the average cross-sectional
covariance among the treated group post-treatment is

ψAt,T =
2

PJ(PJ − 1)r

PJ−1∑
i=1

PJ∑
j=i+1

r∑
t=1

Cov(ωit, ωjt | X)

Coefficient estimate The treatment effect estimator is the same as Equation (A11):

τ̂ =
(
Y
A

T − Y
B

T

)
−
(
Y
A

C − Y
B

C

)
Variance of coefficient estimate As with the serially correlated error structure in Appendix
A.2.2, Equation (A12) is still correct, in this case by Assumption A14. However, neither Equations
(A13)–(A20) nor Equations (A23)–(A30) hold. With these arbitrary correlations, the first term of
Equation (A12) is

Var
(
Y
A

T | X
)

= Var

(
1

PJr

PJ∑
i=1

r∑
t=1

Yit | X

)

= Var

(
1

PJ

PJ∑
i=1

υi | X

)
+ Var

(
1

r

r∑
t=1

δt | X

)
+ Var

(
1

PJr

PJ∑
i=1

r∑
t=1

ωit | X

)

=
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω

)
+

2

(PJr)2

PJ∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωis | X)

+
2

(PJr)2

r∑
t=1

PJ−1∑
i=1

PJ∑
j=i+1

Cov(ωit, ωjt | X)
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=
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω + (r − 1)ψAi,T + (PJ − 1)ψAt,T
)

(A32)

Similarly, with arbitrary correlations, the remaining variance terms of Equation (A12) are

Var
(
Y
B

T | X
)

= 1
PJm

(
mσ2

υ + PJσ2
δ + σ2

ω + (m− 1)ψBi,T + (PJ − 1)ψBt,T
)

(A33)

Var
(
Y
A

C | X
)

= 1
(1−P )Jr

(
rσ2

υ + (1− P )Jσ2
δ + σ2

ω + (r − 1)ψAi,C + ((1− P )J − 1)ψAt,C
)

(A34)

Var
(
Y
A

C | X
)

= 1
(1−P )Jm

(
mσ2

υ + (1− P )Jσ2
δ + σ2

ω + (m− 1)ψBi,C + ((1− P )J − 1)ψBt,C
)

(A35)

With arbitrary correlations, the first covariance component of Equation (A12) is

Cov
(
Y
A

T , Y
B

T | X
)

= E
[
Y
A

TY
B

T | X
]
− E

[
Y
A

T | X
]

E
[
Y
B

T | X
]

= β(β + τ) +
1

PJ
E
[
υ2
i | X

]
+

1

(PJ)2mr

PJ∑
i=1

0∑
t=−m+1

r∑
s=1

E[ωitωis | X]− β(β + τ)

=
σ2
υ

PJ
+

1

(PJ)2mr

PJ∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωis | X)

=
1

PJ

(
σ2
υ + ψXi,T

)
(A36)

Similarly, with arbitrary correlations, the remaining covariance terms of Equation (A12) are

Cov
(
Y
A

T , Y
A

C | X
)

=
1

r

(
σ2
δ + ψAt,X

)
(A37)

Cov
(
Y
B

T , Y
B

C | X
)

=
1

m

(
σ2
δ + ψBt,X

)
(A38)

Cov
(
Y
A

C , Y
B

C | X
)

=
1

(1− P )J

(
σ2
υ + ψXi,C

)
(A39)

Substituting Equations (A32)–(A39) into Equation (A12) and simplifying gives

Var (τ̂ | X) =
1

PJr

(
rσ2

υ + PJσ2
δ + σ2

ω + (r − 1)ψAi,T + (PJ − 1)ψAt,T
)

+
1

PJm

(
mσ2

υ + PJσ2
δ + σ2

ω + (m− 1)ψBi,T + (PJ − 1)ψBt,T
)

+
1

(1− P )Jr

(
rσ2

υ + (1− P )Jσ2
δ + σ2

ω + (r − 1)ψAi,C + ((1− P )J − 1)ψAt,C
)

+
1

(1− P )Jm

(
mσ2

υ + (1− P )Jσ2
δ + σ2

ω + (m− 1)ψBi,C + ((1− P )J − 1)ψBt,C
)

− 2

[
1

PJ

(
σ2
υ + ψXi,T

)
+

1

r

(
σ2
δ + ψAt,X

)
+

1

m

(
σ2
δ + ψBt,X

)
+

1

(1− P )J

(
σ2
υ + ψXi,C

)]
=

(
m+ r

P (1− P )Jmr

)
σ2
ω +

(
m− 1

PJm

)
ψBi,T +

(
PJ − 1

PJm

)
ψBt,T

+

(
r − 1

PJr

)
ψAi,T +

(
PJ − 1

PJr

)
ψAt,T +

(
m− 1

(1− P )Jm

)
ψBi,C
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+

(
(1− P )J − 1

(1− P )Jm

)
ψBt,C +

(
r − 1

(1− P )Jr

)
ψAi,C +

(
(1− P )J − 1

(1− P )Jr

)
ψAt,C

− 2

PJ
ψXi,T −

2

m
ψBt,X −

2

r
ψAt,X −

2

(1− P )J
ψXi,C

Minimum detectable effect With arbitrary correlations, the MDE is

MDE =
(
tJ1−κ + tJα/2

)√
Var (τ̂ | X)

=
(
tJ1−κ + tJα/2

) [( m+ r

P (1− P )Jmr

)
σ2
ω +

(
m− 1

PJm

)
ψBi,T +

(
PJ − 1

PJm

)
ψBt,T

+

(
r − 1

PJr

)
ψAi,T +

(
PJ − 1

PJr

)
ψAt,T +

(
m− 1

(1− P )Jm

)
ψBi,C

+

(
(1− P )J − 1

(1− P )Jm

)
ψBt,C +

(
r − 1

(1− P )Jr

)
ψAi,C +

(
(1− P )J − 1

(1− P )Jr

)
ψAt,C

− 2

PJ
ψXi,T −

2

m
ψBt,X −

2

r
ψAt,X −

2

(1− P )J
ψXi,C

]1/2

(A40)

Lemma 1 in Appendix A.3 shows that Equation (A40) is equal in expectation to the SCR power
calculation formula when treatment is randomly assigned.

A.2.4 Collapsed dataset

Bertrand, Duflo, and Mullainathan (2004, henceforth BDM) suggest an alternative to the CRVE
in order to achieve the correct false rejection rates in the presence of serial correlation: ignore the
time-series structure of the data by averaging the pre-treatment data and the post-treatment data
for each unit, then estimate a panel DD regression on this two-period collapsed dataset and apply
the OLS variance estimator. While this does yield the desired false rejection rate, simply applying
the McKenzie formula to a collapsed dataset will not yield the desired power.

Using the model from Appendix A.2.2 (under Assumptions A6–A10), suppose that prior to
estimation, the data are collapsed to 1 pre- and 1 post-treatment observation per unit (to eliminate
serial correlation, as suggested in BDM). The resulting DGP for the collapsed dataset is

Y C
ip = β + τDC

ip + υi + δCp + ωCip (A41)

where Y C
ip is the average outcome for unit i for collapsed period p and the other variables are as

defined in Appendix A.2.2 or are the collapsed analogs. Note that the τ in Equation (A41) is
equivalent to that in Equation (A7). These models will yield the same estimate of the treatment
effect, τ̂ , but different estimates of its variance in the presence of a (pre-collapsed) serially correlated
error structure.

Equivalence of first-difference model BDM show that applying the OLS variance estimator
to Equation (A41) achieves the correct false rejection rate. To see why this is the case, note that this
collapsed model can alternatively be expressed as a first-difference model by subtracting each unit’s
collapsed pre-treatment data from its collapsed post-treatment data. Let ∆Y C

i be this difference

13



for the outcome of interest, which gives

∆Y C
i = Y C

iA − Y C
iB

=
(
β + τDC

iA + υi + δCA + ωCiA
)
−
(
β + τDC

iB + υi + δCB + ωCiB
)

= τ
(
DC
iA −DC

iB

)
+
(
δCA − δCB

)
+
(
ωCiA − ωCiB

)
Defining the other differences variables similarly gives the first-difference DGP of

∆Y C
i = τ∆DC

i + ∆δC + ∆ωCi (A42)

Equations (A41) and (A42) are isomorphic, so estimating these models yields not only the same
estimate of the treatment effect, τ̂ , but also the same estimate of its variance. Note that the first-
difference model, Equation (A42), is cross-sectional, so the error terms are i.i.d. and the model meets
the assumptions of OLS.2 As a result, the OLS variance estimator is unbiased for the first-difference
model, as well as the isomorphic collapsed model of Equation (A41).

Power Although using a collapsed dataset yields the correct false rejection (or Type I error) rate,
experiments will not be correctly powered if the McKenzie formula is applied to a collapsed dataset.
To see this, first consider theMDE of an experiment based on the first-difference model of Equation
(A42). This is a cross-sectional model, so applying Equations (A5) and (A6) yields:

Var (τ̂ | X) =
σ2

∆ωC

P (1− P )J
(A43)

MDE =
(
tJ−2
1−κ + tJ−2

α/2

)√ σ2
∆ωC

P (1− P )J

where σ2
∆ωC is the variance of the error term in the collapsed, first-difference model. This variance

can be expressed as a function of the parameters that define the error structure of the collapsed
data

σ2
∆ωC = Var

(
ωCiA − ωCiB | X

)
= Var

(
ωCiA | X

)
+ Var

(
ωCiB | X

)
− 2 Cov

(
ωCiA, ω

C
iB | X

)
= 2

(
σ2
ωC − ψXωC

)
(A44)

where σ2
ωC is the variance of the error term of the collapsed model, and ψXωC is the average covariance

between error terms for the same unit in the collapsed model. Substituting Equation (A44) into
Equation (A43) gives the variance of τ̂ in terms of parameters of the collapsed data:

Var (τ̂ | X) =

(
2

P (1− P )J

)(
σ2
ωC − ψXωC

)
(A45)

2. There are no cross-sectional error correlations due to Assumption A9, because randomization obviates the need
to account for this kind of correlation (see Lemma 1).
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This formula is equal to the variance of τ̂ from the SCR formula applied to collapsed data, where
m = r = 1. Applying the McKenzie formula to collapsed data, however, gives the incorrect variance:

Var (τ̂ | X) =

(
2

P (1− P )J

)
σ2
ωC (A46)

Equations (A45) and (A46) differ by the ψXωC term that characterizes the covariance between the
pre- and post-treatment error terms in the collapsed data. This term is omitted from the McKenzie
formula that (incorrectly) assumes no serial correlation in the error structure. The error structure
parameters of the collapsed data in Equation (A45) can also be expressed as functions of the
parameters that define the error structure of the original, uncollapsed data

σ2
ωC =

1

2
Var

(
ωCiA | X

)
+

1

2
Var

(
ωCiB | X

)
=

1

2
Var

(
1

r

r∑
t=1

ωit | X

)
+

1

2
Var

(
1

m

0∑
s=−m+1

ωis | X

)

=
1

2r

[
σ2
ω + (r − 1)ψA

]
+

1

2m

[
σ2
ω + (m− 1)ψB

]
=

1

2

[(
m+ r

mr

)
σ2
ω +

(
r − 1

r

)
ψA +

(
m− 1

m

)
ψB
]

(A47)

ψXωC =
1

J

J∑
i=1

Cov
(
ωCiA, ω

C
iB | X

)
=

1

J

J∑
i=1

Cov

(
1

r

r∑
t=1

ωit,
1

m

0∑
s=−m+1

ωis | X

)

=
1

Jmr

J∑
i=1

r∑
t=1

0∑
s=−m+1

Cov(ωit, ωis | X)

= ψX (A48)

Substituting Equations (A47) and (A48) into Equation (A45) gives

Var (τ̂ | X) =

(
1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
which is equivalent to the variance of τ̂ given in Equation (A31) that is a component of the SCR
formula. Hence, the uncollapsed, collapsed, and first-difference models yield (virtually) equivalent
MDEs when using the appropriate power calculation formula.3 By contrast, the McKenzie formula
ignores the between-period serial correlation that remains after collapsing serially correlated data.

3. The only difference between these threeMDE calculations is the critical values td1−κ and tdα/2. The uncollapsed
model will apply the CRVE ex post, which implies d = J degrees of freedom ex ante. The collapsed model will
apply the OLS variance estimator ex post to a panel with 2J observations and J + 2 regressors, which implies
d = J − 2 degrees of freedom ex ante. The first-difference model will apply the OLS variance estimator ex post to
a cross-sectional specification with J observations and 2 regressors, which implies d = J − 2 degrees of freedom ex
ante.
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A.2.5 Analysis of covariance (ANCOVA)

Model There are J units, P proportion of which are randomized into treatment. The researcher
again collects outcome data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment periods and Dit = 1 in
post-treatment periods; for control units, Dit = 0 in all periods.

Assumption A15 (Data generating process). The data are generated according to the following
model:

Yit = β + τDit + υi + ωit

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a time-invariant unit effect distributed i.i.d. N (0, σ2
υ);

and ωit is an idiosyncratic error term distributed (not necessarily i.i.d.) N (0, σ2
ω).

Assumption A16 (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, and J − 1 unit dummies. This again follows from
random assignment of Dit.

Assumption A17 (Balanced panel). The number of pre-treatment observations, m, and post-
treatment observations, r, is the same for each unit, and all units are observed in every time period.

Assumption A18 (Independence across units). E[ωitωjs | X] = 0, ∀ i 6= j, ∀ t, s.

Assumption A19 (Uniform covariance structures). Define:

ψBi ≡
2

m(m− 1)

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis | X)

ψAi ≡
2

r(r − 1)

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis | X)

ψXi ≡
1

mr

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis | X)

to be the average pre-treatment, post-treatment, and across-period covariance between different error
terms of unit i, respectively. Using these definitions, assume that ψB = ψBi , ψA = ψAi , and ψX =

ψXi ∀i.

In this section, we consider an analysis of covariance (ANCOVA) regression model:

Yit = α + τDi + θY
B

i + εit (A49)

where Yit, τ , and Di are defined as above; α is an intercept term, Y B

i = 1
m

∑0
t=−m+1 Yit is the mean

pre-period value of the outcome variable for unit i, and εit is an idiosyncratic error term. Note that
this regression is estimated using only post-treatment outcomes as the dependent variable, with a
unit’s pre-treatment mean outcome entering as an independent variable.
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Note that this following derivations necessitate two relatively strong assumptions, as we discuss
in Section 2.2.2 of the main text. First, we assume zero time shocks in the data generating process,
thereby omitting δt from Assumption A15. If we included time shocks as in Assumption A3, then
the conditional expectations in Equations (A56) and (A57) would each depend on the error terms
and pre-period means of all units in the experiment, making the analytic solution intractable.4

Second, Assumption A19 forces the ψ parameters to be constant across all units. Without this
simplifying assumption, Equations (A58)–(A60) would contain many additional terms describing
the heterogeneity of ψ parameters, which has a negligible effect in experiments of resaonable size5

and cannot be estimated from a pre-existing dataset.6

Coefficient estimate The coefficient estimates from an OLS regression areα̂τ̂
θ̂

 = (X′X)−1X′Y

=


 1′

D′

Y
B′

(1 D Y
B
)

−1 1′

D′

Y
B′

Y

=

 Jr PJr JrY
B

PJr PJr PJrY
B

T

JrY
B

PJrY
B

T r
∑J

i=1 (Y
B

i )2


︸ ︷︷ ︸

M

−1 JrY
A

PJrY
A

T

r
∑J

i=1 Y
A

i Y
B

i

 (A50)

The inverse of the M matrix is

M−1 =
PJ2r2

det(M)
×

 1
J

∑J
i=1 (Y

B

i )2 − P (Y
B

T )2 Y
B
Y
B

T − 1
J

∑J
i=1 (Y

B

i )2 PY
B

T − Y
B

Y
B
Y
B

T − 1
J

∑J
i=1 (Y

B

i )2 1
PJ

∑J
i=1 (Y

B

i )2 − 1
P

(Y
B

)2 Y
B − Y B

T

PY
B

T − Y
B

Y
B − Y B

T 1− P


4. If we include time shocks and time fixed effects in our data generating process and regression model, respectively,

the simplest analytic solution includes de-meaning by time period to remove these time shocks, similar to Appendix
A.2.1. Then Equations (A56) and (A57) would instead describe the expectation of the product of the de-meaned
error terms conditional on the de-meaned pre-period averages, which are a function of the error terms and pre-period
means of all units in the experiment. These expressions increase in complexity in proportion to the number of units,
making them analytically intractable for any reasonable number of experimental units while allowing for arbitrary
serial correlation. An alternate solution method does not de-mean by time period to remove time shocks, but instead
solves directly for all parameters in the model. This method requires inverting a (m+ r + 2)× (m+ r + 2) matrix,
which is analytically intractable for an experiment of arbitrary length.

5. We test this second assumption by simulating datasets with uniform ψ parameters or heterogeneous ψ param-
eters and then performing Monte Carlo simulations as described in Appendix B.1. We find no appreciable difference
in the simulated power of these different datasets.

6. A dataset contains only one realiztion of each error draw, so it is impossible to estimate a covariance between
any two of these draws. We can, however, estimate an average covariance over all units by treating each unit’s error
as a draw from the same distribution, as described in more detail in Appendices D.1 and E.1.
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and the determinant of M is

det(M) = PJ3r3

[
1

J

J∑
i=1

(Y
B

i )2 − P (Y
B

T )2

]
+ P 2J3r3

[
Y
B
Y
B

T −
1

J

J∑
i=1

(Y
B

i )2

]
+ PJ3r3Y

B
[
PY

B

T − Y
B
]

= P (1− P )J2r3

J∑
i=1

(Y
B

i )2 − P 2(1− P )(Y
B

T )2 − P (1− P )2(Y
B

C)2

= P (1− P )J2r3

[
PJ∑
i=1

(Y
B

i − Y
B

T )2 +
J∑

i=PJ+1

(Y
B

i − Y
B

C)2

]

Therefore, the coefficient estimates are

α̂ =
Y
A

C

[∑J
i=1 (Y

B

i )2 − PJ(Y
B

T )2 − (1− P )J(Y
B

C)2
]

∑J
i=1 (Y

B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

−
Y
B

C

[∑J
i=1 Y

B

i Y
A

i − PJY
B

T Y
A

T − (1− P )JY
B

CY
A

T

]
∑J

i=1 (Y
B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

τ̂ =
(Y

A

T − Y
A

C)
[∑J

i=1 (Y
B

i )2 − PJ(Y
B

T )2 − (1− P )J(Y
B

C)2
]

∑J
i=1 (Y

B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

−
(Y

B

T − Y
B

C)
[∑J

i=1 Y
B

i Y
A

i − PJY
B

T Y
A

T − (1− P )JY
B

CY
A

T

]
∑J

i=1 (Y
B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

θ̂ =

∑J
i=1 Y

B

i Y
A

i − PJY
B

T Y
A

T − (1− P )JY
B

CY
A

C∑J
i=1 (Y

B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

We rewrite these terms as

α̂ = Y
A

C − θ̂Y C

τ̂ = (Y
A

T − Y
A

C)− θ̂(Y B

T − Y
B

C)

θ̂ =

∑PJ
i=1 (Y

B

i − Y
B

T )(Y
A

i − Y
A

T ) +
∑J

i=PJ+1 (Y
B

i − Y
B

C)(Y
A

i − Y
A

C)∑PJ
i=1 (Y

B

i − Y
B

T )2 +
∑J

i=PJ+1 (Y
B

i − Y
B

C)2

Variance of coefficient estimates The variance of each coefficient estimate is:

Var

α̂τ̂
θ̂

 | X
 = (X′X)︸ ︷︷ ︸

M

−1
X′ E[εε′ | X]X︸ ︷︷ ︸

N

(X′X)︸ ︷︷ ︸
M

−1
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where M is the same as in Equation (A50) and N is

N =

 1′

D′

Y
B′


E[ε11ε11 | X] . . . E[ε11εJr | X]

... . . . ...
E[εJrε11 | X] . . . E[εJrεJr | X]

(1 D Y
B
)

=
r∑
t=1

r∑
s=1


∑J

i=1

∑J
j=1 E[εitεjs | X]

∑PJ
i=1

∑J
j=1 E[εitεjs | X]

∑J
i=1

∑J
j=1 Y

B

i E[εitεjs | X]∑PJ
i=1

∑J
j=1 E[εitεjs | X]

∑PJ
i=1

∑PJ
j=1 E[εitεjs | X]

∑PJ
i=1

∑J
j=1 Y

B

j E[εitεjs | X]∑J
i=1

∑J
j=1 Y

B

i E[εitεjs | X]
∑PJ

i=1

∑PJ
j=1 Y

B

j E[εitεjs | X]
∑J

i=1

∑J
j=1 Y

B

i Y
B

j E[εitεjs | X]


We now focus on the variance of the treatment effect estimator, τ̂ . Combining this expression for
N with the expression for M−1 above, this variance is given by

Var(τ̂ | X) =
1

J2r2Z2

r∑
t=1

r∑
s=1

{
1

P 2

PJ∑
i=1

PJ∑
j=1

[(
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T )
)

×
(
Z − PJ(Y

B

T − Y
B

C)(Y
B

j − Y
B

T )
)

E[εitεjs | X]

]
+

2

P (1− P )

PJ∑
i=1

J∑
j=PJ+1

[(
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T )
)

×
(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

j − Y
B

C)
)

E[εitεjs | X]

]
+

1

(1− P )2

J∑
i=PJ+1

J∑
j=PJ+1

[(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

i − Y
B

C)
)

×
(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

j − Y
B

C)
)

E[εitεjs | X]

]}
(A51)

where

Z =
PJ∑
k=1

(Y
B

k − Y
B

T )2 +
J∑

k=PJ+1

(Y
B

k − Y
B

C)2

We consider each pair of summations in Equation (A51) by defining

VT ≡
1

P 2

r∑
t=1

r∑
s=1

PJ∑
i=1

PJ∑
j=1

[(
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T )
)

×
(
Z − PJ(Y

B

T − Y
B

C)(Y
B

j − Y
B

T )
)

E[εitεjs | X]

]
(A52)

VX ≡
2

P (1− P )

r∑
t=1

r∑
s=1

PJ∑
i=1

J∑
j=PJ+1

[(
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T )
)

×
(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

j − Y
B

C)
)

E[εitεjs | X]

]
(A53)
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VC ≡
1

(1− P )2

r∑
t=1

r∑
s=1

J∑
i=PJ+1

J∑
j=PJ+1

[(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

i − Y
B

C)
)

×
(
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

j − Y
B

C)
)

E[εitεjs | X]

]
(A54)

so Equation (A51) can be rewritten as

Var(τ̂ | X) =
1

J2r2Z2
(VT + VX + VC) (A55)

Each of these expressions contains an expectation term, which we rewrite, using the Law of Iterated
Expectations, as

E[εitεjs | X] = E[εitεjs | Y
B

i , Y
B

j ] = E
[
εjs E[εit | εjs, Y

B

i , Y
B

j ] | Y B

i , Y
B

j

]
Note that εit, εjs, Y

B

i , and Y
B

j are random variables drawn from a multivariate normal distribution.
Consider two cases. First, if i 6= j, then the inner expectation term is

E[εit | εjs, Y
B

i , Y
B

j ] = E[εit | Y
B

i ] =
Cov(εit, Y

B

i )

Var(Y
B

i )
Y
B

i

and the full expectation term is

E[εitεjs | X] =
Cov(εit, Y

B

i )

Var(Y
B

i )
Y
B

i E[εjs | Y
B

j ] =
Cov(εit, Y

B

i )

Var(Y
B

i )
Y
B

i

Cov(εjs, Y
B

j )

Var(Y
B

j )
Y
B

j (A56)

However, note that

Cov(εit, Y
B

i ) = Cov(ωit, ω
B
i )− rψX

so summing over all r post-treatent periods gives

r∑
t=1

Cov(εit, Y
B

i ) =
1

m

r∑
t=1

0∑
s=−m+1

Cov(ωit, ωis)− rψX = 0

As a result, the case of i 6= j will not contribute to VT , VX , and VC . Consider instead the case of
i = j, in which case the inner expectation term is

E[εit | εjs, Y
B

i , Y
B

j ] = E[εit | εis, Y
B

i ]

= Var(Y
B
i ) Cov(εit,εis)−Cov(εit,Y

B
i ) Cov(εis,Y

B
i )

Var(εis) Var(Y
B
i )−Cov(εis,Y

B
i )2

εis + Var(εis) Cov(εit,Y
B
i )−Cov(εit,εis) Cov(εis,Y

B
i )

Var(εis) Var(Y
B
i )−Cov(εis,Y

B
i )2

Y
B

i

and the full expectation term is

E[εitεjs | X] = E
[
εis E[εit | εis, Y

B

i ] | Y B

i

]
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= Cov(εit, εis)− Cov(εit,Y
B
i ) Cov(εis,Y

B
i )

Var(Y
B
i )

+ Cov(εit,Y
B
i ) Cov(εis,Y

B
i )

Var(Y
B
i )2

(Y
B

i )2 (A57)

Substituting Equations (A56) and (A57) into Equations (A52)–(A54) and simplifying gives

VT =
r2

P 2

[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
×

PJ∑
i=1

[
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T ))
]2

(A58)

VX = 0 (A59)

VC =
r2

(1− P )2

[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
×

J∑
i=PJ+1

[
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

i − Y
B

C))
]2

(A60)

where θ is the same as in Equation (A49) and can be expressed as

θ =
mσ2

υ +mψX

mσ2
υ + σ2

ω + (m− 1)ψB

Then substituting Equations (A58)–(A60) into Equation (A55) gives the variance of the treatment
effect estimator:

Var(τ̂ | X) =
1

J2r2Z2

[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
×

[
r2

P 2

PJ∑
i=1

[
Z − PJ(Y

B

T − Y
B

C)(Y
B

i − Y
B

T ))
]2

+
r2

(1− P )2

J∑
i=PJ+1

[
−Z − (1− P )J(Y

B

T − Y
B

C)(Y
B

i − Y
B

C))
]2
]

=
1

J2Z2

[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
×
[

JZ2

P (1− P )
+ J2(Y

B

T − Y
B

C)2Z

]
=

[
1

P (1− P )J
+

(Y
B

T − Y
B

C)2

Z

]

×
[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
(A61)
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The second component of the first term in Equation (A61), (Y
B
T−Y

B
C )2

Z
, is the only component of

this formula that includes data, rather than parameters describing the experimental design or error
structure. Additionally, this term decreases in expectation to zero as the number of units in the
experiment increases, so it is negligible when J is sufficiently large. Accordingly, we drop this term
to yield an approximate expression for the variance of the treatment effect estimator:

Var(τ̂ | X) ≈ 1

P (1− P )J

[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]
Minimum detectable effect When using an ANCOVA regression model, the MDE is

MDE =
(
tJ1−κ + tJα/2

)√
Var (τ̂ | X)

=
(
tJ1−κ + tJα/2

) [
1

P (1−P )J
+ (Y

B
T−Y

B
C )2

Z

]1/2

×
[
(1− θ)2σ2

υ +
(
θ2

m
+ 1

r

)
σ2
ω + θ2(m−1)

m
ψB + r−1

r
ψA − 2θψX

]1/2

(A62)

≈
(
tJ1−κ + tJα/2

)√
1

P (1−P )J

[
(1− θ)2σ2

υ +
(
θ2

m
+ 1

r

)
σ2
ω + θ2(m−1)

m
ψB + r−1

r
ψA − 2θψX

]
This is the serial-correlation-robust ANCOVA (SCR ANCOVA) power calculation formula, found
in Equation (11) in the main text.

A.3 Arbitrary cross-sectional correlations

In this section, we provide proofs of Lemma 1 from the main text. We begin by proving the
analogous cross-sectional case, in Lemma A1:7

Lemma A1. In a cross-sectional model with random assignment to treatment, σ2
ε

P (1−P )J
is an unbi-

ased estimator of the expectation of Var(τ̂ | X) even if E[εiεj | X] 6= 0 for some i 6= j.

Proof We wish to demonstrate that the OLS variance estimator, which assumes that errors are
independent across units, is an unbiased estimator of the ex ante expected variance under non-i.i.d.
errors when units are randomly assigned to treatment. To do this, consider a model similar to that
of Appendix A.1 but allowing for correlation in error terms. That is:

Model There are J units randomly assigned a treatment status Di, with proportion P in treat-
ment (Di = 1) and proportion (1− P ) in control (Di = 0). The units are indexed so i ∈ [1, PJ ] is
treated and j ∈ [PJ + 1, J ] is a control. We make standard assumptions for randomized trials:

Assumption A20 (Data generating process). The data are generated according to the following
model:

Yi = β + τDi + εi

7. Campbell (1977) provides the first version of this proof, which is cited by Moulton (1986), and which imposes a
grouped error structure. Our proof allows for arbitrary cross-sectional error dependence. Athey and Imbens (2017b,
2017a) still recommend using Eicker-Huber-White standard errors in this case, to allow for heteroskedasticity. To
our knowledge, no paper discusses power calculations in the presence of heteroskedastic disturbances.
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where Yi is the outcome of interest for unit i; β is the expected outcome of non-treated units; τ is
the treatment effect which is homogeneous across all units; Di is a treatment indicator; and εi is an
idiosyncratic error term distributed (not necessarily i.i.d.) N (0, σ2

ε).

Assumption A21 (Strict exogeneity). E[εi | X] = 0, where X = [1 D]. In practice, this follows
from random assignment of Di.

Coefficient estimate The coefficient estimates from an OLS regression are the same as in Ap-
pendix A.1:

β̂ = Y C

τ̂ = Y T − Y C

Variance of coefficient estimate The variance of the estimate of the treatment effect, τ̂ , is

Var (τ̂ | X) = Var
(
Y T | X

)
+ Var

(
Y C | X

)
− 2 Cov

(
Y T , Y C | X

)
(A63)

where the first term of Equation (A63) is

Var
(
Y T | X

)
= Var

(
1

PJ

PJ∑
i=1

Yi | X

)

= Var

(
1

PJ

PJ∑
i=1

εi | X

)

=
σ2
ε

PJ
+

2

(PJ)2

PJ−1∑
i=1

PJ∑
j=i+1

Cov(εi, εj | X)

=
σ2
ε

PJ
+
PJ − 1

PJ
ψT (A64)

where

ψT ≡
2

PJ(PJ − 1)

PJ−1∑
i=1

PJ∑
j=i+1

Cov (εi, εj | X)

is the average covariance between treated units. Similarly, the second term of Equation (A63) is

Var
(
Y C | X

)
=

σ2
ε

(1− P )J
+

(1− P )J − 1

(1− P )J
ψC (A65)

where

ψC ≡
2

(1− P )J((1− P )J − 1)

J−1∑
i=PJ+1

J∑
j=i+1

Cov (εi, εj | X)
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is the average covariance between control units. The third term of Equation (A63) is

−2 Cov
(
Y T , Y C | X

)
= −2 Cov

(
1

PJ

PJ∑
i=1

Yi,
1

(1− P )J

J∑
j=PJ+1

Yj | X

)

=
−2

P (1− P )J2

PJ∑
i=1

J∑
j=PJ+1

Cov(εi, εj | X)

= −2ψTC (A66)

where

ψTC ≡
1

P (1− P )J2

PJ∑
i=1

J∑
j=PJ+1

Cov (εi, εj | X)

is the average covariance between treatment and control units. Substituting Equations (A64)–(A66)
into Equation (A63) yields

Var (τ̂ | X) =

[
σ2
ε

PJ
+
PJ − 1

PJ
ψT

]
+

[
σ2
ε

(1− P )J
+

(1− P )J − 1

(1− P )J
ψC

]
− 2ψTC

=
σ2
ε

P (1− P )J
+
PJ − 1

PJ
ψT +

(1− P )J − 1

(1− P )J
ψC − 2ψTC

Note that σ2
ε , P , and J are constant population or design parameters. With this in mind, taking

expectations yields

E [Var (τ̂ | X)] =
σ2
ε

P (1− P )J
+
PJ − 1

PJ
E [ψT ] +

(1− P )J − 1

(1− P )J
E [ψC ]− 2 E [ψTC ] (A67)

By random assignment to treatment, the expectation terms are

E [ψT ] =
2

PJ(PJ − 1)
E

[
PJ−1∑
i=1

PJ∑
j=i+1

Cov (εi, εj | X)

]

=
2

PJ(PJ − 1)

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj) E [1{i ∈ T, j ∈ T}]

=
2P

J(PJ − 1)

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj) (A68)

E [ψC ] =
2(1− P )

J((1− P )J − 1)

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj) (A69)

E [ψTC ] =
2

J2

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj) (A70)
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Substituting Equations (A68)–(A70) into Equation (A67) yields

E [Var (τ̂ | X)] =
σ2
ε

P (1− P )J
+

2

J2

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj) +
2

J2

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj)

− 4

J2

J−1∑
i=1

J∑
j=i+1

Cov (εi, εj)

=
σ2
ε

P (1− P )J
(A71)

By Assumptions A20 and A21, the OLS variance estimator is an unbiased estimator of σ2
ε

P (1−P )J
.

That is:

E
[
V̂arOLS (τ̂ | X)

]
=

σ2
ε

P (1− P )J
(A72)

Combining Equations (A71) and (A72) gives

E [Var (τ̂ | X)] = E
[
V̂arOLS (τ̂ | X)

]
(A73)

Therefore, the OLS variance estimator is an unbiased estimator of the ex ante expected variance
under random assignment to treatment, even under non-i.i.d. errors.

Lemma 1. In a panel difference-in-differences model with treatment randomly assigned at the unit
level,

(
1

P (1−P )J

) [ (
m+r
mr

)
σ2
ω+
(
m−1
m

)
ψB+

(
r−1
r

)
ψA−2ψX

]
is an unbiased estimator of the expectation

of Var(τ̂ | X), even in the presence of arbitrary within-period cross-sectional correlations.

Proof We wish to demonstrate that the serial-correlation-robust variance, which assumes that
errors are independent across units, is an unbiased estimator of the ex ante expected variance
under arbitrary within-period correlations, when units are randomly assigned to treatment. To do
this, again consider the model of Appendix A.2.3.

Coefficient estimate The coefficient estimate is the same as in Appendix A.2.3:

τ̂ =
(
Y
A

T − Y
B

T

)
−
(
Y
A

C − Y
B

C

)
Variance of coefficient estimate The variance of the treatment effect estimator, τ̂ , is also the
same as in Appendix A.2.3:

Var (τ̂ | X) =

(
m+ r

P (1− P )Jmr

)
σ2
ω +

(
m− 1

PJm

)
ψBi,T +

(
PJ − 1

PJm

)
ψBt,T

+

(
r − 1

PJr

)
ψAi,T +

(
PJ − 1

PJr

)
ψAt,T +

(
m− 1

(1− P )Jm

)
ψBi,C

+

(
(1− P )J − 1

(1− P )Jm

)
ψBt,C +

(
r − 1

(1− P )Jr

)
ψAi,C +

(
(1− P )J − 1

(1− P )Jr

)
ψAt,C
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− 2

PJ
ψXi,T −

2

m
ψBt,X −

2

r
ψAt,X −

2

(1− P )J
ψXi,C

Next, we show that, in expectation, this is equal to the variance component of the SCR formula.
We begin by taking expectations:

E [Var (τ̂ | X)] =

(
m+ r

P (1− P )Jmr

)
σ2
ω +

(
m− 1

PJm

)
E
[
ψBi,T

]
+

(
PJ − 1

PJm

)
E
[
ψBt,T

]
+

(
r − 1

PJr

)
E
[
ψAi,T

]
+

(
PJ − 1

PJr

)
E
[
ψAt,T

]
+

(
m− 1

(1− P )Jm

)
E
[
ψBi,C

]
+

(
(1− P )J − 1

(1− P )Jm

)
E
[
ψBt,C

]
+

(
r − 1

(1− P )Jr

)
E
[
ψAi,C

]
+

+

(
(1− P )J − 1

(1− P )Jr

)
E
[
ψAt,C

]
− 2

PJ
E
[
ψXi,T

]
− 2

m
E
[
ψBt,X

]
− 2

r
E
[
ψAt,X

]
− 2

(1− P )J
E
[
ψXi,C

]
(A74)

where

E
[
ψBi,T

]
=

2

Jm(m− 1)

J∑
i=1

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis)

E
[
ψBt,T

]
=

2P

J(PJ − 1)m

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)

E
[
ψAi,T

]
=

2

Jr(r − 1)

J∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis)

E
[
ψAt,T

]
=

2P

J(PJ − 1)r

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)

E
[
ψBi,C

]
=

2

Jm(m− 1)

J∑
i=1

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis)

E
[
ψBt,C

]
=

2(1− P )

J((1− P )J − 1)m

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)

E
[
ψAi,C

]
=

2

Jr(r − 1)

J∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis)

E
[
ψAt,C

]
=

2(1− P )

J((1− P )J − 1)r

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)

E
[
ψXi,T

]
=

1

Jmr

J∑
i=1

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis)

E
[
ψBt,TC

]
=

2

J2m

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)
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E
[
ψAt,TC

]
=

2

J2r

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)

E
[
ψXi,C

]
=

1

Jmr

J∑
i=1

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis)

Using these terms, we rewrite Equation (A74) as

E [Var (τ̂ | X)] =

(
m+ r

P (1− P )Jmr

)
σ2
ω +

(
m− 1

PJm

)
ψB +

2

J2m2

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)

+

(
r − 1

PJr

)
ψA +

2

J2r2

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt) +

(
m− 1

(1− P )Jm

)
ψB

+
2

J2m2

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt) +

(
r − 1

(1− P )Jr

)
ψA

+
2

J2r2

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)−
(

2

PJ

)
ψX

− 4

J2m2

J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)−
(

2

(1− P )J

)
ψX

− 4

J2r2

J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)

=

(
m+ r

P (1− P )Jmr

)
σ2
ω +

[
m− 1

PJm
+

m− 1

(1− P )Jm

]
ψB

+

[
r − 1

PJr
+

r − 1

(1− P )Jr

]
ψA −

[
2

PJ
+

2

(1− P )J

]
ψX

+

[
2

J2m2
+

2

J2m2
− 4

J2m2

] J−1∑
i=1

J∑
j=i+1

0∑
t=−m+1

Cov (ωit, ωjt)

+

[
2

J2r2
+

2

J2r2
− 4

J2r2

] J−1∑
i=1

J∑
j=i+1

r∑
t=1

Cov (ωit, ωjt)

=
1

P (1− P )J

[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
(A75)

Recall from Equation (A31) that the variance component of the SCR formula is

VarSCR (τ̂ | X) =
1

P (1− P )J

[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
(A76)

Combining Equations (A75) and (A76) gives

E [Var (τ̂ | X)] = VarSCR (τ̂ | X)
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Therefore, the SCR variance estimator is an unbiased estimator of the ex ante expected variance
under random assignment to treatment, even under non-i.i.d. errors.

A.4 Equivalence of alternative difference-in-difference estimators

In this section, we demonstrate that the DD treatment effect estimator—and therefore, the variance
of this estimator—with a full set of unit and time fixed effects is the same as the “simplified” DD
estimator where unit fixed effects are replaced with a treatment group dummy and time fixed effects
are replaced with a post-period dummy. We begin with the same model, data generating process,
and assumptions as Section A.2.1, suppressed here in the interest of parsimony.

Coefficient estimate In Section A.2.1 above, we estimate the treatment effect, τ , using OLS
with unit and time fixed effects. Here, we instead estimate the τ using OLS with a treatment group
dummy and a post-treatment period dummy (i.e. Equation (8), with new notation):

Yit = β + τDit + αg + γp + εit (A77)

where αg is a treatment group dummy variable and γp is a post-treatment-period dummy variable.
In a balanced panel, this is equivalent to de-meaning by the group and post-treatment period.
Define:

Ÿit = Yit − Y g − Y p + Y (A78)

D̈it = Dit −Dg −Dp +D (A79)
ε̈it = εit − εg − εp + ε (A80)

where:

Y T =
1

PJ(m+ r)

PJ∑
i=1

r∑
t=−m+1

Yit

Y C =
1

(1− P )J(m+ r)

J∑
i=PJ+1

r∑
t=−m+1

Yit

Y A =
1

Jr

J∑
i=1

r∑
t=1

Yit

Y B =
1

Jm

J∑
i=1

0∑
t=−m+1

Yit

Y =
1

J(m+ r)

J∑
i=1

r∑
t=−m+1

Yit

with Dg, Dp, D, εg, εp, and ε defined analogously. Substituting Equations (A78)–(A80) into
Equation (A77) and simplifying gives the de-meaned DGP:
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Ÿit = (τDit + αg + γp + εit)− (τDg + αg + γ + εg)− (τDp + α + γp + εp) + (τD + α + γ + ε)

= τ(Dit −Dg −Dp +D) + (εit − εg − εp + ε)

= τD̈it + ε̈it

The estimate of the treatment effect is

τ̂ = (D̈′D̈)−1D̈′Ÿ

=

(
J∑
i=1

r∑
t=−m+1

D̈2
it

)−1 J∑
i=1

r∑
t=−m+1

D̈itŸit

=
m+ r

P (1− P )Jmr

[
J∑
i=1

r∑
t=−m+1

D̈itYit −
J∑
i=1

Y i

r∑
t=−m+1

D̈it −
r∑

t=−m+1

Y t

J∑
i=1

D̈it + Y
J∑
i=1

r∑
t=−m+1

D̈it

]

=
m+ r

P (1− P )Jmr

J∑
i=1

r∑
t=−m+1

D̈itYit

=
m+ r

P (1− P )Jmr

[
PJ∑
i=1

(
(1− P )m

m+ r

r∑
t=1

Yit −
(1− P )r

m+ r

0∑
t=−m+1

Yit

)

+
J∑

i=PJ+1

(
Pr

m+ r

0∑
t=−m+1

Yit −
Pm

m+ r

r∑
t=1

Yit

)]
=
(
Y
A

T − Y
B

T

)
−
(
Y
A

C − Y
B

C

)
where

Y
A

T =
1

PJr

PJ∑
i=1

r∑
t=1

Yit

Y
B

T =
1

PJm

PJ∑
i=1

0∑
t=−m+1

Yit

Y
A

C =
1

(1− P )Jr

J∑
i=PJ+1

r∑
t=1

Yit

Y
B

C =
1

(1− P )Jm

J∑
i=PJ+1

0∑
t=−m+1

Yit

which is identical to Equation (A11), meaning that the variance is also identical.

It is trivial to extend the same logic to variants on the DD estimator in which either unit
fixed effects are replaced with a treatment group dummy or time fixed effects are replaced with a
post-treatment dummy.
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B Figures in main text

This section provides further detail on the simulations and power calculations referenced in the
main text. We discuss the algorithms and assumptions behind each of the simulation plots, as well
as the two analytical power calculation figures.

B.1 Simulated AR(1) data

In Figure 1, we run Monte Carlo simulations where each iteration generates a new simulated dataset
with an idiosyncratic error term (ωit) that evolves via an AR(1) process. We vary the following
three parameters across sets of 10,000 simulations: the number of pre-treatment periods (m), the
number of post-treatment periods (r), and the AR(1) dependence parameter (γ). The remaining
parameters (J , P , α, κ, β, µυ, σ2

υ, µδ, σ2
δ , σ2

ω) are fixed across all simulations.

Step 1: We calculate τMcK and τSCR for each set of simulations, given a set of parameters values
form, r, and γ. These values are functions of the number of pre-treatment periodsm, the number of
post-treatment periods r, the number of units J , the proportion of units randomized into treatment
P , the desired Type-I error rate α, the desired power κ, the idiosyncratic variance σ2

ω, and (for
τSCR) the error structure as defined by ψB, ψA, and ψX :

τMcK =
(
tJ1−κ + tJα/2

)√( σ2
ω

P (1− P )J

)(
m+ r

mr

)

τSCR = (tJ1−κ + tJα/2)

√(
1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
Note that for both τMcK and τSCR, we calculate the critical values tJ1−κ and tJα/2 assuming J degrees
of freedom, which is consistent with applying the CRVE ex post, clustering at the unit level with J
units. Note also that ψB, ψA, and ψX depend on the correlation structure of the errors, and the
AR(1) process enables us to derive closed form expressions for these covariances in terms of γ, σ2

ω,
m, and r. Because we set m = r across all simulations, we can write ψB, ψA, and ψX as:

ψB =
2σ2

ω

(m− 1)m

m−1∑
z=1

(m− z)γz (B1)

ψA = ψB (B2)

ψX =
σ2
ω

m2

[
m∑
z=1

zγz +
2m−1∑
z=m+1

(2m− z)γz

]
(B3)

Step 2: For each simulation, we generate a dataset as specified by the data generating process:

Yit = β + υi + δt + ωit

To do this, we draw J independent values of υi from the distribution N(µυ, σ
2
υ), and draw m + r

independent values of δt from the distribution N(µδ, σ
2
δ ). We create the idiosyncratic error ωit =

γωi(t−1) + ξit by simulating an AR(1) process with serial correlation γ and a white noise term ξit

30



drawn from the distribution N(0, σ2
ξ ), where σ2

ξ = σ2
ω(1− γ2).8

Step 3: We randomly assign treatment to PJ units. This involves randomly scrambling a vector
of PJ ones and (1 − P )J zeros and assigning each unit i either a 1 indicating treatment or a
0 indicating control.9 This allows us to construct a time-varying treatment indicator Dit, where
Dit = 1 for all treated units in post-treatment periods only and Dit = 0 otherwise. We then create
three outcome variables by adding treatment effects to the data generated in the previous step:

Y McK
it ≡ Yit + τMcKDit

Y SCR
it ≡ Yit + τSCRDit

Y 0
it ≡ Yit + τ 0Dit,

where τ 0 = 0 is a placebo treatment effect.

Step 4: We separately estimate the following three OLS-fixed effects regressions:

Y McK
it = β + τMcKDit + υi + δt + ωit

Y SCR
it = β + τSCRDit + υi + δt + ωit

Y 0
it = β + τ 0Dit + υi + δt + ωit

Step 5: For each estimated τ̂McK , τ̂SCR, and τ̂ 0, we compute both OLS standard errors and CRVE
standard errors, clustered at the unit level.

We repeat Steps 2–5 10,000 times, for values of m = r ∈ {1, . . . , 20} and for values of γ ∈
{0, 0.3, 0.5, 0.7, 0.9}.10 After each set of 10,000 simulations, we calculate the percent of simulations
where τ̂McK , τ̂SCR, and τ̂ 0 reject the null hypothesis of τ = 0 at significance level α, under both
OLS and CRVE standard errors.

Figure 1 reports these rejection rates on the vertical axes, with the number of pre- and post-
treatment periods (m = r) on the horizontal axes, for each value of γ. Reading the top row left
to right, we report the rejection rates for τMcK under OLS standard errors, for τMcK under CRVE
standard errors, and for τSCR under CRVE standard errors, respectively. Because these are rejection
rates of true effects, we interpret these curves as realized statistical power. Reading the bottom row
left to right, we report the rejection rates for τ 0 under OLS standard errors, for τ 0 under CRVE
standard errors, and for τ 0 under CRVE standard errors, respectively. Because these are rejection
rates of placebo effects, we report these curves as realized false rejection rates. (The bottom-center
and bottom-right panels report identical rejection rates, because the center and right columns have
the same test for false rejection rates.)

We fix α = 0.05 and κ = 0.80 across all simulations, as these are the critical values commonly
used in practice. However, they are essentially arbitrary, and our simulation results would look
identical if we had chosen alternative tolerances for Type I vs. Type II errors. (The only difference

8. We allow for a sufficiently long “burn-in period” in this AR(1) process, so that the process starts to evolve many
periods before the first period of simulated data.

9. Our code rounds PJ to the nearest integer value, even though PJ is already an integer in our main parameteriza-
tion. Note that for the τMcK , τAR(1), and τSCR to be precisely calibrated, the effective P̃ (where P̃ = round(PJ)/J)
needs to equal the actual parameter value P .
10. We set m = r only for simplicity. However, the results are very similar if we fix m = 3 and vary r ∈ {1, . . . , 20},

or vice versa. In Appendix C.1, we present results that vary m and r separately.
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would be that the vertical axes would change to reflect these alternative values.) All other fixed
parameter values are arbitrary. We have set J = 500, P = 0.5, β = 1, µυ = 100, σ2

υ = 80, µδ = 20,
σ2
δ = 10, and σ2

ω = 10. These values of σ2
υ, σ2

δ , and σ2
ω imply an intracluster correlation coefficient

of ρυ = 0.8 and within-period correlation coefficient of ρδ = 0.1. Importantly, our simulation
results do not depend on any particular combination of these parameters values, because they rely
on the internal consistency of the ex ante treatment effect calibration and the ex post estimation,
conditional on a given set of parameter values. The only exceptions are for J and P : J must be
larger enough to allow us to use the CRVE estimator (i.e., at least 40 clusters), and P must be
within a reasonable range (i.e., between 0.1 and 0.9) such that there are a sufficient number of both
treated clusters and control clusters.

We report additional simulations for DD power calculations with AR(1) data, each of which
slightly tweaks the above algorithm. Figure 2 uses m ∈ {1, 2, 3, 4, 5, 6} and r ∈ {1, 2, 3, 4, 5, 6},
varying the number of pre-treatment and post-treatment period separately. Figure 3 alters Step 4
above, by either (i) replacing υi fixed effects with a Treati dummy, (ii) replacing δt fixed effects with
a Postt dummy, or (iii) both. Figure 5 combines this tweak to Step 4 with alternate parameterization
of the DGP in Step 2: (i) σ2

υ = 0, (ii) σ2
δ = 0, or (iii) σ2

υ = σ2
δ = 0.

Importantly, removing unit fixed effects alters the asymptotic properties of the CRVE, as the
number of clusters no longer increases one-for-one with the number of regressors. For all simulations
in this paper and appendix, we apply the CRVE estimator that is appropriate to each estimating
equation (following Cameron and Miller (2015), pp. 14–15): if the regression includes unit fixed
effects and we are clustering by unit, we scale standard errors by

√
N−1

N−J−1
, where N the number

of observations in the regression and J is the number of units (clusters); if the regression does not
include unit fixed effects, we do not apply this correction factor.

The ANCOVA simulations in Figure 4 follow the a very similar algorithm as those in Figure
1. Each of the above steps is identical, except for the following changes:

Step 1: Instead of using the DD power calculation formulas, we apply the analogous ANCOVA
formulas to calculate τMcK and τSCR:11

τMcK = (tJ1−k + tJα/2)

√
1

P (1−P )J

[
(1− θ̆)2σ2

υ +
(
θ̆2

m
+ 1

r

)
σ2
ω

]
where θ̆ =

mσ2
υ

mσ2
υ + σ2

ω

, and

τSCR =
(
tJ1−κ + tJα/2

) [ 1

P (1− P )J
+

(Y
B

T − Y
B

C)2

Z

]1/2

×
[
(1− θ)2σ2

υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

]1/2

11. To create Figure 4, we use the exact SCR ANCOVA formula of Equation (A62) rather than the approximate
formula of Equation (11).
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where

θ =
mσ2

υ +mψX

mσ2
υ + σ2

ω + (m− 1)ψB

Z =
PJ∑
i=1

(Y
B

i − Y
B

T )2 +
J∑

i=PJ+1

(Y
B

i − Y
B

C)2

Step 2: We set σ2
δ = 0, consistent with the assumptions of our analytic ANCOVA derivations. This

assumption would be unrealistic for real-world data, however this Monte Carlo exercise focuses on
the internal (in)consistencies of the ANCOVA power calculation formulas.

Step 3: We also collapse all pre-treatment observations into unit-specific unweighted averages:

Y
B

i ≡
0∑

t=−m+1

Yit

Step 4: We separately estimate the following ANCOVA regressions:

Y McK
it = β + τMcKDi + θY

B

i + εit

Y SCR
it = β + τSCRDi + θY

B

i + εit

Y 0
it = β + τ 0Di + θY

B

i + εit

Note that we do not include time fixed effects δt, as we have assumed away time shocks for these
simulations.

Step 5: We compute only CRVE standard errors, clustered at the unit level.

Figure 4 reports the resulting rejection rates of the ANCOVA estimator. We do not report the
false rejection rates from the τ 0 regressions for the sake of brevity, and they do achieve the desired
α = 0.05 rejection rate in all cases.

An additional nuance with the ANCOVA simulations is that our simulation results are now
sensitive to the intracluster correlation coefficient ρυ. This is because the proportion of variance
that is unit-specific now affects the precision of the τ̂ estimator, because we have replaced the
unit fixed effect (which directly controlled for this variance) with a linear control in the average
pre-treatment level of the outcome variable. Figure 4 sets ρυ = 0.8, and the results are similar for
alternative values of ρυ.

B.2 Bloom et al. (2015) data

In Figure 6, we run Monte Carlo simulations using data from Bloom et al. (2015). These simulations
are analogous to those described above, except that rather than simulating data, we use an actual
dataset from a published panel RCT. We downloaded the paper’s dataset from the Quarterly Journal
of Economics website, and focused on the data used to estimate the paper’s main results, reported
in Column (1) of Table II of the paper. Consistent with the regression model that produced this
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result, we base our Monte Carlo analysis on the following DD specification:

Performanceit = αTreati × Experimentt + βt + γi + εit

Converting the original paper’s notation to our notation, and substituting the outcome variable and
fixed effects with the names of the variables in the Bloom et al. (2015) dataset, we have:

perform1it︸ ︷︷ ︸
Yit

= τDit + year_weekt︸ ︷︷ ︸
δt

+ personidi︸ ︷︷ ︸
υi

+ωit

We keep only units in the main sample (i.e. expgroup ∈ {0, 1}), only pre-treatment weeks of data
(i.e. year_week < 201049), and only individuals with non-missing perform1it values for all weeks
of pre-treatment data. This leaves us with a balanced panel of J = 79 individuals across 48 weeks.
Table B1 provides summary statistics of the resulting dataset.

Table B1: Summary statistics – Bloom et al. (2015)

Mean Std. Dev. Min Max AR(1) γ̂ Individuals Periods Observations

0.153 0.943 −2.766 3.665 0.233 79 48 3, 792

Notes: This table shows summary statistics for worker productivity in the Bloom et al. (2015) data. The
data are weekly job performance z-scores, constructed by taking the average of normalized performance
measures, where each measure is standardized to have a mean of 0 and standard deviation of 1 across
the sample. Our sample consists only of individuals that had no missing observations throughout the
entire pre-treatment period, January 1, 2010 through November 28, 2010. We compute γ̂ by estimating
Equation (6) on residuals from this dataset. In doing so, we cluster standard errors at the individual
level. The 95% confidence interval is [0.165, 0.300]. For more details on the standardized job performance
measures and the actual experimental design, see Bloom et al. (2015).

We conduct simulations on this dataset by varying the number of pre-treatment periods (m)
and the number of post-treatment periods (r). As with the simulations described above, we vary the
panel length for values m = r ∈ {1, . . . , 20}, iterating 10,000 simulations for each value of m = r.
We set the parameter values σ2

ω = 0.507 and γ = 0.233 by regressing Yit on person and week fixed
effects, calculating the variance of the resulting residuals ω̂it, and then estimating γ̂ using

ω̂it = γω̂i(t−1) + ξit

Step 1: We calculate τMcK and τAR(1) for each set of simulations, given m = r:

τMcK =
(
tJ1−κ + tJα/2

)√( σ2
ω

P (1−P )J

) (
m+r
mr

)
τAR(1) = (tJ1−κ + tJα/2)

√(
1

P (1−P )J

) [(
m+r
mr

)
σ2
ω +

(
m−1
m

)
ψ̆B +

(
r−1
r

)
ψ̆A − 2ψ̆X

]
where

ψ̆B =
2σ2

ω

(m− 1)m

m−1∑
z=1

(m− z)γz
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ψ̆A = ψ̆B

ψ̆X =
σ2
ω

m2

[
m∑
z=1

zγz +
2m−1∑
z=m+1

(2m− z)γz

]

We denote the covariance terms as ψ̆B, ψ̆A, and ψ̆X to indicate that the AR(1) error assumption is
a (poor) representation of the more complex covariance structure of this dataset. For both τMcK

and τAR(1), we calculate the critical values tJ1−κ and tJα/2 assuming J degrees of freedom, which is
consistent with applying the CRVE ex post, clustering at the individual level with J individuals.

Step 2: We calculate τSCR givenm = r, by non-parametrically estimating σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ from

residuals. Appendix D.1 provides step-by-step details of this estimation algorithm. Rather than
impose an AR(1) structure on the serial correlation, this method enables us to flexibly characterize
the covariance structure of the Bloom et al. (2015) dataset with just three averaged parameters.
This allows us to calculate τSCR as:

τSCR =
(
tJ1−κ + tJα/2

)√(
1

P (1−P )J

) [ (
m+r
mr

)
kσσ2

ω̂ +
(
m−1
m

)
kBψBω̂ +

(
r−1
r

)
kAψAω̂ − 2kXψXω̂

]
where

kσ =
I(m+ r)2

2(I − 1)mr

kB =
I(m+ r)2

2(I − 1)r2

kA =
I(m+ r)2

2(I − 1)m2

kX = 0

Appendix E provides a derivation of the coefficients kσ, kB, kA, and kX , and it proves that this
expression for τSCR as a function of estimated variance-covariance parameters is equal (in expecta-
tion) to the MDE as a function of the true variance-covariance parameters.12

Step 3: For each simulation, we randomly select a range of m+ r consecutive weeks in the dataset.
This subset of weeks will become the (m+r)-period panel dataset used in this particular simulation.
We randomly assign treatment to PJ individuals. This involves randomly scrambling a vector of
PJ ones and (1 − P )J zeros and assigning each individual i either a 1 indicating treatment or a
0 indicating control.13 This allows us to construct a time-varying treatment indicator Dit, where
Dit = 1 for all treated units in post-treatment periods only and Dit = 0 otherwise. We then create
three outcome variables by adding treatment effects to the data generated in the previous step:

Y McK
it ≡ Yit + τMcKDit

12. I denotes the number of units used to estimate σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ and ψXω̂ . This is distinct from the sample size of

the experiment J , however these simulations set I = J = 79 to include all units in the Bloom et al. (2015) dataset.
13. Our code rounds PJ to the nearest integer value. Note that for the τMcK , τAR(1), and τSCR to be precisely

calibrated, the effective P̃ (where P̃ = round(PJ)/J) needs to equal the actual parameter value P .
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Y
AR(1)
it ≡ Yit + τAR(1)Dit

Y SCR
it ≡ Yit + τSCRDit

Step 4: We separately estimate the following three OLS-fixed effects regressions:

Y McK
it = β + τMcKDit + υi + δt + ωit

Y
AR(1)
it = β + τAR(1)Dit + υi + δt + ωit

Y SCR
it = β + τSCRDit + υi + δt + ωit

Step 5: For each estimated τ̂McK , τ̂AR(1), and τ̂SCR, we compute CRVE standard errors, clustered
at the individual level.

As with the AR(1) simulations above, we repeat Steps 3–5 10,000 times, for values of m = r ∈
{1, . . . , 12}.14 After each set of 10,000 simulations, we calculate the percent of simulations where
τ̂McK , τ̂AR(1), and τ̂SCR reject the null hypothesis of τ = 0 at significance level α, under CRVE
standard errors. Figure 6 reports these three rejection rates on the vertical axes, with the number
of pre- and post-treatment periods (m = r) on the horizontal axes. We can interpret these curves
as realized statistical power, just as in the top row of Figure 1. We fix α = 0.05 and κ = 0.80 across
all simulations, for the reasons discussed above. Besides our arbitrary choices of P = 0.5, all other
parameters are determined by the Bloom et al. (2015) dataset: J = I = 79, σ2

υ = 0.243, σ2
δ = 0.146,

and σ2
ω = 0.507, implying ρυ = 0.271 and ρδ = 0.163. We do not estimate β, µυ, or µδ, as these

parameters are no longer relevant when simulating on top of an existing dataset.

B.3 Pecan Street data

In Figure 8, we present analogous Monte Carlo results for simulations using the Pecan Street dataset
of household electricity consumption (Pecan Street (2016)). These data are publicly available (with
a researcher login) at https://dataport.pecanstreet.org/data/interactive, and they include
699 households over 26,888 hours. As with the Bloom et al. (2015) simulations, we construct a
balanced panel of households and hours, by restricting the full Pecan Street dataset to a sample
of households that report non-missing, non-zero electricity consumption for every hour between
January 1, 2013 and December 31, 2014. This results in a balanced panel of J = 97 households over
17,520 hours, which we collapse to create daily, weekly, and monthly datasets. Table B2 presents
basic summary statistics for all four datasets, and Figure B1 displays the time series of data for
one randomly selected household in our sample at varying levels of aggregation. Unsurprisingly,
while mean electricity use is consistent across different collapses of the data, the standard deviation
decreases as we move from higher- to lower-frequency datasets.

These Pecan Street simulations follow an algorithm identical to the Bloom et al. (2015) simu-
lations, and we describe this algorithm in detail above. We repeat the same set of simulations four
times, estimating separate rejection rates for τMcK , τAR(1), and τSCR, for each of the hourly, daily,
weekly, and monthly datasets. We again set α = 0.05, κ = 0.80, and P = 0.5. The other relevant
parameters for each dataset are:

14. As with the AR(1) simulations, we set m = r only for simplicity. However, the results are very similar if we fix
m = 3 and vary r ∈ {1, . . . , 20}, or vice versa.
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Table B2: Summary statistics – Pecan Street

Dataset Mean Std. Dev. Min Max AR(1) γ̂ Households Periods Observations

Hourly 1.200 1.164 0.019 13.501 0.628 97 17, 520 1, 699, 440

Daily 1.200 0.789 0.082 6.013 0.651 97 730 70, 810

Weekly 1.198 0.739 0.105 5.175 0.713 97 106 10, 282

Monthly 1.197 0.712 0.169 4.296 0.654 97 24 2, 328

Notes: This table shows summary statistics for electricity consumption in the Pecan Street data. All values are in
average kW of electricity consumed. The raw data are at the hourly level, in kWh. To construct the daily, weekly,
and monthly dataset, we average hourly kWh consumption data across the relevant time period. We compute γ̂ by
estimating Equation (6) on residuals from this dataset. In doing so, we cluster standard errors at the household
level. All are statistically significant at less than the 1% level.

Figure B1: Pecan Street data – Varying levels of aggregation
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Notes: This figure shows the time series of Pecan Street electricity consumption data for one randomly selected
household in our sample. Each panel displays the data at a different level of aggregation. The data are in units of
average kW. These data are highly serially correlated: when we estimate an AR(1) model, Equation (6), on residuals
from these datasets, we recover the AR(1) parameters of 0.628, 0.651, 0.713, and 0.654 for the hourly, daily, weekly,
and monthly data, respectively.

37



Table B3: Pecan Street Simulation Parameters

Dataset J σ2
υ σ2

δ σ2
ω γ ρυ ρδ

Hourly 97 0.257 0.458 0.642 0.623 0.189 0.337
Daily 97 0.257 0.234 0.135 0.651 0.411 0.373
Weekly 97 0.256 0.211 0.083 0.713 0.465 0.384
Monthly 97 0.256 0.203 0.058 0.654 0.495 0.392

These values are estimated separately from each dataset used in the simulations.

In Appendix C.1, we present simulations analogous to Figures 2 and 3 in the main text, but
using the Bloom et al. (2015) and Pecan Street datasets. The former vary m and r separately; the
latter replace fixed effects with dummies in the DD estimating equations in Step 4 of Appendix B.2.

B.4 Analytic power calculations

Figure 9 displays the results of analytic power calculations performed using the daily Pecan Street
dataset. In other words, we calculate the number of units needed by applying the McKenzie and SCR
power calculation formulas, using the data to estimate σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ . For each experiment of
length m = r ∈ {1, . . . , 12}, we estimate the average values of σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ over all possible
panels of that length.15 We assign half of the households to treatment (P = 0.5), allow for a 5
percent Type I error rate (α = 0.05), and calibrate to 80 percent power (κ = 0.80). Finally, we
rearrange Equations (3) and (D2) to calculate the number of households required to detect MDEs
that range from 0 to 15 percent of baseline electricity consumption.

Figure 10 also shows the results of analytic power calculations using the SCR formula. However,
instead of parameterizing Equation (2) using estimates from a dataset, we now normalize σ2

ω = 1

and assume an AR(1) correlation structure with γ ∈ {0, 0.3, 0.5, 0.7, 0.9}. For panel lengths m =

r ∈ {1, . . . , 100}, we analytically derive ψB, ψA, and ψX using the formulas from Equations (B1)–
(B3). In the left panel, we fix P = 0.5, α = 0.05, κ = 0.80, and J = 100, and use Equation (2)
to solve for MDE as a function of m = r and γ. In the right panel, we fix P = 0.5, α = 0.05,
κ = 0.80, and MDE = 1, and rearrange Equation (2) to solve for J as a function of m = r and γ.

15. We follow the algorithm outlined in Appendix D.1 below. For a given value of m = r, we consider each
(consecutive) subset S of the daily Pecan Street data with length 2r. We first residualize this subset of the data with
household and day fixed effects, and we calculate σ2

ω̂,S from these residuals. We then assign the first m residuals
for each household to the pre-treatment period and the remaining r residuals to the post-treatment period, thereby
estimating ψBω̂,S , ψ

A
ω̂,S , and ψXω̂,S (by averaging all pairwise covariances for subset S). Averaging σ2

ω̂,S , ψ
B
ω̂,S , ψ

A
ω̂,S ,

and ψXω̂,S over all subsets S, we arrive at estimates for σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψ

X
ω̂ .
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C Additional results

C.1 Sensitivities with real data

In this section, we present extensions of our simulation results from the main text. In Figure C1,
we present an analogous version of Figure 2 using real data from Bloom et al. (2015) and Pecan
Street. Each panel conducts simulations that are identical to Figures 6 and 8, varying m and r

separately (for m ∈ {1, . . . , 6} and r ∈ {1, . . . , 6}). As with the simulated data, we find that the
McKenzie formula typically yields over-powered experiments with either one pre-treatment or one
post-treatment period, while the SCR formula yields the desired 80 percent power in all cases.

Figure C1: Power in short panels – Real data
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Notes: This figure combines Figures 6 and 8 from the main text with the short panels of Figure 2. Simulations
using the Bloom et al. (2015) and Pecan Street datasets follow the same algorithm describe in Appendix B.2, but
separately varying the number of pre-treatment and post-treatment periods (for m ∈ {1, . . . , 6} and r ∈ {1, . . . , 6}).
For nearly all cases with either one pre-treatment period or one post-treatment period, the McKenzie formula yields
over-powered experiments. Hence, experiments that follow the traditional “one baseline, one follow-up” structure will
likely be overpowered, having calibrated an excessively large sample size. As the number of pre-treatment periods
increases, power decreases monotonically for each dataset. By contrast, the SCR formula is properly powered in all
cases.
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Next, Figure C2 presents an analogous version of Figure 3 from the main text, using Bloom
et al. (2015) and Pecan Street datasets. In the left panel, we replace unit fixed effects in the DD
estimating equation with a Treati dummy. In the middle panel, we replace time fixed effects in the
DD estimating equation with a Postt dummy. In the right panel, we replace both unit and time
fixed effects with Treati + Postt dummies. These resulting rejection rates are virtually identical to
Figures 6 and 8, demonstrating that these alternative DD estimating equations all yield identical
ex post power in real data (just as they do with simulated data in Figure 3).

Figure C2: Sensitivities to estimating equation – Real data
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Notes: This figure replicates Figure 3 from the main text, using the Bloom et al. (2015) and Pecan Street datasets.
The left panel replaces unit fixed effects in the DD estimating equation with a Treati dummy. The middle panel
replaces time fixed effects in the DD estimating equation with a Postt dummy. The right panel replaces both unit
and time fixed effects with Treati + Postt dummies. As with simulated data, DD power calculations using real data
are incorrectly powered using the McKenzie formula but correctly powered using our SCR formula.

C.2 Tradeoffs between MDE and time periods: ANCOVA

Figure 10 demonstrates that for DD experiments with strong serial correlation, it is possible to
increase the MDE (or necessary sample size) by adding pre/post-treatment periods. This follows
from Equation (4), which shows that serial correlation can either increase or decrease the variance
of the DD estimator. Because DD identifies the treatment effect using differences between pre- and
post-treatment outcomes, stronger serial correlation makes differences caused by treatment easier
to detect. At the same time, stronger serial correlation means each additional time period provides
less information. This intuition also holds for the ANCOVA estimator, as shown by Figure C3.
This replicates Figure 10 using the SCR ANCOVA power calculation formula (Equation (11)). As
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with DD, we find that adding pre/post periods to an ANCOVA experiment can decrease power, for
short panels with strong serial correlation.16

Figure C3: Analytical power calculations with increasing panel length – ANCOVA
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Notes: This figure replicates Figure 10 from the main text, using the SCR ANCOVA formula (Equation (11)) instead
of the SCR DD formula (Equation (2)). The left panel shows the tradeoff between the minimum detectable effect
(MDE) and the number of time periods (m = r) for varying levels of AR(1) serial correlation, holding the number
of units fixed at J = 100 and normalizing MDE by the standard deviation of ωit. At low levels of γ, MDE declines
monotonically in m and r. However, for higher γ, increasing m and r actually increases MDE when m = r is
relatively small, and decreases MDE when m = r is relatively large. The right panel shows the relationship between
the number of units (J) and number of pre/post periods (m = r) required to detect an MDE equal to one standard
deviation of ωit. Similarly, for low levels of serial correlation, the trade-off between J and m = r is monotonic.
However, as γ increases, adding periods in short panels necessitates a greater number of units to achieve the same
MDE, while adding periods in longer panels means that fewer units are required to achieve the same MDE.

C.3 Cluster randomization in panel RCTs

We use simulation-based power calculations to compare panel RCTs with unit-level randomization
and cluster-level randomization. While cluster randomization remains outside the scope of this
paper’s analytical framework, it is a common approach for RCTs in development economics. Ran-
domizing at the cluster (e.g. village) level, rather than the unit (e.g. household) level can be less
expensive, simplify the logistics of administering treatment, and eliminate concerns about treatment
interference (e.g. spillovers from treated to control households within a village). Here, we investi-
gate how cluster-level randomization affects statistical power (relative to unit-level randomization),
using the program pc_simulate from our Stata package pcpanel.17

We compare unit-level vs. cluster-level randomization, using simulated panel datasets based
on the following DGP:

16. The SCR ANCOVA formula has an additional degree of freedom: we can vary σ2
υ and σ2

ω separately. Here,
we set a relatively small σ2

υ (equal to 0.1σ2
ω), which causes ANCOVA to be relatively dissimilar to DD (the two

estimators converge as σ2
υ approaches infinity).

17. We do not incorporate treatment spillovers, since doing so in a simulation context would necessitate (essentially)
arbitrary assumptions on the strength and direction of treatment spillovers. Instead, we simulate RCTs with a 100
percent treatment intensity within treated clusters.
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Assumption C1 (Group shock data generating process). The data are generated according to the
following model:

Yigt = β + τDigt + ζg + υi + δt + ωigt (C1)

where Yigt is the outcome of interest for unit i in group g at time t; β is the expected outcome of
non-treated observations; τ is the treatment effect that is homogeneous across all units and all time
periods; Digt is a time-varying treatment indicator; ζg is a group-specific disturbance distributed i.i.d.
N (0, σ2

ζ ); υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ); δt is a time-specific disturbance

distributed i.i.d. N (0, σ2
δ ); and ωigt is an idiosyncratic error term with variance σ2

ω.

We simulate 3 datasets, each containing 50 groups g of 10 units each, where each group
is defined by a separate realization of ζg.18 We vary the relative strength of group-specific shocks
while holding constant total cross-sectional variation—that is, we vary σ2

ζ/(σ2
ζ + σ2

υ) such that groups
contribute 25, 50, of 75 percent of the total cross-sectional variation, while holding σ2

ζ + σ2
υ fixed.

For all datasets, we incorporate non-constant serial correlation where ωigt follows an AR(1) process
with γ = 0.5.19

Using pc_simulate, we conduct 6 sets of simulation-based power calculations, for varying
panel lengths (m = r ∈ {1, 2, 3, 4, 5, 6}), assuming an estimating equation with unit fixed effects
(which subsume group fixed effects) and time fixed effects. While all 6 sets of power calculations
hold the sample size fixed at 500 units i, 3 assign treatment at the unit level (ignoring cross-sectional
group correlations) and 3 assign treatment at the group level (with 100 percent treatment intensity
within treated groups). We hold the proportion of units in treatment and minimum detectable
effect constant across all simulations (P = 0.5, MDE = 1.4). All simulations cluster standard
errors at the level of treatment (either unit or group), and calculate average rejection rates over
5,000 iterations to compute power. Using this data generating process, we expect power to be the
same for unit-level randomization and group-level randomization, because the unit fixed effects fully
control for the group shock.

Next, we repeat this entire procedure with a data generating process including group-by-time
shocks:

Assumption C2 (Group-by-time shock data generating process). The data are generated according
to the following model:

Yigt = β + τDigt + ζg + υi + δt + χgt + ωigt (C2)

where Yigt is the outcome of interest for unit i in group g at time t; β is the expected outcome of
non-treated observations; τ is the treatment effect that is homogeneous across all units and all time
periods; Digt is a time-varying treatment indicator; ζg is a group-specific disturbance distributed i.i.d.
N (0, σ2

ζ ); υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ); δt is a time-specific disturbance

distributed i.i.d. N (0, σ2
δ ); χgt is a group-by-time specific disturbance distributed i.i.id. N (0, σ2

χ);
and ωigt is an idiosyncratic error term with variance σ2

ω.

For this set of simulations, we set all of the parameters identically to the above, and add
σ2
χ = 50. In the pc_simulate stage, we set MDE = 1.7, in order to ensure that our power

18. We use 50 groups in order to have enough clusters to apply the CRVE.
19. We set the following specific parameters: σ2

ζ ∈ {20, 40, 60}, σ2
υ ∈ {60, 40, 20}, σ2

ζ + σ2
υ = 80, σ2

δ = 10, σ2
ω = 150.

All parameter values are arbitrary, besides imposing constant σ2
ζ+σ

2
υ (which facilitates comparisons across datasets).
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estimates are not truncated by the zero lower bound. Importantly, we still estimate an ex post
model with unit and time fixed effects, which intentionally misspecifies Assumption C2 by omitting
group-by-time fixed effects. Due to this misspecification (which mimics a real-world scenario in
which a researcher does not know the true DGP), we now expect that power for the unit-level
randomization will be greater than that of the group-level randomization, since the group-by-time
shocks are not absorbed by the fixed effects in the model.

Figure C4 presents the results of this exercise. Each plot reports an “apples-to-apples” com-
parison for power calculations on the same dataset, randomized at the unit vs. group level. Moving
top to bottom, the relative strength of group-specific shocks increases from 25 percent (“weak”) to
50 percent (“medium”) to 75 percent (“strong”). In the panels on the left, the data generating pro-
cess includes group shocks only (Assumption C1). In the panels on the right, the data generating
process also includes group-by-time shocks (Assumption C2).20

For all 3 datasets that only have group shocks, randomizing at the group level yields statistical
power that is indistinguishable from that of the same experiment randomized at the unit level. The
intuition behind this equivalence lies in how panel estimators control for unit-specific baselines:
DD identifies off of (post − pre) differences at the unit level, which controls for the remaining
within-group variation not exploited when randomizing at the group level. By contrast, when we
repeat the same exercise for cross-sectional RCTs, we finds substantially lower power for group-level
randomization (relative to unit-level randomization). This is because the cross-sectional treatment
effect estimator does not control for within-group variation, meaning that the treatment indicator
leaves more unexplained variation when randomized at the group level.

For all 3 datasets that have group-by-time shocks, randomizing at the group level yields sta-
tistical power that is substantially lower than that of the same experiment randomized at the unit
level. This is because the misspecified model does not account for group-by-time variation from
χgt. Just as non-constant unit-specific serial correlation affects power in panel data under unit-level
randomization, non-constant group-specific correlation affects power in panel data under group-
level randomization. Extending our analytical framework to include panel RCTs with arbitrary
group shocks is beyond the scope of this paper. Given that group shocks can impact power in
simulated data, and given that real-world data likely exhibit more complex group-specific correla-
tion structures, we encourage researchers interested in cluster randomized panel RCTs to conduct
simulation-based power calculations.

20. Technically, introducing χgt in Assumption C2 without changing σ2
ζ and σ2

υ lowers the composite share of
group-specific shocks below {25, 50, 75} percent in the panels on the right.
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Figure C4: Power calculations by simulation - Cluster randomization
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Notes: This figure reports results from simulation-based power calculations, comparing unit-level randomization vs.
group-level (cluster) randomization. Each panel reports power for DD experiments using a single simulated dataset,
varying the number of pre- and post-treatment periods (m = r = {1, 2, 3, 4, 5, 6}). All datasets have 500 units,
divided into 50 groups of 10 units each. Moving from top to bottom, datasets have either weak, medium, or strong
within-group correlations (either 25, 50, or 75 percent of total cross-sectional variation, respectively). When cluster
randomizing, all treated groups have a treatment intensity of 100 percent. All simulations calculate average rejection
rates over 5,000 iterations. For the left column, the data generating process includes unit-, time-, and group-specific
shocks (Assumption C1), and theMDE is 1.4. For the right column, the data generating process adds group-by-time
shocks (Assumption C2), and the ME is 1.7. See text for further details.

C.4 Non-constant correlation: McKenzie (2012) empirical approach

The McKenzie results in the main text apply McKenzie’s theoretical formula, which assumes serial
correlation is constant across all time periods and is the same for all units. McKenzie (2012, p. 215)
acknowledges that this assumption might be unrealistic and suggests an alternative for empirical
settings with non-constant serial correlation. He recommends that practitioners use the average
autocorrelation across all off-diagonal elements of the correlation matrix. For example, if the error
term follows an AR(1) process such that adjacent periods have autocorrelation of 0.8 with geometric
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decay in time, then for a panel RCT with 5 periods, McKenzie recommends calculating:

ρt =
0.8 + 0.82 + 0.83 + 0.84

4 + 3 + 2 + 1
= 0.655 (C3)

We run an additional set of simulations in order to compare this method to our SCR method. We
adapt the procedures we use to generate Figure 6 (outlined in Appendix B.2) as follows:

Step 1: We generate a panel dataset with 500 units and 10,000 time periods, based on the data
generating process21:

Yit = β + υi + δt + ωit

We draw independent values of υi from the distribution N(µυ, σ
2
υ) but set σ2

δ = 0 to assume deter-
ministic time effects. This aligns with the assumptions of McKenzie (2012) who likewise assumes
away stochastic time shocks, and represents a special case of our data generating process in As-
sumption 1. We simulate an AR(1) process to create the idiosyncratic error ωit = γωi(t−1) + ξit, for
AR(1) parameters γ ∈ {0, 0.3, 0.5, 0.7, 0.9}, and a white noise term ξit drawn from the distribution
N(0, σ2

ξ ), where σ2
ξ = σ2

ω(1− γ2).

Step 2: For varying numbers of pre- (m) and post-treatment periods (r), we calculate σ2
ε as the

average variance of Yit across all subset panels of length m + r. For example, if m + r = 4, we
calculate

σ2
ε = mean

{
Var (Yit | 1 ≤ t ≤ 4) , Var (Yit | 2 ≤ t ≤ 5) , Var (Yit | 3 ≤ t ≤ 6) , . . .

}
. (C4)

Each simulated dataset contains many subsets of m+ r consecutive periods, and averaging Var(Yit)

across all such subsets reduces sampling variation in σ2
ε.

Step 3: We calculate ρ as the average pairwise within-unit correlation, across all off-diagonal
elements of the correlation matrix (as in Equation (C3)). Following Step 2, we average ρ across all
subset panels of length m+ r. For example, if m = r = 4, we calculate

ρ = mean
{

(ρ1 | 1 ≤ t ≤ 4) , (ρ2 | 2 ≤ t ≤ 5) , (ρ3 | 3 ≤ t ≤ 6) , . . .
}
, (C5)

where

ρt =
2

(m+ r)(m+ r + 1)

t+m+r−1∑
s=t

t+m+r∑
q=s+1

Corr(Yis, Yiq) . (C6)

As with σ2
ε, averaging ρt across all m+ r subsets reduces sampling variation in ρ.

21. Long panels minimize sampling error when subsetting consecutive time periods in Steps 2 and 3 below.
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Step 4: Using σ2
ε and ρt, we calculate an MDE using McKenzie’s power calculation formula for

the difference-in-differences estimator:

τMcK-Avg =
(
tJ1−κ + tJα/2

)√(
1

P (1−P )J

) (
m+r
mr

)
σ2
ε(1− ρ) (C7)

Step 5: We simulate 10,000 experiments, each using a randomly selected subset ofm+r consecutive
periods, randomly assigning P = 0.5 of J = 500 units into treament, and applying the treatment
effect τMcK-Avg. For each simulated experiment, we estimate τ̂McK-Avg with CRVE standard erorrs
clustered at the unit level.

We also repeat Steps 2–5 above using both the Bloom et al. (2015) dataset and the Pecan
Street datasets (hourly, daily, weekly, and monthly) in order to test McKenzie’s approach on real-
world data as well. Figure C5 reports realized power for all three sets of simulations. Using both
simulated and real data, the above method yields underpowered experiments in all cases except
two-period panels with m = r = 1. In this special case, calculating the average autocorrelation
yields results equivalent to our SCR method.22

Figure C5: Power calculations estimating average autocorrelation
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Notes: This figure reproduces Figures 1, 6, and 8 from the main text, but uses McKenzie (2012)’s recommended
method of calculating average autocorrelation for panels of length m+ r (which is described above) to estimate the
relevant parameters. Dashed lines report realized power from simulations with MDE calibrated using Equation
(C7); solid lines report realized power from simulations using our preferred SCR method. The left panel reports
results from simulated datasets with AR(1) errors; the central panel reports results using real data from Bloom
et al. (2015); and the right panel reports results using real data from Pecan Street (at varying levels of aggregation).
In both simulated and real data, McKenzie’s method of averaging autocorrelation for experiments with more than
two periods yields underpowered experiments. However, McKenzie’s method does achieve the desired 80 percent
power when m = r = 1.

22. When we fit an AR(1) function to each of these datasets, we recover AR(1) parameters of 0.233 (Bloom et
al. (2015)), 0.623 (Pecan Street hourly), 0.651 (Pecan Street daily), 0.713 (Pecan Street weekly), and 0.654 (Pecan
Street monthly). Hence, this finding holds for real datasets with both strong and weak non-constant serial correlation.
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D A practical guide to power calculations

In this section, we address several practical considerations when conducting power calculations.
Most of these challenges involve variance and covariance parameters that must be either estimated or
assumed in order to operationalize a power calculation formula. We also outline steps for estimating
power calculations via simulation, which is our preferred method.

D.1 Analytical power calculations

The most challenging aspect of analytical power calculations is parameterizing the variance and
(if applicable) covariance terms that characterize the data’s error structure. In the absence of a
representative pre-existing dataset, researchers may struggle to even guess the order of magnitude
of the error variance, let alone generate a precise estimate of this key parameter. Our theoretical
results demonstrate that power for panel RCTs also hinges on the error covariance structure.

As in the paper, we denote the true parameters governing the data generating process as
σ2
ω, ψB, ψA, and ψX . We define σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ to be the parameters that characterize
the residuals (rather than real errors). If researchers have access to a representative dataset ex
ante, they can directly estimate σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ , and use these values to parameterize power
calculations. Appendix E.2 proves that researchers can recover the true MDE using these residual-
based parameters. Nevertheless, this process is not trivial, for several reasons.

First, while the idiosyncratic variance σ2
ω is a population parameter, the three ψ parameters

are functions of both the full covariance structure of the population and the specific values of m and
r.23 For a given population and serially correlated outcome variable, experiments with small m and
r are likely to exhibit larger ψB, ψA, and ψX parameters than experiments with large m and r. This
is because as the number of pre-treatment (post-treatment) periods increases, ψB (ψA) averages
across covariances of time periods that are farther apart. For example, compare ψB with m = 3

vs. m = 30, for an outcome with a covariance structure where adjacent periods are more positively
correlated than distant periods. For m = 3, ψB averages m(m − 1)/2 = 3 pairwise covariances, 2
of which are for adjacent periods; for m = 30, ψB averages m(m− 1)/2 = 435 pairwise covariances,
only 29 of which are for adjacent periods. Because ψX expands with both m and r, it attenuates
relatively faster than ψB and ψA as panel length grows.

Second, estimating Cov(ω̂it, ω̂is) using residuals from an existing dataset is fundamentally
impossible, given that each dataset contains only one realization of (Yit, Yis). However, researchers
may treat the (I × 1) vectors of residuals (ω̂t, ω̂s) as I draws from the distributions of residuals
for periods (t,s) and estimate these distributions’ covariance. The resulting estimates, which we
denote σ̃2

ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ , are unbiased estimators of σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ .24

Third, if the representative dataset contains a long time series, the residual variance and
covariance structure may change throughout the time series. This means if researchers estimate σ̃2

ω̂,
ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ by averaging across the full time series, these estimated parameters may be less
representative than if they were estimated from just the end of the time series.25 Since the residual

23. Deriving the residual-based parameters σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψXω̂ introduces an additional complexity, as these

residual-based parameters are defined by the number of pre-treatment periods (m), post-treatment periods (r) and
cross-sectional units (I) used to produce these residuals.
24. Appendix E.1 proves that E[σ̃2

ω̂ | X] = σ2
ω̂, E[ψ̃

B
ω̂ | X] = ψBω̂ , E[ψ̃

A
ω̂ | X] = ψAω̂ , and E[ψ̃Xω̂ | X] = ψXω̂ .

25. Of course, if the researcher expects a certain subset of her data is likely more representative, it would be wise
to perform power calculations on this subset alone.
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variance is not a function of panel length, it may be tempting to estimate σ̃2
ω̂ using a long vector

of residuals, while estimating ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ using only residuals within an (m+ r)-period range.
However, in a time series where the variance-covariance structure is changing, this would produce
ψ̃ω̂ estimates that are inconsistent with σ̃2

ω̂.
Fourth, while σ̃2

ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ are unbiased estimators of σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ , they are

not unbiased estimators of σ2
ω, ψB, ψA, and ψX . This is because the residuals from the regression

Yit = υi+δt+ωit will have a variance less than the parameter σ2
ω from the data generating process, by

the properties of linear projection. In addition, when they are estimated using residuals from shorter
panels, σ̃2

ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ have a more severe bias, but these estimates converge to their true
values (i.e., σ2

ω, ψB, ψA, and ψX) as the panel length used to estimate these residuals increases.26

Importantly, for the purposes of power calculations using the SCR formula, we can recover an
unbiased estimate of the minimum detectable effect with the true parameters using our parameter
estimates. That is, MDEest(σ2

ω̂, ψ
B
ω̂ , ψ

A
ω̂ , ψ

X
ω̂ ) = MDE(σ2

ω, ψ
B, ψA, ψX). As Appendix E.1 shows,

E[σ̃2
ω̂ | X] = σ2

ω̂, E[ψ̃Bω̂ | X] = ψBω̂ , E[ψ̃Aω̂ | X] = ψAω̂ , and E[ψ̃Xω̂ | X] = ψXω̂ . Combining these two
proofs suggests thatMDEest(E[σ̃2

ω̂ | X],E[ψ̃Bω̂ | X],E[ψ̃Aω̂ | X],E[ψ̃Xω̂ | X]) = MDE(σ2
ω, ψ

B, ψA, ψX).
Therefore, for values of σ̃2

ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ estimated from a pre-existing dataset with I cross-
sectional units:

MDEest =
(
tJ1−κ + tJα/2

){( 1

P (1− P )J

)[(
m+ r

mr

)
kσ E

[
σ̃2
ω̂ | X

]
+

(
m− 1

m

)
kB E

[
ψ̃Bω̂ | X

]
+

(
r − 1

r

)
kA E

[
ψ̃Aω̂ | X

]
− 2kX E

[
ψ̃Xω̂ | X

]]}1/2

(D1)

=
(
tJ1−κ + tJα/2

){( 1

P (1− P )J

)[(
m+ r

mr

)
kσσ

2
ω̂ +

(
m− 1

m

)
kBψ

B
ω̂

+

(
r − 1

r

)
kAψ

A
ω̂ − 2kXψ

X
ω̂

]}1/2

(D2)

where

kσ =
I(m+ r)2

2(I − 1)mr

kB =
I(m+ r)2

2(I − 1)r2

kA =
I(m+ r)2

2(I − 1)m2

kX = 0

and the expectation of parameters are taken over subsets of the dataset, as described in the next
point. Appendix E.2 proves that Equations (D1) and (D2) are equivalent, and derives the above
expressions for the coefficients kσ, kB, kA, and kX .

26. The estimated residuals include both the true idiosyncratic error, ωit, and (attenuating) fixed-effect estimation
error. Although both sets of fixed effects, υi and δt, are unbiased and consistent in T and I, respectively, error in
estimating these parameters will always yield residuals that are smaller on average, biasing the estimation of these
parameters. The estimation error and resulting biases decrease in T and I.
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Fifth, because the estimated variance-covariance terms enter the power calculation under a
radical, researchers must be conscious of Jensen’s Inequality. If the researcher is estimating σ2

ω̂, ψBω̂ ,
ψAω̂ , and ψXω̂ by taking the expectation of σ̃2

ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ across a range of (m + r)-period
subsets, then the correct calculation is:

MDEest
(

E
[
σ̃2
ω̂ | X

]
,E
[
ψ̃Bω̂ | X

]
,E
[
ψ̃Aω̂ | X

]
,E
[
ψ̃Xω̂ | X

])
, not E

[
MDEest

(
σ̃2
ω̂, ψ̃

B
ω̂ , ψ̃

A
ω̂ , ψ̃

X
ω̂

)
| X
]
.

Similarly, if Equation (2) is rearranged as a function of κ, it becomes convex in the variance-
covariance parameters, and the correct calculation is:

κ
(

E
[
σ̃2
ω̂ | X

]
,E
[
ψ̃Bω̂ | X

]
,E
[
ψ̃Aω̂ | X

]
,E
[
ψ̃Xω̂ | X

])
, not E

[
κ
(
σ̃2
ω̂, ψ̃

B
ω̂ , ψ̃

A
ω̂ , ψ̃

X
ω̂

)
| X
]
.

When solving for sample size J , Equation (2) becomes linear in variance-covariance parameters,
meaning that Jensen’s Inequality does not affect the estimate of J

(
σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , ψ

X
ω̂

)
.

In light of each of these issues, we recommend the following algorithm for estimating theMDE

using a pre-existing panel dataset (implemented by our Stata program pc_dd_covar):

1. Determine all feasible ranges of experiments with (m + r) periods, given the number of time
periods in the pre-existing dataset. For example, if this dataset contains 100 time periods
indexed t = {1, . . . , 100}, and m = 5 and r = 6, then there are 90 feasible ranges for an
experiment with (m+ r) = 11 periods (i.e., beginning in periods t = {1, . . . , 90}).

2. For each feasible range S:

(a) Regress the outcome variable on unit and time-period fixed effects, Yit = υi + δt + ωit,
and store the residuals. (This regression includes all I available cross-sectional units, but
only time periods with the specific range S.27)

(b) Calculate the variance of the stored residuals, and save as σ̃2
ω̂,S.

(c) For each pair of pre-treatment periods (i.e., the first m periods in range S), calculate
the covariance between these periods’ residuals. Take an unweighted average of these
m(m− 1)/2 covariances, and save as ψ̃Bω̂,S.
For example, if m = 4, r = 2, and range S begins in period t = 1, sum Cov(ω1,ω2),
Cov(ω1,ω3), Cov(ω1,ω4), Cov(ω2,ω3), Cov(ω2,ω4), and Cov(ω3,ω4), and divide
by m(m− 1)/2 = 6.

(d) For each pair of post-treatment periods (i.e., the last r periods in range S), calculate
the covariance between these periods’ residuals. Take an unweighted average of these
r(r − 1)/2 covariances, and save as ψ̃Aω̂,S.
For example, if m = 4, r = 2, and range S begins in period t = 1, ψ̃Aω̂,S is the average of
a single post-period covariance, Cov(ω5,ω6).

(e) For each pair of pre- and post-treatment periods (i.e. the first m and the last r periods in
range S), calculate the covariance between these periods’ residuals. Take an unweighted
average of these mr covariances, and save as ψ̃Xω̂,S.

27. This bears no relationship to the sample size J units to be included in the power calculation. Assuming that
all I units in the pre-existing dataset represent the population to be included in the randomization, estimating the
variance and covariances using all available units will provide the best estimates of σ̃2

ω̂, ψ̃
B
ω̂ , ψ̃

A
ω̂ , and ψ̃Xω̂ (by the

Weak Law of Large Numbers).
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For example, if m = 4, r = 2, and range S begins in period t = 1, sum Cov(ω1,ω5),
Cov(ω1,ω6), Cov(ω2,ω5), Cov(ω2,ω6), Cov(ω3,ω5), Cov(ω3,ω6), Cov(ω4,ω5),
and Cov(ω4,ω6), and divide by mr = 8.

3. Calculate the average of σ̃2
ω̂,S, ψ̃Bω̂,S, ψ̃Aω̂,S, and ψ̃Xω̂,S across all ranges S, deflating σ̃2

ω̂,S by IT−1
IT

,
and ψ̃Bω̂,S, ψ̃Aω̂,S, and ψ̃Xω̂,S by I−1

I
. These averages are equal in expectation to σ2

ω̂, ψBω̂ , ψAω̂ , and
ψXω̂ .

4. Plug these values into Equation (D2) to produce MDEest.

Figure D1 highlights the difference between true and estimated variance-covariance parameters
in AR(1) data. In particular, we show true parameter values of σ2

ω, ψB, ψA, and ψX alongside
estimated values of these same parameters, calculated according to the procedure outlined above.
As expected, σ2

ω̂ is biased downwards relative to σ2
ω, but converges towards this value as the panel

length increases. This convergence is slower for larger AR(1) parameters, as highly serially correlated
errors make it harder to identify the unit fixed effects. Similarly, while the true ψX is positive
across all panel lengths, ψXω̂ is negative everywhere, and ψB and ψA also differ from their estimated
counterparts. Despite the differences between the true parameters and their estimated values,
Appendix E.2 proves that we can recover the MDE based on true underlying parameters using
residual-based parameters. In conjunction with the fact that we can estimate the residual-based
parameters from real data, this confirms that researchers can use estimated parameters to calibrate
power calculations.

Figure D2 uses the Bloom et al. (2015) dataset to present an analogous comparison between
actual vs. estimated σ2

ω, ψB, ψA, and ψX parameters. Here, as in Figure D1, the dotted lines
estimate σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ using the above algorithm. However, unlike with simulated AR(1)
datasets, the “true” parameters of the Bloom et al. (2015) data generating process are unknown. We
estimate these “true” values using residuals from the full 48-period time series, which minimizes the
fixed effect estimation error that biases σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ in short panels.28 This reveals a very
similar pattern: “subsetted” σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ estimates are systematically biased downward,
but converge to their “full time-series” (i.e. closer to “true”) values as panel length increases. As
in Figure D1, we show that both sets of estimated variance-covariance parameters yield (virtually)
identical MDEs, as long as Equation (2) uses estimated parameters that are internally consistent.

Figure D3 replicates Figure D2 for all four Pecan Street datasets. We see that while the
estimated values σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ differ across different levels of aggregation, they follow the
same pattern. The subsetted estimates are biased downward, but appear to converge to the full
time series estimates (i.e. closer to truth) as panel length increases. In all four cases, the MDE

is (virtually) identical when calculated using either all full time series estimates or all subsetted
estimates.

Two additional nuances that arise during analytical power calculations are worth noting. First,
the critical values td1−κ and tdα/2 should be drawn from an inverse t-distribution with the same
degrees of freedom as the ex post regression model. This means that if researchers plan to use
CRVE standard errors clustered by experimental unit, they should draw these critical values from

28. These σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψ

X
ω̂ estimates (represented by solid lines in Figure D2) result from the same algorithm as

detailed above, except omitting Step 2(a) and estimating a single 48-period set of residuals in Step 1. This provides
the closest possible approximation to the “true” variance-covariance structure of these data, and hence the most
apples-to-apples comparison to Figure D1.

50



Figure D1: Actual vs. estimated parameters – AR(1) data
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Notes: This figure displays the difference between the true residual variance (σ2
ω), average pre (post)-period covariance

(ψB,A), and average cross-period covariance (ψX), and their estimated counterparts over varying panel lengths. It
also shows the resulting minimum detectable effect (MDE), calculated using the SCR formula (Equation (2)). These
parameters and estimates come from a simulated datasets with AR(1) errors, generated identically to those presented
in Figure 1. True parameters are displayed with solid lines (with ψ terms derived analytical using Equations (B1)–
(B3)), and estimates are displayed with dashed lines (estimated according to the algorithm described above). As
expected, the true σ2

ω is constant across panel lengths, while ψB,A declines with the number of pre (post) periods,
and ψX declines more quickly than ψB,A as the panel length increases. The higher the AR(1) parameter, the larger
are the ψ terms. The estimated parameters behave quite differently from their true counterparts. In short panels, σ2

ω̂

is biased downwards, because the regression model’s individual fixed effects are inconsistently estimated, and capture
more of the true error variance than they should explain in expectation. This has the effect of reducing the estimated
covariances ψB,Aω̂ , which scale with σ2

ω̂. At the same time, ψXω̂ is mechanically negative, as the estimated fixed effects
yield residuals that are negatively correlated within individuals across pre/post-treatment time periods (and some
of the variation that should be captured by σ2

ω̂ is instead loaded on to the ψω̂ terms). As panel length increases, the
ψω̂ terms converge to the true ψ values. Estimated parameters result in the same MDEs as real parameters after
applying the correction factors in Equation (D2), as demonstrated by the top left panel.
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Figure D2: Estimated parameters – Bloom et al. (2015) data
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Notes: This figure shows two different methods for estimating variance parameters, applied to the Bloom et al. (2015)
data, and also depicts the resulting minimum detectable effect (MDE) resulting from both methods. The solid lines
plot parameters calculated by running a regression of the outcome variable on unit and time period fixed effects,
estimated on the entire time series of data, and then using the residuals from this regression to calculate σ2

ω̂, ψ
B
ω̂ ,

ψAω̂ , and ψXω̂ for the average panel of length m + r. We then plug these estimates into Equation (2) to calculate
the minimum detectable effect. The dashed lines show parameters estimated using the procedure described above,
where rather than use residuals from the full time series, we subset the dataset into shorter panels of length m+ r,
calculate the parameters using residuals only from this subset, and average across all possible subsets to arrive at
σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψXω̂ . We calculate the MDE by plugging these estimates into Equation (D2). Note that these

variance-covariance estimates converge as the panel length increases. Both procedures yield (virtually) identical
MDEs, even though the underlying parameter estimates differ substantially.
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Figure D3: Estimated parameters – Pecan Street data
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Notes: This figure shows two different methods for estimating variance parameters, applied to the Pecan Street data
at the four levels of aggregation presented in the main text, and also depicts the resulting minimum detectable effect
(MDE) resulting from both methods. Note that the y axis scale differs between the hourly data and the other three
datasets; this is because the degree of residual variation left in the hourly data after removing time and individual
fixed effects is much greater than in the other datasets. The solid lines show parameters calculated by running a
regression of the outcome variable on unit and time period fixed effects, estimated on the entire time series of data,
and then using the residuals from this regression to calculate σ2

ω̂, ψ
B
ω̂ , ψ

A
ω̂ , and ψ

X
ω̂ for the average panel of length

m + r. We then plug these estimates into Equation (2) to calculate the minimum detectable effect. By contrast,
the dashed lines show parameters estimated using the procedure described above, where rather than use residuals
from the full time series, we subset the dataset into shorter panels of length m + r, calculate the parameters using
residuals only from this subset, and average across all possible subsets to arrive at σ2

ω̂, ψ
B
ω̂ , ψ

A
ω̂ , and ψ

X
ω̂ . We calculate

the MDE by plugging these estimates into Equation (D2). Note that these variance-covariance estimates converge
as the panel length increases. Both procedures yield (virtually) identical MDEs, even though the two procedures’
method for estimating the underlying parameters differ substantially.
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an inverse t-distribution with J degrees of freedom. To be precise, these critical values should be
sensitive to changes in the number of unit/clusters J , although the t degrees of freedom has a very
small effect on MDE, relative to other parameters in Equation (2).29

Finally, in panel RCTs with CRVE standard errors clustered by unit, the proportion of units
treated P cannot be too large or too small. Our simulations have demonstrated that the Equation
(2) performs poorly if P < 0.1 or P > 0.9, because the CRVE requires a sufficient number of clusters
that are both treated and control.

D.2 Simulation-based power calculations

In cases where researchers have access to a representative pre-existing dataset, we recommend that
they perform power calculations via simulation. This obviates the need to estimate ex ante variance-
covariance parameters, and it ensures that ex ante power calculations assume the same experimental
design, regression model, and variance estimator expected to be used in ex post analysis. Our
accompanying Stata package facilitates simulation-based power calculations using the program
pc_simulate. This program implements the following algorithm:

1. Choose the following candidate parameters: sample size J , pre-treatment periodsm, and post-
treatment periods r, treatment ratio P , minimum detectable effect MDE, and significance
level α. Let Xit denote the outcome variable of interest in the pre-existing dataset.

2. Randomly select J units from the representative dataset, and randomly select a range of
(m + r) consecutive time periods. This will serve as a simulated experimental dataset, with
sample size J , m pre-treatment periods, and r post-treatment periods.

3. Randomly scramble a [J × 1] vector of PJ ones and (1 − P )J zeros, rounding PJ to the
nearest integer. Assign each of the J units to either treatment (D = 1) or control (D = 0),
based on the order of this scrambled vector.

4. Construct an experimental outcome variable Yit, where Yit = Xit +MDE for treated units in
post-treatment periods, and Yit = Xit otherwise.

5. Using this simulated experimental dataset and the simulated outcome variable Yit, implement
the exact regression specification and variance estimator to be used in ex post analysis. Record
whether this model rejects the null hypotheses of zero treatment effects with significance level
α (i.e. H0 : τ = 0).

6. Repeat Steps 2–5 many times, and calculate the rejection rate across all simulations. This is
the experiment’s statistical power as a function of J , m, r, P , MDE, and α.

7. Repeat Steps 1–6 for a range of MDEs and design parameters, increasing the number of
simulations after narrowing down this range of parameters to more precisely calibrate power.

This algorithm allows users to test alternative regression specifications and alternative stan-
dard error assumptions, without needing to formally derive a power calculation expression for each
model. If the pre-existing dataset contains fewer cross-sectional units than the desired sample size

29. The Stata program sampsi assumes a normal distribution, which is not appropriate for small samples.
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J , pc_simulate lets users simulate additional units by bootstrapping units with replacement from
the existing dataset. Unfortunately, if the pre-existing dataset contains fewer time periods than the
desired panel length (m+r), an analogous bootstrapping procedure would be much less straightfor-
ward (because unlike cross-sectional units, time periods are ordered and have a ordered covariance
structure that is not orthogonal to the treatment vector D).

This simulation-based algorithm can only calibrate statistical power κ. Rather than rely on
the critical value td1−κ, the algorithm simply estimates realized power as the proportion of simula-
tions where the treatment effect is statistically distinguishable from zero. (By contrast, users may
algebraically rearrange (or invert) an analytical power calculation formula to solve for any one of its
parameters.) Calibrating simulation-based power calculations for a parameter other than κ necessi-
tates a grid search over candidate parameter values, as described in Step 7 above. For example, to
calibrate sample size J by simulation, users may repeat Step 1–6 over a range of candidate J values,
narrowing this range (while simultaneously increasing the number of simulations) to calibrate to
the desired power.

D.3 Lack of (representative) pre-existing data

To perform accurate ex ante power calculations, researchers must either have access to data that
is representative (in expectation) of their future experimental data, or be able to parameterize an
analytical formula with accurate estimates of the variance and covariance of the error structure. We
recommend that simulation-based power calculations (as described above) in cases where researchers
have a representative pre-existing dataset with (i) data for the desired outcome (and relevant control
variables); (ii) at least as many unique cross-sectional units as the desired experimental sample size;
and (iii) a time series at least as long as the desired experimental panel length. Many candidate
experiments likely satisfy these criteria, such as when researchers partner with organizations that
maintain historical databases on the desired population of experimental subjects.

At the same time, researchers may lack access to representative data ex ante. This problem
is not unique to panel data, as even the simple cross-sectional power calculation formula (Equation
(A6)) hinges on (an estimate of) the variance σ2

ε . However, power calculations for panel RCT
designs require four variance-covariance parameters: σ2

ω, ψB, ψA, and ψX . While σ2
ω is fixed in the

population, the ψ (and ψω̂) terms are endogenous to the panel length of the experiment, which
underscores the importance of estimating ψBω̂ , ψAω̂ , and ψXω̂ from a representative time series.

In the absence of representative data, researchers may using analytical formulas in conjunction
with appropriate sensitivity analyses.30 Depending on the type of data that is available, approxi-
mating the parameters σ2

ω, ψB, ψA, and ψX may be possible. We consider four cases:

1. Too few units: If researchers have access to a representative pre-existing dataset with too few
cross-sectional units, they may still estimate σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ , and apply these values
to the (estimation-specific) analytic formula.31 These variance-covariance parameters do not
depend on sample size J in the SCR power calculation formula, and estimates of σ2

ω̂, ψBω̂ , ψAω̂ ,
and ψXω̂ derived from residuals are not sensitive in expectation to the number of panel units

30. An alternative is to either impose assumptions on some existing dataset or construct a simulated dataset, either
of which could be used to conduct power calculations by simulation. However, this process will be much more
computationally intensive than simply applying an analytical formula with appropriate parameter sensitivities.
31. Researchers using estimated parameters should apply Equation (D2) rather than Equation (2).
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J to be used in the experiment.32 Alternatively, we recommend that researchers bootstrap
units by sampling existing units with replacement, and use this expanded dataset (including
simulated units) to conduct power calculations by simulation, as described above.33

2. Too few time periods: If the pre-existing dataset contains too few time periods, researchers may
still estimate σ̃2

ω̂ using residuals from a regression with fewer than m+ r periods (because σ2
ω

does not depend on panel length). However, the ψ terms do depend on panel length, and they
cannot be estimated directly from a dataset with fewer than m+r periods. One strategy is to
simply estimate ψBω̂ , ψAω̂ , and ψXω̂ using the longest possible panel (i.e., all available time periods
in the pre-existing dataset), even if it is shorter thanm+r periods. The resulting ψω̂ estimates
are likely to be upper bounds (in absolute value) on the ψω̂ estimates for longer panels, because
as the panel length increases, the ψ terms incorporate more covariances between time periods
that are further apart (which tend to become less correlated in distance). Another strategy is
to attempt to extend the time series for each unit, analogous to the approach of bootstrapping
units. As a rule of thumb, researchers often approximate time series data as an AR(k) process
with k ≥ 3

√
T , where T is the full time series length. To extend short panels, researchers may

estimate this AR(k) process using (residuals from) the existing dataset, and then simulate
forward for each unit’s outcome realization. Neither of these strategies is perfect, and we
recommend conducting appropriate sensitivity analysis in either case.

3. No data, standard cross-sectional or DD model: In the complete absence of data, power
calculations will be challenging. At the very least, we recommend that researchers search for
estimates of the residual variance in the existing literature, noting that panel fixed effects
models are likely to yield lower residual variances than cross-sectional models with similar
outcome data. If this is not possible, researchers may iterate analytical power calculations
over a range of parameter choices. If researchers are able to guess a reasonable value of σ2

ω,
they my test a range of AR(1) parameters for plausible values of ψB,A,X . As a rule of thumb,
ψB,A,X are likely to be positive in the absence of a strong prior of negative serial correlation.
In absolute value, ψB,A,X should not exceed σ2

ω, and they should decrease monotonically in
panel length. To provide a sense of what plausible values of ψB, ψA, and ψX (and their
residual-based counterparts) may be, we plot estimates from a range of panel lengths using
simulated AR(1) data, the Bloom et al. (2015) data, and Pecan Street data, in Figures D1,
D2, and D3, respectively.

4. No data, other models: For more complicated RCT designs (or ANCOVA in the presence
of time shocks), analytical power calculation formulas might not align with the desired ex
post estimating equation. This would render our above Case 3 recommendation inactionable.
An alternative strategy (in the absence of data) is to simulate data based on a simple DGP,
incorporating AR(1) serial correlation into the idiosyncratic error term. Researchers can per-
form simulation-based power calculations using these simulated data, iterating over multiple
simulated datasets to test for sensitivity to DGP (and AR(1)) assumptions.

32. Estimates of σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψ

X
ω̂ are sensitive to the number of cross-sectional units I used to estimate ω̂it,

but this is not related to the sample size parameter J . In Equation (D2), the comparative static dψω̂/dJ = 0.
33. The bootstrap option in pc_simulate does exactly this, drawing units with replacement until reaching the

desire sample size.
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D.4 Stata package pcpanel

To facilitate user implementation of the methods described above, we have built an accompanying
Stata package pcpanel. This package contains three programs, which we introduce in Section 4.2
of the main text. We describe each function in detail below:

pc_dd_analytic

This program performs analytical power calculations using our SCR formula for difference-in-
differences (Equation (2)). Users may input any two of the options {mde (effect size MDE), n
(sample size J), power (κ)}, and the program will solve Equation (2) for the third option. Users
may also adjust four additional experimental design options: treatment ratio p (P ), number of
pre-treatment periods pre (m), number of post-treatment periods post (r), and false rejection
rate alpha (α). pc_dd_analytic parameterizes the variance (σ2

ω) and covariance (ψB, ψA, ψX) in
Equation (2) in one of two ways.

First, users may allow the subprogram pc_dd_covar to nonparametrically estimate the idiosyn-
cratic residual variance/covariance papers. To do this, they input the outcome variable of interest
from the dataset in memory (using option depvar), as well as variables that identify units and
time periods (using options i and t, respectively). This is our preferred means of parameterizing
Equation (2) in practice, using pre-existing data.

Second, users may manually input either an idiosyncratic residual variance (option variance
(σ2

ω)) or an idiosyncratic residual standard deviation (option sd (σω)). They may also incorporate
non-i.i.d. idiosyncratic errors in 1 of 3 ways: (1) input assumed AR(1) parameter(s) (option ar1
(γ)) which pc_dd_analytic uses to calculate average covariances (ψB, ψA, ψX); (2) input assumed
average covariances themselves (option avgcov); or (3) input assumed average correlations (option
avgcor), which the program multiplies by the variance to convert to covariances. Specifying var (or
sd) without specifying ar1, avgcov, or avgcor will cause pc_dd_analytic to default to assuming
ψB = ψA = ψX = 0.34 For users accustomed to sampsi, which accepts the composite residual
standard deviation and intracluster correlation (σε and ρ, in the notation of McKenzie (2012)), the
pc_dd_analytic option var combines these two terms into a single input (σ2

ω, in our notation)
where σ2

ω = σ2
ε(1− ρ).35

pc_dd_covar

This program nonparametrically estimates σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ from an existing dataset (i.e. the

dataset in memory), for a given number of pre-treatment and post-treatment periods. Users must
input the outcome variable in question, as well as the number or pre-treatment periods (option pre
(m)), post-treatment periods (option post (r)), unit identifier (option i) and time period identifier
(option t). Given these inputs, pc_dd_covar operationalizes the procedure outlined in Appendix
D.1. Most users will not need to directly apply this program, as it is designed to operate “under
the hood” of pc_dd_analytic.

34. Given that estimating ψB , ψA, ψX is nontrivial (see Appendix D.1), users should apply the options avgcov
and avgcor with caution.
35. In the absence of time shocks (i.e. σ2

δ = 0, as in McKenzie (2012)), this equality holds. However, if the data
generating process includes time shocks, then σ2

ω = σ2
ε(1 − ρυ − ρδ), where ρυ is the intracluster correlation within

units and ρδ is the intracluster correlation within time periods.
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pc_simulate

This program performs power calculations by simulation, following the algorthim in Appendix D.2.
it supports four types of RCTs:

• ONESHOT (one wave of post-treatment data)

• POST (multiple waves of post-treatment data)

• DD (pre-treatment and post-treatment data)

• ANCOVA (post-treatment data, conditioning on pre-treatment data)

Users may input six basic experimental design options: effect size mde (MDE), sample size n (J),
treatment ratio p (P ), number of pre-treatment periods pre (m), number of post-treatment periods
post (r), and false rejection rate alpha (α). Given these options, pc_simulate calculates the
average rejection rate (i.e. power (κ)) of the treatment effect estimator, across all simulations.

The program is sufficiently flexible to allow for linear controls (option controls), fixed effects
(options absorb, absorbfactor), regression weights (option weight) and standard errors (option
vce). Each of these options, when specified, is passed through the regression function reghdfe
in each simulation.36 Toggling the option bootstrap causes the program to sample J units with
replacement for each simulation, which facilitates power calculations with a greater number of units
than are present in the dataset in memory. If bootstrap is not toggled, each simulation samples J
units without replacement. Users may also restrict the range of time periods over which simulations
occur (option tstart), and the number of simulations for each set of parameters (option nsim).37

Instead of applying the CRVE, Bertrand, Duflo, and Mullainathan (2004) also recommend col-
lapsing panel datasets to a single pre-treatment and post-treatment observation. pc_simulate lets
users conduct power calculations on collapsed panel estimators, by toggling the option collapse.
For POST and ANCOVA models, each simulation collapses the estimating equation to a cross-sectional
model with one observation per unit (where the dependent variable is averaged within units across
all r time periods). For the DD model, each simulation collapses the estimating equation to a
two-period panel, with one pre-treatment and one post-treatment observation per unit (where the
dependent variable is averaged within units across all m or r time periods).

pc_simulate supports stratified randomization via the option stratify. When users specify
one or more categorical variables (e.g. stratify(gender race)), the program separately random-
izes P units within each gender-race cell. For stratified randomization, the option n governs the
number of units within each cell (as opposed to the total number of units in the full sample). The
program continues to estimate a single pooled average treatment effect. If researchers are interested
in heterogeneous treatment effects by cell, they can iterate pc_simulate separately for each strati-
fication cell—leaving stratify unspecified, and conditioning on stratification cells using the option
if (e.g. pc_simulate y if gender=="male" & race=="white", ...).

pc_simulate also supports cluster randomization via the option idcluster. When users spec-
ify a group identifier (e.g. idcluster(village_id)), the program randomizes at the group level,
where whole groups are randomly assigned to treatment/control. For cluster randomization, the

36. pc_simulate simulates regressions using the function reghdfe (http://scorreia.com/software/reghdfe/).
37. The program defaults users to 500 simulations. Increasing the number of simulations will improve accuracy at

the expense of runtime.
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option n governs the number of groups (e.g. villages), as opposed to the total number of individual
units (e.g. households). The program continues to estimate a single pooled average treatment effect
at the unit level. pc_simulate also supports two cluster randomization suboptions. The suboption
sizecluster governs the number of units sampled within each cluster; if not specified, the pro-
gram defaults to the size of each cluster in the existing dataset. The suboption pcluster governs
the intensity of treatment within treated clusters: (i) if pcluster is not specified, the program
defaults to a treatment intensity of 1 in all treated clusters (i.e. all units in treated clusters receive
treatment); (ii) if pcluster is specified with a single value (e.g. pcluster(0.5)), the program
randomly assigns treatment to this proportion (i.e. 50 percent) of units within each treated cluster
(all units in control clusters remain untreated); (iii) if pcluster is specified with multiple values
(e.g. pcluster(0.33 0.67 1)), the program varies the intensity of treatment in equal proportions
across treated clusters (i.e. one third of treated clusters receive pcluster(0.33), etc.).
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E Estimation-related proofs

In this section, we prove that researchers may calculate unbiased power calculations by estimating
the variance-covariance parameters from a real dataset, where the parameters governing the data
generating process is unknown.

E.1 Recovering estimated parameters

Here, we demonstrate that the procedure described in Appendix D.1 recovers unbiased estimates
of the variance and covariance parameters governing the residuals ω̂it from a regression of Yit on
unit and time fixed effects, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ (though these do not represent unbiased estimates
of the true parameters σ2

ω, ψB, ψA, and ψX). We denote our procedure for computing these pa-
rameters with a ∼. Note that throughout this section, we are considering I units in the sample
used to estimate ω̂it, which may be distinct from the sample size J units used in the ensuing power
calculations. Note also that because we are estimating the variance and covariance of a population
of residuals, we use the population variance/covariance estimators as opposed to the (unbiased)
sample variance/covariance estimators.38

In order to estimate the variance of the residuals, σ2
ω̂, we define:

σ̃2
ω̂ ≡

1

IT

I∑
i=1

r∑
t=−m+1

(
ω̂it − ω̂

)2

where ω̂ =
1

IT

I∑
i=1

r∑
t=−m+1

ω̂it = 0. Taking expectations of both sides:

E
[
σ̃2
ω̂ | X

]
=

1

IT

I∑
i=1

r∑
t=−m+1

E
[
ω̂2
it | X

]
= σ2

ω̂

To estimate ψBω̂ , ψAω̂ , and ψXω̂ , we define the [I × 1] vector of residuals for period t as ω̂t and
calculate the average covariance between any two vectors in the relevant range of time periods. For
the pre-period, we define:

ψ̃Bω̂ ≡
2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

(
ω̂it − ω̂t

) (
ω̂is − ω̂s

)
=

2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

(
ω̂itω̂is − ω̂itω̂s − ω̂isω̂t + ω̂tω̂s

)
38. This means that to calculate σ̃2

ω̂, we deflate the sample variance estimate by IT−1
IT , and to calculate the ψ̃ω̂

terms, we deflate the sample covariance estimates by I−1
I . This distinction is ultimately innocuous, and the following

derivations simply rely on a consistent decision to use either the population or sample variance/covariance estimators.
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where ω̂t =
1

I

I∑
i=1

ω̂it = 0. Taking expectations yields:

E
[
ψ̃Bω̂ | X

]
=

2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

E [ω̂itω̂is | X]

=
2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

Cov(ω̂it, ω̂is | X)

= ψBω̂

Similarly:

ψ̃Aω̂ ≡
2

Ir(r − 1)

r−1∑
t=1

r∑
s=t+1

I∑
i=1

(
ω̂it − ω̂t

) (
ω̂is − ω̂s

)
=

2

Ir(r − 1)

r−1∑
t=1

r∑
s=t+1

I∑
i=1

(
ω̂itω̂is − ω̂itω̂s − ω̂isω̂t + ω̂tω̂s

)
and therefore:

E
[
ψ̃Aω̂ | X

]
= ψAω̂

Applying the same steps to ψXω̂ :

ψ̃Xω̂ ≡
1

Imr

0∑
t=−m+1

r∑
s=1

I∑
i=1

(
ω̂it − ω̂t

) (
ω̂is − ω̂s

)
=

1

Imr

0∑
t=−m+1

r∑
s=1

I∑
i=1

(
ω̂itω̂is − ω̂itω̂s − ω̂isω̂t + ω̂tω̂s

)
Taking expectations of both sides:

E
[
ψ̃Xω̂ | X

]
=

1

Imr

0∑
t=−m+1

r∑
s=1

I∑
i=1

E [ω̂itω̂is | X]

=
1

Imr

0∑
t=−m+1

r∑
s=1

I∑
i=1

Cov (ω̂it, ω̂is | X)

= ψXω̂

Hence, we can recover unbiased estimates of the parameters σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ (defined over

residuals ω̂it, rather than errors ωit) by calculating the averages of the estimated σ̃2
ω̂, ψ̃Bω̂ , ψ̃Aω̂ , and

ψ̃Xω̂ , respectively.
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E.2 Estimating MDE from residual-based parameters

To calculate theMDE using the SCR formula, we must know the true parameters that characterize
the variance and covariance of the error structure, σ2

ω, ψB, ψA, and ψX . We cannot calculate these
parameters directly from a real dataset, however, because we do not observe the true error structure
or data generating process. Instead, we estimate a residual for each observation and calculate the
residual-based analogs of these parameters, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ . In this section, we derive an
expression for MDEest in terms of these residual-based parameters that is equivalent to MDE

from the SCR formula as defined in terms of true variance-covariance parameters:

MDEest
(
σ2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , ψ

X
ω̂

)
= MDE

(
σ2
ω, ψ

B, ψA, ψX
)

Model While estimating the variance and covariance parameters of a dataset does not require a
treatment, we assume that all other features of this model are identical to the model that generates
the serial-correlation-robust power calculation formula, Equation (2).

That is, there are J units, P proportion of which are randomized into treatment. The researcher
again collects outcome data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment periods and Dit = 1 in post-
treatment periods; for control units, Dit = 0 in all periods. We restate the remaining assumptions
from Appendix A.2.2 here for convenience:

Assumption (Data generating process). The data are generated according to the following model:

Yit = β + τDit + υi + δt + ωit

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a unit-specific disturbance distributed i.i.d. N (0, σ2
υ);

δt is a time-specific disturbance distributed i.i.d. N (0, σ2
δ ); and ωit is an idiosyncratic error term

distributed (not necessarily i.i.d.) N (0, σ2
ω).

Assumption (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, J−1 unit dummies, and (m+r)−1 time dummies.
This again follows from random assignment of Dit.

Assumption (Balanced panel). The number of pre-treatment observations, m, and post-treatment
observations, r, is the same for each unit, and all units are observed in every time period.

Assumption (Independence across units). E[ωitωjs | X] = 0, ∀ i 6= j, ∀ t, s.

Assumption (Symmetric covariance structures). Define:

ψB ≡ 2

Jm(m− 1)

J∑
i=1

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis | X)

ψA ≡ 2

Jr(r − 1)

J∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis | X)
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ψX ≡ 1

Jmr

J∑
i=1

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis | X)

to be the average pre-treatment, post-treatment, and across-period covariance between different error
terms of the same unit, respectively. Define ψBT , ψAT , and ψXC analogously, where we consider
only the PJ treated units; also define ψBC , ψAC , and ψXC analogously, where we consider only the
(1− P )J control units. Using these definitions, assume that ψB = ψBT = ψBC ; ψA = ψAT = ψAC ; and
ψX = ψXT = ψXC .

Parameters We first need to estimate the residuals of this model. To do this, we regress Yit
on a constant and fixed effects at the unit and time levels. For a balanced panel, the estimated
coefficients are

β̂ =
1

IT

I∑
i=1

r∑
t=−m+1

Yit

υ̂i =
1

T

r∑
t=−m+1

Yit −
1

IT

I∑
i=1

r∑
t=−m+1

Yit

δ̂t =
1

I

I∑
i=1

Yit −
1

IT

I∑
i=1

r∑
t=−m+1

Yit

Then the residual is defined as

ω̂it = Yit − Ŷit

= (β + υi + δt + ωit)−
(
β̂ + υ̂i + δ̂t

)
= ωit − ωi − ωt + ω

where

ωi =
1

T

r∑
t=−m+1

ωit

ωt =
1

I

I∑
i=1

ωit

ω =
1

IT

I∑
i=1

r∑
t=−m+1

ωit

We can now use this definition of residuals to derive expressions for σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ . We first

derive an expression for σ2
ω̂, the average variance of a residual:

σ2
ω̂ =

1

IT

I∑
i=1

r∑
t=−m+1

Var(ω̂it | X)
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=
1

IT

I∑
i=1

r∑
t=−m+1

Var
(
ωit − ωi − ωt + ω | X

)
=

1

IT

I∑
i=1

r∑
t=−m+1

[
Var(ωit | X) + Var (ωi | X) + Var (ωt | X) + Var

(
ω | X

)
− 2Cov (ωit, ωi | X)− 2Cov (ωit, ωt | X) + 2Cov

(
ωit, ω | X

)
+ 2Cov (ωi, ωt | X)− 2Cov

(
ωi, ω | X

)
− 2Cov

(
ωt, ω | X

) ]
Calculating each of these terms, in turn, gives

1

IT

I∑
i=1

r∑
t=−m+1

Var(ωit | X) = σ2
ω

1

IT

I∑
i=1

r∑
t=−m+1

Var (ωi | X) =
1

IT
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Var

(
1

T
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ωis | X

)

=
1

T
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ω +

m(m− 1)

T 2
ψB +
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T 2
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2mr

T 2
ψX
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Var (ωt | X) =
1

IT

I∑
i=1

r∑
t=−m+1

Var

1

I

I∑
j=1

ωjt | X


=

1

I
σ2
ω

1

IT

I∑
i=1

r∑
t=−m+1

Var
(
ω | X

)
=

1

IT

I∑
i=1

r∑
t=−m+1

Var

 1

IT

I∑
j=1

r∑
s=−m+1

ωjs | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

1

IT

I∑
i=1

r∑
t=−m+1

2Cov (ωit, ωi | X) =
2

IT

I∑
i=1

r∑
t=−m+1

Cov

(
ωit,

1

T

r∑
s=−m+1

ωis | X

)

=
2

T
σ2
ω +

2m(m− 1)

T 2
ψB +

2r(r − 1)

T 2
ψA +

4mr

T 2
ψX

1

IT

I∑
i=1

r∑
t=−m+1

2Cov (ωit, ωt | X) =
2

IT

I∑
i=1

r∑
t=−m+1

Cov

ωit, 1
I

I∑
j=1

ωjt | X


=

2

I
σ2
ω

1

IT

I∑
i=1

r∑
t=−m+1

2Cov
(
ωit, ω | X

)
=

2

IT

I∑
i=1

r∑
t=−m+1

Cov

ωit, 1

IT

I∑
j=1

r∑
s=−m+1

ωjs | X


=

2

IT
σ2
ω +

2m(m− 1)

IT 2
ψB +

2r(r − 1)

IT 2
ψA +

4mr

IT 2
ψX

1

IT

I∑
i=1

r∑
t=−m+1

2Cov (ωi, ωt | X) =
2

IT

I∑
i=1

r∑
t=−m+1

Cov

 1

T

r∑
s=−m+1

ωis,
1

I

I∑
j=1

ωjt | X


=

2

IT
σ2
ω +

2m(m− 1)

IT 2
ψB +

2r(r − 1)

IT 2
ψA +

4mr

IT 2
ψX
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1

IT

I∑
i=1

r∑
t=−m+1

2Cov
(
ωi, ω | X

)
=

2

IT

I∑
i=1

r∑
t=−m+1

Cov

 1

T

r∑
s=−m+1

ωis,
1

IT

I∑
j=1

r∑
p=−m+1

ωjp | X


=

2

IT
σ2
ω +

2m(m− 1)

IT 2
ψB +

2r(r − 1)

IT 2
ψA +

4mr

IT 2
ψX

1

IT

I∑
i=1

r∑
t=−m+1

2Cov
(
ωt, ω | X

)
=

2

IT

I∑
i=1

r∑
t=−m+1

Cov

1

I

I∑
j=1

ωjt,
1

IT

I∑
k=1

r∑
s=−m+1

ωks | X


=

2

IT
σ2
ω +

2m(m− 1)

IT 2
ψB +

2r(r − 1)

IT 2
ψA +

4mr

IT 2
ψX

Combining these terms and simplifying yields

σ2
ω̂ =

(
(I−1)(T−1)

IT

)
σ2
ω −

(
(I−1)m(m−1)

IT 2

)
ψB −

(
(I−1)r(r−1)

IT 2

)
ψA −

(
2(I−1)mr

IT 2

)
ψX (E1)

We next derive an expression for ψAω̂ :

ψAω̂ =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω̂it, ω̂is | X)

=
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit − ωi − ωt + ω, ωis − ωi − ωs + ω | X)

=
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

[
Cov(ωit, ωis | X)− Cov(ωit, ωi | X)− Cov(ωit, ωs | X) + Cov(ωit, ω | X)

− Cov(ωi, ωis | X) + Cov(ωi, ωi | X) + Cov(ωi, ωs | X)− Cov(ωi, ω | X)

− Cov(ωt, ωis | X) + Cov(ωt, ωi | X) + Cov(ωt, ωs | X)− Cov(ωt, ω | X)

+ Cov(ω, ωis | X)− Cov(ω, ωi | X)− Cov(ω, ωs | X) + Cov(ω, ω | X)
]

We again calculate each term:

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωis | X) = ψA

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωi | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

ωit, 1
T

r∑
p=−m+1

ωip | X


=

2

r(r − 1)IT

I∑
i=1

r∑
t=1

r∑
p=−m+1

(r − t) Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωs | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

ωit, 1
I

I∑
j=1

ωjs | X


=

1

I
ψA
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2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ω | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

ωit, 1

IT

I∑
j=1

r∑
p=−m+1

ωjp | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(r − t) Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωi, ωis | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

T

r∑
p=−m+1

ωip, ωis | X


=

2

r(r − 1)IT

I∑
i=1

r∑
t=1

r∑
p=−m+1

(t− 1)Cov (ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωi, ωi | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

T

r∑
p=−m+1

ωip,
1

T

r∑
q=−m+1

ωiq | X


=

1

T
σ2
ω +

m(m− 1)

T 2
ψB +

r(r − 1)

T 2
ψA +

2mr

T 2
ψX

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωi, ωs | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

T

r∑
p=−m+1

ωip,
1

I

I∑
j=1

ωjs | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(t− 1)Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωi, ω | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

T

r∑
p=−m+1

ωip,
1

IT

I∑
j=1

r∑
q=−m+1

ωjq | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωt, ωis | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

1

I

I∑
j=1

ωjt, ωis | X


=

1

I
ψA

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωt, ωi | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

1

I

I∑
j=1

ωjt,
1

T

r∑
p=−m+1

ωip | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(r − t) Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωt, ωs | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

1

I

I∑
j=1

ωjt,
1

I

I∑
k=1

ωks | X


=

1

I
ψA

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ωt, ω | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

1

I

I∑
j=1

ωjt,
1

IT

I∑
k=1

r∑
p=−m+1

ωkp | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(r − t) Cov(ωit, ωip | X)
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2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω, ωis | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp, ωis | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(t− 1)Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω, ωi | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,
1

T

r∑
q=−m+1

ωiq | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω, ωs | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,
1

I

I∑
k=1

ωks | X


=

2

r(r − 1)I2T

I∑
i=1

r∑
t=1

r∑
p=−m+1

(t− 1)Cov(ωit, ωip | X)

2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω, ω | X) =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,

=
1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

Combining these terms and simplifying yields

ψAω̂ = −
(
I−1
IT

)
σ2
ω +

(
(I−1)m(m−1)

IT 2

)
ψB +

(
(I−1)(m2+2m+r)

IT 2

)
ψA −

(
2(I−1)m2

IT 2

)
ψX (E2)

By symmetry, the expression for ψBω̂ is

ψBω̂ = −
(
I−1
IT

)
σ2
ω +

(
(I−1)(r2+2r+m)

IT 2

)
ψB +

(
(I−1)r(r−1)

IT 2

)
ψA −

(
2(I−1)r2

IT 2

)
ψX (E3)

We finally derive an expression for ψXω̂ :

ψXω̂ =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω̂it, ω̂is | X)

=
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit − ωi − ωt + ω, ωis − ωi − ωs + ω | X)

=
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

[
Cov(ωit, ωis | X)− Cov(ωit, ωi | X)− Cov(ωit, ωs | X) + Cov(ωit, ω | X)

− Cov(ωi, ωis | X) + Cov(ωi, ωi | X) + Cov(ωi, ωs | X)− Cov(ωi, ω | X)

− Cov(ωt, ωis | X) + Cov(ωt, ωi | X) + Cov(ωt, ωs | X)− Cov(ωt, ω | X)

+ Cov(ω, ωis | X)− Cov(ω, ωi | X)− Cov(ω, ωs | X) + Cov(ω, ω | X)
]
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We again calculate each term:

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωis, ωit | X) = ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωi | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

ωit, 1
T

r∑
p=−m+1

ωip | X


=

1

T
σ2
ω +

m− 1

T
ψB +

r

T
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωs | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

ωit, 1
I

I∑
j=1

ωjs | X


=

1

I
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωit, ω | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

ωit, 1

IT

I∑
j=1

r∑
p=−m+1

ωjp | X


=

1

IT
σ2
ω +

m− 1

IT
ψB +

r

IT
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωi, ωis | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

T

r∑
p=−m+1

ωip, ωis | X


=

1

T
σ2
ω +

r − 1

T
ψA +

m

T
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωi, ωi | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

T

r∑
p=−m+1

ωip,
1

T

r∑
q=−m+1

ωiq | X


=

1

T
σ2
ω +

m(m− 1)

T 2
ψB +

r(r − 1)

T 2
ψA +

2mr

T 2
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωi, ωs | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

T

r∑
p=−m+1

ωip,
1

I

I∑
j=1

ωjs | X


=

1

IT
σ2
ω +

r − 1

IT
ψA +

m

IT
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωi, ω | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

T

r∑
p=−m+1

ωip,
1

IT

I∑
j=1

r∑
q=−m+1

ωjq | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωt, ωis | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

1

I

I∑
j=1

ωjt, ωis | X


=

1

I
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωt, ωi | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

1

I

I∑
j=1

ωjt,
1

T

r∑
p=−m+1

ωip | X


=

1

IT
σ2
ω +

m− 1

IT
ψB +

r

IT
ψX
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1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωt, ωs | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

1

I

I∑
j=1

ωjt,
1

I

I∑
k=1

ωks | X


=

1

I
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ωt, ω | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

1

I

I∑
j=1

ωjt,
1

IT

I∑
k=1

∑
p=−m+1

ωkp | X


=

1

IT
σ2
ω +

m− 1

IT
ψB +

r

IT
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω, ωis | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp, ωis | X


=

1

IT
σ2
ω +

r − 1

IT
ψA +

m

IT
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω, ωi | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,
1

T

r∑
q=−m+1

ωiq | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω, ωs | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,
1

I

I∑
k=1

ωks | X


=

1

IT
σ2
ω +

r − 1

IT
ψA +

m

IT
ψX

1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω, ω | X) =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov

 1

IT

I∑
j=1

r∑
p=−m+1

ωjp,
1

IT

I∑
k=1

r∑
q=−m+1

ωkq | X


=

1

IT
σ2
ω +

m(m− 1)

IT 2
ψB +

r(r − 1)

IT 2
ψA +

2mr

IT 2
ψX

Combining these terms and simplifying yields

ψXω̂ = −
(
I−1
IT

)
σ2
ω −

(
(I−1)r(m−1)

IT 2

)
ψB −

(
(I−1)m(r−1)

IT 2

)
ψA +

(
2(I−1)mr

IT 2

)
ψX (E4)

To summarize, Equations (E1), (E2), (E3), and (E4) express the residual-based parameters as
functions of the true parameters that define the error structure. Rearranging these four equations:

σ2
ω̂ =

(
I − 1

IT 2

)(
T (T − 1)σ2

ω −m(m− 1)ψB − r(r − 1)ψA − 2mrψX
)

ψBω̂ =

(
I − 1

IT 2

)(
− Tσ2

ω + (r2 + 2r +m)ψB + r(r − 1)ψA − 2r2ψX
)

ψAω̂ =

(
I − 1

IT 2

)(
− Tσ2

ω +m(m− 1)ψB + (m2 + 2m+ r)ψA − 2m2ψX
)

ψXω̂ =

(
I − 1

IT 2

)(
− Tσ2

ω − r(m− 1)ψB −m(r − 1)ψA + 2mrψX
)
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In matrix notation, these four equations become:
σ2
ω̂

ψBω̂
ψAω̂
ψXω̂

 = Γ


σ2
ω

ψB

ψA

ψX

 (E5)

where

Γ =
I − 1

IT 2


T (T − 1) −m(m− 1) −r(r − 1) −2mr

−T r2 + 2r +m r(r − 1) −2r2

−T m(m− 1) m2 + 2m+ r −2m2

−T −r(m− 1) −m(r − 1) 2mr


Minimum detectable effect We are ultimately interested in deriving an expression for the
MDE of an experiment as a function of the residual-based parameters, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ , rather
than the true parameters, σ2

ω, ψB, ψA, and ψX . Recall that:

MDE =
(
tJ1−κ + tJα/2

)√( 1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
Having solved for σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ as linear functions of the true parameters σ2
ω, ψB, ψA, and

ψX , we can define kσ, kB, kA, and kX as coefficients on the residual-based parameters σ2
ω̂, ψBω̂ ,

ψAω̂ , and ψXω̂ . These coefficients will allow us to use residual-based parameters in the SCR formula
in place of the true parameters. In other words, kσ, kB, kA, and kX must satisfy the following
equation:39

(
tJ1−κ + tJα/2

)√( 1

P (1− P )J

)[(
m+ r

mr

)
kσσ2

ω̂ +

(
m− 1

m

)
kBψBω̂ +

(
r − 1

r

)
kAψAω̂ − 2kXψXω̂

]

=
(
tJ1−κ + tJα/2

)√( 1

P (1− P )J

)[(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

]
or more simply: (

m+ r

mr

)
kσσ

2
ω̂ +

(
m− 1

m

)
kBψ

B
ω̂ +

(
r − 1

r

)
kAψ

A
ω̂ − 2kXψ

X
ω̂

=

(
m+ r

mr

)
σ2
ω +

(
m− 1

m

)
ψB +

(
r − 1

r

)
ψA − 2ψX

39. This assumes kσ, kB , kA, and kX are functions of m, r, and I only, and do not themselves depend on σ2
ω, ψB ,

ψA, or ψX . We show this to be true below.
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We can express this equality in matrix form as:40

[
m+r
mr

m−1
m

r−1
r
−2
] 

σ2
ω

ψB

ψA

ψX

 =
[(

m+r
mr

)
kσ

(
m−1
m

)
kB

(
r−1
r

)
kA −2kX

] 
σ2
ω̂

ψBω̂
ψAω̂
ψXω̂


Substituting Equation (E5):

⇒
[
m+r
mr

m−1
m

r−1
r
−2
] 

σ2
ω

ψB

ψA

ψX

 =
[(

m+r
mr

)
kσ

(
m−1
m

)
kB

(
r−1
r

)
kA −2kX

]
Γ


σ2
ω

ψB

ψA

ψX

 (E6)

where Γ is defined as above:

Γ =
I − 1

IT 2


T (T − 1) −m(m− 1) −r(r − 1) −2mr

−T r2 + 2r +m r(r − 1) −2r2

−T m(m− 1) m2 + 2m+ r −2m2

−T −r(m− 1) −m(r − 1) 2mr


Γ is a singular matrix and cannot be inverted. However, we can show that, rather than having no
solutions, Equation (E6) is instead overdetermined and there are infinite solutions. We are simply
interested in one such solution. To find one set of kσ, kB, kA, and kX coefficients that solve this
system, we iteratively solve for each k coefficient as a function of the remaining k coefficients and
then substitute into the subsequent equations. That is, we use the first equation of this system to
solve for kσ as a function of kB, kA, and kX and substitute this expression in place of kσ in the
subsequent equations in the system, and we repeat for the remaining coefficients and equations.
This iterative procedure yields:

kσ =
I(m+ r)2 + (I − 1)[r(m− 1)kB +m(r − 1)kA − 2mrkX ]

(I − 1)(m+ r)(m+ r − 1)

kB =
I(m+ r)2(m− r +mr + r2) + (I − 1)[m2(r − 1)(2−m− r)kA + 2mr(r −m−mr − r2)kX ]

(I − 1)r2(3m+ r +mr + r2 − 2)

kA =
I(m+ r)2 − 2(I − 1)mrkX

2(I − 1)m2

kX = 0

We iteratively substitute each coefficient into the expressions for the remaining coefficients. That
is, we first substitute this value of kX into the expressions for the other three coefficients, then
substitute kA, and so on. This yields expressions for kσ, kB, kA, and kX in terms of m, r, and I.

kσ =
I(m+ r)2

2(I − 1)mr

40. Note that if m = 1 (or r = 1), the corresponding ψB and ψBω̂ (or ψA and ψAω̂ ) parameters are undefined and no
longer enter the system. Similarly, the corresponding row(s) and column(s) are removed from Γ.
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kB =
I(m+ r)2

2(I − 1)r2

kA =
I(m+ r)2

2(I − 1)m2

kX = 0

We can now express the MDE of an experiment as a function of the residual-based parameters:

MDEest =
(
tJ1−κ + tJα/2

){( 1

P (1− P )J

)[(
m+ r

mr

)(
I(m+ r)2

2(I − 1)mr

)
σ2
ω̂

+

(
m− 1

m

)(
I(m+ r)2

2(I − 1)r2

)
ψBω̂ +

(
r − 1

r

)(
I(m+ r)2

2(I − 1)m2

)
ψAω̂

]}1/2

E.3 Estimation with ANCOVA

Here, we extend Appendices E.1 and E.2, which discuss estimating the MDE from residual-based
parameters, for the ANCOVA model. As above, we do not observe the true parameters characteriz-
ing the error structure (σ2

υ, σ2
ω, ψB, ψA, and ψX). We cannot calculate these from a dataset, so we

turn to residual-based versions of these parameters (σ2
υ̂, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ ), which we can use to
define MDEest

ANCOV A(σ2
υ̂, σ

2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , ψ

X
ω̂ ) = MDEANCOV A(σ2

υ, σ
2
ω, ψ

B, ψA, ψX) such that the MDE

from estimated parameters is equivalent to the SCR formula’s MDE derived from true parameters.

Model As in Appendix E.2, we assume this model is identical to the model that generates the
relevant power calculation formula; in this case, SCR ANCOVA given in Equation (11).

That is, there are J units, P proportion of which are randomized into treatment. The researcher
again collects outcome data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment periods and Dit = 1 in
post-treatment periods; for control units, Dit = 0 in all periods.

Assumption (Data generating process). The data are generated according to the following model:

Yit = β + τDit + υi + ωit

where Yit is the outcome of interest for unit i at time t; β is the expected outcome of non-treated
observations; τ is the treatment effect that is homogeneous across all units and all time periods; Dit

is a time-varying treatment indicator; υi is a time-invariant unit effect distributed i.i.d. N (0, σ2
υ);

and ωit is an idiosyncratic error term distributed (not necessarily i.i.d.) N (0, σ2
ω).

Assumption (Strict exogeneity). E[ωit | X] = 0, where X is a full rank matrix of regressors,
including a constant, the treatment indicator D, and J − 1 unit dummies. This again follows from
random assignment of Dit.

Assumption (Balanced panel). The number of pre-treatment observations, m, and post-treatment
observations, r, is the same for each unit, and all units are observed in every time period.

Assumption (Independence across units). E[ωitωjs | X] = 0, ∀ i 6= j, ∀ t, s.

72



Assumption (Uniform covariance structures). Define:

ψBi ≡
2

m(m− 1)

−1∑
t=−m+1

0∑
s=t+1

Cov (ωit, ωis | X)

ψAi ≡
2

r(r − 1)

r−1∑
t=1

r∑
s=t+1

Cov (ωit, ωis | X)

ψXi ≡
1

mr

0∑
t=−m+1

r∑
s=1

Cov (ωit, ωis | X)

to be the average pre-treatment, post-treatment, and across-period covariance between different error
terms of unit i, respectively. Using these definitions, assume that ψB = ψBi , ψA = ψAi , and ψX =

ψXi ∀i.

Parameters We begin by estimating the fixed effects and residuals. Note that even though we
are ultimately interested in performing a power calculation for the ANCOVA estimator, we generate
residuals for this data generating process by regressing Yit on a constant and unit fixed effects:

Yit = β + υi + ωit

For a balanced panel, the estimated coefficients are:

β̂ =
1

IT

I∑
i=1

r∑
t=−m+1

Yit

υ̂i =
1

T

r∑
t=−m+1

Yit −
1

IT

I∑
i=1

r∑
t=−m+1

Yit

Then the estimated fixed effects and the residuals are

υ̂i = (υi − υ) + (ωi − ω)

ω̂it = ωit − ωi

where

υ =
1

I

I∑
i=1

υi

ωi =
1

T

r∑
t=−m+1

ωit

ω =
1

IT

I∑
i=1

r∑
t=−m+1

ωit
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We first use the estimated fixed effects to derive an expression for σ2
υ̂:41

σ2
υ̂ =

1

I

I∑
i=1

Var(υ̂i | X)

=
1

I

I∑
i=1

[
Var(υi | X) + Var(υ | X)− 2Cov(υi, υ | X) + Var(ωi | X) + Var(ω | X)− 2Cov(ωi, ω | X)

]
=

(
I − 1

IT 2

)[
T 2σ2

υ + Tσ2
ω + (m(m− 1))ψB + (r(r − 1))ψA + 2mrψX

]
We also use the definition of residuals to derive expressions for σ2

υ̂, σ2
ω̂, ψBω̂ , ψAω̂ , and ψXω̂ :

σ2
ω̂ =

1

IT

I∑
i=1

r∑
t=−m+1

Var(ω̂it | X)

=
1

IT

I∑
i=1

r∑
t=−m+1

[Var(ωit | X) + Var(ωi | X)− 2Cov(ωit, ωi | X)]

=

(
T − 1

T

)
σ2
ω −

(
m(m− 1)

T 2

)
ψB −

(
r(r − 1)

T 2

)
ψA −

(
2mr

T 2

)
ψX

ψAω̂ =
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov(ω̂it, ω̂is | X)

=
2

r(r − 1)I

I∑
i=1

r−1∑
t=1

r∑
s=t+1

[Cov(ωit, ωis | X)− Cov(ωit, ωi | X)− Cov(ωis, ωi | X) + Var(ωi | X)]

=
−1
T
σ2
ω +

(
m(m− 1)

T 2

)
ψB +

(
m2 + 2m+ r

T 2

)
ψA −

(
2m2

T 2

)
ψX

ψBω̂ =
−1
T
σ2
ω +

(
r2 + 2r +m

T 2

)
ψB +

(
r(r − 1)

T 2

)
ψA −

(
2r2

T 2

)
ψX

ψXω̂ =
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

Cov(ω̂it, ω̂is | X)

=
1

Imr

I∑
i=1

0∑
t=−m+1

r∑
s=1

[Cov(ωit, ωis | X)− Cov(ωit, ωi | X)− Cov(ωis, ωi | X) + Var(ωi | X)]

=
−1
T
σ2
ω −

(
r(m− 1)

T 2

)
ψB −

(
m(r − 1)

T 2

)
ψA +

(
2mr

T 2

)
ψX

Minimum detectable effect Having solved for σ2
υ̂, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ as linear functions of
the true parameters σ2

υ, σ2
ω, ψB, ψA, and ψX , we can define kυ, kω, kB, kA, and kX as coefficients

on the residual-based parameters σ2
υ̂, σ2

ω̂, ψBω̂ , ψAω̂ , and ψXω̂ . These coefficients will allow us to use
residual-based parameters in the SCR formula in place of the true parameters. In other words, kυ,

41. Note that, as stated in the strict exogeneity assumption, X is a full rank matrix of regressors, including a
constant, the treatment indicator D, and J − 1 unit dummies. That is, X includes the covariates of the data
generating process and residualizing regression, not of the ANCOVA model.
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kω, kB, kA, and kX must satisfy the following equation:

(1− θ)2σ2
υ +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

= kυσ
2
υ̂ + kωσ

2
ω̂ + kBψ

B
ω̂ + kAψ

A
ω̂ + kXψ

X
ω̂

Following the solution procedure described in Appendix E.2, we solve for a set of k coefficients that
satisfy this equality:

kυ =

(
I

I − 1

)
(1− θ)2

kω =

(
m+ θr

2m2r2

)
((m+ r)(m+ θr) + (1− θ)(mr2 −m2r))

kB =

(
m+ θr

2mr2

)
(m− 1)(m+ θr − (1− θ)mr)

kA =

(
m+ θr

2m2r

)
(r − 1)(m+ θr + (1− θ)mr)

kX = 0

Note, however, that these coefficients are functions of not only m, r, and I, as in Appendix E.2.
These coefficients are also a function of θ, which is itself a function of true parameters:

θ =
mσ2

υ +mψX

mσ2
υ + σ2

ω + (m− 1)ψB

As a result, in order to use these coefficients in a residual-based SCR ANCOVA formula, we must
also derive a residual-based expression for θ. We define a set of coefficients to correspond to the
numerator of θ: kNυ , kNω , kNB , kNA , and kNX ; we also define a set of coefficients to correspond to the
denominator of θ: kDυ , kDω , kDB , kDA , and kDX . We seek to find the sets of kN and kD coefficients that
satisfy the following equality:

mσ2
υ +mψX

mσ2
υ + σ2

ω + (m− 1)ψB
=
kNυ σ

2
υ̂ + kNω σ

2
ω̂ + kNBψ

B
ω̂ + kNAψ

A
ω̂ + kNXψ

X
ω̂

kDυ σ
2
υ̂ + kDω σ

2
ω̂ + kDBψ

B
ω̂ + kDAψ

A
ω̂ + kDXψ

X
ω̂

We again follow the solution procedure described in Appendix E.2 as we separately solve for a set
of kN coefficients and kD coefficients. One such solution for the numerator coefficients is:

kNυ =

(
I

I − 1

)
m

kNω =

(
−1

4r

)
(m(m− r + 2) + r(r −m+ 2))

kNB =

(
−m
4r

)
(m− 1)(m− r + 2)

kNA =

(
−1

4

)
(r − 1)(r −m+ 2)

kNX = 0
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and one such solution for the denominator coefficients is:

kDυ =

(
I

I − 1

)
m

kDω =

(
1

2m

)
(m(m+ 1)− r(m− 1))

kDB =

(
1

2

)
(m+ 1)(m− 1)

kDA =

(
−r
2m

)
(m− 1)(r − 1)

kDX = 0

Combining these two sets of coefficients, we express θ as a function of residual-based parameters:

θ =
m
[(

I
I−1

)
4mrσ2

υ̂ − (m(m− r + 2) + r(r −m+ 2))σ2
ω̂

]
2r
[(

I
I−1

)
2m2σ2

υ + (m(m+ 1)− r(m− 1))σ2
ω̂ +m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂

]
+

m
[
−m(m− 1)(m− r + 2)ψBω̂ − r(r − 1)(r −m+ 2)ψAω̂

]
2r
[(

I
I−1

)
2m2σ2

υ + (m(m+ 1)− r(m− 1))σ2
ω̂ +m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂

]
We can now express the SCR ANCOVA formula using only residual-based parameters:

MDEest
ANCOV A ≈ (tJ1−κ + tJα/2)×

{(
1

P (1− P )J

)
×
[(

I

I − 1

)
(1− θ)2σ2

υ̂

+

(
m+ θr

2m2r2

)
((m+ r)(m+ θr) + (1− θ)(mr2 −m2r))σ2

ω̂

+

(
m+ θr

2mr2

)
(m− 1)(m+ θr − (1− θ)mr)ψBω̂

+

(
m+ θr

2m2r

)
(r − 1)(m+ θr + (1− θ)mr)ψAω̂

]}1/2

where θ is as given above.

Estimated parameters We finally show that we can recover unbiased estimates of the residual-
based parameters, as in Appendix E.1. We begin with the variance of the fixed effects, σ2

υ̂, and
define:

σ̃2
υ̂ ≡

1

I

I∑
i=1

(
υ̂i − υ̂

)2
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where υ̂ =
1

I

I∑
i=1

υ̂ = 0. Taking expectations of both sides:

E
[
σ̃2
υ̂ | X

]
=

1

I

I∑
i=1

E
[
υ̂2 | X

]
= σ2

υ̂

Next, to estimate the variance of the residuals, σ2
ω̂, we define:

σ̃2
ω̂ ≡

1

IT

I∑
i=1

r∑
t=−m+1

(
ω̂it − ω̂

)2

where ω̂ =
1

IT

I∑
i=1

r∑
t=−m+1

ω̂it = 0. Taking expectations of both sides:

E
[
σ̃2
ω̂ | X

]
=

1

IT

I∑
i=1

r∑
t=−m+1

E
[
ω̂2
it | X

]
= σ2

ω̂

To estimate ψBω̂ , ψAω̂ , and ψXω̂ , we define the [I × 1] vector of residuals for period t as ω̂t and
calculate the average covariance between any two vectors in the relevant range of time periods. For
the pre-period, we define:

ψ̃Bω̂ ≡
2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

(
ω̂it − ω̂t

) (
ω̂is − ω̂s

)
=

2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

(
ω̂itω̂is − ω̂itω̂s − ω̂isω̂t + ω̂tω̂s

)
=

2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

(
I − 1

I

)
ω̂itω̂is

Taking expectations yields:

E
[
ψ̃Bω̂ | X

]
=

(
I − 1

I

)
2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

E [ω̂itω̂is | X]

=

(
I − 1

I

)
2

Im(m− 1)

−1∑
t=−m+1

0∑
s=t+1

I∑
i=1

Cov(ω̂it, ω̂is | X)

=

(
I − 1

I

)
ψBω̂
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Similarly:

E
[
ψ̃Aω̂ | X

]
=

(
I − 1

I

)
ψAω̂

E
[
ψ̃Xω̂ | X

]
=

(
I − 1

I

)
ψXω̂

Hence, we can recover unbiased estimates of the parameters σ2
υ̂ and σ2

ω̂ by calculating the averages of
the estimated σ̃2

υ̂ and σ̃2
ω̂, respectively. However, to recover unbiased estimates of the parameters ψBω̂ ,

ψAω̂ , and ψXω̂ , we must calculate ψ̃Bω̂ , ψ̃Aω̂ , and ψ̃Xω̂ , respectively, and then inflate these averages by I
I−1

.
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