
Appendix to Hébert and Woodford, “Rational Inat-

tention with Sequential Information Sampling”

A Proofs

A.1 Proof of Lemma 1

The problem in the continuation region is (everywhere the value function is twice differen-

tiable)

sup
σt∈M(qt)

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = κ,

subject to
1
2

tr[σT
t k(qt)σt ]≤ χ.

First, suppose that the constraint does not bind and a maximizing optimal policy exists:

1
2

tr[σ∗Tt k(qt)σ
∗
t ] = aχ,

where σ∗t is a maximizer, for some a ∈ [0,1) (a ≥ 0 by the positive semi-definiteness of

k(qt)). For any c∈ (1,a−1), with a−1 =∞ for a = 0, if we used σt = cσ∗t instead, the policy

would be feasible and we would have

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = c2

κ >
1
2

tr[σ∗Tt D(qt)Vqq(qt)D(qt)σ
∗
t ] = κ,

a contradiction by the fact that κ > 0. Therefore, either the constraint binds under the

optimal policy or an optimal policy does not exist. The latter would require that, for some
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vector z ∈ R|X | with zzT ∈M(qt),

zT D(qt)Vqq(qt)D(qt)z > 0

and zT k(qt)z = 0, but the null space of k(qt) consists only of vectors whose elements are

constant over the support of qt , and therefore satisfy qT z 6= 0, implying that zzT /∈M(qt).

Therefore, the constraint binds.

Using θ as defined in the lemma, it must be the case (anywhere the DM chooses not to

stop and the value function is twice differentiable) that

sup
σt∈M(qt)

1
2

tr[σtσ
T
t (D(qt)Vqq(qt)D(qt)−θk(qt))] = 0.

Because of the homogeneity assumption on V ,

qT
t Vq(qt) =V (qt).

Differentiating again,

qT
t Vqq(qt) = 0.

It follows that, for any α ∈ R,

1
2

tr[(σtσ
T
t +αιι

T )(D(qt)Vqq(qt)D(qt)−θk(qt))] =

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))].

Suppose that we relax the requirement that qT
t σt =~0 and simply require that σt by a square
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matrix. Let σ̃t be any square matrix. Setting

α =−qT
t σ̃t σ̃

T
t qt ,

and performing an eigendecomposition,

V DV T = σ̃t σ̃
T
t +αιι

T ,

we construct a matrix

σt =V D
1
2

that achieves the same utility and satisfies σt ∈M(qt). Therefore, ignoring this restriction

is without loss of generality.

It immediately follows that, in the continuation region, the maximum eigenvalue of

D(qt)Vqq(qt)D(qt)−θk(qt)

must be equal to zero. If it were less than zero, we would always have

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))]< 0,

and if it were greater than zero, we could achieve

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))]> 0

by setting σt = v1eT
1 , where v1 is an associated eigenvector of the maximal eigenvalue.

Finally, note that the DM would always choose to stop if V (qt) < û(qt), and there-

fore we must have V (qt) ≥ û(qt). If V (qt) > û(qt), the DM must choose to continue, and
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(assuming twice-differentiability) the HJB equation must hold.

A.2 Proof of Theorem 1

Define φ(qt) as the function described in the statement of the theorem (we will prove that

it is indeed equal to V (qt), the value function of the dynamic problem). We will first show

that φ(qt) satisfies the HJB equation, can be implemented by a particular strategy for the

DM, and that any other strategy for the DM achieves weakly less utility.

We begin by observing that

ι
T k(qt)D(qt)

−1 = 0 = ι
T D(qt)Hqq(qt) = qT

t Hqq(qt).

We claim that, without loss of generality, we can assume that H(qt) is homogeneous of

degree one,

H(αqt) = αH(qt)

for all α ∈ R+ and qt ∈P(X). Differentiating with respect to α and then with respect to

qt , and evaluating at α = 1, implies that

qT
t Hqq(qt) = 0,

consistent with the claim above.

We start by showing that the function φ(qt) is twice-differentiable in certain directions.

The function is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uT
a ·qa−θ ∑

a∈A
π(a)DH(qa||q0),
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subject to the constraint that

∑
a∈A

π(a)qa = q0.

Substituting the definition of the divergence, we can rewrite the problem as

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uT
a ·qa +θH(q0)−θ ∑

a∈A
π(a)H(qa),

subject to the same constraint. Define a new choice variable,

q̂a = π(a)qa.

By definition, q̂a ∈ R|X |+ , and the constraint is ∑a∈A q̂a = q0. By the homogeneity of H, the

objective is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A,{q̂a∈P(X)}a∈A

∑
a∈A

uT
a · q̂a +θH(q0)−θ ∑

a∈A
H(q̂a).

Any choice of q̂a satisfying the constraint can be implemented by some choice of π and qa

in the following way: set

π(a) = ι
T q̂a,

and (if π(a)> 0) set

qa =
q̂a

π(a)
.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,

∑a∈A π(a)= 1, and the fact that the elements of qa are weakly positive will ensure π(a)≥ 0.

Similarly, ιT qa = 1 for all a ∈ A, and the elements of qa are weakly greater than zero.

Therefore, we can implement any set of q̂a satisfying the constraints.
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Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X |}a∈A

min
κ∈R|X |,{νa∈R

|X |
+ }a∈A

∑
a∈A

uT
a · q̂a +θH(q0)

−θ ∑
a∈A

H(q̂a)+κ
T (q0−∑

a∈A
q̂a)+ ∑

a∈A
ν

T
a q̂a.

We begin by observing that φ(q0) is convex in q0. Suppose not: for some q = λq0 +(1−

λ )q1, with λ ∈ (0,1), φ(q) < λφ(q0)+ (1−λ )φ(q1). Consider a relaxed version of the

problem in which the DM is allowed to choose two different q̂a for each a. Observe that,

because of the convexity of H, even with this option, the DM will set both of the q̂a to

the same value, and therefore the relaxed problem reaches the same value as the original

problem. However, in the relaxed problem, choosing the optimal policies for q0 and q1

in the original problem, scaled by λ and (1−λ ) respectively, is feasible. It follows that

φ(q)≥ λφ(q0)+(1−λ )φ(q1). Note also that φ(q0) is bounded on the interior of the sim-

plex. It follows by Alexandrov’s theorem that is is twice-differentiable almost everywhere

on the interior of the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine

and a feasible point exists. Therefore, the KKT conditions are necessary. Moreover, the

objective function is continuously differentiable in the choice variables and in q0, and there-

fore the envelope theorem applies. We have, by the envelope theorem,

φq(q0) = θHq(q0)+κ,

and the first-order conditions (for all a ∈ A),

ua−θHq(q̂a)−κ +νa = 0.
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Define q̂a(q0), κ(q0), and νa(q0) as functions that are solutions to the first-order conditions

and constraints.

Consider an alternative prior, q̃0 ∈P(X), such that

q̃0 = ∑
a∈A

α(a)q̂a(q0)

for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), κ(q̃0) = κ(q0), and νa(q̃0) =

νa(q0). By the homogeneity property,

Hq(α(a)q̂a(q0)) = Hq(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is

satisfied, the complementary slackness conditions are satisfied, and q̂a and νa are weakly

positive. Therefore, all necessary conditions are satisfied, and by the concavity of the

problem, this is sufficient. It follows that the conjecture is verified.

Consider a perturbation

q0(ε;z) = q0 + εz,

with z ∈ R|X |, such that q0(ε;z) remains in P(X) for some ε > 0. If z is in the span of

q̂a(q0), then there exists a sufficiently small ε > 0 such that the above conjecture applies.

It follows in this case that κ is constant, and therefore φq(q0(ε;z)) is directionally differ-

entiable with respect to ε . If q0(−ε;z) ∈P(X) for some ε > 0, then φq is differentiable,

with

φqq(q0) · z = θHqq(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span

of q̂a(q0) is strictly larger than the line segment connecting zero and q0 (in other words, all
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q̂a(q0) are not proportional to q0). Define this region as the continuation region, Ω. Outside

of this region, all q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uT
a ·q0,

as required for the stopping region. Within the continuation region, the strict convexity of

H(q0) in all directions orthogonal to q0 implies that

φ(q0)> max
a∈A

uT
a ·q0,

as required.

Now consider an arbitrary perturbation z such that q0(ε;z) ∈ R|X |+ and q0(−ε;z) ∈ R|X |+

for some ε > 0. Observe that, by the constraint,

εz = ∑
a∈A

(q̂a(ε;z)− q̂a(q0)).

It follows that

(κT (q0(ε;z))−κ
T (q0))εz = ∑

a∈A
(κT (q0(ε;z))−κ

T (q0))(q̂a(ε;z)− q̂a(q0)).

By the first-order condition,

(κT (q0(ε;z))−κ
T (q0))(q̂a(ε;z)− q̂a(q0)) =

[θHq(q̂a(q0))−θHq(q̂a(ε;z))+ν
T
a (q0(ε;z))−ν

T
a (q0)](q̂a(ε;z)− q̂a(q0)).
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Consider the term

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0))= ∑

x∈X
(νT

a (q0(ε;z))−ν
T
a (q0))exeT

x (q̂a(ε;z)− q̂a(q0)).

By the complementary slackness condition,

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0)) =−ν

T
a (q0(ε;z))q̂a(q0)−ν

T
a (q0)q̂a(ε;z)≤ 0.

By the convexity of H,

θ(Hq(q̂a(q0))−θHq(q̂a(ε;z)))(q̂a(ε;z)− q̂a(q0))≤ 0.

Therefore,

(κT (q0(ε;z))−κ
T (q0))εz≤ 0.

It follows that anywhere φ is twice differentiable (almost everywhere on the interior of the

simplex),

φqq(q)� θHqq(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost every-

where in the continuation region. Moreover, by the convexity of φ ,

(Hq(q0(ε;z))−Hq(q0))
T

εz≥ (φq(q0(ε;z))−φq(q0))
T

εz≥ 0,

implying that the “Hessian measure” (see Villani (2003)) associated with φqq has no pure

point component. This implies that φ is continuously differentiable.

Next, we show that there is a strategy for the DM in the dynamic problem which can

implement this value function. Suppose the DM starts with beliefs q0, and generates some
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q̂a(q0) as described above. As shown previously, this can be mapped into a policy π(a,q0)

and qa(q0), with the property that

∑
a∈A

π(a,q0)qa(q0) = q0.

We will construct a policy such that, for all times t,

qt = ∑
a∈A

πt(a)qa(q0)

for some πt(a) ∈P(A). Let Ω (the continuation region) be the set of qt such that a πt ∈

P(A) satisfying the above property exists and πt(a) < 1 for all a ∈ A. The associated

stopping rule will be the stop whenever πt(a) = 1 for some a ∈ A.

For all qt ∈Ω, there is a linear map from P(A) to Ω, which we will denote Q(q0):

Q(q0)πt = qt .

Therefore, we must have

Q(q0)dπt = D(qt)σtdBt .

By the assumption that |X | ≥ |A|, there exists a |A|× |X | matrix σπ,t such that

Q(q0)σπ,t = D(qt)σt

and

dπt = σπ,tdBt .

Define

φ̃(πt) = φ(qt).
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As shown above,

QT (q0)φqq(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)−θH(Q(q0)πt)

is a martingale.

We also have to scale σπ,t to respect the constraint,

1
2

tr[σtσ
T
t k(qt)] = χ > 0.

This can be rewritten as

1
2

tr[σπ,tσ
T
π,tQ

T (q0)D+(Q(q0)πt)k(Q(q0)πt))D+(Q(q0)πt)Q(q0)] = χ,

where D+ denotes the pseudo-inverse.

By the positive-definiteness of k in all directions orthogonal to ι , we will always have

1
2tr[σπ,tσ

T
π,t ] > 0. Under the stopping rule described previously, the boundary will be hit

a.s. as the horizon goes to infinity. As a result, by the martingale property described above,

initializing π0(a) = π(a,q0),

φ̃(π0) = E0[φ̃(πτ)−θH(Q(q0)πτ)+θH(Q(q0)π0)].

By Ito’s lemma,

θH(Q(q0)πτ)−θH(Q(q0)π0) =

ˆ
τ

0
χθdt = µτ.
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By the value-matching property of φ , φ̃(πτ) = û(Q(q0)πτ). It follows that

φ(q0) = φ̃(π0) = E0[û(qτ)−µτ],

as required.

Finally, we verify that alternative policies are sub-optimal. Consider an arbitrary control

process σt and stopping rule described by the stopping time τ . We have, by the convexity

of φ and the generalized Ito formula for convex functions (noting that we have shown that

the Hessian measure associated with φqq has no pure point component), interpreting φqq in

a distributional sense,

E0[φ(qτ)]−φ(q0) =
1
2

E0[

ˆ
τ

0
tr[σT

t D(qt)φqq(qt)D(qt)σt ]dt].

By the feasibility of the policies, anywhere in the continuation region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ]≤

1
2

θ tr[σT
t k(qt)σt ]≤ θ χ.

In the stopping region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ] = 0 < θ χ.

Therefore,

φ(q0)≥ E0[φ(qτ)]−
ˆ

τ

0
θ χdt.

By the inequality

φ(qτ)≥ û(qτ),
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we have

φ(q0)≥ E0[û(qτ)−µτ]

for all policies, verifying optimality.

A.3 Proof of Lemma 2

Let p and p′ be information structures with signal alphabet S. First, we will show that

mixture feasibility and Blackwell monotonicity imply convexity. By mixture equivalence,

letting pM denote the mixture information structure and SM the signal alphabet,

C(pM,q;SM)≤ λC(p,q;S)+(1−λ )C(p′,q;S).

Consider the garbling Π : S×{1,2} → S, which maps each (s, i) ∈ SM to s ∈ S. By Black-

well monotonicity,

C(pM,q;SM)≥C(ΠpM,q;S).

By construction,

eT
s ΠpM = λeT

s p+(1−λ )eT
s p′,

and the result follows.

Now we show the other direction: that convexity and Blackwell monotonicity imply

mixture feasibility. Let p1 and p2 be information structures with signal alphabets S1 and

S2. Because the cost function satisfies Blackwell monotonicity, it is invariant to Markov

congruent embeddings. Define SM = (S1 ∪ S2)×{1,2}. There exists an embedding Π1 :
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S1→ SM such that, for some sM = (s, i) ∈ SM,

eT
sM

Π1 p1 =


0 i = 2

0 s /∈ S1

eT
s p1 otherwise

.

Define an embedding Π2 along similar lines, and note that these embeddings are left-

invertible. It follows by invariance that

C(Π1 p1,q;SM) =C(p1,q;S1),

and likewise that

C(Π2 p2,q;SM) =C(p2,q;S2).

By convexity,

C(λΠ1 p1 +(1−λ )Π2 p2;q;SM)≤ λC(Π1 p1,q;SM)+(1−λ )C(Π2 p2,q;SM).

Observing that

λΠ1 p1 +(1−λ )Π2 p2 = pM

proves the result.

A.4 Proof of Theorem 2

Parts 1 and 2 of the theorem follow from a Taylor expansion of the cost function. Using the

lemmas and theorem of Chentsov (1982), cited in the text, we know that for any invariant
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cost function with continuous second derivatives,

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

(eT
x k(q)ex′)τ

T
x′g(r)τx +o(∆).

The second claim follows by a similar argument.

We next demonstrate the claimed properties of k(q). First, k(q) is symmetric and con-

tinuous in q, by the symmetry of partial derivatives and the assumption of continuous sec-

ond derivatives (Condition 4). Recall the assumption that

px = r+∆
1
2 τx +o(∆

1
2 ),

which implies that ∑s∈S eT
s r = 1 and ∑s∈S eT

s τx = 0 for all x ∈ X . Consider an information

structure for which τx = φeT
x v, where v ∈ R|X | and φ ∈ R|S|, with ∑s∈S eT

s φ = 0. Suppose

that both v and φ are not zero. For this information structure,

C(p,q;S) =
1
2

∆ḡvT k(q)v+o(∆),

where φ T g(r)φ = ḡ > 0. Suppose the information structure is uninformative for all ∆. This

would be the case if v is proportional to ι , and therefore

ι
T k(q)ι = 0

by Condition 1. Regardless of whether the information structure is informative, by Condi-

tion 1, we must have

vT k(q)v≥ 0,

implying that k(q) is positive semi-definite. If z and −z are in the tangent space of the

simplex at q, there exists an x,x′ eT
x z 6= eT

x′z with x,x′ in the support of q. Using z in the
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place of v above, by Condition 1, we must have

zT k(q)z > 0.

Suppose now that the cost function satisfies Condition 5. Let v be as above, non-zero,

and not proportional to ι . We have

C(p,q;S) =
1
2

∆ḡvT k(q)v+o(∆),

and therefore for the B defined in Condition 5 there exists a ∆B such that, for all ∆ < ∆B,

C(p,q;S)< B. Therefore, we must have

C({px}x∈X ,q)≥
m
2 ∑

s∈S
(eT

s pq)||qs−q||2X .

By Bayes’ rule, for any signal that is received with positive probability,

qs−q =
(D(q)−qqT )pT es

qT pT es
.

By convention, qs = q for any s such that eT
s pq = 0.

The support of qs is always a subset of the support of q, and therefore (by the equiva-

lence of norms),

C({px}x∈X ,q)≥
mg

2 ∑
s∈S

(eT
s pq)(qs−q)T D+(q)(qs−q)

for some constant mg > 0.
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For sufficiently large ∆, eT
s pq > 0 if eT

s rs > 0, and therefore

C({px}x∈X ,q)≥
m
2 ∑

s∈S:eT
s r>0

(eT
s p(D(q)−qqT )D+(q)(D(q)−qqT )pT es)

(eT
s pq)

,

or,

C({px}x∈X ,q)≥
m
2

∆ ∑
s∈S:eT

s r>0

(eT
s φ)2 vT (D(q)−qqT )D+(q)(D(q)−qqT )v

(eT
s r)

+o(∆).

Noting that

∑
s∈S:eT

s pq>0

(eT
s φ)2

(eT
s pq)

= φ
T g(r)φ = ḡ,

and that

(D(q)−qqT )D+(q)(D(q)−qqT ) = g+(q),

we have

C({px}x∈X ,q)≥
mg

2
∆ḡvT g+(q)v+o(∆).

It follows that we must have

1
2

vT k(q)v≥
mg

2
vT g+(q)v

for all v.

A.5 Proof of Corollary 2

Under the stated assumptions,

px = r+∆
1
2 τx +o(∆

1
2 ).
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By Bayes’ rule, for any s ∈ S such that eT
s pq > 0,

qs =
D(q)pT es

qT pT es
.

It follows immediately that

lim
∆→0+

qs = D(q)
rT es

rT
s

= q.

Next,

∆
− 1

2 (qs−q) = ∆
− 1

2
(D(q)−qqT )pT es

qT pT es

= D(q)
τT es− ιqT τT es +o(1)

qT pT es
.

For any s such that qT pT es > 0,

lim
∆→0+

∆
− 1

2 (qs−q) = D(q)
τT es− ιqT τT es

rT es
.

By Theorem 2,

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

(eT
x k(q)ex′)τ

T
x′g(r)τx +o(∆).

By the result that ιT k(q) = 0, we have

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

eT
x k(q)ex′ · (τx′−qτ)T g(r)(τx−qτ)

+o(∆).
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By the definition of the Fisher matrix, and the observation that ιT τx = 0 for all x ∈ X ,

(τx′−qτ)T g(r)(τx−qτ) = ∑
s∈S:eT

s r>0

(eT
s r)

(τx′−qτ)T

(eT
s r)

eseT
s
(τx−qτ)

(eT
s r)

.

Substituting in the result regarding the posterior,

C(p,q;S) =
1
2 ∑

s∈S:eT
s r>0

(eT
s r)(qs−q)T D+(q)k(q)D+(q)(qs−q)+o(∆),

which is the result.

A.6 Proof of Corollary 3

The cost function is directionally differentiable with respect to signals that add to the sup-

port of the signal distribution.

By directional differentiability and the continuity of the directional derivatives, there

exists a function

f (ω,r,q;S) = lim
∆→0+

C(p̄∆ +∆ω,q;S)−C(p̄∆,q;S)
∆

.

Observe that, if ωex is in the support of r for all x in the support of q, we must have

f (ω, p̄,q;S) = 0, by the results of Theorem 2. Relatedly, if ω and ω ′ differ only with

respect to the frequency of signals in the support of r for all x in the support of q, we must

have

f (ω,r,q;S) = f (ω ′,r,q;S).

Assuming there are signals not in the support of p̄, we can write ω = ω1 +ω2 + . . .,

where each ωi is a perturbation that contains only one signal not the support of p̄q. Let

87



N ≤ |S| denote the number of these perturbations. We can define

fi(ωi,r,q;S) = lim
∆→0+

C(pi−1 +∆ωi,q;S)−C(pi−1,q;S)
∆

,

where pi−1 = p̄∆+∆∑
i−1
j=1 ωi. By the assumption of the continuity of the directional deriva-

tives,

fi(ωi,r,q;S) = f (ωi,r,q;S).

It follows that

f (ω,r,q;S) =
N

∑
i=1

f (ωi,r,q;S).

By invariance, the function f (ωi,r,q;S) does not depend on r or S. By the argument

above, it is only a function of esiωi, where si ∈ S is the unique signal in ωi with eT
si

r = 0.

By Bayes’ rule,

esiωi = (esiωiq)D(q)+qsi,

where qsi is the posterior associated with signal si. By the homogeneity of the directional

derivative, we can rewrite this as

f (ωi,r,q;S) = (esiωiq)F(qsi,q).

By the requirement that the cost of an uninformative signal structure is zero, and every-

thing else is costly, we must have

F(q,q) = 0,

F(q′,q)> 0

for all q′ 6= q. Therefore, F is a divergence, which we write D∗(q′||q). The finiteness of

D∗(q′||q) is implied by the existence of the directional derivative. The approximation of

88



the cost function follows from this result and Corollary 2.

By invariance, there exists a Markov congruent embedding that splits each signal in S

into M > 1 distinct signals in S′. As M becomes arbitrarily large, the probability of each

signal becomes small — and in particular, can be of order ∆. It follows for all s ∈ S′ such

that ||qs−q||= O(∆
1
2 ) (e.g. the signals described in Corollary 2), we must have

D∗(qs||q) =
1
2

∆(qT
s −q)k̄(q)(qs−q)+O(∆).

Moreover, by this argument, D∗(q′||q) must be twice differentiable for q′ in the neighbor-

hood of q.

A.7 Proof of Lemma 3

We will show that Conditions 1-5 are satisfied. Recall the definition:

CN(p,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi)

A.7.1 Condition 1

Condition 1 requires that if the information structure is uninformative, the cost is zero, and

if it is not, the cost is weakly positive. If the signal is uninformative, for any signal received

with positive probability,

qi,s = qi,

and by our convention that qi,s = qi if q̄i,s = 0, this also holds for zero-probability signals.

By the definition of a divergence, Di(qi||qi) = 0 for all qi, and therefore the cost of an

uninformative information structure is zero.

The cost is weakly positive by the definition of a divergence (being weakly positive)
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and the fact that probabilities are weakly positive.

A.7.2 Condition 2

Mixture feasibility requires that

C(pM,q;SM)≤ λC(p1,q;S1)+(1−λ )C(p2,q;S2).

By definition,

p̄i,M =
∑x∈Xi pMexeT

x q
q̄i

and

qi,s,M =
Eiqs,M

∑x∈Xi eT
x qs,M

for any s such that q̄i,s,M > 0. For any (s,1) ∈ SM, if q̄i,s,M > 0, we must have q̄i,s > 0, and

therefore qi,s,M = qi,s,1 (denoting the posterior under p1). The same argument holds for the

second information structure.

It follows that

C(pM,q;SM) = ∑
i∈I (q)

q̄i ∑
s∈SM

eT
s p̄i,M Di(qi,s,M||qi)

= ∑
i∈I (q)

q̄i (λ ∑
s∈S1

eT
s p̄i,1 Di(qi,s,1||qi)+(1−λ ) ∑

s∈S2

eT
s p̄i,2 Di(qi,s,2||qi))

= λC(p1,q;S1)+(1−λ )C(p2,q;S2),

verifying that the condition holds.
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A.7.3 Condition 3

By Blackwell’s theorem, for any Markov mapping Π : S→ S′, we require that

C(Πp,q;S′)≤C(p,q;S).

Consider a neighborhood i ∈I (q). By definition,

p̄
′
i =

∑x∈Xi ΠpexeT
x q

q̄i
= Πp̄i

and

qi,s′ =
Eiqs′

∑x∈Xi eT
x qs′

=
EiD(q)pT ΠT es′

∑x∈Xi eT
x D(q)pT ΠT es′

=
D(qi)Ei pT ΠT es′

p̄T
i ΠT es′

where the second step follows by Bayes’ rule,

D(q)pT
Π

T es′ = (eT
s′Πpq)qs′.

Also by Bayes’ rule,

D(qi)Ei pT es = (eT
s pET

i qi)qi,s

= (eT
s p̄i)qi,s.
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and therefore

qi,s′ =
∑s∈S qi,s p̄T

i ΠT es′

p̄T
i ΠT es′

.

It follows by the convexity of Di in its first argument that

(p̄T
i Π

T es′)Di(qi,s′||qi)≤∑
s∈S

p̄T
i Π

T es′Di(qi,s||qi).

Therefore,

C(Πp,q;S′) = ∑
i∈I (q)

q̄i ∑
s′∈S′

eT
s′Πp̄i Di(qi,s′ ||qi)

≤ ∑
i∈I (q)

q̄i ∑
s′∈S′

∑
s∈S

p̄T
i Π

T es′Di(qi,s||qi).

By definition,

∑
s′∈S′

Π
T es′ = 1

and therefore

C(Πp,q;S′)≤C(p,q;S).

A.7.4 Condition 4

By the definition of the neighborhood structure,

CN(p,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi),

and the twice-differentiability of Di in its first argument, it is sufficient to show that p̄i and

qi,s are both twice-differentiable with respect to perturbations to p, in the neighborhood of

an uninformative information structure.
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Suppose that

p(ε) = rι
T + ετ +νω,

where r ∈P(S) and the support of τex is in the support of r, and likewise for ωex, for all

x ∈ X .

By Bayes’ rule, for all s ∈ S such that eT
s r > 0,

qs(ε,ν) =
D(q)p(ε,ν)T es

qT p(ε,ν)T es
.

Simplifying,

qs(ε,ν) = q
rT es

rT es + εqT τT es +νqT ωT es
+

εD(q)τT es

rT es + εqT τT es +νqT ωT es

+
νD(q)ωT es

rT es + εqT τT es +νqT ωT es
.

In the neighborhood around ε = ν = 0, the denominator is strictly positive, and therefore

∂

∂ν
qs(ε,ν) =−qs(ε,v)

qT ωT es

rT es + εqT τT es +νqT ωT es
+

D(q)ωT es

rT es + εqT τT es +νqT ωT es

and

∂

∂ε

∂

∂ν
qs(ε,ν) = qs(ε,v)

qT ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es

− qT ωT es

rT es + εqT τT es +νqT ωT es

D(q)τT es

rT es + εqT τT es +νqT ωT es

−qs(ε,v)
qT ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es

− D(q)ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es
.

For s ∈ S such that eT
s r = 0, qs(ε,ν) = q, and therefore ∂

∂ε

∂

∂ν
qs(ε,ν) = 0. Therefore,
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∂

∂ν
qs(ε,ν) can be written as a quadratic form in vec(τ) and vec(ω). It follows that qs(ε,ν),

in the neighborhood of an uninformative information structure, is twice-differentiable in the

directions that do not change the support of the distribution of signals.

For all i ∈I (q), define q̃i ∈P(X) as

eT
x q̃i =


eT

x q
q̄i

x ∈ Xi

0 otherwise.

By definition,

p̄i(ε,ν) = pq̃i = r+ ετ q̃i +νω q̃i.

and therefore is twice-differentiable in the required directions. Moreover, by construction,

if eT
s r = 0, then eT

s p̄i(ε,v) = 0, and if eT
s r > 0, then eT

s p̄i(ε,v) > 0 in the neighborhood

around ε = ν = 0.

By definition,

qi,s(ε,ν) =
Eiqs(ε,ν)

∑x∈Xi eT
x qs(ε,ν)

.

For all i∈I (q), in the neighborhood of an uninformative information structure, ∑x∈Xi eT
x qs(ε,ν)≈

q̄i > 0, and therefore the twice-differentiability of qs in the required directions implies the

twice-differentiability of qi,s in those directions.

A.7.5 Condition 5

This condition requires that, for some m > 0 and B > 0, for all C(p,q;S)< B,

C(p,q;S)≥ m
2 ∑

s∈S
(eT

s pq)||qs−q||2X ,

94



where || · ||X is an arbitrary norm on the tangent space of P(X). It follows immediately by

the strong convexity of the divergence for the neighborhood that contains all states.

A.8 Proof of Lemma 4

Consider Corollary 2. Under the stated assumptions,

px = r+∆
1
2 τx +o(∆

1
2 )

qs,x = qx +∆
1
2 qx

eT
s (τx−∑x′∈X τx′qx′)

eT
s r

+o(∆
1
2 ).

By definition,

k̄(q) = D+(q)k(q)D+(q),

and the cost function can be written as

C({px}x∈X ,q;S) =
1
2 ∑

s∈S
(eT

s r)(qs−q)T k̄(q)(qs−q)+o(∆).

Now consider the definition of neighborhood cost function (20):

CN({px}x∈X ,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi).

By definition,

q̄i p̄i = ∑
x∈Xi

pexeT
x q

= rq̄i +o(1).
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Note that

pq = r+o(1)

as well.

By Chentsov’s theorem (Chentsov (1982)) and the approximation above,

Di(qi,s||qi) = ci(qi,s−qi)
T g(qi)(qi,s−qi)+o(∆).

The approximation described in equation (21) follows.

Define the |X | × |Xi| matrix Ei that selects the elements of X that are contained in Xi.

We have

qi,s,x =
qs,x(∆)

∑x′∈Xi qs,x′(∆)

=
qx

∑x′∈Xi qx′
+∆

1
2

qx

∑x′∈Xi qx′

eT
s (τx−∑x′∈X τx′qx′)

eT
s r

−∆
1
2

qx

(∑x′∈Xi qx′)2 ∑
x′∈Xi

qx′
eT

s (τx′−∑x′′∈X τx′′qx′′)

eT
s r

+o(∆
1
2 ).

That is,

qi,s = qi +
1
q̄i

Ei(qs−q)− 1
q̄i

qiqT
i D+(qi)Ei(qs−q)+o(∆

1
2 ),

Using this,

(qi,s−qi)
T g(qi)(qi,s−qi) = (qi,s−qi)

T D+(qi)(qi,s−qi)

=
1

(q̄i)2 (qs−q)T ET
i D+(qi)Ei(qs−qT )− 1

(q̄i)2 (qs−q)T ET
i D+(qi)qiqT

i D+(qi)Ei(qs−q)

− 1
(q̄i)2 (qs−q)T ET

i D+(qi)qiqT
i D+(qi)Ei(qs−q)

+
1

(q̄i)2 (qs−q)T ET
i D+(qi)qiqT

i D+(qi)Ei(qs−q)+o(∆).
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Therefore,

CN({px}x∈X ,q;S) = ∑
i∈I (q)

ciq̄i ∑
s∈S

(eT
s r)(qi,s−qi)

T g(qi)(qi,s−qi)+o(∆)

= ∆ ∑
i∈I (q)

ciq̄i ∑
s∈S

(eT
s r)(qs−q)T k̄i(q)(qs−q)+o(∆),

where

k̄i(q) =
1

(q̄i)2 ET
i (D

+(qi)−D+(qi)qiqT
i D+(qi))Ei.

The k̄(q) matrix is

k̄N(q) = ∑
i∈I (q)

ciq̄ik̄i(q)

= ∑
i∈I (q)

ci

q̄i
ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))Ei. (30)

Thus, the associated k(q) matrix is

kN(q) = D(q)k̄(q)D(q)

= ∑
i∈I (q)

ci

q̄i
D(q)ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))EiD(q)

= ∑
i∈I (q)

{ciET
i D(q)Ei− ciq̄iET

i qiqT
i EiD}

= ∑
i∈I (q)

ciq̄iET
i g+(qi)Ei.

A.9 Proof of Lemma 5

Using equation (30) from the proof of Lemma 4, we have

k̄N(q) = ∑
i∈I (q)

ci

q̄i
ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))Ei.
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Consider the function

HN(q) = ∑
i∈I (q)

ci

[
∑

x∈Xi

(eT
x q) ln(eT

x q)− ( ∑
x∈Xi

(eT
x q)) ln( ∑

x∈Xi

(eT
x q))

]

= ∑
i∈I (q)

ci ∑
x∈Xi

(eT
x q) ln(qi,x)

=− ∑
i∈I (q)

ciq̄iHShannon(qi).

Differentiating,

∂HN(q)
∂qx′

= (ln(qx′)+1) ∑
i∈I (q):x′∈Xi

ci− ∑
i∈I (q):x′∈Xi

ci(1+ ln( ∑
x∈Xi

(eT
x q))).

Differentiating again,

∂ 2HN(q)
∂qx′∂qx′′

=
δx′,x′′

qx′
∑

i∈I (q):x′∈Xi

ci− ∑
i∈I (q):x′,x′′∈Xi

ci

∑x∈Xi(e
T
x q)

,

where δx′,x′′ is the Kronecker delta. By definition,

∑
i∈I (q)

ci

q̄i
eT

x′E
T
i D+(qi)qiqT

i D+(qi)Eiex′′ = ∑
i∈I (q):x′,x′′∈Xi

ci

∑x∈Xi(e
T
x q)

and

∑
i∈I (q)

ci

q̄i
eT

x′E
T
i D+(qi)Eiex′′ = δx′,x′′ ∑

i∈I (q):x′,x′′∈Xi

ci

(eT
x′q)

,

proving that k̄N(q) is the Hessian of HN(q). Differentiation of HN(q) then yields the form

given in the lemma for the associated Bregman divergence.

The posterior-separable static information-cost function is defined as

Cstatic
N (p,q;S) = ∑

s∈S
(eT

s pq)(HN(qs)−HN(q)).

98



Using the definitions above,

Cstatic
N (p,q;S) =−∑

s∈S
(eT

s pq) ∑
i∈I (qs)

ciq̄i,sHShannon(qi,s)

+ ∑
i∈I (q)

ciq̄iHShannon(qi).

Note that q̄i,s = 0 for i ∈I (q)\I (qs), and I (qs)⊆I (q), and therefore

Cstatic
N (p,q;S) =−∑

s∈S
(eT

s pq) ∑
i∈I (q)

ci(q̄i,sHShannon(qi,s)− q̄iHShannon(qi)).

By Bayes’ rule,

(eT
s pq)q̄i,s = q̄i p̄i,s

and by definition,

∑
s∈S

p̄i,s = 1,

and therefore

Cstatic
N (p,q;S) =− ∑

i∈I (q)
ciq̄i ∑

s∈S
p̄i,s(HShannon(qi,s)−HShannon(qi))

= ∑
i∈I (q)

ciq̄i ∑
s∈S

p̄i,sDKL(qi,s||qi).

The claim that

Cstatic
N (p,q;S) = ∑

i∈I (q)
ci ∑

x∈X :x∈Xi

(eT
x q)DKL(pex||pET

i qi)

follows from the usual alternative ways of expressing mutual information and definitions.
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A.10 Additional Definition and Lemmas

Definition 1. Let XN be a sequence of state spaces, as described in section 5.2. A sequence

of policies {pN ∈P(XN)}N∈N satisfies the “convergence condition” if:

i) The sequence satisfies, for some constants cH > cL > 0, all N, and all i ∈ XN ,

cH

N +1
≥ eT

i pN ≥
cH

N +1
.

ii) The sequence satisfies, for some constant K1 > 0, all N, and all i ∈ XN \{0,N},

N3|1
2
(eT

i+1 + eT
i−1−2eT

i )pN | ≤ K1,

and

N2|1
2
(eT

N− eT
N−1)pN | ≤ K1

and

N2|1
2
(eT

1 − eT
0 )pN | ≤ K1.

Lemma 11. Given a function p ∈P([0,1]), define the sequence {pN ∈P(XN)}N∈N,

eT
i pN =

ˆ i+1
N+1

i
N+1

p(x)dx,

where XN is the state space described in section 5.2. If the function p is strictly greater

than zero for all x∈ [0,1], differentiable, and its derivative is Lipschitz continuous, then the

sequence {pN ∈P(XN)}N∈N satisfies the convergence condition, and satisfies, for some

constant K > 0, all N, and all i ∈ XN \{0,N},

N2| ln(1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)−2ln(eT

i qN)| ≤ K
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and

N| ln(1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))|< K

and

N| ln(1
2
(eT

N + eT
N−1)qN)− ln(eT

NqN))|< K.

Proof. The function p is strictly greater than zero, and continuous, and therefore attains

a maximum and minimum on [0,1], which we denote with cH and cL, respectively. By

construction,

eT
i pN ≥

cL

N +1

and likewise for cH , satisfying the bounds.

For all i ∈ XN \{N},

(eT
i+1− eT

i )pN =

ˆ i+1
N+1

i
N+1

(p(x+
1

N +1
)− p(x))dx

=

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0
p′(x+ y)dydx

and therefore, letting K2 be the maximum of the absolute value of p′ on [0,1] (which exists

by the continuity of p′), we have

|(eT
i+1− eT

i )pN | ≤
1

(N +1)2 K2,

satisfying the convergence condition for the endpoints.
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For all i ∈ XN \{0,N},

(eT
i+1 + eT

i−1−2eT
i )pN =

ˆ i+1
N+1

i
N+1

(p(x+
1

N +1
)+ p(x− 1

N +1
)−2p(x))dx

=

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0
(p′(x+ y)− p′(x− y))dydx.

By the Lipschitz continuity of p′, it is absolutely continuous, and therefore

p′(x+ y) = p′(x)+
ˆ y

0
p′′(x+ z)dz.

It follows that

(eT
i+1 + eT

i−1−2eT
i )pN =

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0

ˆ y

−y
(p′′(x+ z))dzdydx.

Let K3 denote the Lipschitz constant associated with p′. It follows that

|(eT
i+1 + eT

i−1−2eT
i )pN | ≤

2K3

(N +1)3 .

Therefore, the convergence condition is satisfied for K = max(1
2K2,K3).

By the concavity of the log function, and the inequality ln(x)≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≤ 2ln(
1
4(e

T
i+1 + ei−1 +2eT

i )pN

eT
i pN

)

≤
1
2(e

T
i+1 + ei−1−2eT

i )pN

eT
i pN

.

Therefore, by the bounds above,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≤ (N +1)K
N3cL

≤ 2K
N2cL

.
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By the inequality − ln(1
x )≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≥
1
2(e

T
i+1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
+

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i−1 + eT

i )pN
.

We can rewrite this as

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≥

(
1
2(e

T
i+1 + eT

i−1−2eT
i )pN

1
2(e

T
i+1 + eT

i )pN
+

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1 + eT

i )pN
1
2(e

T
i−1 + eT

i )pN
−1)).

By the bounds above,
1
2(e

T
i+1 + eT

i−1−2eT
i )pN

1
2(e

T
i+1 + eT

i )pN
≥− 2K

N2cL

and

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1 + eT

i )pN
1
2(e

T
i−1 + eT

i )pN
−1) =

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1− eT

i−1)pN
1
2(e

T
i−1 + eT

i )pN
)

≥−N2

c2
L

1
(N +1)4 (K2)

2

≥−( K2

2NcL
)2.

Therefore,

N2| ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)| ≤ 2K
cL

+(
K2

2cL
)2.

For the end-points,

1
2(e

T
1 − eT

0 )qN
1
2(e

T
1 + eT

0 )qN
≤ ln(

1
2(e

T
1 + eT

0 )qN

eT
0 qN

)≤
1
2(e

T
1 − eT

0 )qN

eT
0 qN
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and therefore

| ln(
1
2(e

T
1 + eT

0 )qN

eT
0 qN

)| ≤ K2

(N +1)cL
≤ K2

NcL
.

A similar property holds for the other endpoint, and therefore the claim holds for K1 =

max(K2
cL
, 2K

cL
+( K2

2cL
)2).

Lemma 12. Let {pN ∈P(XN)}N∈N be a sequence of probability distributions over the

state spaces associated with Theorem 3. Define the functions p̂N ∈P([0,1]) as, for x ∈

[ 1
2(N+1) ,1−

1
2(N+1)),

p̂N(x) = (N +1)((N +1)x+
1
2
−b(N +1)x+

1
2
c)eT
b(N+1)x+ 1

2c
pN+

+(N +1)(
1
2
− (N +1)x+ b(N +1)x+

1
2
c)eT
b(N+1)x+ 1

2 c−1 pN ,

and, for x ∈ [0, 1
2(N+1)),

p̂N(x) = (N +1)eT
0 qN ,

and. for x ∈ [1− 1
2(N+1) ,1],

p̂N(x) = (N +1)eT
NqN .

If the sequence {pN ∈P(XN)}N∈N satisfies the convergence condition (Definition 1), then

there exists a sub-sequence, whose elements we denote by n, such that:

i) pn(x) converges point-wise to a differentiable function p(x)∈P([0,1]), whose deriva-

tive is Lipschitz-continuous, with p(x)> 0 for all x ∈ [0,1],

ii) the following sum converges:

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pN)+g(eT
i+1 pN)−2g(

1
2
(eT

i + eT
i+1)pN)}=

1
4

ˆ 1

0

(p′(x))2

p(x)
dx,

where g(x) = x ln(x),
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iii) for all a ∈ A, limn→∞ uT
a,n pn =

´ 1
0 ua(x)p(x)dx, and

iv) if the sequence {pN ∈P(XN)}N∈N is constructed from some function p̃(x), as in

Lemma 11, then p(x) = p̃(x) for all x ∈ [0,1].

Proof. We begin by noting that the functions p̂N(x) are absolutely continuous. Almost

everywhere in [ 1
2(N+1) ,1−

1
2(N+1) ],

p̂′N(x) = (N +1)2(eT
b(N+1)x+ 1

2c
− eT
b(N+1)x+ 1

2 c−1)pN ,

and outside this region, p̂′N(x) = 0. Let f ′N(x) denote the right-continuous Lebesgue-

integrable function on [0,1] such that

p̂N(x) = p̂N(0)+
ˆ x

0
f ′N(y)dy,

which is equal to p̂′N(x) anywhere the latter exists.

The total variation of f ′N(x) is equal to

TV ( f ′N) =
N−1

∑
i=1

(N +1)2|(eT
i+1 + eT

i−1−2eT
i )pN)|+

+(N +1)2|(eT
N− eT

N−1)pN |+(N +1)2|(eT
1 − eT

0 )pN |.

By the convergence condition,

TV ( f ′N)≤
(N +1)3

N3 2K1,

and therefore the sequence of functions f ′N(x) has uniformly bounded variation. The func-

tion is also uniformly bounded at the end points, and therefore Helly’s selection theorem

applies. That is, there exists a sub-sequence, which we denote by n, such that f ′n(x) con-
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verges point-wise to some p′(x).

For any 1− 1
2(N+1) > x > y≥ 1

2(N+1) , the quantity

| f ′N(x)− f ′N(y)|= (N +1)2|
b(N+1)x+ 1

2c

∑
i=b(N+1)y+ 1

2 c
(eT

i+1 + eT
i−1−2eT

i )pN |

≤ (N +1)2((N +1)(x− y)+2)
N3 2K1.

At the end points, for all x ∈ [0, 1
2(N+1)),

| f ′N(
1

2(N +1)
)− f ′N(x)| ≤

2K1

N +1
,

and for all x ∈ [1− 1
2(N+1) ,1],

| f ′N(x)− lim
y↑1− 1

2(N+1)

f ′N(y)| ≤
2K1

N +1
.

Therefore, by the point-wise convergence of f ′n to f ′n, for all x > y,

| f ′(x)− f ′(y)| ≤ 2K1(x− y),

meaning that f ′ is Lipschitz-continuous. By the fact that f ′(0) = 0, this implies that

| f ′(x)| ≤ 2K1 for all x ∈ [0,1].

By the convergence condition, cL ≤ p̂N(0) ≤ cH . Therefore, there exists a convergent

sub-sequence. We now use n to denote the sub-sequence for which limn→∞ p̂n(0) = p(0)

and for which f ′n(x) converges point-wise to p′(x). By the dominated convergence theorem,

for all x ∈ [0,1],

lim
n→∞

p̂n(x) = lim
n→∞
{p̂n(0)+

ˆ x

0
f ′n(y)dy}= p(0)+

ˆ x

0
p′(y)dy.
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Define the function p(x) = p(0)+
´ x

0 p′(y)dy for all x ∈ [0,1]. By the convergence condi-

tions, this function is bounded, 0 < cL ≤ p(x)≤ cH , by construction it is differentiable, and

its derivative is Lipschitz continuous. Moreover,

ˆ 1

0
p(x)dx = 1,

and therefore p ∈P([0,1]).

Next, consider the limiting cost function. We have, Taylor-expanding,

g(y) = g(x)+g′(x)(y− x)+
1
2

g′′(cy+(1− c)x)(y− x)2

for some c ∈ (0,1). Therefore,

g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN) =

1
8

g′′(c1eT
i pN +(1− c1)

1
2
(eT

i + eT
i+1)pN)((eT

i+1− eT
i )pN)

2

+
1
8

g′′(c2eT
i pN +(1− c2)

1
2
(eT

i + eT
i+1)pN)((eT

i+1− eT
i )pN)

2

for constants c1,c2 ∈ (0,1). Note that, by the boundedness p̂N(x) from below, eT
i pN ≥

(N +1)−1cL for all i ∈ XN . It follows that

g′′(c1eT
i pN +(1− c1)

1
2
(eT

i + eT
i+1)pN) =

1
c1eT

i pN +(1− c1)
1
2(e

T
i + eT

i+1)pN
≤ (N +1)cL.

Therefore,

0≤ g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)≤

(N +1)cL

4
((eT

i+1− eT
i )pN)

2.

107



By construction,

eT
i pN =

1
(N +1)

p̂N(
2i+1

2(N +1)
).

Therefore,

(N +1)(g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)) =

g(p̂N(
2i+1

2(N +1)
))+g(p̂N(

2i+3
2(N +1)

))−2g(p̂N(
2i+2

2(N +1)
)).

and

g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)≤

cL

4(N +1)
(p̂(

2i+3
2(N +1)

)− p̂(
2i+1

2(N +1)
))2.

By the boundedness of f ′N(x),

g(p̂(
2i+1

2(N +1)
))+g(p̂(

2i+3
2(N +1)

))−2g(p̂(
2i+2

2(N +1)
))≤

K2
1 cL

(N +1)2 .

Writing the limiting cost as an integral, and switching to the sub-sequence n defined

above,

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the bound above,

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx≤

n3

(n+1)3

ˆ 1

0
K2

1 cLdx.
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Applying the dominated convergence theorem,

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

ˆ 1

0
lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the Taylor expansion above,

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
8

n3

n+1
{g′′(·)+g′′(·)}(p̂n(

2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

))2.

By definition,

(n+1)(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

)) = f ′n(
2bnxc+2
2(n+1)

)

and

lim
n→∞

g′′(p̂n(
2bnxc+2
2(n+1)

)+ cn(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+2
2(n+1)

))) =
1

p(x)
,

with cn ∈ (0,1) for all n, and therefore

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
4
(p′(x))2

p(x)
,

proving the second claim.
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Turning to the third claim, recall that, by definition,

eT
i ua,N =

´ i+1
N+1

i
N+1

ua(x) f (x)dx

´ i+1
N+1

i
N+1

f (x)dx.

We define the function, for x ∈ [0,1), as

ua,N(x) = eT
b(N+1)xcua,N ,

and let ua,N(1) = eT
Nua,N . We also define the function

x̃(x) =
2b(N +1)xc+1

2(N +1)
.

By construction, p̂N(x̃(x)) = (N +1)eT
b(N+1)xcpa,N for all x ∈ [0,1), and equals eT

N pa,N for

x = 1. Therefore,

uT
a,N pN = ∑

i∈XN

(eT
i ua,N)(eT

i pN)

=

ˆ 1

0
p̂N(x̃(x))ua,N(x)dx.

By the measurability of ua(x),

lim
N→∞

ua,N(x) = ua(x).

Therefore, by the boundedness of utilities and the dominated convergence theorem,

lim
n→∞

uT
a,n pn =

ˆ 1

0
p(x)ua(x)dx.
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Finally, suppose that, for all N

eT
i pa,N =

ˆ i+1
N+1

i
N+1

p̃(x)dx.

It follows that limn→∞ p̂a,N(x) = p̃(x) for all x ∈ X , and therefore p̃(x) = p(x).

Lemma 13. Let πN(a) ∈P(A) and {qa,N ∈P(XN)}a∈A denote optimal policies in the

discrete state setting described in section 5.2. For each a ∈ A, the sequence {qa,N} satisfies

the convergence condition (Definition 1).

Proof. We begin by noting that the conditions given for the function f (x) satisfy the condi-

tions of Lemma 11, and therefore the sequence qN satisfies the convergence condition. We

will use the constants cH and cL to refer to its bounds,

cH

N +1
≥ eT

i qN ≥
cL

N +1
,

and the constants K1 and K to refer to the constants described by convergence condition

and Lemma 11 for the sequence qN . By the convention that qa,N = qN if πN(a) = 0, qa,N

also satisfies the convergence condition whenever πN(a) = 0.

The problem of size N is

VN(qN ; θ̄) = max
πN∈P(A),{qa,N∈P(XN)}a∈A

∑
a∈A

πN(a)(uT
a,N ·qa,N)− θ̄ ∑

a∈A
πN(a)DN(qa,N ||qN)

subject to

∑
a∈A

πN(a)qa,N = qN .

Let un denote that |XN |× |A| matrix whose columns are ua,N . Using Lemma 5, we can
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rewrite the problem as

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||

pi,N(eT
i qN)+ pi+1,N(eT

i+1qN)

(eT
i + eT

i+1)qN
)

− θ̄N2
N

∑
i=1

(eT
i qN)DKL(pi,N ||

pi,N(eT
i qN)+ pi−1,N(eT

i−1qN)

(eT
i + eT

i−1)qN
)

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).

The FOC for this problem is, for all i ∈ [1,N−1] and a ∈ A such that eT
a pi,N > 0,

eT
i ua,N− θ̄N2 ln(

eT
a pi,N(eT

i + eT
i+1)qN

eT
a (pi,N(eT

i qN)+ pi+1,N(eT
i+1qN))

)

−θ̄N2 ln(
eT

a pi,N(eT
i + eT

i−1)qN

eT
a (pi,N(eT

i qN)+ pi−1,N(eT
i−1qN))

)− θ̄ ln(
eT

a pi,N

eT
a pNqN

)− eT
i κN = 0,

where κN ∈RN+1 are the multipliers (scaled by eT
i qN) on the constraints that ∑a∈A eT

a pi,N =

1 for all i ∈ X . Defining q−1,N = qN+1,N = 0, and defining p−1,N and pN+1,N in arbitrary

fashion, we can recover this FOC for all i ∈ X .

Rewriting the FOC in terms of the posteriors, for any a such that πN(a)> 0,

eT
i (ua,N−κN) =−θ̄N2 ln(

(eT
i qa,N)(1+

eT
i+1qN

eT
i qN

)

(ei+1 + ei)T qa,N
)− θ̄N2 ln(

(eT
i qa,N)(1+

eT
i−1qN

eT
i qN

)

(ei−1 + ei)T qa,N
)− θ̄ lnN−1(

eT
a pi,N

eT
a pNqN

)

= θ̄N2 ln(1+
eT

i+1qa,N

eT
i qa,N

)− θ̄N2 ln(1+
eT

i+1qN

eT
i qN

)+ θ̄N2 ln(1+
eT

i−1qa,N

eT
i qa,N

)

− θ̄N2 ln(1+
eT

i−1qN

eT
i qN

)− θ̄ lnN−1(
eT

i qa,N

eT
i qN

)

= θ̄N2(ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)− (2+N−3) ln(eT

i qa,N)+2ln2)

− θ̄N2(ln(
1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)− (2+N−3) ln(eT

i qN)+2ln2).
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Using Lemma 11, for all i ∈ XN \{0,N},

N2| ln(1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)−2ln(eT

i qN)| ≤ K.

By the boundedness of the utility function,

eT
i κN ≥−ū− θ̄K+ θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))+ θ̄N−1 ln(

eT
i qa,N

eT
i qN

).

By the concavity of the log function,

ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)+N−3 ln(eT

i qN)≤

(2+N−3) ln(
1

2(2+N−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,N +
N−3

2+N−3 eT
i qN).

and therefore

ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)+N−3 ln(eT

i qN)− (2+N−3) ln(eT
i qa,N)

≤ (2+N−3) ln(
1

2(2+N−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,N + N−3

2+N−3 eT
i qN

eT
i qa,N

).

It follows that

eT
i κN ≥−ū− θ̄K− (2+N−3)θ̄N2 ln(

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N + N−3

2+N−3 eT
i qN

eT
i qa,N

).
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Exponentiating,

(eT
i qa,N)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K + eT

i κN))≤

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i qN . (31)

Summing over a, weighted by πN(a),

(eT
i qN)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K + eT

i κN))≤

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qN +

N−3

2+N−3 eT
i qN .

Taking logs,

− 1
2+N−3 θ̄

−1N−2(ū+ θ̄K + eT
i κN)≤ ln(

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qN + N−3

2+N−3 eT
i qN

(eT
i qN)

)

≤ ln(1+
N−3

2+N−3 +
1

2+N−3
K1N−3

cLN−1 ),

where the last step follows by Lemma 11, recalling that cL is the lower bound on f (x). We

have

eT
i κN ≥−2θ̄N2 ln(1+

N−3

2+N−3 +
1

2+N−3
K1

cL
N−2)− ū− θ̄K

≥−ū− θ̄K− N−1

2+N−3 −
1

2+N−3
K1

cL

≥−ū− θ̄K− 1
2
− 1

2
K1

cL
.

where the second step follows by the inequality ln(1+ x)< x for x > 0.
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Turning to the end points, the FOC can be simplified to

eT
0 (ua,N−κN) = θ̄N2(ln(

1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N))

− θ̄N2(ln(
1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))− θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

).

By the concavity of the log function,

ln(
1
2
(eT

1 + eT
0 )qa,N)+N−3 ln(eT

0 qN)− (1+N−3) ln(eT
0 qa,N)

≤ (1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

). (32)

Therefore,

θ̄n2 ln(
1
2(e

T
1 + eT

0 )qa,N

eT
0 qa,N

)+ θ̄n−1 ln(
eT

0 qN

eT
0 qa,N

)− θ̄K

≤ eT
0 (ua,N−κN)+ θ̄N2(ln(

1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))

≤ θ̄(1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

)+ θ̄K.

By the boundedness of the utility function,

−θ̄(1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

)− ū

≤ eT
0 κN + θ̄N2 ln(

eT
0 qN

1
2(e

T
1 + eT

0 )qN
)

≤−θ̄N2 ln(
1
2(e

T
1 + eT

0 )qa,N

eT
0 qa,N

)+ θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

)+ ū.
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By the inequality ln(x)≤ x−1,

θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

)≤ θ̄N−1(
eT

0 qa,N

eT
0 qN

−1)

≤ θ̄c−1
L ,

where the latter follows from eT
0 qN ≥ cLN−1. Exponentiating,

(eT
0 qa,N)exp(−θ̄

−1(1+N−3)−1N−2
µ̄)≤

(
1

(1+N−3)

1
2
(eT

1 +eT
0 )qa,N+

N−3

1+N−3 eT
0 qN)exp(θ̄−1(1+N−3)−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN

and

(
1
2
(eT

1 + eT
0 )qa,N)exp(θ̄−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
≤ (eT

0 qa,N)exp(θ̄−1N−2(µ̄ + θ̄c−1
L )).

Summing over a, weighted by πN(a),

(eT
0 qN)exp(−θ̄

−1(1+N−3)−1N−2
µ̄)≤

(
1

(1+N−3)

1
2
(eT

1 +eT
0 )qN+

N−3

1+N−3 eT
0 qN)exp(θ̄−1(1+N−3)−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
,

(
1
2
(eT

1 + eT
0 )qN)exp(θ̄−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
≤ (eT

0 qN)exp(θ̄−1N−2(µ̄ + θ̄c−1
L )).

Taking logs,

−θ̄N2(1+N−3)(ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)− ū≤ eT

0 κN ≤ ū+ θ̄c−1
L .
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We can write

ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
) = ln(

1
1+N−3 +

N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)

≤ 1
1+N−3 +

2N−3

1+N−3 −1.

Therefore,

−θ̄N2(1+N−3)(ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)≥−θ̄N−1 ≥−θ̄ .

By Lemma 11,

−θ̄ − ū≤ eT
0 κN ≤ ū+ θ̄c−1

L .

A similar argument applies to the other end-point (eT
NκN). Summarizing, eT

i κN ≥−BL for

some constant BL > 0, and eT
i κN ≤ BH for some BH > 0 if i ∈ {0,N}.

Returning to the FOC, for all i ∈ XN \{0,N},

eT
i κN ≤ ū+ θ̄K + θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))+ θ̄N−1 ln(

eT
i qa,N

eT
i qN

),

and as argued above,

θ̄N−1 ln(
eT

i qa,N

eT
i qN

)≤ θ̄c−1
L .

Using this bound,

θ̄N2(ln(
eT

i qa,N
1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))≥−(ū+ θ̄K +BL + θ̄c−1

L ).
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For the end-points, the FOC requires that

eT
0 κN ≤ ū− θ̄N2 ln(

eT
0 qN

1
2(e

T
1 + eT

0 )qN
)+ θ̄N2 ln(

eT
0 qa,N

1
2(e

T
1 + eT

0 )qa,N
)+ θ̄N−1 ln(

eT
0 qa,N

eT
0 qN

)

and

eT
NκN ≤ ū− θ̄N2 ln(

eT
Nqa,N

1
2(e

T
N + eT

N−1)qa,N
)+ θ̄N2 ln(

eT
Nqa,N

1
2(e

T
N + eT

N−1)qa,N
)+ θ̄N−1 ln(

eT
Nqa,N

eT
NqN

).

Using Lemma 11, we can rewrite these inequalities as

θ̄N ln(
eT

Nqa,N
1
2(e

T
N + eT

N−1)qa,N
)≥−N−1(ū+BL + θ̄c−1

L )+ θ̄N ln(
eT

Nqa,N
1
2(e

T
N + eT

N−1)qa,N
)

≥−N−1(ū+BL + θ̄c−1
L )− θ̄K

≥−(ū+ θ̄K +BL + θ̄c−1
L ),

and likewise

θ̄N ln(
eT

0 qa,N
1
2(e

T
1 + eT

0 )qa,N
)≥−(ū+ θ̄K +BL + θ̄c−1

L ).

Define q̂a,N(x) as in Lemma 12. Define the function

la,N(x) = (N +1)(ln(q̂a,N(x))− ln(q̂a,N(x−
1

2(N +1)
)))

for any x ∈ [ 1
2(N+1) ,1]. For any i ∈ XN \{0},

la,N(
2i+1

2(N +1)
) = (N +1) ln(

(N +1)eT
i qa,N

1
2(N +1)(eT

i + eT
i−1)qa,N

),
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and for any i ∈ XN \{N},

la,N(
2i+2

2(N +1)
) = (N +1) ln(

1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

).

Therefore, for any i ∈ XN \{0,N}, the lower bound can be written as

θ̄
N2

N +1
(la,N(

2i+2
2(N +1)

)− la,N(
2i+1

2(N +1)
))≤ (ū+ θ̄K +BL + θ̄c−1

L ).

The lower endpoint bound is

θ̄
N

N +1
la,N(

1
(N +1)

)≤ (ū+ θ̄K +BL + θ̄c−1
L ).

The upper endpoint bound is

θ̄
N

N +1
la,N(1)≥−(ū+ θ̄K +BL + θ̄c−1

L ).

We also have, for all i ∈ XN \{N}

θ̄
N2

N +1
(la,N(

2i+3
2(N +1)

)− la,N(
2i+2

2(N +1)
))

= θ̄N2(ln(
(N +1)eT

i+1qa,N
1
2(N +1)(eT

i+1 + eT
i )qa,N

)− ln(
1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

))

≤ 0,

by the concavity of the log function. Therefore, for all j ∈ {2,3, . . . ,2(N +1)}

θ̄
N2

N +1
(la,N(

j+1
2(N +1)

)− la,N(
j

2(N +1)
))≤ (ū+ θ̄K +BL + θ̄c−1

L ).

119



It follows that, for all j ∈ {2,3, . . . ,2(N +1)}

la,N(
j

2(N +1)
) = la,N(

2
2(N +1)

)+
j−1

∑
k=2

(la,N(
k+1

2(N +1)
)− la,N(

k
2(N +1)

))

≤ θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )
N +1

N
(1+

j−2
N

).

Similarly, for all j ∈ {2,3, . . . ,2(N +1)},

la,N(1) = la,N(
j

2(N +1)
)+

2N

∑
k= j−1

(la,N(
k+1

2(N +1)
)− la,n(

k
2(N +1)

))

and therefore

−la,N(
j

2(N +1)
) =−la,n(1)+

2N

∑
k= j−1

(la,N(
k+1

2(N +1)
)− la,n(

k
2(N +1)

))

≤ θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )
N +1

N
(1+

2(N +1)− j
N2 ).

It follows that

|la,N(
j

2(N +1)
)| ≤ 2θ̄

−1(ū+ θ̄K +BL + θ̄c−1
L )

N +1
N

≤ 4θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Note that there must exist some ĩa,N ∈ XN such that eT
ĩa,N

qa,N ≥ 1
N+1 , implying that

ln((N +1)eT
ĩa,n

qa,N)≥ 0.

By the definition of la,N , for any i ∈ XN \{0},

la,N(
2i+1

2(N +1)
)+ la,N(

2i
2(N +1)

) = (N +1) ln(
(N +1)eT

i qa,N

(N +1)eT
i−1qa,N

).
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For any i > ĩa,N ,

ln((N +1)eT
i qa,N) = ln((N +1)eT

ĩa,n
qa,N)+

i

∑
j=ĩa,n+1

ln(
(N +1)eT

j qa,N

(N +1)eT
j−1qa,N

)

= ln((N +1)eT
ĩa,n

qa,N)+
1

N +1

i

∑
j=ĩa,n+1

la,N(
2 j+1

2(N +1)
)+ la,N(

2 j
2(N +1)

)

≥− 1
N +1

i

∑
j=ĩa,n+1

8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )

≥−8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Similarly, for any i < ĩa,N ,

ln((N +1)eT
ĩa,n

qa,N) = ln((N +1)eT
i qa,N)+

ĩa,n

∑
j=i+1

ln(
(N +1)eT

j+1qa,N

(N +1)eT
j qa,N

).

Therefore,

ln((N +1)eT
i qa,N)≥−

ĩa,n

∑
j=i+1

ln(
(N +1)eT

j+1qa,N

(N +1)eT
j qa,N

)

≥−8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Repeating this argument, there must be some îa,N such that eT
îa,N

qa,N ≤ N−1, and using the

bounds on la,N in similar fashion yields

ln((N +1)eT
i qa,N)≤ 8θ̄

−1(ū+ θ̄K +BL + θ̄c−1
L ).

It follows that there exists a constant c ∈ (0,1) such that, for all N, a ∈ A such that πN(a)>

0, and i ∈ XN ,
c−1

(N +1)
≥ eT

i qa,N ≥
c

N +1
,
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demonstrating that qa,N satisfies the first part of the convergence condition.

Using the bound on la,N , and a Taylor expansion, for some a ∈ (0,1)

|(N +1) ln(
1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

)|=
(N +1)|12(e

T
i+1− eT

i )qa,N |
eT

i qa,N + a
2(e

T
i+1− eT

i )qa,N

≤ 4θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ),

and therefore, by the bound on eT
i qa,N ,

(N +1)2|1
2
(eT

i+1− eT
i )qa,N | ≤ B

for some B > 0. By a similar argument,

(N +1)2|1
2
(eT

i+1− eT
i−1)qa,N | ≤ 4B.

Returning to the first-order condition, for i∈ XN \{0,N}, and using some of the bounds

employed previously,

eT
i κN ≤ ū+ θ̄K + θ̄cL + θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
)).

By the inequality ln(x)≤ x−1,

eT
i κN ≤ ū+ θ̄K + θ̄cL + θ̄N2(

1
2(e

T
i − eT

i+1)qa,N
1
2(e

T
i+1 + eT

i )qa,N
+

1
2(e

T
i − eT

i−1)qa,N
1
2(e

T
i−1 + eT

i )qa,N
)
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Multiplying through,

1
2
(eT

i−1 + eT
i )qa,N(eT

i κN− ū− θ̄K− θ̄cL)

≤ θ̄N2(
1
2
(eT

i − eT
i+1)qa,N +

1
2
(eT

i − eT
i−1)qa,N

1
2(e

T
i+1 + eT

i )qa,N
1
2(e

T
i−1 + eT

i )qa,N
).

≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N +
1
2
(eT

i − eT
i−1)qa,N(

1
2(e

T
i+1− eT

i−1)qa,N
1
2(e

T
i−1 + eT

i )qa,N
)).

Using the bounds above,

1
2
(eT

i−1 + eT
i )qa,N(eT

i κN− ū− θ̄K− θ̄cL)≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N +
B

(N +1)2 (

4B
(N+1)2

c
N+1

))

≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)+
4B2N2

c(N +1)3 .

Therefore,

c(eT
i κN− ū− θ̄K− θ̄cL)≤ θ̄

N +1
N

N3(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)+
4B2

c
.

Summing over a, weighted by πN(a), and applying Lemma 11,

c(eT
i κN− ū− θ̄K− θ̄cL)≤ 2θ̄K1 +

4B2

c
.

Therefore, |eT
i κN | is bounded below by some Bκ > 0 for all i ∈ XN (recalling that this was

shown for i ∈ {0,N} previously). It also follows the term

(N +1)3(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)≥
(N +1)2

N2 c(eT
i κN− ū− θ̄K− θ̄cL−

4B2

c2 )

≥−2c(Bκ + ū+ θ̄K + θ̄cL +
4B2

c2 )

is bounded below.
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Recalling equation (31), and employing the upper bound on |eT
i κN |,

(eT
i qa,N)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K +Bκ))

≤ 1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i qN .

Rewriting this,

(eT
i qa,N)(exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K +Bκ))−1)

≤ 1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i (qN−qa,N)

By the upper bound on eT
i qN ≤ cH

N+1 and eT
i qa,N ≥ c

N+1 ,

(N +1)3

2
(eT

i+1 + eT
i−1−2eT

i )qa,N ≥

(2+N−3)(N +1)2(exp(− 1
2+N−3 θ̄

−1N−2(ū+ θ̄K +Bκ))−1)− cH− c
N3 (N +1)2.

By the inequality exp(x)−1≥ x,

(N +1)3

2
(eT

i+1 + eT
i−1−2eT

i )qa,N ≥−
(N +1)2

N2 θ̄
−1(ū+ θ̄K +Bκ)−

cH− c
N3 (N +1)2

≥−2θ̄
−1(ū+ θ̄K +Bκ)−2cH + c.

Therefore, the first statement in the second part of the convergence condition (Definition 1)

is satisfied.
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Finally, we consider the endpoints. The first-order condition is

θ̄N2(ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N)) =

eT
0 (ua,N−κN)+ θ̄N2(ln(

1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))+ θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

).

We can bound this as

−N−1(ū+Bκ)− θ̄K + θ̄N−2 ln(
c

cH
)

≤ θ̄N(ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N))

≤ N−1(ū+Bκ + θ̄c−1
L )+ θ̄K,

and note that because ∑i∈XN eT
i qa,N = ∑i∈XN eT

i qN = 1, we must have cH ≥ c. Therefore,

θ̄ ln(
c

cH
)≤ θ̄N−2 ln(

c
cH

).

Using a Taylor expansion,

ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N) =
1
2(e

T
1 − eT

0 )qa,N

eT
0 qa,N + a

2(e
T
1 + eT

0 )qa,N

for some a ∈ (0,1). Therefore,

N2|1
2
(eT

1 − eT
0 )qa,N | ≤

c
θ̄
(ū+Bκ + θ̄K + θ̄ max(ln(

cH

c
),c−1

L )).

A similar logic holds for the other endpoint, and therefore the convergence condition is

satisfied.
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A.11 Proof of Theorem 3

By the boundedness of P(A), there exists a convergent sub-sequence of the optimal policy

πN(a), which we denote by n. Define

π(a) = lim
n→∞

πn(a).

By Lemma 13, for all a ∈ A, each sequence of optimal policies {qa,N} satisfies the conver-

gence condition (Definition 1). Therefore, by Lemma 12, each sequence {q̂a,N(x)} has a

convergent sub-sequence that converges to a differentiable function f ∗a (x), whose deriva-

tive is Lipschitz continuous, with full support on [0,1]. We can construct a sub-sequence in

which πn(a) and all {q̂a,n(x)} converge by iteratively applying this argument. Denote this

sequence by n.

We can write the discrete value function as, using Lemma 5, as

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
∑
a∈A

(eT
a pq)

N−1

∑
i=0

[(eT
i qa,N) ln(

eT
i qa,N

q̄i,a,N
)+(eT

i+1qa,N) ln(
eT

i+1qa,N

q̄i,a,N
)]

+ θ̄N2
N−1

∑
i=0

[(eT
i qN) ln(

eT
i qN

q̄i,a,N
)+(eT

i+1qN) ln(
eT

i+1qN

q̄i,a,N
)]

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).
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We can re-arrange this to

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
∑
a∈A

(eT
a pq)

N−1

∑
i=0

[g(eT
i qa,N)+g(eT

i+1qa,N)−2g(
1
2
(eT

i + eT
i+1)qa,N)]

+ θ̄N2
N−1

∑
i=0

[g(eT
i qN)+g(eT

i+1qN)−2g(
1
2
(eT

i + eT
i+1)qN)]

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).

By Lemma 12 and the boundedness of the KL divergence,

lim
n→∞

Vn(qn; θ̄) = ∑
a∈A

π(a)
ˆ 1

0
ua(x) fa(x)dx

− θ̄

4 ∑
a∈A
{π(a)

ˆ 1

0

( f ′a(x))
2

fa(x)
dx}+ θ̄

4

ˆ 1

0

( f ′(x))2

f (x)
dx.

Suppose that π(a) and the fa(x) functions do not maximize this expression (subject to the

constraints stated in Theorem 3). Let π∗(a) and f ∗a (x) be maximizers. Define, for all N ∈N,

π̃N(a) = π
∗(a),

eT
i q̃a,N =

ˆ i+1
N+1

i
N+1

f ∗a (x)dx.

Note that, by construction, q̃a,N ∈P(XN) and ∑a∈A π̃N(a)q̃a,N = qN . That is, the con-

straints of the discrete-state problem are satisfied for all N. Denote the value function

under these policies as ṼN(qN ; θ̄).

Because of the constraints stated in Theorem 3, each f ∗a satisfies the conditions of

Lemma 11, and therefore the sequence q̃a,N satisfies the convergence condition for all

a ∈ A. It follows by Lemma 12 that this sequence of policies delivers, in the limit, the
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value function V ( f ; θ̄). If this function is strictly larger than limn→∞Vn(qn; θ̄), there must

exist some n̄ such that

Ṽn̄(qn̄; θ̄)>Vn̄(qn̄; θ̄),

contradicting optimality. Therefore, the functions fa(x) and π(a) are maximizers.

It remains to show that

lim
n→∞

bxnc

∑
i=0

eT
i qa,n =

ˆ x

0
fa(y)dy.

Note that

eT
i qa,n = (n+1)

ˆ i+1
n+1

i
n+1

q̂a,n(
2i+1

2(n+1)
)dy,

where q̂a,n is the function defined in Lemma 12. Therefore, the sum is equal to

bxnc

∑
i=0

eT
i qa,n =

ˆ bxnc+1
n+1

0
q̂a,n(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy.

By the boundedness of q̂a,n (which follows from the convergence condition) and the domi-

nated convergence theorem,

lim
n→∞

ˆ bxnc+1
n+1

0
q̂(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy =

ˆ x

0
fa(y)dy,

as required.

A.12 Proof of Lemma 7

We begin by observing that any information structure p ∈PLipG(A) defines unconditional

action frequencies π ∈P(A) and posteriors fa ∈PLipG([0,1]) satisfying (25), using def-

initions (26). And conversely, any unconditional action frequencies and posteriors satisfy-
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ing (25) define an information structure, using definitions (27). Hence the set of candidate

structures is the same in both problems, and the problems are equivalent if the two objective

functions are equivalent as well. It is also easily seen that in each problem, the first term

of the objective function is the expected value of the DM’s reward u(x,a), integrating over

the joint distribution for (x,a). Hence it remains only to establish that the remaining terms

of the objective function are equivalent as well.

Consider any information structure p ∈PLipG(A) and the corresponding unconditional

action frequencies and posteriors, and let x be any point at which f (x) > 0, and at which

pa(x) is twice differentiable for all a (and as a consequence, fa(x) is twice differentiable

for all a as well). (We note that, given the Lipschitz continuity of the first derivatives, the

set of x for which this is true must be of full measure.) Then the fact that ∑a∈A pa(x) = 1

for all x implies that

∑
a∈A

p′′a(x) = 0, (33)

and similarly, constraint (25) implies that

∑
a∈A

π(a) f ′′a (x) = f ′′(x). (34)
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At any such point, the definition of the Fisher information implies that

IFisher(x) ≡ ∑
a∈A

(p′a(x))
2

pa(x)

= ∑
a

p′′a(x) − ∑
a∈A

pa(x)
∂ 2 log pa(x)

∂x2

= −π(a) fa(x)
f (x)

∂ 2

∂x2 [logπ(a)+ log fa(x)− log f (x)]

=
1

f (x)

[
∑
a∈A

π(a)
( f ′a(x))

2

fa(x)
−∑

a∈A
π(a) f ′′a (x) −

( f ′(x))2

f (x)
+ f ′′(x)

]

=
1

f (x)

[
∑
a∈A

π(a)
( f ′a(x))

2

fa(x)
− ( f ′(x))2

f (x)

]
.

Here the first line is the definition of the Fisher information (given in the lemma), and the

second line follows from twice differentiating the function log pa(x) with respect to x. In

the third line, the first term from the second line vanishes because of (33); the remaining

term from the second line is rewritten using (27). The fourth line follows from the third

line by twice differentiating each of the terms inside the square brackets with respect to x.

The fifth line then follows from (34).

Since this result holds for a set of x of full measure, we obtain expression

ˆ 1

0
f (x)IFisher(x)dx = ∑

a∈A
π(a)

ˆ 1

0

( f ′a(x))
2

fa(x)
dx −

ˆ 1

0

( f ′(x))2

f (x)
dx

for the mean Fisher information. This shows that the information-cost terms in both objec-

tive functions are equivalent, and hence the two problems are equivalent, and have equiva-

lent solutions.

A.13 Proof of Lemma 8

Write the value function in sequence-problem form:
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W (q0,λ ;∆) = max
{p∆ j},τ

E0[û(qτ)−κτ)]−

λE0[∆
1−ρ

τ∆−1

∑
j=0
{ 1

ρ
C({p∆ j,x}x∈X ,q∆ j(·))ρ −∆

ρcρ}].

Define

ū = max
a∈A,x∈X

u(a,x).

By the weak positivity of the cost function C(·), it follows that

W (q0,λ ;∆)≤ ū+max
τ

E0[−κτ +∆

τ∆−1−1

∑
j=0

λcρ ].

Because λ ∈ (0,κc−ρ), the expression

−κτ +∆

τ∆−1−1

∑
j=0

λcρ = (λcρ −κ)τ

is weakly negative, and therefore

W (q0,λ ;∆)≤ ū.

By a similar argument, there is a smallest possible decision utility u, and because stopping

now and deciding is always feasible,

W (q0,λ ;∆)≥ u.

Therefore, W (q0,λ ;∆) is bounded for all λ ∈ (0,κc−ρ) and all ∆. Note that this argument
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also shows that

E0[τ](κ−λcρ)≤ ū−W (q0,λ ;∆),

and hence that

E0[τ]≤
ū−u

(κ−λcρ)
.

We can define the “state-specific” value function, W (qt ,λ ;∆,x) , which is the value

function conditional on the true state being x. The state-specific value function has a recur-

sive representation, in the region in which the DM continues to gather information:

W (qt ,λ ;∆,x) = −κ∆+λ∆
1−ρ(∆ρcρ − 1

ρ
C(·)ρ)+

∑
s∈S: eT

s ptex>0

(eT
s p∗t ex)W (q∗t+∆,s,λ ;∆,x).

In this equation, we take the optimal information structure as given. Note that, by con-

struction, wherever the DM does not choose to stop, the expected value of the state-specific

value functions is equal to the value function.

∑
x∈X

qt,xW (qt ,λ ;∆,x) =W (qt ,λ ;∆).

By the optimality of the policies, we have

W (qt ,λ ;∆)≥ ∑
x∈X

qt,xW (q′,λ ;∆,x),

for any q′ in P(X). Suppose not; then the DM could simply adopt the information structure

associated with beliefs q′ and achieve higher utility, contradicting the optimality of the

policy.
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The convexity of the value function follows from the observation that

W (αq+(1−α)q′,λ ;∆) = α ∑
x∈X

qxW (αq+(1−α)q′,λ ;∆,x)+

(1−α) ∑
x∈X

q′xW (αq+(1−α)q′,λ ;∆,x),

and using the inequality above,

W (αq+(1−α)q′,λ ;∆)≤ αW (q,λ ;∆)+(1−α)W (q′,λ ;∆).

A.14 Proof of Lemma 9

Consider an alternative policy that mixes (in the sense of Condition 2) the optimal signal

structure and an uninformative signal, with probabilities 1−a and a, respectively. We must

have

−∑
s∈S

(eT
s r∗t,n)(W (q∗t,n,s,λ ;∆n)−W (qt,n,λ ;∆n))−λ∆

1−ρ
n C(p∗t,n,qt,n)

ρ−1 ∂C(pt,n(a),qt,n)

∂a
|a=0+ ≤ 0,

which is the first-order condition at the optimal policy in the direction of adding a little bit

of the uninformative signal (decreasing a). By the convexity of C(·) and Condition 1,

C(p∗t,n,qt,n)+
∂C(pt,n(a),qt,n)

∂a
|a=0+ ≤ 0,

and therefore we must have

∑
s∈S

(eT
s r∗t,n)(W (q∗t,n,s,λ ;∆n)−W (qt,n,λ ;∆n))≥ λ∆

1−ρ
n C(p∗t,n,qt,n)

ρ .

133



Applying the Bellman equation in the continuation region,

(κ−λcρ)∆n +
λ

ρ
∆

1−ρ
n C(p∗t,n,qt,n)

ρ ≥ λ∆
1−ρ
n C(p∗t,n,qt,n)

ρ .

Therefore,

λ (1− 1
ρ
)∆−ρ

n C(p∗t,n,qt,n)
ρ ≤ (κ−λcρ).

It follows by the assumption that λ ∈ (0,κc−ρ) and that ρ > 1 that

C(p∗t,n,qt,n)≤ ∆n(
θ

λ
)

1
ρ−1 ,

for the constant θ = λ (ρ κ−λcρ

λ (ρ−1))
ρ−1

ρ > 0.

A.15 Proof of Lemma 10

We begin by discussing the convergence of stopping times. We have assumed that

E0[τn]≤ τ̄,

for some strictly positive constant τ̄ and all n. It follows by the positivity of τn that the

laws of τn are tight, and therefore there exists a sub-sequence that converges in measure.

Pass to this sub-sequence (which we will also index by n), and let τ denote the limit of this

sub-sequence.

The beliefs qt,n are a family of R|X |-valued stochastic processes, with qt,n ∈P(X) for

all t ∈ [0,∞) and n ∈ N. Construct them as RCLL processes by assuming that q∆n j+ε,n =

q∆n j,n for all m, ε ∈ [0,∆n), and j ∈ N. We next establish that the laws of qt,n are tight. By
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Condition 5 and Lemma 9,

m
2 ∑

s∈S
(eT

s pn(qt,n)qt,n)||qs,n(qt,n)−qt,n||22 ≤C(pn(qt,n),qt,n;S)≤ ∆n(
θ

λ
)

1
ρ−1 ,

where qs,n(q) is defined by pn(q) and Bayes’ rule. It follows that, for any ε > 0, there exists

an Nε such that, for all n > Nε ,

P(||qt+∆n,n−qt,n||> ε)≤ Kε∆n,

for the constant Kε = 2m−1ε−2θ
1

ρ−1 . By Theorem 3.21, Condition 1 in chapter 6 of Ja-

cod and Shiryaev (2013), and the boundedness of qt,n, it follows that the laws of qt,n are

tight. By Prokhorov’s theorem (Theorem 3.9 in chapter 6 of Jacod and Shiryaev (2013)),

it follows that there exists a convergent sub-sequence. Pass to this sub-sequence, and let

qt denote the limiting stochastic process. By Proposition 1.1 in chapter 9 of Jacod and

Shiryaev (2013), qt is a martingale with respect to the filtration it generates. By Skorohod’s

representation theorem, there exists a probability space and random variables (which we

will also denote with qt,n and qt) such the convergence is almost sure. We refer to this

probability space and these random variables in what follows.

Note that, by Bayes’ rule, if eT
x qt,n = 0 for some x ∈ X and time t, then eT

x qs,n = 0 for

all s > t. By Proposition 2.9 and Corollary 2.38 in chapter 2 of Jacod and Shiryaev (2013),

we can write the “good” version of the martingale with characteristics

B =−
ˆ t

0
(

ˆ
R|X |\{0}

ψs(x)xdx)dAs

C =

ˆ t

0
ΣsdAs

ν = dAsψs(x).
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Because beliefs remain in the simplex, ψs(x) has support only on x such that qs + x ∈

P(X). Relatedly, ιT Σs = 0. By the property mentioned above, qs + x� qs, and Σs can be

decomposed as Σs = D(qs−)σsσ
T
s D(qs−).

By the convexity of the cost function and Corollary 3,

C(pn(qt,n),qt,n;S)≥∑
s∈S

(eT
s pn(qt,n)qt,n)D∗(qs,n(qt,n)||qt,n).

Defining the process, for arbitrary stopping time T ,

Ds,n = lim
ε→0+

D∗(qs−+ε,n||qs−,n),

Dt,T,n = Et [

ˆ T

t
Ds,nds]≤ θ

1
ρ−1 ∆nEt [d∆−1

n (T − t)e],

we have by Ito’s lemma, almost sure convergence, and the dominated convergence theorem,

Dt,T = lim
n→∞

Dt,T,n = Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs].

Hence, for all such stopping times T ,

Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs]≤ (
θ

λ
)

1
ρ−1 Et [T − t].

Note also by this argument that

lim
n→∞

E0[

ˆ
τn

0
∆

1−ρ
n C(pn(qt,n),qt,n;S)ρdt]

≥ Et [

ˆ
τ

0
{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X |\{0}

ψs(x)D∗(qs−+x||qs−)dx}ρ(
dAs

ds
)ρds].
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A.16 Proof of Theorem 4

Let m index a sequence of Markov optimal policies, p∗m(q), and of stopping times τ∗m. Let

q∗t,n denote the associated process for beliefs. By the uniform boundedness and convexity

of the family of value functions W (q,λ ;∆m), a uniformly convergent sub-sequence exists.

Rockafellar (1970) Theorem 10.9 demonstrates that a uniformly convergent sub-sequence

exists on the relative interior of the simplex, and Rockafellar (1970) Theorem 10.3 demon-

strates that there is a unique extension to a convex and continuous function on the boundary

of the simplex.

Pass to this sub-sequence, which (for simplicity) we also index by m, and let W (q,λ )

denote its limit. By Lemmas 8 and 9, the sequence of optimal policies and stopping time

satisfies the conditions of Lemma 10. It follows by that lemma that

lim
n→∞

E0[

ˆ
τ∗n

0
∆

1−ρ
n C(p∗n(q

∗
t,n),q

∗
t,n;S)ρdt]

≥ Et [

ˆ
τ

0
{1

2
tr[σ∗s σ

∗T
s k(q∗s−)] +

ˆ
R|X |\{0}

ψ
∗
s (x)D

∗(qs−+x||qs−)dx}ρ}ρ(
dA∗s
ds

)ρds],

where q∗s is the limiting stochastic process and σ∗s ,ψ
∗
s ,dA∗s are associated with the charac-

teristics of the martingale q∗s .

We also have, by weak convergence,

lim
n→∞

E0[û(qτ∗n ,n)− (κ−λcρ)τ∗n )] = E0[û(qτ∗)− (κ−λcρ)τ∗)].

Recall also the bound, for any stopping time T measurable with respect filtration generated

by q∗s ,

Et [

ˆ T

t
{1

2
tr[σ∗s σ

∗T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
∗
s (x)D

∗(q∗s−+ x||q∗s−)dx}dA∗s ]≤ (
θ

λ
)

1
ρ−1 Et [T − t].
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It follows that

W (q,λ )≤W+(q,λ )

for all q ∈P(X), where

W+(qt ,λ ) = sup
{σs,ψs,dAs,τ}

Et [û(qτ)− (κ−λcρ)(τ− t)]−

− λ

ρ
Et [

ˆ
τ

t
{1

2
tr[σsσ

T
s k(qs)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}ρ(
dAs

ds
)ρds],

subject to the constraints, for all stopping times T measurable with respect filtration gener-

ated by q∗s ,

Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qt)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs]≤ (
θ

λ
)

1
ρ−1 Et [T − t]

and

E0[τ]≤ τ̄,

and the evolution of beliefs as implied by the characteristics derived from σs,ψs,dAs. Ob-

serve, by the arguments in the proof of Lemma 8, that W+(q,λ ) is convex in q.

Also note that, for W+, it is without loss of generality to set dAs = ds. Scaling dAs up

and scaling σsσ
T
s and ψs down, or vice versa, does not change the constraint, and setting

dAs = 0 is clearly sub-optimal by the assumption that κ−λcρ > 0. Note also that there is

a version of the optimal policies which satisfy the constraint everywhere:

1
2

tr[σsσ
T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx≤ (
θ

λ
)

1
ρ−1 .
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The associated Bellman equation, in the continuation region, is

0=max
σs,ψs

E[dW+(qs,λ )]−(κ−λcρ)ds− λ

ρ
{1

2
tr[σsσ

T
s k(qs)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+x||qs−)dx}ρ .

Let σ+
s and ψ+

s denote optimal policies for this problem (which we have yet to show are

equal to σ∗s and ψ∗s ). Suppose that the constraint does not bind, and consider a perturbation

which scales σ+
s σ+T

s and ψ+
s be some constant (1+ ε). Note that such a perturbation

would also scale E[dW+] by (1+ ε), and that at least one of σ+
s and ψ+

s must be non-zero

by the assumption that κ−λcρ > 0. The first order condition for this perturbation is

(κ−λcρ)+
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
+
s (x)D∗(qs−+ x||qs−)dx}ρ =

λ{1
2

tr[σ+
s σ

+T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
+
s (x)D∗(qs−+ x||qs−)dx}ρ ,

which must hold at the optimal policies for this problem. It follows by the definition of θ

(see the proof of Lemma 9) that the constraint binds.

Consider a sub-optimal policy which sets ψs(x) = 0 and satisfies the constraint. The

above FOC applies, and therefore we must have

tr[σ̃sσ̃
T
s (D(qs−)W

+
qq(qs−,λ )D(qs−)−θk(qs−))]≤ 0,

where W+
qq is understood in a distributional sense. It follows that, for all feasible x,

W+(qs−+ x,λ )−W+(qs−,λ )− xTW+
q (qs−,λ ;−x)≤ 1

2

ˆ 1

0
xT k̄(qs−+ lx)xdl.

By Condition 6, this implies that

W+(qs−+ x,λ )−W+(qs−,λ )− xTW+
q (qs−,λ ;−x)≤ θD∗(qs−+ x||qs−).
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Hence, it is without loss of generality to assume that ψ+
s (x) = 0 for all x. Note that, if there

is a strict preference for gradual learning, the above inequality is strict for all non-zero x.

As a result, in this case ψ+
s (x) = 0 for all x. Note also that our control problem involves

direct control of the diffusion coefficients, and hence satisfies the standard requirements

for the existence and uniqueness of a strong solution to the resulting SDE (Pham (2009)

sections 1.3 and 3.2).

Noting that W+(q,λ ) ≥W (q,λ ), it follows that if there exists a sequence of policies

that converge to the stochastic process q+t , characterized by σ+, and whose costs ∆−1
n C(·)

converge to θ
1

ρ−1 , then such a sequence of policies achieves, in the limit, at least as much

utility as any other sequence of policies. It would then be the case that there must be

sequence of optimal policies that converges a.s. (as in Lemma 10) to some optimal policy

of W+ (not necessarily σ c and ψc, but this does not matter for our argument). Note,

however, that if there is a strict preference for gradual learning, and W+ is achievable,

all optimal policies of W+ generate diffusions, and hence all convergent sub-sequences of

beliefs induced by optimal policies in the discrete-time model must converge to diffusions.

Define the function

Σ
+(q) = D(q)σ+(q)σ+(q)T D(q).

We will construct a sequence that converges to this diffusion process.

Consider the eigenvector decomposition of the matrix

L(q)ϒ(q)L(q)T = αn(q)Σ+(q),

where αn(q)> 0 is a scalar function of q. For each pair (si,si+1)∈ S, where i∈{1,2, . . . , |X |}
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is an even integer, set eT
si

rn = eT
si+1

rn =
1

2|X | , and set

qsi,n(q)−q =

q−qsi+1,n(q) =

L(q)ϒ
1
2 (q)ei.

Set all other eT
s rn = 0. By construction,

∑
s∈S

(eT
s rs,n)(qs,n(q)−q) = 0,

and

∑
s∈S

(eT
s rn)(qs,n(q)−q)(qs,n(q)−q)T = αn(q)Σ+(q)

and

∑
s∈S

(eT
s rn) = 1.

We would like to have, for this policy, C(pn(q),q;S) = ∆nθ
1

ρ−1 always. Note that under

this policy, C(·) is a function of αn and q. By the convexity of C(·) and the definition of its

derivatives,

C(·)≥ αn(q)
∂C
∂α
|α=0 = αn(q)(

1
2

tr[k(q)σ+(q)(σ+(q))T ]),

and hence

C(·)≥ αn(q)θ
1

ρ−1 .

It follows that αn(q)≤ ∆n, it is feasible to have C(pn(q),q;S) = ∆nθ
1

ρ−1 .

Note, by the finiteness of Σ+(q) (due the positive definiteness of k̄(q)), that qs,n(q)−q=
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O(∆
1
2
n ). It follows from lemmas 11.2.1 and 11.2.2 in Stroock and Varadhan (2007) that the

law of qn under this process converges to a solution to the martingale problem associated

with the coefficients σ+(q). By the uniqueness of this solution established earlier, this law

is the law of q+t , a diffusion.

By the arguments in Amin and Khanna (1994), it is possible to construct from these

sequences a Brownian motion and a probability space such that the random variable τ

is a stopping time that is measurable with respect to the limiting stochastic process. It

follows that W (q,λ ) = W+(q,λ ). Note that we have constructed a sequence of policies

that converge to an optimal policy of W (q,λ ).

We next demonstrate equality of the primal and dual. We have shown that

W (q,λ ) = E0[û(qτ∗)− (κ−λcρ)τ∗)]− λ

ρ
E0[

ˆ
τ∗

0
(

θ

λ
)

ρ

ρ−1 ds].

Recall the definition of θ ,

θ = λ (ρ
κ−λcρ

λ (ρ−1)
)

ρ−1
ρ .

Define λ ∗ by
κ−λ ∗cρ

λ ∗(ρ−1)
= cρ ,

which is

λ
∗ =

κ

ρcρ
.

Note that λ ∗ ∈ (0,κc−ρ), as required. For this value of λ ,

W (q0,λ
∗) = E0[û(qτ∗)−κτ

∗],
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and the limit of the constraint is satisfied:

λ ∗

ρ
E0[

ˆ
τ∗

0
(

θ

λ ∗
)

ρ

ρ−1 ds] = λ
∗E0[

ˆ
τ∗

0
cds].

Consider a convergent sub-sequence of V (q0;∆n) (which exists by the uniform bound-

edness and convexity of the problem), and denote its limit V (q0) (again, we will index this

sequence by n). By the standard duality inequalities, for all λ ,

V (q0;∆n)≤W (q0,λ ;∆n),

for all n, and therefore

V (q0)≤W (q0,λ ).

Consider the value function Ṽ (q0), which is the value function under the feasible optimal

policies for W (q0,λ
∗). It follows that Ṽ (q0) = W (q0,λ

∗), and Ṽ (q0) ≤ V (q0), and there-

fore V (q0) =W (q0,λ
∗).

We can define

θ
∗ = λ

∗(ρ
κ−λ ∗cρ

λ ∗(ρ−1)
)

ρ−1
ρ

= λ
∗
ρ

ρ−1
ρ cρ−1

=
κ

c
ρ
−ρ−1

.

Note that every convergent sub-sequence of V (q0;∆n) converges to the same function. By
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the boundedness of value function, it follows that

V (q0) = lim
∆→0+

V (q0;∆).

= E0[û(qτ∗)−κτ
∗].

The constraint can be written as

1
2

tr[σsσ
T
s k(qs−)]≤ (

θ ∗

λ ∗
)

1
ρ−1 ,

with

(
θ ∗

λ ∗
)

1
ρ−1 = (ρ1−ρ−1

cρ−1)
1

ρ−1 = cρ
ρ−1

= χ.

The optimal policy satisfies this constraint, and hence it follows that the value function is

the maximized over all policies satisfying

1
2

tr[σsσ
T
s k(qs)]≤ χ,

concluding the proof.
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