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B.1 The Partial Equilibrium Example without Sequentiality

In this Appendix, we revisit our partial equilibrium example with four countries and four stages in
section 2.4, but we consider an alternative scenario without sequentiality. More specifically, we still
consider a symmetric Cobb-Douglas technology with four ‘stages’contributing to value added, but
we assume that these four stages occur simultaneously and are combined into a non-tradeable final
good. We continue to focus on serving consumers in country D, so this boils down to a “spider”
sourcing model in which assemblers in D choose the optimal source for each of the required four
inputs. The rest of the specifics of the exercise are as in section 2.4: for each level of trade costs
considered, we run one million simulations with production costs anj cj being drawn independently
for each stage n and each country j from a lognormal distribution with mean 0 and variance 1.
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Figure B.1: Some Features of Optimal Sourcing Without Sequentiality

The results of this exercise are in Figure B.1 which is organized in a manner analogous to
that in Figure 1. We continue to denote these sourcing strategies as GVCs, and also index stages
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from 1 to 4, although we should stress that all inputs are sourced simultaneously. For this reason,
and unsurprisingly, the particular position or index of an input has no bearing for where it is
sourced from. This is reflected in the upper right panel of Figure B.1, which shows that the average
position of all countries is 2.5 for all trade costs. More interestingly, the upper left panel of Figure
B.1 demonstrates that, in the absence of sequentiality, the relative prevalence of countries in GVCs
serving D is strictly monotonic in the distance between these countries and D. In particular, the
most remote country B is now less likely to be a source of inputs than country A, conversely to our
findings in Figure 1. The lower panel of Figure B.1 unveils another interesting difference between
sequential and non-sequential models of GVCs. Note, in particular, that relative to Figure 1, the
relative prevalence of domestic GVCs (i.e., strategies in which all four inputs assembled in D are
sourced in D itself) declines much faster with trade cost reductions. This share is close to 100%
for prohibitively high trade costs, but for those in Figure 1 (i.e., τAB = τCD = 1.3, τBC = 1.5,
τAD = 1.75, τAC = τBD = 1.8, and s = 1 in the Figures), 12.2% of GVCs are domestic with
sequential production, but only 2.1% when inputs are all shipped simultaneously to D. When (net)
trade costs are doubled (i.e., s = 2 in the figures), these shares are 26.6% and 5.0%, respectively.

B.2 Proof of Existence and Uniqueness

The aim of this Appendix is to study the existence and uniqueness of the general equilibrium of
our model. Let us begin with some assumptions and definitions.

We shall assume throughout the following:

1. ∀i ∈ J : γi ∈ (0, 1].

2.
∑

n∈N αnβn = 1.

3. There exist lower (Tmin, τmin) and upper (Tmax, τmax) bounds on τ ij ∀{i, j} ∈ J 2 and Tj
∀j ∈ J .

Definition 2 (M-matrix) An n× n matrix A is an M-matrix if the following equivalent state-
ments hold:

(i) A can be represented as sI −B, where I is n× n identity matrix, s ∈ R++ is a constant and
B is the matrix with positive elements and the moduli of B’s eigenvalues are all ≤ s.

(ii) A has a non-negative inverse.

Definition 3 (Excess demand) The excess demand function Z (w) is defined as

Zi (w) =
1

wi

(∑
j∈J

∑
n∈N

αnβn × Pr (Λni , j)×
1

γj
wjLj

)
− 1

γi
Li, (B.1)

with Pr (Λni , j) =
∑
`∈Λni

π`j, and where remember that Λni =
{
` ∈ JN | ` (n) = i

}
.
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Definition 4 (Gross Substitutes) The function F (w) : RJ → RJ has the gross substitutes
property in w if

∀{i, j} ∈ J 2, i 6= j :
∂Fi
∂wj

> 0.

We next use these assumptions and definitions to develop proofs of existence and uniqueness
that parallel those of Theorems 1-3 in Alvarez and Lucas (2007).

Theorem 1 For any w ∈ RJ++ there is a unique p∗(w) that solves, for all j ∈ J

Pj = κ

( ∑
`∈JN

N∏
n=1

(((
w`(n)

)γ`(n) (P`(n)

)1−γ`(n))−θ T`(n)

)αnβn
×
N−1∏
n=1

(
τ `(n)`(n+1)

)−θβn × (τ `(N)j

)−θ)−1/θ

.

(B.2)
The function p∗(w) has the following properties

(i) continuous in w.

(ii) each component of p∗ (w) is homogeneous of degree one in w;

(iii) strictly increasing in w;

(iv) strictly decreasing in τ ij for all {i, j} ∈ J 2 and strictly increasing in Tj for all j ∈ J .

(v) ∀w ∈ RJ++, bounded between p
∗(w) and p∗(w):

Proof. Let us set p̃j = log (Pj) and w̃j = log (wj). For each supply chain ` ∈ JN , let

dp,i (`) = (1− γi)
∑

n:`(n)=i

αnβn < 1 dw,i (`) = γi
∑

n:`(n)=i

αnβn < 1

Note that for all i ∈ J , dp,i ≤ 1 and dw,i ≤ 1. Now, for all j ∈ J , define fj(p̃, w̃)

fj(p̃, w̃) = log (κ)−1

θ
log

( ∑
`∈JN

N∏
n=1

exp
{
−θαnβn

[
γ`(n)w̃`(n) +

(
1− γ`(n)

)
p̃`(n)

]}
T
αnβn
`(n) ×Υ`

)

where Υ` =
N−1∏
n=1

(
τ `(n)`(n+1)

)−θβn × (τ `(N)j

)−θ.
To establish uniqueness of p∗(w), we need to show that the Blackwell’s suffi ciency conditions

for the contraction mapping theorem hold. Note that we also need to show that f(p) = f(p, w̃) is
a bounded function for all values of w̃. This corresponds to property (v) of p∗ (w), which will be
proven below. For the time being, we proceed to prove the other parts of the theorem assuming a
unique solution to the system exists.

If there indeed exists a unique solution to p̃ − f (p̃, w̃) = 0, then homogeneity of degree one
in wages (property (ii)) is simple to verify by noting that, given that

∑
n αnβn = 1, if all wages

and prices in the right-hand-side of (B.2) are multiplied by a common factor, the price level in the
left-hand-side of that equation () is also scaled up or down by the same factor.
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To prove differentiability and monotonicity with respect to w, we need to determine the com-
parative static ∂p

∂w . First, note that

∂fj(p̃, w̃)

∂pk
=
∑
`∈JN

dp,k(`)π`j , (B.3)

where π`j is given in (11) in the main text. Then, the Jacobian of the system p̃− f(p̃, w̃) is given
by

∂ (p̃− f (p̃, w̃))

∂p̃
= I −AP ,

where
[
AP
]
ij

= ∂fi(p̃,w̃)
∂pj

. Note that matrix AP is totally positive (this follows from the equation
(B.3)), and therefore, by the Perron-Frobenius Theorem, we can bound above the largest eigenvalue
of AP , denoted by λmax, by the largest row sum of AP . More precisely,

λmax ≤ max
k

∑
i

∂fk(p̃, w̃)

∂p̃i
= max

k

∑
i

 ∑
`∈JN

dp,i(`)π`k


= max

k

 ∑
`∈JN

(∑
n∈N

(1− γ`(n))αnβn

)
π`k


But consider the country with the lowest γj = γ. And note that

λmax ≤ (1− γ) max
k

 ∑
`∈JN

(∑
n∈N

αnβn

)
π`j

 = 1− γ.

Because λmax < 1, it follows that I − AP is an M-matrix, and, by properties of M-matrices, the
inverse

(
I −AP

)−1
is totally (weakly) positive. By the implicit function theorem, the Jacobian ∂p̃

∂w̃

is given by
∂p̃

∂w̃
=
[
I −AP

]−1
AW ,

where AW is defined as [
AW

]
ij

=
∂fi(p̃, w̃)

∂w̃j
=
∑
`∈JN

dw,j(`)π`i.

Both AW and
[
I −AP

]−1
are totally positive, so p̃ is continuous (property (i)) and monotonically

increasing (property (iii)) in w̃.
By analogy, we can show that property (iv) of the theorem also holds by defining ∀{i, j} ∈ J 2,

τ̃ ij = log τ ij and ∀j ∈ J , T̃j = log Tj , and also

dτ ,i (`) =
∑

n:`(n)=i

βn, dT,i (`) = −1

θ

∑
n:`(n)=i

αnβn.
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Applying the implicit function theorem to f(p) = f(p, w̃), we get:

∀{k, j} ∈ J 2 :
∂p

∂τ̃kj
=
[
I −AP

]−1
Aτkj ,

where Aτkj is J × 1 vector with

[Aτkj ]i =
∂fi(p)

∂τ̃kj
=
∑
`∈J

dτkj ,i (`)π`i.

Also,

∀j ∈ J :
∂p

∂T̃
=
[
I −AP

]−1
AT ,

where AT is J × J matrix with elements

[
AT
]
ij

=
∂fi(p)

∂Tj
=
∑
`∈J

dT,i (`)π`i.

Note that, as was shown above,
[
I −AP

]−1
is totally positive. Then, since for all i ∈ J and for all

supply chains dT,i (`) ≥ 0, f(p) is decreasing in T . By analogy, since for all {k, j, i} ∈ J 3, dτkj ,i
(
`i
)

is totally positive, f(p) is increasing in τ jk.
As for property (v) on bounds, we can define p∗ (w) and p∗ (w) in the following way:

p∗ (w) = exp (f (log (p) , w̃,Tmin, τmax)) p∗ (w) = exp (f (log (p) , w̃,Tmax, τmin)) ,

where Tmax (τmax) and Tmin (τmin) are J × 1 (J × J) vectors (matrices) with all elements equal to
the upper bound on labor productivity (trade costs)Tmax (τmax) and the lower bound Tmin (τmin),
respectively. Then, we can note that the set C, defined as

C =
{
z ∈ RJ : log

(
p∗
i
(w)

)
≤ zi ≤ log

(
p∗i (w)

)}
is compact and, by analogy with Alvarez and Lucas (2007), f(·, w̃) : C→ C.

Let us finally tackle the existence and unique of the solution by verifying Blackwell’s suffi cient
conditions for f(·, w̃) to be a contraction on C. We have already shown that f(·, w̃) is monotone.
We next show that the discounting property also holds. Set fi(p) = fi(p, w̃) for any fixed w̃. Then,
for a > 0 and some ν ∈ (0, 1), using a Taylor approximation and the mean-value theorem, we get:

∀i ∈ J : fi(p+ a) = fi(p) +
∑
k∈J

a · ∂fi (p+ (1− ν)a)

∂pk
≤ fi(p) + a

(
1− γ

)
The last inequality follows from the fact that every row sum of AP can be bounded above by

(1− γ) max
k

 ∑
`∈JN

(∑
n∈N

αnβn

)
π`j

 = 1− γ.
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Thus, both the monotonicity and discounting properties hold for f(p) = f(p, w̃). Therefore, we can
apply the Contraction Mapping Theorem to f(p, w̃), and conclude that there is a unique solution
p∗ (w) to the system p̃− f(p̃, w̃), and that it satisfies properties (i) through (v).

Theorem 2 There exists w∗ ∈ RJ++ which solves the system of equations

Z (w∗) = 0.

Proof. To show the existence of the equilibrium, we need to verify that the excess demand satisfies
the following properties (see Propositions 17.C.1 in Mas-Colell et al., 1995, p. 585):

(i) Z (w) is continuous on RJ++;

(ii) Z (w) is homogeneous of degree 0 in w

(iii) Walras Law: w · Z (w) = 0 ∀w ∈ RJ++;

(iv) for k = maxj Lj > 0, Zi (w) > −k for all i = 1, ..., n and w ∈ Rn++;

(v) if wm → w0, where w0 6= 0 and w0
i 6= 0 for some i, then

lim
wm→w0

(
max
j
{Zj (wm)}

)
=∞

Let us discuss each of these properties in turn.

(i) Continuity of Z (w) on RJ++ follows since Pr (Λni , j) is a continuous function of w — for
strictly positive wages, each supply chain ` in JN is realized with non-zero probability.

(ii) Homogeneity of degree zero follows since Pr (Λni , j) is homogeneous of degree 0 in w.
To show this, note that, from the proof of Theorem 1, the equilibrium price level p∗ (w) is
homogeneous of degree 1 in w. Then, both nominator and denominator ( i.e., the desti-
nation specific term Θj) of Pr (Λni , j) are homogeneous of degree −θ in w (remember that∑

n∈N αnβn = 1). It follows that Pr (Λni , j) is homogeneous of degree 0 in w, and thus Z (w)

is homogeneous of degree 0 in w as well.

(iii) Walras Law follows since the system, w ·Z (w) = 0 is just the set of the general equilibrium
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conditions. Moreover, by summing up Z(w), we get:

∑
i∈J

wi · Zi(w) =
∑
i∈J

γi

∑
j∈J

∑
n∈N

αnβn × Pr (Λni , j)×
1

γj
wjLj

−∑
i∈J

1

γi
wiLi

=


∑
n∈N

αnβn ×
∑
j∈J

∑
i∈J

Pr (Λni , j)︸ ︷︷ ︸
=1

× 1

γj
wjLj

−
∑
i∈J

1

γi
wiLi

=


∑
n∈N

αnβn︸ ︷︷ ︸
=1

×
∑
j∈J

1

γj
wjLj

−
∑
i∈J

1

γi
wiLi = 0.

Hence, w · Z (w) = 0.

(iv) The lower bound on Z (w): Since the first term in equation (B.1) is always positive, it
follows that Z (w) can be bounded from below by Zi (w) ≥ − 1

γi
Li.

(v) The limit case: Suppose {wm} is a sequence such that wm → w0 6= 0, and w0
i = 0 for some

i ∈ J . In this case, and given that all trade costs parameters are bounded, the probability
of the supply chain that is located entirely in country i converges to 1, and the probabilities
of realization of all other supply chains converge to 0 (keeping the destination fixed). Let
Pr
(
iN , j

)
denote the probability of realization of the supply chain for which all stages are

located in country i with destination j. Then,

lim
wm→w0

(
max
k
{Zk (w)}

)
= lim

wm→w0
(Zi (w))

and

lim
wm→w0

(
max
k
{Zk (w)}

)
= lim

wm→w0

 1

wi

∑
j∈J

(∑
n∈N

αnβn

)
Pr
(
iN , j

) 1

γj
wjLj

− 1

γi
Li

= lim
wm→w0

 1

wi

∑
j∈J

Pr
(
iN , j

) 1

γj
wjLj

− 1

γi
Li

= lim
wm→w0

 1

wi

∑
j 6=i

Pr
(
iN , j

) 1

γj
wjLj

 = +∞.

In sum, conditions (i) through (v) hold and thus a general equilibrium exists.
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Theorem 3 The solution w∗ ∈ RJ++ to the system of equations Z (w∗) = 0 is unique if the
following condition holds:

2(1− γ)

ξθ(1− γ)
− (1− γ)− ξ2θ ≥ 0, where ξ = max

i,j∈J

maxk∈J τkj/τki
mink∈J τkj/τki

= 1,

and where γ and γ are the largest and smallest values of γj.

Proof. The proof boils down to verifying that Z (w) has the gross substitutes property in w under
the condition stated in the Theorem (see Proposition 17.F.3 in Mas-Colell et al., 1995, p. 613).
More specifically, we need to show that

∀{i, k} ∈ J 2, i 6= k :
∂Zi
∂wk

> 0.

Totally differentiating the equation (B.1) wrt wk, k 6= i, we get:

∂Zi (w)

∂wk
=

1

wi

( ∑
n∈N

αnβn ×
(

1

γk
Lk Pr (Λni , k) +

∑
j∈J

1

γj
wjLj

dPr (Λni , j)

dwk

))
,

where
dPr (Λni , j)

dwk
=
∂ Pr (Λni , j)

∂wk
+
∑
l∈J

∂ Pr (Λni , j)

∂Pl

∂Pl
∂wk

From here, we proceed in three steps:

Step 1:.

Remember that Pr (Λni , j) =
∑
`∈Λni

π`j , where Λni =
{
` ∈ JN | ` (n) = i

}
. Thus,

∂ Pr (Λni , j)

∂wk
=

Pr (Λni , j)

wk

(
∂ log (Pr (Λni , j) ·Θj)

∂ log (wk)
− ∂ log (Θj)

∂ log (wk)

)
. (B.4)

Since in equilibrium Θj = (pj(w))−θ, we can use the envelope theorem to get

∂ Pr (Λni , j)

∂wk
=

θ

wk

(
−
∑
`∈Λni

dw,k(`)π`j + Pr (Λni , j)
∂p̃j
∂w̃j

)
.

Step 2: Bounds on
∂p̃

∂w̃
.

Note that we can bound the row sums of AP and [I −AP ]−1:

(1− γ)1 ≤ AP1 ≤
(
1− γ

)
1,

(
1− γ

)−1
1 ≤

[
I −AP

]−1
1 ≤ (1− γ)−1 1, (B.5)

where γ and γ are the largest and smallest values of γj .
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For two identical supply chains with different destinations i and j, `i and `j it holds that

∀{i, j} ∈ J 2 : dp,k(`
j) = dp,k(`

i), dw,k(`
j) = dw,k(`

i)

∀{i, j} ∈ J 2 : π`j =

(
τ `(N)j/τ `(N)i

)−θ
π`i∑̀̃

∈Λ

(
τ ˜̀(N)j/τ ˜̀(N)i

)−θ
π˜̀i

Let’s set ξ = maxi,j∈J
maxk∈J τkj/τki
mink∈J τkj/τki

≥ 1.

∀{i, j, k} ∈ J 2 :
1

ξθ
≤ [AW ]ij ·

(
[AW ]kj

)−1 ≤ ξθ

Since
∂p

∂wj
=
[
I −AP

]−1
AW[j] , where A

W
[j] is the jth column of A

W , we can bound the ratio

∂p̃j
∂w̃k

/ ∂p̃i
∂w̃k

:

∀{i, j} ∈ J 2 :
(1− γ)

ξ(1− γ)
≤ ∂p̃j
∂w̃k

/ ∂p̃i
∂w̃k

≤
ξ(1− γ)

(1− γ)
.

Since all elements of AW and AP are less than one,

[
AW

]
jk
≤ ∂p̃j
∂w̃k

≤ 1

(1− γ)
. (B.6)

Finally we show that for all n and i,∑
`∈Λni

dw,m(`)π`j

[AW ]jk
≤ Pr (Λni , j) ξ

2θ (B.7)

Let λn` denote the set of supply chains, identical to ` ∈ JN in all stages except for n (note that
there are J chains in λn` ). With this definition we have

[
AW

]
jk
≥
∑
`∈Λni

dw,m(`)π`j

(∑
˜̀∈λn`

π`j

π`j

)

and ∑
`∈Λni

dw,m(`)π`j

[AW ]jk
≤

∑
`∈Λni

dw,m(`)π`j∑
`∈Λni

dw,m(`)π`j

(
min
`∈Λni

(∑
˜̀∈λn`

π`j

π`j

))−1

(B.8)

Then, let us bound Pr (Λni , j):

Pr (Λni , j) ≥
(

max
`∈Λni

(∑
˜̀∈λn`

π`j

π`j

))−1

(B.9)
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Therefore, combining (B.8) and (B.9) we get:∑
`∈Λni

dw,m(`)π`j

[AW ]jk
≤
(

max
`∈Λni

(∑
˜̀∈λn`

π`j

π`j

))
·
(

min
`∈Λni

(∑
˜̀∈λn`

π`j

π`j

))−1

Pr (Λni , j)

Note that by definition of λn` ,(∑
˜̀∈λn`

π`j

π`j

)
∈
[∑

k∈J
(
(ck)

−θTk
)αnβn

ξθ ((ci)−θTi)
αnβn

,
ξθ
∑

k∈J
(
(ck)

−θTk
)αnβn

((ci)−θTi)
αnβn

]
,

so ∑
`∈Λni

dw,m(`)π`j

[AW ]jk
≤ ξ2θ Pr (Λni , j) .

Step 3: To prove the GS property, we need to show that for a fixed destination j, fixed stage n
and m 6= i

∂ Pr (Λni , j)

∂wm
+
∑
k∈J

∂ Pr (Λni , j)

∂p̃k

∂p̃k
∂wm

≥ 0.

By analogy with Step 1,

∑
k∈J

∂ Pr (Λni , j)

∂p̃k

∂p̃k
∂w̃m

= Pr (Λni , j)
∑
k∈J

∂p̃k
∂w̃m

(
∂ log (Pr (Λni , j) ·Θj)

∂ log (pk)
− ∂ log (Θj)

∂ log (pk)

)

∑
k∈J

∂π`j
∂p̃k

∂p̃k
∂w̃m

= θπ`j

(
−
(∑
k∈J

dp,k(`)
∂p̃k
∂w̃m

)
+

∂p̃j
∂w̃m

)
. (B.10)

Combining equations (B.4) and (B.10),

dPr (Λni , j)

dw̃k
= θ

(
2 Pr (Λni , j)

∂p̃j
∂w̃m

−
∑
`∈Λni

π`j

((∑
k∈J

dp,k(`)
∂p̃k
∂w̃m

)
+ dw,m(`)

))
.

Let us use the bounds derived in Step 2: from equation (B.5),

dPr (Λni , j)

dwk
≥ θ

(
∂p̃j
∂w̃m

(
2(1− γ)

ξθ(1− γ)
Pr (Λni , j)−

∑
`∈Λni

π`j

(∑
k∈J

dp,k(`)

))
−
∑
`∈Λni

π`jdw,m(`)

)
.

Finally, invoking equations (B.6) and (B.6), we have:

dPr (Λni , j)

dwk
≥ θ[AW ]kj Pr (Λni , j)

(
2(1− γ)

ξθ(1− γ)
− 1

Pr (Λni , j)

∑
`∈Λni

π`j

(∑
k∈J

dp,k(`)

)
− ξ2θ

)

and thus
dPr (Λni , j)

dwk
≥ θ[AW ]kj Pr (Λni , j)

(
2(1− γ)

ξθ(1− γ)
− (1− γ)− ξ2θ

)
. (B.11)
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Corollary 1 Suppose the trade costs have the following form:

(τ ij)
−θ = ρiρj.

Then the equilibrium is unique if
γ(3− γ) ≥ 2γ (B.12)

Proof. Note that for this specification of trade costs ξ = 1, and the RHS of equation (B.11) is
positive whenever (B.12) holds.

B.3 Introducing Trade Deficits

Let Dj be country j’s aggregate deficit in dollars, where
∑

j Dj = 0 holds since global trade is
balanced. The only difference in the model’s equations is that the general equilibrium equation is
given by

1

γi
wiLi =

∑
j∈J

∑
n∈N

αnβn × Pr (Λni , j)×
(

1− γj
γj

wjLj + wjLj −Dj

)
.

where wjLj −Dj is aggregate final good consumption in country j.

B.4 Further Details on Suggestive Evidence

In this Appendix we provide additional details on the suggestive empirical results in section 5. We
begin by exploring the robustness of our results in Table 1. For that table, we used 2011 data
for 180 countries from the Eora dataset. In Table A.1 we replicate that same table but pooling
data from the 19 years for which the Eora dataset is available, namely 1995-2013, while including
exporter-year and importer-year fixed effects (rather than the simpler exporter and importer fixed
effects in Table A.1). As is apparent from comparing Tables 1 and A.1, the results are remarkably
similar, both qualitatively as well as quantitatively. The reason for this is that the estimated
elasticities are quite actually quite stable over time, as we have verified by replicating Table 1 year
by year (details available upon request).

Tables A.2 and A.3 run the same specifications with the WIOT database using its 2013 and
2016 releases, respectively. The former covers the period 1995-2011 for 40 countries, while the latter
covers 2000-2014 for 43 countries. As mentioned in the main text, the results with the 2013 release
of the WIOD are generally qualitatively in line with those obtained with the Eora database, and
indicate a significantly lower distance elasticity and lower ‘home bias’in intermediate-input relative
to final-good trade. Nevertheless, the results with the 2016 release of the same dataset are much
weaker, and only indicate a lower ‘home bias’in intermediate-input relative to final-good trade.

We finally incorporate the scatter plots mentioned in section 5, when describing the results in
Table 2. More precisely, the left panel corresponds to the partial correlation underlying column (5)
of Table 2 (i.e., partialling out GDP per capita). The right panel is the analogous scatter plot after
dropping the Netherlands (‘NLD’).
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Table A.1. Trade Cost Elasticities for Final Goods and Intermediate Inputs (Eora all years)

(1) (2) (3) (4) (5) (6) (7)

Distance -1.118∗∗∗ -0.824∗∗∗ -1.153∗∗∗ -0.854∗∗∗ -1.224∗∗∗ -0.910∗∗∗ -0.797∗∗∗

(0.020) (0.014) (0.020) (0.014) (0.021) (0.015) (0.015)

Distance × Input 0.141∗∗∗ 0.113∗∗∗ 0.104∗∗∗

(0.005) (0.006) (0.006)

Continguity 2.239∗∗∗ 2.254∗∗∗ 2.350∗∗∗ 1.210∗∗∗

(0.111) (0.112) (0.120) (0.098)

Continguity × Input -0.191∗∗∗ -0.058

(0.035) (0.037)

Language 0.481∗∗∗ 0.512∗∗∗ 0.601∗∗∗ 0.515∗∗∗

(0.026) (0.026) (0.029) (0.027)

Language × Input -0.179∗∗∗ -0.168∗∗∗

(0.012) (0.012)

Domestic 5.826∗∗∗

(0.176)

Domestic × Input -0.656∗∗∗

(0.059)

Observations 615,600 615,600 1,231,200 1,231,200 1,231,200 1,231,200 1,231,200

R2 0.977 0.978 0.967 0.969 0.967 0.969 0.971

Notes: Standard errors clustered at the country-pair level reported. ∗∗∗, **, and * denote 1, 5 and 10 percent
significance levels. All regressions include exporter-year and importer-year fixed effects. Regressions in columns

(3)-(7) also include a dummy variable for inputs flows. See Appendix ?? for details on data sources.
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Table A.2. Trade Cost Elasticities for Final Goods and Intermediate Inputs (2013 WIOD sample)

(1) (2) (3) (4) (5) (6) (7)

Distance -1.550∗∗∗ -1.244∗∗∗ -1.560∗∗∗ 1.243∗∗∗ -1.587∗∗∗ -1.265∗∗∗ -1.081∗∗∗

(0.056) (0.044) (0.057) (0.044) (0.059) (0.045) (0.042)

Distance × Input 0.055∗∗∗ 0.045∗∗∗ 0.032∗

(0.014) (0.017) (0.017)

Continguity 0.724∗∗∗ 0.750∗∗∗ 0.733∗∗∗ 0.302∗∗

(0.135) (0.138) (0.148) (0.126)

Continguity × Input 0.033 0.164∗

(0.085) (0.086)

Language 0.964∗∗∗ 1.002∗∗∗ 1.131∗∗∗ 0.258∗

(0.169) (0.169) (0.175) (0.137)

Language × Input -0.257∗∗ -0.064

(0.075) (0.080)

Domestic 3.634∗∗∗

(0.275)

Domestic × Input -0.787∗∗∗

(0.092)

Observations 27,194 27,194 54,380 54,380 54,380 54,380 54,380

R2 0.981 0.983 0.972 0.974 0.972 0.974 0.978

Notes: Standard errors clustered at the country-pair level reported. ∗∗∗, **, and * denote 1, 5 and 10 percent
significance levels. All regressions include exporter-year and importer-year fixed effects. Regressions in columns

(3)-(7) also include a dummy variable for inputs flows. See the Appendix for details on data sources.
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Table A.3. Trade Cost Elasticities for Final Goods and Intermediate Inputs (2016 WIOD sample)

(1) (2) (3) (4) (5) (6) (7)

Distance -1.638∗∗∗ -1.396∗∗∗ -1.648∗∗∗ 1.395∗∗∗ -1.656∗∗∗ -1.396∗∗∗ -1.210∗∗∗

(0.053) (0.044) (0.053) (0.044) (0.055) (0.045) (0.043)

Distance × Input 0.016 0.000 -0.012

(0.014) (0.017) (0.017)

Continguity 0.556∗∗∗ 0.573∗∗∗ 0.603∗∗∗ 0.241∗∗

(0.122) (0.123) (0.139) (0.121)

Continguity × Input -0.061 0.061

(0.092) (0.094)

Language 0.769∗∗∗ 0.808∗∗∗ 0.883∗∗∗ 0.131

(0.149) (0.150) (0.161) (0.127)

Language × Input -0.150∗∗ -0.024

(0.072) (0.072)

Domestic 3.453∗∗∗

(0.257)

Domestic × Input -0.785∗∗∗

(0.083)

Observations 26,460 26,460 52,920 52,920 52,920 52,920 52,920

R2 0.982 0.984 0.974 0.975 0.974 0.975 0.978

Notes: Standard errors clustered at the country-pair level reported. ∗∗∗, **, and * denote 1, 5 and 10 percent
significance levels. All regressions include exporter-year and importer-year fixed effects. Regressions in columns

(3)-(7) also include a dummy variable for inputs flows. See the Appendix for details on data sources.
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Figure B.2: Partial Correlation between Export Upstreamness and Centrality
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B.5 Real Income Gains

Table B.1 reports the real income implications of the three counterfactuals studied in section 7 of
the paper for the WIOD sample, and compares them with the numbers that would be obtained in
an analogous Eaton and Kortum (2002) framework without sequential production (see the main
text for details). Table B.2 presents the same numbers for the Eora sample of countries.
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Table B.1: Real Income Gains: WIOD sample

Autarky 50% Fall Free Trade

EK GVC EK GVC EK GVC

Australia 4.9 4.4 23.1 20.6 438.4 403.7
Austria 13.0 14.0 44.3 47.1 607.0 564.3
Belgium 21.4 22.4 62.8 64.0 609.5 618.3
Bulgaria 17.9 19.3 74.9 74.3 1715.9 1855.9
Brazil 3.2 3.4 14.8 15.6 307.3 354.1
Canada 8.0 8.2 27.4 29.0 350.4 371.3
Switzerland 10.2 10.9 41.6 39.1 507.6 424.5
China 4.1 5.3 15.8 18.5 189.4 310.2
Cyprus 13.1 13.9 63.6 60.8 1886.3 2422.6
Czech Republic 21.1 22.8 69.6 70.0 1071.3 932.2
Germany 9.4 10.2 30.9 30.9 242.8 252.2
Denmark 12.6 13.8 50.0 52.1 656.3 640.1
Spain 7.2 7.6 28.0 27.7 405.4 355.1
Estonia 21.5 24.0 87.0 87.4 2115.5 3026.4
Finland 10.1 10.8 44.8 47.1 803.3 816.7
France 7.2 7.6 25.0 25.7 282.4 281.0
Great Britain 6.6 6.8 24.1 24.5 277.7 275.3
Greece 8.3 9.2 34.0 38.1 709.0 763.1
Croatia 11.8 12.9 54.0 55.2 1315.5 1376.0
Hungary 27.8 28.9 83.1 82.1 1058.6 1078.1
Indonesia 5.6 6.1 25.4 29.8 472.1 570.6
India 4.2 4.6 17.0 21.1 326.3 404.5
Ireland 34.0 34.9 89.1 84.6 746.9 795.3
Italy 6.3 6.8 26.0 25.8 344.8 323.9
Japan 4.6 4.9 17.2 17.7 236.2 265.5
South Korea 10.6 11.3 42.2 43.0 492.8 544.1
Lithuania 20.1 22.4 75.8 72.3 1232.2 1491.2
Luxembourg 73.7 75.9 184.1 167.9 3851.8 3935.5
Latvia 14.0 15.5 64.5 67.3 2187.6 2403.5
Mexico 7.5 9.2 26.7 33.4 373.5 445.1
Malta 53.9 52.9 165.1 155.7 5179.7 7635.3
Netherlands 16.0 17.9 53.5 57.5 472.9 512.8
Norway 6.9 8.3 34.1 51.4 520.1 865.0
Poland 11.9 12.6 44.1 43.2 646.3 533.4
Portugal 9.7 10.3 39.6 40.9 779.6 706.4
Romania 10.6 11.3 45.6 47.4 938.6 866.2
Russia 5.4 5.2 24.5 27.9 364.9 468.2
Slovakia 23.4 25.5 79.5 77.3 1342.1 1117.2
Slovenia 18.2 20.3 76.5 71.7 1536.7 1393.2
Sweden 10.0 10.5 40.4 41.1 540.5 496.3
Turkey 7.6 8.2 33.9 33.8 538.4 472.6
Taiwan 15.7 17.9 59.8 70.8 670.8 913.2
USA 3.1 3.3 9.8 10.2 116.0 163.2
Rest of World 11.6 11.1 28.1 26.3 160.1 227.3
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Table B.2: Real Income Gains: Eora sample

Autarky 50% fall Free Trade

EK GVC EK GVC EK GVC

Afghanistan 4.1 4.6 17.9 26.5 3128.1 3613.8
Eastern Europe 17.0 18.1 48.4 52.7 675.4 732.9
Algeria 4.6 3.4 28.7 37.9 818.1 1484.6
Western Europe 35.0 37.7 88.9 94.0 1090.1 1377.0
Angola 3.1 1.5 30.1 13.8 1936.6 906.8
Latin America & Caribbean 8.1 8.0 26.1 27.3 794.6 675.5
Argentina 5.4 6.6 24.2 26.6 519.7 554.3
Australia 5.8 7.0 27.1 27.0 490.4 463.8
Central Europe 15.6 17.4 43.0 50.1 417.2 507.7
Central Asia 7.6 8.5 34.4 34.9 1381.0 1316.3
Middle East & North Africa 6.3 7.0 29.9 29.6 506.5 495.6
Bangladesh 3.7 4.5 21.8 24.7 1055.4 888.0
Belgium 28.9 24.9 71.5 84.7 639.3 982.5
Benin 5.2 6.7 26.5 45.2 3223.1 6889.5
South Asia 13.5 22.2 65.2 134.0 4804.1 19628.6
Bolivia 6.7 4.6 47.3 29.6 1556.2 1391.1
Sub-Saharan Africa 9.7 9.8 43.5 45.0 1255.3 1025.0
Brazil 3.1 3.7 15.6 16.0 401.5 442.8
East Asia & Pacific 7.0 8.6 38.9 36.9 891.6 723.5
Burkina Faso 7.9 7.9 23.2 38.8 2733.8 3837.6
Burundi 4.3 6.4 29.9 54.1 3447.3 8806.1
Cambodia 9.8 10.2 50.9 55.8 3133.6 2824.4
Cameroon 3.6 4.6 25.5 30.5 1691.8 2272.2
Canada 8.3 9.8 27.5 33.6 361.5 473.9
Chad 2.0 3.2 21.5 30.7 4484.0 3552.0
Chile 7.7 9.3 40.9 43.2 828.2 886.9
China 5.0 5.8 19.6 20.8 253.9 402.9
Colombia 5.0 7.1 20.9 27.1 567.2 799.9
Cuba 4.5 5.7 21.0 27.3 1113.5 1236.9
Czech Republic 19.0 21.1 62.8 71.2 1042.4 1306.0
Cote dIvoire 3.6 4.1 32.5 26.5 1724.8 1148.0
North Korea 3.0 3.0 39.2 23.1 3986.5 1527.9
DR Congo 5.5 0.9 22.8 5.7 2851.1 780.1
Scandinavia 9.1 10.2 33.6 39.4 392.2 503.3
Dominican Republic 6.0 8.1 29.2 35.9 1322.3 1452.0
Ecuador 6.0 7.4 36.2 38.0 1091.3 1130.7
Egypt 3.1 3.9 16.8 19.7 663.7 752.0
Eritrea 2.7 3.8 23.7 37.3 4009.3 6419.1
Ethiopia 659.8 1.43E+36 192.7 1111.1 1626.1 9477.2
France 8.0 8.0 27.5 28.7 290.9 358.5
Germany 12.3 12.9 37.2 41.8 269.8 404.1
Ghana 3.6 5.0 24.6 30.9 1176.5 1561.1
Greece 10.0 10.6 31.4 36.2 789.6 782.6
Guatemala 5.7 4.7 28.4 22.4 1320.7 918.3
Guinea 6.1 10.8 45.4 76.2 2329.0 9668.8
Haiti 4.1 4.7 27.5 33.0 2801.2 3400.4
Hong Kong 138.5 107.6 142.8 121.8 1860.7 1081.0
India 4.1 4.3 20.8 19.5 400.8 391.0
Indonesia 5.3 6.2 27.0 29.3 482.0 481.3
Iran 6.3 6.4 31.2 28.2 809.7 686.8
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Autarky 50% fall Free Trade

EK GVC EK GVC EK GVC

Iraq 1.9 6.7 14.9 49.0 782.7 4424.3
Israel 8.2 6.2 38.9 30.2 795.9 595.0
Italy 7.8 9.2 30.7 35.5 327.5 430.6
Japan 4.4 5.1 18.6 19.3 240.3 280.7
Kazakhstan 5.3 6.0 27.5 34.4 1000.7 1476.1
Kenya 8.8 11.0 33.7 51.1 1380.3 1556.2
Madagascar 6.6 6.2 44.1 38.2 2511.7 2019.8
Malawi 7.1 13.6 41.4 76.9 3648.3 9329.9
Malaysia 21.0 20.0 69.3 73.2 752.5 869.8
Mali 4.8 3.9 24.1 25.4 3022.8 2344.1
Mexico 6.9 10.4 24.9 36.7 369.9 560.5
Morocco 6.6 7.5 32.3 32.9 1007.6 880.0
Mozambique 3.4 4.3 15.4 24.4 1596.0 2753.7
Myanmar 0.0 0.1 2.0 1.3 2775.7 1088.0
Nepal 6.6 7.4 36.3 39.7 2380.9 2131.6
Netherlands 25.6 25.8 65.5 81.4 517.1 850.8
Niger 5.9 7.5 29.9 42.2 2547.8 4952.7
Nigeria 4.2 7.4 20.7 29.4 555.8 1078.0
Pakistan 2.0 3.1 16.6 19.5 851.3 743.2
Peru 4.8 5.6 25.5 27.3 953.4 893.9
Philippines 9.0 12.8 42.1 55.4 613.7 817.4
Poland 10.9 11.7 36.8 38.4 782.8 763.2
Portugal 11.4 12.7 41.3 42.4 876.8 857.3
South Korea 16.0 19.8 60.3 65.0 846.6 1129.7
Romania 11.5 12.9 44.1 48.6 1086.0 1143.7
Russia 3.6 3.7 18.7 20.3 392.5 497.0
Rwanda 6.5 3.1 24.6 22.9 3494.0 2666.9
Saudi Arabia 6.5 7.7 28.0 29.4 620.4 603.8
Senegal 4.5 6.1 24.7 34.4 1575.3 2272.9
Singapore 46.3 47.1 97.3 102.0 981.8 1152.0
Somalia 1.7 1.9 14.5 20.9 6917.6 16193.2
South Africa 7.2 8.2 38.3 41.3 692.8 788.0
South Sudan 0.2 0.4 4.1 5.9 3180.4 1704.8
Spain 8.7 9.3 31.8 32.3 441.9 501.1
Sri Lanka 4.3 6.8 28.6 38.1 953.4 1237.6
Sudan 0.0 0.0 0.6 0.3 1693.6 666.8
Syria 4.6 2.3 33.3 14.6 2124.7 1006.9
Taiwan 10.2 9.6 53.8 39.8 918.7 622.8
Thailand 10.7 12.7 49.9 48.1 781.7 705.2
Tunisia 11.0 10.6 45.6 41.4 1972.2 1225.7
Turkey 8.9 12.5 26.2 36.2 432.6 624.3
Uganda 5.5 6.1 19.4 31.5 2210.0 2587.1
Ukraine 14.0 15.3 50.4 51.5 1556.1 1410.4
UK 10.2 10.7 30.6 33.2 322.4 383.2
Tanzania 17.5 40.7 64.8 164.2 4897.0 16160.2
USA 3.8 4.1 11.5 12.0 135.0 213.5
Uzbekistan 3.4 4.4 24.1 24.6 1186.1 1240.1
Venezuela 3.3 2.0 23.6 19.9 695.7 793.4
Viet Nam 32.8 29.9 78.9 77.9 2251.6 1591.6
Yemen 4.3 6.1 29.8 37.0 1663.5 2162.6
Zambia 5.3 5.8 31.5 35.4 2294.5 2023.9
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