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ABSTRACT. In this not-for-publication Online Appendix we provide proofs of the results in Sec-
tion 7 of the main text. We also provide numerical examples of bounded replacement equilibria
and monotone equilibria, together with some missing details, such as the shape of the optimal
choice of noise for a generic type θ ∈ R, depicted in Figure 5 of the paper.

1. PROOFS OF PROPOSITIONS IN SECTION 7

Proof of Proposition 7. Suppose that σb > σg. Define h(x) ≡ f
(
x−θb
σb

)
/f
(
x−θg
σg

)
for all x.

The retention zone is given by

X = {x|h(x) ≤ k ≡ σbβ/σg}.

Our claim is that X is a bounded interval. If this is not true, then — using σb > σg and Lemma
6(ii) — there exist (a) y ∈ R such that h(y) = k and h′(y) < 0, and (b) w < y such that
h(w) = k and h′(w) > 0. We record here that:

h′(x) =

1
σb
f
(
x−θg
σg

)
f ′
(
x−θb
σb

)
− 1

σg
f
(
x−θb
σb

)
f ′
(
x−θg
σg

)
f
(
x−θg
σg

)2

=

1
σb

[
f ′
(
x−θb
σb

)]
/
[
f
(
x−θb
σb

)]
− 1

σg

[
f ′
(
x−θg
σg

)]
/
[
f
(
x−θg
σg

)]
f
(
x−θg
σg

)
/f
(
x−θb
σb

)(a.1)

We divide the rest of the proof into two cases.

Case 1. f ′
(
y−θg
σg

)
≤ 0. Because h′(y) < 0, it follows from (a.1) that f ′

(
y−θb
σb

)
< 0. Because

h(y) = k > 1, it follows that (y − θb)/σb < (y − θg)/σg. So, by MLRP, we must conclude that

f ′
(
y−θb
σb

)
f
(
y−θb
σb

) >
f ′
(
y−θg
σg

)
f
(
y−θg
σg

) .
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Because these objects are negative, and σb > σg, we must conclude that

σg
σb

f ′
(
y−θb
σb

)
f
(
y−θb
σb

) >
f ′
(
y−θg
σg

)
f
(
y−θg
σg

) ,
but invoking (a.1), this contradicts our presumption that h′(y) < 0.

Case 2. f ′
(
y−θg
σg

)
> 0. Then, because w < y, it must also be the case that f ′

(
w−θg
σg

)
> 0.

Because h′(w) > 0, it follows from (a.1) that f ′
(
w−θb
σb

)
> 0. Combining this information with

the fact that h(w) = k > 1, we must conclude that (w − θb)/σb > (w − θg)/σg. But then, by
MLRP, we have

f ′
(
w−θb
σb

)
f
(
w−θb
σb

) <
f ′
(
ywθg
σg

)
f
(
w−θg
σg

) ,
and because both these terms are positive, it follows that

σg
σb

f ′
(
w−θb
σb

)
f
(
w−θb
σb

) <
f ′
(
ywθg
σg

)
f
(
w−θg
σg

) ,
but invoking (a.1), this contradicts our presumption that h′(w) > 0.

Proof of Proposition 8. Consider a situation in which each type θ chooses some noise σ(θ). Then
signal emitted by type θ has density

πθ(x) =
1

σ(θ)
φ

(
x− θ
σ(θ)

)
.

Let U(x) be the expected payoff to the principal when the signal x is received. This is just the
expected value of u(θ) weighted by the posterior distribution of θ using Bayes’ Rule and the
strategies, as described above. So

(a.2) U(x) ≡ 1∫
πθ(x)q(θ)dθ

∫ ∞
−∞

u(θ)
1

σ(θ)
φ

(
x− θ
σ(θ)

)
q(θ)dθ.

Lemma 1. Suppose that σ(θ) is continuous in θ and has a unique maximum at θ∗. Then U(x)
converges to u(θ∗) as |x| → ∞.

Proof. Pick any sequence xn such that xn →∞ (the argument for xn → −∞ will be identical).
Define a corresponding sequence of density functions on R, hn, by

hn(θ) =
1∫

πt(xn)q(t)dt

q(θ)

σ(θ)
φ

(
xn − θ
σ(θ)

)
,
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and let Hn(θ) =
∫ θ
−∞ h)n(s)ds be the corresponding sequence of cdfs. We claim that this se-

quence of probability measures converges weakly to the degenerate probability measure placing
probability 1 on θ∗.

To prove the claim, first pick any θ < θ∗. Let σ1 be the maximum value of σ(s) for s ≤ θ.
Because σ(θ) is uniquely maximized at θ∗ and θ∗ > θ, there exists an interval of length ε around
θ∗ such that minσ(s) for s in that interval — call it σ2 — strictly exceeds σ1. Denote by Q(θ)
the prior mass of types up to θ, and by ∆Q the prior mass in the ε-interval around θ∗. With these
values fixed, observe that for n large enough so that xn > θ,

Hn(θ) =

∫ θ
−∞

q(s)
σ(s) exp

{
−1

2

[
xn−s
σ(s)

]2
}
ds

∫∞
−∞

q(t)
σ(t) exp

{
−1

2

[
xn−t
σ(t)

]2
}
dt

≤

Q(θ)
σ∗

exp

{
−1

2

[
xn−θ
σ1

]2
}

∆Q

σ∗ exp

{
−1

2

[
xn−(θ∗−ε)

σ2

]2
}

→ 0

as n→∞,1 where the very last conclusion uses σ1 < σ2.

By symmetrically applying the same logic to the “other side” of θ∗, we must also conclude that
1 −Hn(θ) → 0 for each θ > θ∗. It follows that Hn(θ) → 1 for each θ > θ∗. That completes
the proof of convergence to the degenerate cdf placing all weight on θ∗.

By a standard characterization of weak convergence, and using the fact that u(θ) is a bounded,
continuous function, it follows that

U(xn) =

∫ ∞
−∞

u(θ)hn(θ)dθ → u(θ∗).

Lemma 2. Assume Condition U. Consider any monotone retention threshold x∗. Then any
optimal choice function by an agent of type θ only depends on the difference t ≡ x∗ − θ and
on that agent’s payoffs; in particular, it does not depend on the type distribution q(θ). Call
this function s(t). It is continuous. If the retention zone is [x∗,∞), then s(t) attains a unique
maximum at some t1 > 0. If the retention zone is (−∞, x∗], then s(t) attains a unique maximum
at some t2 < 0.

Proof. An agent of type θ chooses σ to maximize

1− Φ

(
x∗ − θ
σ

)
− c (σ)

1The values σ∗ and σ∗ are the lowest and highest values that noise could optimally have, as per the discussion in
the main text.
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if the retention zone is [x∗,∞), and

Φ

(
x∗ − θ
σ

)
− c (σ)

if the retention zone is (−∞, x∗]. Just these expressions make it clear that the solution σ can
only depend on t = x∗ − θ. By Condition U, the solution is unique and therefore easily seen to
be continuous. The first order condition with retention zone [x∗,∞) is given by

(a.3) φ

(
x∗ − θ
σ

)
x∗ − θ
σ2

− c′ (σ) = 0.

By Condition U, (a.3) is necessary and sufficient for a maximum. When x∗ > θ, the correspond-
ing value of σ exceeds σ, and using the fact that σc′(σ) is increasing when σ ≥ σ, we see that
the maximum possible value of σ satisfying (a.3) is achieved when

σc′(σ) = φ

(
x∗ − θ
σ

)
x∗ − θ
σ

= φ(z∗)z∗,

where z∗ is the value that maximizes φ(z)z. That is, define σ1 by the first and last terms in
the equality above and then set x∗ − θ = t1 = σ1z

∗ to define t1. When the retention zone is
(−∞, x∗], the first order condition is given by

(a.4) − φ
(
x∗ − θ
σ

)
x∗ − θ
σ2

− c′ (σ) = 0.

Now the corresponding value of σ exceeds σ when x∗ < θ. By a parallel argument to the one
just made, the maximum possible value of σ satisfying (a.3) is achieved when

σc′(σ) = −φ
(
x∗ − θ
σ

)
x∗ − θ
σ

= −φ(z∗)z∗,

where z∗ is the value that minimizes φ(z)z (z∗ will be negative). Define σ2 by the first and last
terms in the equality above and then set x∗ − θ = t2 = σ2z∗ to define t∗.

Lemma 3. Let t∗ stand for t1 or t2 as defined in Lemma 2. Then u(x∗ − t∗) = V .

Proof. We consider the retention zone [x∗,∞) where t∗ = t1; the other case is dealt with in
identical fashion. By Lemmas 1 and 2, U(x) converges to u(x∗ − t1) as |x| → ∞. Suppose
that u(x∗ − t1) > V . Then for x negative and large in absolute value — in particular for some
x < x∗ — we would have U(x) > V , so that the principal must retain for such values. That
contradicts monotone retention. Similarly, if u(x∗−t1) < V , then for x large — in particular for
some x > x∗ — we would have U(x) < V , so that the principal must replace for such values.
Once again, that contradicts monotone retention. We are therefore left with just one possibility:
u(x∗ − t1) = V .

Lemma 4. U(x∗) = V .

Proof. By monotone retention, U(x∗ − ε) ≤ V ≤ U(x∗ + ε) (or U(x∗ − ε) ≥ V ≥ U(x∗ + ε)).
U is obviously continuous, so the result follows.
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Lemma 4 combined with (a.2) tells us that

1∫
πθ(x∗)q(θ)dθ

∫ ∞
−∞

u(θ)
1

s(x∗ − θ)
φ

(
x∗ − θ
s(x∗ − θ)

)
q(θ)dθ = V,

where s(t) is the optimal noise choice function as defined in Lemma 2. Using the formula for
πθ(x) and transposing terms, we have∫ ∞

−∞

u(θ)− V
s(x∗ − θ)

φ

(
x∗ − θ
s(x∗ − θ)

)
q(θ)dθ = 0.

Lemma 3 pins down x∗ uniquely:

x∗ = u−1(V ) + t∗,

so that combining these two inequalities, we conclude that

(a.5)
∫ ∞
−∞

h(θ)q(θ)dθ = 0,

where

h(θ) =
u(θ)− V

s(u−1(V ) + t∗ − θ)
φ

(
u−1(V ) + t∗ − θ
s(u−1(V ) + t∗ − θ)

)
is a function that depends on model parameters but is entirely independent of the particular
density {q(θ)}; see Lemma 2. Let Q be the set of all densities on R equipped with the topology
induced by the sup norm, and letQ0 be the subset of densities inQ that satisfy (a.5). It is obvious
that Q−Q0 is open and dense in Q.

Section 7.3. Agents 1 and 2 simultaneously signal their types in a one-shot game:

xi = θk(i) + σk(i)εi,

where i = 1, 2, k (i) denotes i′s type, and ε1 and ε2 are i.i.d. standard normal. When the
principal observes a pair (x1, x1), her posterior probabilities are:

Pr (k (1) = g| (x1, x2)) =
Density ((x1, x2) |k (1) = g)

Density (x1, x2)
=

Density ((x1, x2) |k (1) = g, k (2) = b)

Density (x1, x2)
.

So our principal will prefer agent 1 over agent 2 if (and modulo indifference, only if)

1

σg
φ

(
x1 − θg
σg

)
1

σb
φ

(
x2 − θb
σb

)
≥ 1

σg
φ

(
x2 − θg
σg

)
1

σb
φ

(
x1 − θb
σb

)
.

After some manipulation, the above inequality yields:

(a.6)
(
σ2
b − σ2

g

)
x2

1 − 2
(
σ2
bθg − σ2

gθb
)
x1 ≤

(
σ2
b − σ2

g

)
x2

2 − 2
(
σ2
bθg − σ2

gθb
)
x2.

Proof of Proposition 9. We begin by ruling out the possibility that σb = σg = σ in equilibrium.
If that were the case, then (a.6) reduces to

x1 ≥ x2;
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that is, the principal retains the agent with the higher signal. In this case, it is easy to compute
the retention probability for agent j for both realizations of types:∫ ∞
−∞

1

σg
φ

(
xj − θg
σg

)(
1− Φ

(
xj − θb
σb

))
dxj = 1− Φ

 θg − θb√
σ2
g + σ2

b

 if k (i) = b,

∫ ∞
−∞

1

σb
φ

(
xj − θb
σb

)(
1− Φ

(
xj − θg
σg

))
dxj = Φ

 θg − θb√
σ2
b + σ2

g

 if k (i) = g,

where we have used the property that
∫∞
−∞ φ (w) Φ

(
w−a
b

)
dw = Φ

(
−a√
1+b2

)
. But it is clear

from these expressions that b will want to increase σb, whereas g will seek to lower σg — there
will always be an agent who would deviate, and therefore there is no equilibrium in which both
types choose the same noise. Also, as we will soon see (but it is already quite clear) there can be
no monotonic equilibrium either, since the only way the principal will keep the agent with the
higher signal is when both agents communicate with the same level of noise.

Next, we eliminate the possibility that σb < σg. In this case, let x̂ be the value of x that minimizes

the likelihood ratio
[

1
σg
φ
(
x−θg
σg

)]
/
[

1
σb
φ
(
x−θb
σb

)]
. It is easy enough to verify that

x̂ =
σ2
bθg − σ2

gθb

σ2
b − σ2

g

< θb,

and that (a.6) becomes
|x1 − x̂| ≥ |x2 − x̂| ;

that is, the principal retains the agent whose signal is further away from x̂. With these in hand,
player i’s retention probability, when his type is θi, is given by:

Πi =

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)(
1− Φ

(
2x̂− xj − θi

σi

)
+ Φ

(
xj − θi
σi

))
dxj

+

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)(
1− Φ

(
xj − θi
σi

)
+ Φ

(
2x̂− xj − θi

σi

))
dxj

We want to evaluate the derivative of Πi with respect to σi at x̂ =
σ2
bθg−σ

2
gθb

σ2
b−σ2

g
, which is given by:

σi
∂Πi

∂σi
=

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)(
1

σi
φ

(
2x̂− xj − θi

σi

)
(2x̂− xj − θi)−

1

σi
φ

(
xj − θi
σi

)
(xj − θi)

)
dxj

+

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)(
1

σi
φ

(
xj − θi
σi

)
(xj − θi)−

1

σi
φ

(
2x̂− xj − θi

σi

)
(2x̂− xj − θi)

)
dxj

=

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
(2x̂− xj − θi) dxj −

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
(xj − θi) dxj

+

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
(xj − θi) dxj −

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2χ− xj − θi

σi

)
(2x̂− xj − θi) dxj

The above equation has four terms on the right-hand side, which we will need to manipulate
separately. The following expressions involving the normal density will be used repeatedly:
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Lemma 5. The normal density φ satisfies:

(a.7)
∫ b

a

w

σ
φ

(
w − µ
σ

)
dw = µ

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]
− σ

[
φ

(
b− µ
σ

)
− φ

(
a− µ
σ

)]
and

(a.8)
1

σ
φ

(
x− µ
σ

)
1

ω
φ

(
x− τ
ω

)
=

1
σω√
σ2+ω2

φ

(
x− ω2µ+σ2τ

σ2+ω2

σω√
σ2+ω2

)
1√

σ2 + ω2
φ

(
µ− τ√
σ2 + ω2

)
.

Proof. Equation (a.8) just need some standard algebra to be proven. As for (a.7), suppose that
w ∼ N

(
µ, σ2

)
. Then, integrating by parts, it is easy to see that:

(a.9) E (w|w ∈ [a, b]) =

∫ b
a w

1
σφ
(w−µ

σ

)
dw

Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) =
bΦ
(
b−µ
σ

)
− aΦ

(a−µ
σ

)
−
∫ b
a Φ

(w−µ
σ

)
dw

Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) .

Observe that

Φ

(
w − µ
σ

)
=

∂

∂w

(
(w − µ) Φ

(
w − µ
σ

)
+ σφ

(
w − µ
σ

))
.

Using this information in (a.9), we must conclude that

E (w ∈ [a, b])=
bΦ
(
b−µ
σ

)
− aΦ

(a−µ
σ

)
−
∫ b
a

∂
∂w

(
(w − µ) Φ

(w−µ
σ

)
+ σφ

(w−µ
σ

))
dw

Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
=
bΦ
(
b−µ
σ

)
− aΦ

(a−µ
σ

)
−
[(

(b− µ) Φ
(
b−µ
σ

)
+ σφ

(
b−µ
σ

)]
−
[
(a− µ) Φ

(a−µ
σ

)
+ σφ

(a−µ
σ

))]
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
=
µΦ
(
b−µ
σ

)
− µΦ

(a−µ
σ

)
− σφ

(
b−µ
σ

)
+ σφ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
= µ− σ

φ
(
b−µ
σ

)
− φ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) .
With this expression in hand, we see that∫ b

a
w

1

σ
φ

(
w − µ
σ

)
dw = E [w|w ∈ [a, b]] ·

(
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

))
= µ

(
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

))
− σ

(
φ

(
b− µ
σ

)
− φ

(
a− µ
σ

))

We will use (a.7) and (a.8) repeatedly below to analyze the four terms in the expression for σi ∂Π
∂σi

.
The first of these terms is given by:
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∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
(2x̂− xj − θi) dxj

= (2x̂− θi)
∫ χ

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
dxj −

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
xjdxj

= (2x̂− θi)
1√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

∫ x̂

−∞

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 dxj

− 1√
σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

∫ x̂

−∞

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

xjdxj

= (2x̂− θi)
1√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j



− 1√
σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j


σ2

i θj + σ2
j (2x̂− θi)

σ2
i + σ2

j

Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− σjσi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j




In similar vein, and again using (a.8), the second term is given by:

−
∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
(xj − θi) dxj = −

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
xjdxj + θi

∫ x̂

−∞

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
dxj

= − 1√
σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

∫ x̂

−∞

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

xjdxj + θi
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

∫ x̂

−∞

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 dxj

= − 1√
σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


σ2

i θj + σ2
j θi

σ2
i + σ2

j

Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− σjσi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j




+θi
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

.
The third term translates to:∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
(xj − θi) dxj =

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
xjdxj − θi

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
xj − θi
σi

)
dxj

=
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

∫ ∞
χ

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

xjdxj − θi
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

∫ ∞
x̂

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 dxj

=
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


σ2

i θj + σ2
j θi

σ2
i + σ2

j

1− Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j


+

σjσi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j




−θi
1√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


1− Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j


,
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and finally, the fourth term is given by

−
∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
(2x̂− xj − θi) dxj

= − (2x̂− θi)
∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
dxj +

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)
1

σi
φ

(
2x̂− xj − θi

σi

)
xjdxj

= − (2x̂− θi)√
σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

∫ ∞
x̂

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 dxj +
1√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

∫ ∞
x̂

1
σjσi√
σ2
i+σ2

j

φ

xj −
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

xjdxj

= − (2x̂− θi)√
σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j


1− Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j




+
1√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j


σ2

i θj + σ2
j (2x̂− θi)

σ2
i + σ2

j

1− Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j


+

σjσi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j




Summing all these terms up, we can conclude that:

σi
∂Πi

∂σi
=

σ2
i√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

(2x̂− θi − θj
σ2
i + σ2

j

)

+
σ2
i√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

( θi − θj
σ2
i + σ2

j

)

+2
σjσi

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j


+2

σjσi
σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 .

Now notice that

φ

θj + θi − 2x̂√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 = φ

 θj − θi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

 ,
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so that

σi
∂Πi

∂σi
=

σ2
i√

σ2
i + σ2

j

φ

θj + θi − 2x̂√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j (2x̂−θi)

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

(2x̂− θi − θj
σ2
i + σ2

j

)

+
σ2
i√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

( θi − θj
σ2
i + σ2

j

)

+4
σjσi

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j



Evaluated at x̂ =
σ2
bθg−σ

2
gθb

σ2
b−σ2

g
, we obtain

σi
∂Πi

∂σi
=

σ2
i√

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

( θi − θj
σ2
i + σ2

j

)

+4
σjσi

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j



Because x̂ < θb <
σ2
i θj+σ

2
j θi

σ2
i+σ2

j
, we have that Φ

 x̂−
σ2i θj+σ

2
j θi

σ2
i
+σ2

j
σjσi√
σ2
i
+σ2

j

 < 1
2 . Therefore ∂Πb/∂σb > 0,

whereas the sign of ∂Πg/∂σg is ambiguous. However, notice that

∂Πb

∂σb
σb −

∂Πg

∂σg
σg = −

σ2
b + σ2

b√
σ2
g + σ2

b

φ

 θg − θb√
σ2
g + σ2

b


2Φ

 x̂− σ2
bθg+σ2

gθb
σ2
g+σ2

b
σbσg√
σ2
g+σ2

b

− 1

( θg − θb
σ2
g + σ2

b

)
> 0,

so that, because ∂Πk/∂σk = c′(σk) for k = g, b, we have

c′ (σb)σb > c′ (σg)σg,

and moreover, σb > σ (because ∂Πb/∂σb > 0). Therefore the above inequality implies that
σb > σg, a contradiction.

We are left with only one possibility, σb > σg, where the principal retains 1 if, and only if,

|x1 − x̂| ≤ |x2 − x̂| ,
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so the principal retains the agent whose signal is now closer to x̂ :=
σ2
bθg−σ

2
gθb

σ2
b−σ2

g
> θg, which now

maximizes the likelihood ratio
[

1
σg
φ
(
x−θg
σg

)] [
1
σb
φ
(
x−θb
σb

)]
. The objective function of i is:

Πi (σi;σj , x̂) =

∫ χ

−∞

1

σj
φ

(
xj − θj
σj

)(
Φ

(
2x̂− xj − θi

σi

)
− Φ

(
xj − θi
σi

))
dxj

+

∫ ∞
x̂

1

σj
φ

(
xj − θj
σj

)(
Φ

(
xj − θi
σi

)
− Φ

(
2x̂− xj − θi

σi

))
dxj .

Momentarily ignoring the fact that x̂ has a different value than before (because we have different
values of σ), clearly, this probability and i′s previous probability of retention in the case where
σg > σb add up to 1: before, i was elected if, for a given xj , his own signal fell outside a given
interval, whereas now i is elected if the signal falls in the complementary set. Therefore, the

derivative with respect to σi evaluated at x̂ =
σ2
bθg−σ

2
gθb

σ2
b−σ2

g
satisfies

∂Πi (σi;σj , x̂)

∂σi
σi = − σ2

i√
σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j


2Φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j

− 1

( θi − θj
σ2
i + σ2

j

)

−4
σjσi

σ2
i + σ2

j

φ

 θj − θi√
σ2
i + σ2

j

φ

 x̂−
σ2
i θj+σ

2
j θi

σ2
i+σ2

j

σjσi√
σ2
i+σ2

j



Now x̂ > θg >
σ2
i θj+σ

2
j θi

σ2
i+σ2

j
, so Φ

 x̂−
σ2i θj+σ

2
j θi

σ2
i
+σ2

j
σjσi√
σ2
i
+σ2

j

 > 1
2 . Then,

∂Πg (σg;σb, x̂)

∂σg
< 0,

whereas the sign of ∂Πb(σb;σg ,x̂)
∂σb

is ambiguous. However, notice that

∂Πb (σb;σg, x̂)

∂σb
σb −

∂Πg (σg;σb, x̂)

∂σg
σg

=
σ2
b + σ2

b√
σ2
g + σ2

b

φ

 θg − θb√
σ2
g + σ2

b


2Φ

 x̂− σ2
bθg+σ2

gθb
σ2
g+σ2

b
σbσg√
σ2
g+σ2

b

− 1

( θg − θb
σ2
g + σ2

b

)
> 0.

Then
c′ (σb)σb > c′ (σg)σg.

So, in principle there is no contradiction here. Moreover, if c′ (σ)σ is always increasing, this
inequality is consistent with σb > σg.

Proof of the Claim in Section 7.4. In Section 7.4 of the main text we claim that θg > θb even
when these values are endogenously chosen.
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We begin by eliminating the possibility that θb > θg. From the definition in (a.20) is it clear that
a bounded retention regime is still associated with σb > σg and it is of the form X = [x−, x+],
and a bounded replacement regime is associated with σb < σg, and the principal replaces inside
Xc = [x+, x−]. Then, under any one of these two regimes, the first-order condition with respect
to θk is

(a.10)
1

σk
φ

(
x− − θk
σk

)
− 1

σk
φ

(
x+ − θk
σk

)
≤ d′ (θk − θk) ,

with equality holding if θk > θk.

Under bounded retention, we have

x− <
x+ + x−

2
=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

< θg < θb,

so that
x− − θk
σk

<
x+ − θk
σk

<
θk − x−
σk

.

Because φ (·) is single-peaked and symmetric around 0,

φ

(
x+ − θk
σk

)
> φ

(
x− − θk
σk

)
,

But then (a.10) cannot hold. Similarly, under bounded replacement, we have σb < σg, so that

θg < θb <
x+ + x−

2
=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

< x−.

Then, once again,
θk − x−
σk

<
x+ − θk
σk

<
x− − θk
σk

,

and the same contradiction follows. Finally, with monotone retention, σg = σb = σ, and the
retention rule is: retain iff

x ≤ x∗ (σ) :=
θg + θb

2
+

σ2

θb − θg
ln (β) .

The first-order derivative with respect to θk is then

− 1

σk
φ

(
x∗ − θk
σk

)
− d′ (θk − θk) ,

which is always negative, so given that θg > θb, θb > θg can never hold.

Moreover, there cannot be an equilibrium where θg = θb = θ. For if there were, the induced
second-stage game with choice of noise must have exactly the same equilibrium payoffs, as well
as the same marginal payoffs with respect to the common value θ, not counting the effort cost d.
But since θg 6= θb, and d′ is injective, it is clear that at least one of the agents is not satisfying the
optimality conditions in the first stage, when θ is chosen. Therefore θg 6= θb.

Analysis of the Model in Section 7.5. We begin by eliminating monotone equilibria. We already
know that if the retention threshold, x∗ (σ) lies between θb and θg the good type will want to
minimize the noise of his signal, while the bad type will want to maximize it, destroying the best
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response property forX . In the same negative vein, if the retention threshold that lies to the right
of θg, both agents always respond by (costlessly) increasing noise, so a monotone equilibrium
cannot exist in this case. So it remains to consider the case in which x∗ ≤ θb. In this case, both
the bad and the good type want to reduce the noise to its minimum: they both play σ = σ. That is
consistent with a monotone retention rule as long as σ is sufficiently large.2 That is, x∗ (σ) ≤ θb
if, and only if

x∗ (σ) =
θg + θb

2
− σ2

θg − θb
ln (β) ≤ θb

or

ln (β) ≥ ∆2

2σ2
.

This is only possible if and only if (24) fails.

Next, we eliminate bounded replacement equilibria. It will be useful to recall the following
results from the main text (see Proposition 2 and Lemma 1 in the Appendix):

Lemma 6. (i) If σb > σg, then retention occurs in X = [x−, x+], and θg <
x−+x+

2 < x+.

(ii) If σb < σg, then replacement occurs in X = [x+, x−], and θb >
x−+x+

2 > x+.

Lemma 6 tells us that in a bounded replacement equilibrium the principal replaces the agent
when the signal falls inside [x+, x−], and this regime is associated with σb < σg. Under this
retention regime, it is easy to see that the retention probability of any type converges to 1 as
σk →∞, and it is therefore clear that σb < σg can never hold.

Proof of the Assertion in Footnote 14 of the Main Text. This assertion states that the non-existence
of bounded replacement is robust to allowing for a finite upper bound to the choice of noise. In
what follows, then, assume that there exists an upper bound on noise, so σk ∈ [σ, σ̄] is costless,
whereas the cost of going below σ or above σ̄ is prohibitively high. Suppose on the contrary that
a bounded replacement equilibrium exists.

Now, any type inside the replacement interval chooses σ̄, trying to escape from the danger zone.
That immediately tells us that θb 6∈ [x+, x−], otherwise σb cannot be lower than σg. Then, since
x+ < θb by Lemma 6, we need x− < θb < θg, and therefore both types must be in the retention
zone, X . Any type in X will choose σ or σ̄, depending on which one of the two leads to a
smaller probability mass in the replacement set. It follows that to maintain σ>σg, the bad type
must choose σ and the good type σ̄, so that the first-order derivatives must satisfy

(a.11) − φ
(
x+ − θg

σ̄

)(
x+ − θg
σ̄2

)
+ φ

(
x− − θg

σ̄

)(
x− − θg
σ̄2

)
≥ 0

for the good type, and

(a.12) − φ
(
x+ − θb

σ

)(
x+ − θb
σ2

)
+ φ

(
x− − θb

σ

)(
x− − θb
σ2

)
≤ 0.

2For small σ, there is a high degree of “separation” between the two types. To see this, consider the signal x = θb.
At this value, the likelihood of the bad type relative to the good type explodes as σ goes to 0. This makes x∗ shift to
the right, until it goes above θb. Now the equilibrium falls apart.
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for the bad type. Combining (a.12) with the principal’s indifference condition (9) in the main
text, we have:

−β 1

σ̄
φ

(
x+ − θg

σ̄

)(
x+ − θb

σ

)
+ β

1

σ̄
φ

(
x− − θg

σ̄

)(
x− − θb

σ

)
≤ 0.

But this, together with type-g’s first-order condition (a.11), yields:[
φ

(
x+ − θg

σ̄

)
− φ

(
x− − θg

σ̄

)]
(θg − θb) ≥ 0.

Because θg > θb, this implies a contradiction since φ
(
x+−θg
σ̄

)
< φ

(
x−−θg
σ̄

)
(see Lemma 2 in

the Appendix of the main text).

We now work towards a tighter description of bounded retention equilibrium and the proof of
Proposition 10 in the main text. We begin with agent best responses:

Lemma 7. (i) If X = [x∗,∞) and θk > x∗, the agent chooses σk = σ; if θk < x∗, the problem
has no solution, in particular, the agent always wants to inject additional noise; if θk = x∗, the
agent is indifferent across all choices of σ.

(ii) Given a retention zone of the form [x−, x+] with x− < x+, and x+ > θg, if x− ≤ θk, then
σk = σ.

(iii) Given a retention zone of the form [x−, x+] with x− < x+, and x+ > θg, if x− > θk and
x+ <∞, then for each k define

(a.13) dk(σk) := φ

(
x− − θk
σk

)
(x− − θk)− φ

(
x+ − θk
σk

)
(x+ − θk) for all σk > 0.

Then dk is continuous, initially positive then negative, with a unique root to dk(σk) = 0, given
by

(a.14) σ∗k =

√
(x+ − x−)(x−+x+

2 − θk)
ln(x+ − θk)− ln(x− − θk)

∈ (x− − θk, x+ − θk) ,

and agent k sets σk = max{σ, σ∗k}.

Proof. (i) In the case of monotone retention, the first-order derivative with respect to σk is

φ

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

.

It is always negative if x∗ < θk, so σk = σ; always positive if x∗ > θk, so the agent always
wants to increase the noise and the problem has no solution; and always equal to 0 if x∗ = θk,
so the agent is indifferent across all choices of σ.

(ii) A type-k agent wishes to maximize the probability of being in the retention zone [x−, x+],
so he chooses σk ≥ σ, to maximize

(a.15) Φ

(
x+ − θk
σk

)
− Φ

(
x− − θk
σk

)
,
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where Φ is the cdf of the standard normal. The first-order derivative of the objective function
with respect to σk is

dk(σk)

σ2
k

=
1

σ2
k

[
φ

(
x− − θk
σk

)
(x− − θk)− φ

(
x+ − θk
σk

)
(x+ − θk)

]
,

where dk is defined in (a.13). If x− ≤ θk and x+ > θk, then the sign of the derivative is always
negative, so σk = σ.

(iii) Since both x− and x+ are higher than θk, the sign of the derivative depends on the value of
σk. After some elementary manipulation, we see that

dk(σk) = φ

(
x+ − θk
σk

)
(x+ − θk)

{
exp

[
x+ − x−

σ2
k

(
x− + x+

2
− θk

)](
x− − θk
x+ − θk

)
− 1

}
.

The term inside the curly brackets is the only one that can change sign. Moreover, this term is
continuous and strictly decreasing in σk, with limit x−−θkx+−θk − 1 < 0 when σk → ∞, and∞ as
σk → 0. So dk has all the claimed properties, and there exists a unique σ∗k that solves (a.15),
given by setting the term within curly brackets equal to zero, which yields:

σ∗k =

√√√√ (x+ − x−)
(
x−+x+

2 − θk
)

ln (x+ − θk)− ln (x− − θk)

Therefore, the agent will optimally choose σk = max {σ, σ∗k}.

To show that σ∗k ∈ (x− − θk, x+ − θk), first define x̂k := [(x+ − θk)/(x− − θk)]2 ∈ (1,∞).
Provided x− > θk, we will have θk + σ∗k > x− if and only if x̂k − 1 > ln (x̂k), which is
always true because equality holds at x̂k = 1 and then the left-hand side increases at a rate of
1, whereas the right-hand side increases at a rate of 1/x̂k < 1. Similarly, θk + σ∗k < x+ iff
1 − (1/x̂k) < ln (x̂k). The condition holds with equality for x̂k = 1, and the derivatives of
the left and right-hand sides are 1/x̂2

k and 1/x̂k, respectively, making the condition valid for any
x̂k ∈ (1,∞).

We now take note of a property of bounded retention equilibrium in the costless noise model:

Lemma 8. If a bounded retention equilibrium exists, it can never be the case that σ < σg.

Proof. Suppose that σ < σg. Then, since both choices of noise are interior solutions, agent
optimality requires

φ

(
x− − θb
σb

)
(x− − θb) = φ

(
x+ − θb
σb

)
(x+ − θb) ,

φ

(
x− − θg
σg

)
(x− − θg) = φ

(
x+ − θg
σg

)
(x+ − θg) .

Combining these equations with the principal’s indifference condition (see (9) in the main text),
we obtain

φ

(
x− − θg
σg

)
= φ

(
x+ − θg
σg

)
,
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which contradicts Lemma 2 in the Appendix of the main text.

Proof of Proposition 10. We proceed in a number of steps.

Lemma 9. α(β) as defined by (22) is strictly decreasing in β for all β ∈ (0, 1).

Proof. Multiplying both sides of (22) by α and defining

(a.16) y :=
α

α+
√

1 + α2
∈ [0, 1),

we have

(a.17) αβ = y exp(−y).

If the assertion is false, then there is β such that α is locally nondecreasing in β. But that
means that αβ is strictly locally increasing at the very same β. Because (a.17) holds throughout
and y exp(−y) is strictly increasing in y when y ∈ [0, 1),3 it follows that y is also locally strictly
increasing at that β. But from (a.16), it is easy to see that dα/dy < 0. These last two observations
contradict our presumption that α is locally nondecreasing in β.

Define α := (θg − θb)/2σ, and then let

(a.18) βl :=
1

α+
√

1 + α2
exp

[
− α

α+
√

1 + α2

]
,

and

(a.19) βh := exp
[
2α2
]
.

Observation 1. It is easy to see that βl and βh are defined by the requirement that, respectively,
(23) and (24) hold with equality. Furthermore, it is clear that (24) is equivalent to asking for
β < βh, whereas Lemma 9 shows that (23), which can be also written as α (β) < α, is equivalent
to asking for β > βl.

Next, define for any σ ≥ σ,

(a.20) x− (σ) :=
σ2θg − σ2θb − σσR (σ)

σ2 − σ2
and x+ (σ) :=

σ2θg − σ2θb + σσR (σ)

σ2 − σ2
,

where

(a.21) R (σ)2 := (θg − θb)2 +
(
σ2 − σ2

)
2 ln

(
β
σ

σ

)
.

Clearly, x− and x+ are the roots to β 1
σφ
(
x−θg
σ

)
= 1

σφ
(
x−θb
σ

)
. So these are the bounds of the

principal’s retention regime X when she expects the bad type to choose σ and the good type to
choose σ. It is obvious that these two roots exist if and only if the right-hand side of (a.21) is
greater or equal than 0. The following lemma determines the conditions under which this is true.
First define

(a.22) σ∗ := σ
(
α+

√
α2 + 1

)
.

3Note that dy exp(−y)/dy = exp(−y)(1− y) > 0 for y ∈ [0, 1).
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FIGURE A.1. The R (σ, β) = 0 locus.

Lemma 10. Consider σg = σ and σb = σ > σ.

(i) If (23) holds, there exist, for any σ, two distinct real roots x−(σ) and x+(σ) to β 1
σφ
(
x−θg
σ

)
=

1
σφ
(
x−θb
σ

)
, continuous in σ, given by (a.20).

(ii) When (23) holds with equality, x− (σ∗) = x+ (σ∗) = θb + σ∗, and x− (σ) < x+ (σ) for
σ 6= σ∗.

Proof. (i) First recall Observation 1: (23) is equivalent to β > βl. Now, consider the set of pairs
(β, σ) such that R = 0. From (a.21) it is easy to see that these pairs satisfy

(a.23) β =
σ

σ
exp

[
− ∆2

2 (σ2 − σ2)

]
.

Let us interpret (a.23) as β being a function of σ, depicted in Figure A.1. Any pair (β, σ) below
the R = 0 locus (the green curve in the diagram) implies that the right-hand side in (a.21) is
strictly negative, and therefore the functions x− (σ) and x+ (σ) are not well-defined for such a
pair: there are no real roots to β 1

σφ
(
x−θg
σ

)
= 1

σφ
(
x−θb
σ

)
. On the other hand, when the pair

(β, σ) is above the locus, R > 0 and, therefore, two distinct real roots exist.

Now let us analyze the shape of the R = 0 locus. It is clear that β → 0 as σ ↓ σ and as
σ →∞. By computing the derivative with respect to σ, we find that β in (a.23) strictly increases
with σ if and only if −σ2 + σ∆ + σ2 > 0. The two roots to this quadratic polynomial are
σ
(
α−
√
α2 + 1

)
and σ∗ = σ

(
α+
√
α2 + 1

)
. Since the first one is negative, we have that β

is strictly increasing in σ for σ ∈ [σ, σ∗), and it is strictly decreasing for σ > σ∗. At σ = σ∗ the
derivative is zero, and therefore a global maximum is attained. By evaluating (a.23) at σ = σ∗

we find that this maximum value is equal to βl, as defined in (a.18).

This means that any β > βl guarantees that x− (σ) and x+ (σ) are well-defined for any value of
σ and, moreover, these two real roots are always distinct.
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FIGURE A.2. Principal’s Best Responses.

(ii) From (a.20) we can see that, along the R = 0 locus, x− (σ) = x+ (σ). On the other hand,
for all those pairs (β, σ) above the locus, we have that R > 0 and, therefore, x− (σ) < x+ (σ).
Since (23) with equality is equivalent to β = βl, from the analysis just developed in part (i) it is
clear that, when (23) holds with equality, x− (σ∗) = x+ (σ∗), and x− (σ) < x+ (σ) for σ 6= σ∗.

To establish that x− (σ∗) = x+ (σ∗) = θb + σ∗, notice that, if R = 0, then x− (σ) = x+ (σ) =
σ2θg−σ2θb
σ2−σ2 . If we impose σ2θg−σ2θb

σ2−σ2 = θb + σ, we obtain a quadratic equation in σ: −σ2 + σ∆ +

σ2 = 0. One of its roots is negative and therefore disregarded. The other one is σ = σ∗, so we
conclude that x− (σ∗) = x+ (σ∗) = θb + σ∗.

Figure A.2 depicts the two retention thresholds x− (σ) and x+ (σ) for σg = σ and σb = σ ≥ σ,
together with the function θb + σ which will be crucial to the analysis. The following Lemma
serves as formal justification that the shapes of these objects are indeed as depicted in the dia-
gram.

Lemma 11. If (23) holds, σb = σ > σ and σg = σ:

(i) limσ→σ x− (σ) = x∗ (σ) and limσ→σ x+ (σ) =∞.

limσ→∞ x− (σ) = −∞ and limσ→∞ x+ (σ) =∞

(ii) x+ (σ) finds its minimum at σ∗2 , where x+ (σ∗2) = θb + σ∗2 , and x− (σ) finds its maximum at
σ∗1 where x− (σ∗1) = θb + σ∗1 if x∗ (σ) ≥ θb + σ or at σ = σ if x∗ (σ) < θb + σ.

Furthermore, σ∗2 > σ∗1 when (23) holds; and σ∗2 = σ∗1 = σ∗ when (23) holds with equality.

(iii) If (24) fails, then x−(σ, β) < θb for all σ > σ.

(iv) If (24) holds, then there exists σ̂ > σ such that x−(σ, β) > θb for all σ ∈ (σ, σ̂) and
x−(σ, β) < θb for all σ > σ̂.
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Proof. (i) Inspection of (a.20) immediately reveals that limσ→σ+ x+ (σ) = ∞. For the corre-
sponding limit of x− (σ), apply L’Hôpital’s rule to see that

lim
σ→σ+

x− (σ) = lim
σ→σ+

2σθg − σR (σ)− σσ
2σ ln

(
β σ
σ

)
+(σ2−σ2) 1

σ

R(σ)

2σ

=
2σθg − σ (θg − θb)− σ2 2σ ln(β)

θg−θb
2σ

=
θg + θb

2
− σ2

θg − θb
ln (β)

= x∗ (σ) .

As for the limits of x− (σ) and x+ (σ) when σ →∞, first notice that

lim
σ→∞

(
R (σ)

σ

)2

= lim
σ→∞

(θg − θb)2

σ2
+

(
1− σ2

σ2

)
2 ln

(
β
σ

σ

)
= ∞.

Then, since x− (σ) and x+ (σ) can be written, respectively, as

x− (σ) =
θg − σ2

σ2 θb − σR(σ)
σ

1− σ2

σ2

and

x+ (σ) =
θg − σ2

σ2 θb + σR(σ)
σ

1− σ2

σ2

,

it is clear that x− (σ)→ −∞ and x+ (σ)→∞ as σ →∞.

By differentiating β 1
σφ
(
x−θg
σ

)
= 1

σφ
(
x−θb
σ

)
with respect to σ we find that

∂x− (σ)

∂σ
=

σ

R (σ)

[(
x− (σ)− θb

σ

)2

− 1

]
and(a.24)

∂x+ (σ)

∂σ
=

σ

R (σ)

[
1−

(
x+ (σ)− θb

σ

)2
]

respectively. In what follows, let us use the notation x′ to denote these derivatives.

By part (i) of this Lemma, we know that x+ (σ)→∞ as σ → σ+. This means that x′+ (σ) < 0
for σ in a neighborhood of σ. The derivative remains strictly negative as long as x+ (σ) > θb+σ,
as we can see from (a.24). x+ (σ) keeps decreasing with σ, whereas θb+σ increases. This means
that there exists a point σ∗2 such that x+ (σ∗2) = θb + σ∗2 , and x′+ (σ∗2) = 0 (see Figure A.2). It is
clear then that for σ = σ∗2 + δ with δ > 0 and small, x+ (σ) < θb + σ and therefore x′+ (σ) > 0.
Now both functions, x+ (σ) and θb + σ are increasing in σ, for σ = σ∗2 + δ with δ > 0 and
small. Moreover, x+ (σ) can never exceed θb + σ again. If it did, another intersection point
exists, call it σ∗∗2 , and we would need x′+ (σ∗∗2 ) ≥ 1, but the fact that x+ (σ∗∗2 ) = θb + σ∗∗2 says



20 FRANCISCO ESPINOSA AND DEBRAJ RAY

that x′+ (σ∗∗2 ) = 0. We therefore conclude that x+ (σ) is strictly decreasing for σ < σ∗2 , and it is
strictly increasing for σ > σ∗2 . Its unique minimum is therefore reached at σ∗2 .

As for x− (σ), by part (i) of this Lemma we know that x− (σ)→ x∗ (σ) as σ → σ+.

Suppose first that x∗ (σ) > θb+σ, which by (a.24) says that x′− (σ) > 0 for σ in a neighborhood
of σ. Then, both functions x− (σ) and θb + σ increase with σ at σ = σ. However, x− (σ)
must eventually stop increasing, since x− (σ) → −∞ as σ → ∞. So there exists σ∗1 such that
x− (σ∗1) = θb + σ∗1 , and therefore x′− (σ∗1) = 0 by (a.24). Then, for σ = σ∗1 + δ′ with δ′ > 0 and
small, x− (σ) < θb + σ and therefore x− (σ) decreases at such σ, staying thus always below
θb + σ. What if x− (σ) goes below θb− σ, in which case x′− (σ) would change signs again (take
a look at (a.24) once again)? This cannot happen either: if an intersection point between x− (σ)
and θb − σ exists — call it σ∗∗1 — we would need x′− (σ∗∗1 ) ≤ 1 (because x− (σ) is crossing
from above), but x− (σ∗∗1 ) = θb − σ∗∗1 means x′− (σ∗∗1 ) = 0. We must therefore conclude that,
if x∗ (σ) > θb + σ, then x− (σ) is strictly increasing for σ < σ∗1 and it is strictly decreasing for
σ > σ∗1 . It therefore finds its maximum at σ = σ∗1 .

Suppose now that x∗ (σ) ≤ θb + σ. This means that x′− (σ+) ≤ 0. Since ∂(θb+σ)
∂σ |σ=σ = 1 > 0,

we have that x− (σ) < θb + σ for σ close enough to σ. This says that x′− (σ) < 0 for such σ,
and we already know that x− (σ) decreases thereafter. It therefore finds its maximum at σ = σ.

It is clear that σ∗2 > σ∗1 when (23) holds (or, equivalently, when β > βl): x− (σ∗1) = θb + σ∗1
and x+ (σ∗1) > x− (σ∗1), so x+ (σ∗1) > θb + σ∗1 which implies that x′2 (σ∗1) < 0 and, therefore,
σ∗2 > σ∗1. That is, the value of σ that maximizes x−(σ) is to the left of the one that minimizes
x+(σ).

Now we will see that, as we decrease β, σ∗1 increases and σ∗2 decreases, thus getting closer to
each other (see Figure A.2).

σ∗1 satisfies θb + σ∗1 = x− (σ∗1), so

∂σ∗1
∂β

=
∂x− (σ)

∂σ
|σ=σ∗1

∂σ∗1
∂β

+
∂x− (σ)

∂β
|σ=σ∗1

.

Since σ∗1 maximizes x− (σ), ∂x−(σ)
∂σ |σ=σ∗1

= 0, so

∂σ∗1
∂β

=
∂x− (σ)

∂β
|σ=σ∗1

< 0.

Similarly, for σ∗2 we have

∂σ∗2
∂β

=
∂x+ (σ)

∂σ
|σ=σ∗2

∂σ∗2
∂β

+
∂x+ (σ)

∂β
|σ=σ∗2

=
∂x+ (σ)

∂β
|σ=σ∗2

> 0.

We are interested in the value of β such that σ∗1 = σ∗2 = σ∗. By the definitions of σ∗1 and σ∗2 , this
value of β says, therefore, that

x− (σ∗) = θb + σ∗ = x+ (σ∗) ,
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which is true only if R (σ∗) = 0, in which case x− (σ∗) = x+ (σ∗) =
σ∗2θg−σ2θb
σ∗2−σ2 and the above

condition reads
σ∗2θg − σ2θb
σ∗2 − σ2

= θb + σ∗,

so

(a.25) σ∗ = σ
(
α+

√
α2 + 1

)
.

Also, R (σ∗) = 0 means

(a.26) (θg − θb)2 +
(
σ∗2 − σ2

)
2 ln

(
β
σ∗

σ

)
= 0.

Then, by combining (a.25) and (a.26) we obtain

(a.27) β = βl =
1

α+
√

1 + α2
exp

[
− α

α+
√

1 + α2

]
,

which is equivalent to (23) holding with equality (recall Observation 1).

(iii) Suppose that (24) fails. Using (a.20), we see that

(a.28) x− (σ, β)− θb =
σ2θg − σ2θb − σσR (σ)

σ2 − σ2
− θb =

σ2(θg − θb)− σσR (σ)

σ2 − σ2
.

So the claim is established if the last term in (a.28) is non-positive. But that will be true if
σ4(θg − θb)2 ≤ σ2σ2R(σ)2, or equivalently, using (a.21), if

σ2(θg − θb)2 ≤ σ2(θg − θb)2 + 2σ2(σ2 − σ2) ln

(
β
σ

σ

)
.

Rearranging terms, this is equivalent to

(θg − θb)2 ≤ 2σ2 ln

(
β
σ

σ

)
.

But this inequality is implied by the failure of (24), because σ ≥ σ.

(iv) From the previous point, we know that x−(σ) ≤ θb if and only if

(θg − θb)2 ≤ 2σ2 ln

(
β
σ

σ

)
.

The right-hand side is strictly increasing in σ. Then, if (24) holds, the condition is violated for σ
close enough to σ. In other words, there exists σ̂ > σ such that x−(σ) > θb for all σ ∈ (σ, σ̂),
and x−(σ) < θb for all σ > σ̂.

Let us construct a self-map on (σ,∞), with domain to be interpreted as the principal’s conjecture
about the noise used by the low type, and range as the subsequent optimal choice of noise by the
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FIGURE A.3. Principal’s best responses x− (σ) and x+ (σ) and b’s counter-response.

bad type, in response to the retention decision. (Throughout, we presume that σg = σ.) Guided
by Lemma 7iii, our self-map is:

(a.29) Ψ(σ) ≡ max


√

[x+(σ)− x−(σ)](x−(σ)+x+(σ)
2 − θb)

[ln(x+(σ)− θb)− ln(x−(σ)− θb)]
, σ

 .

Take a look at Figure A.3 which will guide you through the following Lemma. Keep also in mind
equation (a.14) in Lemma 7iii, which says that an unrestricted maximizer when retention zone
is X = [x−, x+] with θk < x− < x+ < ∞ satisfies σk ∈ (x− − θk, x+ − θk) or equivalently,
x− < θk + σk < x+.

Lemma 12. If (23) holds, there exists a unique fixed-point σ∗ of Ψ(σ);

(i) If (24) holds, then σ∗ > σ;

(ii) If (24) fails, then σ∗ = σ.

Proof. (i) By Lemma 11i, limσ→σ+ x− (σ) = x∗ (σ) , and if (24) holds, then x∗ (σ) > θb. Also,
limσ→σ+ x+ (σ) = ∞. By inspecting (a.29), we can see that limσ→σ+ Ψ (σ) = ∞. By Lemma
11iv, the interval (x− (σ) , x+ (σ)) contains θb for σ large, so that by Lemma 7i, Ψ (σ) = σ for
all such σ. By Lemma 10i, x−(σ) and x+(σ) are well-defined and distinct for every σ > σ, so
these values move continuously with σ. Consequently, so does Ψ(σ). Therefore Ψ has at least
one fixed point.

At any such fixed point σ, we have σ < σ = Ψ(σ). Consequently, the first term on the right
hand side of (a.29) must bind. It follows that Ψ(σ) solves db(Ψ(σ)) = 0, where db is defined in
(a.13), so that

(a.30) φ

(
x+ (σ)− θb

Ψ (σ)

)
(x+ (σ)− θb) = φ

(
x− (σ)− θb

Ψ (σ)

)
(x− (σ)− θb) .
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(A) When (23) holds. (B) When (23) fails.

FIGURE A.4. x− (σ) and x+ (σ) are always well-defined if and only if (23) holds.

We compute Ψ′(σ) from (a.30). This is routine but tedious and we only outline the steps. First,
consider the derivative of the left-hand side of (a.30) with respect to σ; this can be expressed as

φ

(
x+ (σ)− θb

Ψ (σ)

)
[x+ (σ)− θb]

(
x′+ (σ)

x+ (σ)− θb
− x+ (σ)− θb

Ψ (σ)

x′+ (σ) Ψ (σ)− (x+ (σ)− θb) Ψ′ (σ)

Ψ2 (σ)

)
,

where the manipulations used to obtain this expression use the fact that φ is the normal density.
For the right-hand side we obtain the same expression but with x−(σ) instead of x+(σ). Now,
the first two terms on each side will cancel each other, because Ψ(σ) satisfies (a.30). Rearranging
terms, we obtain

(a.31) Ψ′ (σ) =
Ψ (σ)3

2

x′−(σ)

x−(σ)−θb

(
1− (x−(σ)−θb)2

Ψ(σ)2

)
+

x′+(σ)

(x+(σ)−θb)

(
(x+(σ)−θb)2

Ψ(σ)2
− 1
)

(x+ (σ)− x− (σ))
(
x+(σ)+x−(σ)

2 − θb
) .

Using the expressions for x′− (σ) and x′+ (σ) in equations (a.24) and plugging them in (a.31) and
evaluating the resulting derivative at σ = Ψ (σ), we see that

Ψ′ (σ) = −σσ3

1
(x−(σ)−θb)

(
1− (x−(σ)−θb)2

σ2

)2
+ 1

(x+(σ)−θb)

(
(x+(σ)−θb)2

σ − 1
)2

2 (x+ (σ)− x− (σ))
(
x+(σ)+x−(σ)

2 − θb
)
R (σ)

< 0.

This says that the self-map Ψ (σ) is strictly decreasing at any fixed point. Consequently, there
can only be one fixed point σ∗.

(ii) If (24) fails, then x−(σ) < θb for all σ > σ by Lemma 11iii. At the same time, by Lemma
6, θb < x+ (σ), so θb ∈ (x− (σ) , x+ (σ)) for all σ ≥ σ. Then, by Lemma 7ii, Ψ(σ) = σ for all
σ ≥ σ. Therefore, there is a unique fixed-point given by σ.

Lemma 13. If (23) fails, a non-trivial equilibrium does not exist and trivial equilibria exist.
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Proof. First, remember what is established in Observation 1: the failure of (23) is equivalent to
the statement β ≤ βl.

Recall also equation (a.23) from Lemma 10, which established the set of pairs (β, σ) such that
R(σ), as defined in (a.21), equals 0. This locus is depicted in Figure A.1. Any pair below the
R = 0 locus implies that the right-hand side of (a.21) is strictly negative, and therefore there are
no real roots to β 1

σφ
(
x−θg
σ

)
= 1

σφ
(
x−θb
σ

)
: the principal will follow a trivial retention rule.

From (a.20), we have that, along the locus, x− (σ) = x+ (σ) =
σ2θg−σ2θb
σ2−σ2 . From this, we obtain

that x− (σ) = x+ (σ) > θb + σ if, and only if, σ ∈ [σ, σ∗), and x− (σ) = x+ (σ) < θb + σ if
and only if σ > σ∗. That is, along the locus, if σ > σ∗ then x− (σ) = x+ (σ) < θb + σ, and if
σ < σ∗ then x− (σ) = x+ (σ) > θb + σ. See Figure A.4.

Then, for any given β < βl, there exists no value of σ such that x− (σ) < σ + θb < x+ (σ), and
therefore by Lemma 7iii there cannot be a bounded retention equilibrium with σb > σg = σ. On
the other hand, when β = βl, by Lemma 10ii we have that x− (σ∗) = x+ (σ∗) = θb + σ∗, and
by Lemma 11ii, σ∗1 = σ∗2 = σ∗, so the equilibrium is σg = σ, σb = σ∗, and the principal retains
inside X = [x−, x+] = {θb + σ∗}: she almost never retains.

Notice also that a monotone equilibrium (σg, σg) = (σ, σ) cannot exist either: β ≤ βl < 1, so it
can never be the case that x∗ < θb.

For any value of β < βl, there can only be trivial equilibria, and these are of the type ”never
retain”. To obtain such an equilibrium, consider σg = σ and σb such that the (β, σb) pair is
below the R = 0 locus. Since for any such pair the {x−, x+} roots do not exist, the principal
will never retain when facing this pair (σg, σb).

Lemma 14. If σb satisfies db (σb) = 0 and {x−, x+} each solve β 1
σφ
(
x−θg
σ

)
= 1

σb
φ
(
x−θb
σb

)
,

then the good type optimally chooses σg = σ.

Proof. By Lemma 6 we know that it is always the case that x+ > θg. If, in addition, x− ≤ θg,
then by Lemma 7ii g optimally chooses σg = σ, and we are done.

If x− > θg, we are in Case iii of Lemma 7, which tells us that there is a unique value of σg (not
worrying about the lower bound σ) maximizing g’s probability of retention. This value is the one
that solves dg(σg) = 0, where dg is defined in (a.13). We now claim that this value is smaller
than σ. By Lemma 7iii, it will suffice to show that dg(σ) < 0.

We know that the triplet (σ, x−, x+) satisfies (9) with equality, which is

(a.32)
1

σ
φ

(
x− θb
σ

)
= β

1

σ
φ

(
x− θg
σ

)
for x = x−, x+, while by the optimality of σ and Lemma 7iii,

(a.33) φ

(
x+ − θb

σ

)
(x+ − θb) = φ

(
x− − θb

σ

)
(x− − θb) .
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It follows that

dg(σ) = φ

(
x− − θg

σ

)
(x− − θg)− φ

(
x+ − θg

σ

)
(x+ − θg)

=
σ

β

[
φ

(
x− − θb

σ

)
x− − θg

σ
− φ

(
x+ − θb

σ

)
x+ − θg

σ

]
=
σ

β

x− − θb
σ

φ

(
x− − θb

σ

)[
x− − θg
x− − θb

− x+ − θg
x+ − θb

]
< 0,

where the second and the third lines follow from (a.32) and (a.33), respectively, and the last
inequality from θg > θb and x+ > x−.

Proof of Proposition 10.

(i) The necessity of condition (23) for the existence of a nontrivial equilibrium is given by Lemma
13. Its sufficiency is given by Lemmas 12 and 14.

(ii) The statement is proven by combining Lemmas 6, 12 and 14.

(iii) Trivial.

(iv) If (24) fails, then by Lemma 12 the bad type is willing to play σb = σ if the good type is
playing σg = σ. For (σg, σb) = (σ, σ) to be compatible with a monotone retention regime, it
must be the case that x∗ (σ) ≤ θb, which simple algebra shows to be equivalent to the failure of
(24).

Section 7.6. Recall the formula (26) for the equilibrium ratio β in the main text:

(a.34) β =
q

1− q
1− p
p

=
1 + δΠb

1 + δΠg
.

Also recall that we are now working with the costless noise model from Section 7.5: any choice
of noise above σ is costless, whereas going below σ is impossible.

Proof of Proposition 11. For some (provisionally given) value of β, obtain the baseline static
model and then use Proposition 10 to generate retention probabilities Πg and Πb. The circle is
closed by the additional condition that (β,Πg,Πb) must solve (a.34).

As argued in the main text, it has to be the case that Πg ≥ Πb, because the principal will choose
a retention zone that retains the high type at least as often than the low type. This says that,
in the dynamic model, β ≤ 1, and therefore condition (24) trivially holds. Then, following
Proposition 10 and Observation 1, we can separate the analysis into two cases: either (23) fails
and β < βl < 1, or (23) holds and β ∈ (βl, 1].

In the former case, Proposition 10 tells us that in the static model, only a trivial equilibrium
exists (see Lemma 13). Then, Πb = Πg. But equilibrium condition (a.34) then says that β = 1,
a contradiction.

That is, if an equilibrium exists in this dynamic version of the costless model, it must be the case
that β ∈ (βl, 1] ⊂ (βl, βh), so it must be a bounded retention equilibrium. We now prove its
existence.



26 FRANCISCO ESPINOSA AND DEBRAJ RAY

For any given β ∈ (βl, 1], by Proposition 10, there is a unique equilibrium in the static model,
and it involves bounded retention thresholds {x−(β), x+(β)}. Given {σb(β), σg(β)} in that
equilibrium (with σb(β) > σg(β) = σ as already established), define, for k = b, g:

(a.35) Πk(β) =

∫
X
πk(x)dx =

1

σk(β)

∫ x+(β)

x−(β)
φ

(
x− θk
σk(β)

)
dx.

Now, in line with (a.34), define a mapping β′ = ψ(β) by

(a.36) β′ =
1 + δΠb (β)

1 + δΠg (β)

Because the equilibrium is unique for every β ∈ (βl, 1], it is easy to see that ψ is a continuous
map. Next, when β = 1, we know from the non-triviality of the corresponding static equilibrium
that Πb (1) < Πg (1), so that β′ = ψ(1) < 1. Finally, as β ↓ βl, the boundaries of the static
equilibrium retention thresholds x∗− and x∗+ converge to each other (see Lemma 15), so that
limβ↓βl Πg = limβ↓βl Πb = 0, and therefore

β′ = ψ(β) =
1 + δΠb (β)

1 + δΠg (β)
→ 1

as β ↓ βl. This verifies a second end-point condition limβ↓βl ψ(β) > βl. By the intermediate
value theorem, there is at least one value of β with ψ(β) = β, and this — along with the
corresponding values of σb and σg — is easily seen to be an equilibrium of the dynamic game.

To complete the proof, we establish uniqueness of equilibrium. Begin by differentiating the
expression in (a.35) with respect to β, taking care to use an envelope argument for type b (his
first-order condition) and the fact that σg(β) = σ for type g. We obtain:

(a.37)
∂Πk (β)

∂β
=

1

σk (β)

[
φ

(
x+ (β)− θk
σk (β)

)
x′+ (β)− φ

(
x− (β)− θk
σk (β)

)
x′− (β)

]
.

Next, observe that

(a.38)
∂

∂β

1 + δΠb (β)

1 + δΠg (β)
= δ

∂Πb(β)
∂β (1 + δΠg (β))− (1 + δΠb (β))

∂Πg(β)
∂β

(1 + δΠg (β))2 .

Substitute (a.37) in (a.38) and use the fact that x−(β) and x+(β) solve (9) with equality to obtain
(after some manipulation)

∂

∂β

1 + δΠb (β)

1 + δΠg (β)
= δ

1
σg(β)φ

(
x+(β)−θg
σg(β)

)
x′+ (β)− 1

σg(β)φ
(
x−(β)−θg
σg(β)

)
x′− (β)

(1 + δΠg (β))

(
β − 1 + δΠb (β)

1 + δΠg (β)

)
.

Because x′+ (β) > 0 and x′− (β) < 0 (Lemma 15i), we must conclude that

(a.39) Sign
{
∂

∂β

1 + δΠb (β)

1 + δΠg (β)

}
= Sign

{
β − 1 + δΠb (β)

1 + δΠg (β)

}
.
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This last observation, along with the end-point condition limβ→βl φ(β) > βl, eliminates two
solutions to the equation

β =
1 + δΠb (β)

1 + δΠg (β)
,

for that would require the sign equality (a.39) to be violated for some β.

Proof of Proposition 12. Recall Observation 1: βl in (a.18) and βh in (a.19) are defined, respec-
tively, by the requirement that (23) and (24) hold with equality. Therefore, conditions (23) and
(24) together are equivalent to β ∈ (βl, βh).

We proceed in a number of steps.

Lemma 15. Assume β ∈ (βl, βh), then

(i)
∂x∗−
∂β < 0 and

∂x∗+
∂β > 0

(ii) limβ→β+
l
x∗− = limβ→β+

l
x∗+ and limβ→β+

l
σ∗b = σ

(
α+
√
α2 + 1

)
Proof. (i) When β ∈ (βl, βh), Proposition 10 tells us that there exists a unique equilibrium,
which is a bounded retention equilibrium where σb > σg = σ and the principal retains in a
bounded interval X = [x−, x+]. The equilibrium values

(
σ∗b , x

∗
−, x

∗
+

)
are determined by

β
1

σ
φ

(
x− θg
σ

)
=

1

σb
φ

(
x− θb
σb

)
, for x = x∗−, x

∗
+,

and

φ

(
x− − θb
σb

)
(x− − θb) = φ

(
x+ − θb
σb

)
(x+ − θb) .

Let us differentiate these equations with respect to β. In the case of the first equation, we obtain

σ′b
σb

((
x− − θb
σb

)2

− 1

)
=

R (σb)

σbσ
x′− +

1

β
,(a.40)

σ′b
σb

(
1−

(
x+ − θb
σb

)2
)

=
R (σb)

σbσ
x′+ −

1

β
.

In the case of the second equilibrium equation we obtain the same expression as in (a.31), where
Ψ (σ) is now σb, and the derivatives are those with respect to β. By combining it with (a.40),
and after some heavy algebra, we obtain:

x′− = −y− (y+ + y−)

β

σ2

(θg − θb)

 θg−θb
σ

σb
σ (y+ − y−) y+ + (y− + y+)

(
y2

+ − 1
)

θg−θb
σ

σb
σ y−y+ (y+ − y−)2 +

(
1− y2

−
)2
y+ +

(
1− y2

+

)2
y−


(a.41)

x′+ =
y+ (y+ + y−)

β

σ2

(θg − θb)

 θg−θb
σ

σb
σ (y+ − y−) y− + (y+ + y−)

(
1− y2

−
)

θg−θb
σ

σb
σ y−y+ (y+ − y−)2 +

(
1− y2

−
)2
y+ +

(
1− y2

+

)2
y−


where the notation x′ means ∂x

∂β , and yi := xi−θb
σb

, for i = −,+.
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Since β < βh condition (24) holds, and therefore x− > θb. This says that y+ > y− > 0. Also,
from Lemma 7iii, y+ > 1 > y−. Then, from the above expressions we can see that x′− < 0 and
x′+ > 0, which means that the interval shrinks as β decreases.

(ii) For β > βl, Proposition 10 tells us that there exists a unique equilibrium, which exhibits
bounded retention. By Lemma 7iii, equilibrium σb satisfies x− (σb) < θb+σb < x+ (σb). In the
limit as β → βl, condition (23) holds with equality, and by Lemma 10ii, x− (σ∗) = x+ (σ∗) =

θb + σ∗ where σ∗ = σ
(
α+
√
α2 + 1

)
. Then, σb → σ∗, and the result is proven.

Lemma 16. ∂σ∗b
∂β = 0 at β = βl, βh and ∂σ∗b

∂β < 0 for β ∈ (βl, βh).

Proof. By combining the derivatives in (a.41) and (a.40) we obtain

σ′b
σb

=
1

β

(y− + y+) (y−y+ − 1)
θg−θb
σ

σb
σ y−y+ (y+ − y−)2 +

(
1− y2

−
)2
y+ +

(
1− y2

+

)2
y−
,

where yi := xi−θb
σb

, i = −,+. So, σ′b ≤ 0 if and only if y−y+ ≤ 1, which, from the expressions
for x− and x+ in (a.20), is equivalent to

(a.42) β ≥
exp

[
2α2
]

exp

[
1
2

(
1−

(
σb(β)
σ

)2
)]

σb(β)
σ

=: f (β) .

Notice that, since by Lemma 15 limβ→βl σb = σ
(
α+
√
α2 + 1

)
,

lim
β→βl

f (β) =

exp
[
2α2
]

exp

[
1
2

(
1−

(
α+
√
α2 + 1

)2
)]

α+
√
α2 + 1

=
exp

[
α
(
α−
√
α2 + 1

)]
α+
√
α2 + 1

=

exp

[
−α(

√
α2+1−α)(α+

√
α2+1)

(α+
√
α2+1)

]
α+
√
α2 + 1

=
exp

[
− α
α+
√
α2+1

]
α+
√
α2 + 1

= βl.

Also, since σb → σ as β → β−h by Proposition 10,

lim
β→βh

f (β) = exp
[
2α2
]

= βh.
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So, for the extreme values of β, inequality (a.42) holds with equality, and therefore σ′b (β) = 0.
The derivative of f with respect to β is

f ′ (β) = −σ exp
[
2α2
]

exp

[
1

2

(
1−

(
σb
σ

)2
)](

1

σ2
+

1

σ2
b

)
σ′b.

Assume that limβ→β+
l
f ′ (β) ≥ 1. This means that in a neighborhood of βl, f (β) ≥ β, which

implies that σ′b ≥ 0. But then f ′ (β) ≤ 0 from the above expression. We conclude that
limβ→β+

l
f ′ (β) < 1 and therefore f (β) < β for β close enough to βl. Can f (β) go above β?

If such a point exists, if has to be the case that f ′ (β) > 1 > 0, but at the same time f (β) = β
implies σ′b = 0, which implies that f ′ (β) = 0 from the above expression. We conclude that
f (β) < β at any β ∈ (βl, βh) and therefore ∂σb

∂β < 0 for β ∈ (βl, βh), with ∂σb
∂β = 0 at the

end-points β = βl, βh.

2. EXAMPLES

2.1. (Non-Generic) Example of a Monotone Equilibrium. In the main text we have argued
that with a monotone regimeX = [x∗,∞) with x∗ ∈ [θb, θg] the bad type will optimally respond
by choosing σb > σ, whereas the good type will play σg < σ, so this cannot be an equilibrium.
Consider then the case x∗ /∈ [θb, θg]. Type-k agent’s objective function is:

1− Φ

(
x∗ − θk
σk

)
− c (σk)

and the corresponding first order condition is

φ

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

− c′ (σk) = 0

If σg = σb = σ, the two first-order condition together imply that

(a.43) φ

(
x∗ − θg
σ

)
(x∗ − θg) = φ

(
x∗ − θb
σ

)
(x∗ − θb) .

Furthermore, from the principal’s indifference condition, we have that

βφ

(
x∗ − θg
σ

)
= φ

(
x∗ − θb
σ

)
,

which determines the value of x∗ :

(a.44) x∗ =
θg + θb

2
− σ2

θg − θb
ln (β) .

If we use this indifference condition in equation (a.43) we obtain the following:

(x∗ − θg) = β (x∗ − θb) ,

or

x∗ =
θg − βθb

1− β
.
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(A) Equilibrium Noise and Ambient
Noise as functions of β

(B) Equilibrium Noise and Ambient
Noise as functions of ∆

FIGURE A.5. Monotone Equilibria

Now, combining this expression for x∗ with (a.44) the equilibrium value of σ is fully determined:

σ = ∆

√
1

2

1

ln (β)

1 + β

β − 1
,

where ∆ := θg − θb.

Assume β < 1, so x∗ > θk ∀k. The good type’s first-order condition is

c′ (σ) = φ

(
β

1− β
∆

σ

)
∆

σ2

β

1− β

= φ

(√
2 ln (β)

β − 1

1 + β

β

1− β

)
2

∆
ln

(
1

β

)
β

1 + β
> 0

Let c (σ) = 1
2σ (σ − σ)2 ∀σ ≥ σ. Then the condition reads

σ − σ
σ

= φ

(√
2 ln (β)

β − 1

1 + β

β

1− β

)
2

∆
ln

(
1

β

)
β

1 + β
,

or

σ =
∆
√

1
2

1
ln(β)

1+β
β−1

1 + φ
(√

2 ln (β) β−1
1+β

β
1−β

)
2
∆ ln

(
1
β

)
β

1+β

.

Figure A.5 plots σ and σ as functions of β ∈
(
0, 4

5

)
for ∆ = 1 (Panel a) and as functions of ∆

for β = 1
2 (Panel b):

2.2. Examples of Bounded Replacement Equilibria.

Lemma 17. Suppose the principal retains and replaces according to some rule such that x− ∈
[θb, θg]. Then, the agents’ best responses satisfy σb > σg.
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The proof of Lemma 17 is identical to the one of Proposition 5, which is developed in the
Appendix. If we define Bk (σ) to be type-k’s marginal benefit of noise, under the premise
x− ∈ [θb, θg], the marginal benefit of noise for the bad type strictly exceeds that for the good
type at every noise level. Then, by a simple single-crossing argument, we must have σb > σg.

By combining this Lemma with Proposition 4, we have the following

Observation 2. Consider a bounded replacement equilibrium, in which σg > σb. Then, either

(i) β > 1 and large enough so that x+ < x− < θb < θg; or

(ii) β < 1 and small enough so that x+ < θb < θg < x−.

We will now construct two examples of bounded replacement, one for β < 1 and another for
β > 1. For the case β < 1, Observation 2 says that both choices of noise must be above the
ambient noise. Let us then take θb = 1, θg = 2 and x− = 2.3. The idea is that both types
are inside the replacement zone, as Observation 2 determines, but the bad type is deep inside it.
Then, the good type will pay a bigger cost of escaping the zone, whereas there is not much the
bad type can do. Provided we construct the “right” marginal cost function, this yields σg > σb.

Let us impose σg = 0.42 and σb = 0.250001. We have now pinned down the value of x+ :

x+ + x−
2

=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

,

so that

x+ = 2
σ2
bθg − σ2

gθb

σ2
b − σ2

g

− x− ≈ −1.38

The value of β < 1 is now also determined:

β =

1
σb
φ
(
x+−θb
σb

)
1
σg
φ
(
x+−θg
σg

) =

1
σb
φ
(
x−−θb
σb

)
1
σg
φ
(
x−−θg
σg

) ≈ 2.92 · 10−6.

Finally, the two first-order conditions need to be satisfied. Both types’ marginal benefits are
always positive, so we just have to care about marginal cost for values of σ above σ. We choose

c′ (σ) = A ln (σ) +B.

The cost function that yields this expression for the marginal cost is

c (σ) = A (σ ln (σ)− σ ln (σ)) + (B −A) (σ − σ) .

We have two free parameters, for the two first-order conditions:

φ

(
x− − θg
σg

)
x− − θg
σ2
g

− φ
(
x+ − θg
σg

)
x+ − θg
σ2
g

= A ln (σg) +B,

φ

(
x− − θb
σb

)
x− − θb
σ2
b

− φ
(
x+ − θb
σb

)
x+ − θb
σ2
b

= A ln (σb) +B.
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(A) Marginal Benefits and Costs (B) Equilibrium Likelihoods (C) Adjusted Eq. Likelihoods

FIGURE A.6. A Bounded Replacement Equilibrium for β Small.

Therefore,

A =

(
φ
(
x−−θg
σg

)
x−−θg
σ2
g
− φ

(
x+−θg
σg

)
x+−θg
σ2
g

)
−
(
φ
(
x−−θb
σb

)
x−−θb
σ2
b
− φ

(
x+−θb
σb

)
x+−θb
σ2
b

)
ln (σg)− ln (σb)

≈ 1

B = φ

(
x− − θb
σb

)
x− − θb
σ2
b

− φ
(
x+ − θb
σb

)
x+ − θb
σ2
b

−A ln (σb) ≈ 1.39

The resulting value of the ambient noise (c′ (σ) = 0) is σ ≈ 1
4 .

Figure A.6 depicts the equilibrium.

Now we find an example of a bounded replacement equilibrium for the case β > 1. By Obser-
vation 2 it must be the case that x+ < x− < θb < θg. Both agents are now in the retention zone
so they want to stay there: σb, σg < σ. The bad type is closer to the replacement zone, though,
so he will make a bigger effort than the good type to stay safe: σb < σg < σ.

Let us then choose θb = 3, θg = 5 and x− = 2.5. For the choices of noise, let’s take σb = 0.3
and σg = 0.6. All this again pins down the value of x+:

x+ = 2
σ2
bθg − σ2

gθb

σ2
b − σ2

g

− x− ≈ 2.17.

For β we have:

β =

1
σb
φ
(
x+−θb
σb

)
1
σg
φ
(
x+−θg
σg

) =

1
σb
φ
(
x−−θb
σb

)
1
σg
φ
(
x−−θg
σg

) ≈ 2936.

β is now immensely big.
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(A) Marginal Benefits and Costs (B) Equilibrium Likelihoods (C) Adjusted Eq. Likelihoods

FIGURE A.7. A Bounded Replacement Equilibrium for β Large.

For the cost function, once again take: c′ (σ) = A ln (σ) + B, and solve to implement the
first-order conditions:

A =

(
φ
(
x−−θg
σg

)
x−−θg
σ2
g
− φ

(
x+−θg
σg

)
x+−θg
σ2
g

)
−
(
φ
(
x−−θb
σb

)
x−−θb
σ2
b
− φ

(
x+−θb
σb

)
x+−θb
σ2
b

)
ln (σg)− ln (σb)

≈ 0.68

B = φ

(
x− − θb
σb

)
x− − θb
σ2
b

− φ
(
x+ − θb
σb

)
x+ − θb
σ2
b

−A ln (σb) ≈ 0.35.

Ambien noise is now σ ≈ 0.6004. Figure A.7 depicts the equilibrium.

3. MISCELLANEOUS DETAILS

3.1. The Behavior of σ (θ). We will analyze the behavior of σ (θ) when the agents face a re-
tention rule X = [x−, x+], where x+ can be equal to infinity (monotone regime). See Figure 5
in the main text. Even though the analysis will not be complete in the case of bounded retention,
it will shed some light on the way σ changes with θ. The first-order condition of an agent of type
θ is

φ

(
x− − θ
σ

)
x− − θ
σ2

− φ
(
x+ − θ
σ

)
x+ − θ
σ2

= c′ (σ) .

By differentiating the first-order condition at σ (θ), we can find an expression for σ′ (θ) :

∂σ (θ)

∂θ
= − 1

σ (θ)2

h (θ)

∂
∂σ

[
φ
(
x−−θ
σ

)
x−−θ
σ2 − φ

(
x+−θ
σ

)
x+−θ
σ2 − c′ (σ)

]
|σ=σ(θ)

,

where

h (θ) := φ

(
x− − θ
σ (θ)

)((
x− − θ
σ (θ)

)2

− 1

)
− φ

(
x+ − θ
σ (θ)

)((
x+ − θ
σ (θ)

)2

− 1

)
.

The denominator is the second-order derivative, which is negative at the optimum. Therefore:

Sign

{
∂σ (θ)

∂θ

}
= Sign {h (θ)} .
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Let us study the case of monotone retention first (see Panel A of Figure 5 in the main text). In
this case the term involving x+ in h (θ) disappears, and therefore

Sign

{
∂σ (θ)

∂θ

}
= Sign {|x− − θ| − σ (θ)} .

Then, all we have to do is to compare σ (θ) and |x− − θ| . Remember that at θ = x−, σ (θ) =
σ > 0, so σ (θ) is decreasing as we enter the retention zone, and it will be so until

σ (θ) = θ − x−,

at which stage the derivative is 0. From this point onwards σ (θ) is always increasing4. However,
σ (θ) cannot grow unboundedly, since this would mean c′ (σ) → ∞, but φ (z) z → 0 as |z| →
∞, so σ (θ) approaches σ from below as θ →∞.

If we move away from x− but in the opposite direction; that is, as we decrease θ, σ (θ) cannot
always stay above x− − θ because this would mean σ (θ) → ∞ as θ → −∞, and we have just
argued that this is inconsistent with optimality. This means there is an intersection point at which
σ (θ) = x− − θ and σ (θ) reaches its maximum. Then, σ (θ) ↓ σ as θ → −∞.

Now turn to the case of bounded retention, depicted in Panel B of Figure 5 in the main text.
The symmetry of σ (θ) around the midpoint x−+x+

2 of the retention interval is evident from the
first-order condition. If x+ <∞, σ (θ) = σ (x− + x+ − θ) for all θ ≤ x−+x+

2 . Let us therefore
study the behavior of σ (θ) for θ ≥ x−+x+

2 .

First, consider type θ = x−+x+
2 . By the symmetry and the existence of σ′ (θ), at this point

σ′ (θ) = 0. Effectively:

h

(
x− + x+

2

)
= 0.

For the type at the edge, θ = x+, the first-order condition is

(a.45) − φ
(
x+ − x−

σ

)
x+ − x−

σ2
= c′ (σ) ,

so σ (θ) < σ. But his chosen σ is bigger than the one of the midpoint type: the marginal benefit
at θ = x++x−

2 is equal to

−φ
(
x+ − x−

2σ

)
x+ − x−

σ2
,

and it is smaller than the left-hand side of (a.45). Also, σ′ (θ) is positive at θ = x+:

h (x+) =

(
φ

(
x+ − x−
σ (x+)

)(
x+ − x−
σ (x+)

)2

+ φ (0)− φ
(
x+ − x−
σ (x+)

))
> 0.

4σ (θ) cannot cross the θ − x− function again since this would require σ′ (θ) ≥ 1 at the intersection point, but
crossing θ − x− means σ′ (θ) = 0.
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What about types above x+? There exists a type θ > x+ such that σ (θ) = σ. For such a type,
the value of σ that maximizes his probability of retention is equal to σ, that is,

φ

(
x− − θ
σ

)
x− − θ
σ

− φ
(
x+ − θ
σ

)
x+ − θ
σ

= 0.

Observe that for type θ the solution is represented in Panel B of Figure 3 by those z1 and z2 such
that φ (z1) z1 = φ (z2) z1 and z2 − z1 = x+−x−

σ .

Now consider any type θ above θ who considers playing σ. His first-order derivative would be

φ

(
θ − x+

σ

)
θ − x+

σ
− φ

(
θ − x−
σ

)
θ − x−
σ

.

But Panel B of Figure 3 in the main text reveals that the sign of this expression will be positive,
since by increasing θ we are considering bigger values of both z1 and z2. This means that
σ (θ) > σ ∀θ > θ. Similarly, for any type θ ∈ (x+, θ), the first-order derivative at σ will be
negative, so σ (θ) < σ for such θ.

Let us focus on types θ > θ. For such types, since σ (θ) > σ, σc′ (σ) is increasing in σ. This
means that σ cannot grow unboundedly with θ, since that would mean σc′ (σ) → ∞, whereas
φ
(
θ−x+
σ

)
θ−x+
σ − φ

(
θ−x−
σ

)
θ−x−
σ is a bounded function (each term is between 0 and 1).

Depart from θ = θ. Notice that type θ satisfies that σ ∈ [θ − x+, θ − x−] (take a look at
Panel B of Figure 3 again to convince yourself: z1 < 1 < z2). This says that h (θ) > 0

so σ′ (θ) > 0. Notice then that the distance θ−x−
σ(θ) −

θ−x+
σ(θ) = x+−x−

σ(θ) is decreasing in θ for

values close to θ. Furthermore, it has to be the case that θ−x+σ(θ) is increasing in θ, since otherwise
θ−x−
σ(θ) would be decreasing (remember their distance decreases), and therefore φ

(
θ−x+
σ(θ)

)
θ−x+
σ(θ) −

φ
(
θ−x−
σ(θ)

)
θ−x−
σ(θ) would decrease (remember that θ−x+

σ(θ) < 1 < θ−x−
σ(θ) ) at the same time that

σ (θ) c′ (σ (θ)) increases.

So as long as θ−x+
σ(θ) < 1, θ−x+σ(θ) is increasing and so it σ (θ) (see function h (θ)). Furthermore,

since σ (θ) is bounded, this means that θ−x+σ(θ) eventually goes above 1. Function h (θ) indicates

that as soon as this happens ( θ−x+σ(θ) = 1), σ (θ) is still increasing with θ. Since we know σ (θ) is
bounded and it converges to σ as θ → ∞, there exists a point θ at which σ′ (θ) = h (θ) = 0.
Now take a look at Figure A.8 in this document, which plots functions φ (z) z (the orange curve,
related to the first-order derivative) and φ (z)

(
z2 − 1

)
(the blue curve, related to function h (θ)).

h (θ) = 0 means that there are two points on the x axis that reach the same height on the blue
curve. The smaller point corresponds to θ−x+

σ(θ) , and the larger point to θ−x−
σ(θ) But then, both

θ−x+
σ(θ) and θ−x−

σ(θ) are increasing in θ at such a point (because σ′ (θ) but θ increases), and therefore

h (θ) < 0 forever after: both θ−x+
σ(θ) and θ−x−

σ(θ) will always be increasing forever after because
σ (θ) is decreasing and the numerators increase with θ.
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FIGURE A.8. Functions φ (z) z and φ (z)
(
z2 − 1

)
3.2. Sufficient Conditions for Uniqueness. Condition U in the main text states that for every
monotone or bounded retention zone, and for every agent type, the optimal choice of noise
is unique. Here we show a condition on the cost function c (σ) that guarantees the desired
uniqueness.

Consider the case σb ≥ σg, so X = [x−, x+] with x+ < ∞ iff σb > σg. Recall the necessary
first-order condition:

−φ
(
x+ − θ
σ

)
x+ − θ
σ2

+ φ

(
x− − θ
σ

)
x− − θ
σ2

= c′ (σ) .

We want to impose conditions such that the objective function is always strictly concave, this
generating an unique optimal choice for each parameter. For this, we will ask c′′ (σ) to be
always bigger than the second derivative of the marginal benefit, which is the derivative of the
left-hand side with respect to σ :

1

σ2

[
φ

(
x+ − θ
σ

)
x+ − θ
σ

(
2−

(
x+ − θ
σ

)2
)
− φ

(
x− − θ
σ

)
x− − θ
σ

(
2−

(
x− − θ
σ

)2
)]

.

This expression is related to the function φ (z) z
(
2− z2

)
, where the value of z could be any-

where in the real line: x+−θ is always positive, but x−−θ can take either sign. Forget about the
term 1

σ2 on the left: we will find the biggest possible value of the term inside the square brackets,
which will be a number, say κ. Then we ask for c′′ (σ) ≥ κ

σ2 ∀σ. Let us plot the φ (z) z
(
2− z2

)
function in Figure A.9. In order to find the critical values of this function, compute the first-order
derivative and set it equal to zero:

∂

∂z
φ (z) z

(
2− z2

)
= φ (z)

(
z4 − 5z2 + 2

)
= 0.

We have 4 values of z that satisfy the condition:

z = ±

√
5

2
±
√

17

4
⇒ z = {−2.14,−0.66, 0.66, 2.14} .
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FIGURE A.9. Function φ (z) z
(
2− z2

)
Finally, to find the maximum value of φ (z2) z2

(
2− z2

2

)
− φ (z1) z1

(
2− z2

1

)
with z2 > z1 and

z2 > 0, it is clear that we have to consider z2 =

√
5
2 −

√
17
4 and z1 = −

√
5
2 −

√
17
4 . So we ask

for
c′′ (σ) ≥ κ

σ2
∀σ

where

κ = φ (z2) z2

(
2− z2

2

)
− φ (z1) z1

(
2− z2

1

)
≈ 0.662594.
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