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Abstract

This appendix contains Monte Carlo simulations, mathematical proofs, and robustness for

Table 2 in the paper.

Appendix A Simulation Evidence

One of the central advantages of our double-selection method is that it produces proper inference on
the SDF loading ), of a factor, taking explicitly into account the possibility that the model-selection
step (based on LASSO) may mistakenly include some irrelevant factors or exclude useful factors in

any finite sample.

In this section, we therefore study the finite-sample performance of our inference procedure
using Monte Carlo simulations. In particular, we show that if one were to make inference on A, by
selecting the control factors via standard LASSO (and ignoring potential mistakes in model selection),
the omitted variable bias resulting from selection mistakes would yield incorrect inference about A,.
Instead, our double-selection procedure fully corrects for this problem in a finite sample and produces
valid inference. In what follows, we first give details of the simulation procedure and then show the

results of the Monte Carlo experiment.
A.1 Simulating the Data-Generating Process

We are interested in making inference on ), the vector of SDF loadings of three factors in g;. g;

includes a useful factor (denoted as gi;) as well as a useless factor and a redundant factor (denoted

*Address: 83 Tat Chee Avenue, Kowloon Tong, Hong Kong. E-mail address: gavin.feng@cityu.edu.hk.
fAddress: 165 Whitney Avenue, New Haven, CT 06520, USA. E-mail address: stefano.giglio@yale.edu.
fAddress: 5807 S Woodlawn Avenue, Chicago, IL 60637, USA. E-mail address: dacheng.xiu@chicagobooth.edu.



together as a 2 x 1 vector gg;). go; has a zero SDF loading, that is, Ay, = 0, but the covariance of
the redundant factor is correlated with the cross section of expected returns. In our simulation, h;
is a large set of factors that includes 4 useful factors hy;, and p — 4 useless and redundant factors

collected in hg; (so the total dimension of hy is p).
We simulate returns of test assets and factors according to the following steps:
(1) Simulate Ce (n x d) and Cp,, (n x 4) independently from multivariate normal distributions.

(2) Calculate Cp, = 1,00 + Cp, 0] + C., where C¢ is simulated independently from an n x (p — 4)

multivariate normal distribution, g is a (p — 4) x 1 vector, and 6; is a (p — 4) X 4 matrix.

(3) Calculate Cy from C. and Cp, = (C, : Cp,) using Cy = 1y + CpXT + Ce, where x isa d x p

matrix.

(4) Calculate C, using C, = Cy —CpnT, as implied from the DGP g; = nh; + z; we aim to simulate,

where 1 is a d X p matrix.

(5) Calculate E(r¢) using E(r¢) = tpy0 + CgAg + CpAp, where Ag is a d x 1 vector and Ay isap x 1

vector.

(6) Calculate 8, = C.X7

z

simulate: r, = E(ry) + Bggt + Brhe + uy.

Land B, = ChEgl — Bgn, as implied from the DGP of r; we aim to

(7) For each Monte Carlo trial, generate u; from a Student’s t distribution with 5 degrees of freedom
and a covariance matrix ¥,. Generate h; ~ Np(O, ¥n), 2t ~ Ny(0,%,), and calculate g; and

then r; using the DGPs specified in Steps (4) and (6), respectively.

The total number of Monte Carlo trials is 2,000. Because we assume non-random selection of assets
and that the randomness in the selection of test assets does not affect the inference to the first
order, we simulate only once Cy, C},, and hence g4, (B, in Steps (1) - (6), so that they are constant
throughout the Monte Carlo trials in Step (7).

We calibrate our DGP to mimic the actual Fama-French 5-factor model. In particular, we
calibrate x, 1, A, ¥,, the mean and covariance matrices of C¢, C},, as well as ¥; to match the
summary statistics (times series and cross-sectional R?, factor-return covariances, etc.) of the Fama-
French five factors estimated using characteristic-sorted portfolios, described in detail in Section
3. We calibrate a diagonal ¥, to match the average time series R? for this 5-factor model. For
redundant and useless factors, we calibrate their parameters using all the other factors in our data
library, again described in detail in Section 3. We maintain the sparsity requirement on y, n, and A,
by restricting the loadings of Cy, E(r;) and g on Cj, and hs to be zero. We set to zero the loading of

Cy on C}, for the useless factor in go. Moreover, we randomly simulate 67 from normal distribution



so that factors in hg are either redundant or (rather close to be) useless. We allow non-zero loading
of go on hi, and the covariance matrix Y; to be non-diagonal, so that both useless and redundant
factors in go and hg can be correlated with the true factors in g7 and hi: so they will command risk
premia simply due to this correlation, even though they have zero SDF loadings because they do not

affect marginal utility once the true factors are controlled for.
A.2 Simulation Results

We report here the results of various simulations from the model. We consider various settings with
number of total factors p = 25,50, 100, 200, number of assets n = 100, 200, 300, and length of time
series T' = 240, 360, 480.

Figure A1l compares the asymptotic distributions of the proposed double-selection estimator
with that of the single-selection estimator for the case p = 100, n = 300, and 7" = 480. The
right side of the figure shows the distribution of the t-test for A, of the three factors (useful in
the first row, redundant in the second row, and useless in the third row) when using the controls
selected by standard LASSO (i.e., a single-selection-based estimator). The panels show that inference
without double-selection adjustment displays substantial biases for useful and redundant factors and
distortion from normality for all factors. The left side of the figure shows instead that our double-
selection procedure produces an unbiased and asymptotically normal test, as predicted by Theorem
1.

Figure A2 plots the frequency with which each of the simulated factors is selected across sim-
ulations (with each bar corresponding to a different simulated factor, identified by its ID from 1 to
100). The top panel corresponds to the factors selected in the first LASSO selection, the second
panel corresponds to the factors selected in the second selection, and the last panel corresponds to

the union of the two.

Note that by construction, the true factors in h; are the first 4 (the fifth true factor is part of
gt). So if model selection were able to identify the right control factors in all samples perfectly, the

first 4 bars should read 100%, while all other bars (corresponding to factors 5-100) should read 0%.

That is not the case in the simulations. While some factors are often selected by LASSO (top
panel), not all are: factor 1 is selected in about 70% of the samples, and factor 3 about 40% of the
samples. Therefore, in a large fraction of samples, the control model would be missing some true
factors, generating the omitted variable bias displayed in Figure A1. At the same time, LASSO often
includes erroneously spurious factors — as shown in Table A5. The key to correct inference that our
procedure achieves is that the two-step selection procedure minimizes the potential omitted factor

bias.



Tables A2, A3, and A4 compare the biases and root-mean-squared errors (RMSEs) for double-
selection (DS), single-selection (SS), and the OLS estimators of each entry of Ay, respectively. All

regularization parameters are selected based on 10-fold cross-validation.

Not surprisingly, the bias of the SS is clearly visible when compared to DS and OLS for useful
and redundant factors. In addition, DS outperforms SS and OLS in terms of their RMSEs in these
scenarios. The efficiency gain of DS over OLS is particularly substantial when p is large relative
to n. When p is equal to n, OLS becomes infeasible (because the number of regressors is p + d).
For the useless factor, because SS does not suffer from a bias, its RMSE is the smallest among all.
This result confirms the efficiency benefits of machine learning techniques over OLS. Although DS
is in general less biased than SS, its main advantage relative to SS is in removing the distortions to

inference, visible from the distribution of standardized statistics in Figure A1l.

Overall, the simulation results confirm our econometric analysis: the DS estimator outperforms

the benchmarks.



Table Al: Testing Factors Recursively by Year of Sample

(1) 2) )
Year # Assets # Controls New factors (IDs)
1995 240 47 42 43 46 52 a3 54 55 56 57 69 71
1996 306 58 47
1997 306 59 58 59 60 61 63 67
1998 342 65 48 49 50 o1
1999 360 69 65 92 95
2000 378 72 62 74 93 97 98 99 104
2001 408 79 68 70 75 76 77 78 79 8 81 82 83
84 85 86 87 88 89 90 101 102 108
2002 504 100 72 73 112 116 117 118 119 120
2003 546 108 94 96 100 105 106 114
2004 582 114 111
2005 588 115 103 113 115 123 127 129 131
2006 630 122 91 110 122 126 144
2007 654 127
2008 654 127 124 125 128 130 132 134 139
2009 696 134 121 133 135 136
2010 720 138 138 142 143
2011 738 141 137
2012 738 142 140 141 147 148 149 150
2013 738 148 145 146

Note. Same as Table 2, but the date used to order the factors is the last date of the sample used in each paper.



Table A2: Asymptotic Approximation Performance for Ayseful

p=25 p=>50 p =100 p =200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS
Panel A: Bias
240 100 -0.71  -9.23 -0.19 -0.96 -9.32 -0.13 -2.06 -11.26 - -3.37 -9.88 -
240 200 -0.82 -9.53 -0.13 -0.95 -9.11 -0.14 -1.80 -9.01 -0.43 -3.14  -9.65 -
240 300 -0.26 -7.87 0.06 -1.06  -10.39 -0.50 -1.41  -8.43 -0.24 -2.81 -9.93 0.08
360 100 -0.31 -8.33 -0.14 -0.40 -8.71 0.08 -1.60 -10.66 - -2.27  -9.07 -
360 200 -0.32 -8.48 0.00 -0.43 -8.44 -0.08 -1.33  -8.31 -0.28 -2.23  -8.79 -
360 300 -0.05 -7.07 0.18 -0.51 -9.44 -0.16 -1.09 -7.41 -0.13 -1.99 -8.79 -0.31
480 100 -0.21 -7.87 0.03 -0.12  -8.22 0.39 -1.02 -10.06 - -1.83 -8.71 -
480 200 -0.14 -7.86 0.13 -0.19 -7.80 0.06 -0.87 -7.89 -0.09 -1.57 -857 -
480 300 -0.01 -6.76 0.15 -0.25 -8.74 0.05 -0.55 -7.18 -0.07 -1.33  -8.53 -0.11
Panel B: RMSE
240 100 5.80 11.60 6.46 6.14 11.57  8.19 7.52 13.93 - 8.98 12.23 -
240 200 5.78 12.05 5.84 5.94 11.56 6.55 6.73 11.33 9.07 7.88 11.82 -
240 300 5.54 10.33  5.66 5.83 13.05 5.98 6.46 11.09 7.21 7.54 11.94 19.76
360 100 4.62 10.90 5.07 4.88 10.94  6.68 5.73 13.12 - 6.88 11.23 -
360 200 4.53 11.23  4.63 4.66 10.80 5.23 5.22 10.57  6.55 6.54 10.84 -
360 300 4.40 9.66 4.49 4.66 12.23  4.84 5.03  9.99 5.55 6.13 10.89 10.11
480 100 4.10 10.31  4.44 4.16 10.60 5.53 5.01 12.77 - 5.92 10.83 -
480 200 3.99 10.63 4.12 4.00 10.21 4.45 4.47 10.17  5.64 5.41 10.52 -
480 300 3.88 9.23 4.01 3.92 11.51 4.15 4.22 9.77 4.71 4.85 10.56 7.88
Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the SDF loading A

of the useful factor from Monte Carlo simulations.

DS is the double-selection estimator, SS is the single-selection

estimator, and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are

selected using 10-fold cross-validation, where we partition the cross-validation subsamples in the time series dimension.

The true value Aysefur is 16.76. Note that in cases of n > p, OLS is infeasible.



Table A3: Asymptotic Approximation Performance for Arequndant

p=25 p =50 p =100 p =200

T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: Bias

240 100 0.24 6.34 0.10 0.29 6.24 -0.22 0.64 7.23 - 1.58 5.95 -
240 200 0.39 6.78 0.14 0.11  7.25 0.08 0.33 6.74 0.06 1.22  5.76 -
240 300 0.17 598 0.07 0.15 6.92 0.06 0.63 6.39 -0.04 0.84 6.39 -0.46
360 100 0.09  5.20 0.09 0.04  5.36 0.06 0.06 6.60 - 0.74 6.07 -
360 200 0.08  5.63 0.02 0.06 6.38 -0.02 0.00 6.02 -0.05 0.50 5.35 -
360 300 0.08 4.86 0.08 0.10  5.95 0.04 0.12 5.87 0.04 0.33 6.37 0.08
480 100 0.04 4.64 0.08 0.00 4.80 -0.15 0.05 6.10 - 0.22 5.89 -
480 200 -0.03 5.12 -0.06 -0.01  5.53 0.04 0.01 5.84 0.08 0.11 5.51 -
480 300 0.02  4.56 0.02 -0.01  4.98 -0.03 0.07 5.45 -0.07 0.08 6.55 0.19

Panel B: RMSE

240 100 5.58  9.96 6.40 5.76  10.01 8.15 6.12 11.67 - 7.69 9.98 -

240 200 5.65 10.40 5.78 547 11.15 6.19 5.62 10.76 9.07 6.56  9.98 -

240 300 5.43  9.71 5.55 5.42 10.85 6.01 5.69 10.66 7.20 5.83 10.61  20.00
360 100 4.34 843 5.01 4.70  8.86 6.60 4.62 1083 - 5.21 9.53 -

360 200 4.30  8.99 4.49 4.53  9.95 5.26 4.32  9.70 6.64 4.72  9.12 -

360 300 4.26  8.27 4.38 4.42  9.78 4.76 4.50 9.73 5.54 4.44 1033 9.71
480 100 3.80 7.75 4.23 3.86 8.11 5.62 3.88 10.03 - 3.99 897 -

480 200 3.70 841 3.88 3.83 9.07 4.37 3.73  9.28 5.44 3.75  8.99 -

480 300 3.66  7.85 3.80 3.75  8.64 4.09 3.77 9.02 4.71 3.61 10.17 7.82

Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the SDF loading A
of the redundant factor from Monte Carlo simulations. DS is the double-selection estimator, SS is the single-selection
estimator, and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are
selected using 10-fold cross-validation, where we partition the cross-validation subsamples in the time series dimension.

The true value Aredundant is 0. Note that in cases of n > p, OLS is infeasible.



Table A4: Asymptotic Approximation Performance for Ayseless

p=25 p =250 p =100 p =200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS
Panel A: Bias

240 100 -0.37 -1.04 -0.22 -0.19 -2.26 -0.11 -0.03 -0.85 - -0.08 -0.37 -

240 200 0.03 1.86 -0.06 -0.20 -2.03 -0.32 -0.05 -0.66 -0.04 -0.23  -0.20 -

240 300 -0.35 -0.29 -0.28 -0.02 -0.09 -0.01 -0.08 -1.04 0.05 -0.05 0.03 0.43

360 100 -0.10 -0.71 -0.02 -0.18 -2.13 -0.06 0.13 -0.58 - -0.03 -0.18 -

360 200 0.17  2.10 0.17 -0.23  -1.89 -0.31 0.06 -0.44 0.01 -0.06 -0.01 -

360 300 -0.11  -0.01 -0.12 -0.12 0.00 -0.19 0.02 -0.87 0.05 0.04 029 -0.24

480 100 0.01 -0.55 0.13 0.01 -1.89  0.09 -0.10 -0.78 - 0.07 -0.03 -

480 200 0.14 1.88 0.08 0.04 -1.53 0.03 -0.10 -0.65 -0.04 0.09 -0.06 -

480 300 0.03 0.07  0.05 0.14 0.16 0.06 -0.06 -0.96 0.09 0.13 0.30  -0.05

Panel B: RMSE

240 100 5.37  5.56 6.17 5.40  6.72 8.24 5.51 6.13 - 5.87 5.74 -

240 200 5.17  5.61 5.47 5.22 6.01 6.36 5.19 5.24 8.90 5.46 5.73 -

240 300 5.16 5.09 5.41 5.29 5.33 5.92 5.19 5.72 7.14 5.23 5.40 19.69

360 100 4.40  4.46 5.01 4.40 5.47  6.53 4.46 5.00 - 4.41 4.60 -

360 200 4.32 5.08 4.51 4.27 497  5.02 4.28  4.54 6.85 4.37 459 -

360 300 4.25  4.18 4.42 424  4.30 4.65 4.27  4.75 5.63 4.18  4.38 10.31

480 100 3.80 3.90 4.32 3.84 5.01 5.58 3.73 428 - 3.64 4.02 -

480 200 3.74  4.50 3.96 3.68 4.38 4.33 3.65 3.79 5.50 3.57 384 -

480 300 3.67  3.68 3.79 3.66 3.79 3.96 3.66 4.05 4.54 3.50  3.77 7.73
Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the SDF loading A

of the useless factor from Monte Carlo simulations. DS is the double-selection estimator, SS is the single-selection

estimator, and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are

selected using 10-fold cross-validation, where we partition the cross-validation subsamples in the time series dimension.

The true value Ayseless is 0. Note that in cases of n > p, OLS is infeasible.



Table A5: Table of the Variable Selection in Simulations

p=25 p =50 p =100 p =200

T n 1st 2nd  Total 1st 2nd  Total 1st 2nd  Total 1st 2nd  Total

Panel A: Useful Factors

240 100 45.5 98.5 99.2 45.6 973 984 46.8 946 96.6 46 86.9 92.1
240 200 46.5 97.3 98.5 474 984 99.1 47 96.6 97.9 45.7 86.1 90.9
240 300 48 98.7 99.2 48.1 99 99.3 50.4 94.2 96.7 48.5 89.7 93.7
360 100 52.2  99.7  99.9 50.4 99.2 99.6 50.9 982 98.9 48 94.3  96.9
360 200 54.5 99.2 99.6 52.9 99.6 99.8 51.6 99.1 994 50.2 942 96.6
360 300 54.6  99.8 99.9 53.6  99.7 99.8 54 97.3 98.5 51.9 96.5 98.1
480 100 56.1 99.9 100 54 99.8 99.9 53.7 993 99.6 499 976 98.7
480 200 57.9 99.7  99.9 57.4  99.9 99.9 53.1  99.7 99.8 50.3 97.8 98.7
480 300 57.1 100 100 58.5 99.9 100 56.2  99.2  99.7 51.9 985 99.2

Panel B: Redundant and Useless Factors

240 100 5.6 2.5 7.9 4.4 1.7 5.9 3.4 2.2 5.4 2.5 3 5.2
240 200 6.3 3.4 9.2 5.4 1.8 7 4.5 2.5 6.8 3.3 4.4 7.3
240 300 6.4 3.1 9.1 6.4 2 8.1 5.8 4.7 9.8 3.9 4.5 7.9
360 100 5 1.6 6.4 4.1 1 4.9 3.3 0.8 4 2.1 1 2.9
360 200 6.5 2.4 8.6 5.3 1.1 6.2 4.8 0.9 5.6 3.2 1.8 4.8
360 300 6.1 2.2 8 6.3 0.9 7.1 5.3 1.5 6.6 3.8 1.6 5.2
480 100 4.7 1.1 5.7 3.4 0.7 4 2.7 0.5 3.1 2 0.4 2.3
480 200 5.1 1.6 6.5 5.1 0.7 5.7 4.3 0.4 4.7 2.7 0.8 3.4
480 300 4.9 1.5 6.2 5.4 0.7 6 4.3 0.8 5 3 0.7 3.6

Note. The table reports how often useful, redundant and useless factors are selected in each step of our double selection
procedure (first and second columns corresponding to the first and second step, and their union in the third column),
in Monte Carlo simulations. Panel A reports the average selection percentages for useful factors, and Panel B reports
the average selection percentages for redundant or useless factors. The regularization parameters in the LASSO are

selected using 10-fold cross-validation, where we partition the cross-validation subsamples in the time series dimension.



Figure A1l: Histograms of the Standardized Estimates in Simulations
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Note. The figure presents the histograms of the standardized double-selection and single-selection estimates using
estimated standard errors, compared with the standard normal density in solid dashed lines. The left panel reports the
double-selection histograms, and the right panel the single-selection histograms. The top row reports the distribution
of standardized estimates for a useful factor; the middle row for a redundant factor; the last row for a useless factor.
In the simulation, we set 7' = 480, n = 300, and p = 100. The regularization parameters in the LASSO are selected

using 10-fold cross-validation, where we partition the cross-validation subsamples in the time series dimension.
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Figure A2: Histograms of the Selected Variables
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Note. The figure reports how often each factor is selected in each step of our double selection procedure (first and
second panels corresponding to the first and second step, and their union in the bottom panel), in Monte Carlo
simulations. Each factor corresponds to a number on the X axis. Factors 1 - 4 are part of the true factors in the DGP.
Factors 5 - 100 are either redundant or close to be useless. We set T' = 480, n = 300, and p = 100. The regularization
parameters in the LASSO are selected using 10-fold cross-validation, where we partition the cross-validation subsamples

in the time series dimension.
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Appendix B Technical Details and Proofs
B.1 Notation

We summarize the notation used throughout. Let e; be a vector with 1 in the ith entry and 0
elsewhere, whose dimension depends on the context. Let ¢, denote a k-dimensional vector with all
entries being 1. We use a Vb to denote the max of @ and b, and a A b as their min for any scalars a and
b. We also use the notation a < b to denote a < Kb for some constant K > 0; and a <, b to denote
a = O,(b). For any time series of vectors {a;}7_,, we denote @ = T~ 37, a;. In addition, we write
a; = a;—a. We use the capital letter A to denote the matrix (aq : az : ... : ar), and write A= A—Lr}d
correspondingly. We use Apin(A4) and Apax(A) to denote the minimum and maximum eigenvalues of
A. We use [|Al, |A]l, [[A]l; and ||Al|p to denote the L; norm, the Lo, norm, the operator norm
(or Ly norm), and the Frobenius norm of a matrix A = (a;;), that is, max; >, a;;[, max; > |ai;l,
VAmax(ATA), and /Tr(ATA), respectively. We also use ||Al[yjax = max;;j|a;;| to denote the Log
norm of A on the vector space. When a is a vector, both ||a|| and ||a||p are equal to its Euclidean
norm. We use |lall, to denote »_; 174,201- We also denote Supp(a) = {i : a; # 0}. We write
the projection operator with respect to a matrix A as P4 = A(ATA)"'AT, and the corresponding
annihilator as M4 = I — P4, where I is the identity matrix whose size depends on the context. For

a set of indices I, let A[I] denote a sub-matrix of A, which contains all columns indexed in I.
B.2 Technical Assumptions

Assumption B.1 (Sparsity). [[Anlly < s, [Ixj-llo < s, Inj-lly <5, 1 <5 <d, for some s such that
sn~t — 0.
Definition 1 (LASSO and Post-LASSO Estimators). We consider a generic linear regression problem

with sparse coefficients:
Y =XpB+e¢e, subjectto |[p],<s,

where Y is a n x 1 vector, X is a n X p matrix, § is p X 1 vector of parameters. We define the LASSO

estimator as

B = argmﬁin {nfl Y — XB|° +n7tr HBHl} :
We define the Post-LASSO estimator Bf as
By =argmin {n 1Y~ XBI%: B =0, j¢ T},

where I is the set of indices of variables selected by a first-step LASSO, that is, I= Supp(B).

12



We adopt a high-level assumption on the model selection properties of LASSO and the prediction
error bounds of the Post-LASSO estimators in (7) and (8). Belloni and Chernozhukov (2013) provide
more primitive conditions for these bounds to hold.

Assumption B.2 (Properties of Post-LASSO Estimators). The Post-LASSO estimators in (7) and
(8) satisfy the following properties:

1 5=1hUBLIS, s

2. Moreover, if 19 > 2¢ H)\}Cg(% : éh)

/ for some ¢ > 1, then

n-1/2

(Y7, — Yo0) + ﬁh(Xa - f\h)H <p T~ Y2 (log(n Vv p Vv T)Y? + 75512071, (B.1)
where 5o = 0 + TNy and A = XTAg + Ap are the true parameter values given in (2) and (6).

If T > 2¢; HejT-CeT(Ln : éh)’

X for some c; >1 and j =1,2,...,d, then

n=1/2

(&, 7 + Culg, 7| S T2 (log(n v p VT2 1 a8, (B2)
where T = (11, 72,...,74)7, & and x are the true parameter values given in (6).

Assumption B.2 gives a probabilistic upper bound on 5. The prediction error bounds in (B.1)
and (B.2) are more conservative than the standard results, because the regressors here are estimated.
We provide a sketch of the proof for (B.1) in Appendix B.4, for which we need the following sparse
eigenvalues assumption. The proof of (B.2) is similar and simpler. Our theoretical result below
would also hold if other model selection procedures are employed, provided that they obey similar
properties in Assumption B.2.

Assumption B.3 (Sparse Eigenvalues). There exist K1, Ko > 0 and a sequence l,, — 0o, such that
with probability approaching 1,
K1 < ¢min(lns) [n7 ey : ah)T(Ln : éh)] < Gmax(lns) [0 ey : @)T(Ln : éh)] < Ko,
where we denote
vTAv vT Av

Gmin(F)[A] = i Tl and pmax(F)[A] =

= min = max 7 -
1</l <k v 1<|lvl<k |v]

Assumption B.3 resembles one of the sufficient conditions that lead to desirable statistical
properties of LASSO, which has been adopted by, e.g., Belloni et al. (2014). It implies the restricted
eigenvalue condition proposed by Bickel et al. (2009).

Assumption B.4 (Large Deviation Bounds). The stochastic discount factor, the returns, and the

factors satisfy

lallvax Sp T_1/2(log(n VpV T))l/z, where a € {m,v, z,u}.

HT_IABT - Cov(at,bt)HMAX <p T72(log(nV pVv T))Y/2, where A,B € {M,V,Z,U}. (B.4)
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Assumption B.4 imposes high-level assumptions on the large deviation type bounds, which can
be verified using the same arguments as in Fan et al. (2011) under stationarity, ergodicity, strong

mixing, and exponential-type tail conditions.

Next, we impose additional uniform bounds that impose restrictions on the cross-sectional
dependence of the “residuals” in the covariance projection (6). Similar assumptions on factor loadings

are employed by Giglio and Xiu (2016).

For the sake of clarity and simplicity, we assume the set of testing assets used is not sampled
randomly but deterministically, so that the covariances and loadings are treated as non-random.
This is without loss of generality, because their sampling variation does not affect the first-order
asymptotic inference. By contrast, Gagliardini et al. (2016) consider random loadings as a result of
a random sampling scheme from a continuum of assets.

Assumption B.5 (“Moment” Conditions). The following restrictions hold:

|Ce HMAX S HCTLn”MAX Sn / HCTChHMAX Sn / (B.5)
1CTall\ax Sp /T2, HCJWTHMAX Sp ' PT?,
Amin(n1CIC) > K, ||CT(Ben + i)l S 522 |1Bnll S 5. (B.7)

In addition, for a € {m,v, z,u}, it holds that

Fallvax S 1, Callyax S 1 (B-8)

Finally, we impose a joint central limit theorem for (z;, ATvizy) = (2¢, (1 — yome)2¢). This can
be verified by the standard central limit theory for dependent stochastic processes, if more primitive
assumptions are satisfied, see, e.g., White (2000).

Assumption B.6 (CLT). The following results hold as T — co:

T1/2 _5_ Y 0 ’ Iy Ihho 7
—TZMT — %), 0 ], Il

where 1111, 112, and Ilsy are given by

II1; = lgr;onZE zszt

t=1 s=1

T T
1
. H T
15 = Th_r}n E E E ()\Tvszszt ) R

t=1 s=1
| I.T
N TR Toy AT T
II99 —Th_rgo T ;_1 ;_1 E (ATogA\Topzez]) .
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Assumption B.7 (Selection for the Asymptotic Variance Estimator). The Post-LASSO estimator

n7 satisfies the usual bounds. That is, if Tj > 2¢; ||[HZT||, for some ¢; > 1, j =1,2,...,d, then we

have
|7 — mH|| $p sV 2ogp v T2, and |77 — || Sp s/2T7 2 (log(p v T)) /2.

B.3 Proof of Main Theorems

Proof of Theorem 1. The estimator of A\, can be written in closed-form as

/):g = (C\;M(anahm)ag) - (é\;M(bn:éh[ﬂ)f) . (B.g)

Moreover, by (2) and (5), we can relate Cy and C}, to 4 and Sy:

(B.10)

Cg =Cyn" +C,, where C} = (ﬁgn + /Bh,)zhu C, = 6922'

Using (3), (5), (B.10), and the fact that
(Cr = O™ +(C. = Co),
B (T'ZZT—S)+T'UZT+ T (Bgn + Bn) HZT,

—Cy =
- C, =
—~Cp=Bgn+ By) (TT'HHT = %) + T'UHT + T7'8,ZHT,

Cy
C.
C
we obtain the following decomposition:

T1/2(>‘g o )‘g)
—(n—léTM - O )_1n—1T1/26TM - ((c — C)Ag + Cidn + ByZ + ((Byn + B )B+a))
- 95 (en:Cr 1)) 9 9 (bn:Cr 1)) g g9) g hAh 9 g7 h
=728 (2 (T7'ZVTA = 2.)))
+ (n*léTM = i C )_1 (nflTl/QéTM A i (1 —
97 (bn:Cr[I]) 9 97 (bn:ChlI])
+n ' TYRCIM ) (Bg — G x (2= (T ZVTA = 2.0))
—n ' TYVECIML, 6, ) (Ban + Bn) (T HVTA = Sa(iTAg + An) — h)

TV

—1p1/2A A
+n="T / C;M(Lniah[f])ch)\h) .
We first analyze the leading term. Note that yoMT = —V T\, by Assumption B.6 and applying the

Delta method, we have

S-S (T ZMT - S0)0))

T T
.1 - -
LN <0,Thm T E E E ((1— ATop) (1 — ATog) S 2218 1)) . (B.11)
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Next, we show that the reminder terms are of a smaller order. By (B.42), we have

tn:CL I (ﬂ o T_IUVTA) H S/p S(n_1/2 + T_1/2) log(n VpV T)

T2 | Crm
By (B.27), we have
n~tTl/? H@M(bn:éhm)é’MhH <p (7 'TY2 + 77V log(n vV p vV T).
By (B.40), we have

T2 H@Munﬁhm)(ﬁgn +60) (TTTHVTA = Z3(n"Ag + M) — h) H
<ps2 (V2 £ T2 log(n v p v T).
By Assumption B.4, (B.11), and (B.35), we have
IV C, g, (B — CoS2h) (= (T 202 = 2.0)) |
< T2 | O, ) (8o — G| 12 = (T 20TA =22 |
gps(nfl/Q + T*1/2) log(nVpVT).

This concludes the proof. O

Proof of Theorem 2. By the identical argument in the proof of Theorem 2 of Newey and West (1987),

we have

T
Z Z Qur(1 — ATu) (1 — ATw,) (z2] + 2,27 ) 2 2,113,
t=1 r=1

el

So applying the continuous mapping theorem, it is sufficient to show that

., (B.12)

oo

I-= ; 21 Qer(1 = ATog)(1 = ATy (2] + 22]) = 0, (B.13)
=1 r=

where

To prove (B.12), we note that by Assumptions B.4 and B.7, we have

Hiz - Ez

MAX
STV @ = MH[ 1 Zlyax + T |G = mH|P + [T 227 = 22 y0x

Sps' 2T (log(p v )2 || Z [ yax + 8T log(p Vv T) + T~ (log(n v p v T)'/?
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=op(1).

As to (B.13), we can decompose its left-hand side as

T T

1 ~ ~

722 Quh = Vel = Moy (B3] + 53]
t=1 r=1
T T

+= 3D Qe (1= ATu) (A = A)Tor (23] + 2:2])

t=1 r=1

1 T T

T DY Qu(l=ATu) (1= ATor) (3 — 20) 2 + (3 — 2,) Z)
t=1 r=1

1 T T

o DY Q1= Ao (1= ATo) (2 (B — )T+ 20 (B — 20)T).
t=1 r=1

Analyzing each of these terms, we can obtain that

QuX = NToy(1 — ATv,) (B3] + 5,.2))

N =
M~
N

,_.

.
Il

—

MAX

N

L)

K
_ v
N)

RN 1 (SR W 1 P

Qur(1 = ATo) (X = N T, (227 + 5.2))

N~
]~
E

—

N s
I
—

MAX

v 12

N
RS
K

AT ||e

MAX MAX

el
E

T
D QL= ATor) (1= ATor) (B — 20) 2] + (2 — 2) 7))
r=1

~~
Il
i

MAX
SAT G = AVIIG = H 2] = ATV

Spqsg/Q(T*l/2 + ”71/2) IV 1vax 1Z]lvax s
where we use

lef = ATV S TY2 + |81 + [IATol| <, TV,

b = ATV yax ST+ IAVvax S 81V lax

G- 3V|| < 4 = AV + [ G =01V 5, TV 4 K= A Jivi s, T2,
A A DA P AR DY UE Al

A=

ZH <|F=nH| +||Z <z ,
vnx S N0 =mH [+ [ Zlhax Sp 1Z]ax

which hold by (B.14), Assumption B.4, and Lemma 7. This concludes the proof.
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(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

Sp qsl/z(Tfl/z =+ ”71/2) IV Invax 121 vax >

pr (131/2(T_1/2 + ”_1/2) HVHMAX HZHMAX )

< R = 2L W lhax < A= 2] 1Vlhiax Sp 82T 72 +072) [V



B.4 Proof of Lemmas

Proof of (B.1). We provide a sketch of the proof, as it is very similar to Belloni and Chernozhukov
(2013). With respect to the optimization problem (7), we define

Q(y,\) =n""! HF — Yy — C’\h)\HZ .
We denote the solution to this problem as 7 and A. Let § = A — A,. Note by (5) and (2), we have
E(rt) = tnYo + Chin + Cehg, and 7 =E(rt) + 84g + Buh + .
By direct calculations, we have
QG ) ~ QG- A) — 17 [~ 50) + Gid
=—2n"! <7’ — tnY0 — ahj\h)T <Ln(7 — %) + 6h5>
——2n ! (ﬁgg + Brh+ i+ (Ch — Cp)An + Ce/\g>T (Ln(i — o) + @L(S)

> —2n ! Hﬁgg + Bph+ 1+ (Ch — ah)S\hH

(3 = 0) + Cnd|
=207 |(Cdg) (e s E)| NGT =50+ 87T

> —2n ! Hﬁgg + Brh+ a4+ (Cp — ah)s\hH

(3 = 0) + Cnd |
— 10K 't (17 = ol + [16rlly + 1I8rell,)
where [ is the set of non-zeros in ;\h, 1€ is its complement, and d; is a sub-vector of § with all entries

taken from I.

On the other hand, by definition of 7 and X, we have

QG — QCio, M) <ron ™ ([[Go: A7 = |37 )
<ron (17 = Fol + 10zlly = l1ére]l;)-

Therefore, we obtain

-1

~ 2
! [en(F = 50) + Cnd|| = 7ot (5 = Fol + ol + el

—op 1 Hﬁgg + Brh+ a4+ (Cp — ah):\hH

(5 = 50) + Cad|

<ton ™ (1§ — Yol + 16211, — 116z¢1l1), (B.19)
where we use the fact that

0> QCHA;CET(Ln : éh)Hl.
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If it holds that

n—l

(3 = 50) + Cnd|| = 2071 8,5 + Buh + 5+ (Ch — )| < 0,
we can establish that
n~1/2 HLn("? — %) + éh(SH <p sTﬁl/z(log(n VpV T))l/Q,

where we use the fact that

n2 118,90 S 1Bgllyiax 18lhax Sp T2, (B.20)

n 2 | Sllalyax Sp T2 (log(n v p v T)Y2, (B.21)

n 2Bk < 1Bkl s Bl yax Sp ST 2 (log(n v p Vv T))Y2, (B.22)

n~L/2 H(Ch - éh)XhH < Hch - éhHMAX Hxh S ST (0g(n v p v T)) 2, (B.23)

Otherwise, from (B.19) it follows that
— (I = ol + 10zlly + 187 ll1) < 17 = Fol + 187l = llorelly
which leads to, writing ¢ = (¢ + 1)(c — 1)71,
16z¢]] < (17 = Fol + ll]ly)-

Then by (B.19) again as well as the restricted eigenvalue condition in Belloni and Chernozhukov
(2013), we obtain

(3 — Ho) + émHQ _9 Hﬁgg 4 Buh 4+ (Ch — éh)ihH

(3 = %0) + Cid
<+ ¢ N7 = ol + 101ll) S 70502 |len(F = Ho) + G|
Therefore, we have
n~1/2 Hl,n(ﬁ - ’7()) + @LéH Snil/z Hﬂgg + ,Bhil +u+ (Ch — 6’}1)5%“ + T()Sl/Qn*l
SpsT_l/Q(log(n Vp VT2 4+ st 2n7 L

The Post-LASSO estimator converges at the same rate following the same arguments as in Belloni
and Chernozhukov (2013).

O

Lemma 1. Under Assumptions B.1, B.2, B.j, B.5, we have
nl/2 HM(Ln:Gh[T])ahXTH Sps(n2+ T2 (log(n v p v T)) 2. (B.24)
nV? HM(Ln:éh[méh)‘hH Sps(n 2+ T 1) (log(n v p v T))Y2. (B.25)
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Proof of Lemma 1. Using the fact that I, C T and by (B.2), we have
n/? HM(Lntéh[ﬂ)ChXTH =n~"/? HM(W@[T])(C’LXT . LngT)H <nl/? HM(L":@L[TQ])(ChXT + LnéT))H
(€= &5)T+ Cux™ - ahf(%

< T2 (log(n v p v T2 + |7 ygax 820

<p~1/2

Since by Assumptions B.4 and B.5, our choice of 7 satisfies:

7 ax Sn70 ma [|eTCIGH|| S nt ICIChlax + 77 [[C2(Ch - O

1<j<d MAX

<p(n~ V2TV (log(n v p v T))Y2, (B.26)

This concludes the proof of (B.24).

Similarly, to prove (B.25), by (B.1) we have
—1/2 ~ Y o
n~Y HM(Ln@h[m) (C’h)\h + Ln’YO)H
<n~1/? H(Ln : ah)ﬁfl — %o : (Xfl - S\h)T)TH <p sT Y2 (log(n Vv p Vv T))Y? + 195 /2n 1.
Because we can select g that satisfies
n~lry <n7! H)‘;Cg(% : Ch)”l <n! [AFCTin| + n~! H)\;C’GTC;LHMAX
S Cetnllyax + ICelaax [ G = Ca| +n7 ICTChllyiax

Sp(n” 2+ T2 (log(n v p v T))Y?,

~

hence it follows that
w2 (ChO +xTAg) + o )| Sp s 2+ T71/2) (log(n v p v T) V2
By the triangle inequality and M(anéh mpln = 0, we have
HM(W@MEDC}LMH < HM(anéh[ﬁ}) (Ch@\h +XxTAg) + Ln'YO) H + HM(anéh[ﬁ})ChXTH [Agll

which, combined with (B.24) and ||Ay|| < 1, lead to the conclusion. O

Lemma 2. Under Assumptions B.1, B.2, B.3, B.4, B.5, we have

n’lHCA‘;M [I])C’h)\hHNps a4+ T Y log(n Vp v T). (B.27)

Proof of Lemma 2 . We note by (6) that

Cy=CuXT+Cy — Cy 4 1nl™ + (Ch — Co)XT + Cs, (B.28)
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thereby it follows

nt Hé;M(Lniéhm)ahAhH Snil HXé’IM(Lniah[ﬂ)éh)\hH + n~!

(1O f])ChAhH

+nt H(ag —Cy+ (Ch — éh)XT)T ( ) Ch)\hH
On the one hand, by Lemma 1, we have

o o] <0 o o

amC ChAhH

Zen) (en:C 1))

<psP(n P+ T Hlog(nvp Vv T). (B.29)

~.

On the other hand, note that
M., 7 Chtn =(tn¥0 + CrAn) = (bn s C) (B0 : AT = (tn : Ch)(v0 = 0 : A] = AT,

where (9 : X;)T = argmin, y{eny0 + ah)\h — iy — ah)\ :Aj=0,j5€ fc} By Assumption B.3, we

have

n~1/2 HM Ch/\hH =n~1/2 H(Ln : (7h)(fyo — A0 Al — XIL)TH
> 6in(s +5+1) [0 (e s C)(en = )] || (0 =0 AT = A7)

ZH(’Yo—% : A;Tl—j\DH,

:Cr 1))

hence it follows from (B.25) that
0 =40 AL = AD)|| Sp 072 + T712) tog(n v p v T)) 2 (B.30)

Using this, we have

=

€M, oy Orn| =n |G 0 = B0 — 502 A — A1)

ST (AT ] I [CTEETEPY PO SR G K3)

MAX

Using (B.5) and Assumption B.4, it follows that

—1 ~ -1
CT(tn: C H <n
" H ¢(in : Ch) MAX —

1@ =G|+ ICTChllyiax + n 7 €T talliax
SICelliax [[Cn = Cal[, . +n " ICIChllyiax + 7 ICTenllyiax

<o (V24 TV (log(n v p v T))Y2. (B.32)
Moreover, since by sparsity of \; and S\h, we have

fou 38— 7], < o 502 = 2]
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Combining (B.30), (B.31), and (B.32), we obtain

n! ’ CeTM(anahm)ah)\hH <p 2t + T Y log(n v p Vv T). (B.33)

Finally, by (B.25) we have
nt H(Cg = Cy+(Ch = Ch)XT)TM(Ln@h[fDCh)\hH

|6 Co+ @ = ExT|| . n 2,y O

<ps (V2T Y2 L T Y (log(n v p v T)) V2,

The above estimate, along with (B.33) and (B.29), conclude the proof of (B.27).

]
Lemma 3. Under Assumptions B.1, B.2, B.3, B.4, B.5, we have
nL H@TM(W@@CWT H <, s(n~ Y2 + T=Y2)(log(n v p v T)) /2. (B.34)
w0 (B — Co=)| S s+ TV logn v p VTV (B35)
Proof of Lemma 3. (i) By (6), we have
-1 ||A ~1 1A
w7t Cn, oy o) <o |CIM g,y o | + 07 [XCRM, ) |
+ nt ((ég - CQ)T + X(Ch - éh)T> M(bn:ahm)ChnTH .
Moreover, by (B.24), we obtain
n |XCIM, g,y | <02 XOIM, g,y | 72 o]
Sps(n 2+ T2 (log(n v p v T))'?, (B.36)

where we use the fact that Cy = Cyn™ 4 C, and that
no1/2 1CnT| S NCrThiax S 1Cgllvax + 110z lmax S 1
In addition, we have

-

CIM,, 6@y O | <0 ICTCwTI + 07 |

CIB, 5,7y Cn" |
To bound the first term, we have

nHCICKT|| S 0 ICTChllviax 17lloo Sp s/ (log(n v p v T))Y2.
As to the second term, using (B.32) we obtain

n! HCeTP(Ln;Gh[IA])ChnTH
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~ o~

=n |G (v = CalT]) ((tn : CalT)T(en 2 Cull))) (o = CalT)TCo”

<n|[CI (e : Cull])

(o CT) o = GulTD))

<A+9)o Ll (5+1) [nfl(bn )T (i - Cy,,)] n~! Hog(Ln : éh[f])H n~! ‘

(1 + CulT)T O

(1 CulT)Coor"|

MAX MAX
Sps(n™2 4+ T712)(log(n v p v T))'/2,
where we also use [|Chn|lyax < I1Cqllyax + 11C:lvax S 1, and
s CalT)TCn|| <0 [ GO S [ G| Ikl
< (1en: O)lhaax + | Gr = G| ) IChmIhax S5 1
Therefore, we have
L Hc M, 6, Ch" H <, s(n~Y2 £ T7Y2)(log(n v p v T))V/2. (B.37)
Similarly, because we have
n~! H ((69 —Cg)T+ x(Cp, — ah)T) Ch’OTH
$|(Cy = oy (@ =y Gk Iax Sp ST (0g(n v p v T)) 2,
_1 -~ -~
(€ —cam+xih -G : il
<K H Gy — Cp)T + x(Cp — Cy) HMAX Ol HMAX o ST~ 2(log(n V p v T))M2,
it follows that
w7 |((Cy = Co)T 4+ x(Co = Cu)T) M, ) O | S (02 4 T2 log(n v p v T)) Y2,

which, along with (B.36) and (B.37), establish the first claim.
(ii) Next, by (5) we have
8, = G + ..
And recall that 3, = C,X1, so we have
|Gy, ) B0 — Co2 )|
Sn_l HCA'QM

Lonny(C= = G820t Mg, ) (Cr— OS2 |

07 ||CM, 0,y OS5

Using Assumption B.4 and HM Gl H <1, we have

n|CoM, 0,0 (C: — G52
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<G

el

s s T2 ot v p v ),
where we also use the fact that

HE IH < A (B ‘)GQHMAX - Hag B CgHMA H1Clax S 1

Similarly, we obtain

wt (G, 0,0y (o = G| |

MAXH@L_ HMAX””HOOH 71“

<psT 2 (log(n vV pV )2

Combining (B.38), (B.39), and (B.34) concludes the proof.

Lemma 4. Under Assumptions B.1, B.2, B.3, B.4, B.5, we have

" HGQTM(L":@[TDWM + Bn) (TTTHVTA = S3(n"Ag + An) — h) H

gpsg(n_lﬂT_l/2 + T Hlog(nVvypVT).
Proof of Lemma 4. From (B.24) and Assumption B.4, it follows that

”71HXGZM(Wéhm)(ﬁgWrﬂh)( THVTA = S0 (" Ag + M) — H

<n /2 HX@IM(LH:&[TD H 189m + Bulloo (|77 HVTA = S (17 Ag + M) [|ygax + 12l vgax)

<ps(n V2T Y2 L T Y log(n vV p v T).

Next, by triangle inequality, we have

! |[CIMy,, g,y (Ban + Ba) (T HZTAg + (T HHT = 53) (n7Ag + M) = B) |

<n~H|CT(Byn + Bu) (T HVTA = 4 (0T Ag + Ap) — 1) |
P sy Bt + B (T_IHVTA—Eh(WTAng)\h)—B)H'

For the first term, by Assumption B.5 we have

n T |CT(Byn + Br) (TTTHVTA = S(nTAg + An) — 1) ||
<n H|CT(Bgn + Bu)ll o [(TTHHVTA = Si(nTAg + An) —
SpsnflmT*lm(log(n Vp V)2,

M) lviax

For the second term, we use Assumptions B.1, B.3, B.4, and (B.32),
|G,y (Ban + 1) (T HVTA = S + Au) = ) |

24

(B.38)

(B.39)

(B.40)
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S+ 051 - ] et -G,
e = G 180+ Bl [T VTN = S0y + An) = By

<ps2 (V2T L T Y log(n vV p v T).
Finally, by Assumptions B.1 and B.4, we have

-1 H(ag —Cy+ (Cy, — é\h)XT)TM(bn;éh[ﬂ)(ﬂgn + Bn) (Tflf_{f/T)\ —S(nTA, + ) — E) H

S||€ = Co+ @0 = CapT|| 1B+ Bull o 1T HVTA = S0 Ay + M) = Bllygax

[
<ps?T Hog(nVvpVT).

The conclusion then follows from (B.28). O
Lemma 5. Under Assumptions B.1, B.2, B.3, B.4, we have

! H@TM(Ln:Gh[f]> (— T TV H <, s(n~V272 £ PN log(n Vp v T). (B.42)
Proof of Lemma 5. Note that by (B.24), we have

nil”’“unn@um(Q_TAU'V“)H S”AQHM GO’ H I [ A TR

,§ps(n_1/2T_1/2 + T Hlog(nVvypVvT),
where we use the following estimates as a result of Assumptions B.1 and B.4:

n 2 || S lallyax Sp T2 (logn v v )12,

n~1/2 HT_IUVT)\H < HT_IUMT%HMAX Sp T-1/2 (log(nVpV T))I/Q.
Moreover, by triangle inequality, we have

1 _
n || CIM,, 6, (8

oy |
<nU|[CT (@=TTOVIN) ||+ 07 [ CIR, 6,q) (@ =TT OV
For the first term, we have
n=t||CT (a— T OVTA)|| < n7t|CTal| + T~ et |CIOVTA|| Sp sn™ V2T 12,
As to the second term, using Assumption B.3 and (B.32) we have
7|

02 s G (e Gl (e GulT)) ™ (2 GlT) (- T—IUVTA)H

T (tn:Cn 1)) (ﬂ — Tﬁlﬁ‘_/T)Q H
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snt{|CT e s Gll] T Gl (@ - 1OV

Dllax ™
§ps(n_1/2T_1/2 + T Hlog(nVvpVvT),

MAX

where we also use the following

=

(2 O (@=T7TVN)| < (GG # 1n Cdllaax ) 7= TTTVTA g

<pT~Y2(log(n Vv p Vv T))Y2,
Finally, we note that
w7 (€= €y (Cn = CxT) M, o, (@ = TV
<HC - Cy +(Ch— CR)XT H ‘u— 1U]WTHMAX sT  log(nVpVT).
This concludes the proof. ]

Lemma 6. Under Assumptions B.1, B.2, B.3, B.4, B.5, we have

AT —~ —1
n (CgM(W@m)Cg) <, 1.

Proof of Lemma 6. Note that by (B.28), we have

C;M(Lnéh[ﬂ Cg

=CIMy,,.c, @) Ce + CIM, .0, CnX" + XCIM, g, 7, Ce + XCIM,, ¢, @) Crx

.
+CIM,, iy (Co— Co+ (Ch— Cux™) + (Cg — Cy+(Ch—Cx7) M C.

(en:Cr 1))
~ ~ ~ ~ ~ T ~
+ XCZM(Ln:éh[IA}) (Cg —Cy + (o Ch)XT) + (Cg —Cy + (Ch — Ch)XT) M(Ln;@h[f])ohx
~ ~ T ~ ~
+ (Cg —Cy+ (Ch - Ch)XT> M, ..M (Cg —Cy+ (Ch - Ch)XT)
There are 9 terms in total on the right-hand side. By (B.24), we have
1 ‘

Sps(n™V2+ T (log(n v p v T)) Y2,

nt HXC’,[M Ce

(tn:Cu (1)) (en:Cu[1)) Cnx! H S 1Cellvaxn 1/2HM<Ln:5‘h[fD6hXTH

~ ~ ~ 2
w7 Ny O | <07 [y O[S0 2+ T st pv T
Also, we have

e,y (Co = Gy + (G — Ci)x )H—n |(8,— o+ (€1 - GoxT) M, g, 7, Ce
S ICellyax HCg —Cy+ (Cp, — Ch)XTH p ST~ l/z(log(n VpV T))1/2

7 xEIM, ) (Co = Co + (Cn = Crx )H—n |(€5 = o+ €0 =CxT) My, 6,3, Cnx|

26



Sn_l/QHX@TLM (n:Call]) H HC — Cy + (Cr — Ci)x H

MAX
5p52(n_1/2T_1/2 +T Hlog(nVvpvT),

n~t H (59 —Cy+ (O, — ah)XT)T M,...é.1m) (C = Cy+(Cr = Cu)x ) H

. _ 2
< ’Cg —Cy+ (Ch — Ch)XTHMAX <p s*Ttlog(nVvypVT).

~ ‘

Finally, by (B.32) and Assumptions B.2 and B.3, we have

nt IR oy Cel| =07 | = Cull]) (1 2 CT)T (2 CulI))  (on 2 ClI)TC

1)

<sn 2 HCET . O[T <p st 4+ T Hlog(nvp V).

D

Hence, we obtain
n ' CJM,.,m)Ca = 1 CICe + 0p(1).

The conclusion follows from (B.5) and Weyl inequalities.

Lemma 7. Under Assumptions B.1, B.2, B.3, B.4, B.5, B.6, we have
|Go 30y = (o s AD| p s72 + T2 tog(m v p v T)) 2
Proof. Tt follows from (9) that

Go: 3TN = (12 CalD))" (102 Gl0)) ™ (a2 GlD) (7 G3,)

which implies that

Go X7 = (o ADT| = [ Go = AT = o AT + | € 07R = (€207

where
o X7 —asgmin [ G A =0, e},
(E] 1 X)) = arg gn)gl {HC’ 9 — n&j — ChXJ H DX k=0, k¢ f}, ji=12,...,d.
Moreover, because
M., )" = tn¥0 + Chdn = tn¥o = Cpdn + (Ch = C)An + Cedg + B9 + Buh + @
we obtain, using I; C I, (B.1), (B.5), (B.20) - (B.23), (B.26),

oo 80) oG ) |
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<n 172 H (Ln : éh) (%1 — 501 (Of, — Xh)T>TH +2n~ /2 H(Ch — Ci)An + Codg + Byg + Brh + aH

<ps(n Y2 + TV (log(n v p v T))Y2.
Since we have

n-l/2 H (Ln : CA’h) (% — %0 : (O — S\h)T)TH
z(brln/ii(l +3) [”71(% £ C)T (- 6h)} H (% — %0t (A — Xhﬁ)‘

)

it follows that
| Go =0 Gn = 3)7) || p s(n"/2 + 772) g (m v p v T)) 2.
Similarly, we can obtain
|(€=¢:x=x)|| 5o s+ T2 t0g(n v p v )2

Therefore, using this, as well as Assumption B.1 and Theorem 1, we obtain

|€: 078 — € 0™ <||@ =€ T = [Ro + 1€ 00 |[R = 2
§p3(n_1/2 + T_1/2)(10g(n VpV T))1/2.

This concludes the proof.
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