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(1) 2 (3)

Variables Whole sample Until 2010 From 2012 onwards
constant -21.46%* -39.98%* -10.41*
(10.63) (20.24) (6.12)
a(60) -14.82 15.46 -14.98
(14.63) (26.97) (10.63)
a(120) -42.43%%% 12.05 -46.17%%*
(13.89) (24.13) (11.83)
a(180) -74.25%%% -38.09 -86.69%**
(18.41) (43.40) (17.05)
(360) -70.33 %% 21.27 -123.70%%%
(19.28) (31.62) (22.11)
A(36) 8.01 11.06 573
(5.28) (8.55) (3.65)
A(60) 12,247 10.46 12.71%%
(4.38) (7.40) (5.37)
A(120) 16.89%%* 10.62* 14.03%%*
(3.55) (6.31) (4.22)
A(180) 39 55%¥x 28.27 44.77%%*
(10.47) (17.50) (10.66)
A(360) 55.63%% 4579w 59.72%#%
(9.98) (13.14) (14.26)
Observations 1,143 337 627
R-squared 0.21 0.23 0.22

Robust standard errors in parentheses
5% p<0.01, ** p<0.05, * p<0.1

Table 3: Non-Parametric Regression
Notes: The dependent variable is the markup of the auction ¢ on date ¢ computed as (¢, ¢ — ¢;.¢)/; 1 Where g; ; is marginal
price of the auction, and 1; ; is the closing secondary market price on the same day. We drop observations with an issuance of
less than 1 million euros. We include both competitive and non-competitive auctions. All regressions include quarterly fixed
effects. The first column is the main specification corresponding to the full sample, the second column includes all issuances
up to 2010, and the third column issuances after 2012. One, two or three stars denote that the coefficient is statistically
different from zero at the 10, 5, or 1% confidence level, respectively. Robust standard errors in parenthesis.
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(1) ) (3)

Variables Whole sample Until 2010 From 2012 onwards
(36) -20.75%%* -32.86%* -12.52%
(7.76) (14.89) (7.50)
a(60) -13.44 10.29 -27.18%%*
(8.43) (14.50) (9.12)
(120) ~46.52%%% -5.39 -66.28%%*
(9.56) (15.01) (10.84)
a(180) -60.48*** -33.37 -78.06%**
(13.75) (31.15) (14.63)
a(360) -65.74%%x 21.23 -123.30%**
(17.82) (28.93) (21.40)
Issuance (% Monthly GDP) 2.58 3.54 1.32
(4.18) (6.28) (5.45)
Issuance*Years to maturity 1.66%** 1.20%* 1.78%%*
(0.36) (0.47) (0.49)
Observations 1,143 337 734
R-squared 0.21 0.22 0.23

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Parametric Regression
Notes: The dependent variable is the markup of the auction ¢ on date ¢ computed as (7,/1” — @i.t)/i+ where @i+ is marginal
price of the auction, and 1; ; is the closing secondary market price on the same day. We drop observations with an issuance of
less than 1 million euros. We include both competitive and non-competitive auctions. All regressions include quarterly fixed
effects. The first column is the main specification corresponding to the full sample, the second column includes all issuances
up to 2010, and the third column issuances after 2012. One, two or three stars denote that the coefficient is statistically
different from zero at the 10, 5, or 1% confidence level, respectively. Robust standard errors in parenthesis.
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(1) (2)

Variables Issuances / GDP (quart %) Average Maturity (issuances)
Constant 3.74%% 109.90%**
(1.78) (14.57)
Deficit / GDP (quart, %) 0.65%** -0.90
0.12) (0.88)
Debt Due / GDP (quart, %) 0.70%** -0.40
(0.09) (0.79)
Short-term Rate Factor (%) -0.34 -8.79%%¥
(0.30) (2.75)
Slope Factor (%) 0.40 -6.66**
(0.39) (2.99)
Observations 80 66
R-squared 0.85 0.25

Standard errors in parentheses
5% p<0.01, ** p<0.05, * p<0.1

Table 5: Issuance and maturity drivers
Notes: The dependent variables are (i) total issuances over quarterly GDP and (ii) the average WAM of issuances

during the quarter. The short-term rate and the slope factors are computed from the yields of Spanish debt,
and were provided to us by Jens Christensen. One, two or three stars denote that the coeflicient is statistically
different from zero at the 10, 5, or 1% confidence level, respectively. Robust standard errors in parenthesis.
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B Public Finance Considerations

B.1 A public finance microfoundation

The goal of this Appendix is to recast our original problem as a problem with distorting taxation. We modify the original model
and let the government maximize the utility of households who now also supply labor. Labor taxes are the only distorting

taxation. Expenditures are stochastic. The household utility is now:

14v -0 _ 1

X
U _ t
(et 1+v

), where U (-) = .

In this case, h; stands for hours worked and ¢; household consumption. For simplicity, we assume that output is linear in hours,
setting the real wage to 1. The preferences are thus GHH, with  a disutility scale parameter and v the inverse Frisch elasticity.

Households satisfy the following budget constraint:
cp = (1 —m) - hy,

where 7, is a labor tax. We assume, that the government saves on behalf of households. Also, the only possible way that the
government can transfer resources to households is through tax subsidy. The problem of the household is static, and thus, given

by:
h1+z/

1+v

% s (o
Pt - dt.
/0 ‘ <Ct X1+u)

The tax receipts for the government are now given by:

m}aXU(c—X ) subjectto ¢ = (1 — ) - h.

Lifetime utility is given by:

wy =1 - hy.

We assume that the government faces random expenditures, gy, that follow a Poisson process. We can assume that g, is negative

if the government has access to some endowment, for example of natural resources. The government’s budget constraint is:
f th th t d t, f le of natural Th t

T
/ G (e, T (7, t) dT = wy + g +
0

T
fi (0)+5/0 £ (7) dT] .

For convenience, note that if we define:

Yt = —3gi,

and set 7y to zero, we are back in the budget constraint in the main body of the paper. to map the current version of the model
to the one encountered earlier. Observe that the difference from the original problem is that now we allow the government
to potentially bear a negative value for y,. This is possible because households can provide labor to make up for the deficit,

something that is not possible in the original problem.

Definition 1. The problem of optimal maturity with distortionary labor taxes is:

e’} h1+V
max / e PtU (ct — ) - dt
{ne,e4(7)} Jo 14+v

subject to: (i) that / is chosen optimally by the household given 7, (ii) the government budget constraint, and the law of motion

4



of debt (6), with an initial condition fj.

Below, we prove that the solution to the problem with distortionary taxes is given by the solution to a modified version of
the original problem without distorting taxes, where U is replaced by a modified return function. In particular, we prove the

following result:

Proposition 8. The solution to the optimal issuances 1 are given by the solution to
max e PPUW ())dt
{Ltm}/o (Wieo)

subject to the budget constraint

Ty = =Yt +

T T
f (0) + 5/0 fe (1) dT] — /0 qi (¢, ) (7, t) dT,

and the law of motion of debt (6) with an initial condition f. The function W is given by:

W(x) = {c|c—x_1+% T :x}

1+v

1
X 1+v
1+v

with domain in all x such that W (z) > > C Finally, given the path of x consistent with the solution to v, (), the optimal

consumption and labor, and taxes in 1 are given by:
Ct = W (J?t)

W (x T
Tlt—l—X( (t)) .
X

Proposition 8 shows that Problem 1 can be solved by first solving the problem without distortionary taxes with a modified

and

objective function, and then backing out the optimal taxes from the optimal issuance rule. The following immediate corollary

presents the solution presented in the body of the paper.

Corollary 1. The optimal issuance rules in Problem 1 are given by:

1 .1/),5 (1) — v (1)

1 (1) =

i ’(/Jt (T)
with 5 5
Tt (7) =5+(,7: - 87:’ 7 € (0,T] and v, (0) =1,
where
— ot wy Ty
Tt =p g Wt/ Tt s .
intertemporal N——
intratemporal
and

Tr =Yt +

T T
f (0)+5/0 fe (1) dT‘| —/ qi (e, 7)e (T, t) dr

0

5



Proof of Proposition 8. The first step is to add the household’s and government’s budget constraints to obtain an aggregate

budget constraint

gt + ¢+

T T
fe (0) + 5/0 fe(7) dT‘| =hs + /0 qi (e, )i (7, %) dT.

This budget equalizes absorption plus debt services to output minus and the capital account. Next, using that g, = —y,, we have
that:

)

xtEyt—i—/O q(t, ) (T, t) dr — [ft (O)—|—5/0 fi (1) dr

where z; stands for consumption minus output. That is, this variable stands for change national wealth, in other words, the

current account deficit.

The second step is to solve the household’s problem. The household first-order conditions are:
(1—mn)=h{
and recall that the household’s budget constraint is:
ct = (1 —my) he.
Combining the two equations above we obtain the following relations:

Cy = (1 —'f]t) h,t = h,;/+1.

Thus, in equilibrium, the term inside the household’s utility can be expressed solely in terms of consumption. To see this, note
that:

h%—'—y Ct 14
Cr — = C} — = < Ct.
14y Y 1+ 14w

Therefore, we have that the immediate household utility is given by:

hitv v \'"77
U<Ct_x]_—i-l/ = 1+v U(Ct).

We can ignore the scale when we move back to solving the objective function.

The third step is to map x; to a value for c;. For that, we observe that:

cTHv =h
thus, we have that:
1
z=T(c)=c—cT.
The interpretation of I' (¢) is that it maps a level of consumption together with an equilibrium labor market choice, to a level of
the current account deficit.

Shape of I'. Next, we investigate the shape of I" (c).

This function satisfies:

—v —1—-2v
Ic)=1- “ and I‘"(c)=l/L+V2 > 0.
I+v (1+v)



Thus, it is a convex function. Therefore, it has a unique minimum which is achieved at:
1+4+v

_ 1 v
€= 1+v

and has roots at ¢ = {07 1} . Hence, the function is increasing in z; in the region ¢ > ¢. Then, we can obtain the maximum value
of I':

o= () () )

1+v

fF(é)<1iu> V <1iu)i<1i1/>i(1i”> -

Past, ¢ the function is decreasing. Thus, for any ¢ > ¢ we can define the inverse:

and thus, obtain:

W (z) =T () forx> Z.

The inverse is increasing in the region Now, observe that for any x > & we can map x to a value of consumption.

Next, observe that if the government ever reaches a point where x<Z the government cannot induce a higher current account
surplus. To induce a higher current account surplus, households need to work more, but to do so, they need a greater wage
subsidy. The issue is that past that subsidy, the leisure disutility income effect is so large that it induces more consumption. Thus,
Z is as a satiation point for the government. Thus, an optimum solution to the government problem will restrict the solution

such that x; > Z at all . Thus, Z is the peak of a Laffer curve in this model.

Next, observe that we have

U(ct—xfi:) = <1iy)1UU(Ct) = (liy>lgU(W(xt))

when the labor market is at equilibrium, for z; > Z. Thus, the objective of the government in the modified problem is:

v
1+v

V() = < ) | e a

where

T T
xy :yt+/0 qe (e, T)e (7,8) dT — [ft (0)+5/O fi (T)dT] :

with the restriction that ; > x. The problem is identical to the original version of the problem without labor taxes. Thus, their

solutions must coincide.

Optimal Issuances. Define now:

Z(x)=U (W (z)).
Thus, Z is the indirect utility associated with a current account deficit. Next, note that:

(Z")
VA

X
Te=p— T,



as we showed in the body of the text. Then, we have that:

Z'=UW"'andZ"=U" -W +U'W".

Therefore:
u”-w+uw"y & u' axx W" 1z
- p— Ly W W=
nee Uw’ TP U Wy W W
and note that: U
g = —ﬁW
Thus, we have that:
. n z W'\ z
= o— — —.
t=p WoW )
The rest of the formulas are as before:
L (7) —we (1)
(r)==————"-=
A Vi (7)
and 5 5
v v
rvg (1) =0 + 5 "9 "€ (0, T)and v; (0) = 1.

Finally, we use:
1

e =W (20), he = ()T = W (2) ™ andy =1 — W ().



C Proofs

C.1 Microfoundation of liquidity costs

Solution. We now provide a first order linear approximation for the price at the auction, g;(¢, 7), for small issuances. The

result is given by the following proposition:

Proposition 9. A first-order Taylor expansion around = 0 yields a linear auction price:

G0 7) ~ o(7) — 2y (P)ua(r). 29)

oy (T) 14 (T) where the price impact is given by 5\=#L

Thus, the approximate liquidity cost function is A¢(7,1) ~ —

We analyze a bond issued at time ¢ with maturity 7. At time ¢ + s, after a period of time s has passed since the auction, the time

to maturity is 7" = 7 — s . The valuation of the bond by investors in the secondary market is defined as:

YD (T 8) = Whops(T = 9).
Hence, the price equation satisfies the PDE (2):

opt7) N op(t7)
ot ot

,r-;rsw(tﬂ') (T/’ s)=10—

with the terminal condition of 1™ (0, s) = 1.

The valuation of the cash flows of the bond from the perspective of the primary dealer is ¢(*7) (7', s). Dealers are risk neutral
but have a higher cost of capital. At each moment ¢ + s dealers meet investors and sell at a price ¢(-:7) (7', s). The valuation of

the dealers, ¢*'7) (77, 5) satisfies:

g7 PgltT)
q i q

(r;Ls + U)q(t’T)(7/7 8) =0~ or'! ot

+~ET) (s) (Wt’ﬂ(ﬂ s) —q"7(7, S)) : (30)

This expression takes this form because the dealer extracts surplus (z/J(t’T)(T’ ,8) — gt (1, s)) when he is matched to an
investor. Before a match, primary dealers earn the flow utility, but upon a match, their value jumps to 1)(*7) — ¢(t:7) This jump
arrives with endogenous intensity ~(*7) (s). The complication with this PDE is its terminal condition. If § < 7, the PDE’s
terminal condition is given by ¢(*7)(7/,5) = ¢)(t:7)(7/,5). If 5 > T, the corresponding terminal condition is ¢(“™)(0, s) = 1,
since by the expiration date, the investor is paid the principal equal to 1.

On the date of the auction, s = 0, 7" = T, the dealer pays his expected bond valuation, hence the bond price demand faced by

the government is:
a(,7) = ¢ (7,0).

This is because banks have free entry into the auction.

Proof. Step 1. Exact solutions. The solution to g (¢, 7) falls into one of two cases. Case 1. If § < 7, then:

s _-(;U(Tzi}»u-"_n)du _ .
a(1,7) = Joe (5(S§ V) + Yy (T — 0)) dU. o




Case 2. If 5 > 7, then:

S

alr) = /OT o= 5 (riputn) du (5(3— v) +1_ﬁt+u(7' - U)) do

e I riputm)an 5= T). (32)
S

We solve the PDE for ¢ depending on the corresponding terminal conditions, ¢(*7) (7', 5) = ¢(t7) (7', 5) and ¢*7)(0, 5) = 1.

Case 1. Consider the first case. The general solution to the PDE equation for ¢(*7) (77, 5) is,

/ e Jo (it )du (6 + Yso¥tqo(T —v))dv + (33)
0

I g~ 5 5).

This can be checked by taking partial derivatives with respect to time and maturity and applying Leibniz’s rule.’! Consider the
exponentials that appear in both terms of equation (33). These can be decomposed into e~ I3 Irivutnldug— [ yudu, Then, by

definition of v we have:

e fd" Yudu _ e~ fd” ﬁdu

_ G- (34)
S

Thus, using (34) in (33) we can re-express it as:

q(tﬂ') (r',s) = / e Jo (TZ+”+n)du(S_Tv) (6 + Vsto¥rto(T —v)) dv
0

e I A Sy (7 — (5 - ).

When we evaluate this expression at s = 0, 7/ = 7, and we replace y(v) = =1, we arrive at:

5—v’

a(t,7) = ¢4 (7,0)
— /S e~ Jo (riyutn)du <(8— U)5 n ¢t+v(f - U)) do.
0

S S

Case 2. The proof in the second case runs parallel to Case 1 above. The general solution to the PDE in this case is:

’

q(tﬂ') (7—'7 s) = / e Ie (TZ+“+n+’Yu)du (6 + '73+u'l/)t+v (T - U)) dv
0

te— Jo (riutntyu)du,

When we evaluate this expressionat s = 0,7 = 7:

G(7) = /Teaf;(r;m)du(g—
0

s

10@+%595@)m

pe J (i) B T)

V)]

Step 2. Limit Behavior of q;(, 7). Price with zero issuances. Consider the limit ¢;(7) — 0 for any 7 > 0, which implies that

51Notice that we have directly replaced the value 957 (77, 8) = 14 (T — ).
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5 — 0. For both Case 1 and Case 2, equations (31) and (32),° it holds that:

JEem I trivatm)de (5(5 — ) 4 by y o (r — 5)) ds

li = 1i
Lt(‘l’l)rn—>0 qt(L?T) glno S

Now, both the numerator and the denominator converge to zero as we take the limits. Hence, by L'Hopital’s rule, the limit of the

price is the limit of the ratio of derivatives. The derivative of the numerator is obtained via Leibniz’s rule and thus,

e (et (5(5 — 5) + hga(r — 5))] lms
lim Oqt(L,T) = lim

Le(T)— 5—0 1

- §H—I>no e fg(r:ﬂJrn)du%ﬁ(T —5)

= 1/1,5 (T)

Step 3. Linear approximation of g¢(t, 7). The first order approximation of the function ¢ (¢, 7), the price at the auction, around

¢ = 0 is given by:

g4 (¢,
0(07) = (07 lomo + 28T | 1),

We computed the first term in step 2. It is given by 1;(7). Thus, our objective will be to obtain % |.=0. Observe that by
definition of 3, it holds that:

9g:(t,7) _ 05 0gs(v,7)

o O 05
1 0gy(e,7)
1yss 05
where we have applied the fact that 5 = i;y) . For further reference, note that
0 0qs (¢, 1
940 ) | gy Q00T) 1 (35)
o 50 05 pyss
Step 3.1. Derivative aqta(;’T). Consider the price function corresponding to Case 1. The derivative of the price function with

respect to s is given by:

05 05

Oar(,r) 0 ([ e Uit (55— 5) 4 pyy (7 — s)) ds
S
e~ f(f(r2+u+n)du¢(7 —5,t+5) + fog Se— o (ri 4w +’7)d“d5
S
fog e Jo (rivutn)du (0(5 = 8) + Ypys(T —5))ds
52
e Jo Crivutmduy, | (7 — 5) + 5 seto (rivutm)dugs — g,(0,7)

S

(36)

Note that in the last line we used the definition of ¢;(¢, 7) as given for Case 1.

Step 3.2. Re-writing the limit of %. To obtain w |.=0 we compute lim;_, % using equation (36). In equation (36)

>2For every T < 3§, i.e. in Case 2, it will be analogous since we are taking the limit when 5 converges to zero.
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both the numerator and denominator converge to zero as § — 0.°° Thus, we employ L'Hépital’s rule to obtain the derivative

of interest. The derivative of the denominator is 1. Thus, the limit of (36) is now given by:

= lim 9 {e‘ fj(":ﬂ“’)d“wwg(T —-3) +/ Se= Ji (rivutn)dugs Qt(L7T):| . (37)
0

5—0 0§ 5—0 05

Step 3.3. Consider the first two terms of (37). Applying Leibniz’s rule:

0 0] 5
lim { <a7_¢t+s(7 -5+ awt+§(7 —38) = (rigs T M)Yegs(T — §)> e~ Jo (rizutn)du

5—0

e B,

The previous limit is given by:
0 0
— 5 (1) + (7)) = (7 + m)de(7) + 6.

Using the valuation of the international investors, we can rewrite the previous equation as:

() pthlr) — (b ) + 8 = () = (4 ()

= —nPi(7)- (38)
This the first two terms of the limit of % are equal to —n¢ (7). Computing the limit of %: last term. The last term
of (37) is given by
. 0q(r, ) . Oq(L,7) O
N §h—r>n0 95 gh—r>n0 o 05
0qi (L, T
= _# |L:0 HYss, (39)
where we used (35). Thus, from (38) and (39), the derivative (36) is given by:
. a%(ba T) o 3%(67 7)
g11_11}10 95 = — L |L:0 HYss — nwt (T) (40)
Plugging (40) in (35) we obtain that:
0qu(e, ), 0qi(e, ), 1
oL =0 = HYss oL =0 — Nt (T) ss .
Rearranging terms, we conclude that:
g (L, T T
QféL )lL:O - _ 7721)1}2[/( ) . (41)

3The limits of the three terms in the numerator of equation (36) are respectively:
s s

lim e~ Jo rttuw)tmduge —

50 J, ’

lim e~ fo CEFITdny (- — 514 5)) =y (7),

5—0

Tim gu(e,7) = (7).
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Step 4. Taylor expansion. A first-order Taylor expansion around zero emissions yields:

Oq (L, T
(i) = @ty oo + T |y ),
- _ e (7)
= (1) s u(7).
where we used (41). We can define price impact as A\ = # This concludes the proof. O

C.2 Proof of Proposition 1

|e"’t/ggt (T)H2 < 00.

Proof. First we construct a Lagrangian on the space of functions g such that are Lebesgue integrable,

The Lagrangian, after replacing c; from the budget constraint, is:

0o T
L, f] = /0 e U (ytft (0)+/0 [q(T,t,0) e (1) — 6 f1 (7)) dT) dt

Rl of of
e (L v+ )

where j; (7) is the Lagrange multiplier associated to the law of motion of debt.

We consider a perturbation h; (1), e ?*h € L% ([0, T] x [0, 00)), around the optimal solution. Since the initial distribution
fo is given, any feasible perturbation must satisfy ho (7) = 0. In addition, we know that f; (T') = 0 because f; (T+) = 0
(by construction) and issuances are infinitesimal. Thus, any admissible variation must also feature h; (T') = 0. At an optimal

solution f, the Lagrangian must satisfy L [¢, f] > L [¢, f + ah] for any perturbation hy (7).

Taking the derivative with respect to v —i.e., computing the Gateaux derivative, for any suitable h; (7) we obtain:

= / e~ Pty (Ct l_ / 5ht dT] dt
a=0
/ / e o9 ]t 7)drdt
_pti .
+/0 /0 e o it (1) drdt.

L, f+ ahl]

a
do

We employ integration by parts to show that:

T 00
// 7‘7t T)drdt = / —gt 7) dtdr
0 0

T
= [ (tim e R (7). ()] = o (7)o (7)) dr
0

S§—00

T 0 a )
/ / ( de )_PJt (7)> h¢ () dtdr,
o Jo
e’} T e’}
/ efpt/ @jt (r)drdt = / e Pt
0 0o OT 0

and

T .
mmﬁ@)mmmm%AlMﬂngt
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Replacing these calculations in the Lagrangian, and equating it to zero, yields:

0 = /00 e U (cy) l— / Shy (T dT] dt
/ / < pJj _(§i+gi)ht(7—)d7dt
+/ e (hy (T) i (T) — e (0) i (0)) di
0
a /0 slglolo e " hy (7') Js (T) dr + ho (T) Jo (T) :
We rearrange terms to obtain:
0= - /OOO e U () — G1 (0)] hy (0) dt

Y S A 9j , 9j

—l—/o /0 e (—p] —U'(¢)0— == 5y 8t) hy (T) drdt (42)

- / e~P (e (T) ju (T)) dt

- /ooo Jim e™Phs (7) s (7)d7 + ho (7) Go (7).

Since hy (T') = ho (7) = 0is a condition for any admissible variation, then, both the third line in equation (42) and the second
term in the fourth line are equal to zero. Furthermore, because (42) needs to hold for any feasible variation h; (7), all the terms

that multiply h; (7) should equal zero. The latter, yields a system of necessary conditions for the Lagrange multipliers:

. 95 05 .
_ ST/ vJ] 97
pje (1) = oU' (cr) + 5 9 if 7 € (0,7, (43)
jt (0) = *UI (Ct), if 7 :O,
lim e ", (1) = 0, ifr € (0,T).

t—o00

Next, we perturb the control. We proceed in a similar fashion:
oo T 8(]
%E [t + ah,, f] |a:0 = /0 e PtU (cp) A <8LLt (1) + g4 (1, L)) he (1) dr| dt

[e%s} T
—|—/ / e Pth, (1) ji (1) drdt.
o Jo

Collecting terms and setting the Lagrangian to zero, we obtain:

/Ooo /OT e’ [jt (1) + U (cr) (Z(Zq (1) +q (7, L))] hy (r) drdt = 0.

Thus, setting the term in parenthesis to zero, amounts to setting:

0 .
U' (ct) (a(th (1) + g (7, L)) =—j: (7). (44)
Next, we define the Lagrange multiplier in terms of goods:

v (1) = —4¢ (1) JU' (c4) - (45)
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Taking the derivative of v; (7) with respect to ¢ and 7 we can express the necessary conditions, (43) in terms of v. In particular,

we transform the PDE in (43) into the summary equations in the Proposition. That is:

1 .
(p_U (Ct)ctct)vt(T) — 5+8v @, if 7 € (0,7,

U'(er) e ot or
v (0) = 1, if7 =0,
lim e P (1) = 0, if7 € (0,7T];

t—o00

and the first-order condition, (44), is now given by:

%Lt (T)+ qe (1,0) = v (1)

as we intended to show. O

C.3 Proofof Lemmal

e
o

.
t

We establish the sign relationship between €} and

2. First, observe that if ¢; (s) > 0, forall 7 € [0, T

T

(r

H _/TTLt ) dr
o fOTLt (2)dz

is an expectation: 1y = Ey, [7] under

a density function in s € [0, T']. Let

Gi(n= [ "g(s) ds,

be the cumulative distribution associated with g. We index {G, g} by 6, a parameter of interest that affects issuances in a com-
parative statics. Naturally, these distributions move continuously with . The following argument invokes first-order stochastic
dominance. Consider two arbitrary values of the parameter of interest, & and 6’ such that #’ > 6. By definition, z; is increasing
in 6 if and only if

11 (0) = Eqg, (0) [7] < Eg, o) [7] = pe (¢) -

Observe that since 7 is increasing, then, by definition of first-order stochastic dominance, the condition above is identical to
G(r;0)>G(1;0),
forall 7 € [0, T']. Because ¢ is a continuous and bounded function of 6, this condition is equivalent to the local condition:

% [G(r;0)] <0, Vr €[0,T].

Next, we translate the conditions on G into a condition related to the elasticity of issuances. Observe that

9 C ol () ds [ ()] ds
— [G(1;0)]| =G (7;0 0_00 — 20 96
SRR (7:0) Jo v (s)ds fOT t (s)ds

00
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Thus, since the term outside the bracket is positive, the sign of % [G (7;0)] depends on the sign of the term inside the bracket.

Thus, 2 [G (7;6)] < 0is equivalent to:

T
Jg g [ (o)) s _ Jo_gp o (s)]ds,vTe[o,T].

fo‘t ds  — [T (s)

To aid the calculations, we define the auxiliary function

fo 86
fo Lt 7

H, (1) =

and express the condition as:
H, (t) < H (T) ¥Vr €[0,T].
This is a necessary and sufficient condition for monotone comparative statics about the WAM.

Next, we obtain weaker stronger sufficient condition. Taking the derivative:

9 B Lo (7) e ()
—H; (1) = H( )lfo L (s)ds B fOTLt(S)dS]

_u(n) Ht( ) lw (1) Jo o (s)ds 9}
0 fo teg(s)ds | 1 (T) fOT 1 (s)ds
fo te,0(s)ds T
1 (7) g e l 0 () Jo wals)ds (,]
0 fo Lo (s)ds | te(T) fOT 1 (8)ds

_ vt (7) L0 (T) foTLfG
I mt<s>dslat<r>9 [T (s) ds 4'

_ L (1) Lo (T) to(s)0 (s) )
[y Ou(s)ds l u (7) ’- /(; w(s) f)w(z) 2" ]
L (’T)

B W [Et’e — By, (0 [€t79|s < T]] ,

where 1y ¢ (7) = a"(T) . The term outside the bracket is positive by assumption. Thus,
9 o — s
sign g Hy (1) ) = sign (]9 — Eg,01) [€]0]5 < T]) -

If €7 4 is increasing in Tthen € y — Eg, (o) {ef,9|s < T} > 0, and hence O%Ht (1) > 0 and p; increases with 6. The reverse

result applies if €] , is decreasing.

C.4 Duality

Given a path of resources y;, the primal problem is given by:

Vifo()] = h e Py (c(s))ds stt.

max /
{[’t(T)1Ct}t€[0,oo),TE[O,T] t
T
¢ = ye — [1(0) + / lge (720) 12 () — 6f, (7)) dr
0
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0 0
a—{:Lt('r)+a—£.

Here we show that this problem has a dual formulation. This dual formulation, minimizes the resources needed to sustain a

given path of consumption ¢;:

Dfo(-)] = min / e~ Jo T(S)dsytdt s.t.

{Lt(T)}tE[O)QQ),TE[O,T] 0

T
¢ =y — 1 (0) + / lg(rot, ot (7) — 871 (7)) dr

ot "\ T a0
re=p— Ulee &

U'(c) o

Proposition 10. Consider the solution {c{, v} (), f{ (T)}1>0 re(0,7) to the Primal Problem given fo. Then, given the path of

consumption cf, {y;, v (7), f{ (T)}iejo,00),7e(0,7] S0Ives the Dual Problem where:

y = e fr(0) 4 / lgs (7, 07)e5 (7) — 87 (7)] dr.

Proof. Step 1. We start following the steps of Proposition 1. We construct the Lagrangian for the Dual Problem in the space

||e’pt/ 2g: (1) H2 < 00. After replacing the resources y; needed to support a path of consumption ¢; the budget constraint, is:
o) . T
Ll f] = / e Jomds ey + £, (0) */ [q¢ (7,0) v () — 0 fo (7)) dr | di
0 0

[e%) T . 8f 8f
—fo rids _YJ gJ
+/0 /0 e vt (7’)( 5t +ou () + 37> drdt,

where v; (7) is the Lagrange multiplier associated to the law of motion of debt. We again consider a perturbation h; (7) , e P*h €
L? ([0, T] x [0,00)), around the optimal solution. Recall that because f; is given, and f; (T') = 0, any feasible perturbation
needs to meet: hg (7) = 0 and by (T') = 0. At an optimal solution f, it must be the case that £ [¢, f] > L[i, f + ah] for any
feasible perturbation h; (7). This implies that

o0 T
- / e~ Jo reds [ht (0) —|—/ Ohy (1) dT] dt
a=0 0 0
oo T " oh
_ — [y reds E1°
/0 /0 e Jo ¢ Ut () drdt

o) T
¢ oh
—Joreds 22 drt.
+/0 /0 e aTvt (r)dr

0
%ﬁ [, f + ah)

We again employ integration by parts to show that:
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oo T ¢ Oh
/ / e fo Ttdsivt (7') drdt = / / e fU ”ds ) 7dtd7'

/ (slggoe Joredsh (r)v, (7)] = ho (T) vo (T)) dr

n/ /" —ﬁWMS<a“()-nm(ﬂ>ht@yﬁm—

- A @melwmm()gﬂ—%umuﬂyh—

§—00

] . T
/ e Jo T(u)du/ (61}3157) — TV (7’)) h () drdt,
0 0

and

o0 . T ) . T
[Tt [P @i = [T (0 @) - 0w ) [ ) o]

T or

Replacing these calculations in the Lagrangian, and equating it to zero, yields:

0 = / e fo reds [ / 5ht dT‘| dtt
0 0
/ / e jo rids ( T — av ai) ht ( )det

[T (10 (70) — b (0) 0 0)

0

- / lim e~ Jo "Wdeh (7, (7) dr.
0

S5— 00

Again, the previous equation needs to hold for any feasible variation h; (7), all the terms that multiply h; (7) should be equal to

zero. The latter, yields a system of necessary conditions for the Lagrange multipliers, and substituting for the value of ry:

u” (ct) Ct Gt B ov Ov .
(P U/( ) Ct) Ut (T) = 0+ ot or’ if 7 € (OvT]v (46)
v (0) = 1, if7 =0,
. —pt _ .
tllgloe ve(t) = 0,ifr € (0,7T).

By proceeding in a similar fashion with the control we arrive to:

<gilLt (1) + g+ (T, L)) = —v (7). (47)

Note that system of equation (46) to (47) plus the budget constraint, the law of motion of debt, and initial debt f, are precisely

the conditions that characterize the solution of the primal problem. O

C.5 No liquidity costs: A = 0

Proposition 11. (Optimal Policy with Liquid Debt) Assume that X (7,t, L) = 0. If a solution exists, then consumption satisfies
equation (13) with r*, = 1y and the initial condition B(0) = [ exp (— [, 7*(u)du) (c(s) — y(s)) ds. Given the optimal path of
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consumption, any solution v, (7) consistent with (6), and
B: = 1*;By + ¢t — ys, fort >0,

where -
Bt:/o d)t(T)ft(T)dT,

is an optimal solution.

(48)

(49)

Proof. Step 1. The first part of the proof is just a direct consequence of the first-order condition v; (1) = ) () for bond

issuance. Bond prices are given by (2) while the government valuations are given by (12). Since both equations must be equal in

a bounded solution, we conclude that

U" (¢t) de

U (cy) dt’

*
TL=Ty=p—

must describe the dynamics of consumption.

Step 2. The second part of the proof derives the law of motion of B;. First we take the derivative with respect to time at both

sides of definition (49). Recall that, from the law of motion of debt, equation (6), it holds that:

To express the budget constraint in terms of f, we substitute ¢; (7) into the budget constraint:

e =yi— fi <o>+/OT [m ) @{?) s (ﬂ} ar.

We would like to rewrite equation (50). Therefore, first, we apply integration by parts to the following expression:

5.7 (r)dr.

T
of
/ e (1) 5odr = (1) fe (T) = 9e(0)£¢ (0) —
0
As long as the solution is smooth, it holds that f; (") = 0. Further, recall that by construction ;(0) = 1. Hence:

T af Taw
(7)) =—dT = —f; — — i (7)) dT.
| oG-~ [ Fne

Second, from the pricing equation of international investors, we know that

27:/_} = —T*t’l/lt (T) + 6 + 88715

Then, we obtain:
| o Shar= g0~ [ 64w @) - (7)) 12 ()
0 T 0
We substitute (51) and (52) into (50), and thus:
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e =yt — f+(0) + /OT [wt (1) % —6fs (T):| dr...

T
_ {—ft (0) - / 16404 (7) — 1ty ()] £ (7) df}

T T
:yt+/0 Wt(T)ftt(T)+¢t(7)ft(7)]d7*/0 e (1) fi (7) dT.

Rearranging terms and employing the definitions above, we obtain:

By =c — ye + 17 By,

as desired.

C.6 Asymptotic behavior

Here we formally prove the limit conditions of Proposition 1. In particular, we provide a complete asymptotic characterization.

The following Proposition provides a summary.

*

Proposition 12. Assume that p > 17, there exists a steady state if and only if X\ > ), for some \,. If instead, \ < )\, there is no

steady state but consumption converges asymptotically to zero. In particular, the asymptotic behavior is:

Case 1 (High Liquidity Costs). For liquidity costs above the threshold value X > ), variables converge to a steady state characterized

by the following system:

b _
CSS
rss = 0
Lss(7'> _ Z/JSS(T) - USS(T)

5\%5 (T) ’

() = 21— ) T

fusl) = / D (s)ds

T _
Css = Yss — f@s(o) +/0 |:1;[}ss(7-)Lss(7') - Aw&TS(7—)L5:s(7-)2 - 5fss(7)

Case 2 (Low Liquidity Costs). For liquidity costs below the threshold value 0 < X\ < ), variables converge asymptotically to:

. Cs _(p=roc M) (s—1t)
lim s—o0— = € "
t
_ s . _
Vool oo (X)) = sy (L= e T =T
wse(T) — Vo (7—7 Too (5‘))

>l

N

~—
|

Loo (T, oo (

T
foo(r,roo(;\)):/ oo (5, 7o (V) s

(53)

(54)

(55)

(56)

(57)



where 7o (\) satisfies r¥, < 7oo(\) < p and solves:

Coo = 0

, _
— = 0+ [ i 00 = 2 () = 0 () .

Threshold. The threshold \, solves |Css‘5\:5\0 = 0in (57) and limz_, 5, 7o (\) = p.

Proof. Step 1. First observe that as A\ — oo, the optimal issuance policy (15) approaches ¢; (1) = 0. Thus, for that limit,
css =y > 0and fos(7) = 0.

Step 2. Next, consider the system in Case 1 of Proposition 12 as a guess of a solution. Note that equations (54) to (57) meet the
necessary conditions of Proposition 1 as long as 7 = p. This because: ¢s5(7) meets the first order condition with respect to
the control; v, (7) solves the PDE for valuations; given ¢4(7) and v, (7) the stock of debt solves the KFE, thus, is given by
fTT tss(s)ds; and consumption is pinned down by the budget constraint. In addition, by construction, consumption determined

in (57) does not depend on time; i.e. ¢; = 0 and this implies that
Tgs =T = p.
Thus, the only thing we need to check is that there exists some ) finite such that consumption is positive.

Step 3. The system in equations (54) to (57) is continuous in . Therefore, because c,s = y > 0 for A — 00, there exists a value

of A such that the implied consumption by equations (54) to (57) is positive.

Step 4 'We now prove that there is an interval where this solution holds. In particular, we will show that ¢, decreases as A
increases. Observe that, steady state internal valuations v, (7) in (55) and bond prices () are independent of \. Steady-state
debt issuance’s ¢ 55 (7) in (54) are a monotonously decreasing function of ), because

Otss (T) 1

85\ - _ibss (T) < 07

and therefore the total amount of debt at each maturity f,5(7) in (56) is also decreasing with ), because

0fus (7)

1
a)\ = —sts (’7—) < 0

If we take derivatives with respect to \ in the budget constraint (57) we obtain:

ox (32 X B) Lss(T)% = A (T) s (T)

C r Lss \T ss \T
0 ss afss (0) +/0 |:¢SS(T)8 ( )_'IZ) ( ) Y DY

8L55_(7') B 53f85_(T)] dr

T
— %fﬁs (0) — %/0 |:1,/}55(7')LSS (1) + 5\1/)552(7') LSS(T)2 — Mg (T) Lss ('r)2 — 0 fss (7)] dr
1
= —XCSS < 0.

Observe that ¢4 (7) can be made arbitrarily small by increasing . Thus, there exists a value of A > 0 such that ¢,s = 0 in the

system above. We denote this value by \,.

Step 5. For A\ < ), if a steady state existed, it would imply c,, < 0, outside of the range of admissible values. Therefore, there
is no steady state in this case. Assume that the economy grows asymptotically at rate g (;\) = limy, o C—lt %. If goo (5\) >0
then consumption would grow to infinity, which violates the budget constraint. Thus, if there exists an asymptotic the growth
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rate, it is negative: goo (5\) < 0. If we define 7 (5\) as

re (8) = (p+ 09 (V) <,

the growth rate of the economy can be expressed as

When this is the case, the asymptotic valuation is

) (1 — e_T“(’_\)T)

—o) e,

Voo (7,700 (A)) =

To obtain the discount factor bounds, observe that if v, ('r, Too (5\)) < 1)4s (7) the optimal issuance is non-negative. Otherwise
issuances would be negative at all maturities and the country would be an asymptotic net asset holder. This cannot be an optimal
solution as this implies that consumption can be increased just by reducing the amount of foreign assets. Therefore, 7+, (5\) >r*.
Finally, by definition 7 (;\) < p. O

C.7 Proof of Proposition 3

When § = 0, we have that

1 *
s (7) = 5 (1= exp (= (p = 72,) 7).
Define the spread, A = p — r%,. We have that:
0 [1 1
(1 —exp(—AT))| = = (Aexp (—AT)).

A | X )

From here, we compute the elasticity with respect to relative impatience:

—_— exp (—AT) A
Coa8 T exp (—AT) pexp (A1) —1 >0

The denominator is increasing in 7, so €, A is decreasing in 7. Thus, by Lemma 1, the WAM decreases with impatience.
;

C.8 Proof of Proposition 4

Part 1: Smoothing. We investigate the effect on the WAM of a temporary drop in steady state income to the initial income
yo- Thus, we consider a decline in income starting from the steady state at time zero. We investigate the special limit case as

liquidity costs are very large, \ — 00, and bonds are zero coupon, § = 0, which renders a closed form solution. Note that in

this case:
lim fss(7) =0, lim ¢ (1) =0,
A—00 A—00
and thus:
lim ¢ = y:.
A—00

Recall that the path of income is given by:
Yr = Yss + (Yo — Yss) exp (—at) and g = —a (Yo — yss) exp (—at) .
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Now, consider a small negative initial drop in income near the steady-state, ¢ = yss — yo = 0. Therefore, we have (in the limit

ase = 0)
9 0 ae exp (—at)
e [G¢/yt] le=0 = Oz | yss —eexp (—at) le=o
B exp (—at) | as (exp (—at))’ |
yss —eexp (—at) " (5~ cexp(—at))® T
_ poezat)
ySS

Because we are working with the large A limit, we have:

0 0 .. —at
Tim (el lemo = - /i om0 = oS o),

SS

From here, we can compute the impact on the domestic discount. Recall that:

Gt
re=p+o-—.
Ct

Thus, we have that:

0 exp (—at)
/\l;rilo P [r] = o {] .

Now, recall that the optimal issuances at time zero are given by:

L () = % (1— ZZ%) - % (1—eXp (—/OT (rs—r;)ds» > 0.

Thus, we have that:

s _ 8L0 (7’) ) 1
O = de 1o (1)
_ 8(1—exp( fo Ts ds)). 1
Oe (1—exp (= [y (rs —r2,)ds))
_exp (= [y s — r2ds) o [Ta T ds
< 1—exp(_foT7“s—r§sd5)> < 0 85[S}d>
f% [rs]ds 1

exp (fy rs — rigds) —1 Yss

Therefore, in this expression we have that:

Jy exp (—as) ds 1 exp (—a-8)|T_, 1 exp (—ar) — 1
lim eosz—oa - EE— - _ d )
A—oo Yss exp((p=r)7m) =1 e exp((p=79)7) =1 yss exp((p—r")7) -1

Finally, notice then that reversing signs we obtain

1 1 —exp(—ar)
lim ¢, = —o
A—00 Yss €Xp ((p - T*) T) -1

>0.
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Thus, we have that issuances increase with the drop in income and scale with the IES coefficient. Next, we show that the WAM

is decreasing with the perturbation. We need to show that € . is decreasing in 7. Note that

0
67 [66,6] = 66,6 |:a

exp (—art)

)—(p—r*)

exp ((p—1")7) J

1—exp(—ar exp((p—1*)7) —

Thus,
sign E[ET] = sign a;—(—r*) !
N e e O o L—exp(=(p—71%)7)
_ ( ! exp (a7) — 1 )
= sign - .
g p—r* l—exp(—(p—1*)7)
Define,
h(r) = exp (ar) —1 >0

T—exp (= (p—)7)

By L'Hospital’s rule, the function
. exp (ar) —1 «a
lim = .
—01l—exp(—(p—71*)7) p—1*

It suffices to show that h (7) is increasing for 7 > OWe do it by contradiction. Suppose that & (7) is decreasing or constant, and

hence (1) < -2 The derivative of this function is non-positive , o’ (7) < 0. Then,

p

/ _ aexp (ar) _ (p—r*)exp(—(p—1")7) exp (a7) —1
R (1) = [exp(on’)l 1—exp(=(p—71%)7T) :| 1—exp(—(p—1r)7)
= h(7) [al—(p—r*) 1 }<0
1—exp(—ar) exp((p—r)7)—1] =
" ! 1 —exp(—ar)

(p—=r) ~exp((p—r7)7) =1
This requires that:

exp (at) — 1 B ! 1 —exp(—ar) __exp (—art) exp (ar) —1
e (—(r—r)7) =7 S eplp—rIn -1 ew((p—r)m) = exp(— (=77

)

and simplifying
exp ((p—77)7) < exp(-ar),

which is false for any 7 > 0. . Thus, by lemma 1, the WAM decreases, i.e.
lim €5, <0.

A—o0

Part 2: Yield riding.

Recall that the path of international rates is given by:
ry = rss (1o — i) exp (—at) .

Now, consider a small initial increase in rates. Thus, we have: rj = r%, 4 . With zero coupons,

o (1) = exp (— /OT rjds) = exp (—T:ST —€- /OT exp (—at) ds) .
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We compute the integral to obtain:

Yo (1) = exp (r:sr+5~ /0 ' (a)-exp(a~t)ds>

= exp (—r:sT + 2 (exp (—a-7) — 1))
= exp(—7ri,T)exp (2 (exp(—a-7) — 1))

€
= s (7) - exp (5 (exp (—a-7) — 1)) .
Next, the derivative (in the limit as ¢ — 0) is given by:

o o ()] o= = s (1) = (exp (- ) = D exp ( (exp (~a+7) = 1)) lomo = b (7) (exp (- 7) = 1) <0

and

o (T) |5:0 = 1ss (T) :

00=3 (- 5) >

Thus, since 0 = 0 implies vg (7) = exp (—p7), we have that:

Now, recall that issuances are:

g [to (7)] | _ _l _ Yo (1) % [0 (7)] |
o= ™" - A Yo (1) o (7) =
= e (= (p i) ) (e () ~ 1)
Therefore,
P - 1 Q[LO (T)} :leXp(— (p_’r:s)T) (exp(_a'T)_l)) :71 1—6Xp(—04"7')
%€ 1y (1) De o 1—(exp(=(p—71%) 7)) aexp((p—ri)7)—1

1—exp(—a-T)
exp((p—ri,)7)—1
constant (—1 /) makes €0, increasing in 7. Thus, the WAM increases with a temporary positive increase in the level of interest

In the proof of the effect of smoothing, we showed that the function is decreasing, then multiplying it by the

rates—and the yield curve slopes downward.

C.9 Limiting distribution: A — 0

Proposition 13. (Limiting distribution) In the limit as liquidity costs vanish, X\ — 0, the asymptotic optimal issuance is given by

(T) = lim Loo(T) = 1+ [_1 + (T*/(S - 1) T:ST] e_T:ST 1psst

LX—>O _ K
3—0 T+ [=1+ (/6= 1) rxT)e 5T ahgg (1)

oo

(58)

where constant k > 0 is such that yss—f(;i\oﬁo(O)JrfoT {Li‘jo (T) ss(T) — 5f§‘cﬁo(7')} dr = 0,and f2°0(7) = fT 270 (s) ds.

T
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Proof. Consider the following limit:

A70(r) = lim tee(7,mao (V)
A—0
= lim Yss(7) — Voo (7,70 ()
A—0 )\1/)55 (T)
5(1—emr) O(1—er=Or . :
— lim - (L) ( _ )+e—rssr_e—rm<x>r
X0 AY (7‘) Th Too ()\)

This is a limit of the form J as limy_,( 75 (A) = 7*.>* We do not have an expression for r (), so we cannot apply L'Hopital's

rule directly. Instead, we compute:

- s(1—e "7 §(1—e—Too(T . -
T B e B e e

lim —2———25 = lim —r*T —roo (MT ’
A=0 Loo (T, Too(A))  reo(M)—r= 8(1—¢ ) 8(1—emreeT) 4T — e=a(NT Y (7)

r* T

which also has a limit of the form %. Now we can apply L'Hopital’s. We obtain:

—r*re " T 45 (1= -
500(7—77'00( )) r*2< ) +Te " T ’lbt

lim - "
320 too(Ty e (N))  Z8r T T45(1me"™T) o 9 (7)

L+ [-1+ (/5 =1)r*r]e ™ T 4y
14+ [-1+ (/0 —1)r*T]e " T (1)

A
A

If we define

2 = lim too (T, 700 (N))
A—0

then

. Ty L[ (/=) rrr]e T gy
Sl\i%boo(ﬂ T‘OO(A)) ] ¥ [_1 + (7“*/(5 _ 1) ’/‘*T] e~ T P (T)

The value of k then must be consistent with zero consumption:

=
—.

- T _ -
yss — f270(0) + / |55 (7) s (7) = 61370(7) | dr = 0,
0

for f220(7) = fT 270 () ds. O

T+ Yoo

C.10 A further look into the revenue-effect

We analyze (2 to provide an interpretation of the revenue echo effect. We develop the explanation with the aid of figure 3.
The revenue-echo (2, is the product of the marginal probability of default, § (V;) U’ (¢;), and an integral described below. To
understand these terms, consider a small issuance of a (79, to)-bond, located at the gray dot in figure 3. The bond matures as time
progresses, as depicted in the figure by the gray ray in the direction (1, —1). By time ¢, the bond has a maturity 7 = 79 — (t — o).
Thus, the bond reflects the marginal impact on the repayment probability of a bond of maturity 7. If we multiply the term

0 (Vi) U’ (&), inside €2, by the term g:gzz; v in the valuation, we obtain the marginal effect on the repayment probability of that
bond:

54We drop the sub-index ss to ease the notation.
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0 (V) U' () vy (7).
—_——
effect on repayment probability
Hence, the term 6 (V;) U’ (¢t) v (7) reflects the marginal effect of the (7o, tp)-bond, on the repayment probability by time ¢.

The double integral captures how a lower repayment probability at time ¢ impacts the revenues generated by all issuances in
all moments prior to ¢. Notice how the range of integration covers all maturities m € [0, T in the outer integral. The inner
integral covers the relevant times prior to time ¢, z € max {t +m — T, 0}, when the marginal effect on repayment of the
(t, 7)-bond affects the repayment probability of other bonds. These bonds are those that are still outstanding at time ¢, with a
maturity m—represented graphically in the vertical line at time ¢. The effect of default at time ¢ impacts past prices in the form
of an "echo effect": Any bond price at a date prior to ¢ for a bond that is still outstanding at time ¢ should include the discounted
value of its price at ¢, e~ MG (w)duyy,, (m) for a specific maturity m. For example, the price of a bond with maturity m, ¥, (m),
affects the price of all bonds of maturity (m + ¢ — z) at time z indexed by z € max {t + m — T,0}. Each ray that extends
from the vertical line at ¢ depicts one such family of bonds. Thus, if we multiply the change in the repayment probability at ¢
by e™ G (w))duy,, (m), we obtain the reduction in the price of the (m + t — z, z)-bond. We can do the same for all bonds in
m € [0,T), the outer integral, and past times z, the inner integral, to obtain the marginal effect that the (¢, 7)-bond has on all

past bond prices.

Naturally, the marginal impact on past prices affects past revenues. Thus, fix a maturity m and a date . If we want to get the
effect on revenues of a change in past prices, we must multiply the change in price by ¢ (1 — (5\ / 2) Z), the issuance amount net

of the liquidity costs. If we use the optimal issuance rule (15), revenues are proportional to:

2
1 1 Uy (m+1t—2)
2\ U, (m+1t—2)
Thus, when this term is inside the double integral, it captures the impact on past revenues of an increase in default probabilities.
We bring past reductions in revenues into the current period ¢ by multiplying by el P(Wdu The echo effect is present at any
instant prior to the maturity of the bond, which is why it appears as a flow in equation (25). When the government considers the

marginal issuance of the (7, tp)-bond, its valuation is the present value of all the echo effects {2 that last throughout the life of

the bond. This reduction in revenues is part of the issuance consideration.

C.11 Proof of Proposition 6

Proof. Step 1. Setting the Lagrangian. Let V [ fto (), X toi| denote the expected value of the government, at the instant £° where

the option to default is available, but prior to the decision of default. This value equals:

V [fio (), Xeo| =BE T (V [ O] X0 ) + 0 (V [foo (), X0 ) V [ oo (), %] |

Default No default
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where the first term in the expectation is the expected utility conditional on default given by I' (x) = f;o 2d©(z). The second

term is the probability of no default time the perfect-foresight value. The Lagrangian is:

/t" e U (&) ds + e PV |:ftn () ,th]
0

R L ) S
+/0 /0 e jS(T)< s +i (>+8T>deS
O T—pSA _pF b W _ 0y
o [ e us<7)(r<s>ws<>+6+a 3>dd]

In the Lagrangian, E*” denotes the conditional expectation with respect to the random time ¢°. Here j, () and /i, () are the

c [wa} - EY

Lagrange multipliers. The first set of multipliers, j5 (7), are associated with the law of motion of debt and appears also in previous
sections. The second set of multipliers, jis (7), are associated with the law of motion of bond prices. These terms appear because
the government understands how its influence on the maturity profile affects the incentives to default, and hence impacts bond

prices. This happens through the terminal condition:

lﬁtO(T) = Efg {@ (V [fto () ’XtOD 7/)1:0(7)} )
w(0) = 1L

The terminal condition reflects that, at date t°, the bond price is zero if default occurs. Otherwise it equals the perfect-foresight

price, Yo (T), if default does not occur.

Step 1.2. Re-writing the Lagrangian. Proceeding as in the proof of the deterministic case, as an intermediate step we integrate by

parts the terms that involve time or maturity derivatives of f and Q/A} The Lagrangian £ {Z, f , 1/3} can thus be expressed as:

t° T
E V eI (6)ds + eV [fuo (), Xeo - /0 e fuo (7) Jro(T)dr

/f ) Jo ( dT+// e fo(r ( ms())dsdT

+/ - f ()i, ()ds—/ = fo (5) jo (0) ds

// e (7 ]de3+//e"5 iy () drds
o / ey () (=7 () Bs(7) + 8) drds,

o[ e )1/30(7)*%10(7)1/)0(7)} dr

/ / (g’: pis(T )> drds

- /O e [us (T) s (T) — €% 15 (0) s (0)] ds
+/0 o /OT e P, (1) gldeds] .

Step 1.3. Computing expectations. If we group terms, substitute the terminal conditions f, (T') = 0and ¢ (7) = © (V |:fto () ,XtoD Yo (T)
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and compute the expected value with respect to t°, we can express the Lagrangian £ [Z, f , 1[)] as

/OO —(p+¢)sU(A )ds
/OO (p+¢)Sf (5) 7 (0) ds
0
— [T e [ (1), (1) = e 0 0)] ds

0
o 0
[ e (G- i) dse

X
oy
*/ OO /OTC (905, (7) by (7) drds
/
/e

+

8

_ dj
(pt9o)s £
e fs(7) - —drds

+/OOO
o

0o T ~
0
Jr/ e~ (p+o) 51/} (1) %d’i‘ds

(=)

o
(e}

+/0Tf0 dT_/Tﬂo(TWO(T)dT
+/0°° e GV [£, (), X,] ds
- / / e~ PFDGF (1) g (7) drds

0 0

+ /Ooo /OT e_(P+¢)S¢ﬂs (1) Ef {9 (V [fs () 7_X%) 77[15(7)} drds.

Next, we compute the Gateaux derivatives with respect to each of the three arguments of the value function at a time.

Step 2. Computing the derivatives. Step 2.1. Gateaux derivative with respect to the issuances. If we consider a perturbation around

= 0, the result is identical to the risk-less case:

issuances and equalize it to zero, 3 L |:L + ah f 1/1} o

0" @) (i (1) + a(em)) = =i ().

Step 2.2. Gateaux derivative with respect to the debt density. Since the distribution at the beginning fj (7) is given, any feasible
perturbation must feature h(7) = 0 forany 7 € (0, 7. In addition, we know that h;(T') = 0, because f;(T") = 0. The Gateaux

derivative of the continuation value with respect to the debt density is:

__=E {e (v[f0.x)) /OTjs (7) ha (7) dT},

where we have taken into account the fact that % (T'(x) + © (x) ) = O () and —from the perfect foresight problem— :

Ly [f0)+ahi (), x.]

LV [f.0)+ an ()]
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Similarly, the Gateaux derivative of the terminal bond price with respect to the debt density is

a=0

L {o (V[0 +an (), x])um}

EX {9 (V {fs () ,XSD (T, s) /OTj (7', 8) hs (") dT/} ,

© (x) is the probability density. The Gateaux derivative of the Lagrangian with respect to the debt density,

, is thus:

o T
/ e~ (PO (&) [_hs (0) + / (—0) hs (1) dT] ds
0
e~ (PHd)sp (0,5) 35 (0) ds

[
T / et (1) (52 < o (1)) dsar
-

[e'e] T ~
/ ~+0)sp () D g7 g
0 0 87—

/
/Ooo /OT6 (p+@)s g X {@ (V {fq () ’XSD Js (T)} he () drds

/Ooo /OTe (P+@)3 oy (1) js (1) drds

/ / (040 gy () BX {9 (V [fs () ’XSD W (m) /OTjs (1) h (1) dT} dmds.

The value of the Gateaux derivative of the Lagrangian for any perturbation, must be zero, i.e. % L {i, f + ah, 1&}

_|_
=

o0 (7)o (T)dr

+

= 0.
a=0
Thus, a necessary condition is that all terms that multiply any entry of hs (7) add up to zero. We summarize the necessary

conditions into:

pis(r) = (U (o)) + 32— 9
+ ¢E§{ @(V [fs ('),XSD +9(V [fs (-),XSD/OT;ES (m)ws(m)dm] G (7) = s (T)}7 (60)
Js(0) = =U'"(¢).

Step 2.3, Gateaux derivative with respect to the bond price. In the case of the Gateaux derivatives with respect to the evolution
of the price 1/;, % L [Z, 1 1[) + ah}

The reason is the following: only bonds that mature after default can be affected by the government’s policies and hence the

, we need to work first with the Lagragian before expectations have been computed.

variations have to be zero for those bonds that mature before default, iLt (1) = 0,if 7 + ¢ < t°. To incorporate this, we assume

that admissible perturbations are of the form A (1) = hy (7) L{r44>¢0}, where hy (7) is unrestricted. The Gateaux derivative

30



is then

X
Eto

. e U’ (¢) Tis (7)87({1{7+52t"}hs (r)dr | ds
/ (/0 > )
/ / e P i L aspoyhs (7)) drds
—/ 0 () Loy ho () dr

/ / P Lprasiogh(r) (5 = pie(r)) drds

—/O {1{T+Szt0}hs( )05 (T) — e P Ly t01hs (0) 05 (0)| ds

to T N
op
+/ / e Pl gsporhg (T7) =—drds]| .
0 0 {T+s>t°} ()87_ ]

Note that the perturbation is only around ) (7) and not ¢/, (7), the terminal price after default, which is given. Since at maturity,
bonds have a value of 1, s (0) = 0, because no perturbation can affect that price. If we compute the expectation with respect to

the random arrival time, ¢°, we get:

/OO e~ (405 (1 =97\ U (&) UOT b (7) ;‘Zhs () dT] s
/ / e (L= e797) i (7) (<7thy(7)) drds
*/0 (1—=¢) o (7) ho (7) d

—/ e~ (pte)s (1- e_¢T) ws (T) hs (T) ds
0

Y R —67) . () O
+ e\ (1— e °T) 9, (1) =-drds,
0 0 or

where we use
]Egg [1{T+s>t°>s}] =e % (1 - eidﬁ) :

Again, as the Gateaux derivative should be zero for any suitable /(7, s), the optimality condition is

(=) = Ve)in(n 30 - G4 O
fis (T) = 0,
fio (1) = 0.
The solution to this PDE is
; ’ [P ) —p)dugpt (Y 7 9g-
fs (1) = e - Pl (é)t(t+s—z,2) — (T+ s — 2) dz.
max{s+7—T,0} 01/}
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If we integrate the discount factor of the government with respect to time, we obtain the following identity:
s s S TTI (A A
. U"(¢,) . ¢
/ Fudu = / pdu — / #cu#du.
z z z U (C'U/) C/U/

/fudu—/ pdu = — log (U (&)

Therefore, we have that

We obtain the following identity:
/A
ef; pdu _ efzs P du U (CS) )

U (é.)
Thus, the PDE for [is (T) can be written as:
o v [° — 2 (R =y )duy Jq.
fis (1) =U" (&) e VTR (T4 s —2) — (T+ 5 — 2)dz.
max{s+7—T,0} 8¢

Notice that

z;‘/{} - (z- % (0)?
0

where the second line uses the optimal issuance rule. Hence, we can write the price multiplier as:

2
s S(ax 1 U, —
e (1) =U' @) [ LN Py (UURELEL ) I Y
max{s+7—T,0} 2X P, (7' + s — Z)

We employ this solution in the main text.

Step 3: From Lagrange multipliers to valuations. We now employ the definitions of 05 (1) = —j, (7) /U’ (é5) and v, (1) =
—js (1) /U’ (és) , we can express equations (59)-(60) as

Ts0s (1) = 0+ % - %
+EY { O W) +80%) [ e m)vutmlam| T, () - o, <T)},
s (O) = 1

where we use the notation © (V) = © (V [fs () ’XSD and 0 (V (s)) = 6 (V {fs () ,XSD . Therefore valuations can be
expressed as

() = e KT Gros

!

T rte)d X U’ (ctys)
+¢/ e ft (Pute)du <5 + ]Es |:(@ (‘/,54_5) + Qt+s) ,%Ut—‘rs (T - S):|) dS,
t U (Ct-i-S)

where

T
0, =0(Vy) / fie (m) oo (m)dm.
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C.12 Proof of Proposition 7

Preliminary Calculations. Consider a RSS with § = 0 and A — oo. Note that in this case:

lim fss(7) =0, lim ¢ (1) =0,

A—o00 A—00

The RSS valuations are given by:

_ 81}7‘85

or

PUrss (T) = +o- (Eff;s [(90 + QO) U (yo/yss) Vo (T)] — Upss (T)) s Urss (0) =1

We can verify the following Lemma.

Lemma 2. The solution to 055 (T) is:

brss (T) = exp (= (p+ ) 7) + ¢>/0T exp (= (p+ ) (7 = 5)) 7 [(©0 + Q0) U’ (yo/yss) vo (5)] ds.

Proof. We can verify the solution since:

Tt = <04 0) [ew (- (0 0)7) = (04900 [ exp(— (04 0) (7 = ) B, [Ores + Q) U /e v )] s
Dpss(T)
+ ¢E7)’is [(90 + QO) U’ (yo/yss) Vo (T)] :
Thus, 95
— S = (p+6) Byas (7) = GE, (B0 + Qo) v (1) U (/9] -

Next, We consider a single event of a jump in income and investigate the special limit case o« — 00 :

lim ¢ = yp = yss VT #L°.

{;\,a}ﬁoo

At t° there is an instantaneous shock. Thus, y; is characterized as a single impulse, and thus, a small jump in marginal utility

U’ (yo/yss)- Since, income is steady and equal to consumption for all periods other than t°, we obtain:

vo (7) = exp (—pr).

We prove the following auxiliary Lemma.

Lemma 3. The solution to 0,55 (T) is:

Jim lim [byss (7)] = exp (= (p+ ¢) 7) (L+ EX, [(©0 + Q) U’ (yo/yss)] (exp (¢7) — 1)) .

A—00 @0
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Proof. Next observe that:

lim lim EX [(@0 + Qo) U’ (yo/yss) /OT pexp(—(p+ @) (Tt —35))vo(s)ds| =

A—00 X—00

exp (= (p+ ) T)EX, [(@o+ﬂo)/07¢exp((p+¢)-8) U' (yo/yss) lim lim [v; (s)]ds| =

A—00 @00

emw<p+¢vaﬁsﬁ@o+Q@Lﬂ@m@“yAT¢Wp«p+¢»swmp<pﬁds -

exp (= (p+¢) T)EX, [(@o+Qo)U’ (yo/yss)/OTczﬁexp(WS)dS =

E. [(80 +Q0) U’ (0/yss) exp (= (p+ ) 7) (exp (¢7) — 1).

We make use of this expression below. O

Finally, we will obtain the result that all RSS issuance elasticities are proportional to:

1 —exp(—¢7)

Z (1) = > 0.
D= (G2 - (1 - exp (~67)
. . . * — 1 ¢+(p—7‘:s)
Lemma 4. The function Z (7) is decreasing for any 7 > T* = 3 log ( =) )
Proof. Thus function is of the form:
x (1)
Z (1) = ,
TG
and then
YA lde % do de (y—x+z\ dy 1
- 7 - _dt dr =7 - _ 7
or (T)<a:d7' y—x+y—x> (T)<d7'(x(y—a:)> dTy—x)
_ 20 dj(%)_@
(y—z) \dr \z dr)’
where
z (1) =1—exp(=¢7); y (1) = exp (p7),
and

y(r) —x(r) =exp(p7) — 1+ exp (—¢7) > 0.

g or

Thus, we have that:

= sign[pexp (=¢7) — (p = 75,) (1 — exp (—¢7))]

9Z <0, if:
1 < (p - r:s)
exp (¢71) — 1 ¢

The function (exp (¢7) — 1)_1 is decreasing in 7 and converges to infinity as 7 — 0. Thus, the function is decreasing for any
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T > 7" solving:
(b + (p — r:s)
(p - T:s)

= 110g<¢+(p_r:s)) > 0.

(p - T;ks)

< exp (¢T").

Which is solved by:

We make use of these Lemma in the proof of the main result.

Part 1: Self-Insurance. We investigate the effect on the RSS issuances and WAM of a small drop in income from 7, to 1.

We consider only a perturbation regarding income, that is:
Yo = Yss (1 — )
Also, by assumption ® (-) = 1, and that ;.5 = 0.
bres (1) = exp (= (p+ ) 7) + U ((1 - 6))/ pexp (= (p+¢) (T — ) vo (s) ds.
0

Next, we evaluate the derivative of v,z (7) with respect to £. We obtain:

Sl @lleo = oee (= 0)7) [ bexpl(p+a)s)m(s)ds

1 Opss (T)
brss (T) == | 1 — =
D=3 < Bres <r>>

*W ~exp (— (P+¢)7)/() pexp ((p+ @) - s)vo (s)ds <0,

Then, since

we have that:
1o} o
& [Lrss (T)] |e:0 =

where 1,55 (7) = exp (—r%,7). Thus, self-insurance reduces issuances. Next, we compute the semi-elasticity of issuances, with

respect to the small deviation:

. g[b ()] |0 = —0 exp (= (p =75, +8)7) Jy pexp((p+ ) - 5)vo (s) ds .
R 1— (exp(—(p—12,+¢)7) [y dexp((p+ ) - 5)vo (s) ds)

Lrss (T) O€

Thus, the elasticity becomes:

lim lim € = -0 exp (= (p =15 +9)7) (exp (97) — 1)
Ao a—ro0 | 5%E L—exp(=(p—ri,+¢)7)(exp(¢7) — 1)
., exp (¢7) — 1
exp((p— 713+ ¢) 1) — (exp (¢7) — 1)
. 1 —exp(—o¢7)
exp ((p— %) 7) +exp(—¢7) — 1
= —o-Z(1).

-
TS8,€

Thus, since Z (1) is decreasing for 7 > 7%, the limit elasticity lim3_, . limy o0 € increasing. Thus, if the government can

only issue at maturities 7 > 7%, self-insurance depresses issuances and increases the WAM.
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Part 2: Credit-Risk. We now consider the limit where there are no shocks, and only the option to default is allowed. Let

the Government be risk neutral. As A — 0o, we get Qg = 0. Then,
frae (7) = 030 (= (4 9)7) + 6@ +2) [ exp (= (4 ) (r = 5) 0 (5.
Likewise, the price is:
res (1) = exp (= (15, 4 0)7) + 90 +€) [ exp (= (73, +.0) (= 5)) o (5) .

Then, as show before, we have that:

lim v (s) = exp (—ps)

A—00
and
P (s) = exp (—7g,s)
we obtain:
brss (1) = exp (= (p+ ) 7) (1 + (69 +€) (exp (¢7) — 1)).
Thus: 9
e [0rss (T)][e=0 = exp (= (p + &) 7) (exp (¢7) — 1)

and by analogy:

0 7 *

o [frss ()] oo = exp (= (2, + 8) 7) (exp (67) — 1)
Then:

0
e [Lrss (7')] le=0 = —

> =

( m) 2 [y (1)] e [ren (7)] |_

q&rss (7) Urss (T) Q/Ajrss (1) -
1/ exp(—(p+¢)7) Z [Orss (7)] 8@[

_)\< P p > (a qﬁ

exp (— (i, +¢) 1) Opss (T)
= 0,

where we have used that:
2 [brss (7)] oo = exp (= (p+¢)7) (exp (¢7) — 1) _ (exp (¢7) — 1)
iras (1) 0 exp(=(p+0)7) (1+ (©p) (exp (¢7) — 1)) 1+ Opas (exp (67) — 1)

and
# 0] enen -y
1[}7"83 (7') . 1+ @TSS (eXp (¢T) - 1) ‘

Thus, issuances are unresponsive to changes in the default probability. Thus, the WAM does not change with credit risk.

Part 3: Revenue Echo. We now consider a shock to the revenue echo effect, while maintaining the assumption that o = 0

and A — 0. As before we have that:

Urss (T) = exp(—(p+¢)f)+¢(@o+ﬂo+€)/OT6XP(—(P+¢)(T—S))vo(S)ds,
= ep(=(p+¢)7) (14 (B + Qo +¢) (exp (¢7) — 1))
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with g ~ 0. Thus, the derivative is:

Ali)Igo aﬁ [Orss (T)]le=o = exp(—(p+¢)7) (exp (¢7) —1).

Bond prices are
Yrss (1) = exp (= (riy +¢)7) + 960 /OT exp (= (155 + @) (T = 8)) o (s) ds
= exp(=(rs+0)7) (1+ 60 (exp (¢7) — 1))

and 9
% |:1Erss (T)} le=0 = 0.

Issuances are

lrss (T) =

[1 _exp(=(p+d)7) (1 + (O + Qo +¢) (exp (¢7) — 1))
exp (= (155 + ¢) 7) (1 + 60 (exp (¢7) — 1))

[L—exp(=(p—75)7)],

>l = >l =

where we have incorporated the fact that )y ~ 0, € &= 0. Then, we have that:

9 _ 1 85 (0755 (T)]
a [l/rss (T)] ‘6:0 = _i (dwrss()> |6:0.

1__erlbranenen -1
Xexp (— (g, + @) 7) (1 + O (exp (#7) — 1))
lexp(—(p—ri) 7 (exp (ér) ~ 1)

KT (e (or) - 1)

Then, following previous steps, the semi-elasticity is

lim €7 - exp (— (p —13,) 7) (exp (¢7) — 1) 0

rS88,€

A—oo [1—exp (= (p = 75) 7)] (1 + O (exp (¢7) — 1))

If ©¢ =~ 1, this simplifies to
(1 —exp(—9¢1))

lim €, =— .
Ao T exp((p—rE) ) — 1]
We compute the slope as .
i 8677:5575 T (bexp (_QST) (p — 7";5) exXp ((p — 7";5) T)
AN ——— = €5 ¢ -
Moo OT Tl —exp(=¢7))  lexp((p—ri)7) — 1]
This is positive if
¢ (p — 7":3)

(exp (97) — 1) ~ [l —exp (= (p— 1) 7]’

which holds for any 7larger than 7%* defined as

(rb _ (p — r:s)
(exp (¢7) — 1) [1—exp(=(p—r)7™)]
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It is trivial to check that 7** = 0. Hence the semi-elasticity is increasing and the WAM increases.

C.13 The case of default without liquidity costs: A = 0

We show here that the maturity structure is undetermined in the case without liquidity costs and a finite support of G. In
proposition 14 below we show how, if distribution f * is a solutions of Problem (24), then another distribution f’ is also a

solution provided that

/OT (ve(r, X0 = b (1) (A7 (1) = i (1)) ar =, 61)
T
/0 (Ex. [0 (V[ 0. x]) v . X0] — b)) (5 ) = 7 (7)) dr =00 (62

Consider first the case of an income shock. Here X; does not jump after the shock arrives. If the government decides to default
then the maturity profile at the moment of default is irrelevant. If the government decides instead to repay, the post-shock
yield curve will be ¢ (7), which differs from o (1) as the post-shock default premium is zero. The maturity structure is

’

indeterminate because conditions (61) and (62) are two integral equation with a continuum of unknowns, f;o (7).

Consider next the case of an interest rate shock, in which X; jumps with the option to default. Condition (61) is a system of
integral equations, indexed by X;., where f;o/ (+) is the unknown. Provided that X ;o may take N possible values, then we have at
most N equations that need to be satisfied by the debt distribution. In addition we have equation (62) and the condition that the
market debt should coincide. Notice that the number can be less than N 4 2 as in some states the government may default and
then condition 61 is trivially satisfied for any debt profile that replicates the total debt at market prices before the shock arrival.

In any case, the maturity structure is indeterminate.

The indeterminacy of the debt distribution in our model complements previous results in the literature. In particular, Aguiar
et al. (Forthcoming) study a model of sovereign default similar to the one presented with the key difference that in their model
the government cannot commit to future debt issuances whereas in our paper it ca, conditional on repayment. Aguiar et al.
(Forthcoming) find how in that case the government only operates in the short end of the curve, making payments and retiring
long-term bonds as they mature but never actively issuing or buying back such bonds. This is because short term bonds cannot be
diluted. The authors also conjecture that the maturity structure would be indeterminate if the government had full commitment

over its issuance path. This is precisely the case we study here, confirming their conjecture.

Proposition 14. Let {i} (1), 7 (7) 5 ¢ Yeejoee) and {04 (1), [ (T) , "t }re(to,00) be the solution of Problem (24) when Ay (¢, T) =
0. Let {i'y (1) ,ftl (1), ¢t }epo ey and {04 (), f*1 (T), "t }ie(t0,00) be such that, for every t < t° and every value of X,

B, =B, (63)
/OT (wt (1, X4) — 1/;t (7’)) (At* (r) — ft, (7’)) dr =0, (64)

T
A (Ex. [0 (V[ (). X)) e X0] = b)) (17 () = J (7)) dr =0, (65)

and Bf = Bj foreveryt > t°. Then, &, = ¢; and c; = ¢*¢. Thus, {i's (1), ft/ (1), ¢t hrepo,eoy and {1 (7) , [*4 (T) , €t Fre(to,00)

is also optimal.
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Proof. Step 0. Default values. The value functional of a policy given an initial debt f; (+) is given by:
A t? o
V [fo ()] = Eo / e (&) dt + By x, [P VO [VE, fio ()]
0

where the post-default value VO [V,2, fio (), Xio| = max {V,2,V [fio (), Xio]} and V [fio (+) , Xyo] is the value of the
perfect-foresight solution. Note that, from the solution of the problem with perfect foresight, the value function only depends
on the market value of total debt, V' [fio (+) , Xto] = V (Bio (Xio), Xto), where Byo(Xyo) is defined as the market value of debt

T
B(Xe) = [ e (7. Xee) fo(r)dr
0
Therefore, the post-default value
VOV, fro (), Xeo]| = VO (ViP, Byo(Xt0), Xto)

also only depends on the aggregate market value of total debt, B(t°, Xyo ). Because By, (Xto) = Bj. (Xto) for every realization
of X;o the default decision depends only on the market value of debt when the country receives the opportunity to default and
not on the debt-maturity profile. Thus, continuation values are equal and it is enough to show that ¢;* = ¢’ for t < t° to prove

that the two policies yield the same utility.

Step 1. Pre-shock prices are equal. Pre-shock prices solve

Py (1) =0+ (?;f - gi} + gES {@(V e (), X)) e (7, Xe) — e (1), it < t°
bro (1) = EX {@ (v [f;o (~),XtuD W(T)}

¢t(0) =1
It holds that
O (V[fi (), Xee]) = O (V (B (Xp0) , Xio)) = O (V (Byo (Xio) , Xto)) = O (V [fio (-) , Xeo]) -

This is a consequence of the fact that V' (Bjo (Xo), Xt0) = V (Bjo (X¢o), Xto). Thus, pre-shock prices are equal for both

policies.

Step 2. Law of of motion of debt before the shock arrival. By definition By = fOT Uy (1) fi (1) dr. The dynamics of B, for t < t°

are:

it~ ([ (5 o)+ 0 i) )

which, with similar derivations as in 11, yields to

~ ~ T ~ A
dB; = (ét — i + 771 B + ¢/0 (Ext [© (V (Bu(X1), X)) e (1, Xo)] — e (T)> fe (1) dT) dt.

Step 3. The expected jump. Note that (65) for all X, implies that:

o (B OV (B (X0, X)) i (7. X))~ 6 () (i) = 5 (7)) dr =0, (66)
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Combining this equation with the law of motion of debt we get that before the shock arrival, t < t°,
dB;" = dB; . (67)

Step 4. The actual jump. Condition (64) guarantees that the jump is the same for any X if the country does not default. If it defaults,
condition (64) is trivially satisfied as Bt* = Et/ and the jump is also the same as market debt is then zero. Hence EZO = Eéo .
Finally, taking all these results together we conclude that: é; = ¢, for all t < t°. As the policy {} (1), ft/ (7), ¢ }eefo,t0) and

{e*¢ (1), £ (T) , "t }re(to,00) achieves the same consumption path as the optimal, it is thus optimal. O

D Frictionless Cases: risk and default

Risk without liquidity costs We now consider the case without liquidity costs, X = 0 and no default, ® = 1,Q = 0.
With positive liquidity costs, adjustments in portfolios are costly. By studying the problem at the limit where liquidity costs are
zero, we can understand the extent to which the government can obtain insurance given the set of bonds it has available. Thus,

it clarifies the extent to which liquidity costs limit insurance.

Toward that goal, we note that the necessary conditions of the problem are the same with and without liquidity costs, including
the issuance rule. If the issuance rule holds, issuances are bounded if and only if valuations and prices are equal, v = 1 and
0= 1/; If we substitute v = ¢ and v = 1[1 in the PDE for valuations, equation (25), and subtract the bond PDE from both sides,

equation (22), we obtain a premium condition that must hold for all bonds:>?

U'e)) ¢u(T) — %, _ gEX be(7) |
U' (&) )y (r)] OB L&t(r)] ©8)

iy — PEY

The analysis of the different solutions of equation (68) provides useful information about the role of hedging and self-insurance.

We analyze each case in turn.

Perfect hedging: replicating the complete-markets allocation. Equation (68) replicates the complete-markets
allocation when consumption follows a continuous path, i.e, when éo = c¢go (Xyo) for any realization of the shock. This is
because international investors are risk-neutral and the government is risk averse. If consumption does not jump, condition (68)
implies 7 = 7*. In a complete markets economy consumption growth satisfies Z—Z = Tt%p, the same rule that it follows in a de-
terministic problem. Naturally, there is no RSS with positive consumption if 7} < p, but consumption converges asymptotically

toward zero.

Consumption does not jump when it is possible to form a perfect hedge, a debt profile that generates a capital gain that exactly
offsets the shock. Any shock changes the net-present value of income. Given the path of rates, the optimal consumption rule and
the initial post-shock consumption produce a net-present value of consumption. A perfect hedge thus produces the capital gains
such the net present value of consumption minus income at the time of the shock (denoted by AByo (X;0)) is covered to the
point where pre- and post-shock consumption are equal: ¢;o = cio (X0 ). This must be true for any shock, X;o. In the context

of the model, a perfect hedge exists if the debt distribution satisfies at all times ¢

AB; (X;) = — /0 ! (wt (73 X4) — ¥ (7)) f, (1) dr, (69)

for any possible realization of X;. This family of equations is a generalization of the discrete-shock and discrete-bonds matrix

conditions that guarantee market completion in Duffie and Huang (1985), Angeletos (2002) or Buera and Nicolini (2004).%°

55This equation is recovered also by solving the problem with A\ = 0 directly. The proof is available upon request.
5In the case of discrete shocks and discrete bonds, the existence of complete-markets solution requires the presence of at least
N + 1 bonds for N shocks. In the case of a continuum of shocks, the condition requires the invertibility of a linear operator.
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In our model, perfect hedging is available in the case of an interest rate shock taking N possible values. Then, there is continuum
of solutions that satisfy equation (69). In this case we can use a range of maturities [0, T that is as short as we want to hedge.
The shorter the range, the more extreme the positions we obtain. A second observation has to do with the direction of hedges.
Consider the case of a single jump in interest rates (N = 1). To offset the reduction in the net-present value of income, the debt

profile must generate an increase in wealth. This requires an increase in short-term assets and long-term liabilities.

No hedging: only self insurance. The opposite to the complete-markets outcome is the case of income shocks. In this
case bond prices do not change, ¢ = vfz = 1. Therefore, it is not possible to generate capital gains with a debt profile. Instead,

the only solution to (68) is:

é B 7" +¢(Ef{ {gigii” — 1) —p

ét g

This is a situation in which no hedging is available, because the asset space does not allow any form of external insurance. Instead,
the government must self-insure. Self insurance is captured by the ratio of marginal utilities which effectively lowers 7. To solve
for consumption, this extreme case coincides with a single-bond economy without interest-rate risk. The jump in consumption
is given by the jump in the net present value of income. The solution to ¢; in this case is known and can be found, for example
in Wang, Wang and Yang (2016). The ratio of marginal utilities in the solution increases as the level of assets falls. This means
that, provided there is a sufficiently low level of debt, the economy reaches a RSS with positive consumption. The convergence

in consumption is a manifestation of self-insurance.

General case. The general case with both income and interest rates shocks described by equation (68) features an intermediate
point between the two extreme cases described above as both a partial hedging and self-insurance emerge.”” Furthermore, as
long as the support of the shocks has cardinality N the debt profile is indeterminate, as only /V points of the debt distribution

are pinned down.®

D.1 Default without liquidity costs

We return to the case without liquidity costs, A = 0, but allow for default. Without liquidity costs, we have again that a solution
necessarily features equality between valuations and prices, v = ¥ and ¥ = 1& As a result, the condition that characterizes the
solution without default, (68), is modified to:

(o(v[#i0).x])+2) ﬁi g; Z gg;;

7o — QR =%, — ¢EX

o(v[i.x]) 20 o

As in the case without default, we can explain how condition (70) characterizes the solution depending on the set of bonds and
shocks.

On the impossibility of perfect hedging. The presence of default interrupts the ability to share risk. Efficient risk
sharing requires a continuous consumption path along non-default states. To see how default interrupts risk-sharing, consider

the case where interest-rate shocks allow complete asset spanning. Assume that ¢; = c; holds in non-default states, as in the

Proving conditions on G that guarantee that family of solutions exceeds the scope of the paper.In this case, equation (69) is just
a system of N linear integral equations, for every ¢, known as Fredholm equations of the first kind.

57This case can be solved via dynamic programming using aggregate debt at market values B as a state variable. B is defined
as in (49) with pre-shock prices and debt profile. Equation (68) holds for every maturity, so given B, it represents a family of
first-order conditions for f;. The debt profile then is associated with an insurance cost of B.

58The proof is a particular case of the one presented in Appendix C.13 for the case with default.
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version without default. In this case, condition (70) becomes

iy — oEX 0,20 |

Yi (7)

This equation is not satisfied if two maturities feature a different price jump. However, full asset spanning requires a different
price jump at two maturities. This contradiction implies that even when the set of securities can provide insurance in non-
default states, the government’s solution with commitment does not adopt a perfectly insuring scheme. The distortion follows
because the echo-effect acts differently than the risk premium, it distorts valuations but not prices—we can see that even under

risk-neutrality.

Default allows some hedging. Consider the case of only income shocks. Without default, we noted that there was no
hedging role for maturity but now we show that with default, there is a role. Default opens the possibility of a partial hedging
because prior to the shock, different maturities are priced differently. Post-shock prices are always 1;o (7) = 1. This means that
once a shock hits, the government can exploit the change in the yield curve to obtain capital gains in its portfolio. The change in

the risk premium is akin to the spanning effect of an interest-rate jump.

General case. The option to default interrupts insurance across non-default states, but allows price variation even without
interest-rate risk. As long as the cardinality of shocks is discrete, the maturity profile is indeterminate—a formal proof is found
in Appendix C.13. One extreme case of indeterminacy is that of a shock which does not produce a jump in income nor interests,
but only grants a default option. Aguiar et al. (Forthcoming) studies that shock in a discrete-time model similar to ours but

without commitment.
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E Computational method

We provide here a sketch of the numerical algorithm used to jointly solve for the equilibrium domestic valuation, v; (), bond
price, ¢ (t,7,¢) , consumption ¢, issuance ¢; (7) and density f; in the perfect-foresight case. The initial distribution is fo (7).

The algorithm proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the domestic value The steady state equation (12) is solved using an upwind finite difference scheme
similar to Achdou, Han, Lasry, Lions and Moll (2017). We approximate the valuation vss (7) on a finite grid with step A7 :
T € {r,..,7r}, where;, = 7,1 + A7 = 7 + (i — 1) A7 for 2 < ¢ < I. The bounds are 7y = A7 and 77 = T, such
that A7 = T'/I. We use the notation v; := v4s(7;), and similarly for the issuance ¢; . Notice first that the domestic valuation
equation involves first derivatives of the valuations. At each point of the grid, the first derivative can be approximated with a
forward or a backward approximation. In an upwind scheme, the choice of forward or backward derivative depends on the sign
of the drift function for the state variable. As in our case, the drift is always negative, we employ a backward approximation in

state:

ov(Ti) _ vi—vi1

~ 71
or AT 7
The equation is approximated by the following upwind scheme,
Vi—1 Ui
i = 0 - )
Py + AT AT
with terminal condition vy = v(0) = 1. This can be written in matrix notation as
pv=u+ Av,
where ) ) ) ) ) )
-1 0 0 0 -~ 0 U1 0—1/Ar
-1 0 0 (%) 6
1 0 1 -1 0 --- O U3 )
A:E : LU V= : U= : ’ 72)
0 0 -1 0 vr—1 )
L 0 0 1 —1 i L Vr | L 0 i
The solution is given by
v=(pI—A) "u (73)

Most computer software packages, such as Matlab, include efficient routines to handle sparse matrices such as A.

tmax

To analyze the transitional dynamics, define as the time interval considered, which should be large enough to ensure a

converge to the stationary distribution and time is discretized as t,, = t,,_1 + At, in intervals of length

tmax

At = ——
N-1’

where N is a constant. We use now the notation v’ := v (7;). The valuation at ™?* is the stationary solution computed in

(73) that we denote as vV. We choose a forward approximation in time. The dynamic value equation (12) can thus be expressed

(VnJrl _ Vn)

nn: ATL
rev u-+ Av: + Al R
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n+

where 7" :=r (t,,). By defining B" = (%, +7") I — Aandd""' = u+ VAtl , we have

v =(B") la"t, (74)

which can be solved backwards fromn = N — 1 untiln = 1.

The optimal issuance is given by

(Y7 —vi")

P
2 )\ ,ll):q, )

where 1" is computed in an analogous form to v;'.

Step 2: Solution to the Kolmogorov Forward equation Analogously, the KFE equation (6) can be approximated

as
n—1
il P S

At AT

where we have employed the notation fJ* := f;_(7;). This can be written in matrix notation as:

fr — fnfl
‘4Z77:W+A”m (75)
where AT is the transpose of A and
f 0
S Ly
f7l — . , i’n, —

fra Lty
T Y

Given fy, the discretized approximation to the initial distribution f,(7), we can solve the KF equation forward as

f, = (I-AtAT) " (At +f, 1), n=1,.,N. (76)

Step 3: Computation of Expenditure. The discretized budget constraint (7) can be expressed as

I
—n n— 1_n n,;n n
"=y"—-f] 1+Z{<1n2)\%>%¢i 5f1;]AT, n=1,.,N.
=1

Compute

,n=1.,N—1.

Complete algorithm The algorithm proceeds as follows. First guess an initial path for consumption, for example ¢ = y™,
forn=1,..,N.Setk = 1;

Step 1: Issuances. Given c;_; solve step 1 and obtain ¢.

Step 2: KF. Given ¢ solve the KF equation with initial distribution f and obtain the distribution f.

Step 3: Consumption. Given ¢ and f compute consumption c. If ||c — ¢x_1] = 25:1 |c” — 0271| < ¢ then stop. Otherwise
compute
cy =we+ (1 —w)eg—1, A€ (0,1),

set k := k 4+ 1 and return to step 1.
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The case with aggregate risk The method used to calculate a solution in the case with aggregate risk adds only one more
unknown to the perfect-foresight algorithm; now we must obtain the RSS consumption. The idea is to propose a guess of ¢,
and the path {c(¢)} and then compute the valuations using (25) for the RSS and (12) for the valuation after the shock. We then
obtain issuances from the simple issuance rule (15). Given issuances, we compute the debt profile in the RSS using the law of
motion of debt (6). The budget constraint (7) yields a new ¢;;5 and a new path {c(¢)}. Naturally, {c(¢)} is the solution to the
perfect-foresight problem where f(7,0) = f,.s(7).
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F Additional figures
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Figure 10: Force decomposition
Notes: A principal amounting to 10 percent of GDP expires at time 10.
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Figure 11: Issuances when a large principal is due to expire at year 10.
Notes: A principal amounting to 10 percent of GDP expires at time 10.

46



	Equivalence between PDE and integral formulations 
	Public Finance Considerations  
	A public finance microfoundation
	Proof of Proposition 8.
	Shape of . 
	Optimal Issuances. 



	Proofs
	Microfoundation of liquidity costs 
	Proof of Proposition 1
	Proof of Lemma 1
	Duality 
	No liquidity costs: =0
	Asymptotic behavior
	Proof of Proposition 3
	Proof of Proposition 4
	Part 1: Smoothing.

	Limiting distribution: 0
	A further look into the revenue-effect 
	Proof of Proposition 6
	Proof of Proposition 7
	Preliminary Calculations.
	Part 1: Self-Insurance.
	Part 2: Credit-Risk.
	Part 3: Revenue Echo.

	The case of default without liquidity costs: =0

	Frictionless Cases: risk and default
	Risk without liquidity costs
	Default without liquidity costs 

	Computational method  
	Additional figures



