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A Proofs for sections 2 and 3

A.1 The standard New Keynesian model

This section shows that, in the standard New Keynesian model with sticky Calvo prices,
the impulse response to the path for prices Pt, real discount rates qt, real wages wt and
unearned income are those given by my main experiment in figure 1. I only outline the
elements of the model relevant to my argument, the reader is referred to the textbook
treatments of Woodford (2003) or Galí (2008) for details.

I consider the model in its ’cashless limit’, with no aggregate uncertainty. The model
features a representative agent with separable utility trading in one-period nominal bonds
and holding a fixed stock of capital k, so equation (1) simplifies to

∑ βt {u (ct)− v (nt)}
Ptct + (tQt+1) Bt+1 = Ptπt + Wtnt + Bt + Ptρtk

Here ρt denotes the real rental rate of capital, so ρtk are total real rents, and πt are real
firm profits. Together, rents and profits make up the unearned income in this economy.
Consumption ct is an aggregate of intermediate goods, with constant elasticity of sub-
stitution ε. Hence the price index, aggregating the individual goods prices pjt, is Pt =(∫ 1

0 p1−ε
jt dj

) 1
1−ε .

Each good j is produced under monopolistic competition with constant returns to scale
and unit productivity. The production function is

yjt = F
(
k jt, ljt

)
= kα

jtl
1−α
jt

Firms can only adjust their price with probability θ each period, independent across firms
and periods (the Calvo assumption). Nominal wages Wt and nominal rents are flexible.
Cost minimization by the firm therefore implies

ρtPt = ΛjtFk
(
k jt, ljt

)
Wt = ΛjtFl

(
k jt, ljt

)
for some scalar Λjt representing the nominal marginal cost of production for firm j. Hence

Fk
(
k jt, ljt

)
Fl
(
k jt, ljt

) =
Fk

( kjt
ljt

, 1
)

Fl

( kjt
ljt

, 1
) =

ρt

wt

so all firms have the same capital-labor ratio
kjt
ljt

= kt
lt

, and hence all firms have the same
nominal marginal cost of production Λt.
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As is well-known, a first-order approximation to the equilibrium equations of this
model is given by the system of three equations

log
( ct

c

)
= log

( ct+1

c

)
− σ

(
it − log

(
Pt+1

Pt

)
− $

)
(A.1)

log
(

Pt

Pt−1

)
= β log

(
Pt+1

Pt

)
+ κ log

( ct

c

)
(A.2)

it = $ + φπ log
(

Pt

Pt−1

)
+ εt (A.3)

where c is the level of consumption that would prevail under flexible prices, which (nor-
malizing k = 1) solves

v′
(
(c)

1
1−α

)
u′ (c)

=
ε− 1

ε

(1− α)

c
≡ w

$ = β−1 − 1 is the steady-state net real interest rate, σ = − u′(c)
cu′′(c)

is the elasticity of substi-

tution around c, and κ is the slope of the Phillips curve (a function of model parameters).
Equation (A.3) is a Taylor rule describing the behavior of monetary policy. We assume
that φπ > 1, which guarantees equilibrium uniqueness. We consider the effects of a time-
0 monetary policy loosening, ε0 < 0 and εt = 0 for t ≥ 1, assuming the system was at
steady-state at t = −1, with constant price level P.

It is easy to guess and verify that the equilibrium features it = ρ, Pt = Pt−1 and ct = c
for t ≥ 1. Solving backwards, this implies that

i0 = ρ +
1

1 + κσφπ
ε0

log
( c0

c

)
= − σ

1 + κσφπ
ε0

log
(

P0

P

)
= − κσ

1 + κσφπ
ε0

In other words, a monetary loosening raises ct at t = 0 only, and raises Pt immediately and
permanently. (Firms that get an opportunity to reset at t = 0 all increase their price above
P, pulling up the price level to P0. Thereafter, all firms that get a chance reset their price to
P0, so there is no inflation.) To a first-order approximation, the real wage satisfies

wt =

v′
(

c
1

1−α
t

)
u′ (ct)

so wt increases at t = 0 only and then reverts to w. Moreover, real rents are

ρt =
α

1− α
wtc

1
1−α
t

so they also increase at t = 0 and then revert to ρ = α
1−α w (c)

1
1−α . 46 Date-0 nominal and

46Since price dispersion rises as a result of the monetary policy shock, the nonlinear solution features a real wage
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real state prices are Q0 = q0 = 1 and, for t ≥ 1, given that Pt = P0,

qt = Qt =
t−1

∏
s=0

(sQt) =
1

1 + i0
βt−1

Hence, the path of qt and Qt for t ≥ 1 is shifted upwards by dqt
qt

= dQt
Qt

= − dR
R where the

proportional real interest rate change is dR
R = dε0

(1+κσφπ)
1

(1+ρ)
. Finally, aggregate profits are,

to first-order, given by

πt = ct − wtnt − ρtk = ct

1− 1
1− α

v′
(
(ct)

1
1−α

)
u′ (ct)

ct

 (A.4)

Hence they also deviate only at t = 0 from their steady state value of d = c
ε . The first term

in (A.4) is volume, which rises with c0. The second term is the markup, which falls with
c0. In typical calibrations, the markup effect dominates and profits fall in response to an
expansionary monetary shock ε0 < 0.

Collecting results, the timing of changes for wt, Pt and qt, as well as unearned income
ρtk + πt, is exactly that depicted in figure 1, as claimed in the main text.

A.2 Proof of theorem 1

The proof is greatly simplified by first applying a simple renormalization of discount fac-
tors. Instead of the present value normalization q0 = 1, I normalize q1 = 1 and let q0 vary.
Then, setting

dq0

q0
=

dR
R

(A.5)

yields the experiment in figure 1. Intuitively, a rise in the relative price of future goods
relative to a current good is the same as a fall in the price of that current good relative to
all future goods. This renormalization is innocuous since there is a degree of freedom in
choosing discount factors.

Given the experiment, we can hold qt fixed for t ≥ 1. Hence, only three parameters y0,
w0 and q0 vary, together with the sequence {Pt}.

With this renormalization, the proof has three steps: first, I apply Slutky’s theorem to
break down dc and dn into income and substitution effects. Second, I work out explicit
expressions for MPC and MPN. Finally, I calculate compensated derivatives, and use my
expressions from the second step to simplify their expressions.

that is different from steady state even beyond t ≥ 1, but the difference is second order in ε0.
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Step 1: Slutky’s theorem. Recall that the sequences {qt} and {wt} are fixed in the
experiment, except for q0 and w0. Define the following expenditure function

e (q0, w0, U) = min

{
∑

t
qt (ct − wtnt) s.t. ∑

t
βt {u (ct)− v (nt)} ≥ U

}
(A.6)

and let ch
0, nh

0 be the resulting compensated (Hicksian) demands for time-0 consumption
and hours. Applying the envelope theorem, we obtain a version of Shephard’s lemma:

eq0 = c0 − w0n0 (A.7)

ew0 = −q0n0 (A.8)

Define ’unearned’ wealth as

ω̃ ≡ ∑
t≥0

qt

(
yt + (−1bt) +

(
−1Bt

Pt

))
and note that, given the variation we consider,

dω̃ =

(
y0 + (−1b0) +

(
−1B0

P0

))
dq0 + q0dy0 −∑

t≥0
qt

(
−1Bt

Pt

)
dPt

Pt
(A.9)

Using the Fisher equation qt
Pt

= Qt
P0

, and the fact that dPt
Pt

= dP
P is a constant, the last term

rewrites

∑
t≥0

qt

(
−1Bt

Pt

)
dPt

Pt
= ∑

t≥0
Qt

(
−1Bt

P0

)
dP
P

= q0NNP
dP
P

where we have defined the household’s net nominal position as the present value of his
nominal assets

q0NNP ≡ ∑
t≥0

Qt

(
−1Bt

P0

)
Moreover, defining

URE ≡ w0n0 + y0 + (−1b0) +

(
−1B0

P0

)
− c0

we can rewrite (A.9) as

dω̃ = (URE + c0 − w0n0) dq0 + q0dy0 − q0NNP
dP
P

(A.10)

Next, define the indirect utility function that attains ω̃ as

V (q0, w0, ω̃) = max

{
∑

t
βt {u (ct)− v (nt)} s.t. ∑

t
qt (ct − wtnt) = ω̃

}
(A.11)
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Let c0, n0 denote the resulting Marshallian demands. Applying the envelope theorem, we
find

∂V
∂q0

= −u′ (c0)

q0
(c0 − w0n0) (A.12)

∂V
∂w0

=
u′ (c0)

q0
q0n0 (A.13)

∂V
∂ω̃

=
u′ (c0)

q0
(A.14)

As in the proof of Slutky’s theorem, we next differentiate along the identities

ch
0 (q0, w0, U) = c0 (q0, w0, e (q0, w0, U))

nh
0 (q0, w0, U) = n0 (q0, w0, e (q0, w0, U))

to find that Marshallian and Hickisan derivatives are related via
∂ch

0
∂q0

=
∂c0

∂q0
+

∂c0

∂ω̃
eq0

∂ch
0

∂w0
=

∂c0

∂w0
+

∂c0

∂ω̃
ew0 (A.15)

∂nh
0

∂q0
=

∂n0

∂q0
+

∂n0

∂ω̃
eq0

∂nh
0

∂w0
=

∂n0

∂w0
+

∂n0

∂ω̃
ew0 (A.16)

Next, define

MPC ≡ q0
∂c0

∂ω̃
(A.17)

MPN ≡ q0
∂n0

∂ω̃
(A.18)

these express the dollar-for-dollar (or hour-for-dollar) marginal propensities to consume
and work at date 0: indeed,

∂c0

∂y0
=

∂c0

∂ω̃

∂ω̃

∂y0
=

MPC
q0

q0 = MPC

and similarly ∂n0
∂y0

= MPN.
Totally differentiating the Marshallian consumption function and using (A.10), we find

dc0 =
∂c0

∂q0
dq0 +

∂c0

∂w0
dw0 +

∂c0

∂ω̃

(
(URE + c0 − w0n0) dq0 + q0dy0 − q0NNP

dP
P

)
Using (A.15)–(A.16),

dc0 =

(
∂ch

0
∂q0
− ∂c0

∂ω̃
eq0

)
dq0 +

(
∂ch

0
∂w0
− ∂c0

∂ω̃
ew0

)
dw0

+
∂c0

∂ω̃

(
(URE + c0 − w0n0) dq0 + q0dy0 − q0NNP

dP
P

)
=

∂c0

∂ω̃

(
−ew0dw0 + q0dy0 +

(
−eq0 + URE + c0 − w0n0

)
dq0 − NNP

dP
P

)
+

∂ch
0

∂q0
dq0 +

∂ch
0

∂w0
dw0
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and using (A.7), (A.8) and (A.17) to replace ew0 , eq0 and ∂c0
∂ω̃ , we find

dc0 =
MPC

q0

(
q0n0dw0 + q0dy0 + UREdq0 − q0NNP

dP
P

)
+

∂ch
0

∂q0
dq0 +

∂ch
0

∂w0
dw0

= MPC
(

n0dw0 + dy0 + URE
dq0

q0
− NNP

dP
P

)
+ c0

(
q0

c0

∂ch
0

∂q0

dq0

q0
+

w0

c0

∂ch
0

∂w0

dw0

w0

)
Finally, dropping time subscripts for ease of notation, using (A.5), and defining compen-
sated elasticities by

εh
c,q ≡

q0

c0

∂ch
0

∂q0

εh
c,w ≡ w0

c0

∂ch
0

∂w0

we obtain

dc = MPC
(

ndw + dy + URE
dR
R
− NNP

dP
P

)
+ c

(
εh

c,q
dR
R

+ εh
c,w

dw
w

)
(A.19)

In a completely analogous way, we also find

dn = MPN
(

ndw + dy + URE
dR
R
− NNP

dP
P

)
+ n

(
εh

n,q
dR
R

+ εh
n,w

dw
w

)
(A.20)

The rest of the proof calculates the compensated elasticities and relates them to MPC
and MPN, which will yield our expressions for consumption and labor supply. To get my
expression for welfare, totally differentiate the indirect utility function and use (A.12)–(A.14)
and (A.10) to obtain

dU =
∂V
∂q0

dq0 +
∂V
∂w0

dw0 +
∂V
∂ω̃

dω̃

=
u′ (c0)

q0
·
(

UREdq0 + q0n0dw0 + q0dy0 − q0NNP
dP
P

)
This yields my expression in (5),

dU = u′ (c) ·
(

dy + ndw + URE
dR
R
− NNP

dP
P

)

Step 2: Marginal propensities. I now derive explicit expressions for marginal propen-
sities to consume, that is, the Marshallian derivatives of the consumption and labor supply
functions that are solutions to (A.11). Inverting the first-order conditions

u′ (ct) = β−t
(

qt

q0

)
u′ (c0) (A.21)

v′ (nt) = β−t
(

qt

q0

)(
wt

w0

)
v′ (n0) (A.22)
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and inserting the resulting values for ct and nt into the budget constraint (redefining W =

q0ω̃ as present-value wealth for simplicity)

∑
t≥0

qt

q0
(ct − wtnt) = W

we obtain

c0 + ∑
t≥1

qt

q0

(
u′
)−1

[
β−t

(
qt

q0

)
u′ (c0)

]
−w0

(
n0 + ∑

t≥1

qt

q0

wt

w0

(
v′
)−1

[
β−t

(
qt

q0

)(
wt

w0

)
v′ (n0)

])
= W

(A.23)
Recall that MPC = ∂c0

∂W and MPN = ∂n0
∂W . Differentiating (A.23) with respect to W, we

obtain

MPC

(
1 + ∑

t≥1

qt

q0
β−t

(
qt

q0

)
u′′ (c0)

u′′ (ct)

)
−w0MPN

(
1 + ∑

t≥1

qt

q0

wt

w0
β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)
= 1

(A.24)
moreover, the intratemporal first order condition

v′ (n0) = w0u′ (c0) (A.25)

implies

v′′ (n0) MPN = w0u′′ (c0) MPC
v′′ (n0)

v′ (n0)
MPN =

u′′ (c0)

u′ (c0)
MPC

so, using the definition of the local elasticities of substitution,

−σ (ct) ctu′′ (ct) = u′ (ct) (A.26)

ψ (nt) ntv′′ (nt) = v′ (nt) (A.27)

we see that MPC and MPN are related through

MPN = −ψ (n0)

σ (c0)

n0

c0
MPC

Inserting into (A.24), this gives

MPC =

(
1 + ∑

t≥1

qt

q0
β−t

(
qt

q0

)
u′′ (c0)

u′′ (ct)
+

ψ (n0)

σ (c0)

w0n0

c0
∑
t≥1

qt

q0

wt

w0
β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)−1

(A.28)
as well as

MPS = 1−MPC + w0MPN

= MPC

(
∑
t≥1

qt

q0
β−t

(
qt

q0

)
u′′ (c0)

u′′ (ct)

+
ψ (n0)

σ (c0)

w0n0

c0
∑
t≥1

qt

q0

wt

w0
β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)
(A.29)
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Expressions (A.28) and (A.29) can also be rewritten using the fact that (A.21)-(A.22) to-
gether with (A.26)-(A.27) yield

β−t
(

qt

q0

)
u′′ (c0)

u′′ (ct)
=

σ (ct) ct

σ (c0) c0
β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)
=

ψ (nt) nt

ψ (n0) n0

So, we also have

MPC =

(
1 + ∑

t≥1

qt

q0

σ (ct) ct

σ (c0) c0
+

ψ (n0)

σ (c0)

w0n0

c0

(
1 + ∑

t≥1

(
qt

q0

)(
wt

w0

)
ψ (nt) nt

ψ (n0) n0

))−1

Step 3: Hicksian elasticities. The solution to the expenditure minimization problem in
(A.6) also involves the first-order conditions (A.21)-(A.22) , from which we obtain

u (ct) = u
((

u′
)−1

[
β−t

(
qt

q0

)
u′ (c0)

])
v (nt) = v

((
v′
)−1

[
β−t

(
qt

q0

)(
wt

w0

)
v′ (n0)

])
attaining utility U requires that the initial values c0, n0 satisfy

u (c0) + ∑
t≥1

βtu
((

u′
)−1

[
β−t

(
qt

q0

)
u′ (c0)

])
− v (n0)

−∑
t≥1

βtv
((

v′
)−1

[
β−t

(
qt

q0

)(
wt

w0

)
v′ (n0)

])
= U (A.30)

Differentiating with respect to q0 along the indifference curve (A.30) results in

∂c0

∂q0

(
u′ (c0) + ∑

t≥1
βtu′ (ct) β−t

(
qt

q0

)
u′′ (c0)

u′′ (ct)

)

−∂n0

∂q0

(
v′ (n0) + ∑

t≥1
βtv′ (nt) β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)

−∑
t≥1

βt u′ (ct)

u′′ (ct)

(
β−t qt

q2
0

u′ (c0)

)
−∑

t≥1
βt v′ (nt)

v′′ (nt)

(
β−t qt

q2
0

(
wt

w0

)
v′ (n0)

)
= 0

dividing by u′ (c0) and using (A.21), (A.25), (A.26) and (A.27) we find

∂c0

∂q0

(
1 + ∑

t

qt

q0
β−t

(
qt

q0

)
u′′ (c0)

u′′ (ct)

)
− ∂n0

∂q0
w0

(
1 + ∑

t≥1

qt

q0

wt

w0
β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)

=
1

u′ (c0)

(
∑
t≥1

βt u′ (ct)

u′′ (ct)

(
β−t qt

q2
0

u′ (c0)

)
+ ∑

t≥1
βt v′ (nt)

v′′ (nt)

(
β−t qt

q2
0

(
wt

w0

)
v′ (n0)

))
moreover, differentiating (A.25) we also find

∂n0

∂q0
= −ψ (n0)

σ (c0)

n0

c0

∂c0

∂q0
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Gathering results, we recognize, on the left-hand-side, the MPC expression in (A.28). We
then use first-order conditions on the right hand side to obtain

∂c0

∂q0
MPC−1 =

1
u′ (c0)

{
∑
t≥1

βt u′ (ct)

u′′ (ct)

(
β−t qt

q2
0

u′ (c0)

)
−∑

t≥1
βt v′ (nt)

v′′ (nt)

(
β−t qt

q2
0

(
wt

w0

)
v′ (n0)

)}

=
1
q0

(
∑
t≥1

u′ (ct)

u′′ (ct)

qt

q0
− w0 ∑

t≥1

v′ (nt)

v′′ (nt)

qt

q0

(
wt

w0

))
Manipulating the right-hand side, we recognize the expression for (A.29) as

∂c0

∂q0
MPC−1 = − 1

q0
σ (c0) c0

{
∑
t≥1

β−t
(

qt

q0

)
u′′ (c0)

u′′ (ct)

qt

q0

+
w0n0

c0

ψ (n0)

σ (c0)
∑
t≥1

β−t
(

qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

qt

q0

(
wt

w0

)}

= − 1
q0

σ (c0) c0
MPS
MPC

and therefore, we finally simply have

∂c0

∂q0

⌋
U

= − c0

q0
σ (c0) MPS

which corresponds to a Hicksian elasticity of

εh
c0,q0

= −σ (c0) MPS (A.31)

A similar procedure can be used to differentiate with respect to w0: from (A.25) we obtain

∂n0

∂w0
= −ψ (n0)

σ (c0)

n0

c0

∂c0

∂qs
+ ψ (n0)

n0

w0

and differentiating along (A.28) we therefore obtain

∂c0

∂w0
u′ (c0) MPC−1 + ψ (n0)

n0

w0

(
v′ (n0) + ∑

t≥1
βtv′ (nt) β−t

(
qt

q0

)(
wt

w0

)
v′′ (n0)

v′′ (nt)

)

= ∑
t≥1

βt v′ (nt)

v′′ (nt)
β−t qt

q0

(
wt

w2
0

)
v′ (n0)

We conclude by noticing that v′ (n0) = ψ (n0) n0v′′ (n0), so

∂c0

∂w0

⌋
U
= MPCψ (n0) n0

and

εh
c0,w0

= MPC
(

ψ (n0)
w0n0

c0

)
(A.32)
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Finally, elasticities for n0 result from a final differentiation of (A.25):

εh
n0,q0

= −ψ (n0)

σ (c0)
εh

c0,q0
(A.33)

εh
n0,w0

= ψ (n0)

(
1− 1

σ (c0)
εh

c0,w0

)
= ψ (n0)

(
1− ψ (n0)

σ (c0)

w0n0

c0
MPC

)
= ψ (n0) (1 + w0MPN) (A.34)

Step 4: Putting all expressions together. For consumption, equations (A.31)–(A.32) can
be inserted into (A.19) to yield

dc = MPC
(

ndw + dy + URE
dR
R
− NNP

dP
P

)
+ c

(
−σMPS

dR
R

+ ψMPC
wn
c

dw
w

)
The first term is the wealth effect, and the last two terms the substitution effects with
respect to interest rates and wages. We then simplify the expression to

dc = MPC
(

dy + n (1 + ψ) dw + URE
dR
R
− NNP

dP
P

)
− σcMPS

dR
R

(A.35)

which is our equation (3).
Similarly, equations (A.33)–(A.34) can be inserted into (A.20) to yield

dn = MPN
(

ndw + dy + URE
dR
R
− NNP

dP
P

)
+ n

(
−ψMPS

dR
R

+ ψ (1 + wMPN)
dw
w

)
and we again naturally separate the latter piece to obtain

dn = MPN
(

dy + n (1 + ψ) dw + URE
dR
R
− NNP

dP
P

)
− ψnMPS

dR
R

+ ψn
dw
w

(A.36)

which is equation (4).

A.3 Extension of Theorem 1 to general preferences and persistent changes

Theorem 1 in the main text is a special case of a general decomposition that holds for
arbitrary nonsatiable preferences U over {ct} and {nt} and for any change in the price
level {P0, P1 . . .}, the real term structure {q0 = 1, q1, q2 . . .}, the agent’s unearned income
sequence {y0, y1 . . .} and the stream of real wages {w0, w1 . . .}, with the nominal term
structure adjusting instantaneously to make the Fisher equation hold at the post-shock
sequences of interest rates and prices. The utility maximization problem is then

max U ({ct, nt})
s.t. Ptct = Ptyt + Wtnt + (t−1Bt) + ∑

s≥1
(tQt+s) (t−1Bt+s − tBt+s)

+Pt (t−1bt) + ∑
s≥1

(tqt+s) Pt+s (t−1bt+s − tbt+s)
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and the first order date-0 responses of consumption, labor supply and welfare to the con-
sidered change are, in this case, given by

dc0 = MPCdΩ + c0

(
∑
t≥0

εh
c0,qt

dqt

qt
+ ∑

t≥0
εh

c0,wt

dwt

wt

)

dn0 = MPNdΩ + n0

(
∑
t≥0

εh
n0,qt

dqt

qt
+ ∑

t≥0
εh

n0,wt

dwt

wt

)
dU = Uc0dΩ

where εh
x0,yt =

∂xh
0

∂yt

yt
x0

for x ∈ {c, n} and y ∈ {q, w} are Hicksian elasticities and dΩ =

dW −∑t≥0 ctdqt, the net-of-consumption wealth change, is given by

dΩ = ∑
t≥0

(qtyt)
dyt

yt︸ ︷︷ ︸
Real unearned income change

+ ∑
t≥0

(qtwtnt)
dwt

wt︸ ︷︷ ︸
Real earned income change

+ ∑
t≥0

qt

(
yt + wtnt +

(
−1Bt

Pt

)
+ (−1bt)− ct

)
dqt

qt︸ ︷︷ ︸
Revaluation of net savings flows

− ∑
t≥0

Qt

(
−1Bt

P0

)
dPt

Pt︸ ︷︷ ︸
Revaluation of net nominal position

(A.37)

The proof is a generalization of that in section A.2. I omit it here in the interest of space.

Values of all elasticities with separable preferences in a steady-state with no growth.
Following once more the steps of section A.2, it is possible to derive the value of Hicksian

elasticities for a change at any horizon. Here I just report the values of these elasticities
in the case of an infinite horizon model where qs

q0
= βs and ws = w∗, ∀s. These prices

correspond to those prevailing in a steady-state with no growth of any such model, and
the resulting elasticities are relevant, for example, to determine the impulse responses in
many RBC and DSGE models. The first order conditions imply that consumption and labor
supply are constant. Let us call the solutions c∗ and n∗, respectively. Writing ϑ ≡ w∗n∗

c∗

for the share of earned income in consumption and κ ≡
ψ
σ ϑ

1+ ψ
σ ϑ
∈ (0, 1), obtain values of

elasticities summarized in table A.1.

Table A.1: Steady-state moments, separable preferences
εh q0 qs,s ≥ 1 w0 ws,s ≥ 1 Marg. propensity
c0 −σβ σ (1− β) βs σκ (1− β) σκ (1− β) βs MPC (1− κ) (1− β)
n0 ψβ −ψ (1− β) βs ψ (1− κ (1− β)) −ψκ (1− β) βs MPN − 1

w∗ κ (1− β)
MPS (1− β)
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A.4 Proof of corollary 1

Rewrite equations (A.35) and (A.36) as

dc = MPC
(

dY + ψdw− wdn + URE
dR
R
− NNP

dP
P

)
− σcMPS

dR
R

wdn− ψndw = wMPN
(

dY + ψdw− wdn + URE
dR
R
− NNP

dP
P

)
+ ψwnMPS

dR
R

Hence

wdn− ψndw =
1

1 + wMPN

{
wMPN

(
dY + URE

dR
R
− NNP

dP
P

)
+ ψwnMPS

dR
R

}
which, inserted into the expression for dc yields

dc = MPC
(

1− wMPN
1 + wMPN

)(
dY + URE

dR
R
− NNP

dP
P

)
−σcMPS

(
1 + MPC

ψwn
σc

1
1 + wMPN

)
dR
R

But MPC ψn
σc = −MPN so this is

dc =
(

MPC
1 + wMPN

)(
dY + URE

dR
R
− NNP

dP
P

)
− σc

MPS
1 + wMPN

dR
R

and noting that
1 + wMPN = MPC + MPS

we can finally rewrite this in terms of ˆMPC = MPC
MPC+MPS as

dc = ˆMPC
(

dY + URE
dR
R
− NNP

dP
P

)
− σc

(
1− ˆMPC

) dR
R

as claimed.

A.5 Adding durable goods

This section shows the consequences of adding durable goods to the model.
I consider a standard durable goods problem. For simplicity, I ignore labor supply

and nominal assets, neither of which interacts with the conclusions below. A consumer
maximizes a separable intertemporal utility function

max ∑ βt {u (Ct) + w (Dt)}
s.t. Ct + pt It = Yt + (t−1bt) + ∑

s≥1
(tqt+s) (t−1bt+s − tbt+s)

Dt = It + Dt−1 (1− δ)

D−1, {−1bt} given

where Ct is now nondurable consumption, Dt is the consumer’s stock of durables, and pt is
the relative price of durable goods in period t.

I am interested in the response of the demand for nondurable goods Ct and durables
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goods It, as well as that of total expenditures

Xt ≡ Ct + pt It (A.38)

to a change in the time-0 nondurable real interest rate R0 and (potentially) a simultaneous
change in the price of durables p0. As I argue below, the notion of aggregate demand makes
most sense when the relative price of durables does not change with R0, but I start by
covering the general case in which p0 can change.

The intertemporal budget constraint reads

∑
t≥0

qt (Ct + pt It) = ∑
t≥0

qtYt + ∑
t≥0

qt (−1bt)

Defining Rt ≡ qt
qt+1

, the first-order conditions of this problem are, for all t ≥ 0

u′ (Ct) = βRtu′ (Ct+1) (A.39)

w′ (Dt) = u′ (Ct)

[
pt −

(1− δ) pt+1

Rt

]
(A.40)

Equation (A.39) is the standard Euler equation for nondurable consumption. Equation
(A.40) shows that the consumer equates the marginal rate of substitution between the
stock of durables and consumption to the user cost of durables, pt − (1−δ)pt+1

Rt
. A fall in

the nondurable real interest rate at date 0, R0, increases the desired level of nondurable
consumption and of the stock of nondurables (an intertemporal substitution effect). Hold-
ing p1 constant, it also reduces the user cost of durables, increasing the desired stock of
durables relative to nondurable consumption. A fall in p0 has the same effect of reducing
the durable user cost, but it does not affect intertemporal substitution in consumption.

Suppose that the path for interest rates {Rt}, relative prices {pt} and income {Yt} deliv-
ers the solution {Ct, Dt}. Consider the solution under the alternative paths

{
R0, R1, R2 . . .

}
,

{p0, p1, p2 . . .}, and
{

Y0, Y1, Y2 . . .
}

. Let dR = R0 − R0, dp = p0 − p0 and dY = Y0 − Y0.
I am interested in the response of the paths of nondurable and durable expenditures to
these changes. To obtain this, I find the paths for consumption {Ct} and durables {Dt},
and then find the implied path for durable expenditures {pt It}.

Marshallian demand. In order to determine the Marshallian demands, I could follow
the same proof as that of section A.2, but here I follow an alternative and somewhat more
intuitive procedure. The procedure is in two steps. First, I determine a variation that
respects all the first-order conditions (A.39)–(A.40) at the new prices. This gives dC∗ and
dD∗, which result in a budgetary cost dΩ∗ at the old prices. Second, I determine the change
in net wealth dΩ that results from the change in prices. The Marshaling demands are then

dC = dC∗ + MPC (dΩ− dΩ∗) (A.41)

dD = dD∗ + MPD (dΩ− dΩ∗) (A.42)
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where MPD = ∂D
∂Y is the increase in the stock of date-0 durables that results from a date-0

increase in income. Note that MPC and MPD are related: differentiating (A.40), we find

w′′ (D0) MPD = u′′ (C0) MPC
[

p0 −
(1− δ) p1

R0

]
so

MPD =
σD
σC

D0

C0
MPC

where σC ≡ − u′(C0)
u′′(C0)C0

and σD ≡ − w′(D0)
w′′(D0)D0

are the elasticities of intertemporal substitu-
tion in consumption and in the stock of durables. Since D0 = I0 + D−1 (1− δ) and the
initial stock D−1 is fixed, the total constant-p marginal propensity to spend at date 0 is

MPX ≡ ∂ (C + pI)
∂Y

=
∂C
∂Y

+ p
∂D
∂Y

= MPC + pMPD

= MPC
(

1 +
σD
σC

pD
C

)

Step 1: variation respecting FOCs. The simplest variation that respects all FOCs holds
the paths {Ct} and {Dt} fixed for all t ≥ 1 and adjusts C0 and D0 by dC (respectively dD)
such that (A.39) and (A.40) are satisfied at t = 0. Differentiating these equations, I obtain

− 1
σC

dC
C

=
dR
R

− 1
σD

dD
D

= − 1
σC

dC
C

+
p1

1−δ
R

p0 − p1
1−δ

R

dR
R

+
p0

p0 − p1
1−δ

R

dp
p

Hence we find
dC∗ = −σCC

dR
R

(A.43)

and

dD∗ = −σDD

[
p0

p0 − p1
1−δ

R

](
dR
R

+
dp
p

)
(A.44)

These responses are very intuitive: one way to respond to a fall in real interest rates is
to raise nondurable consumption and the stock of durables. The relevant elasticity for
durables is higher than σD because of the additional substitution effect coming from the
change in the user cost. A lower current relative price of durables has a symmetric effect
on the demand for durables as that of a lower real interest rate (in other words, it is the
real interest rate in terms of durables that matters for durables demand).

We are now ready to determine the net cost of this variation. Since

D0 = (1− δ) D−1 + I0

D1 = (1− δ) D0 + I1

the sequence of investment that achieves this variation consists naturally in an increase of
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dD∗ followed by a subsequent decrease:

dI∗0 = dD∗

dI∗1 = − (1− δ) dD∗

Hence the total budgetary cost of this ’star’ variation at the old prices p and R has the
simple form

dΩ∗ = dC∗ + p0dI∗0 + p1
dI∗1
R

= dC∗ +
(

p0 − p1
1− δ

R

)
dD∗

= − (σCC + p0σDD)
dR
R
− σD p0D

dp
p

Step 2: change in net wealth. Let Ω be defined as

Ω ≡ ∑
t≥0

qt {Yt + (−1bt)− Ct − pt It} .

At the initial prices, the intertemporal budget constraint implies Ω = 0. The exogenous
variation dR, dp and dY yields

dΩ = dY− Idp + ∑
t≥0

dqt {Yt + (−1bt)− Ct − pt It}

= dY− Idp−∑
t≥1

qt {Yt + (−1bt)− Ct − pt It}
dR
R

= dY− pI0
dp
p

+

Y0 + (−1b0)− C0 − p0 I0︸ ︷︷ ︸
URE

 dR
R

(A.45)

The intuition is as follows. Suppose that the nondurable real interest rate falls at date 0.
As before, this benefits consumers that have a negative URE, that is, maturing liabilities
C0 + p0 I0 in excess maturing assets Y0 +(−1b0). Note that, for this effect, total expenditures
including expenditures on durables are counted as part of URE. In that sense, URE measures
the true balance-sheet exposure to a change in the real interest rate. In particular, ceteris
paribus, when investment is higher today the consumer benefits more from a fall in real
interest rates.

Suppose however that, in parallel, the relative price of durables rises. In the general
equilibrium model of Barsky, House and Kimball (2007), for example, this happens in
response to an accommodative monetary policy shock when durable goods prices are more
flexible than nondurable goods prices. In that case, equation (A.45) shows that there is
an additional capital loss on wealth due to the rise in the durable relative price. While
conceptually distinct, these two effects could be consolidated into a single one, if we restrict
ourselves to variations that feature a constant elasticity of the durable-good price to the
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nondurable real interest rate
εpR ≡ −

∂p
p

R
∂R

(A.46)

The benchmark case where p is constant corresponds to εpR = 0, the case where the
durable real interest rate is constant to εpR = 1. Then,

dΩ = dY +

Y0 + (−1b0)− C0 − p0 I0
(
1− εpR

)︸ ︷︷ ︸
UREε

 dR
R

(A.47)

In other words, once we net out the capital revaluation effect, an alternative measure of
URE becomes UREε, which subtracts a fraction

(
1− εpR

)
of durable expenditures.

Step 3: demand for durables and nondurables. Combining (A.41)–(A.42) with (A.43),
(A.44) and (A.45), I obtain the Marshallian demands (recall that dI = dD at time 0)

dC = MPC
(

dY + URE
dR
R

+ (σCC + pσDD)
dR
R

+ (pσDD− pI0)
dp
p

)
− σCC

dR
R

dD = MPD
(

dY + URE
dR
R

+ (σCC + pσDD)
dR
R

+ (pσDD− pI0)
dp
p

)
−σDD

[
p0

p0 − p1
1−δ

R

](
dR
R

+
dp
p

)
This separates out the separate effects from changing R and p. Given the elasticity εpR in
(A.46), we can also rewrite this as

dC = MPC
(

dY + UREε dR
R

)
− σCC (1−MPC)

dR
R

+σD · pD ·MPC ·
(
1− εpR

)
· dR

R
(A.48)

dD = MPD
(

dY + UREε dR
R

)
+ σC ·MPD · C · dR

R

−σD · pD ·
(
1− εpR

)
· (1−MPD) ·

[
1

p0 − p1
1−δ

R

]
dR
R

(A.49)

Where UREε is defined in (A.47).

Special case with constant durable real interest rate (εpR = 1). When εpR = 1, equa-
tions (A.48)–(A.49) simplify to

dC = MPC
(

dY + URE1 dR
R

)
− σCC (1−MPC)

dR
R

dD = MPD
(

dY + URE1 dR
R

)
+ σC ·MPD · C · dR

R
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which are simple extensions of expressions in the main text, with URE1 (which does not
subtract durable expenditures) replacing URE. Note that to the extent that URE1 ≥ 0, the
expression for dD implies a contraction in durable goods from an increase in real interest
rates, as in Barsky, House and Kimball (2007). This is counterfactual, suggesting that εpR =

1 may be too high an elasticity in practice.

Special case with constant relative price (εpR = 0). While the cases where εpR 6= 0
are interesting in principle, they prevent a straightforward definition of aggregate demand
X = C + pI: if the relative price of two goods can change, then the relative demands for
these two goods (as well as their relative supplies) will matter for general equilibrium.
Therefore, the case where εpR = 0 is the most relevant for my purposes. Assume then that
p0 = p1 = p. In this case, we can combine (A.48) and (A.49) to obtain an expression for
the change in aggregate demand dX = dC + pdD as a function of the marginal propensity
to spend MPX = MPC + pMPD and other variables

dX = MPX
(

dY + URE
dR
R

+ σCC + σD pD
)
−
(

σCC +
σD pD

1− 1−δ
R

)
dR
R

This can further be simplified to yield an expression with the same form as the expression
in the main text,

dX = MPX
(

dY + URE
dR
R

)
− σX (1−MPX) X

dR
R

(A.50)

where σX is defined as

σX ≡
C
X
· σC +

(
1− C

X

)
· σD ·

pD
pI
·

1
1− 1−δ

R
−MPX

1−MPX
(A.51)

In other words, σX is a weighted average of σC and the relevant elasticity of substitution in
durable expenditures: the product of σD by the stock-flow ratio pD

pI , multiplied by a term
that increases in the elasticity of the user cost to the real interest rate.

Quantitatively, the second term is likely to be much larger than the first. If initially
durable expenditures cover replacement costs I = Dδ, then the stock-flow ratio is 1

δ .
Hence, with δ = 5% and R = 1.05 at annual rates, the second term in (A.51) is at least
as large as 1

20 × 1
10 × σD = 200σD. This makes aggregate demand very sensitive to given

changes in the real interest rate because of the large substitution effect that results from the
presence of long-lived durables, a point made by Barsky et al. (2007).
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A.6 Proof of theorem 2

After dividing through by Pt, defining the real bond position as λt ≡ Λt
Pt−1

and writing

Πt ≡ Pt
Pt−1

for the inflation rate between t− 1 and t, the budget constraint (9) becomes

ct + Qt

(
λt+1 − δ

λt

Πt

)
+ (θt+1 − θt) · St = yt + wtnt +

λt

Πt
+ θt · dt

In this notation, the consumer’s date-t net nominal position is

NNPt = (1 + Qtδ)
λt

Πt

while his unhedged interest rate exposure is:

UREt = yt + wtnt +
λt

Πt
+ θt · dt − ct = Qt

(
λt+1 − δ

λt

Πt

)
+ (θt+1 − θt) · St

His optimization problem can be represented using the recursive formulation

max
c,n,λ′,θ′

u (c)− v (n) + βE
[
V
(
λ′, θ′; y′, w′, Q′, Π′, d′, S′

)]︸ ︷︷ ︸
≡W(λ′,θ′)

s.t. c + Q
(

λ′ − δ
λ

Π

)
+
(
θ′ − θ

)
S = y + wn +

λ

Π
+ θd (A.52)

Qλ′ + θ′S ≥ D
R

The function V corresponds to the value from optimizing given a starting real level of
bonds λ′ and shares θ′, and includes the possibility of hitting future borrowing constraints.

I consider the predicted effects on c and n resulting from a simultaneous unexpected
change in unearned income dy, the real wage dw, the price level dP

P = dΠ
Π and the real

interest rate dR, which result in a change in asset prices dQ
Q =

dSj
Sj

= − dR
R for j = 1 . . . N.

By leaving the future unaffected, this purely transitory change does not alter the value
from future optimization starting at (λ′, θ′)— that is, the function W is unchanged. I claim
that, provided the consumption and labor supply functions are differentiable, their first
order differentials are

dc = MPC
(

dy + n (1 + ψ) dw + URE
dR
R
− NNP

dP
P

)
− σcMPS

dR
R

(A.53)

dn = MPN
(

dy + n (1 + ψ) dw + URE
dR
R
− NNP

dP
P

)
+ ψnMPS

dR
R

+ ψn
dw
w
(A.54)

where σ ≡ − u′(c)
cu′′(c) and ψ = v′(n)

nv′′(n) are the local elasticities of intertemporal substitution

and labor supply, respectively, MPC = ∂c
∂y , MPN = ∂n

∂y and MPS = 1−MPC + wMPN.
In order to prove (A.53) and (A.54), there are two cases to consider. In the first case, the

consumer is at a binding borrowing limit or lives hand-to-mouth. The problem is then a
static choice between c and n. In the second case, the consumer is at an interior optimum.
The result then follows from application of the implicit function theorem to the set of N + 2
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first-order conditions which, together with the budget constraint, characterize the solution
to the problem in (A.52). Here, to simplify the notation and the proof, I first prove the
statement in the case where all variables are changing but N = 0, and then consider the
case with stocks (N > 0) but without bonds and assuming only R is changing.

Case 1. Binding borrowing limit and hand-to-mouth agents.

Proof. The consumption of an agent at the borrowing limit is given by

c = wn + Z (A.55)

where

Z = z + (1 + Qδ)
λ

Π
+ θ · (d + S) +

D
R

Similarly, the consumption of an agent that lives hand to mouth is

c = wn + z

Given that dS = − S
R dR, dQ = −Q

R dR and d
(

1
Π

)
= − 1

Π2 dΠ = − 1
Π

dP
P , we have, if the

agent is at the borrowing limit

dZ = dz− (1 + Qδ)
λ

Π︸ ︷︷ ︸
NNP

dP
P

+

(
Qδ

λ

Π
+ θ · S +

D
R

)
︸ ︷︷ ︸

−URE

(
−dR

R

)
(A.56)

and, if the agent lives hand to mouth,

dZ = dz

but since that agent also has
NNP = URE = 0

equation (A.56) still applies. In both cases, the consumer is making a static choice between
c and n given the budget constraint (A.55), and hence has MPS = 0. We can then apply
the results of section A.2 to find

dc = MPC (dZ + w (1 + ψ))

dn = MPN (dZ + w (1 + ψ)) + ψndw

which yields the desired result.

Case 2a). N = 0, all variables changing I first prove the following lemma.

Lemma A.1. Let c (z, w, q, b) and n (z, w, q, b) be the solution to the following separable consumer
choice problem under concave preferences over current consumption u (c) and assets V (a), and
convex preferences over hours worked v (n):

max u (c)− v (n) + V (a)

s.t. c + q (a− b) = wn + z
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Assume c () and n () are differentiable. Then the first order differentials are

dc = MPC (dz + n (1 + ψ) dw− (a− b) dq + qdb)− σcMPS
dq
q

dn = MPN (dz + n (1 + ψ) dw− (a− b) dq + qdb) + ψnMPS
dq
q

+ ψn
dw
w

where MPC = ∂c
∂z , MPN = ∂n

∂z and MPS = 1−MPC + wMPN = 1−MPC
(

1 + wn
c

ψ
σ

)
.

Proof. The following first-order conditions are necessary and sufficient for optimality:

u′ (c) =
1
w

v′ (n) =
1
q

V′ (a) (A.57)

I first obtain the expression for MPC by considering an increase in income dz alone. Con-
sider how that increase is divided between current consumption, leisure and assets. (A.57)
implies

u′′ (c) dc =
1
w

v′′ (n) dn =
1
q

V′′ (a) da (A.58)

where the changes dc, dn and da are related to dz through the budget constraint

dc + qda = wdn + dz (A.59)

Define MPC = ∂c
∂z , MPN = ∂n

∂z and MPS = q ∂a
∂z . Then (A.58) implies

MPN
MPC

= w
u′′ (c)
v′′ (n)

=
u′′ (c)
u′ (c)

v′ (n)
v′′ (n)

= −n
c

ψ

σ

MPS
MPC

=
q2u′′ (c)
V′′ (a)

=
q
c

V′ (a)
σV′′ (a)

where σ ≡ − u′(c)
cu′′(c) and ψ ≡ v′(n)

nv′′(n) . Hence the total marginal propensity to spend is

1−MPS =
∂c
∂z
− w

∂n
∂z

= MPC
(

1 +
wn
c

ψ (n)
σ (c)

)
= 1− q2u′′ (c)

V′′ (a)
MPC (A.60)

and the marginal propensity to consume is

MPC =
1

1 + q2 u′′(c)
V′′(a) − w2 u′′(c)

v′′(n)

=
V′′ (a) v′′ (n)

V′′ (a) v′′ (n) + q2u′′ (c) v′′ (n)− w2u′′ (c)V′′ (a)

Consider now the overall effect on c, n and a of a change in q, w, z and b. Applying the
implicit function theorem to the system of equations

v′ (n)− wu′ (c) = 0

V′ (a)− qu′ (c) = 0

c + q (a− b)− wn− z = 0
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results in the following expression for partial derivatives:
∂c
∂q

∂c
∂z

∂c
∂w

∂c
∂b

∂n
∂q

∂n
∂z

∂n
∂w

∂n
∂b

∂a
∂q

∂a
∂z

∂a
∂w

∂a
∂b



= −

 −wu′′ (c) v′′ (n) 0
−qu′′ (c) 0 V′′ (a)

1 −w q


−1

︸ ︷︷ ︸
≡A

 0 0 −u′ (c) 0
−u′ (c) 0 0 0
(a− b) −1 −n −q

 (A.61)

now

det (A) = v′′ (n)V′′ (a)− w2u′′ (c)V′′ (a) + q2u′′ (c) v′′ (n) =
V′′ (a) v′′ (n)

MPC
and so

A−1 =
MPC

V′′ (a) v′′ (n)

 wV′′ (a) −v′′ (n) q v′′ (n)V′′ (a)
q2u′′ (c) + V′′ (a) −wqu′′ (c) wu′′ (c)V′′ (a)

qwu′′ (c) w2u′′ (c)− v′′ (n) qu′′ (c) v′′ (n)


therefore, the first row of (A.61)

[
∂c
∂q

∂c
∂z

∂c
∂w

∂c
∂b

]
= MPC

[
− w

v′′(n)
q

V′′(a) −1
]  0 0 −u′ (c) 0
−u′ (c) 0 0 0
(a− b) −1 −n −q


(A.62)

Using (A.60) we find

−q
u′ (c)

V′′ (a)
MPC =

σc
q

q2 u′′ (c)
V′′ (a)

MPC =
σc
q

MPS

so that the first column of the matrix equation (A.62) reads
∂c
∂q

=
σc
q

MPS− (a− b) MPC

The second and fourth column of (A.62) yield directly
∂c
∂z

= MPC

∂c
∂b

= qMPC

Finally, using (A.57) we have

w
u′ (c)
v′′ (n)

=
v′ (n)
v′′ (n)

= ψn

so that the third column of (A.62) reads
∂c
∂w

= MPCψn + MPCn

= MPC (1 + ψ) n
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The first-order total differential dc is then

dc =
∂c
∂z

dz +
∂c
∂b

db +
∂c
∂q

dq +
∂c
∂w

dw

= MPC (dz + qdb− (a− b) dq + (1 + ψ) ndw) + σcMPS
dq
q

(A.63)

as claimed. Similarly, after using MPN = MPCw u′′(c)
v′′(n) , the second row of (A.61) is

[
∂n
∂q

∂n
∂z

∂n
∂w

∂n
∂b

]
= MPN

[
− q2+V′′(a)/u′′(c)

wV′′(a)
q

V′′(a) −1
]  0 0 −u′ (c) 0
−u′ (c) 0 0 0
(a− b) −1 −n −q


(A.64)

Using (A.60) we find

−q
u′ (c)

V′′ (a)
MPN =

σc
q

q2 u′′ (c)
V′′ (a)

MPC
(−nψ

σc

)
= −nψ

q
MPS

Again the first column yields
∂c
∂q

= −nψ

q
MPS− (a− b) MPN

The second and fourth column of (A.62) yield directly
∂c
∂z

= MPN

∂c
∂b

= qMPN

Finally, since (
q2 +

V′′ (a)
u′′ (c)

)
u′ (c)

V′′ (a)
= −σc

(
q2 u′′ (c)

V′′ (a)
+ 1
)

= ψn
MPC
MPN

(
MPS
MPC

+ 1
)

the third column yields
∂n
∂w

=
1
w

ψn (MPS + MPC)+ MPNn =
1
w

ψn (1 + wMPN)+ MPNn = ψn
1
w
+ MPN (n + ψn)

The first-order total differential dn is then

dn =
∂n
∂z

dz +
∂n
∂b

db +
∂n
∂q

dq +
∂n
∂w

dw

= MPN (dz + qdb− (a− b) dq + (1 + ψ) ndw)− ψnMPS
dq
q

+ ψn
dw
w

(A.65)

Proof of theorem 2 in case 2a). If the policy functions are differentiable and the consumer is
at an interior optimum, then the conditions of lemma A.1 are satisfied: the borrowing
constraint is not binding so can be ignored, and the value function is concave per standard
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dynamic programming arguments. The notation of theorem 2 can be cast using that of the
lemma by using the mapping

q ≡ Q z ≡ y +
λ

Π
a ≡ λ′ b ≡ δ

λ

Π

with dP
P = dΠ

Π and dQ
Q = − dR

R . Hence dz = dy− λ
Π

dP
P , db = −δ λ

Π
dP
P and dq

q = − dR
R ; so

dz + qdb− (a− b) dq = dy− (1 + Qδ)
λ

Π︸ ︷︷ ︸
NNP

dP
P

+

(
λ′ − δ

λ

Π

)
Q︸ ︷︷ ︸

URE

dR
R

Inserting this equation into (A.63) and (A.65) yields the desired result.

Case 2b) N > 0, no bonds, only R changing. Since we are not considering changes
in wages, it is sufficient to restrict the analysis to a choice between consumption and as-
sets. The following lemma then proves the result for dc. The result for dn follows as a
straightforward extension.

Lemma A.2. Let c (θ, Y, R) be the solution to the following consumer choice problem under con-
cave preferences over current consumption u (c) and assets W (θ′)

maxc,θ′ u (c) + W
(
θ′
)

s.t. c +
(
θ′ − θ

)
S = Y + θd

where dS
dR = − S

R . Then, to first order

dc = MPC
(

dY + URE
dR
R

)
− σ (c) c (1−MPC)

dR
R

where σ (c) ≡ − u′(c)
cu′′(c) is the local elasticity of intertemporal substitution, MPC = ∂c

∂Y , and
URE = Y + θd− c

Proof. The following first-order conditions characterize the solution

Siu′
(
Y + θd−

(
θ′ − θ

)
S
)
= Wθi

(
θ′
)
∀i = 1 . . . N (A.66)

Consider first an increase in income dY alone. Differentiating along (A.66) we find

Siu′′ (c)

(
1−∑

j
Sj dθ

′ j

dY

)
= ∑

j
Wθiθ j

(
θ′
) dθ

′ j

dY
∀i (A.67)

Define η j ≡ Sj dθ
′ j

dY . Then (A.67) rewrites

∑
j

(
1

SiSj Wθiθ j
(
θ′
)
+ u′′ (c)

)
η j = u′′ (c) ∀i

Defining the matrix M with elements

mij ≡
1

SiSj Wθiθ j
(
θ′
)
+ u′′ (c)
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this system can also be written in matrix form as

Mη = u′′ (c) 1

or
η = u′′ (c) M−11

The budget constraint then implies that

MPC =
dc
dY

= 1−∑
j

η j = 1− u′′ (c)m (A.68)

where m is defined as
m ≡ 1M−11 (A.69)

Next, consider an increase in the real interest rate dR. Differentiating along (A.66) we
now have

dSi

dR
u′ (c) + Siu′′ (c)

(
−∑

j
Sj dθ

′ j

dR
−∑

j

dSj

dR

(
θ
′ j − θ j

))
= ∑

j
Wθiθ j

(
θ′
) dθ

′ j

dR
∀i

Using dSi

Si = − dR
R this rewrites

−Si

R
u′ (c) + Siu′′ (c)

(
−∑

j
Sj dθ

′ j

dR
+ ∑

j

Sj

R

(
θ
′ j − θ j

))
= ∑

j
Wθiθ j

(
θ′
) dθ

′ j

dR
∀i(A.70)

Defining now γj ≡ Sj dθ j′

dR , (A.70) shows that γj solves

∑
j

mijγ
j = − 1

R
u′ (c) + u′′ (c)∑

j

Sj

R

(
θ
′ j − θ j

)
∀i

which rewrites in matrix form

Mγ =

(
− 1

R
u′ (c) + u′′ (c)∑

j

Sj

R

(
θ
′ j − θ j

))
1

or

γ =

(
− 1

R
u′ (c) + u′′ (c)∑

j

Sj

R

(
θ
′ j − θ j

))
M−11 (A.71)

Differentiating with respect to R along the budget constraint c = Y + θd− (θ′ − θ) S, we
next see that

dc
dR

= −∑
j

Sj θ
′ j

dR
+ ∑

j

Sj

R

(
θ j − θ

′ j
)
= −∑

j
γj + ∑

j

Sj

R

(
θ j − θ

′ j
)

inserting (A.71) and using the definition of m,

dc
dR

= −
(
− 1

R
u′ (c) + u′′ (c)∑

j

Sj

R

(
θ
′ j − θ j

))
m + ∑

j

Sj

R

(
θ j − θ

′ j
)

(A.72)
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rearranging terms and using u′ (c) ≡ −cσ (c) u′′ (c) we find

dc
dR

= −σ (c)
c
R

u′′ (c)m + ∑
j

Sj

R

(
θ
′ j − θ j

) (
1− u′′ (c)m

)
But using the expression for MPC in (A.68), this is simply

dc
dR

= −σ (c)
c
R
(1−MPC) + ∑

j

Sj

R

(
θ j′ − θ j

)
MPC

and using the budget constraint ∑j Sj
(

θ j′ − θ j
)
= (θ′ − θ) · St = URE we obtain

dc
dR

= −σ (c)
c
R
(1−MPC) +

1
R

URE ·MPC (A.73)

Finally, considering a simultaneous change in income and the real interest rate, combining
(A.68) and (A.73) we obtain the first order differential

dc = MPC
(

dY + URE
dR
R

)
− σ (c) c (1−MPC)

dR
R

as was to be shown.

A.7 Proof of theorem 3

Given the assumption of fixed balance sheets and purely transitory shocks, Theorem 2
shows that

dci = ˆMPCi

(
dYi − dti + UREi

dR
R
− NNPi

dP
P

)
− σici

(
1− ˆMPCi

) dR
R

where, where dYi = nieidw+weidni + d (di) is the change in gross income at the individual
level and dti the change in taxes. We can further decompose the change in gross income as

dYi =
Yi
Y

dY + dYi −
Yi
Y

dY

and note that, since EI [Yi] = Y,

EI

[
dYi −

Yi
Y

dY
]
= dY− EI [Yi]

Y
dY = 0 (A.74)

Hence,

dci = ˆMPCi

(
Yi
Y

dY + dYi −
Yi
Y

dY− dti + UREi
dR
R
− NNPi

dP
P

)
− σici

(
1− ˆMPCi

) dR
R

and taking a cross-sectional average

dC = EI

[
Yi
Y

ˆMPCi

]
dY + EI

[
ˆMPCi

(
dYi −

Yi
Y

dY
)]
−EI

[ ˆMPCi (dti)
]
−EI

[ ˆMPCiNNPi
] dP

P

+
(
EI
[ ˆMPCiUREi

]
−EI

[
σi
(
1− ˆMPCi

)
ci
]) dR

R
(A.75)
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Now, the government budget (13) with the fiscal rule Gt = G and target Bt
Pt

= b reads

EI [tit] = G +
Bt

Pt
− b

Rt

Using the fact that at the margin, taxes are adjusted lump-sum, and the fact that NNPg =

−b as well as UREg = − b
R , this implies

dti = dt = NNPg
dP
P
−UREg

dR
R

In other words, taxes fall with unexpected increases in prices which reduce the govern-
ment debt burden, and they fall with reductions in real interest rates which reduces the
government’s debt servicing costs. But the market clearing conditions (17) and (18) imply
that these gains and losses have counterparts at the household level:

dti = dt = −EI [NNPi]
dP
P

+ EI [UREi]
dR
R

(A.76)

Hence, (A.75) rewrites

dC = EI

[
Yi
Y

ˆMPCi

]
dY + EI

[
ˆMPCi

(
dYi −

Yi
Y

dY
)]
−EI

[ ˆMPCi
]
(dt)−EI

[ ˆMPCiNNPi
] dP

P

+
(
EI
[ ˆMPCiUREi

]
−EI

[
σi
(
1− ˆMPCi

)
ci
]) dR

R
so

dC = EI

[
Yi
Y

ˆMPCi

]
dY + EI

[
ˆMPCi

(
dYi −

Yi
Y

dY
)]

+ EI
[ ˆMPCi

]
EI [NNPi]

dP
P
−EI

[ ˆMPCiNNPi
] dP

P

+
(
EI
[ ˆMPCiUREi

]
−EI

[ ˆMPCi
]

EI [UREi]−EI
[
σi
(
1− ˆMPCi

)
ci
]) dR

R
and finally, using (A.74)

dC = EI

[
Yi
Y

ˆMPCi

]
dY + CovI

(
ˆMPCi, dYi −Yi

dY
Y

)
−CovI

( ˆMPCi, NNPi
) dP

P

+
(
CovI

( ˆMPCi, UREi
)
−EI

[
σi
(
1− ˆMPCi

)
ci
]) dR

R
as claimed.

Case with heterogeneous taxes. If the taxes were not lump-sum, equation (A.76) would
be replaced by

EI [dti] = −EI [NNPi]
dP
P

+ EI [UREi]
dR
R

we would therefore use the fact that

EI
[ ˆMPCi (dti)

]
= EI

[ ˆMPCi
]

EI [dti] + CovI
( ˆMPCi, dti

)
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to finally obtain

dC = EI

[
Yi
Y

ˆMPCi

]
dY + CovI

(
ˆMPCi, dYi −Yi

dY
Y

)
−CovI

( ˆMPCi, NNPi
) dP

P

+
(
CovI

( ˆMPCi, UREi
)
−EI

[
σi
(
1− ˆMPCi

)
ci
]) dR

R
−CovI

( ˆMPCi, dti
)

The additional heterogeneous-taxation term is very natural. Suppose for example that,
at the margin, gains from the government budget (EI [dti] < 0) lead to disproportionate
reductions of taxes on high-MPC agents. Then CovI

( ˆMPCi, dti
)
< 0 , so aggregate con-

sumption increases by more than the benchmark from Theorem 1. The opposite happens
when tax reductions fall disproportionately on low-MPC agents.

A.8 Proof of corollary 2

From the definition of γi in (24), we have

d
(

Yi
Y

)
= γi

(
Yi
Y
− 1
)

dY
Y

Moreover,

dYi −Yi
dY
Y

= Yd
(

Yi
Y

)
= γi

(
Yi
Y
− 1
)

dY (A.77)

Next, rewrite equation (19) in elasticity terms by dividing by per-capita consumption C =

EI [ci] and using (A.77). We find

dC
C

= EI

[
Yi

EI [ci]
ˆMPCi

]
dY
Y︸ ︷︷ ︸

Aggregate income channel

+CovI

(
ˆMPCi, γi

Yi
EI [ci]

)
︸ ︷︷ ︸
Earnings heterogeneity channel

dY
Y −CovI

(
ˆMPCi,

NNPi
EI [ci]

)
dP
P︸ ︷︷ ︸

Fisher channel

+

CovI

(
ˆMPCi,

UREi
EI [ci]

)
︸ ︷︷ ︸
Interest rate exposure channel

−EI

[
σi
(
1− ˆMPCi

) ci
EI [ci]

]
︸ ︷︷ ︸

Substitution channel

 dR
R

Imposing γi = γ and σi = σ for all i, this equation writes

dC
C

= EI

[
Yi

EI [ci]
ˆMPCi

]
︸ ︷︷ ︸

M

dY
Y + γ×CovI

(
ˆMPCi,

Yi
EI [ci]

)
︸ ︷︷ ︸

EY

dY
Y −CovI

(
ˆMPCi,

NNPi
EI [ci]

)
︸ ︷︷ ︸

EP

dP
P

+

CovI

(
ˆMPCi,

UREi
EI [ci]

)
︸ ︷︷ ︸

ER

−σ×EI

[(
1− ˆMPCi

) ci
EI [ci]

]
︸ ︷︷ ︸

S

 dR
R

which is equation (25).

A27



B Data appendix

This section starts out by providing more details about the data and the MPC identifica-
tion strategies for the SHIW (section B.1), the PSID (section B.2), and the CE (section B.3).
Section B.4 contrasts the financial asset and liability information available in the PSID and
the CE, and compares it to that available in the Survey of Consumer Finance (SCF).

Section B.5 performs a sensitivity analysis along several dimensions. Section B.5.1 con-
siders the consequence of using total consumption expenditure to estimate MPC in the
PSID and CE. Section B.5.2 considers the effect of excluding durable expenditures from
URE. Section B.5.3 considers alternative maturity assumptions for assets and liabilities.
Section B.5.4 considers robustness to the number of bins used to stratify the population in
the PSID and in the CE. Finally, section B.5.5 considers alternative sample selections with
respect to age in the PSID.

Section B.6 then cuts the data in various ways to examine the empirical drivers of the
correlations in the data. Section B.6.1 looks at the influence of age, and section B.6.2 ex-
amines the role of income. Finally, section B.6.3 generalizes my covariance decomposition
procedure from section 4.4 to multiple covariates and reports the decomposition when all
of Jappelli and Pistaferri (2014)’s covariates are included.

B.1 SHIW

My first dataset comes from the 2010 wave of the Italian Survey of Household Income
and Wealth, which is publicly available from the Bank of Italy’s website. This is the data
source employed by Jappelli and Pistaferri (2014), and it is very useful for my purposes
because it contains a direct household-level measure of MPC, reported as part of a survey
question.47 An additional benefit of this dataset is that it presents detailed information on
financial assets and liabilities, allowing a fairly precise measurement of URE and NNP for
each household.

B.1.1 Exposure measures

Following the structure of the survey, I measure all my statistics at an annual frequency.48

Table B.1 presents summary statistics in euros.

47“Imagine you unexpectedly receive a reimbursement equal to the amount your household earns in a month.
How much of it would you save and how much would you spend? Please give the percentage you would save and
the percentage you would spend.”

48Note that the time frame for MPC is not specified in the question, as issue that is left unresolved in Jappelli
and Pistaferri (2014). A follow-up question in the 2012 SHIW separates durable and nondurable consumption, and
specifies the time frame as a full year. The equivalent “MPC” out of both durable and nondurable consumption has
close to the same distribution as that of MPC in the 2010 SHIW (respective means are 47 in 2010 and 45 in 2010)
which suggests that households tended to assume that the question referred to the full year.
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Table B.1: Summary statistics in the SHIW
N mean p5 p25 p50 p75 p95

Income 7,951 36,114 9,565 19,857 30,719 45,340 81,320
Consumption 7,951 27,541 10,600 16,800 24,000 32,900 56,500
Maturing assets 7,951 27,073 0 2,000 10,000 30,000 97,929
Maturing liabilities 7,951 9,440 0 0 0 305 49,000
URE 7,951 26,207 -24,787 2,490 16,214 39,063 113,834
Nominal assets 7,951 22,499 0 1,274 6,796 22,000 77,272
Nominal liabilities 7,951 15,133 0 0 0 4,285 99,000
Net Nominal Position 7,951 7,366 -81,712 -1 3,830 17,115 71,218
MPC 7,951 0.47 0.00 0.20 0.50 0.80 1.00

Units: 2010 Euros. All statistics are computed using survey weights.

URE: Y− T− C + A− L. To construct my measure of unhedged interest rate exposure,
I use net annual disposable income (which includes taxes, transfers and capital returns) as
my measure of income net of taxes Y − T. My consumption measure C includes expendi-
tures on both durables and non durables goods, but it does not include interest payments,
which are not reported separately from principal payments, and which I therefore count
as part of L.

For assets maturing in the year (A), I consider the amounts held in checking accounts,
savings accounts, certificates of deposits, and repurchase agreements (maturing equities
and bonds are already included as the dividend income part of Y− T). I consider various
scenarios for maturities. Given an assumed maturity of Nj years for a given asset or liabil-
ity j, I scale the observed amounts by 1

Nj
to obtain an annual measure of maturing flows.

In my benchmark scenario, I assume that these assets have a duration of two quarters
(Nj =

1
2 ).

As part of liabilities maturing in the year (L), I include payments on all loans. The
SHIW records up to three mortgages for each households. I add to principal payments the
principal balance outstanding on adjustable rate mortgages, assuming a duration of three
quarters (Nj =

3
4 ). I also include all debt outstanding on credit cards, assuming a duration

of two quarters.
Section B performs a sensitivity analysis around these maturity assumptions.

NNP and Income. To construct my measure of net nominal position, I include in nom-
inal assets the full amount held in checking accounts, savings accounts, certificates of de-
posits and repurchase agreements. I also include the full amounts held in bonds from
Italian banks and firms, with the exception of inflation-indexed BTP bonds. I assume that
two-thirds of foreign bonds are denominated in euros, and count that amount in nominal
assets. I then include all the shares of money market mutual funds and bonds mutual
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funds, in keeping with Doepke and Schneider (2006). For shares held at ’mixed’ mutual
funds, I assume that half of those are indirectly invested in bonds. Finally, I count all credit
originating from commercials or private party loans.

For nominal liabilities, my measure includes all debt due to banks, other financial in-
stitutions, and other households, as well as commercial loans.

My results are not influenced in any meaningful way by altering the share of ’mixed’
mutual funds invested in bonds, the share of foreign bonds that are euro-denominated, or
by excluding commercials and private party loans from both nominal assets and liabilities.

For my income exposure measure Y, since the SHIW does not provide information on
government taxes and transfers, I assume that the exposure is based on net rather than
gross income. Other assumptions, such as assuming a constant tax rate, only have a minor
influence on the size of the relevant covariance.

B.2 Panel Study of Income Dynamics

For the Panel Study of Income Dynamics website at the University of Michigan, I assem-
ble a dataset with household-level information on consumption, income, assets and liabil-
ities. This base file, together with a data dictionary, is included in the replication folder.
The procedure to identify MPC out of transitory income shocks that I employ in this sec-
tion originates from the contribution of Blundell, Pistaferri and Preston (2008) (BPP). It
has been used by Kaplan, Violante and Weidner (2014) to estimate the MPCs of hand-to-
mouth households, and by Berger et al. (2015) to estimate MPCs at different levels of hous-
ing wealth. My sample selection closely follows these papers. Since the PSID only starts
recording detailed consumption information in 1999, my sample period starts with the
1999 wave, and ends in 2013. I use the core sample of the PSID (made up of the SCR, SEO
and Immigrant samples) and drop households with missing information on the head’s
race, education or the state of residence. I then drop households whose income or con-
sumption grows more than 500%, falls by more than 80%, or is below $100 in any period.
I treat top-coded income or consumption data as missing data.

While the literature usually restricts the sample to working-age households, in my
benchmark scenario I keep all families whose head is between 20 and 90 years old, in or-
der to have a more accurate picture of the cross-sectional distribution of UREs and NNPs
by age.49 This sample selection leaves me with 38,143 observations from 9,620 different
households.

49As we know from Doepke and Schneider (2006), young and old households tend to have the largest net nom-
inal positions, with opposite signs. Since households’ income processes tend to change upon entering retirement,
however, including older households could lead to noisier estimates of MPCs. For this reason, in section B.5.5 I
provide results for my elasticity estimates that restrict the PSID sample to households aged 25 to 55 years old, as is
common in the literature.
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Table B.2: Summary statistics in the PSID
N mean p5 p25 p50 p75 p95

Net Income 38,143 60,753 13,722 29,546 47,914 74,659 138,136
Consumption 38,143 28,556 9,640 16,937 24,604 34,939 60,662
Maturing assets 38,143 41,639 0 828 6,593 25,761 175,813
Maturing liabilities 38,143 23,008 0 2,289 10,308 22,638 72,213
URE 38,143 50,828 -40,105 1,642 18,945 53,658 225,344
Nominal assets 38,143 40,221 0 600 5,000 25,761 185,000
Nominal liabilities 38,143 77,546 0 382 27,632 118,499 292,862
Net Nominal Position 38,143 -37,324 -260,753 -94,686 -11,973 1,740 127,464
Pre-govtt income 38,143 76,302 8,912 31,045 56,961 94,577 187,254

Units: 2009 USD. All statistics are computed using survey weights.

B.2.1 Exposure measures

Just as for the SHIW, I follow the structure of the PSID survey and do all my measure-
ment at annual frequency. The PSID groups assets and liabilities into coarse categories,
so I sometimes need to take a stand on their internal composition. I deflate all monetary
variables to 2009 dollars using the CPI in order to ensure comparability over time. Table
B.2 reports summary statistics in 2009 dollars.

URE: Y − T − C + A− L. For URE, I use an annual measure of net disposable income
for Y − T (which includes capital returns), and an annual consumption measure C that
includes only the consumption categories continuously available in the survey since 1999
(my first sample year). Those consists of expenditures on food, rent, property taxes, home
insurance, utilities, telecommunications, transportations, education, childcare and health-
care. Loan repayments are included in L, since—just like in the SHIW—interest expenses
are not reported separately from principal payments.

For assets maturing in the year (A), the PSID contains a variable that groups together
checking accounts, saving accounts, money market mutual funds, certificates of deposit,
government savings bonds and T–bills. In my benchmark scenario, I assume a duration of
two quarters for this asset category.

For the remainder of liabilities (L), the PSID reports up to two mortgages for each
household. In my benchmark scenario I assume that the duration for ARMs is three quar-
ters. The PSID also contains a variable that includes credit cards debt, student loans, medi-
cal bills, legal debt and loan from relatives. From 2011 onwards, a breakdown of categories
is available, and credit cards account for an average of 40% of the total. I assume that this
fraction has been constant over time, and maintain my assumption of two quarter duration
for credit card debt.
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NNP and Income. To construct a household’s net nominal position, I count as nominal
assets all the amount held in checking accounts, saving accounts, money market mutual
funds, certificates of deposit, government savings bonds and T–bills. The PSID contains
another variable that includes bonds, trusts, estates, cash value of life insurance and collec-
tion. I assume that half of that is constituted by bonds, and include this in nominal assets
as well. I include the whole amount in IRAs invested in bonds, and half the amount in
IRAs invested in a mix of stocks and bonds.

For nominal liabilities, I count the principal balance outstanding on each mortgage and
the whole amount due in the form of credit cards debt, student loans, medical bills, legal
debt and loan from relatives.

For my income exposure measure, I use the PSID’s measure of gross income before
taxes and government transfers.

B.2.2 Identification of MPC

As mentioned in main text, the literature exploits the panel dimension of the data in PSID
in order to estimate the MPC out of transitory income shocks. I follow BPP and construct
my consumption measure for MPC using all non durable consumption categories.50 For
my income measure, I use labor income plus government transfers, as in Kaplan, Violante
and Weidner (2014). Following BPP, I first regress the log of consumption and the log of
income on observables characteristics of the households, including dummy variables for
year, year of birth, education, race, family structure, employment status and region, as well
as dummies for interactions between year with education, race, employment status and
region. I then use the residuals of these regressions (call them yit and cit) to estimate the
MPC out of transitory income shocks. Specifically, for each exposure measure, in each year,

I stratify the population in J bins. I then estimate ψj =
Covj(4ct,4yt+1)

Covj(4yt,4yt+1)
as the pass-through

coefficient of log income on log consumption, pooling all years together.51 I finally recover
a measure of the marginal propensity to consume MPCj by multiplying ψj by the ratio of
average consumption to average income in each bin j.

Next, for each exposure measure, I calculate the average value of exposure in each bin,
EXPj, normalized by average consumption in the sample. I finally compute my estimators
as52

50This is also consistent with Kaplan et al. (2014) and Berger et al. (2015). In section B.5.1, I report instead an MPC
calculated using all consumption expenditures available in the PSID.

51See Blundell et al. (2008) and Kaplan et al. (2014) for the structural assumptions under which this procedure
correctly recovers the MPC out of transitory income shocks. The estimate can, of course, be recovered with an
instrumental variable regression of4ct on4yt, using4yt+1 as an instrument.

52Note that I simply take Ŝ to be the sample counterpart to 1−EI [MPC]. The procedure cannot simultaneously
recover an estimate of the covariance between MPC and consumption. In the SHIW data, the difference between
average MPC and consumption-weighted MPC is small, so this is unlikely to significantly affect the value of S.
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In order to take into account sampling uncertainty, I compute the distribution of these
estimators using a Monte-Carlo procedure, resampling the panel at the household level
with replacement. Section B.5.4 considers robustness to using J = 3 to 8 bins to stratify the
sample.

B.3 Consumer Expenditure Survey, 2001-2002 (JPS sample)

My data for the Consumer Expenditure Survey comes from the Johnson, Parker and Soule-
les (2006) (JPS) dataset, which I merged with the main survey data and detailed expen-
diture files to obtain additional information on households’s consumption expenditures,
financial assets and liabilities. The dataset covers households with interviews between
February 2001 and March 2002. Relative to the full CE sample, JPS drop the bottom 1%
of nondurable expenditure in levels, households living in student housing, those with age
less than 21 or greater than 85, those with age changing by more than a unit or by a neg-
ative amount between quarters, and those whose family size changes by more than three
members between quarters. Since the 2001 CE survey has several observations with miss-
ing values for income—which is a crucial component of URE and a measure of exposure in
its own right—I do not consider observations with incomplete income information when
analyzing the interest rate exposure or the earnings heterogeneity channel. My sample
is therefore made of 9,983 observations from 4,833 different households when comput-
ing statistics relevant to these two channels, and contains 12,227 observations from 5,900
households when analyzing the Fisher channel.

B.3.1 Exposure measures

Following the structure of the dataset, all my CE measurement is performed at a quarterly
frequency. Table B.3 presents summary statistics in dollars.

URE: Y− T− C + A− L. In order to construct my quarterly measure of URE, I use one
fourth of the annual net disposable income as my measure of income Y − T, while for
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Table B.3: Summary statistics in the CE
N mean p5 p25 p50 p75 p95

Net income 9,983 11,621 1,445 4,550 8,995 15,643 29,706
Consumption 9,983 9,993 2,187 4,633 7,625 12,514 26,205
Maturing assets 9,983 4,796 0 0 60 1,769 21,000
Maturing liabilities 9,983 5,334 0 0 782 2,954 35,502
URE 9,983 1,582 -28,561 -2,874 596 4,916 26,890
Nominal assets 12,227 19,006 0 0 9 5,000 100,000
Nominal liabilities 12,227 49,671 0 0 12,786 73,951 200,794
Net Nominal Position 12,227 -27,859 -174,318 -58,441 -6,801 0 58,078
Pre govt. income 9,983 12,520 1,731 4,814 9,500 16,750 32,500

Units: 2001 USD. All statistics are computed using survey weights.

consumption C I use a quarterly measure of total expenditures that include both durables
and non durables goods.

For maturing financial assets A, as in the other two surveys, I assume that checking
accounts and savings accounts have a duration of two quarters.

For maturing liabilities, as in the SHIW and PSID, my benchmark assumptions is that
the duration of an adjustable rate mortgages is three quarters, and that credit card debt
has a two quarter duration. Relative to those surveys, the CE also contains information on
adjustable-rate home equity loans, for which I also assume a three quarter duration. As
before, I also include all principal payments carried out in the period towards my measure
of L.

NNP and Income. To construct my NNP measure, I include in nominal assets all the
amount in savings and checking accounts. I then assume that the variable ’securities’,
which contains the amount held in stocks, mutual funds, private sector bonds, govern-
ment bonds or Treasury notes, contains a 50% share of bonds, and include those in my
measurement. I also count all the amount held in US savings bonds and in private party
loans owed.

Using the supplemental expenditure files, my measure of nominal liabilities is fairly
detailed. I take the sum of principal balances outstanding on mortgages, home equity
loans, home equity line of credit, loans on vehicles, personal debt and credit card debt.

For my income exposure measure, I use an annual measure of gross income before
taxes, converted to quarterly value.
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B.3.2 MPC identification strategy

JPS identified the propensity to consume out of the 2001 tax rebate by exploiting random
variation in the timing of its receipt across households. In this section I closely follow
their procedure for analyzing responses to the rebate among different exposure groups.
Specifically, for each of my redistribution channels, I rank households in equally-sized bins
according to their measure of exposure as at the time of the first interview. I then regress
changes in the level of consumption expenditures (∆Cit in JPS’s notation) on the amount of
the tax rebate (Rebateit). I follow their instrumental-variable specification, instrumenting
Rebateit with a dummy indicator for whether the debate was received. I include month ef-
fects and control for age and changes in family composition, and I allow both the intercept
and the rebate coefficients to differ across households bins.

My benchmark estimate uses food consumption expenditures as dependent variable.
This allows for substantially more precise estimates, as it does in JPS. Section B.5.1 below
reports all results using total consumption expenditures as dependent variable instead.
Section B.5.4 considers using different numbers of bins.

The procedure to compute estimators is then the same one as the PSID, with confidence
intervals again constructed using a Monte-Carlo procedure, resampling the panel at the
household level with replacement. Section B.5.4 reports redistribution elasticities using
between 3 and 8 bins to stratify the sample.

B.4 Evaluating the quality of the financial information in U.S. surveys

In order to shed light on the quality of financial data in the PSID and the CE, tables B.4 and
B.5 compare the median value of each class of assets and liabilities for households holding
these instruments with the comparable number from the Survey of Consumer Finance. All
three surveys are analyzed in 2001, the year in which they all overlap. As discussed above,
the CE and the PSID group assets and liabilities into coarse categories, making a precise
comparison difficult. However, table B.4 illustrates that liabilities in both the CE and the
PSID appear to be aligned with numbers from the SCF as far as medians are concerned.
This is especially true in the CE. Regarding financial assets, PSID and SCF data are fairly
comparable. By contrast, the CE appears to considerably underreport assets, confirming
claims in the literature.

A35



Table B.4: Median values for financial liabilities — CE v. PSID v. SCF
Liabilities SCF CE PSID CE/SCF PSID/SCF

Mortgages on primary residence 72 72.3 78 1.00 1.08
HELOC on primary residence 15 18.9 - 1.26 -
Other residential debt 40 37.9 18 0.95 0.45

Credit cards 1.9 2
6

1.05
0.6Vehicle loans 9.2 10.4 1.13

Education loans, personal loans, other 5 1.2 0.24

Any debt 38.7 40.1 50 1.04 1.29
Units: Thousands of 2001 USD.

Households holding those liabilities in 2001. Medians computed using survey weights.

Table B.5: Median values for financial assets — CE v. PSID v. SCF
Financial Assets SCF CE PSID CE/SCF PSID/SCF

Transaction accounts 3.9 1
3.5

0.26
0.7Certificates of deposit 15 3 0.2

Savings bonds 1 0.8 0.8

Retirement accounts 29.4 - 25 - 0.85

Stocks 20 25 20 0.64 1
Bonds, mutual funds, life insurance, other 20 12 0.6

Any financial asset 28.3 4.5 8 0.16 0.28
Units: Thousands of 2001 USD.

Households holding those assets in 2001. Medians computed using survey weights.

B.5 Sensitivity analysis

In this section I perform several robustness checks. As a general matter, my results in the
SHIW and PSID are remarkably stable across all scenarios.

B.5.1 Using total expenditure to estimate MPC

Figure B.1 replicates the right two columns of figure 2 when all available consumption ex-
penditures are used to estimate MPC in the PSID and in the CE, instead of my benchmark
scenario (which uses non durable consumption in the PSID and food consumption in the
CE). This involves a minor change of consumption measure for the PSID, but a much more
substantial change in the CE.

As a result, for the PSID, figure B.1 delivers qualitatively similar patterns as figure 2.
Conversely, for the CE, the patterns are different, but the confidence intervals are extremely
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Table B.6: Using total expenditures to estimate MPC in the PSID and CE
Survey PSID CE

Estimate 95% C.I. Estimate 95% C.I.

ÊR -0.04 [-0.12,0.03] -0.41 [-2.00,1.17]
ÊNR

R -0.01 [-0.08,0.06] -0.41 [-1.98,1.16]
Ŝ 0.98 [0.95,1.01] 0.99 [-0.02,2.01]

ÊP -0.07 [-0.15,0.01] -0.44 [-7.03,6.15]
ÊNR

P -0.11 [-0.19,-0.03] -1.67 [-9.13,5.80]

M̂ 0.06 [-0.01,0.12] -0.03 [-1.93,1.88]
ÊY -0.03 [-0.08,0.02] -0.31 [-1.37,0.74]

This figure recomputes the right two columns of table 3, but uses total expenditures to estimate MPC.

wide, and the point estimates tend to give implausible values, either very close to 1 or
below 0.

Table B.6 replicates the right two columns of table 3 with this alternative definition of
MPC. In the PSID, the point estimates are little changed, though confidence intervals are
larger. In the CE, by contrast, the signs are the same, but the magnitudes are larger than
in my benchmark scenario. However, the confidence bands are very wide. Moreover,
income-weighted MPC is now negative on average, though again with very large confi-
dence intervals. I conclude that this measure of MPC, while theoretically more appealing,
is too imprecise to be able to draw definitive conclusions.

B.5.2 Excluding durable consumption from the URE calculation

Section 2.2 shows that, if relative durable goods prices have an elasticity ε with respect
to the real interest rate, then a theoretically-consistent measure of URE counts a fraction
1− ε of nondurable expenditures. Figure B.2 plots my estimated ÊR against ε in all three
datasets. The left-most part of the graph corresponds to ε = 0, which is my benchmark
scenario. As is clear from the graphs, the magnitudes are not altered dramatically by the
choice of ε. If anything, excluding a larger fraction of durable goods tends to make the
estimated value of ER more negative.

B.5.3 Alternative maturity assumptions

Here, I consider the sensitivity of my estimates of the redistribution elasticity with respect
to the real interest rate, ER, to my assumptions regarding maturities for short-term assets
and liabilities that I am counting as part of Ai or Li. Table B.7 reports results. In the
first column, I assume that all assets and liabilities have a duration of one quarter. In
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Figure B.1: Using total expenditures to estimate MPC in the PSID and the CE
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Figure B.2: Estimating ÊR assuming alternative values of ε.

Table B.7: Estimated redistribution elasticity ER for five duration scenarios
Duration scenario

Quarterly Short Benchmark Long Annual

ÊR

SHIW -0.18 -0.21 -0.11 -0.08 -0.06
[-0.29,-0.06] [-0.29,-0.13] [-0.16,-0.06] [-0.11,-0.04] [-0.09,-0.03]

PSID -0.10 -0.10 -0.05 -0.04 -0.03
[-0.20,-0.00] [-0.19,-0.01] [-0.10,-0.00] [-0.09,0.00] [-0.07,0.01]

CE -0.19 -0.13 -0.09 -0.07 -0.06
[-0.55,0.17] [-0.41,0.15] [-0.26,0.09] [-0.20,0.06] [-0.17,0.06]

the second, I maintain these assumptions, but increase ARM mortgage durations to two
quarters. The third column is my benchmark scenario (two quarter duration for deposits,
three for ARMs, two for credit card debt). My fourth scenario increases the duration of
deposits to three quarters, the ARM durations to one year, and credit card debt durations
to three quarters. Finally, the last column reports results assuming durations of one year.

A stylized fact emerging from these results is that, the longer the durations, the closer
to zero ÊR becomes. This is consistent with the predictions from my model in section 5,
and in particular the left panel of figure 3. The point estimates do not vary dramatically
across scenarios, and remain negative in all scenarios across all three datasets, suggesting
that my benchmark estimates are robust to maturity assumptions.

B.5.4 Number of bins in the PSID and CE

Recall that my estimates of MPCs in the PSID and the CE are obtained by I stratifying the
population in three equally-sized groups. Table B.8 reports the full redistribution elastici-
ties of all three channels by progressively increasing the number of bins from 3 to 8 bin in
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Table B.8: Redistribution elasticities using 3 to 8 bins in the PSID and the CE
Number of bins

3 4 5 6 7 8

PSID

ÊR
-0.05 -0.04 -0.04 -0.05 -0.05 -0.05

[-0.10,-0.00] [-0.09,0.02] [-0.10,0.02] [-0.11,0.01] [-0.12,0.01] [-0.11,0.01]

ÊP
-0.02 -0.04 -0.03 -0.02 -0.03 -0.03

[-0.08,0.04] [-0.10,0.02] [-0.10,0.03] [-0.08,0.04] [-0.10,0.04] [-0.09,0.04]

ÊY
-0.04 -0.04 -0.05 -0.05 -0.05 -0.05

[-0.08,-0.00] [-0.08,-0.00] [-0.09,-0.01] [-0.09,-0.00] [-0.09,-0.00] [-0.09,0.00]

CE

ÊR
-0.09 -0.10 -0.14 -0.10 -0.12 -0.10

[-0.26,0.09] [-0.29,0.09] [-0.36,0.08] [-0.33,0.14] [-0.37,0.13] [-0.35,0.16]

ÊP
-0.11 -0.18 -0.28 -0.20 -0.42 -0.60

[-0.83,0.60] [-0.93,0.58] [-1.17,0.61] [-1.18,0.78] [-1.50,0.66] [-1.66,0.46]

ÊY
-0.05 -0.04 -0.06 -0.05 -0.09 -0.06

[-0.15,0.06] [-0.14,0.06] [-0.17,0.05] [-0.17,0.07] [-0.21,0.03] [-0.19,0.06]

both samples.
In the PSID results are fairly robust, both in terms of point estimates (which remain-

ing negative and close to benchmark-scenario values) and in terms of confidence intervals
(which remain relatively narrow). Signs are also stable in the CE, though for ÊP magni-
tudes increase and confidence bands also widen considerably.

B.5.5 Age sample selection in PSID

Table B.9 assesses the impact of including very young and very old households in my base-
line PSID sample, which departs from the benchmark assumption in the literature. The
first set of columns recall my benchmark estimates for all my key cross sectional moments.
The second one reports results obtained when restricting the sample to households whose
head is between 25 and 55 years old, as in Kaplan, Violante and Weidner (2014) and others.
As evident from the table, results are broadly consistent for both samples, suggesting that
age is not an important driver of my results.

B.6 Empirical drivers of MPC, URE, NNP and income

This section complements section 4.4 by providing other perspectives on the empirical
drivers of my main objects of interest.
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Table B.9: Sensitivity with respect to age sample selection in PSID
Survey Benchmark [25,55]

Estimate 95% C.I. Estimate 95% C.I.

ÊR -0.05 [-0.10,-0.00] -0.03 [-0.08,0.01]
ÊNR

R 0.01 [-0.05,0.06] 0.03 [-0.01,0.07]
Ŝ 0.97 [0.95,0.98] 0.96 [0.94,0.98]

ÊP -0.02 [-0.08,0.04] -0.02 [-0.08,0.04]
ÊNR

P -0.07 [-0.13,-0.01] -0.10 [-0.17,-0.03]

M̂ 0.08 [0.03,0.13] 0.10 [0.04,0.15]
ÊY -0.04 [-0.08,-0.00] -0.04 [-0.07,-0.00]

B.6.1 The role of age

This section examines the distribution of exposures and MPC by age in each survey. I
divide the population in eight equally-sized age bins. This allows me to assess life-cycle
dynamics. It also helps to visualize clearly the relative strengths and weaknesses of each
survey.

Exposure measures. Figure B.3 reports the average value of URE, NNP and income in
each age bin, normalized by average consumption in the survey. Average URE (the blue
line in the first row of graphs) is increasing in age across all three surveys, with a pattern
of decline after retirement in the SHIW. This pattern is mostly due to a decumulation of
financial assets in that survey (as represented by the green line). In terms of magnitudes,
average URE is always positive in the SHIW and in the PSID, while in the CE average URE
is negative for most working-age households. However, this is clearly driven by the differ-
ent data flaws in each survey: the SHIW and the PSID greatly underreport consumption
relative to income—notice the difference between the black and the red line. This tends to
overestimate URE. By contrast, as documented above, the CE severely underreports assets,
underestimating URE.

Regarding net nominal positions (the blue line in the second row of graphs), the life-
cycle pattern in the SHIW is also increasing in age. By contrast, the PSID and the CE
display an interesting U shape, with a minimum around age 40. In particular, in the SHIW,
nominal liabilities are declining almost monotonically with age, while nominal assets are
sharply increasing until age 60 and then decline rapidly. By contrast, in the PSID and in
the CE, nominal liabilities are increasing in age for young households, and then start to
decline steadily after age 40—while nominal assets are almost monotonically increasing in
age. In terms of magnitudes, average NNP is negative for most of working age population
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Figure B.3: Exposure measures by age bins in all three datasets

in the SHIW, while it is very negative in the CE and PSID for all households cohorts except
the oldest ones. This highlights, once again, the issue that these surveys cover liabilities
better than they cover assets.

For income, we observe the classic inverted-U shape in age across all three datasets.

MPC. Figure B.4 reports marginal propensities to consume by age bins in all three
surveys. There is an overall declining pattern in age, except for a spike for the oldest
cohort in the CE. Interestingly, all three surveys also suggest a rise in MPC around middle
age. This pattern is not sensitive to the number of bins employed to stratify the population.
Combining this graph with figure B.3, it appears that age is indeed a driver of the negative
correlation between MPC and my exposure measures—as already apparent in table 4.
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B.6.2 The role of income

Figure B.5 examine the distribution of URE and NNP in all three surveys, when the pop-
ulation is grouped into eight income bins. Unsurprisingly, average URE is increasing in
income, especially in the SHIW and the PSID. In these surveys, average URE increases
more than one for one with income at the top of the distribution, owing an increase in
maturing assets. Interestingly, maturing liabilities (the orange line) also increase in income
across all three surveys.

For net nominal position, patterns are different in Italy and in the United States. In
the SHIW, net nominal position is initially flat, and then increases with income, owing to
an increase in assets at the top of the income distribution. By contrast, in the PSID and
in the CE, net nominal position initially declines in income, and then flattens out. This
is because nominal liabilities initially increase strongly with income, while nominal assets
only increase mildly.

B.6.3 A general covariance decomposition

In section 4.4, I presented a covariance decomposition that projected observables on a sin-
gle covariate. This approach can of course be generalized to include any number of covari-
ates. The procedure is in two steps: first, run an OLS regression

MPCi = (βm)′ Zi + εm
i

UREi = (βu)′ Zi + εu
i

where Zi =
(
1, Zi1, · · · , Zi J

)′ is now a vector of covariates. Then, recover fitted values

M̂PCi =
(

β̂m
)′

Zi

ÛREi =
(

β̂u
)′

Zi
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Figure B.5: URE and NNP components by income bins in all three datasets

and residuals ε̂m
i , ε̂u

i . The law of total covariance can now be expressed as

Cov (MPCi, UREi) = Cov
(

M̂PCi, ÛREi

)
+ Cov

(
ε̂m

i , ε̂u
i

)
(B.1)

The first term gives the component of explained covariance, and the second the compo-
nent of unexplained covariance. The explained part of the covariance can be further de-
composed as

Cov
(

M̂PCi, ÛREi

)
= Cov

(
J

∑
j=1

β̂m
j Zij,

J

∑
k=1

β̂m
k Zik

)
=

J

∑
j=1

J

∑
k=1

β̂m
j β̂m

k Cov
(
Zij, Zik

)
(B.2)

Of course, the ’share of explained covariance’ attributed to one particular covariate through
this procedure depends on which other covariates are included in Zi.

Implementation. Tables B.10 reports the full matrix described by equation (B.2) for each
of my three main covariances ER, EP, and EY in the SHIW, when all covariates from table 4
are included simultaneously. In the PSID and the CE, this exercise is less interesting since
MPCs are only available at the group level, but it is possible to do by using the average
value of explanatory variables in each bin. These results can easily be generated using the
code provided online.
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Table B.10: Fraction of ER explained by each pair of SHIW covariates
Age Male Married Years of ed. Family size Res. South City size Unemployed

Age bins 9.03 0.20 -0.03 -2.36 0.13 -0.02 0.01 0.13
Male 0.83 1.78 0.13 0.25 -0.03 0.09 0.00 0.04

Married -0.27 0.29 0.22 0.28 -0.09 -0.04 0.00 0.01
Years of ed. -3.04 0.08 0.04 7.61 -0.05 0.49 -0.03 0.00
Family size 2.65 -0.15 -0.19 -0.82 0.38 0.34 -0.00 0.08
Res. South -0.34 0.34 -0.06 6.09 0.27 10.53 -0.00 0.39
City size 0.59 0.08 0.04 -2.37 -0.01 -0.01 0.45 0.01

Unemployed 1.62 0.13 0.01 0.03 0.05 0.31 0.00 1.07

Table B.11: Fraction of EP explained by each pair of SHIW covariates
Age Male Married Years of ed. Family size Res. South City size Unemployed

Age bins 13.29 0.22 -0.06 -2.56 1.52 -0.01 -0.02 -0.15
Male 1.22 1.98 0.28 0.28 -0.35 0.04 -0.01 -0.05

Married -0.40 0.33 0.49 0.30 -1.06 -0.02 -0.02 -0.01
Years of ed. -4.47 0.09 0.08 8.27 -0.60 0.22 0.12 -0.00
Family size 3.89 -0.16 -0.43 -0.89 4.48 0.15 0.01 -0.10
Res. South -0.50 0.37 -0.13 6.62 3.12 4.84 0.00 -0.46
City size 0.87 0.08 0.10 -2.58 -0.14 -0.00 -1.73 -0.01

Unemployed 2.39 0.15 0.03 0.03 0.60 0.14 -0.00 -1.26

Table B.12: Fraction of EY explained by each pair of SHIW covariates
Age Male Married Years of ed. Family size Res. South City size Unemployed

Age bins 8.63 0.21 -0.14 -4.65 -2.33 -0.07 -0.04 0.48
Male 0.79 1.90 0.65 0.50 0.53 0.29 -0.02 0.17

Married -0.26 0.31 1.12 0.55 1.63 -0.12 -0.03 0.04
Years of ed. -2.90 0.08 0.19 15.00 0.93 1.62 0.19 0.01
Family size 2.53 -0.15 -0.98 -1.61 -6.89 1.13 0.02 0.31
Res. South -0.32 0.36 -0.30 12.01 -4.79 35.21 0.01 1.49
City size 0.56 0.08 0.22 -4.68 0.22 -0.03 -2.66 0.04

Unemployed 1.55 0.14 0.07 0.05 -0.92 1.04 -0.01 4.09
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C Details on the structural model of section 5

C.1 Additional details on the model

In the model, every household i has felicity function u (c) = c1−σ−1

1−σ−1 and picks the sequence{
ci

t
}

to maximize

E

[
∞

∑
t=0

(
t

∏
τ=0

βi
τ

)
u
(

ci
t

)]
(C.1)

by choice of a portfolio of nominal bonds Λt and real bonds χt, with

Ptci
t + Qt

(
Λi

t+1 − δΛi
t

)
+ qtPt

(
χi

t+1 − δχi
t

)
= Ptyt

(
ei

t

)
+ Λi

t + Ptχ
i
t (C.2)

and borrowing constraint
QtΛi

t+1 + qtPtχ
i
t+1 ≥ −DtPt (C.3)

Given Λi
t and χi

t, define the equivalent real bond position as

λi
t ≡

Λi
t

Pt−1
+

qt−1

Qt−1
χi

t

Along any perfect-foresight path with a constant price level Pt = P, no arbitrage between
nominal and real bonds implies

1 + δQt

Qt−1
=

1 + δqt

qt−1

and therefore qt
Qt

= 1
P . The consumer is then indifferent between holding nominal or real

bonds. I resolve the indeterminacy by assuming that a constant share κ of the portfolio is
invested in real (indexed) bonds, so that the household’s portfolio allocation is

Λi
t

Pt−1
= (1− κ) λt

qt−1

Qt−1
χi

t = κλt

With this notation, the budget constraint (A.55) and borrowing constraint (C.3) rewrite

ci
t + Qtλ

i
t+1 = yt

(
ei

t

)
+ (1 + δQt)

[
1− κ

Πt
+ κ

]
λt (C.4)

Qtλ
i
t+1 ≥ −Dt

where Πt =
Pt

Pt−1
is inflation. Along any perfect-foresight paths I consider, Πt = 1 and the

budget constraint simplifies to

ci
t + Qtλ

i
t+1 = yt

(
ei

t

)
+ (1 + δQt) λi

t

Equation (C.4) to determine portfolio losses in case of a deviation of Πt from its perfect-
foresight value.

This problem has the following recursive formulation. The consumer’s idiosyncratic
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state is given by the combination of si
t and his real bond position λi

t ≡
Λi

t
Pt−1

. From his
point of view, the relevant components of the aggregate state are

(
yt, Qt, Πt, Dt

)
, where

Πt ≡ Pt
Pt−1

denotes the inflation rate at t. Hence his optimization problem is characterized
by the Bellman equation:

Vt (λ, s) = maxc,λ′ u (c) + β (s)E
[
Vt+1

(
λ′, s′

)
|s
]

s.t. c + Qtλ
′ = y (s) + (1 + δQt) λ (C.5)

Qtλ
′ ≥ −Dt

I calibrate the model such that, at the initial steady-state distribution Ψ (s, λ), aggregate
consumption is equal to the aggregate endowment, so

Ct ≡
∫

ct (s, λ) dΨt (s, λ) = Yt

This can be interpreted as the flexible-price equilibrium of a Huggett model with no gov-
ernment debt.

C.2 Behavior of constrained agents after real interest rate shocks

I specify that the borrowing limit
{

Dt
}

adjusts in response to such a shock so as to hold
the real coupon payment in the next period fixed: Dt = Qtd, or equivalently

Λi
t+1
Pt
≥ −d (C.6)

In addition to being a natural one, the specification of the adjustment process for borrow-
ing limits in (C.6) implies that theorem 1 holds exactly, including for agents at a binding
borrowing limit. It is crucial to understand how these agents are affected depending on the
maturity of the debt in the economy, δ. In the experiments I consider inflation is Πt = 1,
so that nominal and real interest rates are equal. Consider an agent with income Yi

t who
maintains himself at the borrowing limit in an initial steady-state where the real interest
rate is R and the bond price is constant at Q = 1

R−δ . His consumption is equal to his
income, minus the interest payment on the value of the borrowing limit D = Qd:

ci
t = Yi

t − (R− 1) D

Across economies with different debt maturities δ, D is a constant, so that the steady-state
payments are the same, but the exposure of these payments to real interest rate changes
differ. Indeed we can decompose:

(R− 1) D = (R− δ) D− D (1− δ) = d + URE

where d ≡ (R− δ) D is the part that is precontracted and URE ≡ −D (1− δ) the part
that is subject to interest changes. Hence, economies with different δ involve very different
levels of unhedged interest rate exposures for borrowing-constrained agents, ranging from
the full principal −D when δ = 0 to none when δ = 1. In the benchmark calibration with
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δ = 0.95, highly-indebted low-income agents use their full income for interest payments
and amortization d, and then borrow, as on a home equity line of credit, to maintain their
consumption level. Hence they are only mildly affected by changes in interest rates. On
the other hand, when all debt is short-term, we instead have ci

t = Yi
t − (Rt − 1) D for

constrained agents, leading to large swings in their consumption as interest rates change.

C.3 Computational method

C.3.1 Method of endogenous gridpoints

I use the method of endogenous gridpoints (Carroll 2006) to solve for consumer policy
functions. This is a computationally efficient solution method based on policy function
iteration, which avoids costly root-solving operations and is applicable to any standard
incomplete market problem with CRRA utility functions (see for example Guerrieri and
Lorenzoni 2015). The computation involves finding the policy function for consumption
ct (λ, s) on a fine grid for λ (2000 points) and a discrete grid for s (20 points: 2 states for β

and 10 states for z).
When the borrowing constraint binds, which happens for λ ≤ λ∗t for some λ∗t , the

policy function is given by

ct (λ, s) = yt (s) + λ (1 + Qtδ) + Dt (C.7)

For λ > λt the borrowing constraint is not binding, and defining the real interest rate by

Rt =
1 + δQt+1

Qt

the solution is characterized by the Euler equation

c−σ−1

t = βtRtEt

[
(ct+1)

−σ−1]
(C.8)

The idea behind endogenous gridpoints is to start from a given state today s and a target
bond level in the next period λ′. The budget constraint

λ′ =
1

Qt
(yt (s) + λ (1 + Qδ)− c) (C.9)

implies that the pairs (λ, c) that are consistent with λ′ are on a straight line. Moreover,
given a guess for the policy function ct+1(·, ·), there is a unique value of g consistent with
an optimal choice of λ′ tomorrow, given by

c =
(

βtRtE

[
ct+1

(
λ′, s′

)−σ−1
|s
])−σ

(C.10)

Hence by varying the target bond level λ′, one traces out the policy function ct(λ, s) in the
region λ > λt. This is very efficient computationally since it can be performed on the grid
for λ′ which is used to store ct+1(λ

′, s′). The calculation only involves:

a) Finding c using (C.10), which only involves power operations and linear combina-
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Figure C.1: Constructing the policy function c (λ, s = 1) (model calibration)

tions using the Markov transition matrix for s

b) Finding λ by solving one linear equation in one unknown in (C.9)

c) Defining λ∗t as the bond value today that corresponds to λ′ = Dt
Qt

, since this is the
highest level of bonds for which the consumer chooses to be at the borrowing limit
tomorrow with his Euler equation holding with equality

d) If λ∗t > Dt−1
Qt−1

, completing the policy function on an arbitrary grid for
[

Dt−1
Qt−1

, λ∗t
]

using
(C.7)

e) Interpolating the resulting policy function back to the grid for λ

Figure C.1 illustrates the construction of the policy function for state s = 1 in the model
calibration. Consider targeting a bond level λ′ = 0. This yields a value for consumption
through the Euler Equation (C.8) indicated by the dashed yellow line. It also yields a set
of pairs (c, λ) consistent with λ′ = 0 through the budget constraint (C.9), as indicated by
the solid purple line. The intersection of these two lines yields a new point of the policy
function over λ. Varying λ′ in this way we trace out this policy function (solid blue line)
over the range where the Euler equation holds. The policy function is completed by the
set of points consistent with borrowing at the limit (solid red line).
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C.3.2 Flexible price steady-state

In a steady-state, the consumer faces a constant sequence
(
Qt, Πt, Dt

)
=
(

1
R−δ , 1, D

)
where R is the interest rate that prevails in steady-state.

I find the steady-state interest rate R using the following classic bisection procedure:

a) Start with a guess for R and for the consumption policy function c0 (λ, s)

b) Iterate on ct (λ, s) using the procedure described in C.3.1 until ct+1− ct is sufficiently
small. By construction, c = cSS(b, y) then satisfies the functional equation

c (λ, s)−σ−1
= β (s) RE

[
c
(

1
Q

(y (s) + λ (1 + δ)− c (λ, s)) , s′
)−σ−1

|s
]

(C.11)

c) Use the inverse policy function for next period bonds λ (λ′, s) = [λ′]−1 (λ′, s), which
is computed as part of the endogenous gridpoints method, to find the stationary
conditional distribution for bonds Ψ (λ|s), as the fixed point of the operator mapping
Ψt to Ψt+1,

Ψt+1
(
λ′|s′

)
= ∑

s
Ψt

([
λ′
]−1 (

λ′, s
)
|s
) Pr (st = s)

Pr (st+1 = s′)
Π
(
s′|s
)

d) Check that goods market clear,
∫

c (λ; s) dΨ (λ, s) = Y∗. If they do not, adjust R in
the direction of market clearing and repeat (one must first determine whether steady-
state consumption is locally increasing or decreasing in R)

C.3.3 Transitional dynamics following a shock

Here I describe how to compute perfect-foresight transition paths following a change in
the path for real interest rates {Rt}, such as at described by equation (29). Assume that the
economy returns to steady-state by time T (in my computations, T = 200 when the shock
has persistence ρ = 0.5)

a) Using the path of Rt, compute the bond price path

Qt =
1 + δQt+1

Rt

backwards starting from QT = 1
R−δ .

b) Given the paths for
(
Qt, Πt = 1, Dt

)
, compute policy functions backwards, starting

from cT = cSS, using the method of endogenous gridpoints described above.

c) Starting from the conditional bond distribution that prevails in the initial steady-
state, and using the transitional inverse policy function for next period bonds com-
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puted as part of step b), compute the conditional bond distributions along the transi-
tion using

Ψt+1
(
λ′|s′

)
= ∑

s
Ψt

([
λ′t
]−1 (

λ′, s
)
|s
) Pr (st = s)

Pr (st+1 = s′)
Π
(
s′|s
)

d) Finally, compute aggregate consumption as Ct =
∫

ct (λ; s) dΨt (λ, s).
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