Supplementary Online Appendix: How Strong are Ethnic Preferences?

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang

July 2016

Appendices:

1. Appendix A - Supplemental Theory
2. Appendix B - Supplemental Tables and Figures
3. Appendix C - Lab Protocols and Exit Interviews
4. Appendix D - Pre-Analysis Plans
5. Appendix E-Pre-Analysis Plan Results

How Strong are Ethnic Preferences? Appendix A: Supplemental Theory

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang April 2016

The discussion of the model of ethnic preferences and behavior in Section 2 of the main text largely focuses on the context of the Dictator game. Similar reasoning applies to the PublicGood game, where we can employ an analogous utility-structure for respondent i when making a contribution t_{i} to the group fund. The main difference lies in the fairness-norm becoming group-dependent. Specifically, we assume that the fairness term is now given by $m_{i}^{g}=$ $f\left(E_{g,-i}[t]\right)$, where $E_{g,-i}[t]$ is individual i 's expectation about other group-member contributions to the group fund of group g, and we assume $f^{\prime}>0$. Here the expression for an interior solution becomes:

$$
\hat{t}_{i}^{*}=m_{i}^{g}-b_{i}\left(1+n_{j} q_{i}\right)
$$

Contributions in a setting of coethnics (CE) thus can we written as:

$$
\hat{t}_{i}^{C E}=m_{i}^{C E}-b_{i}
$$

and when i faces a group with non-coethnics (NCE):

$$
\hat{t}_{i}^{N C E}=m_{i}^{N C E}-b_{i}\left(1+q_{i}\right)
$$

Therefore, the observed difference in contributions becomes

$$
B^{P G}=\hat{t}_{i}^{C E}-\hat{t}_{i}^{N C E}=b_{i} q_{i}+m_{i}^{C E}-m_{i}^{N C E}
$$

As such, the difference in contributions in a coethnic versus non-coethnic group reflects both an ethnic bias in preferences (the first term, as above) and in expectations about others' contributions. If other group members are expected to contribute less in a non-coethnic setting compared to a coethnic setting, this should amplify the observed ethnic bias in terms of Publicgood game contributions.

In the lab, we also collected data on respondents' stated beliefs about the amounts other group members will contribute. Since cooperation can unravel in voluntary Public-good games, as individuals tend to have a desire to contribute less than they think that others are contributing (Fischbacher and Gachter 2010), we also examine the difference between individual i^{\prime} s contribution t_{i} and her expectations about others' contributions, m_{i}^{g}. This difference is often interpreted as capturing the degree of free-riding. If we then make the
additional assumption that $m_{i}^{g}=f\left(E_{g,-i}[t]\right)=E_{g,-i}[t]$, the difference between a respondent's contribution and his beliefs about others' contribution ("contributions minus beliefs") is:

$$
\hat{t}_{i}^{*}-m_{i}^{g}=-b_{i}\left(1+n_{j} q_{i}\right)
$$

Hence, the difference in contributions minus beliefs in a coethnic versus a non-coethnic Publicgood game setting is again $b_{i} q_{i}$, as in the Dictator game, although the interpretation of this measure is slightly different. In the Dictator game, it captures ethnic bias in generosity, whereas in the Public-good game it can be thought of as ethnic bias in free-riding. As above for the Dictator game, in a population with non-zero egoism ($b_{i}>0$), a finding of no ethnic bias in behavior in the Public-good game implies no ethnic bias in preferences ($q_{i}=0$).

How Strong are Ethnic Preferences? Appendix B: Supplementary Tables and Figures

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang

April 2016

	Full Sample		No Prime	FWER p-value	PoliticalCompetition Prime	EthnicCultural	Ethnic- Political Prime	National Prime
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Coethnic Recipient	-1.51	-1.44	-1.85	0.518	-2.88	-0.63		-0.62
	(1.22)	(1.22)	(2.27)		(2.37)	(2.61)		(2.55)
Election Round	$-5.21 * * *$	-5.98***	-6.52**	0.008	-4.24	-8.73***		-1.28
	(1.41)	(1.43)	(2.60)		(2.73)	(3.01)		(2.91)
Election Round * Coethnic Recipient	0.70	0.63	-0.83	0.786	3.74	1.76	0.67	-1.80
	(1.88)	(1.87)	(3.46)		(3.65)	(4.02)	(3.15)	(3.89)
Election Round * Non-coethnic Recipient	-1.41	-1.42	-4.54*	0.153	-0.53	1.65	2.02	-2.00
	(1.42)	(1.42)	(2.61)		(2.78)	(3.05)	(3.15)	(2.94)
Covariates	No	Yes	No		No	No	No	No
Observations	2881	2881	748		721	711	345	701
Recipient: Coethnic + Election Round * (Coethnic - Non-coethnic)	0.60	0.60	1.86		1.39	-0.53	-1.35	-0.43
[P-value]	[0.67]	[0.67]	[0.48]		[0.62]	[0.86]	[0.67]	[0.89]
Differential Priming Effect on Coethnic Bias					-0.46	-2.39	-3.21	-2.28
[P-value]								
Notes: The dependent variable is the transfer in the Dictator game (in percent of the endowment). Pooled data from the Non-election Round (July-August 2012) and Election R (January-February 2013). Standard errors in parentheses are clustered at the individual level. P-values: * $\mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$. Covariates include ethnicity indicators, a indicator, education controls, and the Raven's test score. FWER p-values are simulated as described in the pre-analysis plan, for column (3). There was no Non-coethnic profile Dictator game during the Non-election Round, hence the absence of a direct "Non-Coethnic Recipient" term. The first F-test tests the hypothesis that the average level of coeth in the Election round was zero. The second F-test tests the hypothesis that the difference in coethnic bias in the Election round between the control group and the respective prime group is zero. Each individual was endowed with 50 Ksh (approx. 0.60 USD). The Ethnic-Political Prime group was only implemented in the Election Round, which explains the absence of the first two coefficients in this row. All specifications exclude ethnic Kamba subjects, as specified in the pre-analysis plan.								

Table S2: Public-Good Game Contributions, in Standard and Profiled Games

	Full Sample		No Prime	FWER p-value	Political- Competition Prime	EthnicCultural	Ethnic- Political Prime	National Prime
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Coethnic Group	2.22*	2.22*	-1.73	0.984	5.06*	$5.38{ }^{*}$		0.21
	(1.33)	(1.33)	(2.54)		(2.58)	(2.92)		(2.52)
Mixed Group	0.65	0.65	0.32	0.988	0.38	1.73		0.18
	(1.18)	(1.18)	(2.29)		(2.44)	(2.52)		(2.23)
Election Round	-2.97*	-3.95**	-6.03*	0.321	-1.31	-4.55		0.18
	(1.76)	(1.81)	(3.37)		(3.46)	(3.71)		(3.57)
Election Round * Coethnic Group	-1.67	-1.68	2.00	0.984	-3.61	-4.71	4.18	-0.39
	(1.89)	(1.89)	(3.39)		(3.83)	(4.10)	(3.24)	(3.78)
Election Round * Mixed Group	2.00	2.00	2.30	0.984	2.84	-0.28	4.29	3.12
	(1.85)	(1.85)	(3.59)		(3.60)	(3.98)	(2.84)	(3.65)
Covariates	No	Yes	No		No	No	No	No
Observations	2939	2939	763		736	724	344	716
Coethnic Group - Mixed Group [P-value]	1.57	1.57	-2.05		4.68	3.64		0.027
	[0.16]	[0.16]	[0.35]		[0.068]	[0.11]		[0.99]
Election Round * (Coethnic Group - Mixed Group) [P-value]	-3.67	-3.67	-0.30		-6.46	-4.43	-0.11	-3.52
	[0.027]	[0.027]	[0.93]		[0.061]	[0.19]	[0.97]	[0.25]
Differential Priming Effect on Coethnic Bias [P-value]					6.73	5.69		2.08
					[0.047]	[0.072]		[0.47]
Differential Priming Effect on Coethnic Bias in Election Round [P-value]					-6.20	-4.10	2.24	-3.21
					[0.20]	[0.39]	[0.55]	[0.48]
Notes: The dependent variable is the contribution in the Public-Good game (in percent of the endowment). Pooled data from the Non-election Round (July-August 2012) and Ele Round (January-February 2013). Standard errors in parentheses are clustered at the individual level. P-values: * $\mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$. Covariates include ethnicity indicat gender indicator, education controls, and the Raven's test score. FWER p-values are simulated as described in the pre-analysis plan, for column (3). Each individual was endowed 60 Ksh (approx. 0.70 USD). The first F-test tests the hypothesis that the average level of coethnic bias across both the Non-election round and the Election round is zero, and the F-test tests the hypothesis that the difference in coethnic bias across the Non-election round and the Election round is zero. The third F-test tests the hypothesis that the difference coethnic bias between the control group and the respective priming group is zero, and the fourth F-tests tests the hypothesis that the difference, across Non-Election and Electio Round, in the difference in coethnic bias between the control group and the priming group is zero. All specifications exclude ethnic Kamba subjects, as specified in the pre-analy plan.								

Table S3: Choose-Your-Dictator Game Choices, in Standard and Profiled Games

Table S4: Summary Statistics on Sample Composition

	Full Sample	Non-Election Round	Election Round	Difference
Demographics				
Female	60.35	52.96	66.31	$-13.35^{* * *}$
	(48.93)	(49.95)	(47.30)	(2.64)
Age	33.0	32.7	33.3	-0.6
	(10.9)	(11.0)	(10.9)	(0.6)
Education	9.6	9.7	9.5	0.19
	(3.1)	(3.1)	(3.1)	(3.1)
Raven's Test Score (normalized)	0.00	0.18	-0.15	$-0.33^{* * *}$
	(1.00)	(0.94)	(1.02)	(0.05)
Ethnic Affiliation				
Kikuyu	32.23	35.86	29.31	$6.54^{* * *}$
	(46.75)	(48.00)	(45.55)	(2.54)
Luo	20.85	20.89	20.82	0.07
	(40.64)	(40.68)	(40.63)	(2.22)
Observations	1362	608	754	

Notes: Pooled data from the Non-election Round (July/August 2012) and Election Round (January/February 2013).
Standard deviations, or standard errors for the "Difference" column, in parentheses. P-values: * $\mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}$ <0.01. Values are averages, presented in percent terms for "Female", "Kikuyu" and "Luo".

The Kenya Non-Election Round was from July to August 2012. The Kenya Election Round was from January to February 2013. The Kenyan national elections took place in March 2013.

Notes: Sample averages and 95% confidence intervals for standard Dictator game play (left Panel) and standard Public-Good game play (right Panel) for the Non-Election round versus the Election round. The unadjusted p-value of the difference between the Non-Election round and the Election round is <0.001 in the left Panel, and 0.091 in the right Panel. The Non-Election round took place in July/August 2012, and the Election round in January/February 2013. Participants were endowed with 50 Ksh in the Dictator game and 60 Ksh in the Public-Good game.

How Strong are Ethnic Preferences? Appendix C

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang

April 2016

Contents

1 Lab Protocol for Kenya 2
2 Lab Screenshots 36
3 Lab Protocol for Payouts 41
4 Exit Interviews 44

1 Lab Protocol for Kenya

Protocol for Kenya

1 Sampling and Recruitment

1.1 Sample composition

1. Subject pool: Convenience sample recruited through in low-income neighborhoods.
2. For our sample, we aim to achieve a composition similar to Nairobi's ethnic composition, and to Kenya's overall composition. To do so, we took the five largest ethnic groups, the Kikuyu, Luo, Kamba, Luhya, and Kisii.

1.2 Recruitment

Busara research assistants carried out the recruitment, with the assistance of local leaders. The subject pool consists of over 3600 respondents, recruited from several low-income neighbourhoods in Viwandani and Kibera.

Script for recruitment:

My name is [] and I work for the Busara Center for Behavioral Economics. We are recruiting people to participate in the studies at our center, supervised by Johannes Haushofer.
The purpose of the study is to gain a better understanding on how people make their economic decisions. In these studies you will be asked to perform simple tasks on a computer. Computer or reading skills are not required. The tasks in this study will be explained to you separately if you are invited to participate. To be eligible to enroll in the study, you should be a resident of Nairobi aged 18 or above. Your participation is voluntary and you can decide whether to participate or not. You will never be penalized if you decide not to participate or stop participating.
We will need to scan your right hand thumb; we are doing so for purpose of security and identification. The thumb print is a unique identifier. Since we have people who don't have ID's or who may have lost their ID's or have waiting cards, we settled on the thumb print for it is uniform to all. Once we invite you over to our center, for you to gain entrance we scan your thumb. This in return gives us your data to show you are among those recruited.
We have given you a consent form explaining the research more fully and guaranteeing that we take measures to maintain the confidentiality of your personal information. Because this is a research program, we cannot share any of your personal information with other people. Any information we use will be general, statistical information, based on the information you provide in our studies, but will not include your name, number, etc, Please read the consent form and if you have any questions, please do not hesitate to ask. If you are in agreement please write your name and signature at the back, as proof that you have read, understood and voluntarily accepted to participate.
When we have a study available, we will SMS you with an invitation listing the date and time to come to Busara. If you show up for the study, you will receive 200 Ksh, and
sometimes more for answering questions correctly. All the money will be sent to you through Mpesa and so the number you give us should be registered. You may only be contacted once every month to participate in a study. This is not a job, but you may be able to make money from time to time.
When you receive the SMS you must reply "YES" and then your name if you want to let us know you are attending. If you don't we will assume you didn't receive the message or can't come, and will give your space to someone else. We always need 20 people at a study, so if you can't attend we have to find someone who can. If you don't reply YES and come anyway, we will have to turn you away.

Thanks.
Questions asked at recruitment by Busara:

1. EnrollmentStart: Enrollment start time
2. MPesa: Do you have a Safaricom line registered with MPesa?
3. CellPhone1: What is your phone number?
4. CellPhone2: Do you have any other phone number we can contact you at?
5. FirstName: What is your first name?
6. MiddleName: What is your middle name?
7. LastName: What is your last name?
8. InKibera: Are you living in Kibera or elsewhere?
9. KiberaLocation: What is your location in Kibera?
10. InNairobi: Are you living in Nairobi or elsewhere?
11. NrbLocation: What is your location in Nairobi?
12. BirthYear: What year were you born?
13. Gender:
14. Education: What is the highest education level you have completed?
15. Occupation: What is your occupation?
16. Occupation_specify: What specific occupation?
17. IncomeStream: Is this source of income continuous (you work \& earn money everyday) or occasional (you work \& earn money only sometimes)?
18. Selfemployed: Are you an employee (employed by someone) or self-employed?
19. NativeLanguage: What is your mother tongue?
20. NativeLanguage_specify: What specific language?
21. Marital: What is your marital status?
22. Children: How many biological children do you have? Biological children are children directly related to you, not step-children or adopted children.

1.3 Mobile phone call-in

- The on-time incentive is 50 Ksh . Late-comers will be compensated transport costs but will not be able to participate. They are told at recruitment if they are late, they cannot participate.
- Scheduled sessions with participants about 2 days in advance of actual session.

Script for mobile phone calls:
Hi, is this NAME? May I speak to NAME? This is [NAME OF CALLER], and I'm calling from the Busara Center. You recently registered in Kibera [Viwandani] to be a participant in our studies and received an SMS inviting you to attend a session at [9:00 AM OR 1:00PM] on [DAY AND DATE OF STUDY].

Will you be able to attend the [9:00 AM OR 1:00PM] study? The entire session will take about 3 hours.

You will receive 200 shillings simply for your time and to cover your transport costs. Once you arrive, you can earn additional payment through various activities during the study. The payment will be sent via MPesa to the number you registered with during enrollment. [For Viwandani: The researchers of this study realize that the distance may be inconvenient, and are willing to pay 200 shillings additionally to make-up for the inconvenience.]

If yes: I'll mark you as attending then, I look forward to seeing you at [9:00 AM OR 1:00PM] on [DAY OF STUDY]. We can only start when everyone is present and we don't want to keep others waiting, so you will receive a 50 shilling bonus if you arrive on time. If you arrive late and the study is full, you will not be able to participate and cannot be compensated for attending. If you have young children coming with you, please have someone accompany you who can watch over the child during the session.

If no: I'm sorry, may I ask why? (ie. a) work b) no transport money c) don't want to)
Could you take a moment please to answer some questions, so that we can verify your identity, and obtain some additional information?

Mobile Phone Survey

1. Respondent ID

2. Respondent answered phone?
a. Yes
b. No, has work
c. No, no transport money
d. No, don't want to
e. Other: \qquad
3. Respondent will attend assigned session?
a. Yes
b. No
c. Other: \qquad
4. Which session will this respondent attend?
5. How many years have you been living in Nairobi?
6. Where is your ancestral home?

7. What is your gender?
a. Male
b. Female
8. What is your age in years?

9. What is your highest level of education completed?
a. No schooling
n. Form 4
b. ECD/nursery/pre-unit
o. Form 5
c. Std 1
p. Form 6
d. $\operatorname{Std} 2$
e. Std 3
f. $\operatorname{Std} 4$
g. Std 5
h. $\operatorname{Std} 6$
i. $\quad \operatorname{Std} 7$
j. $\quad \operatorname{Std} 8$
k. Form 1

1. Form 2
m. Form 3
2. What is your religion?
a. Traditional/tribal religion
b. Muslim
c. Catholic
d. Anglican
e. Apostolic or New Apostolic Church
q. Some polytechnic
r. Completed polytechnic
s. Some college
t. Completed college
u. Some university
v. Completed university
w. Higher than college/ university
x. Special education (mentally handicap)
j. Gospel/ New Testament/ Injili Church
k. Jehovah's Witness
3. Legio Maria Church
m. NENO
n. Pentecostal Church
o. Roho Church
p. Salvation Army Church
q. Seventh Day Adventists
r. No Religion
s. Other (specify) \qquad
4. We have spoken to many people in Kenya and they have all described themselves in different ways. Some people describe themselves in terms of their language, religion, race, and others describe themselves in economic terms, such as working class, middle class, or a farmer.

Besides being a citizen of Kenya which specific group do you feel you belong to first and foremost?

Thank you for your time, goodbye."

2 Priming for Kenya

There are 4 rounds of priming. Each round will have 3 questions. For treatment, there will be: 1 neutral and 2 treatment questions (randomly ordered). For control there will be 3 neutral questions. All respondents will be asked 12 questions total.

2.1 National prime (8 questions): Focus on national pride.

1. In the 2008 Beijing Olympics, Kenya won 14 medals. In your opinion, how many medals do you think Kenya will win at the 2012 London Olympics?
2. In your opinion, which sport would you consider Kenya's national sport?
A. Cricket
B. Rugby
C. Athletics
D. Motor sports
E. Football
F. Other, not listed
3. Kenya's flower industry has been growing rapidly at 20% per year. In your opinion, which Kenyan flower is the most beautiful flower?
(http://www.kenyarep-jp.com/business/industry/f index_e.html)
A. Sunflowers
B. Roses
C. Lilies
D. Carnations
E. Other, not listed
4. Kenya Airways is widely considered to be one of the most successful national airlines in Africa. To which of the following international destinations does Kenya Airways fly?
A. London
B. Washington, D.C.
C. New Delhi
D. Johannesburg
E. All of the above
5. Kenya is known worldwide for its tourist attractions; what do you think most tourists come to Kenya for?
A. Game parks
B. Nairobi
C. Beaches
D. Kenyan people
E. Other, not listed
6. What is the most important way that Kenya has benefited from membership in the East African Community?
A. Faster economic growth
B. Greater mobility across borders
C. It has helped Kenya become a regional leader
D. International prestige
E. In other ways
F. Other, not listed
7. Kenya has been a member of the United Nations since 1964, and Kenya has held a seat on the Security Council two times. In your opinion, is Kenya is the most influential East African country in the international community?
A. Yes
B. No
C. Maybe
D. Don't know
8. Which of the following best describes why you are proud to be Kenyan?
A. Natural wonders
B. The people
C. The country's unique history
D. Multiparty democracy since 1992
E. The country's new Constitution passed in 2010
F. Other, not listed

2.2 Ethnic-Cultural prime (8 questions): Focus on cultural uniqueness.

1. From which region is Barack Obama's father from?
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift Valley
2. The famous long-distance runner, Paul Tergat, is from which region?
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift Valley
3. The internationally famous writer, Ngugi wa Thiong'o, comes from which region?
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift Valley
4. This greeting comes from which region: "Orie"
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift
5. This greeting comes from which region: "Idhi Nadi"
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift
6. This greeting comes from which region: "Wimwega"
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift
7. This greeting comes from which region: "Wemu seo"
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift
8. This greeting comes from which region: "Biyore"
A. Coast
B. Nyanza
C. Western
D. Central
E. Rift

2.3 Political prime (8 questions): Focus on elections and politicians.

1. In your opinion, what share of the population voted in the last national election?
A. Almost everyone
B. Most of the population
C. About half of the population
D. Some of the population
E. Almost no one
2. How many political candidates are running for the Presidency?
A. 0
B. 1
C. 2
D. 3
E. 4 or more
F. Don't know
3. How many political candidates are running for the office of MP in your constituency?
A. 0
B. 1
C. 2
D. 3
E. 4 or more
F. Don't know
4. In the last week, approximately how much time per day did you spend discussing the upcoming elections?
A. None
B. About 0-1 hours
C. About 1-2 hours
D. About 3-4 hours
E. Over 4 hours
F. Don't know
5. How long do you think you will have to wait in line to vote in the upcoming elections?
A. Will not vote
B. Half an hour or less
C. An hour
D. 1 hour and a half
E. Over 2 hours
F. Don't know
6. Some people say that multiparty elections are good because they let the people decide who will rule the country. Other people say that they cause too much division. Which of these views is closest to your own?
A. Multiparty elections are good because they let the people decide who will rule the country.
B. Multiparty elections cause too much division.
C. I agree with both of these statements.
D. Don't know
7. What kinds of things do political parties do to win votes?
A. Make promises to bring development
B. Offer people money
C. Talk about what they have done in the past
D. Say bad things about other parties or candidates
E. More than one of the above.
F. Don't know
8. In how many months will the next Kenyan presidential election take place?
A. 3
B. 6
C. 8
D. 10
E. Don't know

2.4 Neutral questions (12 questions): Public opinion/trivia questions. [The questions in italics will be asked for the entire sample.]

1. Which of the following newspapers do you read the most?
A. Daily Nation
B. The Star
C. The Standard
D. Other, not listed
2. How often do you ride a matatu every week?
A. 0 days / never
B. I day per week
C. 2 days per week
D. 3 days per week
E. 4 or more days per week
3. What cell phone provider do you use the most?
A. Safaricom
B. Airtel
C. Orange
D. Yu
E. Multiple
F. None
G. Other not listed
4. Which of the following television stations do you watch the most?
A. Citizen
B. $K T N$
C. $K B C$
D. NTV

E. Other, not listed

5. In your opinion, which radio station do you think is the most popular?
A. Capital FM
B. Citizen
C. Classic
D. Other, not listed
6. In your opinion, which TV show is the most popular?
A. Big Brother Africa
B. Beautiful But Unlucky
C. Tusker All-Stars
D. Other, not listed
7. In the past week, how many hours did you spend on Facebook?
A. 0-2 hours
B. 2-4 hours
C. 4-6 hours
D. More than 6 hours
E. Never use Facebook
8. In the past week, approximately how much time per day did you spend socializing with friends?
A. 0-2 hours
B. 2-4 hours
C. 4-6 hours
D. More than 6 hours
9. In your opinion, what is the most popular soda drink?
A. Coke
B. Stony Tangawizi
C. Fanta
D. Krest
E. Other not listed
10. Approximately how many people live in Nairobi?
A. About 1 million
B. About 2 million
C. About 3 million
D. About 4 million
E. Don't know
11. In your opinion, what is the most popular form of daily transport in the city?
A. Matatu/Bus
B. Motorbike
C. Walking
D. Other, not listed
12. What is your favorite color?
A. Red
B. Blue
C. Green
D. Yellow
E. Other, not listed

2.5 Ethnic-Political prime (8 questions): Focus on ethnicity and politics. [Kenya Round 2 only]

1. Which president placed the Luo leader Oginga Odinga under arrest?
A. Jomo Kenyatta
B. Daniel Arap Moi
C. Mwai Kibaki
2. Where is the statue of Tom Mboya in Nairobi?
A. Uhuru Park
B. Kenyatta Avenue
C. Moi Avenue
3. Where was Robert Ouko, the former Minister of Foreign Affairs, born?
A. Nyeri
B. Kisumu
C. Eldoret
D. Nakuru
4. The Kamba have historically aligned politically with which of the following ethnic groups:
A. Luo
B. Luhya
C. Kalenjin
D. Kikuyu
5. The association GEMA contains which of the following ethnic groups:
A. Meru
B. Kalenjin
C. Luo
D. Mijikenda
6. Who won the presidential election in 2007?
A. Kalonzo Musyoka
B. Raila Odinga
C. Mwai Kibaki
7. Evidence suggests that the homeland of which of the following ethnic groups has received the largest share of funding for roads since independence?
A. Kikuyu
B. Luo
C. Luhya
D. Kalenjin
E. Kisii
8. Which of the following ethnic groups controls the largest share of cabinet positions?
A. Kikuyu
B. Luo
C. Luhya
D. Kalenjin
E. Kisii

3 Lab Instructions (2.5-3 hours)

Waiting Room:

It is important that there is no interaction between the participants at any point for our study. There will be a person will be in charge of actively monitoring the waiting room to make sure there is no interaction between respondents.

While respondents arrive in the waiting room, they will be informed that we are interested in their opinion on the radio clip that they listen to while they are waiting. We will play a radio clip from Classic 105 FM , a popular radio program that appeals across audiences, which has no political content and focuses on love/relationship advice. This is often played on public transport, and will probably be similar to what most have already heard in the matatu/bus on the way to the center. We will make sure that the clip has no news or political content. The audio should be loud enough for to discourage talking, and if anyone talks, the person monitoring the room will remind them to pay attention to the radio clip.

As respondents from the waiting room into the computer lab, the waiting room person will verify one by one that respondents have turned their cell phones off.

3.1 In the computer lab

The keyboard will be placed behind the computer at each station. Amos, Joseph, and Cynthia do not introduce themselves. No payouts will be displayed until the end of the entire session. Participants are informed immediately upon going into the session room that the study will take at least 2-3 hours. When all participants have arrived, been identified, and seated:

Instructor script:

A warm welcome to the Busara Center for Behavioral Economics. I see all participants are present. This workshop is part of a joint academic research project through the Norwegian School of Economics, University of California, Berkeley, Stanford University, and MIT. We have hired the Busara Center's facilities to conduct a workshop on decision-making. You will be asked to participate in activities on economic decision-making and to give your point of view as an individual. This project is not affiliated with any government or political agency; it is headed by academic researchers who are interested in understanding how people make decisions.

You will receive payment for your time, for transport costs, and for being on time today. Your transport costs will be reimbursed depending upon how far you travelled to get here today. At the end of today's session you are going to receive the payouts you have earned during these activities. This money will be transferred within the next day to the phone number you gave us when you registered by MPESA.

If you need to use the bathroom, please do so now, before we begin.
Before we start, I request three things. First, please turn off your mobile phones now, and leave them turned off until the end of the session. This is so you are not distracted from doing the tasks. Second, due to the nature of the study, from now on you are not allowed to talk to other participants. If you talk to other participants, we will have to send you home and you will not have the opportunity to earn money from the activities. If you have questions, please raise your hand and one of the researchers will come and talk to you. Third, please do not touch the computers before we tell you to do so.

3.2 Consent to Participate in Research

In front of you there is a consent form that explains the purpose of this research and your rights. It says that this study is for research purposes only; your responses are strictly confidential and will not be shared along with your name with anyone other than the researchers. You have the right to leave at any time. We would like to ask for your consent to participate by signing at the end of this form. [Instructor reads Kiswahili form.] So please read the form now and sign it at the end if you consent. If you require a Kiswahili version or have any questions, please let one of the assistants know and they will come and assist you. An assistant will come by to collect the forms.

3.3 Getting to know the screen and the touch screen number keypad.

For the remainder of the session, you will be instructed by recorded audio for the activities and questions. Instructions will be repeated twice. Please raise your hands if you have any questions during the session, or if your computer seems not to be working. Staff will be here to assist you directly. Now, please place your headphones over your ears, and indicate if you understood the instructions.

[A1]

Introduction
The screens in front of you are touch screens; you can use your fingers to indicate your choices. To test this, please now take a finger of your hand and touch the OK in the bottom right of the screen. Please use the fleshy part of your finger, and not the nail, so the screen does not get damaged. Do not press too hard; if the computer does not respond right away, wait a few seconds and try again.

[A2]

During the activities, we will ask you to type in numbers on the touch screen keypad in front of you. Please practice typing in the following numbers, and pressing the OK button when you are done:

8
200
1673

[A3]

During the activities, we will ask you select responses on the screen in front of you. Occasionally, you will be asked questions in between activities. To practice selecting responses from the touch screen, please try answering the following questions:

1. How did you find out about Busara? Please select the one that applies the most to you:
a. From a close friend
b. From a family member
c. From someone you knew in a group/organization
d. From a community leader
e. Approached directly by a Busara recruiter

[A4]

2. Of the 20 participants here today, how many participants do you know in this room? \square

[A5]

From now on, you will hear instructions about the activities, and use the touch screen keypad and/or pictures on the screen to choose your responses. Instructions will be repeated twice. If you are unclear about the instructions afterwards, please raise your hand and someone will come to assist you.

Do you understand the instructions?
a. Yes
b. No

3.4 Cognitive Ability (Raven's Matrices)

[A6]

We would like you to first play a matching game.
This activity will not affect your payout in any way.

[A7]

Here is a pattern with a piece missing.
Below are six pieces, choose the one that best completes the pattern.

3.5 Priming I

[A24]
Now we would like you to answer some questions. Your payment will not be affected by any of your answers here.

[R1]

1. While you were waiting, you listened to a short radio clip. Do you think that the social issue discussed is an important one in Kenya?
A. Yes
B. No
C. Don't know

[R2]

2. In general, do you like the type of music that was played during the radio clip?
A. Yes
B. No
C. Don't know

[A25]

Priming questions
Treatment: N1, N2, T1, T2, T3
Control: N1, N2, N3, N4, N5

3.6 Dictator Game

[A26]

Economic Activity 1

[A27]
Please listen to the instructions.
In this exercise the computer has randomly paired you with another participant. You will not know who you are paired with; only the researchers will know this.

You will receive 50 Ksh. You will then be asked to divide the money between yourself and the other participant. Whatever decision you make will be implemented. You can choose to divide the 50 Ksh however you like. Whatever you do not give to the other person you get to keep.
[A28]
You can divide 50 Ksh between you and someone else.
[A29]
Example 1: You have 50 Ksh , and you give 50 Ksh . How much money do you have left?
[A30]
Example 2: You have 50 Ksh , and you give 19 Ksh .
How much money do you have left?
[A31]
Example 3: You have 50 Ksh , and you give 35 Ksh .
How much money do you have left?

[A32]

Example 4: You have 50 Ksh , and you give 0 Ksh.
How much money do you have left?
[A32b]

Do you understand from these four examples? If not, please raise your hand. Remember, you can choose to divide the 50 Ksh exactly as you like. Let's begin the exercise. You are given 50 Ksh. How much would you like to give to the other person? Please type on the number pad on the screen:

Do you understand?
A. Yes
B. No

[A33]

You have this amount in shillings: 50
How much money do you give away?

3.7 Public Goods Game: Introduction

[A34]
Economic Activity 2: Introduction
[Note to RAs: For Example 1, we have decided to make the example interactive. For the first example, you can work with participants to calculate the payoffs. However, the second example should be done through audio and touchscreen.]

We now move to the next activity of the workshop, where you also can earn money, but in a different way. In this particular activity, you will make decisions in a group. This means that how much money you earn in this activity will depend both on your decision and on the decisions of the others in the group.

The members of your group will be randomly selected from the people who are participating in this workshop. You will be grouped with two other participants. However, you will not know who they are and they will not know who you are; only the researcher knows who is in the group.

Now, we will proceed with the information about how you can earn money in this activity.
You are in a group with 2 other people in this room. Each of you receives 60 Ksh and must decide whether you want to place this money into your private basket or into your group basket.

The rules of the private basket are simple: If you decide to put the money in your private basket, you will get to keep it. This money will be added to what you earn from the workshop.

The rules of the group basket are more complicated, so pay close attention: All of the money that is put in the group basket will be added up and the researchers will add extra money to double the amount. This total amount will then be divided equally between the three of you in the group. In sum, what you earn from this activity is what you choose to keep by putting it in your private basket plus your share of what is in the group basket.

We understand that this is complicated, so a demonstration of how this works will play on your screen. If you have any questions at the end of the audio, please raise your hand, and we will come and assist you.

[A35]

Economic Activity: Example 1

Now that you have watched the video, let us try some practice examples.

As before, each group member receives 60 Ksh. This is their money, and each person will decide how much money to put into their own private basket, and how much money to put into the group basket.

In this example, you contributed 0 Ksh to the group basket and put 60 Ksh to your own private basket. Group member A contributed 30 Ksh to the group basket and put 30 Ksh in his or her own private basket. Group member B contributed 30 Ksh to the group basket and put 30 Ksh in his or her own private basket.

This 60 Ksh placed in the group fund automatically doubles to 120 Ksh. The 120 Ksh is divided equally among all three players.

[A36]

Now, please remove your headphones, so that the instructors can go through an example with everyone.

[Screen 1]

You contributed 0 Ksh to the group basket.
Group member A contributed 30 Ksh to the group basket.
Group member B contributed 30 Ksh to the group basket.
How much money would you receive from the group basket? \qquad
[Screen 2]
You contributed 0 Ksh to the group basket.
Group member A contributed 30 Ksh to the group basket.
Group member B contributed 30 Ksh to the group basket.

How much money did you keep in the private basket? \qquad -
[Screen 3]

You contributed 0 Ksh to the group basket.
Group member A contributed 30 Ksh to the group basket.
Group member B contributed 30 Ksh to the group basket.

How much money would you receive in total?

[A39]

Economic Activity: Example 2

As before, each group member receives 60 Ksh. This is their money, and each person will decide how much money to put into their own private basket, and how much money to put into the group fund basket.

In this example, you placed 20 Ksh in the group basket and 40 Ksh in your private basket. Group member A contributed 40 Ksh to the group fund and put 20 Ksh in his or her own private basket. Group member B contributed all 60 Ksh to the group fund basket and kept no money in his or her own basket.

The group fund is 120 Ksh. This 120 Ksh placed in the group fund automatically doubles to 240 Ksh. The 240 Ksh from the group fund basket is equally among all the players, so that each player gets 80 Ksh from the group fund.

[A40]

You contributed 20 Ksh to the group basket.
Group member A contributed 40 Ksh to the group basket.
Group member B contributed 60 Ksh to the group basket.
How much money would you receive from the group basket? \qquad

[A41]

You contributed 20 Ksh to the group basket.
Group member A contributed 40 Ksh to the group basket. Group member B contributed 60 Ksh to the group basket.

How much money did you keep in the private basket?

[A42]

You contributed 20 Ksh to the group basket.
Group member A contributed 40 Ksh to the group basket. Group member B contributed 60 Ksh to the group basket.

How much money would you receive in total? \square

3.8 Priming II

[A43]

Now we would like you to answer some questions. Your payment will not be affected by any of your answers here.

[A44]

Priming questions
Treatment: N6, T4, T5
Control: N6, N7, N8

3.9 Public Goods Game

[A48]

Economic Activity 2

We will now do to the actual activity, where you can earn payouts. You are now in a group with 2 other people, who have been randomly selected from this workshop. Please press OK to continue. On your screen, you will see a picture from the demonstration video. [The picture is for ten seconds.] You and the other two members of the group each have 60 Ksh, and can decide how much to contribute to the group basket. The remaining amount will stay in your private basket, for you to take home. You will not know who they are, and they will not know who you are.

[A49]

Each member of the group was allocated 60 Ksh .
Group Member A: How much do you think group member A will contribute to the group fund?

[A50]

Each member of the group was allocated 60 Ksh .
Group Member B: How much do you think group member B will contribute to the group fund?
\qquad

[A51]

You have this amount in shillings: 60
How much do you want to contribute to the group fund?

[A52]
Please answer the questions on the screen, while we prepare for the next activity.

3.10 Priming III

[A53]

Now we would like you to answer some questions. Your payment will not be affected by any of your answers here.

[A54]

Priming questions:
Treatment: T6, T7
Control: N9, N10

$* * * * * *$

Start of identified sessions. All will have 2 rounds for each:

1. Similar background profiles
 2. Different background profiles

PROFILES

[P1a] This participant was born in 1989, comes from near Gatanga and has schooling up until Form 4.
[P1b] This participant is originally from near Gatanga, went to school up until Form 4 and was born in 1989.
[P2a] This participant was born in 1984, comes from near Nyeri and has schooling up until Form 2.
[P2b] This participant is originally from near Nyeri, went to school up until Form 2, and was born in 1984.
[P3a] This participant was born in 1992, comes from near Murang'a and has schooling up until Form 4.
[P3b] This participant is originally from near Murang'a, went to school up until Form 4 and was born in 1992.
[P4a] This participant was born in 1969, comes from near Kiambu and has schooling up until Form 2.
[P4b] This participant is originally from near Kiambu, went to school up until Form 2 and was born in 1969
[P5a] This participant was born in 1966, comes from near Nyeri and has schooling up until Form 2.
[P5b] This participant is originally from near Nyeri, went to school up until Form 2 and was born in 1966.
[P6a] This participant was born in 1989, comes from near Mwea and has schooling up until Form 4.
[P6b] This participant is originally from near Mwea, went to school up until Form 4 and was born in 1989.
[P7a] This participant was born in 1979, comes from near Kisumu and has schooling up until Form 2.
[P7b] This participant is originally from near Kisumu, went to school up until Form 2 and was born in 1979.
[P8a] This participant was born in 1990, comes from near Siaya and has schooling up until Form 4.
[P8b] This participant is originally from near Siaya, went to school up until Form 4 and was born in 1990.
[P9a] This participant was born in 1972, comes from near Kisumu and has schooling up until Form 4.
[P9b] This participant is originally from near Kisumu, went to school up until Form 4 and was born in 1972.
[P10a] This participant was born in 1990, comes from near Siaya and has schooling up until Form 4.
[P10b] This participant is originally from near Siaya, went to school up until Form 4 and was born in 1990.
[P11a] This participant was born in 1986, comes from near Nyakach and has schooling up until Form 4.
[P11b] This participant is originally from Nyakach, went to school up until Form 4 and was born in 1986.
[P12a] This participant was born in 1984, comes from near Homa Bay and has schooling up until Form 4.
[P12b] This participant is originally from Homa Bay, went to school up until Form 4 and was born in 1984.
From now on, all the audiofiles will be named as Screen Number.
Except the audiofiles with identified participants, where the name is
NameOfActivity_A_ProfileNumber or NameOfActivity_B_ProfileNumber
$* * * * * *$

3.11 Priming IV

Now we would like you to answer some questions. Your payment will not be affected by any of your answers here.

[I2]

Priming questions:
Treatment: T8, N11
Control: N12, N11

3.12 ID Public Goods Game

[I41]

Economic Activity 3

This activity is similar to the previous activity where you earned money by making decisions in a group. You will still not know who the other group members are, and they will not know who you are. However, we will provide you with some additional background information about your group members. How much money you earn in this activity will depend both on your decision and on the decisions of the others in the group. You are in a group with 2 other participants who have been randomly selected by the computer.

Just to review the instructions for this activity:
You are in a group with 2 other people. Each of you receives 60 Ksh and must decide whether you want to place this money into your private basket or into your group basket. The rules of the private basket are simple: If you decide to put the money in your private basket, you will get to keep it. This money will be added to what you earn from the workshop.

The rules of the group basket are as before: All of the money that is put in the group basket will be added up and the researchers will add extra money to double the amount. This total amount will then be divided equally between the three of you in the group.

[I42]

You have been placed in a group activity with two other individuals.

[I43]

Each member of the group was allocated 60 Ksh.
Randomly drawn profile of group member A.

How much do you believe group member A will contribute to the group basket?
\qquad

```
Audiofiles:
IDPG_A_Pla
IDPG_A_Plb
IDPG_A_P2a
IDPG_A_P2b
IDPG_A_P3a
IDPG_A_P3b
IDPG_A_P4a
IDPG_A_P4b
IDPG_A_P5a
IDPG_A_P5b
IDPG_A_P6a
IDPG_A_P6b
IDPG_A_P7a
IDPG_A_P7b
IDPG_A_P8a
IDPG_A_P8b
IDPG_A_P9a
IDPG_A_P9b
IDPG_A_P10a
IDPG_A_P10b
IDPG_A_P11a
IDPG_A_P11b
IDPG_A_P12a
IDPG_A_P12b
```


[I44]

Each member of the group was allocated 60 Ksh .
Randomly drawn profile of group member B.

How much do you believe group member B will contribute to the group basket?
\qquad

Audiofiles:
IDPG_B_P1a
$I D P G_{-} B_{-} P 1 b$
$I D P G_{-} B+P 2 a$
$I D P G_{-} B+P 2 b$
IDPG_B_P3a
$I D P G_{-}^{-} B_{-}^{-} P 3 b$
$I D P G_{-} B_{-} P 4 a$
$I D P G_{-}^{-} B_{-} P 4 b$
IDPG_B_P5a
$I D P G_{-} B+P 5 b$
$I D P G_{-} B _P 6 a$

IDPG B P6b
IDPG_B_P7a
$I D P G_{-} B_{-} P 7 b$
IDPG_B_P8a
IDPG_B_P8b
IDPG_B_P9a
IDPG_B_P9b
IDPG_B_P10a
$I D P G_{-} B_{-} P 10 b$
IDPG_BP11a
$I D P G B P 11 b$
$I D P G_{-}^{-} B_{-}^{-} P 12 a$
$I D P G_{-}^{-}{ }_{-}^{-} P 12 b$

[I45]

You have this amount in shillings: 60
How much do you want to contribute to the group basket?

[I46]

Now a new group will be created, with 2 other individuals that have been randomly chosen.

[I47]

2 more rounds, with randomly generated profiles.

3.13 ID Choose Your Dictator

[I12]

Economic Activity 4: Part 1

In this exercise, you will be paired with another participant, randomly selected by the computer. This individual will receive 50 Ksh . He or she must then decide how much to give to you.

Your job is to choose the other participant. You can choose between two different people; we will provide you with some background information. If you decide that you cannot choose between them, you can let the computer randomly select one for you.

The person that you choose makes the decision about how much of the 50 Ksh he or she will keep and how much he or she will give to you. The other person that you have chosen will not know who you are, only the researchers will know that.

Do you understand? If not, please raise your hand.

[I13]

Did you understand the instructions?
A. Yes
B. No
[I14]
Participant A was given 50 Ksh , and can decide how much to give you.
Randomly drawn profile of Participant A.
How much do you believe that he or she would give you? \qquad

Audiofiles:
CD1_A_P1a
CDI_A_Plb
CD1_A_P2a
$C D 1 _A _P 2 b$
CD1_A_P3a
CD1_A_P3b
CDI_A_P4a
CD1_A_P4b
CD1_A_P5a
CD1_A_P5b
CD1_A P6a
CD1_A_P6b
CD1_A_P7a
CD1_A_P7b
CD1_A_P8a
CD1_A_P8b
CD1_A_P9a
CD1_A_P9b
CD1_A_P10a
CD1_A_P10b
CD1_A_P11a
CD1_A_Pllb
$C D 1$ _A_P12a
$C D I_{-}^{-}-P 12 b$

[I15]

Participant B was given 50 Ksh , and can decide how much to give you.
Randomly drawn profile of Participant B.
How much do you believe that he or she would give you? \qquad

[^0]CD1_B_P2b
CD1_B_P3a
CD1_B_P3b
CDI_B_P4a
$C D 1{ }^{-} B_{-} P 4 b$
CD1_B_P5a
CD1_B_P5b
CDIB_P6a
CD1 B P6b
CD1_B_P7a
$C D 1-B+P 7 b$
CDI_B_P8a
CD1_B_P8b
CD1_B_P9a
CD1_B_P9b
CDI_B_P10a
CD1_B_P10b
CD1_B_P11a
CD1-BP11b
CD1_B_P12a
$C D 1 _B+P 12 b$

[I16]

Of the last two participants described, which individual would you choose to decide how much of his or her 50 Ksh to give to you?
A. Participant A
B. Participant B
C. Indifferent, let the computer randomly choose for me.
[I17]
Now, you can decide between another two participants, randomly selected for you by the computer.

[I27]

Economic Activity 4: Part 2

The next exercise is exactly as the one above: your job is to choose the person who will control 50 Ksh and who can choose to share some of it with you. In the last exercise, the other person did not know who you were. But now we will provide him or her with similar information to what you have.

[I28]

Participant A was given 50 Ksh , and can decide how much to give you.
Randomly drawn profile of Participant A. He or she has similar information about you.

How much do you believe that he or she would give you? \qquad

```
Audiofiles:
CD2_A_Pla
CD2_A_Plb
CD2_A_P2a
CD2_A_P2b
CD2_A_P3a
CD2_A_P3b
CD2A-P4a
CD2_A_P4b
CD2_A_P5a
CD2_A_P5b
CD2_A_P6a
CD2_A_P6b
CD2_A_P7a
CD2 A P7b
CD2_A_P8a
CD2_A_P8b
CD2_A_P9a
CD2_A_P9b
CD2_A_P10a
CD2_A_P10b
CD2_A_Plla
CD2_A_P11b
CD2_A_P12a
CD2_A_P12b
```


[I29]

Participant B was given 50 Ksh , and can decide how much to give you.
Randomly drawn profile of Participant B. He or she has similar information about you.

How much do you believe that he or she would give you? \qquad

[^1]```
CD2_B_P5a
CD2_B_P5b
CD2_B_P6a
CD2_B_P6b
CD2_B_P7a
CD2_B_P7b
CD2 B P8a
CD2 B P8b
CD2_B_P9a
CD2_B_P9b
CD2_B_P10a
CD2_B_P10b
CD2_B_P11a
CD2_B_P11b
CD2_B_P12a
CD2_B_P12b
```

[I30]
Of the last two participants described, which individual would you choose to decide how much of his or her 50 Ksh to give to you?
A. Participant A
B. Participant B
C. Indifferent, let the computer randomly choose for me.
[I31]
Now, you can decide between another two participants, randomly selected for you by the computer.

### 3.14 ID Dictator Game

## [I6]

## Economic Activity 5

## [17]

Please listen to the instructions.
In this exercise you are paired with another participant. You will not know who you are paired with; only the researchers will know this. However, now you have some additional information about the individual receiving the money.

You will receive 50 Ksh. You will then be asked to divide the money between yourself and the other participant. Whatever decision you make will be implemented. You can choose to divide the 50 Ksh however you like. Whatever you do not give to the other person you get to keep.

Do you understand from these instructions? If not, please raise your hand. Remember, you can choose to divide the 50 Ksh exactly as you like. Let's begin the exercise. You are given 50 Ksh. How much would you like to give to the other person? Please type on the number pad on the screen:

## [I8]

You have this amount in shillings: 50
Randomly drawn profile of Participant X.

How much money do you give away?
AudioFiles:
IDD Pla
IDD_Plb
IDD P2a
IDD P2b
IDD_P3a
IDD_P3b
IDD_P4a
IDD_P4b
IDD_P5a
IDD_P5b
IDD P6a
IDD_P6b
IDD_P7a
$I D D-P 7 b$
IDD P8a
$I D D_{-} P 8 b$
IDD_P9a
$I D D_{-} P 9 b$
IDD_P10a
$I D D$ _P10b
IDD_Plla
IDD_Pllb
IDD_P12a
$I D D \_P 12 b$

### 3.15 Payout Display Screen

## [I75]

Final Payout
This is the conclusion of the activities for which you can earn money. The concluding part of this session will not affect the money you have earned thus far in any way.

## [I76]

Final payout on screen, tallied by activity.
These are your final payouts that will be transferred to your MPESA account later. If you have any questions, please do not hesitate to ask.

### 2.16 Political Preferences Survey

In the concluding part of the workshop, we are interested in your opinion as a Kenyan. The money you have earned from the previous activities will not be affected in any way by the way you answer these questions. The information you provide will be kept strictly confidential and will only be used for research purposes. Your responses will not be linked to you personally in any way.

The questions will appear on the screen. They will also be read to you over the headphones.
To answer a question, press the button on the screen next to your selected response. Then press the green OK button. If you feel uncomfortable answering any of the questions, you can press the red $X$ button at the bottom of the screen to skip that question. If you need a question to be repeated, you can press the yellow picture with the headphones on the screen and the question will be repeated. If you require any further assistance, please raise your hand.
[surv1]

1. What is the most important attribute you look for in your presidential candidate?
A. Education
B. Past record of performance
C. Integrity
D. Will represent the interests of the poor
E. Will represent the interests of my home region
F. Credible campaign promises
[surv3]
2. Do you intend to vote in the next presidential election in 2013?
A. Yes
B. No
C. Would like to vote, but no ID card
D. Don't know
[surv4]
3. Which presidential candidate did you vote for in the 2007 election?
A. Did not vote
B. Raila Odinga
C. Mwai Kibaki
D. Other

## E. Don't know

[surv5]
4. If the national election were to be held tomorrow, which presidential candidate would you vote for?
A. Peter Kenneth
B. Mutava Musyimi
C. Raila Odinga
D. Musalia Mudavadi
E. Uhuru Kenyatta
F. William Ruto
G. Raphael Tuju
H. Kalonzo Musyoka
I. Martha Karua
J. Not listed
K. Don't know
[surv6]
5. Given the circumstances, the violence in Kenya after the December 2007 presidential election was justified./Kulingana na hali ilivyokuwa fujo zilizotokea nchini Kenya baada ya kura za urais za 2007 zilikuwa za haki. Probe: Je, unakubali / haukubali kabisa sana?
A. Strongly agree/Unakubali kabisa
B. Somewhat agree/Unakubali kidogo
C. Neither agree nor disagree/Unakubali wala haukubali
D. Somewhat disagree/Haukubali kidogo
E. Strongly disagree/Haukubali kabisa
F. Don't know
[surv7]
6. In the past month, have you received any of the following from a political candidate (please indicate each box that applies):


T-shirts
Food
$\square$ Cash
Alcohol
Flyer
Other: $\qquad$
None
Don't know
[surv8]
7. In the past month, how much cash did you receive at a campaign rally?
A. None
B. Between 1-500 Ksh
C. Between 501-1000 Ksh
D. Between 1001-1500 Ksh
E. Between 1501-2000 Ksh
F. More than 2000 Ksh
G. Don't know
[surv9]
8. In the past month, how many campaign rallies have you been to? $\qquad$
[surv10]
9. Before coming to Busara, has anyone who participated in this study previously spoken with you about the activities here today?

> A. Yes
> B. No

### 3.17 Conclusion

## [Screen 1]

## Conclusion

You have now completed all activities for this workshop. You will receive your show-up fee, transport reimbursement, and total earnings as an MPESA transfer to the phone number you registered with later today. The total amount that you will receive is on your screen.

## [Screen 2]

This is how much you have earned:
Recall that this workshop will be held over a 3-week period, with over 600 participants from across Nairobi. In the parts of the session with background profiles, you were paired with actual participants from previous sessions-their previous decisions determined your payouts from those games. The same will be done with the decisions that you made today. Thus, there is a possibility that you could receive additional earnings 3 weeks from now, depending upon the decisions of the other participants of this workshop.

We are finished with the session. We thank you very much for having participated and hope that you will come again if we invite you another time. Remember that the answers you gave are completely confidential and will not be shared with anyone outside the research team in individualized form. Since we are conducting similar workshops in the days to come, we would appreciate if you did not share the contents of this workshop with anybody, as some of these questions are potentially sensitive. We wish to keep the sessions confidential, so that individuals may feel comfortable to participate freely while they are here. If you have any questions about the workshop, please feel free to ask one of the assistants or to call the number on the flyers being passed out.

Some of you have been randomly selected to participate in a brief 5-minute exit interview before you leave. If your number is called, please remain seated. If your number is not called, you may pack up your things now and we will show you the way to the gate through the front door.

For those who are leaving, please give me your placecards, pens, and visitor passes. Thank you very much for your participation in this study!

### 3.18 Exit Interviews

Date: $\qquad$ Session: |__ | Morning $\qquad$ Afternoon

Busara Number: $\qquad$ FO: $\qquad$ ET: 12 TT: 0123

1. Do you remember the game where you were given 50 Ksh and had to decide how much to keep and how much to give to the other player? What do you think the researchers were trying to learn from having you play this game?
2. Do you remember the game where you were given 60 Ksh to divide between a private fund and a public fund? What do you think the researchers were trying to learn from having you play this game?
3. Do you remember the game where you were able to choose who would give you funds? What do you think the researchers were trying to learn from having you play this game?

## 2 Lab Screenshots

Screenshot: Dictator Game


Screenshot: Dictator Game


## Screenshot: Public-good Game



## Screenshot: Public-good Game



## Screenshot: IAT - Part 1



PART 1, Screen 2

LUO
KIKUYU

CHEGE

## Screenshot: IAT - Part 2

|  | PART 2, Screen 1 |  |
| :---: | :---: | :---: |
| GOOD |  |  |
|  | AGONY |  |
| GOOD |  |  |
|  | PART 2, Screen 2 |  |
|  |  |  |
|  | HAPPINESS |  |

## Screenshot: IAT - Part 3

PART 3, Screen 1

| KIKUYU OR <br> GOOD |  | LUO OR |
| :--- | :--- | :--- |
|  |  |  |
|  | KAD |  |

## Screenshot: IAT - Part 4

PART 4, Screen 1

KIKUYU OR
GOOD

LUO OR
BAD

LAUGHTER

PART 4, Screen 2

KIKUYU OR
GOOD

## 3 Lab Protocol for Payouts

## Protocol for Payouts

## Overview

The dictator, public-good, and choose-your-dictator games calculated participant payouts during the lab sessions, based upon the participant's decision and the participants or participant profiles that they were paired with. Upon completion of the labs, some additional payouts were made to ensure full compliance with the instructions given. Participants were told at the end of the lab session about the participant profiles and the possibility that they may receive a payout at some point in the future. For the identified games, individuals were paired with a profiled participant, with age, education, and hometown indicated in the profile. Individuals were paid out the profiled participant's decision for the choose-your-dictator and public-good games. The profiled participants were drawn from individuals who had participated in these games during the piloting sessions. Since we were not aware of which profiles would be used until after the piloting was completed, the profiled participants had the same instructions as for all other study participants, for a one-shot game. Profiled participants received the payouts from all the games that they "participated" in upon completion of the study.

## Anonymous Dictator

Each participant ("the giver") was allocated 50 Ksh, and could choose how much to divide with another individual ("the receiver"). The amount each participant chose to keep was added to his or her own final payout. The amount that participants chose to share with another individual was paid out in different ways for Lab 1 (2012) and Lab 2 (2013). For Lab 1, initially all participants were designated as a "receiver" and paid the average amount shared with a receiver for the lab round that they participated in. For Lab 2, one dictator was linked to one receiver within each lab session, and payouts were made at the end of the lab session. Later on, the payouts in Lab 1 were modified to match Lab 2, so that each participant's transfer was randomly assigned to another individual within the 2012 lab, and paid out upon completion of the study.

## Identified Dictator

Each participant ("the giver") was allocated 50 Ksh , and could choose how much to divide with another profiled individual ("the receiver"). The amount each participant chose to keep was added to his or her own final payout. The amount that participants chose to share with the profiled individual was paid out after the completion of the labs to the profiled individuals.

## Anonymous Public-good

Each participant was given 60 Ksh and placed in a randomly assigned group. Participants could choose to contribute any amount to the group pot. The group pot was doubled and evenly divided between the three group members. The participant had his or her share of the group payout added to his or her own final payout.

## Identified Public-good

Each participant was given 60 Ksh and placed in a randomly assigned group with two other profiled participants. This means the group consisted of one current participant in the lab, and two profiled participants who participated in previous lab sessions. Participants could choose to contribute any amount to the group pot, and the decisions of the profiled participants were implemented. This means that the group pot consisted of the contribution of the current
participant and the contributions of the profiled participants. After the group pot was doubled, one third of the group pot was given to the current participant. This current participant had his or her share of the group payout added to his or her own final payout. The profiled participants received their payout upon completion of the study.

## Anonymous Choose-your-dictator

Participants ("choosers") were allowed to choose between two profiled dictators ("givers"). Each participant, as the "receiver", could choose a coethnic dictator, a non-coethnic dictator, or to be indifferent with a randomly selected dictator. The transfer of the profiled dictator was taken from the profiled dictator's anonymous dictator game decision. This transfer was added to the final payout of each current chooser. The profiled participants received their payouts from being chosen, upon completion of the study. As in, how much the profiled participant kept in the anonymous dictator game, for each time that they were chosen, was paid out to the profiled participants.

## Identified Choose-your-dictator

Participants were allowed to choose between two profiled dictators ("givers"). Each participant was told additionally that the profiled dictator would have "similar information" on the "receiver's" characteristics. Each participant, as the "receiver", could choose a coethnic dictator, a non-coethnic dictator, or to be indifferent with a randomly selected dictator. The decisions of the profiled participants were taken from the choices of these participants in the identified dictator game. So in practice, we matched the decisions of the dictator only on the criterion of coethnicity. If the receiver chose a coethnic dictator, the receiver was paid out the transfer of the giver in the giver's coethnic dictator game. If the receiver chose a non-coethnic dictator, the receiver was paid out the transfer of the giver in the giver's non-coethnic dictator game. The profiled participants received their payouts from being chosen, upon completion of the study. As in, how much the profiled participant kept in the identified dictator game, for each time that they were chosen, was paid out to the profiled participants.

## 4 Exit Interviews

## Exit Interviews

The study carried out 222 exit interviews for a randomly selected subset of lab participants from July 2012 to August 2012. At the end of each lab session during this period, 8 individuals were randomly selected individuals to be interviewed by enumerators immediately after the study. The aim of the exit interviews was to see what participants believed the study objectives to be, and to verify if participants understood the games in the labs. The questions, as listed in the Kenya Protocol, were as follows:

## Dictator Game

Do you remember the game where you were given 50 Ksh and had to decide how much to keep and how much to give to the other player? What do you think the researchers were trying to learn from having you play this game?

## Public-good Game

Do you remember the game where you were given 60 Ksh to divide between a private fund and a public fund? What do you think the researchers were trying to learn from having you play this game?

## Choose-your-dictator Game

Do you remember the game where you were able to choose who would give you funds? What do you think the researchers were trying to learn from having you play this game?

The dictator game was the most associated with sharing and helping others, and the public-good game was the most associated with saving or budgeting. The choose-your-dictator elicited a wider variety of responses, for what individuals thought the game was about, and was the most associated with ethnicity or tribalism. For the dictator game, $49 \%$ of those interviewed mentioned something about sharing or helping, while $7 \%$ mentioned ethnicity or tribalism. For the public-good game, $38 \%$ mentioned something about savings or budgeting, while $9 \%$ mentioned ethnicity or tribalism. For the choose-your-dictator game, $21 \%$ mentioned something about sharing or helping, while $27 \%$ mentioned something about ethnicity or tribalism, $11 \%$ mentioned something about age, and $9 \%$ mentioned something about education. The dictator game also has mentions of "love" or "generosity", the public-good game also has mentions for "profit" or "invest", while the choose-your-dictator game was more variable with occasional mentions of "politics" or "friendship".

| Mentions: | Dictator <br> Game | \% | Public-good <br> Game | $\%$ | Choose-your-dictator <br> Game | \% |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

# How Strong are Ethnic Preferences? Appendix D: Pre-Analysis Plans 

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang

April 2016


#### Abstract

This appendix contains the pre-analysis plans for (i) the Non-Election Round and (ii) for the Election Round. The Non-election Round pre-analysis plan was registered at the J-PAL registry on September 12, 2012, while the Election Round plan was registered on May 28, 2013.


# Pre-Analysis Plan for Social Cooperation in Kenya 2012 

Research team:<br>Ana Beatriz Aguilar Borges Santos, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Lars Ivar Oppedal Berge, Daniel Posner, Bertil Tungodden and Kelly Zhang

September 12, 2012

## Contents

1 Introduction ..... 3
1.1 Background ..... 3
2 Overall research strategy ..... 4
2.1 Locations and sample ..... 4
2.2 Games ..... 5
2.3 Treatments ..... 6
3 Empirical Issues ..... 6
3.1 Empirical Specification ..... 6
3.2 Control Variables and Heterogeneous Treatment Effects ..... 6
3.3 Controlling for Multiple Inference ..... 7
4 Dictator Game ..... 7
4.1 Specifications ..... 8
4.2 Hypotheses ..... 9
5 Public-good Game ..... 10
5.1 Specifications ..... 10
5.1.1 Contributions ..... 10
5.1.2 Beliefs ..... 11
5.2 Hypotheses ..... 12
5.2.1 Contributions ..... 12
5.2.2 Beliefs ..... 13
6 Choose-your-dictator Game ..... 14
6.1 General estimation procedure ..... 14
6.2 Specifications ..... 15
6.2.1 Dictator Choice ..... 15
6.2.2 Beliefs ..... 16
6.3 Hypotheses ..... 16
6.3.1 Dictator Choice ..... 16
6.3.2 Beliefs ..... 17
7 Exploratory analysis ..... 18
7.1 Dictator game: Pooled estimation ..... 19
7.1.1 First Specification ..... 19
7.1.2 Additional Specifications ..... 19
7.1.3 Hypotheses ..... 20
7.2 Public-good Game: Pooled Estimation ..... 21
7.2.1 Additional specifications ..... 21
7.2.2 Hypotheses ..... 21
7.3 Choose-your-dictator game: Pooled Estimation ..... 23
7.3.1 First Specification ..... 23
7.3.2 Additional Specifications ..... 23
7.3.3 Hypotheses ..... 23

## 1 Introduction

### 1.1 Background

Africa's multi-ethnic environment has been found to be an important factor in explaining its low growth (Easterly and Levine, 1997). In particular, ethnic fractionalization appears to hamper public good provision (Alesina and Ferrara, 2005; Miguel and Gugerty, 2005). This project seeks to understand what exactly makes ethnic fractionalization a barrier to cooperation across ethnic lines. Do these barriers arise from innate cultural differences or are they shaped by the surrounding political environment?

A growing body of literature suggests that ethnic identity can be used strategically by political leaders to gain support for their political ambitions (Eifert et al., 2010; Posner, 2005; Wantchekon, 2003; Carlson, 2011; Kramon, 2011). These strategies also tend to be associated with targeted redistributive policies, a polarized electorate, and competing interests that can potentially escalate to conflict (Pande, 2003; Fearon, 1999; Horowitz, 1985; Bates, 1982; Wilkinson, 2006).

Miguel (2004) proposes that national identity can potentially neutralize the ethnic divisions that hinder public good provision. In Tanzania, Julius Nyerere promoted national identity through policies of nation building-with reforms in language policy, the school curriculum, and the overhaul of local institutions. In Kenya, Jomo Kenyatta did not undertake these policies, and instead fostered competition along ethnic lines. The different sets of policies implemented in each country post-independence provide the underlying motivation for the cross-country comparison in this study.

The current project seeks to shed light on the implications of nation building policies on interethnic cooperation in an experimental setting. Rather than relying on survey evidence, which makes causal inference problematic, we are able to identify behavioral changes directly through standard laboratory games. We use priming to increase the situational salience of ethnic identity, national identity, and political competition. Priming is a tool from social psychology that nudges participants to behave in accordance with a social norm, and is increasingly used in behavioral economics (James, 1890; Turner, 1985). Moreover, we implement similar labs in both Kenya and Tanzania to investigate differences in interethnic cooperation across countries with different political histories, and similar labs approximately 9 months and 1 month prior to presidential elections in Kenya to investigate how interethnic cooperation is affected by proximity to election. The project setup includes standard dictator and public-good games. This project also proposes a novel "choose-your-dictator" game, where respondents are able to decide which participant will be their dictator, when given basic background characteristics about the candidate dictators.

We start out by describing the overall research strategy in Section 2. Then, in Section 3, we discuss empirical issues. Sections 4, 5 and 6 present the analysis plan for each game of the lab sessions, starting with the dictator game, moving on to the public-goods game, and then the Choosing-your-dictator game. Finally, we present the specifications and hypotheses for analyzing treatment effects across multiple information settings in Section 7.

## 2 Overall research strategy

Our overall study design combines four elements:

1. Priming
2. Inter-ethnic comparison
3. Country comparison
4. Time comparison

Approach 1 (priming) gives us a clean measure of whether emphasizing ethnic identity, national identity or political competition has a causal effect on our outcome variables of interest, while 2 (inter-ethnic comparison in ethnically identified games) serves both as a robustness test of priming effects and gives us a measure of the importance of ethnicity. Approaches 3 (country comparison) and 4 (time comparison) allow us to study choices and beliefs in situations where ethnic tensions are likely to differ, in the first case by exploring differences across countries with different political histories, and in the second differences in time (separate lab rounds, with varying degrees of proximity to elections).

### 2.1 Locations and sample

We conduct lab rounds in both Nairobi, Kenya (the "Kenya lab") and Dar es Salaam, Tanzania (the "Tanzania lab"). The target population consists of individuals living in slum areas/informal settlements. In Nairobi, we stratify sampling and recruitment by ethnicity in order to ensure that our session and sample compositions would be similar to Nairobi's ethnic composition. In Dar es Salaam, due to both the more heterogeneous ethnic composition and the sensitivity of the issue of ethnic identification in the country, recruitment took place in poor neighborhoods, but without stratification on ethnic lines.

The Kenya lab takes place at Busara Center for Behavioral Economics, a facility with expertise for administering experiments with semi-literate and illiterate subject populations. The Tanzania lab takes place at the Economic and Social Research Foundation (ESRF).

Each round of labs draws a sample of approximately 600 individuals. The first Kenya lab takes place in July/August 2012 (the "2012 Kenya lab") while in Tanzania in September/October 2012 (the "2012 Tanzania lab"). When conducting new lab rounds in the same country, a new sample of participants will be recruited. The number of subsequent rounds is contingent on funding, but as a minimum, we plan to implement a new round in Kenya close to the elections in March 2013.

In what now follows, we describe the plans for the 2012 Kenya lab. For purposes of comparison, the key games described here will also be implemented in the 2012 Tanzania lab and subsequent labs, but with some modifications to take into account differences across countries and over time. Hence, for these rounds of labs, amendments will be made relative to the pre-analysis plan described here.

### 2.2 Games

Each lab session is divided into two parts; an anonymous part and an identified part. In the anonymous part, participants are randomly paired with anonymous individuals and have no information about the individuals they were partnered with. The second set of games are identified, where the participants receive some background information (education, ethnicity, age) about the participants they were partnered with.

There are five ethnic groups in our sample: Kikuyu, Luo, Luhya, Kisii and Kamba. We group these ethnicities as being "coethnic" or "non-coethnic" by traditional alliances. Thus, the Kikuyu and Kamba are grouped together as coethnics, and the Luo and Luhya are grouped together as coethnics. The Kisii have traditionally been neutral and are considered to be non-coethnic to both ethnic groupings. In this study, the Kisii are assigned to the Luo/Luhya sequence of treatment. This was done for reasons of simplicity and because of the geographical proximity of the Kisii district to the traditional Luo and Luhya districts.

Each lab session consists of three main games; the dictator game, the public good game, and the choose-your-dictator game. The dictator and public good games are played first in an anonymous setting and then in an identified setting, while the choose-your-dictator game is played only in an identified setting. ${ }^{1}$

The dictator game captures an individual's altruism towards others. In this activity, participants are informed that they were randomly paired with a partner. He or she received an endowment of 50 Ksh (ca. \$0.6), and should decide how much to give away.

The public-good game captures an individual's willingness to contribute to a group fund in order to make everybody better off and the individual's belief about others' willingness to contribute. In this activity, individuals are given an endowment of 60 Ksh (ca. $\$ 0.7$ ) and are asked to state their beliefs about how much other group members will give. They are then asked how much they would contribute to the group fund.

The choose-your-dictator game is designed to capture the importance of coethnicity in a participant's choice of a leader. In the game, the leader is the dictator in a dictator game. Participants ("choosers") are presented with two randomly drawn profiles of dictators, with the profiles consisting of information about education, age, and hometown. Hometown is a marker of ethnicity, since the selected hometowns have one dominant ethnic group. ${ }^{2}$
The chooser is asked how much he/she believes each profiled dictator would give to him/her, and then to make a choice of dictator. ${ }^{3}$ The choose-your-dictator game takes

[^2]place in two rounds. In the first round, the dictator has no information about the chooser. In the second round, however, the chooser is told that the dictator is given information about the chooser's age, education, and hometown. All this allows us to capture the importance of reciprocity in choice of a leader, under certain assumptions.

### 2.3 Treatments

There are four treatments in each session, where participants are randomly assigned to (i) national priming $\left(T_{1}\right)$; (ii) ethnic priming $\left(T_{2}\right)$; (iii) political competition priming ( $T_{3}$ ); or (iv) no priming (control group).

## 3 Empirical Issues

### 3.1 Empirical Specification

In our main specification, we run regressions on outcome variables (beliefs, choices) for each individual game. In additional specifications, we include control variables (age, gender, and ethnicity), as well as specifications with interactions between treatment and controls, to explore heterogeneity in treatment effects. We also use pooled regressions to investigate potential differences in treatment effects across games with different information content (anonymous vs identified).

### 3.2 Control Variables and Heterogeneous Treatment Effects

The primary specification for our econometric analysis will simply regress the dependent variables on the treatment dummies. In addition, we will also estimate specifications where we use $X_{i}$ as a vector of control variables or as an interaction term. The vector $X_{i}$ includes the following variables:

- Gender
- Years of education (demeaned)
- Tribe, with a dummy for each of the following: Kikuyu, Luo, Luhya and Kamba. Kisii will be the omitted category.

When we estimate heterogeneous treatment effects, we will run additional specifications where we group different tribes together. We propose two alternative categorizations, based upon traditional alliances and political salience. For the traditional alliance categorization, we propose to group Kikuyu and Kamba in the first group and the Luo and Luhya in a second group. For the political salience categorization, we group the most politically relevant ethnic groups ${ }^{4}$, the Kikuyu and the Luo together, since these groups both have a presidential frontrunner in the upcoming elections and both currently hold the top offices of President and Prime Minister. The Luhya and Kamba are grouped as politically relevant allied groups.

[^3]
### 3.3 Controlling for Multiple Inference

Since we test multiple hypotheses, we need to control for the risk that some true null hypotheses will be falsely rejected. Our primary procedure to control for multiple testing is the following. First, we create five families of null hypotheses. The first three families are for the behavioral outcomes in the dictator game (transfer), the public-good game (contribution) and the choose-your-dictator game (dictator choice). The last two families are for the outcomes on beliefs in the public-good game and the choose-your-dictator game. For each of these five families, we compute the false discovery rate (FDR) adjusted q -values as our main correction for multiple inference. ${ }^{5}$ The FDR q-values limit the expected proportion of rejections within a hypothesis that are Type I errors (Benjamini et al., 2006; Anderson, 2008).
In addition we will also provide the following alternative p-values for each particular outcome measure as robustness checks:

- The 'per comparison' p-value, which is appropriate in case of an a priori interest in a specific outcome.
- FDR q-values where we have all hypotheses, both on behavioral outcomes and on beliefs, grouped in three families: one for each game.
- FDR q-values where we group the five families of hypotheses together in one big family.
- For all five families of hypotheses, the family wise error rate (FWER) adjusted pvalues, which limit the probability of making a Type I error for any specific outcome within the hypothesis (Anderson, 2008).
- FWER p-values where we have three families of hypotheses, one for each game.
- FWER p-values where we group the five families of hypotheses together in one big family.


## 4 Dictator Game

The dictator game is played in two different informational settings. First, respondents have no information about the person they can transfer money to. Second, they play two game rounds where they can transfer money to a coethnic. ${ }^{6}$ We present estimation specifications for these two informational settings separately.

[^4]
### 4.1 Specifications

Anonymous Dictator Game: Main specification In the first round of the dictator game, the participants are anonymously paired with other workshop participants. None of the participants have any information about the partners that they are paired with. The main outcome of interest here is generosity, or how much an individual gives in the dictator game to an anonymous partner:

$$
Y_{i}=\text { dga_transfer }_{i}
$$

Where dga_transfer $i$ is the amount that individual $i$ gives to an anonymous individual. For this game round, we use the following specification:

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

This specification takes the variable $Y_{i}$, which is a given outcome for participant $i$, and regresses it on the treatment variables. Recall that $T_{1}$ is the national treatment dummy, $T_{2}$ is the ethnic treatment dummy, $T_{3}$ is the political competition treatment dummy. As usual, $\varepsilon_{i}$ is an idiosyncratic error term.

Identified Dictator Game In the following two rounds of the dictator game, the participants are paired with profiles from their coethnic group. Since the dictator game with coethnics is played twice, we pool data from these two rounds for this estimation and cluster standard errors at the individual level. The main outcome of interest here is generosity toward coethnics:

$$
Y_{i j}=i d d g h o m t r a n s f e r_{i j}
$$

Where iddghomtransfer $_{i j p}$ is the amount that an individual $i$ gives in round $j=1,2$ of the coethnic dictator game. We also introduce $\alpha_{p}$, which is a set of fixed effects for each of the profiles with which the respondents are randomly paired.

- First specification:

$$
\begin{equation*}
Y_{i j}=\alpha_{p}+\sum_{k=1}^{3} \beta_{k} T_{k}+\varepsilon_{i j} \tag{2}
\end{equation*}
$$

Dictator Games: Additional Specifications For both information settings, the anonymous round and the coethnic rounds, we will also run a specification with controls and a specification with heterogeneous treatment effects. The specification with control variables serves as a robustness check and can improve precision in our estimation of the experimental effect. The specification for heterogeneous treatment effects allows to gauge variation in the treatment effects by the main respondent characteristics of interest.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\varepsilon_{i} \tag{3}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * X_{i}+\varepsilon_{i} \tag{4}
\end{equation*}
$$

For the identified game rounds, we will replace $\alpha$ by $\alpha_{p}$ and cluster standard errors at the individual level.

### 4.2 Hypotheses

For both specifications (1) and (2), we hypothesize that:

- Priming affects generosity:

$$
\begin{aligned}
- & * H_{D 1}: \beta_{1}
\end{aligned}=0
$$

- The different treatments affect generosity differently:

$$
\begin{aligned}
- & * H_{D 4}: \beta_{1}=\beta_{2} \\
& * H_{D 5}: \beta_{1}=\beta_{3} \\
& * H_{D 6}: \beta_{2}=\beta_{3}
\end{aligned}
$$

- Not all treatment effects are equal to zero,

$$
-\quad * H_{D 7}: \beta_{1}=\beta_{2}=\beta_{3}=0
$$

## 5 Public-good Game

### 5.1 Specifications

### 5.1.1 Contributions

Anonymous Public-good Game In the first round of the public-good game, the participants are anonymously paired with other workshop participants. The main outcome of interest here is how much an individual contributes to the group fund:

$$
Y_{i}=\text { pga_contribution }_{i}
$$

which is the amount that the individual is willing to contribute without any information about the other group members. The setup of our regression specifications is exactly as in equation (1)::

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\varepsilon_{i} \tag{5}
\end{equation*}
$$

- Second specification, with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

- Third specification, for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * X_{i}+\varepsilon_{i} \tag{7}
\end{equation*}
$$

Identified Public-good Game: Mixed group In the next round of the public-good game, the participants are in a mixed group with one coethnic and one non-coethnic profile. The main outcome of interest is the amount that an individual $i$ is willing to contribute in a mixed group:

$$
Y_{i}=\text { pgidmix_contribution }_{i}
$$

We run regression specifications $(5,6,7)$ with $Y_{i}=$ pgidmix_contribution $_{i}$ as the dependent variable.

Identified public-good Game: Homogenous group In the final round of the publicgood game, individuals were in a group with only coethnics. The main outcome of interest is the amount that an individual $i$ is willing to contribute in a homogeneous group:

$$
Y_{i}=\text { pgidhom_contribution }_{i}
$$

We run regression specifications $(5,6,7)$ with $Y_{i}=$ pgidhom_contribution $_{i}$ as the dependent variable.

### 5.1.2 Beliefs

Anonymous Public-good Game We are also interested in how much an individual expects group members $A$ and $B$ respectively to contribute to the group fund:

$$
\begin{aligned}
& Y_{i}=\text { pga_belief } a_{i} \\
& Y_{i}=\text { pga_beliefb }_{i}
\end{aligned}
$$

These variables indicate an individual's beliefs about how much others will contribute to the group fund, when given no information about their backgrounds.
For the regression on beliefs, we stack $Y_{i}=$ pga_belief $a_{i}, Y_{i}=$ pga_beliefb $_{i}$, rename the dependent variable $Y_{i j}=p g a_{-} b e l i e f_{i j}$ for $j=a, b$ and cluster standard errors at the individual level:

$$
\begin{equation*}
Y_{i j}=\alpha+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\varepsilon_{i j} \tag{8}
\end{equation*}
$$

We also run regressions on this dependent variable once with controls added and once for heterogeneous treatment effects, as in specifications (6) and (7) respectively. As a robustness check for differences in beliefs about group member A and group member B's contributions, we can include a dummy variable $G M_{\_} B$ for beliefs about group member $B$ 's contribution.

Identified Public-good Game: Mixed group In the mixed public-good Game, the outcomes of interest are:

$$
\begin{aligned}
& Y_{i}=\text { pgmixbelief }_{i} \\
& Y_{i}=\text { pgmixbeliefb }_{i}
\end{aligned}
$$

For this estimation, we stack the two above vectors and rename this dependent variable to $Y_{i j}=$ pgmixbelief $_{i j}$, where $j=a, b$ and estimate, with standard errors clustered at the individual level. The dummy $C E_{i j}$ indicates whether group member $j$ is a coethnic of individual $i$. Further, we include profile fixed effects $\alpha_{p}$ in these specifications:

- First specification:

$$
\begin{equation*}
Y_{i j}=\alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\varepsilon_{i j} \tag{9}
\end{equation*}
$$

- Specification with controls

$$
\begin{equation*}
Y_{i j}=\alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\beta_{8} X_{i}+\varepsilon_{i j} \tag{10}
\end{equation*}
$$

- Specification for heterogeneous effects:

$$
\begin{align*}
Y_{i j}= & \alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\beta_{8} X_{i}+ \\
& \beta_{9} C E_{i j} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * C E_{i j} * X_{i}+\varepsilon_{i j} \tag{11}
\end{align*}
$$

Identified Public-good Game: Homogeneous group In the homogeneous publicgood game, the outcomes of interest are:

$$
\begin{aligned}
& Y_{i}=\text { pghombeliefa }_{i j} \\
& Y_{i}=\text { pghombeliefb }_{i j}
\end{aligned}
$$

Again, we stack the two above vectors and rename this dependent variable to $Y_{i j}=$ pghombelief $f_{i j}$, where $j=a, b$. Since both group members are coethnics, we now estimate a regression with profile fixed effects and with standard errors clustered at the individual level:

$$
\begin{equation*}
Y_{i j}=\alpha_{p}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\varepsilon_{i j} \tag{12}
\end{equation*}
$$

Mutatis mutandis, we will also run this regression with controls and with heterogeneous treatment effects, as in specifications (6) and (7) respectively.

### 5.2 Hypotheses

### 5.2.1 Contributions

Below we present our null hypotheses for the public-good game. Within each round, i.e. within the anonymous, the mixed and the homogenous public-good Game, and for each set of outcomes (contributions and beliefs), we have a similar set of hypotheses. First, we present our hypotheses for the anonymous, mixed and homogeneous public-good game, using specification (5).

- Priming affects contributions:

$$
\begin{aligned}
& -H_{P G 1}: \beta_{1}=0 \\
& -H_{P G 2}: \beta_{2}=0 \\
& -H_{P G 3}: \beta_{3}=0
\end{aligned}
$$

- Different priming affects contributions differently:
$-H_{P G 4}: \beta_{2}=\beta_{3}$
$-H_{P G 5}: \beta_{2}=\beta_{4}$
$-H_{P G 6}: \beta_{3}=\beta_{4}$
- Not all treatment effects are equal to zero:
$-H_{P G 7}: \beta_{1}=\beta_{2}=\beta_{3}=0$


### 5.2.2 Beliefs

- Priming affects beliefs within the anonymous and homogeneous public-good game (referring to $(8,12)$ ):
$-H_{P G 8}: \beta_{1}=0$
$-H_{P G 9}: \beta_{2}=0$
$-H_{P G 10}: \beta_{3}=0$
- Beliefs about what coethnics contribute are different (referring to (9)):
- $H_{P G 11}: \beta_{1}=0$
- Priming affects, in the mixed public-good game (referring to (9)),
- beliefs about what non-coethnics contribute:
* $H_{P G 12}: \beta_{2}=0$
* $H_{P G 13}: \beta_{3}=0$
* $H_{P G 14}: \beta_{4}=0$
- beliefs about what coethnics contribute:

$$
\begin{aligned}
& * H_{P G 15}: \beta_{2}+\beta_{5}=0 \\
& * H_{P G 16}: \beta_{3}+\beta_{6}=0 \\
& * H_{P G 17}: \beta_{4}+\beta_{7}=0
\end{aligned}
$$

- beliefs about what coethnics contribute differentially compared to beliefs about non-coethnic contributions:

$$
\begin{aligned}
& * H_{P G 18}: \beta_{5}=0 \\
& * H_{P G 19}: \beta_{6}=0 \\
& * H_{P G 20}: \beta_{7}=0
\end{aligned}
$$

- There are differences in treatment effects on beliefs,
- within the anonymous and homogeneous public-good game (referring to (8, 12):

$$
* H_{P G 21}: \beta_{1}=\beta_{2}
$$

$$
* H_{P G 22}: \beta_{1}=\beta_{3}
$$

$$
* H_{P G 23}: \beta_{2}=\beta_{3}
$$

- within the mixed public-good game, regarding contributions of non-coethnics (referring to (9)):

$$
\begin{aligned}
& * H_{P G 24}: \beta_{2}=\beta_{3} \\
& * H_{P G 25}: \beta_{2}=\beta_{4} \\
& * H_{P G 26}: \beta_{3}=\beta_{4}
\end{aligned}
$$

- within the mixed public-good game, regarding contributions of coethnics (referring to (9)):
* $H_{P G 27}: \beta_{2}+\beta_{5}=\beta_{3}+\beta_{6}$
* $H_{P G 28}: \beta_{2}+\beta_{5}=\beta_{4}+\beta_{7}$
* $H_{P G 29}: \beta_{3}+\beta_{6}=\beta_{4}+\beta_{7}$
- In the mixed public-good game, there are differences in differential priming effects for beliefs about coethnic contributions (referring to (9)):
$-H_{P G 30}: \beta_{5}=\beta_{6}$
- $H_{P G 31}: \beta_{5}=\beta_{7}$
$-H_{P G 32}: \beta_{6}=\beta_{7}$
- Not all treatment effects are equal to zero,
- for beliefs within the anonymous and homogeneous public-good game (referring to $(8,12))$ :

$$
* H_{P G 33}: \beta_{1}=\beta_{2}=\beta_{3}=0
$$

- for beliefs within the mixed public-good game (referring to (9)),
* concerning non-coethnic contributions:

$$
\text { - } H_{P G 34}: \beta_{2}=\beta_{3}=\beta_{4}=0
$$

* concerning differences for coethnic contributions:

$$
\cdot H_{P G 35}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

* the joint null hypothesis that all coefficients are zero:
- $H_{P G 36}: \beta_{1}=\beta_{2}=\beta_{5}=\beta_{3}=\beta_{6}=\beta_{4}=\beta_{7}=0$


## 6 Choose-your-dictator Game

### 6.1 General estimation procedure

For the choose-your-dictator game, each individual faces a choice between one coethnic and one non-coethnic profile, where these profiles are randomly drawn from the set of 6 coethnic and 6 non-coethnic profiles. The dependent variable is $Y_{i p}$ which equals one
(zero) if individual $i$ chose (did not choose) profile $p$. In this setting, multinomial logit estimation is a natural estimation strategy. To use this strategy, define $V_{i p}$, which can be interpreted as the latent utility individual $i$ (the chooser) expects from choosing profile $p$ as his dictator.

$$
\begin{equation*}
V_{i p}=\alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+\varepsilon_{i p} \tag{13}
\end{equation*}
$$

Here, $C E_{i p}$ is an indicator variable for whether profile $p$ is a coethnic of respondent $i$. Since we need variation in the values of $V_{i p}$ for the respondents $i$ in order to obtain identification of the estimated coefficient, we need heterogeneity in the covariates across different profiles. Therefore, all variables, except for the profile specific constants, are interacted with $C E_{i p}$.

The expression for $V_{i p}$ allows to specify:

$$
\begin{equation*}
\operatorname{Prob}\left(Y_{i p}=1\right)=y_{i p}=\frac{\exp \left(V_{i p}\right)}{1+\Sigma_{p} \exp \left(V_{i p}\right)} \tag{14}
\end{equation*}
$$

Where $y_{i p}$ is the probability that individual $i$ chooses profile $p$. The estimated probability $\hat{y}_{i p}$ is obtained using maximum likelihood, as is applicable in the multinomial logit setting. Since $\hat{y}_{i p}$ is estimated for multiple $p$, we cluster standard errors at the individual level.

To summarize our general setup for this game: first, we specify a latent utility $V_{i p}$. Next, this latent utility enters a probabilistic expression $y_{i p}$. This $y_{i p}$ is then used in maximum likelihood estimation. This is the estimation procedure which we will use wherever we specify a latent utility $V_{i p}$ or $V_{i j p}$ below.

### 6.2 Specifications

### 6.2.1 Dictator Choice

There are two game rounds of the choose-your-dictator game. In the first round, choosers choose a dictator without the dictator having any information about them; we refer to this as the "anonymous chooser" round. In the second round, the choosers are told that the dictator will have similar information about them as they have about the dictator; this is the "identified chooser" round. The dependent variables of interest for the first and second round are, respectively:

$$
\begin{aligned}
& Y_{i p}=\text { cd }^{\text {mixchoice }_{i p}} \\
& Y_{i p}=c d 2 \text { mixchoice }_{i p}
\end{aligned}
$$

Where $Y_{i p}=1$ if individual $i$ chooses profile $p ; Y_{i j}=0$ if she/he does not choose profile $p$ and $Y_{i p}$ is unspecified if profile $p$ is not in the choice set for respondent $i$, consisting of participant profiles $\{A, B\}$ from the current game round.

The estimation of dictator choice is based on specification (13), both for the anonymous chooser and the identified chooser round.

- The second is a specification with controls:

$$
\begin{equation*}
V_{i p}=\alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+\beta_{5} C E_{i p} * X_{i}+\varepsilon_{i p} \tag{15}
\end{equation*}
$$

- Third, a specification for heterogeneous treatment effects:

$$
\begin{align*}
V_{i p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+  \tag{16}\\
& \beta_{5} C E_{i p} * X_{i}+\sum_{k=1}^{3} \beta_{5+k} T_{k} * C E_{i p} * X_{i}+\varepsilon_{i p}
\end{align*}
$$

### 6.2.2 Beliefs

Before participants chose their dictator, they were asked to state their beliefs about what the two profiles they were facing would share with them. These beliefs are collected in the following vectors, grouped by game round, for profile $A, B$ :

$$
\begin{aligned}
Y_{i 1 a} & =c d 1 \text { mixbelief }_{i} \\
Y_{i 1 b} & =c d 1 \text { mixbelief }_{i} \\
Y_{i 2 a} & =c d 2 \text { mixbelief } a_{i} \\
Y_{i 2 b} & =c d 2 \text { mixbeliefb }_{i}
\end{aligned}
$$

For estimation, we will stack vectors $Y_{i 1 a}, Y_{i 1 b}$ to create $Y_{i 1 m}$ and stack vectors $Y_{i 2 a}, Y_{i 2 b}$ to create $Y_{i 2 m}$ with $m=a, b$. To analyze these data, we will use a similar framework as we use for the analysis of beliefs in the public-good game. More specifically, the vectors $Y_{i 1 m}, Y_{i 2 m}$ will be used in separate regression, using the following specification:

$$
\begin{equation*}
Y_{i m}=\alpha_{p}+\beta_{1} C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i p}+\varepsilon_{i m} \tag{17}
\end{equation*}
$$

The above estimation procedures provide information on the dictator choice and the beliefs of the respondents about the dictator candidates for each individual game round. Now, we focus only on the dictator choices, pool the data from the two game rounds and specify the estimation equations for these data.

### 6.3 Hypotheses

### 6.3.1 Dictator Choice

Concerning dictator choice, analyzed using specification 13 we have the following hypotheses for both the first, anonymous and second, identified round of the choose-your-dictator
game:

- Coethnicity affects dictator choice:

$$
-H_{C D 1}: \beta_{1}=0
$$

- Priming affects the likelihood to choose a coethnic dictator:

$$
\begin{aligned}
& -H_{C D 2}: \beta_{2}=0 \\
& -H_{C D 3}: \beta_{3}=0 \\
& -H_{C D 4}: \beta_{4}=0
\end{aligned}
$$

- The different treatments affect the likelihood to choose a coethnic differently:

$$
\begin{aligned}
& -H_{C D 5}: \beta_{2}=\beta_{3} \\
& -H_{C D 6}: \beta_{2}=\beta_{4} \\
& -H_{C D 7}: \beta_{3}=\beta_{4}
\end{aligned}
$$

- Not all treatment effects are equal to zero:

$$
-H_{C D 8}: \beta_{2}=\beta_{3}=\beta_{4}=0
$$

### 6.3.2 Beliefs

Concerning beliefs about what a dictator will give, using specification (17), we have the following set of hypotheses:

- Both in the anonymous and identified dictator game, coethnicity affects beliefs:

$$
-H_{C D 9}: \beta_{1}=0
$$

- Both in the anonymous and identified dictator game, priming affects beliefs about how much,
- non-coethnics will give:
* $H_{C D 10}: \beta_{2}=0$
* $H_{C D 11}: \beta_{3}=0$
* $H_{C D 12}: \beta_{4}=0$
- coethnics will give:
* $H_{C D 13}: \beta_{2}+\beta_{5}=0$
* $H_{C D 14}: \beta_{3}+\beta_{6}=0$
* $H_{C D 15}: \beta_{4}+\beta_{7}=0$
- coethnics will give differently compared to beliefs about how much non-coethnics will give:
* $H_{C D 16}: \beta_{5}=0$

$$
\begin{aligned}
& * H_{C D 17}: \beta_{6}=0 \\
& * H_{C D 18}: \beta_{7}=0
\end{aligned}
$$

- Both in the anonymous and identified dictator game, different priming has different effects on beliefs about how much,
- non-coethnics will give:

$$
* H_{C D 19}: \beta_{2}=\beta_{3}
$$

* $H_{C D 20}: \beta_{2}=\beta_{4}$
* $H_{C D 21}: \beta_{3}=\beta_{4}$
- coethnics will give:
* $H_{C D 22}: \beta_{2}+\beta_{5}=\beta_{3}+\beta_{6}$
* $H_{C D 23}: \beta_{2}+\beta_{5}=\beta_{4}+\beta_{7}$
* $H_{C D 24}: \beta_{3}+\beta_{6}=\beta_{4}+\beta_{7}$
- Both in the anonymous and identified dictator game, different priming affects beliefs about how much coethnics will give compared to beliefs about how much noncoethnics will give differentially:

$$
\begin{aligned}
& -H_{C D 25}: \beta_{5}=\beta_{6} \\
& -H_{C D 26}: \beta_{5}=\beta_{7} \\
& -H_{C D 27}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- Not all treatment effects for beliefs about non-coethnic generosity are zero:

$$
-H_{C D 28}: \beta_{2}=\beta_{3}=\beta_{4}=0
$$

- Not all differential treatment effects for beliefs about coethnic generosity are zero:

$$
-H_{C D 29}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

- Both in the anonymous and identified dictator game, the joint null hypothesis that all coefficients are zero:

$$
-H_{C D 30}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=0
$$

## 7 Exploratory analysis

We now turn to the exploratory part of our analysis, where we compare treatment effects between the anonymous and identified games. This is a more exploratory exercise in the sense that, as argued by Benjamin et al. (2010), it is theoretically ambiguous whether priming should have a stronger or weaker effect in the identified versus the anonymous settings.
In addition to the hypotheses outlined below, we will test a similar set of hypotheses on beliefs in the public-good and choose-your-dictator game. We do not explicitly write out all of these hypotheses about beliefs as we consider this analysis to be even more exploratory.

### 7.1 Dictator game: Pooled estimation

One of our interests lies in the comparison of treatment effects across game rounds. For this reason, we now pool the data from the different game rounds for each game. We start with the dictator game.

### 7.1.1 First Specification

For our specifications on the pooled data, we stack the following vectors of observations:

$$
\begin{gathered}
Y_{i}=\text { dga_transfer } \\
i \\
Y_{i j}=\text { iddghomtransfer }_{i j}
\end{gathered}
$$

And relabel the resulting vector as

$$
Y_{i j}=d g_{\_} \text {transfer }{ }_{i j}
$$

where $j=1,2,3$ for the anonymous, first coethnic and second coethnic round of the dictator game respectively. For each estimation using $Y_{i j}=d g_{\text {_transfer }}^{i j}$ as the dependent variable, we will cluster standard errors at the individual level. Now, we present our primary specification which will be used for all hypothesis tests concerning the dictator game.

$$
\begin{equation*}
Y_{i j}=\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\varepsilon_{i j} \tag{18}
\end{equation*}
$$

Here, $C E_{i j}$ is an indicator variable for whether round $j$ is a round where individual $i$ faces a coethnic profile. Further, we add both $\alpha$, the average transfer in the control group in the anonymous round, and the profile fixed effects $\alpha_{p}$, which only apply in the coethnic setting.

### 7.1.2 Additional Specifications

For similar reasons as in the case of the regressions by information set, we also include a specification with controls and a specification for heterogeneous treatment effects. The latter specification will be estimated two more times, using the ethnic categorizations of traditional alliances and political salience which are described above.

- The specification with controls:

$$
\begin{equation*}
Y_{i j}=\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\beta_{8} X_{i}+\varepsilon_{i j} \tag{19}
\end{equation*}
$$

- The specification for heterogeneous effects:

$$
\begin{align*}
Y_{i j} & =\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * C E_{i j}+\beta_{8} X_{i} \\
& +\beta_{9} C E_{i j} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * C E_{i j} * X_{i}+\varepsilon_{i j} \tag{20}
\end{align*}
$$

### 7.1.3 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (18).

- Generosity toward coethnics is different than generosity toward anonymous individuals:

$$
-H_{D 8}: \beta_{1}=0
$$

- There are differences in treatment effects in the coethnic dictator game compared to the anonymous dictator game:
$-H_{D 9}: \beta_{5}=0$
- $H_{D 10}: \beta_{6}=0$
$-H_{D 11}: \beta_{7}=0$
- The differences in treatment effects from the anonymous to the coethnic setting are different across treatments:

$$
-H_{D 12}: \beta_{5}=\beta_{6}
$$

$$
-H_{D 13}: \beta_{5}=\beta_{7}
$$

$$
-H_{D 14}: \beta_{6}=\beta_{7}
$$

- Not all the differential treatment effects are equal to zero:
$-H_{D 15}: \beta_{5}=\beta_{6}=\beta_{7}=0$
- The final joint null hypothesis is that all coefficients are equal to zero:

$$
-H_{D 16}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=0
$$

### 7.2 Public-good Game: Pooled Estimation

We now move on the public-good game, where we stack the variables of interest in a similar way, and also cluster standard errors at the individual level.

The first specification:

$$
\begin{align*}
Y_{i j} & =\alpha+\beta_{1} \text { Mix }_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Mix }_{i j}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Hom }_{i j}+\varepsilon_{i j} \tag{21}
\end{align*}
$$

Here, $H o m_{i j}$ is an indicator variable for whether round $j$ is a round where individual $i$ is in a group with only coethnic profiles and $M i x_{i j}$ is an indicator variable for a round with a non-coethnic in the group.

### 7.2.1 Additional specifications

Finally, we specify a regression specifications with control variables $X_{i}$ and a regression specification with heterogeneous treatment effects across the elements of $X_{i}$.

- The specification with controls:

$$
\begin{align*}
& Y_{i j}=\alpha+\beta_{1} \text { Mix }_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{3} \beta_{2+k} T_{k}+  \tag{22}\\
& \quad \sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Mix }_{i j}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \operatorname{Hom}_{i j}+\beta_{12} X_{i}+\varepsilon_{i j}
\end{align*}
$$

- The specification for heterogeneous effects.

$$
\begin{align*}
& Y_{i j}=\alpha+\alpha_{p}+\beta_{1} \text { Mix }_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{3} \beta_{2+k} T_{k}+ \\
& \quad \sum_{k=1}^{3} \beta_{5+k} T_{k} * M i x_{i j}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \operatorname{Hom}_{i j}+\beta_{12} X_{i}+  \tag{23}\\
& \quad \beta_{13} M i x i j_{i j} * X_{i}+\beta_{14} H o m_{i j} * X_{i}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * X_{i} \\
& \quad \sum_{k=1}^{3} \beta_{17+k} T_{k} * M i x_{i j} * X_{i}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Hom }_{i j} * X_{i}+\varepsilon_{i j}
\end{align*}
$$

### 7.2.2 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (21).

- Willingness to contribute to the group fund is different,
- between the mixed and the anonymous public-good game:
* $H_{P G 37}: \beta_{1}=0$
- between the homogeneous and the anonymous public-good game:
* $H_{P G 38}: \beta_{2}=0$
- between the mixed and the homogeneous public-good game:
* $H_{P G 39}: \beta_{1}=\beta_{2}$
- There are differences in treatment effects,
- between the mixed and the anonymous public-good game:
* $H_{P G 40}: \beta_{6}=0$
* $H_{P G 41}: \beta_{7}=0$
* $H_{P G 42}: \beta_{8}=0$
- between the homogeneous and the anonymous public-good game:
* $H_{P G 43}: \beta_{9}=0$
* $H_{P G 44}: \beta_{10}=0$
* $H_{P G 45}: \beta_{11}=0$
- between the mixed public-good game and the homogeneous public good game.
* $H_{P G 46}: \beta_{6}=\beta_{9}$
* $H_{P G 47}: \beta_{7}=\beta_{10}$
* $H_{P G 48}: \beta_{8}=\beta_{11}$
- There are differences between the differences in treatment effects,
- going from the anonymous to the mixed:
* $H_{P G 49}: \beta_{6}=\beta_{7}$
* $H_{P G 50}: \beta_{6}=\beta_{8}$
* $H_{P G 51}: \beta_{7}=\beta_{8}$
- going from the anonymous to the homogeneous:
* $H_{P G 52}: \beta_{9}=\beta_{10}$
* $H_{P G 53}: \beta_{9}=\beta_{11}$
* $H_{P G 54}: \beta_{10}=\beta_{11}$
- Not all the differences in treatment effects are equal to zero.
- going from the anonymous to the mixed:
* $H_{P G 55}: \beta_{6}=\beta_{7}=\beta_{8}=0$
- going from the anonymous to the homogeneous:

$$
* H_{P G 56}: \beta_{9}=\beta_{10}=\beta_{11}=0
$$

- The final joint null hypothesis is that all coefficients are equal to zero.

$$
-H_{P G 57}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=0
$$

### 7.3 Choose-your-dictator game: Pooled Estimation

Now, we also present the analysis on the pooled data of the choose-your-dictator game.

### 7.3.1 First Specification

This is the first specification, on which we will test our additional hypotheses:

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+\beta_{5} * C E_{i p} * I D_{i j}+  \tag{24}\\
& \sum_{k=1}^{3} \beta_{5+k} T_{k} * C E_{i p} * I D_{i j}+\varepsilon_{i j p}
\end{align*}
$$

Here, the dummy variable $I D_{i j}$ with $j=1,2$ equals one if individual $i$ is in the second, identified round of the game and zero otherwise. Hence, if $I D_{i j}=1$, the respondent $i$ knows that his chosen dictator is informed about his background information.

### 7.3.2 Additional Specifications

In addition to the primary specification, we will also estimate specifications with controls and with heterogeneous treatment effects.

- Specification with controls

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+\beta_{5} * C E_{i p} * I D_{i j}+  \tag{25}\\
& \sum_{k=1}^{3} \beta_{5+k} T_{k} * C E_{i p} * I D_{i j}+\beta_{9} C E_{i p} * X_{i}+\varepsilon_{i j p}
\end{align*}
$$

- Specification for heterogeneous treatment effects.

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{3} \beta_{1+k} T_{k} * C E_{i p}+\beta_{5} * C E_{i p} * I D_{i j}+ \\
& \sum_{k=1}^{3} \beta_{5+k} T_{k} * C E_{i p} * I D_{i j}+\beta_{9} C E_{i p} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * C E_{i p} * X_{i}  \tag{26}\\
& +\beta_{12} * C E_{i p} * I D_{i j} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * C E_{i p} * I D_{i j} * X_{i}+\varepsilon_{i j p}
\end{align*}
$$

### 7.3.3 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (24).

- There is a difference in how coethnicity affects dictator choice between the anonymous and identified choose-your-dictator game:

$$
-H_{C D 31}: \beta_{5}=0
$$

- There are differences in treatment effects in the identified dictator choice compared to the anonymous dictator choice.
$-H_{C D 32}: \beta_{6}=0$
$-H_{C D 33}: \beta_{7}=0$
$-H_{C D 34}: \beta_{8}=0$
- The differences in treatment effects from the anonymous to the identified setting are different across treatments.

$$
\begin{aligned}
& -H_{C D 35}: \beta_{6}=\beta_{7} \\
& -H_{C D 36}: \beta_{6}=\beta_{8} \\
& -H_{C D 37}: \beta_{7}=\beta_{8}
\end{aligned}
$$

- Not all the differences in treatment effects are equal to zero:

$$
-H_{C D 38}: \beta_{6}=\beta_{7}=\beta_{8}=0
$$

- The final joint null hypothesis is that all coefficients are equal to zero:
$-H_{C D 39}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=0$


## References

Alesina, A. and E. L. Ferrara (2005, September). Ethnic Diversity and Economic Performance. Journal of Economic Literature 43, 762-800.

Anderson, M. (2008, December). Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. Journal of the American Statistical Association 103(484), 14811495.

Bates, R. H. (1982). Modernization, Ethnic Competition, and the Rationality of Politics in Contemporary Africa. In D. Rothchild and V. A. Olorunsola (Eds.), State Versus Ethnic Claims: African Policy Dilemmas. Westview Press.

Benjamin, D. J., J. J. Choi, and A. J. Strickland (2010, September). Social Identity and Preferences. American Economic Review 100(4), 1913-1928.

Benjamini, Y., A. M. Krieger, and D. Yekutieli (2006, September). Adaptive Linear Step-up False Discovery Rate controlling procedures. Biometrika 93(3), 491-507.

Carlson, E. (2011). Great Expectations: Ethnicity, Candidate Performance, and Voters in Uganda. Mimeo.

Easterly, W. and R. Levine (1997). Africa's Growth Tragedy: Policies and Ethnic Divisions. Quarterly Journal of Economics 112(4), 1203-50.

Eifert, B., E. Miguel, and D. N. Posner (2010). Political Competition and Ethnic Identification in Africa. American Journal of Political Science 54(2), 494-510.

Fearon, J. (1999). Why Ethnic Politics and "Pork" Tend to Go Together. Mimeo.
Horowitz, D. L. (1985). Ethnic Groups in Conflict. University of California Press, Ltd.
James, W. (1890). The Principles of Psychology. New York: Henry Holt.
Kramon, E. (December 2011). Why Do Politicians Buy Votes When The Ballot Is Secret? Theory And Experimental Evidence From Kenya. WGAPE.

Miguel, E. (2004). Tribe or Nation? Nation-Building and Public Goods in Kenya versus Tanzania. World Politics 56(3), 327-362.

Miguel, E. and M. K. Gugerty (2005). Ethnic Diversity, Social Sanctions, and Public Goods in Kenya. Journal of Public Economics 89, 2325-2368.

Pande, R. (2003, November). Can Mandated Political Representation Increase Policy Influence for Disadvantaged Minorities? Theory and Evidence from India. American Economic Review 93(4), 1132-1151.

Posner, D. N. (2004, October). Measuring ethnic fractionalization in africa. American Journal of Political Science 48(4), 849-863.

Posner, D. N. (2005). Institutions and Ethnic Politics in Africa. Cambridge University Press.

Turner, J. C. (1985). Social Categorization and the Self-Concept: A Social Cognitive Theory of Group Behavior, Volume 2. Greenwich, CT: JAI Press.

Wantchekon, L. (2003). Clientelism and Voting Behavior: Evidence from a Field Experiment in Benin. World Politics 55(3), 399-422.

Wilkinson, S. I. (2006). Votes And Violence: Electoral Competition And Ethnic Riots in India. Cambridge University Press.

# Pre-Analysis Plan for Social Cooperation in Kenya and Tanzania 

Lars Ivar O. Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel Daniel Posner, Bertil Tungodden and Kelly Zhang

May 24, 2013

## Contents

1 Introduction ..... 4
1.1 Background ..... 4
2 Overall research strategy ..... 5
2.1 Locations and sample ..... 5
2.2 Games ..... 6
2.2.1 Coethnic alliances in the identified games in Kenya ..... 6
2.2.2 Structure of the games ..... 7
2.3 Implicit Association Test ..... 8
2.4 Treatments ..... 8
3 Empirical Strategy ..... 8
3.1 Empirical Specification ..... 8
3.2 Control Variables and Heterogeneous Treatment Effects ..... 8
3.3 Controlling for Multiple Inference ..... 9
4 Dictator Game ..... 10
4.1 Specifications ..... 10
4.2 Hypotheses ..... 11
5 Public-good Game ..... 13
5.1 Specifications ..... 13
5.1.1 Contributions ..... 13
5.1.2 Beliefs ..... 14
5.1.3 Contribution minus beliefs ..... 16
5.2 Hypotheses ..... 16
5.2.1 Contributions and "contribution minus beliefs" ..... 16
5.2.2 Beliefs ..... 17
5.2.3 Differential effects for Kamba respondents ..... 19
6 Choose-your-dictator Game ..... 20
6.1 General estimation procedure ..... 20
6.2 Specifications ..... 20
6.2.1 Dictator Choice ..... 20
6.2.2 Beliefs ..... 21
6.3 Hypotheses ..... 22
6.3.1 Dictator Choice ..... 22
6.3.2 Beliefs ..... 23
6.3.3 Differential effects for Kamba respondents ..... 24
7 Political Attitudes ..... 26
7.1 Specifications ..... 26
7.2 Hypotheses ..... 27
8 Comparison across Games ..... 28
8.1 Dictator game ..... 28
8.1.1 First Specification ..... 28
8.1.2 Additional Specifications ..... 29
8.1.3 Hypotheses ..... 30
8.2 Public-good Game ..... 32
8.2.1 Additional specifications ..... 32
8.2.2 Hypotheses ..... 33
8.3 Choose-your-dictator game ..... 35
8.3.1 First Specification ..... 35
8.3.2 Additional Specifications ..... 36
8.3.3 Hypotheses ..... 36
9 IAT ..... 38
9.1 Framework ..... 38
9.1.1 General IAT structure ..... 38
9.1.2 Ethnic IAT ..... 39
9.1.3 National IAT ..... 39
9.2 Specifications ..... 39
9.3 Hypotheses ..... 40
10 Anonymous priming: global average treatment effect ..... 43
10.1 Anonymous Dictator Game ..... 43
10.1.1 Specifications ..... 43
10.1.2 Hypotheses ..... 43
10.2 Anonymous Public-good Game ..... 44
10.2.1 Specifications: Contributions and Contribution minus beliefs ..... 44
10.2.2 Specifications: Beliefs ..... 44
10.2.3 Hypotheses ..... 44
11 Kenya versus Tanzania: cross-country analysis ..... 46
11.1 Anonymous Dictator Game ..... 46
11.1.1 Specifications ..... 46
11.1.2 Hypotheses ..... 46
11.2 Anonymous Public-good Game ..... 47
11.2.1 Specifications: Contributions and Contributions minus beliefs ..... 47
11.2.2 Specifications: Beliefs ..... 47
11.2.3 Hypotheses ..... 48
12 Kenya 2012 versus Kenya 2013: Election analysis ..... 49
12.1 Dictator Game ..... 49
12.1.1 Individual Games ..... 49
12.1.2 Pooled Analysis ..... 50
12.1.3 Hypotheses ..... 51
12.2 Public-good Game ..... 52
12.2.1 Individual Games ..... 52
12.2.2 Pooled Analysis ..... 53
12.2.3 Hypotheses ..... 53
12.3 Choose-your-dictator Game ..... 55
12.3.1 Individual Games ..... 55
12.3.2 Pooled Analysis ..... 57
12.3.3 Hypotheses ..... 57
12.4 Political Attitudes ..... 59
12.4.1 Individual Games ..... 59
12.4.2 Hypotheses ..... 59
12.5 Ethnic identification ..... 60
13 Global analysis: full specifications ..... 61
13.1 Dictator Game ..... 61
13.1.1 Individual Games ..... 61
13.1.2 Pooled Analysis ..... 62
13.1.3 Hypotheses ..... 63
13.2 Public-good Game ..... 65
13.2.1 Individual Games ..... 65
13.2.2 Pooled Analysis ..... 66
13.2.3 Hypotheses ..... 67
13.3 Choose-your-dictator Game ..... 70
13.3.1 Individual Games ..... 70
13.3.2 Pooled Analysis ..... 71
13.3.3 Hypotheses ..... 72

## 1 Introduction

This is the third pre-analysis plan in our series of pre-analysis plans for our research project on social cooperation in Kenya and Tanzania. In this plan, we will integrate the lab round in Kenya from January and February 2013 into the analysis. Hence, we primarily focus on the "Kenya 2013 lab", the comparison over time between the 2012 and 2013 lab rounds in Kenya, and the cross-country comparison between the Tanzania lab and the Kenya 2013 lab. To start, we reintroduce the structure, motivation and background of this study, before we delve into the specifics of the current plan.

### 1.1 Background

Africa's multi-ethnic environment has been found to be an important factor in explaining its low growth (Easterly and Levine, 1997). In particular, ethnic fractionalization appears to hamper public good provision (Alesina and Ferrara, 2005; Miguel and Gugerty, 2005). This project seeks to understand what exactly makes ethnic fractionalization a barrier to cooperation across ethnic lines. Do these barriers arise from innate cultural differences or are they shaped by the surrounding political environment?

A growing body of literature suggests that ethnic identity can be used strategically by political leaders to gain support for their political ambitions (Eifert et al., 2010; Posner, 2005; Wantchekon, 2003; Carlson, 2011; Kramon, 2011). These strategies also tend to be associated with targeted redistributive policies, a polarized electorate, and competing interests that can potentially escalate to conflict (Pande, 2003; Fearon, 1999; Horowitz, 1985; Bates, 1982; Wilkinson, 2006).

Miguel (2004) proposes that national identity can potentially neutralize the ethnic divisions that hinder public-good provision. In Tanzania, Julius Nyerere promoted national identity through policies of nation building-with reforms in language policy, the school curriculum, and the overhaul of local institutions. In Kenya, Jomo Kenyatta did not undertake these policies, and instead fostered competition along ethnic lines. The different sets of policies implemented in each country post-independence provide the underlying motivation for the cross-country comparison in this study.

The current project seeks to shed light on the implications of nation building policies on interethnic cooperation in an experimental setting. Rather than relying on survey evidence, which makes causal inference problematic, we are able to identify behavioral changes directly through standard laboratory games. We use priming to increase the situational salience of ethnic identity, national identity, and political competition. Priming is a tool from social psychology that nudges participants to behave in accordance with a social norm, and is increasingly used in behavioral economics (James, 1890; Turner, 1985). Moreover, we implement similar labs in both Kenya and Tanzania to investigate differences in interethnic cooperation across countries with different political histories, and similar labs approximately 9 months and 1 month prior to presidential elections in Kenya to investigate how interethnic cooperation is affected by proximity to election. The project setup includes standard dictator and public-good games. This project also proposes a novel "choose-your-dictator" game, where respondents are able to decide which participant will be their dictator, when given basic background characteristics about the candidate dictators.

We start out by describing the overall research strategy in Section 2. Then, in Section 3, we discuss empirical issues. Sections 4,5 and 6 present the analysis plan for each game of the lab sessions, starting with the dictator game, moving on to the publicgood game, and then the choose-your-dictator game. Next, we present the specifications and hypotheses for analyzing treatment effects across multiple information settings in Section 7. A new measure for respondent's implicit associations, the IAT, is introduced in Section 8. The subsequent sections cover the comparisons across lab rounds: Section 9 analyzes the average effects of our priming treatments across all lab rounds, and Section 10 presents the cross-country comparison of priming effects. Next, Section 11 discusses the comparison of the Kenya lab rounds in 2012 and 2013. Finally, we line out the detailed comparison across all three lab rounds (Tanzania 2012, Kenya 2012 and Kenya 2013).

## 2 Overall research strategy

Our overall study design combines four elements:

1. Priming
2. Coethnic versus non-coethnic comparison
3. Country comparison
4. Comparisons over time

Approach 1 (priming) gives us a clean measure of whether emphasizing ethnic identity, national identity or political competition has a causal effect on our outcome variables of interest. We use both a "pure" political competition prime, and a "blatant" political competition prime, which focuses on ethnic tensions in Kenyan political competition. Next, approach 2 (coethnic versus non-coethnic comparison in ethnically identified games) gives us a measure of the importance of ethnicity for subjects' behavior. Approaches 3 (country comparison) and 4 (comparisons over time) allow us to study how the impact of priming and ethnicity changes in different situations. In approach 3, we explore differences across countries with different political histories, and in approach 4 differences in time (separate lab rounds, with varying degrees of proximity to elections).

### 2.1 Locations and sample

We conduct lab rounds in both Nairobi, Kenya (the "Kenya lab") and Dar es Salaam, Tanzania (the "Tanzania lab"). The target population consists of individuals living in working-class neighborhoods (slum areas). In Nairobi, we stratify sampling and recruitment by ethnicity in order to ensure that our session and sample compositions would be similar to Nairobi's ethnic composition. In Dar es Salaam, recruitment took place in working-class neighborhoods as well, which have much more ethnic heterogeneity than the Kenyan recruitment neighborhoods. Only people from the 15 largest tribes in our

Tanzanian recruitment sample were invited to the lab. We did not apply any further stratification on ethnic lines.

The Kenya lab takes place at Busara Center for Behavioral Economics and in Tanzania at the Economic and Social Research Foundation (ESRF). In both cases, the setup of the computer lab facilitated participation for semi-literate and illiterate subjects.

Each round of labs draws a sample of at least 600 individuals. The first Kenya lab took place in July/August 2012 (the "2012 Kenya lab") and the Tanzania lab in November/ December 2012 (the "2012 Tanzania lab"). This preanalysis plan mainly considers the lab round in Kenya in January/February 2013 (the "2013 Kenya lab"), which was close to Kenya's general elections in March 2013. When conducting new lab rounds in the same country, a new sample of participants will be recruited. The number of subsequent rounds beyond these three lab rounds is contingent on additional funding.

In what now follows, we describe the plans for the 2013 Kenya lab and the comparison of the Kenya 2013 lab round with the other 2 lab rounds. For purposes of comparison, the structure of the key games described here is also implemented in the 2012 and 2013 Kenya labs, but with some modifications to take into account differences across countries and over time. For this reason, the pre-analysis plans for each lab round incorporate the amendments for their respective lab rounds.

### 2.2 Games

Each lab session is divided into two parts, both chronologically and conceptually; first an anonymous part and second an identified part. In the anonymous part, participants are randomly paired with anonymous individuals and have no information about the individuals they were partnered with. The second set of games are identified, where the participants receive some background information (education, ethnicity, age) about the participants they were partnered with.

### 2.2.1 Coethnic alliances in the identified games in Kenya

In Kenya, five of the largest ethnic groups make up our sample: Kikuyu, Luo, Luhya, Kisii and Kamba. In categorizing as "coethnic" or "non-coethnic", we group individuals by the political alliances forged by the political leaders of these tribes. Traditionally, the Luo and Luhya have been together in one alliance, with the Kikuyu tribe as direct rivals. The Kisii have generally been neutral, in going back and forth. For simplicity, the Kisii are assigned to the Luo/Luhya sequence of treatment, since the Kisii regional area is closer in geographic proximity to Luo and Luhya regional areas. The allegiance of the fifth tribe, the Kamba, has been unstable in Kenya's recent political history. During the 2007 elections, Kalonzo Musyoka, the Kamba leader, was a direct rival to Raila Odinga, the Luo leader. Also, in the immediate aftermath of the 2007 elections, Musyoka became Vice-President in the cabinet of President Mwai Kibaki, the Kikuyu leader. ${ }^{1}$ This was the reason that we grouped the Kamba as coethnic to the Kikuyu in the pre-analysis plan for the Kenya 2012 lab. However, for the 2013 elections, the composition of the coalitions changed. On December 4, 2012 Musyoka joined Odinga's alliance, in Odinga's quest for

[^5]the presidency against Uhuru Kenyatta (Kikuyu). ${ }^{2}$
Due to these changing compositions of political alliances, we will drop the Kamba from the analysis in our main specifications for the identified games, as we consider this to be the most conservative approach. We will also run additional specifications for the identified games, where we include the Kamba in our sample and test for differential behavior over time for the Kamba relative to other ethnic groups. Specifically, in these games we will consider the Kamba as coethnic' to the Kikuyu, as specified in the first pre-analysis plan, but test if their choices, toward coethnics and non-coethnics, change between the two Kenya rounds relative to other ethnic groups.

### 2.2.2 Structure of the games

Each lab session consists of three main games; the dictator game, the public-good game, and the choose-your-dictator game. The dictator and public-good games are played first in an anonymous setting and then in an identified setting, while the choose-your-dictator game is played only in an identified setting. ${ }^{3}$

The dictator game captures an individual's altruism towards others. In this activity, participants are informed that they were randomly paired with a partner. He or she received an endowment of $50 \mathrm{Ksh}(\mathrm{ca} \$ 0.6$.$) , and should decide how much to give$ away. ${ }^{4}$

The public-good game captures an individual's willingness to contribute to a group fund in order to make everybody better off and the individual's belief about others' willingness to contribute. In this activity, individuals are given an endowment of 60 Ksh (ca. $\$ 0.7$ ) and are asked to state their beliefs about how much other group members will give. They are then asked how much they would contribute to the group fund.

The choose-your-dictator game is designed to capture the importance of coethnicity in a participant's choice of a leader. In the game, the leader is the dictator in a dictator game. Participants ("choosers") are presented with two randomly drawn profiles of dictators, where one profile is always a coethnic. The profiles consist of information about education, age, and hometown. Hometown is a marker of ethnicity, since the selected hometowns have one dominant ethnic group. ${ }^{5}$

[^6]The chooser is asked how much he/she believes each profiled dictator would give to him/her, and then to make a choice of dictator. The chooser can decide to be indifferent. ${ }^{6}$ The choose-your-dictator game takes place in two rounds. In the first round, the dictator has no information about the chooser. In the second round, however, the chooser is told that the dictator is given information about the chooser's age, education, and hometown. Under certain assumptions, the second, identified round indicates the chooser's expectations about the dictators' degree of coethnic preference.

### 2.3 Implicit Association Test

In addition to the games, we also performed implicit association tests (IATs) in the Kenya 2013 lab. Our IATs are developed in order to measure respondents' implicit association toward certain tribes, or toward Kenya versus other countries. We will discuss these IATs in more detail in Section 8.

### 2.4 Treatments

In the Kenya 2013 lab, there are five treatments in each session, where participants are randomly assigned to (i) national priming $\left(T_{1}\right)$; (ii) ethnic priming $\left(T_{2}\right)$; (iii) political competition priming ( $T_{3}$ ); (iv) blatant political competition priming ( $T_{4}$ ); or (v) no priming (control group). The blatant political competition prime is newly introduced in the Kenya 2013 lab, and is therefore absent in the Kenya 2012 lab and the Tanzania lab.

## 3 Empirical Strategy

### 3.1 Empirical Specification

For the games, our main specification will regress the outcome variables (beliefs, choices or a combination of beliefs and choices) of each individual game on the treatment indicators. In additional specifications, we introduce control variables to check the robustness of the results, or we can focus on heterogeneous treatment effects. We also use pooled regressions to compare outcome variables across games with different information settings (anonymous vs identified).

### 3.2 Control Variables and Heterogeneous Treatment Effects

The primary specification for our econometric analysis will simply regress the dependent variables on the treatment indicators. We now introduce the vector $X_{i}$. This vector will be used for a robustness check with $X_{i}$ as a vector of control variables. Also, in a more exploratory part of our analysis, we will study heterogeneous treatment effects by interacting $X_{i}$ with the treatment indicators. The vector $X_{i}$ includes the following variables:

- Gender

[^7]- Years of education (demeaned)
- Tribe, with an indicator variable for each of the following Kenyan tribes: Kikuyu, Luo and Luhya. The Kisii will be the omitted category, while an indicator for the Kamba will be included when the Kamba are included in the sample.
When we look at the Tanzania data, we will use indicator variables for the four largest Tanzanian tribes in our dataset (Mchagga, Mluguru, Mzaramo and Mpare).

When we estimate heterogeneous treatment effects in Kenya, we will run additional specifications where we group the Kikuyu and the Luo together, since these groups both had a presidential frontrunner in the March 2013 elections. ${ }^{7}$ The Luhya, Kamba and Kisii will together form the omitted category.

In a more exploratory part of the analysis, following up on Eifert et al. (2010), we will check heterogeneous treatment effects for respondents who primarily identify along ethnic or linguistic lines. Before respondents were invited to the lab, we asked them the following question, taken from the Afrobarometer survey:

We have spoken to many people in Kenya, and they have all described themselves in different ways. Some people describe themselves in terms of their language, religion, race and others describe themselves in economic terms, such as working class, middle class or a farmer. Besides being a Kenyan, which specific group do you feel you belong to first and foremost?

We will construct an indicator variable for respondents answering this question along ethnic or linguistic lines. In exploratory analysis, we will interact this indicator variable with the treatment indicators.

### 3.3 Controlling for Multiple Inference

Since we test multiple hypotheses, we need to control for the risk that some true null hypotheses will be falsely rejected. We introduce an adjustment for this risk by computing family-wise error rate (FWER) adjusted p-values. These p-values indicate the probability of making a Type I error for any specific outcome within a specified set of hypotheses (Anderson, 2008). In order to apply FWER adjustment, we will create sets of hypotheses at the level of each individual game, and provide FWER adjusted p-values for any given set of hypotheses. The multiple inference correction for each game is described in more detail below.

[^8]
## 4 Dictator Game

The dictator game is played in three different informational settings. First, respondents have no information about the person they can transfer money to. Second, they play two game rounds where they can either transfer money to a coethnic or a non-coethnic. The order in which respondents play the coethnic or non-coethnic dictator game is randomized. We now present estimation specifications for these three information settings separately.

### 4.1 Specifications

Dictator Games: Main specification In the first round of the dictator game, the participants are anonymously paired with other workshop participants. None of the participants has any information about the partners that they are paired with. The main outcome of interest here is generosity, or how much an individual gives in the dictator game to an anonymous partner:

$$
Y_{i}=\text { dga_transfer }{ }_{i}
$$

Where dga_transfer ${ }_{i}$ is the amount that individual $i$ gives to an anonymous individual. For this game round, we use the following specification:

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

This specification takes the variable $Y_{i}$ and regresses it on the treatment variables. Recall that $T_{1}$ is the indicator variable for national treatment, $T_{2}$ is the ethnic treatment indicator, $T_{3}$ is the pure political competition treatment indicator and $T_{4}$ is the blatant political competition treatment indicator. As usual, $\varepsilon_{i}$ is an idiosyncratic error term.

Dictator Games: Additional Specifications For all three information settings - the anonymous, the coethnic and the non-coethnic round - we will also run a specification with controls and a specification with heterogeneous treatment effects. The specification with control variables serves as a robustness check and can improve precision in our estimation of the experimental effect. The specification for heterogeneous treatment effects allows to gauge variation in the treatment effects by the main respondent characteristics of interest.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * X_{i}+\varepsilon_{i} \tag{3}
\end{equation*}
$$

Identified Dictator Game: Coethnic Dictator Game There are two rounds of the dictator game, where the participants are paired with profiles from either a coethnic participant, or a non-coethnic participant:

$$
Y_{i}=i d d g t r a n s f e r 1_{i} \text { or } i d d g t r a n s f e r 2_{i}
$$

Where the numbers 1 and 2 refer to round 1 or 2 of the identified dictator game. For the coethnic dictator game, we will focus on the game round where individual $i$ faces a coethnic profile.

Identified Dictator Game: Non-Coethnic Dictator Game For the non-coethknic dictator game, we set $Y_{i}$ equal to the outcome variable of the game round where individual $i$ faces a non-coethnic.

We will run regression specifications $(1,2,3)$ for both the coethnic and the noncoethnic dictator game transfer. For these identified game rounds, we will replace $\alpha$ by $\alpha_{p}$, which is a set of fixed effects for each of the profiles with which respondents are randomly paired (see above). We will test the joint statistical significance of these fixed effects with an F-test.

Differential Kamba behavior Remember that for the identified games, we are running the main specifications without the Kamba. In addition, we also run a specification where we include the Kamba and allow for differential behavior for the Kamba. In the following specification, $K a m b a_{i}$ is an indicator variable for a respondent belonging to the Kamba tribe or not.

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} K a m b a_{i}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * K a m b a_{i}+\varepsilon_{i} \tag{4}
\end{equation*}
$$

### 4.2 Hypotheses

For both the anonymous, coethnic and non-coethnic dictator game (specification 1), we hypothesize that:

- Priming affects generosity:
$-H_{D 1}: \beta_{1}=0$
$-H_{D 2}: \beta_{2}=0$
$-H_{D 3}: \beta_{3}=0$
$-H_{D 4}: \beta_{4}=0$
- The different treatments affect generosity differently:

$$
\begin{aligned}
& -H_{D 5}: \beta_{1}=\beta_{2} \\
& -H_{D 6}: \beta_{1}=\beta_{3}
\end{aligned}
$$

$$
\begin{aligned}
& -H_{D 7}: \beta_{1}=\beta_{4} \\
& -H_{D 8}: \beta_{2}=\beta_{3} \\
& -H_{D 9}: \beta_{2}=\beta_{4} \\
& -H_{D 10}: \beta_{3}=\beta_{4}
\end{aligned}
$$

- Not all treatment effects are equal to zero,

$$
-H_{D 11}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0
$$

Multiple Inference Correction To adjust for multiple inference, we will group hypotheses in sets, and provide FWER adjusted p-values for these sets of hypotheses. We create sets of hypotheses at the level of each individual dictator game (anonymous, coethnic and non-coethnic), where we have the set of hypotheses $H_{D 1}$ till $H_{D 11}$.

Differential effects for Kamba respondents In more exploratory analysis, we also hypothesize, for specification (4) in both the coethnic and non-coethnic dictator game, that:

- The Kamba have a different level of generosity:

$$
-H_{D 12}: \beta_{5}=0
$$

- Treatment effects are different for the Kamba:

$$
-H_{D 13}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0
$$

## 5 Public-good Game

### 5.1 Specifications

### 5.1.1 Contributions

Anonymous Public-good Game In the first round of the public-good game, the participants are anonymously paired with other workshop participants. The main outcome of interest here is how much an individual contributes to the group fund:

$$
Y_{i}=\text { pga_contribution }_{i}
$$

which is the amount that the individual is willing to contribute without any information about the other group members. The setup of our regression specifications is exactly as in the dictator game:

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\varepsilon_{i} \tag{5}
\end{equation*}
$$

- Second specification, with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

- Third specification, for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * X_{i}+\varepsilon_{i} \tag{7}
\end{equation*}
$$

Identified Public-good Games Next, there are two rounds of the identified publicgood game, where the order of the rounds is randomized. In one round, the participants are in a mixed group with one coethnic and one non-coethnic profile. In the other round of the public-good game, individuals are in a group with only coethnics. Therefore, we have the following outcome for the public good game with a mixed group or with a homogeneous group:

$$
Y_{i}=\text { pgid1_contribution }_{i} \text { or pgid2_contribution }{ }_{i}
$$

Where the numbers 1 and 2 refer to the round 1 or 2 of the identified public-good game.

Identified Public-good Games: Mixed group For the public-good game with a mixed group, we will focus on the game round where individual $i$ faces both a coethnic and a non-coethnic profile in his group. We run regression specifications $(5,6,7)$ for the outcome of this game round.

Identified public-good Game: Homogenous group For the public-good game with a homogeneous group, we will focus on the game round where individual $i$ has only coethnic profiles in his group. We run regression specifications $(5,6,7)$ for the outcome of this game round.

Differential Kamba behavior For our main specifications for the identified publicgood games, we are dropping the Kamba from the analysis. Analogous to our approach for the identified dictator games, we also run specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} K a m b a_{i}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * K a m b a_{i}+\varepsilon_{i} \tag{8}
\end{equation*}
$$

### 5.1.2 Beliefs

Anonymous Public-good Game We are also interested in how much an individual expects group members $A$ and $B$ respectively to contribute to the group fund:

$$
\begin{aligned}
& Y_{i}=\text { pga_beliefa } a_{i} \\
& Y_{i}=\text { pga_beliefb }_{i}
\end{aligned}
$$

These variables indicate an individual's beliefs about how much others will contribute to the group fund, when given no information about their backgrounds.
For the regression on beliefs, we stack $Y_{i}=$ pga_belief $a_{i}, Y_{i}=$ pga_beliefb $_{i}$, rename the dependent variable $Y_{i j}=p g a_{-} b e l i e f_{i j}$ for $j=a, b$ and cluster standard errors at the individual level:

$$
\begin{equation*}
Y_{i j}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\varepsilon_{i j} \tag{9}
\end{equation*}
$$

We also run additional regressions on this dependent variable, once with controls added and once for heterogeneous treatment effects, as in specifications (6) and (7) respectively. As a robustness check for differences in beliefs about group member A and group member B's contributions, we will include the indicator variable $G M_{-} B$ for beliefs about group member $B$ 's contribution.

Identified Public-good Games In the two rounds of the identified public-good games, we have the following variables for the beliefs about the contributions of group menbers $A$ and $B$, in round 1 and 2 respectively:

$$
\begin{aligned}
& Y_{i}=\text { pgidbelief } 1 a_{i} \\
& Y_{i}=\text { pgidbelief } 1 b_{i} \\
& Y_{i}=\text { pgidbelief } 2 a_{i} \\
& Y_{i}=\text { pgidbelief } 2 b_{i}
\end{aligned}
$$

Identified Public-good Game: Mixed group For the public-good game with a mixed group, we will focus on the game round where individual $i$ faces both a coethnic and a non-coethnic profile in his group. We then follow a similar procedure as for the beliefs in the anonymous public-good game, and estimate specifications (10, 11, 12 ), with standard errors clustered at the individual level. The variable $C E_{i j}$ indicates whether group member $j$ is a coethnic of individual $i$ or not.

- First specification:

$$
\begin{equation*}
Y_{i j}=\alpha+\beta_{1} C E_{i j}+\sum_{k=1}^{4} \beta_{1+k} T_{k}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * C E_{i j}+\varepsilon_{i j} \tag{10}
\end{equation*}
$$

- Specification with controls

$$
\begin{equation*}
Y_{i j}=\alpha+\beta_{1} C E_{i j}+\sum_{k=1}^{4} \beta_{1+k} T_{k}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * C E_{i j}+\beta_{10} X_{i}+\varepsilon_{i j} \tag{11}
\end{equation*}
$$

- Specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} C E_{i j}+\sum_{k=1}^{4} \beta_{1+k} T_{k}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * C E_{i j}+\beta_{10} X_{i}+  \tag{12}\\
& \beta_{11} C E_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{11+k} T_{k} * X_{i}+\sum_{k=1}^{4} \beta_{15+k} T_{k} * C E_{i j} * X_{i}+\varepsilon_{i j}
\end{align*}
$$

Identified Public-good Game: Homogeneous group For the public-good game with a homogeneous group, we will focus on the game round where individual $i$ has only coethnic profiles in his group. We then follow a similar procedure as for the beliefs in the anonymous public-good game, and estimate specification (9). In addition, we will also run this regression with controls and with heterogeneous treatment effects, as in specifications (6) and (7) respectively.

Differential Kamba behavior In our main specifications for our analysis of beliefs in the identified public-good games, we will drop the Kamba respondents from our sample. In additional specifications, we will include the Kamba, and allow for differential Kamba behavior.

### 5.1.3 Contribution minus beliefs

Lastly, we are interested in the level of free-riding in the public-good game. Therefore, we focus on the variable where we subtract the respondent's belief about other's contributions from his own contribution. For this purpose, we construct the following variables:

Anonymous public-good game We define the outcome variable of interest as:
$Y_{i}=$ pganon_contrminbelie $_{i}=$ pga_contribution $_{i}-\left(\right.$ pga_beliefa $_{i}+$ pga_beliefb $\left._{i}\right) / 2$
The specifications used are equivalent to the ones in the section about Contributions. The first specification is (5) and the additional specifications are ( $6,7,8$ ).

Identified public-good games For the mixed and homogeneous public-good games, we follow a similar procedure as above. For the mixed public-good game, we focus on the contribution and beliefs when individual $i$ is an a group with a coethnic and non-coethnic profile. In case of the homogeneous public-good game, we focus on the contribution and beliefs when individual $i$ is in a group with only coethnic profiles.

For these outcomes, the first specification is (5) and the additional specifications are $(6,7,8)$.

### 5.2 Hypotheses

### 5.2.1 Contributions and "contribution minus beliefs"

Below we present our null hypotheses for the contribution and "contribution minus beliefs" outcomes of the public-good game. Within each round, i.e. within the anonymous, the mixed and the homogenous public-good game, we have the same set of hypotheses. First, we present our hypotheses based on specification (5). This is the main specification of interest for both contributions and "contribution - beliefs".

- The outcome is affected by priming:

$$
\begin{aligned}
& -H_{P G 1}: \beta_{1}=0 \\
& -H_{P G 2}: \beta_{2}=0 \\
& -H_{P G 3}: \beta_{3}=0 \\
& -H_{P G 4}: \beta_{4}=0
\end{aligned}
$$

- Different priming affects the outcome differently:
$-H_{P G 5}: \beta_{1}=\beta_{2}$
$-H_{P G 6}: \beta_{1}=\beta_{3}$
$-H_{P G 7}: \beta_{1}=\beta_{4}$
$-H_{P G 8}: \beta_{2}=\beta_{3}$
$-H_{P G 9}: \beta_{2}=\beta_{4}$

$$
-H_{P G 10}: \beta_{3}=\beta_{4}
$$

- Not all treatment effects are equal to zero:

$$
-H_{P G 11}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0
$$

Multiple Inference Adjustment To adjust for multiple inference, we will group hypotheses in sets, and provide FWER adjusted p-values for these sets of hypotheses. We create sets of hypotheses at the level of each individual public-good game (anonymous, mixed and homogeneous). As such, we group the set of hypotheses ( $H_{P G 1}$ till $H_{P G 11}$ ) for both contributions and contribution minus beliefs.

### 5.2.2 Beliefs

In this section, we present our hypotheses on the belief outcomes of the public-good games.

- Priming affects beliefs within the anonymous and homogeneous public-good game (referring to specification(9)):

$$
-H_{P G 12}: \beta_{1}=0
$$

$$
-H_{P G 13}: \beta_{2}=0
$$

$$
-H_{P G 14}: \beta_{3}=0
$$

- $H_{P G 15}: \beta_{4}=0$
- Beliefs about what coethnics contribute are different (referring to (10)):
$-H_{P G 16}: \beta_{1}=0$
- Priming affects, in the mixed public-good game (referring to (10)),
- beliefs about what non-coethnics contribute:
* $H_{P G 17}: \beta_{2}=0$
* $H_{P G 18}: \beta_{3}=0$
* $H_{P G 19}: \beta_{4}=0$
* $H_{P G 20}: \beta_{5}=0$
- beliefs about what coethnics contribute:

$$
\begin{aligned}
& * H_{P G 21}: \beta_{2}+\beta_{6}=0 \\
& * H_{P G 22}: \beta_{3}+\beta_{7}=0 \\
& * H_{P G 23}: \beta_{4}+\beta_{8}=0 \\
& * H_{P G 24}: \beta_{5}+\beta_{9}=0
\end{aligned}
$$

- beliefs about what coethnics contribute differentially compared to beliefs about non-coethnic contributions:
* $H_{P G 25}: \beta_{6}=0$

$$
* H_{P G 26}: \beta_{7}=0
$$

* $H_{P G 27}: \beta_{8}=0$
* $H_{P G 28}: \beta_{9}=0$
- There are differences in treatment effects on beliefs,
- within the anonymous and homogeneous public-good game (referring to (9)):
* $H_{P G 29}: \beta_{1}=\beta_{2}$
* $H_{P G 30}: \beta_{1}=\beta_{3}$
* $H_{P G 31}: \beta_{1}=\beta_{4}$
* $H_{P G 32}: \beta_{2}=\beta_{3}$
* $H_{P G 33}: \beta_{2}=\beta_{4}$
* $H_{P G 34}: \beta_{3}=\beta_{4}$
- within the mixed public-good game, regarding contributions of non-coethnics (referring to (10)):
* $H_{P G 35}: \beta_{2}=\beta_{3}$
* $H_{P G 36}: \beta_{2}=\beta_{4}$
* $H_{P G 37}: \beta_{2}=\beta_{5}$
* $H_{P G 38}: \beta_{3}=\beta_{4}$
* $H_{P G 39}: \beta_{3}=\beta_{5}$
* $H_{P G 40}: \beta_{4}=\beta_{5}$
- within the mixed public-good game, regarding contributions of coethnics (referring to (10)):
* $H_{P G 41}: \beta_{2}+\beta_{6}=\beta_{3}+\beta_{7}$
* $H_{P G 42}: \beta_{2}+\beta_{6}=\beta_{4}+\beta_{8}$
* $H_{P G 43}: \beta_{2}+\beta_{6}=\beta_{5}+\beta_{9}$
* $H_{P G 44}: \beta_{3}+\beta_{7}=\beta_{4}+\beta_{8}$
* $H_{P G 45}: \beta_{3}+\beta_{7}=\beta_{5}+\beta_{9}$
* $H_{P G 46}: \beta_{4}+\beta_{8}=\beta_{5}+\beta_{9}$
- In the mixed public-good game, there are differences in differential priming effects for beliefs about coethnic contributions (referring to (10)):

$$
\begin{aligned}
& -H_{P G 47}: \beta_{6}=\beta_{7} \\
& -H_{P G 48}: \beta_{6}=\beta_{8} \\
& -H_{P G 49}: \beta_{6}=\beta_{9} \\
& -H_{P G 50}: \beta_{7}=\beta_{8} \\
& -H_{P G 51}: \beta_{7}=\beta_{9} \\
& -H_{P G 52}: \beta_{8}=\beta_{9}
\end{aligned}
$$

- Not all treatment effects are equal to zero,
- for beliefs within the anonymous and homogeneous public-good game (referring to (9):
* $H_{P G 53}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
- for beliefs within the mixed public-good game (referring to (10)),
* concerning non-coethnic contributions:

$$
\cdot H_{P G 54}: \beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0
$$

* concerning differences for coethnic contributions:
- $H_{P G 55}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0$
* the joint null hypothesis that all coefficients are zero:

$$
\cdot H_{P G 56}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0
$$

Multiple Inference Adjustment The estimation outcomes on beliefs serve primarily as background results for the outcomes on contributions and "contribution minus beliefs". We will give an indication of the robustness of the p-values for the above hypotheses by providing FWER adjusted p-values. In order to do this, we group hypotheses $H_{P G 12}$ till $H_{P G 56}$ at the level of the individual public-good game (anonymous, mixed or homogeneous).

### 5.2.3 Differential effects for Kamba respondents

In more exploratory analysis, we also hypothesize, for specification (8) in both the homogenous and mixed public-good game, that for the contribution and "contribution minus beliefs" outcomes:

- The outcome is different for the Kamba:
$-H_{P G 57}: \beta_{5}=0$
- Treatment effects on the outcome level are different for the Kamba:

$$
-H_{P G 58}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0
$$

## 6 Choose-your-dictator Game

### 6.1 General estimation procedure

For the choose-your-dictator game, each individual faces a choice between one coethnic' and one non-coethnic' profile, where these profiles were chosen from 12 ethnic profiles (30 profiles in Tanzania). The individual can choose to be indifferent. The dependent variable is $Y_{i p}$, which is set equal to two if individual $i$ chose profile $p$, equal to one if she/he is indifferent about profile $p$ and equal to zero if the individual did not choose profile $p$. If profile $p$ is not in the choice set of individual $i, Y_{i p}$ is left unspecified. In this setting, we decide to use ordered logit estimation. To use this strategy, define the latent variable $V_{i p}$ :

$$
\begin{equation*}
V_{i p}=\alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\varepsilon_{i p} \tag{13}
\end{equation*}
$$

Here, $C E_{i p}$ is an indicator variable for whether profile $p$ is a coethnic of individual $i$. We assume that the idiosyncratic error term $\varepsilon_{i p}$ is extreme value distributed. Since we need variation in the values of $V_{i p}$ for the respondents $i$ in order to obtain identification of the estimated coefficient, we need within-subject heterogeneity in the covariates across different profiles. Therefore, all variables are interacted with $C E_{i p}$. Finally, $\alpha_{p}$ is a set of fixed effects for the 12 ethnic profiles.

The expression for $V_{i p}$ allows to specify (Woolridge, 2001):

$$
\begin{gather*}
\operatorname{Prob}\left(Y_{i p}=0\right)=\frac{1}{1+\exp \left(-\left(\xi_{0}-V_{i p}\right)\right)}  \tag{14}\\
\operatorname{Prob}\left(Y_{i p}=1\right)=\frac{1}{1+\exp \left(-\left(\xi_{1}-V_{i p}\right)\right)}-\frac{1}{1+\exp \left(-\left(\xi_{0}-V_{i p}\right)\right)}  \tag{15}\\
\operatorname{Prob}\left(Y_{i p}=2\right)=1-\operatorname{Prob}\left(Y_{i p}=0\right)-\operatorname{Prob}\left(Y_{i p}=1\right) \tag{16}
\end{gather*}
$$

Where $\xi_{l}$ are the cut-off levels for $V_{i p}$ to switch from one choice to the other, at $\varepsilon_{i p}=0$. Below, whenever we specify a type of variable like $V_{i p}$, we will apply maximum likelihood estimation strategy, based on the discussion in this section. Standard errors are clustered at the individual level.

### 6.2 Specifications

### 6.2.1 Dictator Choice

There are two game rounds of the choose-your-dictator game. In the first round, choosers choose a dictator without the dictator having any information about them; we refer to this as the "anonymous chooser" round. In the second round, the choosers are told that the dictator will have similar information about them as they have about the dictator;
this is the "identified chooser" round. The dependent variables of interest for the first and second round are, respectively:

$$
\begin{aligned}
& Y_{i p}=\text { cd1 } \text { mixchoice }_{i p} \\
& Y_{i p}=c d 2 \text { mixchoice }_{i p}
\end{aligned}
$$

Where $Y_{i p}=2$ if individual $i$ chooses profile $p ; Y_{i p}=1$ if she/he is indifferent about profile $p, Y_{i p}=0$ if the individual does not choose profile $p$. Finally, $Y_{i p}$ is unspecified if profile $p$ is not in the choice set for respondent $i$. The choice set consists of participant profiles $\{A, B\}$ from the current game round.

The estimation of dictator choice is based on specification (13), both for the anonymous chooser and the identified chooser round.

- The second specification for the latent variable introduces control variables:

$$
\begin{equation*}
V_{i p}=\alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\beta_{6} C E_{i p} * X_{i}+\varepsilon_{i p} \tag{17}
\end{equation*}
$$

- Third, a specification of the latent variable for heterogeneous treatment effects:

$$
\begin{align*}
V_{i p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+ \\
& \beta_{6} C E_{i p} * X_{i}+\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * X_{i}+\varepsilon_{i p} \tag{18}
\end{align*}
$$

The joint significance of the estimated $\alpha_{p}$ will be tested with an F-test.

Differential Kamba behavior For our main specifications for the choose-your-dictator games, we are dropping the Kamba from the analysis. Analogous to our approach for the identified dictator games, we also run specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
V_{i p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+  \tag{19}\\
& \beta_{6} C E_{i p} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * K a m b a_{i}+\varepsilon_{i p}
\end{align*}
$$

### 6.2.2 Beliefs

Before participants chose their dictator, they were asked to state their beliefs about what the two profiles they were facing would share with them. These beliefs are collected in the following vectors, grouped by game round, for profile $A, B$ :

$$
\begin{aligned}
Y_{i 1 a} & =c d 1 \text { mixbelief }_{i} \\
Y_{i 1 b} & =c d 1 \text { mixbelief }_{i} \\
Y_{i 2 a} & =c d 2 \text { mixbelief }_{i} \\
Y_{i 2 b} & =c d 2 \text { mixbeliefb }_{i}
\end{aligned}
$$

For estimation, we will stack vectors $Y_{i 1 a}, Y_{i 1 b}$ to create $Y_{i 1 m}$ and stack vectors $Y_{i 2 a}, Y_{i 2 b}$ to create $Y_{i 2 m}$ with $m=a, b$. To analyze these data, we will use a similar framework as we use for the analysis of beliefs in the public-good game. More specifically, the vectors $Y_{i 1 m}, Y_{i 2 m}$ will be used in separate regressions, using the following specification, with $j=1,2$.

$$
\begin{equation*}
Y_{i j m}=\alpha_{p}+\beta_{1} C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * C E_{i p}+\varepsilon_{i j m} \tag{20}
\end{equation*}
$$

In additional specifications, we will also include the Kamba in the sample, and estimate the equivalent of specification (19) with beliefs as the dependent variable.

### 6.3 Hypotheses

### 6.3.1 Dictator Choice

Concerning dictator choice, analyzed using specification (13) we have the following hypotheses for both the first, anonymous and second, identified round of the choose-yourdictator game:

- Coethnicity affects dictator choice:

$$
-H_{C D 1}: \beta_{1}=0
$$

- Priming affects the likelihood to choose a coethnic dictator:

$$
\begin{aligned}
& -H_{C D 2}: \beta_{2}=0 \\
& -H_{C D 3}: \beta_{3}=0 \\
& -H_{C D 4}: \beta_{4}=0 \\
& -H_{C D 5}: \beta_{5}=0
\end{aligned}
$$

- The different treatments affect the likelihood to choose a coethnic differently:

$$
\begin{aligned}
& -H_{C D 6}: \beta_{2}=\beta_{3} \\
& -H_{C D 7}: \beta_{2}=\beta_{4} \\
& -H_{C D 8}: \beta_{2}=\beta_{5} \\
& -H_{C D 9}: \beta_{3}=\beta_{4} \\
& -H_{C D 10}: \beta_{3}=\beta_{5} \\
& -H_{C D 11}: \beta_{4}=\beta_{5}
\end{aligned}
$$

- Not all treatment effects are equal to zero:

$$
-H_{C D 12}: \beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0
$$

Multiple Inference Adjustment To adjust for multiple inference, we will group hypotheses in sets, and provide FWER adjusted p-values for these sets of hypotheses. We create sets of hypotheses at the level of each individual choose-your-dictator game (anonymous or identified chooser), where we group the set of hypotheses ( $H_{C D 1}$ till $H_{C D 12}$ ).

### 6.3.2 Beliefs

Concerning beliefs about what a dictator will give, using specification (20), we have the following set of hypotheses:

- Both in the anonymous and identified dictator game, coethnicity affects beliefs:
$-H_{C D 13}: \beta_{1}=0$
- Both in the anonymous and identified dictator game, priming affects beliefs about how much,
- non-coethnics will give:
* $H_{C D 14}: \beta_{2}=0$
* $H_{C D 15}: \beta_{3}=0$
* $H_{C D 16}: \beta_{4}=0$
* $H_{C D 17}: \beta_{5}=0$
- coethnics will give:
* $H_{C D 18}: \beta_{2}+\beta_{6}=0$
* $H_{C D 19}: \beta_{3}+\beta_{7}=0$
* $H_{C D 20}: \beta_{4}+\beta_{8}=0$
* $H_{C D 21}: \beta_{5}+\beta_{9}=0$
- coethnics will give differently compared to beliefs about how much non-coethnics will give:
* $H_{C D 22}: \beta_{6}=0$
* $H_{C D 23}: \beta_{7}=0$
* $H_{C D 24}: \beta_{8}=0$
* $H_{C D 25}: \beta_{9}=0$
- Both in the anonymous and identified dictator game, different priming has different effects on beliefs about how much,
- non-coethnics will give:
* $H_{C D 26}: \beta_{2}=\beta_{3}$
* $H_{C D 27}: \beta_{2}=\beta_{4}$
* $H_{C D 28}: \beta_{2}=\beta_{5}$
* $H_{C D 29}: \beta_{3}=\beta_{4}$
* $H_{C D 30}: \beta_{3}=\beta_{5}$
* $H_{C D 31}: \beta_{4}=\beta_{5}$
- coethnics will give:

$$
\begin{aligned}
& * H_{C D 32}: \beta_{2}+\beta_{6}=\beta_{3}+\beta_{7} \\
& * H_{C D 33}: \beta_{2}+\beta_{6}=\beta_{4}+\beta_{8} \\
& * H_{C D 34}: \beta_{2}+\beta_{6}=\beta_{5}+\beta_{9} \\
& * H_{C D 35}: \beta_{3}+\beta_{7}=\beta_{4}+\beta_{8} \\
& * H_{C D 36}: \beta_{3}+\beta_{7}=\beta_{5}+\beta_{9} \\
& * H_{C D 37}: \beta_{4}+\beta_{8}=\beta_{5}+\beta_{9}
\end{aligned}
$$

- Both in the anonymous and identified dictator game, different priming affects beliefs about how much coethnics will give compared to beliefs about how much noncoethnics will give differentially:

$$
\begin{aligned}
& -H_{C D 38}: \beta_{6}=\beta_{7} \\
& -H_{C D 39}: \beta_{6}=\beta_{8} \\
& -H_{C D 40}: \beta_{6}=\beta_{9} \\
& -H_{C D 41}: \beta_{7}=\beta_{8} \\
& -H_{C D 42}: \beta_{7}=\beta_{9} \\
& -H_{C D 43}: \beta_{8}=\beta_{9}
\end{aligned}
$$

- Not all treatment effects for beliefs about non-coethnic generosity are zero:

$$
-H_{C D 44}: \beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0
$$

- Not all differential treatment effects for beliefs about coethnic generosity are zero:

$$
-H_{C D 45}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0
$$

- Both in the anonymous and identified dictator game, the joint null hypothesis that all coefficients are zero:

$$
-H_{C D 46}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=0
$$

Multiple Inference Adjustment The estimation outcomes on beliefs serve primarily as background results for the dictator-choice outcome. We will give an indication of the robustness of the p-values for the above hypotheses by providing FWER adjusted p-values at two levels of aggregation. We perform the FWER-adjustment after grouping hypotheses $H_{C D 13}$ till $H_{C D 46}$ at the level of the individual choose-your-dictator game (anonymous or identified chooser).

### 6.3.3 Differential effects for Kamba respondents

In more exploratory analysis, we also hypothesize, for specification (19) in both the anonymous and identified choose-your-dictator game, that for dictator-choice:

- The likelihood to choose a coethnic' is different for the Kamba:

$$
-H_{C D 47}: \beta_{6}=0
$$

- Treatment effects the likelihood to choose a coethnic' differently for the Kamba:
$-H_{C D 48}: \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0$


## 7 Political Attitudes

A set of survey questions on political attitudes was asked at the end of each session to capture the political context.

### 7.1 Specifications

Political Attitudes: Main specification Although our survey has multiple outcomes, we focus on two primary ones: (1) likelihood of strategic ethnic voting (for top contenders Uhuru Kenyatta or Raila Odinga) and (2) likelihood of justifying the 2007 post-election violence.

$$
Y_{i}=\text { kenyatta_odinga }_{i} \text { or } j u s t i f i e d \_v i o l e n c e_{i}
$$

Where kenyatta_odinga $a_{i}$ is a binary indicator for individual $i$ declaring support for Uhuru Kenyatta or Raila Odinga, and justified_violence ${ }_{i}$ is a binary indicator for individual $i$ stating that he/she strongly agrees or somewhat agrees that the violence in Kenya after the December 2007 presidential elections was justified. For the analysis, we use the following specification for a linear probability model:

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\varepsilon_{i} \tag{21}
\end{equation*}
$$

This specification takes the variable $Y_{i}$ and regresses it on the treatment variables. Recall that $T_{1}$ is the indicator variable for national treatment, $T_{2}$ is the ethnic treatment indicator, $T_{3}$ is the pure political competition treatment indicator and $T_{4}$ is the blatant political competition treatment indicator. As usual, $\varepsilon_{i}$ is an idiosyncratic error term.

Political Attitudes: Additional Specifications For the political attitudes, we will also run a specification with controls and a specification with heterogeneous treatment effects. The specification with control variables serves as a robustness check and can improve precision in our estimation of the experimental effect. The specification for heterogeneous treatment effects allows to gauge variation in the treatment effects by the main respondent characteristics of interest.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\varepsilon_{i} \tag{22}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{4} \beta_{k} T_{k}+\beta_{5} X_{i}+\sum_{k=1}^{4} \beta_{5+k} T_{k} * X_{i}+\varepsilon_{i} \tag{23}
\end{equation*}
$$

### 7.2 Hypotheses

For political attitudes (specification 21), we hypothesize that:

- Priming affects attitudes:

$$
\begin{aligned}
& -H_{P A 1}: \beta_{1}=0 \\
& -H_{P A 2}: \beta_{2}=0 \\
& -H_{P A 3}: \beta_{3}=0 \\
& -H_{P A 4}: \beta_{4}=0
\end{aligned}
$$

- The different treatments affect attitudes differently:

$$
\begin{aligned}
& -H_{P A 5}: \beta_{1}=\beta_{2} \\
& -H_{P A 6}: \beta_{1}=\beta_{3} \\
& -H_{P A 7}: \beta_{1}=\beta_{4} \\
& -H_{P A 8}: \beta_{2}=\beta_{3} \\
& -H_{P A 9}: \beta_{2}=\beta_{4} \\
& -H_{P A 10}: \beta_{3}=\beta_{4}
\end{aligned}
$$

- Not all treatment effects are equal to zero,

$$
-H_{P A 11}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0
$$

## 8 Comparison across Games

In this part of our analysis, we compare outcomes across anonymous and identified games. This part of the analysis has two main elements. The primary element compares outcomes across games for the control group. This comparison gives an indication for the degree of ethnic preference of the participants. Next, we compare outcomes across anonymous and identified games for the treatment groups. We regard this as a more exploratory exercise since it is theoretically ambiguous whether priming should have a stronger or weaker effect in the identified versus the anonymous settings (Benjamin et al. (2010)).
In addition to the hypotheses outlined below, we will test a similar set of hypotheses on beliefs in the public-good and choose-your-dictator game. We do not explicitly write out all of these hypotheses about beliefs, since we regard the outcomes on beliefs as background results.

### 8.1 Dictator game

We now pool the data from the different game rounds for each game. We start with the three rounds of the dictator game.

### 8.1.1 First Specification

For our specifications on the pooled data, we stack the following vectors of observations:

$$
\begin{aligned}
Y_{i} & =\text { dga_transfer } i_{i} \\
Y_{i} & =\text { iddgtransfer } 1_{i} \\
Y_{i} & =\text { iddgtransfer } 2_{i}
\end{aligned}
$$

And relabel the resulting vector as

$$
Y_{i j}=d g_{-} \text {transfer }_{i j}
$$

where $j=1,2,3$ for the anonymous, first identified and second identified round of the dictator game respectively. For each estimation where we use $Y_{i j}=d g_{\text {_transfer }}^{i j}$ as the dependent variable, we will cluster standard errors at the individual level. Now, we present our primary specification which will be used for all hypothesis tests concerning the dictator game.

$$
\begin{align*}
Y_{i j} & =\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\beta_{2} N C_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * N C_{i j}+\varepsilon_{i j} \tag{24}
\end{align*}
$$

Here, $C E_{i j}\left(N C_{i j}\right)$ is an indicator variable for whether round $j$ is a round where individual $i$ faces a coethnic (non-coethnic) profile. Further, we add both $\alpha$, the average
transfer in the control group in the anonymous round, and the profile fixed effects $\alpha_{p}$, which are identified from the identified setting.

### 8.1.2 Additional Specifications

For similar reasons as in the case of the regressions by information set, we also include a specification with controls and a specification for heterogeneous treatment effects.

- The specification with controls:

$$
\begin{align*}
Y_{i j} & =\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\beta_{2} N C_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i j}  \tag{25}\\
& +\sum_{k=1}^{4} \beta_{10+k} T_{k} * N C_{i j}+\beta_{15} X_{i}+\varepsilon_{i j}
\end{align*}
$$

- The specification for heterogeneous effects:

$$
\begin{align*}
Y_{i j} & =\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\beta_{2} N C_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * N C_{i j} \\
& +\beta_{15} X_{i}+\beta_{16} C E_{i j} * X_{i}+\beta_{17} N C_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{17+k} T_{k} * X_{i} \\
& +\sum_{k=1}^{4} \beta_{21+k} T_{k} * C E_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{25+k} T_{k} * N C_{i j} * X_{i}+\varepsilon_{i j} \tag{26}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the identified dictator games, we are dropping the Kamba from the analysis. However, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side. The analysis based on this specification will be more exploratory.

$$
\begin{align*}
Y_{i j} & =\alpha+\alpha_{p}+\beta_{1} C E_{i j}+\beta_{2} N C_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+\sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * N C_{i j} \\
& +\beta_{15}{K a m b a_{i}+\beta_{16} C E_{i j} * K a m b a_{i}+\beta_{17} N C_{i j} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{17+k} T_{k} * K a m b a_{i}}+\sum_{k=1}^{4} \beta_{21+k} T_{k} * C E_{i j} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{25+k} T_{k} * N C_{i j} * K^{4} a m b a_{i}+\varepsilon_{i j}
\end{align*}
$$

### 8.1.3 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (24). Note that hypotheses $\left(H_{D 13}, H_{D 14}, H_{D 15}, H_{D 16}\right)$ belong to the primary analysis, whereas the other hypotheses are exploratory. Therefore, we compute FWER adjusted p-values for this set of hypotheses. When we compute FWER adjusted p-values for all three dictator games combined, these three hypotheses will be included in the set of hypotheses (see above).

- Generosity toward individuals is different,
- between the coethnic and the anonymous dictator game:

$$
* H_{D 13}: \beta_{1}=0
$$

- between the non-coethnic and the anonymous dictator game:

$$
* H_{D 14}: \beta_{2}=0
$$

- between the coethnic and the non-coethnic dictator game:

$$
* H_{D 15}: \beta_{1}=\beta_{2}
$$

- depending on the identification of the individuals:
* $H_{D 16}: \beta_{1}=\beta_{2}=0$
- There are differences in treatment effects,
- between the coethnic dictator game and the anonymous dictator game:
* $H_{D 17}: \beta_{7}=0$
* $H_{D 18}: \beta_{8}=0$
* $H_{D 19}: \beta_{9}=0$
* $H_{D 20}: \beta_{10}=0$
- between the non-coethnic dictator game and the anonymous dictator game:
* $H_{D 21}: \beta_{11}=0$
* $H_{D 22}: \beta_{12}=0$
* $H_{D 23}: \beta_{13}=0$
* $H_{D 24}: \beta_{14}=0$
- between the coethnic dictator game and the non-coethnic dictator game:
* $H_{D 25}: \beta_{7}=\beta_{11}$
* $H_{D 26}: \beta_{8}=\beta_{12}$
* $H_{D 27}: \beta_{9}=\beta_{13}$
* $H_{D 28}: \beta_{10}=\beta_{14}$
- There are differences between the differences in treatment effects,
- going from the anonymous to the coethnic dictator game:

$$
* H_{D 29}: \beta_{7}=\beta_{8}
$$

$$
\begin{aligned}
& * H_{D 30}: \beta_{7}=\beta_{9} \\
& * H_{D 31}: \beta_{7}=\beta_{10} \\
& * H_{D 32}: \beta_{8}=\beta_{9} \\
& * H_{D 33}: \beta_{8}=\beta_{10} \\
& * H_{D 34}: \beta_{9}=\beta_{10}
\end{aligned}
$$

- going from the anonymous to the non-coethnic dictator game:
* $H_{D 35}: \beta_{11}=\beta_{12}$
* $H_{D 36}: \beta_{11}=\beta_{13}$
$* H_{D 37}: \beta_{11}=\beta_{14}$
$* H_{D 38}: \beta_{12}=\beta_{13}$
* $H_{D 39}: \beta_{12}=\beta_{14}$
* $H_{D 40}: \beta_{13}=\beta_{14}$
- Not all the differential treatment effects are equal to zero:
- going from the anonymous to the coethnic dictator game:
* $H_{D 41}: \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0$
- going from the anonymous to the non-coethnic dictator game:

$$
* H_{D 42}: \beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0
$$

- in the identified dictator games:

$$
* H_{D 43}: \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0
$$

- The final joint null hypothesis is that all coefficients are equal to zero:

$$
\begin{aligned}
&-H_{D 44}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\beta_{12}= \\
& \beta_{13}=\beta_{14}=0
\end{aligned}
$$

## Differential Kamba behavior

- Kamba behave differently in the identified dictator games:

$$
-H_{D 45}: \beta_{16}=\beta_{17}=0
$$

- The differences in treatment effects, going from the anonymous to the identified dictator games, are different for the Kamba:

$$
-H_{D 46}: \beta_{22}=\beta_{23}=\beta_{24}=\beta_{25}=\beta_{26}=\beta_{27}=\beta_{28}=\beta_{29}=0
$$

Comparison of Distributions We want to test whether the unconditional and conditional distributions of the individual games correspond to each other. To test this, we use Pearson's chi-squared test.

- $H_{D 47}: F\left(d g_{\_}\right.$transfer $\mid$anonymous Dict Game $)=F\left(\right.$ dg_transfer $_{i} \mid$ coethnic Dict Game $)$
- $H_{D 48}: F\left(\right.$ dg_transfer $_{i} \mid$ anonymous Dict Game $)=F\left(\right.$ dg_transfer $_{i} \mid$ non-coethnic Dict Game $)$
- $H_{D 49}: F\left(\right.$ dg_transfer $_{i} \mid$ ethnic Dict Game $)=F\left(\right.$ dg_transfer $_{i} \mid$ non-coethnic Dict Game $)$

In addition, we will also check whether the distributions conditional on a certain treatment are equal to each other.

### 8.2 Public-good Game

We now move on the public-good game, where we stack the variables of interest in a similar way, and also cluster standard errors at the individual level.

The first specification:

$$
\begin{align*}
Y_{i j} & =\alpha+\beta_{1} M i x_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}  \tag{28}\\
& +\sum_{k=1}^{4} \beta_{6+k} T_{k} * \text { Mix }_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * \operatorname{Hom}_{i j}+\varepsilon_{i j}
\end{align*}
$$

Here, $H o m_{i j}$ is an indicator variable for whether round $j$ is a round where individual $i$ is in a group with only coethnic profiles and $M i x_{i j}$ is an indicator variable for a round with a non-coethnic in the group.

### 8.2.1 Additional specifications

Finally, we specify a regression specification with control variables $X_{i}$ and a regression specification with heterogeneous treatment effects across the elements of $X_{i}$.

- The specification with controls:

$$
\begin{align*}
& Y_{i j}=\alpha+\beta_{1} M i x_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+ \\
& \quad \sum_{k=1}^{4} \beta_{6+k} T_{k} * M i x_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * \operatorname{Hom}_{i j}+\beta_{15} X_{i}+\varepsilon_{i j} \tag{29}
\end{align*}
$$

- The specification for heterogeneous effects.

$$
\begin{align*}
& Y_{i j}=\alpha+\beta_{1} \text { Mix }_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+ \\
& \quad \sum_{k=1}^{4} \beta_{6+k} T_{k} * M i x_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * \text { Hom }_{i j}+\beta_{15} X_{i}+  \tag{30}\\
& \quad \beta_{16} M i x i x i j * X_{i}+\beta_{17} H o m_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{17+k} T_{k} * X_{i} \\
& \quad \sum_{k=1}^{4} \beta_{21+k} T_{k} * M i x_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{25+k} T_{k} * \text { Hom }_{i j} * X_{i}+\varepsilon_{i j}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the pooled public-good games, we are dropping the Kamba from the analysis. However, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
& Y_{i j}=\alpha+\beta_{1} M i x_{i j}+\beta_{2} \text { Hom }_{i j}+\sum_{k=1}^{4} \beta_{2+k} T_{k}+ \\
& \quad \sum_{k=1}^{4} \beta_{6+k} T_{k} * M i x_{i j}+\sum_{k=1}^{4} \beta_{10+k} T_{k} * \text { Hom }_{i j}+\beta_{15} \text { Kamba }_{i}+ \\
& \quad \beta_{16} M i x_{i j} * \text { Kamba }_{i}+\beta_{17} \text { Hom }_{i j} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{17+k} T_{k} * \text { Kamba }_{i}  \tag{31}\\
& \quad \sum_{k=1}^{4} \beta_{21+k} T_{k} * \text { Mix }_{i j} * \text { Kamba }_{i}+\sum_{k=1}^{4} \beta_{25+k} T_{k} * \operatorname{Hom}_{i j} * \text { Kamba }_{i}+\varepsilon_{i j}
\end{align*}
$$

### 8.2.2 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (28). Note that hypotheses $H_{P G 59}, H_{P G 60}, H_{P G 61}$ and $H_{P G 62}$ belong to the primary analysis, whereas the other hypotheses are exploratory. Therefore, we compute FWER adjusted p-values for the set $\left(H_{P G 59}, H_{P G 60}, H_{P G 61}\right.$ and $\left.H_{P G 62}\right)$.

- Willingness to contribute to the group fund is different,
- between the mixed and the anonymous public-good game:

$$
* H_{P G 59}: \beta_{1}=0
$$

- between the homogeneous and the anonymous public-good game:

$$
* H_{P G 60}: \beta_{2}=0
$$

- between the mixed and the homogeneous public-good game:
* $H_{P G 61}: \beta_{1}=\beta_{2}$
- in the identified public-good games, compared to the anonymous public-good game:
* $H_{P G 61}: \beta_{1}=\beta_{2}=0$
- There are differences in treatment effects,
- between the mixed and the anonymous public-good game:
* $H_{P G 62}: \beta_{7}=0$
* $H_{P G 63}: \beta_{8}=0$
* $H_{P G 64}: \beta_{9}=0$
* $H_{P G 65}: \beta_{10}=0$
- between the homogeneous and the anonymous public-good game:
* $H_{P G 66}: \beta_{11}=0$
* $H_{P G 67}: \beta_{12}=0$
* $H_{P G 68}: \beta_{13}=0$
* $H_{P G 69}: \beta_{14}=0$
- between the mixed public-good game and the homogeneous public good game.
* $H_{P G 70}: \beta_{7}=\beta_{11}$
* $H_{P G 71}: \beta_{8}=\beta_{12}$
* $H_{P G 72}: \beta_{9}=\beta_{13}$
* $H_{P G 73}: \beta_{10}=\beta_{14}$
- There are differences between the differences in treatment effects,
- going from the anonymous to the mixed:
* $H_{P G 74}: \beta_{7}=\beta_{8}$
* $H_{P G 75}: \beta_{7}=\beta_{9}$
* $H_{P G 76}: \beta_{7}=\beta_{10}$
* $H_{P G 77}: \beta_{8}=\beta_{9}$
* $H_{P G 78}: \beta_{8}=\beta_{10}$
$* H_{P G 79}: \beta_{9}=\beta_{10}$
- going from the anonymous to the homogeneous:
* $H_{P G 80}: \beta_{11}=\beta_{12}$
* $H_{P G 81}: \beta_{11}=\beta_{13}$
* $H_{P G 82}: \beta_{11}=\beta_{14}$
* $H_{P G 83}: \beta_{12}=\beta_{13}$
* $H_{P G 84}: \beta_{12}=\beta_{14}$
* $H_{P G 85}: \beta_{13}=\beta_{14}$
- Not all the differences in treatment effects are equal to zero.
- going from the anonymous to the mixed:
* $H_{P G 86}: \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0$
- going from the anonymous to the homogeneous:
$* H_{P G 87}: \beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0$
- for the identified public-good games compared to the anonymous public-good game:

$$
* H_{P G 88}: \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\beta_{12}=\beta_{13}=\beta_{14}=0
$$

- The final joint null hypothesis is that all coefficients are equal to zero.

$$
\begin{aligned}
& -H_{P G 89}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\beta_{12}= \\
& \quad \beta_{13}=\beta_{14}=0
\end{aligned}
$$

## Differential Kamba behavior

- Kamba behave differently in the identified public-good games:

$$
-H_{P G 90}: \beta_{16}=\beta_{17}=0
$$

- The differences in treatment effects, going from the anonymous to the identified public-good games, are different for the Kamba:

$$
-H_{P G 91}: \beta_{22}=\beta_{23}=\beta_{24}=\beta_{25}=\beta_{26}=\beta_{27}=\beta_{28}=\beta_{29}=0
$$

Comparison of Distributions We want to test whether the unconditional and conditional distributions of the individual games correspond to each other. To test this, we use Pearson's chi-squared test. Here we list the comparison of the unconditional distributions:

- $H_{P G 92}: F\left(\right.$ pg_contribution $_{i} \mid$ anonymous PG$)=F\left(\right.$ pg_contribution $_{i} \mid$ mixed PG)
- $H_{P G 93}: F\left(\right.$ pg_contribution $_{i} \mid$ anonymous PG$\left.)\right)=F\left(\right.$ pg_contribution $_{i} \mid$ homogeneous PG) $^{\text {P }}$ )
- $H_{P G 94}: F\left(\right.$ pg_contribution $_{i} \mid$ mixed $\left.^{\mathrm{PG}}\right)=F\left(\text { pg_contribution }_{i} \mid \text { homogeneous } \mathrm{PG}\right)^{\text {( }}$ )
- $H_{P G 95}: F\left(\right.$ pg_contrminbelief $_{i} \mid$ anonymous PG$)=F\left(\right.$ pg_contrminbelief $_{i} \mid$ mixed PG$)$
- $H_{P G 96}: F\left(\right.$ pg_contrminbelief $_{i} \mid$ anonymous PG$)=F\left(\right.$ pg_contrminbelief $_{i} \mid$ homogeneous PG$)$
- $H_{P G 97}: F\left(\right.$ pg_contrminbelief $_{i} \mid$ mixed PG$)=F\left(\right.$ pg_contrminbelief $_{i} \mid$ homogeneous PG)

In addition, we will also check whether the distributions, within a certain game type, and conditional on a certain treatment are equal to each other.

### 8.3 Choose-your-dictator game

Now, we also present the analysis on the pooled data of the choose-your-dictator game.

### 8.3.1 First Specification

This is the primary specification for comparing the anonymous and identified-chooser games.

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\beta_{6} * C E_{i p} * I D_{i j}+  \tag{32}\\
& \sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * I D_{i j}+\varepsilon_{i j p}
\end{align*}
$$

Here, the indicator variable $I D_{i j}$ with $j=1,2$ equals one if individual $i$ 's choice is observed in the second, identified round of the game and zero otherwise. Hence, if $I D_{i j}=1$, the respondent $i$ knows that his chosen dictator is informed about his background information. We will check whether the profile fixed effects $\alpha_{p}$ are jointly significant, using an F-test.

### 8.3.2 Additional Specifications

In addition to the primary specification, we will also estimate specifications with controls and with heterogeneous treatment effects.

- Specification with controls

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\beta_{6} * C E_{i p} * I D_{i j}+  \tag{33}\\
& \sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * I D_{i j}+\beta_{11} C E_{i p} * X_{i}+\varepsilon_{i j p}
\end{align*}
$$

- Specification for heterogeneous treatment effects.

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\beta_{6} * C E_{i p} * I D_{i j}+ \\
& \sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * I D_{i j}+\beta_{11} C E_{i p} * X_{i}+\sum_{k=1}^{4} \beta_{11+k} T_{k} * C E_{i p} * X_{i}  \tag{34}\\
& +\beta_{16} * C E_{i p} * I D_{i j} * X_{i}+\sum_{k=1}^{4} \beta_{16+k} T_{k} * C E_{i p} * I D_{i j} * X_{i}+\varepsilon_{i j p}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the pooled choose-your-dictator games, we are dropping the Kamba from the analysis. However, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
V_{i j p}= & \alpha_{p}+\beta_{1} * C E_{i p}+\sum_{k=1}^{4} \beta_{1+k} T_{k} * C E_{i p}+\beta_{6} * C E_{i p} * I D_{i j}+ \\
& \sum_{k=1}^{4} \beta_{6+k} T_{k} * C E_{i p} * I D_{i j}+\beta_{11} C E_{i p} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{11+k} T_{k} * C E_{i p} * K a m b a_{i} \\
& +\beta_{16} * C E_{i p} * I D_{i j} * K a m b a_{i}+\sum_{k=1}^{4} \beta_{16+k} T_{k} * C E_{i p} * I D_{i j} * K a m b a_{i}+\varepsilon_{i j p} \tag{35}
\end{align*}
$$

### 8.3.3 Hypotheses

In addition to the hypotheses estimated on the specifications for the individual game types, we also test the following hypotheses on the coefficients estimated using equation (32). Note that hypothesis $H_{C D 49}$ belongs to the primary analysis, whereas the other hypotheses are exploratory. When we compute FWER adjusted p-values for the set of outcomes for the two choose-your-dictator games, this hypothesis will be included in this set (see above).

- There is a difference in how coethnicity affects dictator choice between the anonymous and identified choose-your-dictator game:

$$
-H_{C D 49}: \beta_{6}=0
$$

- There are differences in treatment effects in the identified dictator choice compared to the anonymous dictator choice.

$$
\begin{aligned}
& -H_{C D 50}: \beta_{7}=0 \\
& -H_{C D 51}: \beta_{8}=0 \\
& -H_{C D 52}: \beta_{9}=0 \\
& -H_{C D 53}: \beta_{10}=0
\end{aligned}
$$

- The differences in treatment effects from the anonymous to the identified setting are different across treatments.

$$
\begin{aligned}
& -H_{C D 54}: \beta_{7}=\beta_{8} \\
& -H_{C D 55}: \beta_{7}=\beta_{9} \\
& -H_{C D 56}: \beta_{7}=\beta_{10} \\
& -H_{C D 57}: \beta_{8}=\beta_{9} \\
& -H_{C D 58}: \beta_{8}=\beta_{10} \\
& -H_{C D 59}: \beta_{9}=\beta_{10}
\end{aligned}
$$

- Not all the differences in treatment effects are equal to zero:

$$
-H_{C D 60}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0
$$

- The final joint null hypothesis is that all coefficients are equal to zero:

$$
-H_{C D 64}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0
$$

## Differential Kamba behavior

- Kamba behave differently in the identified choose-your-dictator game:

$$
-H_{C D 65}: \beta_{16}=0
$$

- The differences in treatment effects, going from the anonymous to the identified choose-your-dictator game, are different for the Kamba:

$$
-H_{C D 66}: \beta_{17}=\beta_{18}=\beta_{19}=\beta_{20}=0
$$

## 9 IAT

### 9.1 Framework

Implicit Association Tests (IATs) have been used extensively in the psychology literature (Nosek et al., 2007). In this section, we discuss the implementation of our IATs in Kenya.

### 9.1.1 General IAT structure

An IAT provides a measure - the d-score - of a person's implicit bias in the association of two categories (say category A and category B) with good' or bad'. To understand how this works, here is an overview of the structure of our IATs.

- Stage 1: Respondents need to match words or images from category A and B, with their respective categories. This stage serves as a practice round, to introduce the words linked to both categories.
- Stage 2: Respondents need to match positive words with the category good', and negative words with the category bad'. This stage serves as a practice round, to introduce the words linked to the categories good' and bad'.
- Stage 3: In the third stage of the IAT, two groups are created where categories A and B are combined with the good' and bad' categories. A first group combines categories A and good' and a second group combines categories B' and good. Respondents need to link words or images from the 4 categories (A, B, good and bad) with the 2 groups.
- Stage 4: This stage is analogous to the previous stage, but categories A and B switch places.

Three things need to be mentioned. First, without loss of generality, we will assume that category A is at least weakly more easily associated with good', and category B is more easily associated with bad'. Therefore, the IAT-stage where A and good' are in the same group is called the "congruence" round, while the stage where A is categorized with bad' is called the "dissonance" round. Second, the order of the dissonance and congruence rounds is randomized. Third, for both the dissonance and the congruence round, respondents first complete a practice section before they start the actual categorization task. In our setting, only the actual task counts toward the calculation of the d-score, which measures individual's implicit bias.

In calculating the d-score, which measures individuals' implicit association, we combine the recommendations by (Lane et al., 2007) with the procedure in (Beaman et al., 2009)

1. Delete trials greater than $10,000 \mathrm{msec}$
2. Delete subjects for whom more than 10 of trials have latency less than 300 msec
3. Compute the mean latency of the actual part of the congruence and dissonance rounds: $A R T_{\text {Cong }}, A R T_{\text {Diss }}$.
4. Delete subjects with $A R T_{\text {Cong }}$ or $A R T_{\text {Diss }}$ above $6,000 \mathrm{msec}$.
5. Compute the "inclusive" standard deviation ( $S D R T$ ) for all the trials in the actual part of the congruence and dissonance rounds.
6. Take the difference between the average response times: $A R T_{\text {Cong }}-A R T_{\text {Diss }}$.
7. Divide by the overall standard deviation in the response times: $d=\frac{A R T_{C o n g}-A R T_{D i s s}}{S D R T}$

Note that a negative d-score confirms that the categorization task is easier in the congruence part than in the dissonance part, and suggests the presence of the a priori expected bias.

### 9.1.2 Ethnic IAT

The ethnic IAT provides a measure for the implicit association of a respondent toward a certain tribe. Categories A' and B' will be Kikuyu' and Luo'. The words in the tribal categories are traditional Kikuyu and Luo surnames. Following our general strategy, we will group Luo, Luhya and Kisii in one alliance. Members of the other tribe, the Kikuyu, are assumed to experience congruence in the categorization "Kikuyu or good" versus "Luo or bad", and dissonance for the categorization "Luo or good" versus "Kikuyu or bad". The opposite holds for the Luo, Luhya, Kisii - alliance. Note again that the order of the dissonance and congruence part is randomized.
Members of the Kamba tribe will be dropped from the analysis for our main specifications, but will be included when we allow for heterogeneous treatment effects.

### 9.1.3 National IAT

The national IAT provides a measure for the implicit association of a respondent toward Kenya. Specifically, category A is Kenya' and category B is Other Countries'. Both categories consist of images (flags and other national symbols), related to Kenya (A) or neighboring countries (B) such as Ethiopia, Tanzania and Uganda.

### 9.2 Specifications

Our regression specifications regress the d-scores for that IAT on the treatment indicators and other variables of interest. Specifically, for a given individual $i$, we control for the order of the dissonance and congruence sequence for a certain IAT (ethnic or national), and we control for the order of the national and ethnic IAT. Note that both these orders were randomized across individuals. In the next specifications, we introduce the indicator variables $D F_{i}$, which equals one when the Dissonance round was played first within the IAT, and $N F_{i}$, which indicates whether the national IAT was played first or not.

- First specification

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} D F_{i}+\beta_{2} N F_{i}+\beta_{3} D F_{i} * N F_{i}+\sum_{k=1}^{4} \beta_{3+k} T_{k}+\varepsilon_{i} \tag{36}
\end{equation*}
$$

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} D F_{i}+\beta_{2} N F_{i}+\beta_{3} D F_{i} * N F_{i}+\sum_{k=1}^{4} \beta_{3+k} T_{k}+\beta_{8} X_{i}+\varepsilon_{i} \tag{37}
\end{equation*}
$$

- Full specification, without controls:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} D F_{i}+\beta_{2} N F_{i}+\beta_{3} D F_{i} * N F_{i}+\sum_{k=1}^{4} \beta_{3+k} T_{k}+\sum_{k=1}^{4} \beta_{7+k} T_{k} * D F_{i}  \tag{38}\\
& +\sum_{k=1}^{4} \beta_{11+k} T_{k} * N F_{i}+\sum_{k=1}^{4} \beta_{15+k} T_{k} * N F_{i} * D F_{i}+\varepsilon_{i}
\end{align*}
$$

- Full specification, with controls:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} D F_{i}+\beta_{2} N F_{i}+\beta_{3} D F_{i} * N F_{i}+\sum_{k=1}^{4} \beta_{3+k} T_{k}+\sum_{k=1}^{4} \beta_{7+k} T_{k} * D F_{i} \\
& +\sum_{k=1}^{4} \beta_{11+k} T_{k} * N F_{i}+\sum_{k=1}^{4} \beta_{15+k} T_{k} * N F_{i} * D F_{i}+\beta_{20} X_{i}+\beta_{24} D F_{i} * X_{i}  \tag{39}\\
& +\beta_{21} N F_{i} * X_{i}+\beta_{22} D F_{i} * N F_{i} * X_{i}+\sum_{k=1}^{4} \beta_{22+k} T_{k} * X_{i}+\varepsilon_{i}
\end{align*}
$$

### 9.3 Hypotheses

We will use equation (36) as our preferred specification, on which we test the following hypotheses for both the ethnic and the national IAT.

- Priming affects implicit associations:

$$
\begin{aligned}
& -H_{I A T 1}: \beta_{3}=0 \\
& -H_{I A T 2}: \beta_{4}=0 \\
& -H_{I A T 3}: \beta_{5}=0 \\
& -H_{I A T 4}: \beta_{6}=0
\end{aligned}
$$

- The different treatments affect implicit associations differently:

$$
\begin{aligned}
& -H_{I A T 5}: \beta_{3}=\beta_{4} \\
& -H_{I A T 6}: \beta_{3}=\beta_{5} \\
& -H_{I A T 7}: \beta_{3}=\beta_{6} \\
& -H_{I A T 8}: \beta_{4}=\beta_{5}
\end{aligned}
$$

$$
\begin{aligned}
& -H_{\text {IAT9 }}: \beta_{4}=\beta_{6} \\
& -H_{\text {IAT } 10}: \beta_{5}=\beta_{6}
\end{aligned}
$$

- Not all treatment effects are equal to zero,

$$
-H_{I A T 11}: \beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the ethnic and the national IAT, where we group the set of hypotheses ( $H_{I A T 1}$ till $H_{I A T 11}$ ).

Now, in more exploratory analysis, we use equation (39) to check for learning effects and heterogeneous effects across tribes and treatment cells.

- The order of dissonance and congruence matters for measurement of the implicit association:

$$
-H_{I A T 12}: \beta_{1}=0
$$

- The order of the ethnic and national IAT matters for implicit associations:

$$
-H_{I A T 13}: \beta_{2}=0
$$

- The interaction of the order of the ethnic and national IAT, and the order of dissonance and congruence matters for implicit associations:

$$
-H_{I A T 14}: \beta_{3}=0
$$

- The order of dissonance and congruence matters for the treatment effects on implicit associations:

$$
\begin{aligned}
& -H_{I A T 15}: \beta_{8}=0 \\
& -H_{I A T 16}: \beta_{9}=0 \\
& -H_{I A T 17}: \beta_{10}=0 \\
& -H_{I A T 18}: \beta_{11}=0
\end{aligned}
$$

- The order of national and ethnic IAT matters for the treatment effects on implicit associations:

$$
\begin{aligned}
& -H_{I A T 19}: \beta_{12}=0 \\
& -H_{I A T 20}: \beta_{13}=0 \\
& -H_{I A T 21}: \beta_{14}=0 \\
& -H_{I A T 22}: \beta_{15}=0
\end{aligned}
$$

- The interaction of the order of the ethnic and national IAT, and the order of dissonance and congruence matters for the treatment effects on implicit associations:

$$
-H_{I A T 23}: \beta_{16}=0
$$

$-H_{I A T 24}: \beta_{17}=0$
$-H_{I A T 25}: \beta_{18}=0$

- $H_{I A T 26}: \beta_{19}=0$
- Personal characteristics, such as tribe, affect the implicit associations:
$-H_{I A T 27}: \beta_{20}=0$
- Personal characteristics, such as tribe, affect the treatment effect on implicit associations:

$$
\begin{aligned}
& -H_{I A T 28}: \beta_{23}=0 \\
& -H_{I A T 29}: \beta_{24}=0 \\
& -H_{I A T 30}: \beta_{25}=0 \\
& -H_{I A T 31}: \beta_{26}=0 \\
& -H_{I A T 32}: \beta_{23}=\beta_{24}=\beta_{25}=\beta_{26}=0
\end{aligned}
$$

## 10 Anonymous priming: global average treatment effect

This section analyzes the average effect of our treatments in the anonymous games for the full dataset. Specifically, we combine the data from the two Kenya lab rounds (2012 and 2013), and from the Tanzania lab.
We focus on the anonymous games for two reasons. First, the anonymous setting is better suited for a cross-country analysis. For instance, in the identified games, particular characteristics associated with specific tribes might make the Tanzania setting not comparable to the Kenya setting. Second, due to programming issues, the identified games in Tanzania and Kenya do not have comparable compositions in terms of coethnicity.
Note that from now on, we drop all observations in the blatant political competition treatment group $\left(T_{4}\right)$, since this treatment arm was only introduced in the Kenya 2013 lab round. At the same time, the ethnic indicator variables are dropped from the vector $X_{i}$.

### 10.1 Anonymous Dictator Game

### 10.1.1 Specifications

First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\varepsilon_{i} \tag{40}
\end{equation*}
$$

Specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\varepsilon_{i} \tag{41}
\end{equation*}
$$

Specification with interaction effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * X_{i}+\varepsilon_{i} \tag{42}
\end{equation*}
$$

### 10.1.2 Hypotheses

- Priming affects generosity:

$$
-\quad * H_{A-D 1}: \beta_{1}=0
$$

* $H_{A-D 2}: \beta_{2}=0$
* $H_{A-D 3}: \beta_{3}=0$
- The different treatments affect generosity differently:
- $\quad * H_{A-D 4}: \beta_{1}=\beta_{2}$
* $H_{A-D 5}: \beta_{1}=\beta_{3}$

$$
* H_{A-D 6}: \beta_{2}=\beta_{3}
$$

- Not all treatment effects are equal to zero,

$$
-\quad * H_{A-D 7}: \beta_{1}=\beta_{2}=\beta_{3}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values for the anonymous dictator game, where we group the set of hypotheses ( $H_{A-D 1}$ till $H_{A-D 7}$ ).

### 10.2 Anonymous Public-good Game

### 10.2.1 Specifications: Contributions and Contribution minus beliefs

First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\varepsilon_{i} \tag{43}
\end{equation*}
$$

Specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\varepsilon_{i} \tag{44}
\end{equation*}
$$

Specification with interaction effects:

$$
\begin{equation*}
Y_{i}=\alpha+\sum_{k=1}^{3} \beta_{k} T_{k}+\beta_{4} X_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * X_{i}+\varepsilon_{i} \tag{45}
\end{equation*}
$$

### 10.2.2 Specifications: Beliefs

The specifications for beliefs are analogous to the specifications for contributions.

### 10.2.3 Hypotheses

Contributions and contribution minus beliefs To test our hypotheses on contributions, contribution minus beliefs and beliefs, we estimate specification (43) separately for all outcome variables, and test:

- Priming affects contributions, contribution minus beliefs or beliefs:
- $H_{A-P G 1}: \beta_{1}=0$
$-H_{A-P G 2}: \beta_{2}=0$
$-H_{A-P G 3}: \beta_{3}=0$
- Different priming affects the outcome variables differently:
$-H_{A-P G 4}: \beta_{1}=\beta_{2}$
$-H_{A-P G 5}: \beta_{1}=\beta_{3}$

$$
-H_{A-P G 6}: \beta_{2}=\beta_{3}
$$

- Not all treatment effects are equal to zero:

$$
-H_{A-P G 7}: \beta_{1}=\beta_{2}=\beta_{3}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values for the anonymous public-good game, where we group the set of hypotheses ( $H_{A-P G 1}$ till $H_{A-P G 7}$ ) for both contributions and contributions minus beliefs.

Although our analysis of beliefs is more exploratory, we will provide FWER adjusted p-values for the anonymous public-good game, where we group the set of hypotheses ( $H_{A-P G 1}$ till $H_{A-P G 7}$ ) with beliefs as the dependent variable.

## 11 Kenya versus Tanzania: cross-country analysis

This section builds naturally on the previous section, as we are still looking at the treatment effects for the full dataset, with data from all three lab rounds. However, here we focus specifically on the difference between Kenya and Tanzania. For reasons of comparability, we again restrict the analysis to the anonymous dictator and public-good games. Remember that the ethnic indicator variables are dropped from the vector $X_{i}$.

### 11.1 Anonymous Dictator Game

### 11.1.1 Specifications

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Tanz }_{i}+\varepsilon_{i} \tag{46}
\end{equation*}
$$

Where $\operatorname{Tanz}_{i}$ indicates whether individual $i$ is Tanzanian or not .

Additional Specifications We will also run a specification with controls as a robustness check. In addition, we can also run exploratory specifications with heterogeneous treatment effects.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \operatorname{Tanz}_{i}+\beta_{8} X_{i}+\varepsilon_{i} \tag{47}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \operatorname{Tan}_{i}+\beta_{8} X_{i}  \tag{48}\\
& +\beta_{9} \operatorname{Tanz}_{i} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * \operatorname{Tanz}_{i} * X_{i}+\varepsilon_{i}
\end{align*}
$$

### 11.1.2 Hypotheses

We will test our hypotheses on our main specification, equation (46):

- Generosity is different in Kenya and Tanzania.

$$
-H_{K T-D 1}: \beta_{1}=0
$$

- There are differences in treatment effects between Kenya and Tanzania.

$$
-H_{K T-D 2}: \beta_{5}=0
$$

$$
\begin{aligned}
& -H_{K T-D 3}: \beta_{6}=0 \\
& -H_{K T-D 4}: \beta_{7}=0
\end{aligned}
$$

- There are differences among the differences in treatment effects between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{K T-D 5}: \beta_{5}=\beta_{6} \\
& -H_{K T-D 6}: \beta_{5}=\beta_{7} \\
& -H_{K T-D 7}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- Priming has different impacts in Kenya and Tanzania.

$$
-H_{K T-D 8}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values for the anonymous dictator game, where we group the set of hypotheses ( $H_{K T-D 1}$ till $H_{K T-D 7}$ ).

### 11.2 Anonymous Public-good Game

The setting for the anonymous public-good game is analogous to the setting of the anonymous dictator game.

### 11.2.1 Specifications: Contributions and Contributions minus beliefs

- First Specification

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \operatorname{Tanz}_{i}+\varepsilon_{i} \tag{49}
\end{equation*}
$$

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \operatorname{Tan}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \operatorname{Tanz}_{i}+\beta_{8} * X_{i}+\varepsilon_{i} \tag{50}
\end{equation*}
$$

- A specification for heterogeneous treatment effects

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \operatorname{Tan}_{i}+\beta_{8} * X_{i} \\
& +\beta_{9} \operatorname{Tanz}_{i} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * \operatorname{Tan}_{i} * X_{i}+\varepsilon_{i} \tag{51}
\end{align*}
$$

### 11.2.2 Specifications: Beliefs

The specifications for beliefs in the anonymous public-good game are analogous to the specifications for contributions as the outcome variable.

### 11.2.3 Hypotheses

We test the following list of hypotheses for the outcomes on contributions, contribution minus beliefs and beliefs, using specification (49).

- Contributions or contributions minus beliefs are different in Kenya and Tanzania:

$$
-H_{K T-P G 1}: \beta_{1}=0
$$

- Priming affects contributions and contributions minus beliefs differently in Kenya and Tanzania.

$$
\begin{aligned}
& -H_{K T-P G 2}: \beta_{5}=0 \\
& -H_{K T-P G 3}: \beta_{6}=0 \\
& -H_{K T-P G 4}: \beta_{7}=0
\end{aligned}
$$

- There are differences among the differences in treatment effects between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{K T-P G 5}: \beta_{5}=\beta_{6} \\
& -H_{K T-P G 6}: \beta_{5}=\beta_{7} \\
& -H_{K T-P G 7}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- The joint null hypothesis for differences in priming between Kenya and Tanzania.

$$
-H_{K T-P G 8}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values for the anonymous public-good game, where we group the set of hypotheses $\left(H_{K T-P G 1}\right.$ till $H_{K T-P G 8}$ ) for both contributions and contributions minus beliefs.

Although our analysis of beliefs is more exploratory, we will provide FWER adjusted p-values for the anonymous public-good game, where we group the set of hypotheses ( $H_{K T-P G 1}$ till $H_{K T-P G 8}$ ) with beliefs as the dependent variable.

## 12 Kenya 2012 versus Kenya 2013: Election analysis

In this section, we compare outcomes between the two Kenya lab rounds: Kenya 2012 and Kenya 2013, by restricting the data to these two lab rounds. On March 4, 2013, general elections were held in Kenya. Our 2013 lab round took place in January and February 2013. Therefore, this section will allow us to analyze how behavioral outcomes change when respondents are observed closer to the Kenyan general elections.

### 12.1 Dictator Game

### 12.1.1 Individual Games

For the dictator game, we start with the transfer decisions in the anonymous and coethnic game. We omit the non-coethnic dictator game, as this game was absent in the Kenya 2012 lab round.

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\varepsilon_{i} \tag{52}
\end{equation*}
$$

Where Elect ${ }_{i}$ indicates whether individual $i$ is observed close to the Election or not; $j=1$ when we analyze the anonymous dictator game, and $j=1,2$ indicates round 1 or 2 for the coethnic dictator game. Standard errors will be clustered at the individual level. Note that we do not include the blatant political competition prime here, since this treatment arm was not implemented in the Kenya 2012 lab round.

Additional Specifications For both information settings, the anonymous round and the coethnic rounds, we will also run a specification with controls as a robustness check. In addition, we will run specifications with heterogeneous treatment effects.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} X_{i}+\varepsilon_{i} \tag{53}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} X_{i}  \tag{54}\\
& +\beta_{9} \text { Elect }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Elect }_{i} * X_{i}+\varepsilon_{i}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the comparison over time of dictator games, we are dropping the Kamba from the analysis. However, for the coethnic dictator game $^{8}$, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} \text { Kamba }_{i} \\
& +\beta_{9} \text { Elect }_{i} * \text { Kamba }_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Kamba }_{i}+  \tag{55}\\
& \sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Elect }_{i} * \text { Kamba }_{i}+\varepsilon_{i}
\end{align*}
$$

### 12.1.2 Pooled Analysis

We are also interested in the analysis of the pooled specification for the three dictator games.

- First Specification

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} C E_{i j}+\beta_{3} N C_{i j}+\beta_{4} C E_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{7+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i j}+\sum_{k=1}^{3} \beta_{13+k} T_{k} * N C_{i j}  \tag{56}\\
& +\sum_{k=1}^{3} \beta_{16+k} T_{k} * C E_{i j} * \text { Elect }_{i}+\varepsilon_{i j}
\end{align*}
$$

- Specification with controls.

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} C E_{i j}+\beta_{3} N C_{i j}+\beta_{4} C E_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{4+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{7+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i j}+\sum_{k=1}^{3} \beta_{13+k} T_{k} * N C_{i j}  \tag{57}\\
& +\sum_{k=1}^{3} \beta_{16+k} T_{k} * C E_{i j} * \text { Elect }_{i}+\beta_{20} X_{i}+\varepsilon_{i j}
\end{align*}
$$

There is no non-coethnic dictator game in the Kenya 2012 lab round, which explains the absence of the interaction term $N C_{i j} *$ Elect $_{i}$.

[^9]
### 12.1.3 Hypotheses

Individual games For both the anonymous and the coethnic dictator game, we test the following list of hypotheses for specification (52).

- Closer to elections, generosity is different in Kenya.

$$
-H_{E L-D 1}: \beta_{1}=0
$$

- Closer to elections, treatment effects are different in Kenya.
$-H_{E L-D 2}: \beta_{5}=0$
- $H_{E L-D 3}: \beta_{6}=0$
- $H_{E L-D 4}: \beta_{7}=0$
- Closer to elections, there are differences among the differential treatment effects.

$$
\begin{aligned}
& -H_{E L-D 5}: \beta_{5}=\beta_{6} \\
& -H_{E L-D 6}: \beta_{5}=\beta_{7} \\
& -H_{E L-D 7}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- Priming has different impacts closer to elections in Kenya.

$$
-H_{E L-D 8}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

Pooled Analysis Now, we list hypotheses related to specification (56). Except for $H_{E L-D 9}$, this analysis is more exploratory.

- Closer to elections, generosity toward coethnics is different in Kenya.

$$
-H_{E L-D 9}: \beta_{4}=0
$$

- Closer to elections, priming affects generosity toward coethnics differently.

$$
\begin{aligned}
& -H_{E L-D 10}: \beta_{17}=0 \\
& -H_{E L-D 11}: \beta_{18}=0 \\
& -H_{E L-D 12}: \beta_{19}=0
\end{aligned}
$$

- There are differences among the differences in how priming affects generosity toward coethnics differentially closer to elections.

$$
\begin{aligned}
& -H_{E L-D 13}: \beta_{17}=\beta_{18} \\
& -H_{E L-D 14}: \beta_{17}=\beta_{19} \\
& -H_{E L-D 15}: \beta_{18}=\beta_{19}
\end{aligned}
$$

- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{E L-D 16}: \beta_{4}=\beta_{17}=\beta_{18}=\beta_{19}=0 \\
& -H_{E L-D 17}: \forall i=1: 19, \beta_{i}=0
\end{aligned}
$$

Differential Kamba behavior For the coethnic dictator game, using specification (55), we hypothesize:

- The level of generosity for a Kamba is different closer to elections:

$$
-H_{E L-D 18}: \beta_{9}=0
$$

- Treatments affect the generosity of a Kamba differently, closer to elections:

$$
-H_{E L-D 19}: \beta_{13}=\beta_{14}=\beta_{15}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous and the coethnic dictator game, where we group the set of hypotheses ( $H_{E L-D 1}$ till $H_{E L-D 8}$ ).

Comparison of distributions In addition to the hypotheses above, we will also test the equality of the unconditional and conditional distributions for the outcome variables of the different games closer to elections, using a Pearson Chi-squared test.

### 12.2 Public-good Game

The structure of the analysis for the public-good game is analogous to the analysis for the dictator game. Now we specify the specifications for the outcomes on contributions and contribution minus beliefs.

### 12.2.1 Individual Games

The following specification will be estimated for the anonymous, mixed and homogeneous public-good games.

- First Specification

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\varepsilon_{i} \tag{58}
\end{equation*}
$$

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} * X_{i}+\varepsilon_{i} \tag{59}
\end{equation*}
$$

- A specification for heterogeneous treatment effects

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} X_{i} \\
& +\beta_{9} \text { Elect }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Elect }_{i} * X_{i}+\varepsilon_{i} \tag{60}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the comparison over time of public-good games, we are dropping the Kamba from the analysis. However, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} \text { Kamba }_{i} \\
& +\beta_{9} \text { Elect }_{i} * \text { Kamba }_{i}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Kamba }_{i}+  \tag{61}\\
& \sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Elect }_{i} * \text { Kamba }_{i}+\varepsilon_{i}
\end{align*}
$$

### 12.2.2 Pooled Analysis

Now, we pool the data on the anonymous, mixed and homogeneous public-good games together.

- First specification

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} \text { Mix }_{i j}+\beta_{3} \text { Hom }_{i j}+\beta_{4} \text { Mix }_{i j} * \text { Elect }_{i}+\beta_{5} \text { Hom }_{i j} * \text { Elect }_{i} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Mix }_{i j}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Hom }_{i j} \\
& +\sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Mix }_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Hom }_{i j} * \text { Elect }_{i}+\varepsilon_{i j} \tag{62}
\end{align*}
$$

- Specification with controls

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} \text { Mix }_{i j}+\beta_{3} \text { Hom }_{i j}+\beta_{4} \text { Mix }_{i j} * \text { Elect }_{i}+\beta_{5} \text { Hom }_{i j} * \text { Elect }_{i} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Mix }_{i j}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Hom }_{i j} \\
& +\sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Mix }_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Hom }_{i j} * \text { Elect }_{i}+\beta_{24} * X_{i}+\varepsilon_{i j} \tag{63}
\end{align*}
$$

### 12.2.3 Hypotheses

Individual games For both the anonymous, mixed and homogeneous public-good game, we test the following list of hypotheses for the outcomes on contributions and contribution minus beliefs, using specification (58).

- Closer to elections, contributions or contributions minus beliefs are different:
- $H_{E L-P G 1}: \beta_{1}=0$
- Closer to elections, priming affects contributions and contributions minus beliefs differently.
- $H_{E L-P G 2}: \beta_{5}=0$
- $H_{E L-P G 3}: \beta_{6}=0$
$-H_{E L-P G 4}: \beta_{7}=0$
- Closer to elections, there are differences among the differences in treatment effects.

$$
\begin{aligned}
& -H_{E L-P G 5}: \beta_{5}=\beta_{6} \\
& -H_{E L-P G 6}: \beta_{5}=\beta_{7} \\
& -H_{E L-P G 7}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- The joint null hypothesis for differences in priming closer to elections.

$$
-H_{E L-P G 8}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

Pooled analysis Now, we list hypotheses related to specification (62). Except for $H_{E L-P G 9}, H_{E L-P G 10}, H_{E L-P G 11}$ and $H_{E L-P G 12}$ this analysis is more exploratory.

- Closer to elections, contributions and contributions minus beliefs in the identified games are different.

$$
\begin{aligned}
& -H_{E L-P G 9}: \beta_{4}=0 \\
& -H_{E L-P G 10}: \beta_{5}=0 \\
& -H_{E L-P G 11}: \beta_{4}=\beta_{5}=0
\end{aligned}
$$

- Closer to elections, the differential effects of identification are different for the mixed and homogeneous public-good game.

$$
-H_{E L-P G 12}: \beta_{4}=\beta_{5}
$$

- There are differences in the differential impact of priming closer to elections in the identified public-good games.
- $H_{E L-P G 13}: \beta_{18}=0$
- $H_{E L-P G 14}: \beta_{19}=0$
- $H_{E L-P G 15}: \beta_{20}=0$
- $H_{E L-P G 16}: \beta_{21}=0$
- $H_{E L-P G 17}: \beta_{22}=0$
- $H_{E L-P G 18}: \beta_{23}=0$
- There are differences in the differences in the differential impact of priming closer to elections in the identified public-good games.

$$
\begin{aligned}
& -H_{E L-P G 19}: \beta_{18}=\beta_{19} \\
& -H_{E L-P G 20}: \beta_{18}=\beta_{20} \\
& -H_{E L-P G 21}: \beta_{19}=\beta_{20} \\
& -H_{E L-P G 22}: \beta_{21}=\beta_{22} \\
& -H_{E L-P G 23} \beta_{21}=\beta_{23} \\
& -H_{E L-P G 24}: \beta_{22}=\beta_{23}
\end{aligned}
$$

- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{E L-P G 25}: \beta_{4}=\beta_{5}=\beta_{18}=\beta_{19}=\beta_{20}=\beta_{21}=\beta_{22}=\beta_{23}=0 \\
& -H_{E L-P G 26}: \forall i=1: 23, \beta_{i}=0
\end{aligned}
$$

Differential Kamba behavior For both identified public-good games, using specification (61), we hypothesize:

- Contributions and contributions minus belief are different for a Kamba, closer to elections:

$$
-H_{E L-P G 27}: \beta_{9}=0
$$

- Closer to elections, treatments affect the contributions and contributions minus beliefs of a Kamba differently:

$$
-H_{E L-P G 28}: \beta_{13}=\beta_{14}=\beta_{15}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous, mixed and homogeneous public-good game, where we group ( $H_{E L-P G 1}$ till $H_{E L-P G 8}$ ) in one set of hypotheses. In a separate set of hypotheses, we group together the hypotheses $H_{E L-P G 9}, H_{E L-P G 10}, H_{E L-P G 11}$ and $H_{E L-P G 12}$.

Comparison of distributions In addition to the hypotheses above, we will also test the equality of the conditional and unconditional distributions for the outcome variables of the different games across Kenya and Tanzania, using a Pearson Chi-squared test.

### 12.3 Choose-your-dictator Game

For the choose-your-dictator game, we continue to apply the above specified maximum likelihood strategy. The equations below specify the latent variables for the ordered logit.

### 12.3.1 Individual Games

We start again by comparing the individual games across the two countries. We compare the anonymous choose-your-dictator game between Kenya and Tanzania, and subsequently compare the identified choose-your-dictator game.

- First specification of the latent variable:

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\varepsilon_{i p} \tag{64}
\end{align*}
$$

- Specification with controls :

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p}  \tag{65}\\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{9} X_{i} * C E_{i p}+\varepsilon_{i p}
\end{align*}
$$

- Specification for heterogeneous treatment effects:

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{9} C E_{i p} * X_{i}+\beta_{10} C E_{i p} * \text { Elect }_{i} * X_{i}  \tag{66}\\
& \sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i p} * X_{i}+\sum_{k=1}^{3} \beta_{13+k} T_{k} * \text { Elect }_{i} * C E_{i p} * X_{i}+\varepsilon_{i p}
\end{align*}
$$

Differential Kamba behavior For our main specifications for the comparison over time of choose-your-dictator games, we are dropping the Kamba from the analysis. However, we also run additional specifications where we include all Kamba respondents and allow for differential behavior on their side.

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p}+ \\
& \sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{9} C E_{i p} * \text { Kamba }_{i}+\beta_{10} \text { CE }_{i p} * \text { Elect }_{i} * \text { Kamba }_{i}+ \\
& \sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i p} * \text { Kamba }_{i}+\sum_{k=1}^{3} \beta_{13+k} T_{k} * \text { Elect }_{i} * C E_{i p} * \text { Kamba }_{i}+\varepsilon_{i p} \tag{67}
\end{align*}
$$

### 12.3.2 Pooled Analysis

Here, we pool the data from the first, anonymous-chooser round and second, identifiedchooser round of the choose-your-dictator game together.

- First specification

$$
\begin{align*}
V_{i p}= & \beta_{1} C E_{i p}+\beta_{2} C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p}+\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p} \\
& +\beta_{9} C E_{i p} * I D_{i j}+\beta_{10} C E_{i p} * I D_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i p} * I D_{i j} \\
& +\sum_{k=1}^{3} \beta_{13+k} T_{k} * C E_{i p} * I D_{i j} * \text { Elect }_{i}+\varepsilon_{i p} \tag{68}
\end{align*}
$$

- Specification with controls

$$
\begin{align*}
V_{i p}= & \beta_{1} C E_{i p}+\beta_{2} C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} * C E_{i p}+\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Elect }_{i} * C E_{i p} \\
& +\beta_{9} C E_{i p} * I D_{i j}+\beta_{10} C E_{i p} * I D_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{10+k} T_{k} * C E_{i p} * I D_{i j} \\
& +\sum_{k=1}^{3} \beta_{13+k} T_{k} * C E_{i p} * I D_{i j} * \text { Elect }_{i}+\beta_{17} C E_{i p} * X_{i}+\varepsilon_{i p} \tag{69}
\end{align*}
$$

### 12.3.3 Hypotheses

Individual games For both the anonymous and identified chooser round of the choose-your-dictator game, we test the following list of hypotheses for specification (64).

- Closer to elections, coethnicity affects dictator choice differently:
$-H_{E L-C D 1}: \beta_{2}=0$
- Closer to elections, priming affects the impact of coethnicity differently.
- $H_{E L-C D 2}: \beta_{6}=0$
- $H_{E L-C D 3}: \beta_{7}=0$
- $H_{E L-C D 4}: \beta_{8}=0$
- Closer to elections, there are differences among the differential treatment effects.

$$
-H_{E L-C D 5}: \beta_{6}=\beta_{7}
$$

$$
\begin{aligned}
& -H_{E L-C D 6}: \beta_{6}=\beta_{8} \\
& -H_{E L-C D 7}: \beta_{7}=\beta_{8}
\end{aligned}
$$

- The joint null hypothesis for differential impacts closer to elections.
- $H_{E L-C D 8}: \beta_{2}=\beta_{6}=\beta_{7}=\beta_{8}=0$

Now, we list hypotheses related to specification (68). Except for $H_{E L-C D 9}$, this analysis is more exploratory.

- Closer to elections, identification of the chooser has a differential effect on the impact of coethnicity.

$$
-H_{E L-C D 9}: \beta_{10}=0
$$

- There are differences among the differential effect of identification of the chooser on the impact of coethnicity closer to elections.
- $H_{E L-C D 10}: \beta_{14}=0$
- $H_{E L-C D 11}: \beta_{15}=0$
- $H_{E L-C D 12}: \beta_{16}=0$
- There are heterogeneous differences in the differential effect of identification of the chooser on the impact of coethnicity closer to elections.
- $H_{E L-C D 13}: \beta_{14}=\beta_{15}$
- $H_{E L-C D 14}: \beta_{14}=\beta_{16}$
- $H_{E L-C D 15}: \beta_{15}=\beta_{16}$
- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{E L-C D 16}: \beta_{10}=\beta_{14}=\beta_{15}=\beta_{16}=0 \\
& -H_{E L-C D 17}: \forall i=1: 16, \beta_{i}=0
\end{aligned}
$$

Differential Kamba behavior For both choose-your-dictator games, using specification (67), we hypothesize:

- The likelihood that a Kamba chooses a coethnic' is different closer to elections:
- $H_{E L-C D 18}: \beta_{10}=0$
- Treatments affect the likelihood that a Kamba chooses a coethnic' differently, closer to elections:

$$
-H_{E L-C D 19}: \beta_{14}=\beta_{15}=\beta_{16}=0
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous and identified choose-your-dictator game, where we group the set of hypotheses ( $H_{E L-C D 1}$ till $H_{E L-C D 8}$ ).

### 12.4 Political Attitudes

### 12.4.1 Individual Games

For the analysis of political attitudes, we look at the likelihood of strategic ethnic voting for the top contenders and the likelihood of justifying the 2007 post-election violence.

- First specification:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\varepsilon_{i} \tag{70}
\end{equation*}
$$

Where Elect ${ }_{i}$ indicates whether individual $i$ is observed close to the Election or not. Note that we do not include the blatant political competition prime here, since this treatment arm was not implemented in the Kenya 2012 lab round.

Additional Specifications We will also run a specification with controls as a robustness check. In addition, we will run specifications with heterogeneous treatment effects.

- A specification with controls:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} X_{i}+\varepsilon_{i} \tag{71}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{1+k} T_{k}+\sum_{k=1}^{3} \beta_{4+k} T_{k} * \text { Elect }_{i}+\beta_{8} X_{i}  \tag{72}\\
& +\sum_{k=1}^{3} \beta_{8+k} T_{k} * X_{i}+\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Elect }_{i} * X_{i}+\varepsilon_{i}
\end{align*}
$$

### 12.4.2 Hypotheses

Individual games For both the anonymous and the coethnic dictator game, we test the following list of hypotheses for specification (70).

- Closer to elections, attitudes are different in Kenya.

$$
-H_{E L-P A 1}: \beta_{1}=0
$$

- Closer to elections, there are differences among the differential treatment effects.

$$
\begin{aligned}
& -H_{E L-P A 5}: \beta_{5}=\beta_{6} \\
& -H_{E L-P A 6}: \beta_{5}=\beta_{7} \\
& -H_{E L-P A 7}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- Priming has different impacts closer to elections in Kenya.

$$
-H_{E L-P A 8}: \beta_{5}=\beta_{6}=\beta_{7}=0
$$

### 12.5 Ethnic identification

When we compare the Kenya 2012 lab with the Kenya 2013 lab, we are interested in whether identification along ethnic or linguistic lines is more salient for respondents during the Kenya 2013 lab. Therefore, we will use the indicator variable for ethnic and linguistic identification, as defined in section (3.2), and regress it on an indicator variable for the Kenya 2013 lab.

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\varepsilon_{i} \tag{73}
\end{equation*}
$$

Additional Specifications We will also run a specification with controls as a robustness check. In addition, we will run specifications with heterogeneous treatment effects.

- A specification with control variables:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} X_{i}+\varepsilon_{i} \tag{74}
\end{equation*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} X_{i}+\beta_{3} X_{i} * \text { Elect }_{i}+\varepsilon_{i} \tag{75}
\end{equation*}
$$

## Hypothesis Tests

- We test the hypothesis, on specification (73), that the level of ethnic identification is different closer to elections:

$$
-H_{E L-I D 1}: \beta_{1}=0
$$

- On specification (75), we test whether the level of ethnic identification changes differently for the subgroups in our sample:

$$
-H_{E L-I D 1}: \beta_{3}=0
$$

## 13 Global analysis: full specifications

In this section, we compare all the differences between the three lab rounds: the 2012 labs in Kenya and Tanzania, and the Kenya 2013 lab round. Therefore, this comparison implements the full specification with the indicator variables for the Tanzania and Kenya 2013 lab rounds.

### 13.1 Dictator Game

### 13.1.1 Individual Games

For the dictator game, we start with the transfer decisions in the anonymous and coethnic game. For the non-coethnic game, the Elect indicator variables will be dropped, as there was no non-coethnic game in the Kenya 2012 lab round.

- First specification:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k}  \tag{76}\\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\varepsilon_{i}
\end{align*}
$$

Where Tanz $_{i}$ indicates whether individual $i$ is Tanzanian or not, Elect $t_{i}$ is an indicator variable for the Kenya 2013 lab and $j=1$ when we analyze the anonymous dictator game, and $j=1,2$ can indicate round 1 or 2 for the identified dictator game. ${ }^{9}$ Standard errors will be clustered at the individual level. Note that we are not including the blatant political competition prime, since this treatment was only implemented in the Kenya 2013 lab round. Also, for the identified games and for the comparisons across games, we continue to drop the Kamba respondents from our sample.

Additional Specifications For all information settings we will also run a specification with controls as a robustness check. In addition, we can also run specifications with heterogeneous treatment effects along ethnic lines. This analysis will be highly exploratory since we are generally underpowered to study heterogeneous treatment effects along ethnic lines.

- A specification with controls:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\beta_{12} X_{i}+\varepsilon_{i} \tag{77}
\end{align*}
$$

[^10]- A specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\beta_{12} X_{i}  \tag{78}\\
& +\beta_{13} \text { Tanz }_{i} * X_{i}+\beta_{14} \text { Elect }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * X_{i}+ \\
& \sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Tanz }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Elect }_{i} * X_{i}+\varepsilon_{i}
\end{align*}
$$

### 13.1.2 Pooled Analysis

We are also interested in the analysis of the pooled specification for the three dictator games.

- First Specification

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} \text { Tanz }_{i}+\beta_{3} C E_{i j}+\beta_{4} N C_{i j}+\beta_{5} C E_{i j} * \text { Tanz }_{i} \\
& +\beta_{6} N C_{i j} * \text { Tanz }_{i}+\beta_{7} C E_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k}+\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{17+k} T_{k} * C E_{i j}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * N C_{i j} \\
& +\sum_{k=1}^{3} \beta_{23+k} T_{k} * C E_{i j} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{26+k} T_{k} * N C_{i j} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{29+k} T_{k} * C E_{i j} * \text { Elect }_{i}+\varepsilon_{i j} \tag{79}
\end{align*}
$$

- Specification with controls.

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Elect }_{i}+\beta_{2} \text { Tanz }_{i}+\beta_{3} C E_{i j}+\beta_{4} N C_{i j}+\beta_{5} C E_{i j} * \text { Tanz }_{i} \\
& +\beta_{6} N C_{i j} * \operatorname{Tanz}_{i}+\beta_{7} C E_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k}+\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{17+k} T_{k} * C E_{i j}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * N C_{i j} \\
& +\sum_{k=1}^{3} \beta_{23+k} T_{k} * C E_{i j} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{26+k} T_{k} * N C_{i j} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{29+k} T_{k} * C E_{i j} * \text { Elect }_{i}+\beta_{33} X_{i}+\varepsilon_{i j} \tag{80}
\end{align*}
$$

Note that here is no non-coethnic dictator game in the Kenya 2012 lab round, which explains the absence of the interaction term $N C_{i j} *$ Elect $_{i}$.

### 13.1.3 Hypotheses

Individual games For both the anonymous and the coethnic dictator game, we test the following list of hypotheses for specification (76).

- Generosity is different in Kenya and Tanzania:

$$
-H_{F-D 1}: \beta_{1}=0
$$

- Generosity is different in Kenya, closer to elections:

$$
-H_{F-D 2}: \beta_{2}=0
$$

- There are differences in treatment effects between Kenya and Tanzania.

$$
-H_{F-D 3}: \beta_{6}=0
$$

$$
-H_{F-D 4}: \beta_{7}=0
$$

$$
-H_{F-D 5}: \beta_{8}=0
$$

- Closer to elections, the treatment effects in Kenya are different.

$$
\begin{aligned}
& -H_{F-D 6}: \beta_{9}=0 \\
& -H_{F-D 7}: \beta_{10}=0 \\
& -H_{F-D 8}: \beta_{11}=0
\end{aligned}
$$

- There are differences among the differences in treatment effects between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{F-D 9}: \beta_{5}=\beta_{6} \\
& -H_{F-D 10}: \beta_{5}=\beta_{7} \\
& -H_{F-D 11}: \beta_{6}=\beta_{7}
\end{aligned}
$$

- There are differences among the differences in treatment effects closer to elections.

$$
-H_{F-D 12}: \beta_{9}=\beta_{10}
$$

$$
-H_{F-D 13}: \beta_{9}=\beta_{11}
$$

$$
-H_{F-D 14}: \beta_{10}=\beta_{11}
$$

- Priming has different impacts in Kenya and Tanzania.
$-H_{F-D 15}: \beta_{6}=\beta_{7}=\beta_{8}=0$
- Priming has different impacts closer to elections.

$$
-H_{F-D 16}: \beta_{9}=\beta_{10}=\beta_{11}=0
$$

- Priming has different impacts in Kenya and Tanzania, or closer to elections in Kenya.

$$
-H_{F-D 17}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=0
$$

Pooled Analysis Now, we list hypotheses related to specification (79). Except for $H_{F-D 18}-H_{F-D 20}$, this analysis is more exploratory.

- Generosity toward coethnics or non-coethnics is different in Kenya and Tanzania.
- $H_{F-D 18}: \beta_{5}=0$
- $H_{F-D 19}: \beta_{6}=0$
- Generosity toward coethnics is different in Kenya closer to elections.

$$
-H_{F-D 20}: \beta_{7}=0
$$

- There are differences in how priming affects generosity toward coethnics differentially between Kenya and Tanzania.

$$
-H_{F-D 21}: \beta_{24}=0
$$

$$
-H_{F-D 22}: \beta_{25}=0
$$

$$
-H_{F-D 23}: \beta_{26}=0
$$

- There are differences in how priming affects generosity toward coethnics differentially in Kenya, closer to elections.
- $H_{F-D 24}: \beta_{30}=0$
- $H_{F-D 25}: \beta_{31}=0$
- $H_{F-D 26}: \beta_{32}=0$
- There are differences among the differences in how priming affects generosity toward coethnics differentially between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{F-D 27}: \beta_{24}=\beta_{25} \\
& -H_{F-D 28}: \beta_{24}=\beta_{26} \\
& -H_{F-D 29}: \beta_{25}=\beta_{26}
\end{aligned}
$$

- There are differences among the differences in how priming affects generosity toward coethnics differentially in Kenya, closer to elections.

$$
\begin{aligned}
& -H_{F-D 30}: \beta_{30}=\beta_{31} \\
& -H_{F-D 31}: \beta_{30}=\beta_{32} \\
& -H_{F-D 32}: \beta_{31}=\beta_{32}
\end{aligned}
$$

- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{F-D 33}: \beta_{4}=\beta_{24}=\beta_{25}=\beta_{26}=0 \\
& -H_{F-D 34}: \beta_{5}=\beta_{30}=\beta_{31}=\beta_{32}=0 \\
& -H_{F-D 35}: \forall i=1: 32, \beta_{i}=0
\end{aligned}
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous and the coethnic dictator game, where we group the set of hypotheses ( $H_{F-D 1}$ till $H_{F-D 8}$ ).

Comparison of distributions In addition to the hypotheses above, we will also test the equality of the unconditional and conditional distributions for the outcome variables of the different games across Kenya and Tanzania, using a Pearson Chi-squared test.

### 13.2 Public-good Game

The structure of the analysis for the public-good game is analogous to the analysis for the dictator game. Now we specify the specifications for the outcomes on contributions and contribution minus beliefs.

### 13.2.1 Individual Games

The following specification will be estimated for the anonymous, mixed and homogeneous public-good games.

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\varepsilon_{i} \tag{81}
\end{align*}
$$

- A specification with controls:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\beta_{12} X_{i}+\varepsilon_{i} \tag{82}
\end{align*}
$$

- A specification for heterogeneous treatment effects:

$$
\begin{align*}
Y_{i}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{2+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{5+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Elect }_{i}+\beta_{12} X_{i}  \tag{83}\\
& +\beta_{13} \text { Tanz }_{i} * X_{i}+\beta_{14} \text { Elect }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * X_{i}+ \\
& \sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Tanz }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Elect }_{i} * X_{i}+\varepsilon_{i}
\end{align*}
$$

### 13.2.2 Pooled Analysis

Now, we pool the data on the anonymous, mixed and homogeneous public-good games together.

- First specification

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\beta_{3} \text { Mix }_{i j}+\beta_{4} \text { Hom }_{i j}+\beta_{5} \text { Mix }_{i j} * \text { Tanz }_{i} \\
& +\beta_{6} \text { Hom }_{i j} * \text { Tanz }_{i}+\beta_{7} \text { Mix }_{i j} * \text { Elect }_{i}+\beta_{8} \text { Hom }_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{11+k} T_{k} * \operatorname{Tan}_{i}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Mix }_{i j} \\
& +\sum_{k=1}^{3} \beta_{20+k} T_{k} * \operatorname{Hom}_{i j}+\sum_{k=1}^{3} \beta_{23+k} T_{k} * \text { Mix }_{i j} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{26+k} T_{k} * \operatorname{Hom}_{i j} * \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{29+k} T_{k} * \text { Mix }_{i j} * \text { Elect }_{i} \\
& +\sum_{k=1}^{3} \beta_{32+k} T_{k} * \operatorname{Hom}_{i j} * \text { Elect }_{i}+\varepsilon_{i j} \tag{84}
\end{align*}
$$

- Specification with controls

$$
\begin{align*}
Y_{i j}= & \alpha+\beta_{1} \text { Tanz }_{i}+\beta_{2} \text { Elect }_{i}+\beta_{3} \text { Mix }_{i j}+\beta_{4} \text { Hom }_{i j}+\beta_{5} \text { Mix }_{i j} * \text { Tanz }_{i} \\
& +\beta_{6} \text { Hom }_{i j} * \text { Tanz }_{i}+\beta_{7} \text { Mix }_{i j} * \text { Elect }_{i}+\beta_{8} \text { Hom }_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{8+k} T_{k} \\
& +\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{14+k} T_{k} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{17+k} T_{k} * \text { Mix }_{i j} \\
& +\sum_{k=1}^{3} \beta_{20+k} T_{k} * \text { Hom }_{i j}+\sum_{k=1}^{3} \beta_{23+k} T_{k} * \text { Mix }_{i j} * \text { Tanz }_{i} \\
& +\sum_{k=1}^{3} \beta_{26+k} T_{k} * \text { Hom }_{i j} * \text { Tanz }_{i}+\sum_{k=1}^{3} \beta_{29+k} T_{k} * \text { Mix }_{i j} * \text { Elect }_{i} \\
& +\sum_{k=1}^{3} \beta_{32+k} T_{k} * \text { Hom }_{i j} * \text { Elect }_{i}+\beta_{33} * X_{i}+\varepsilon_{i j} \tag{85}
\end{align*}
$$

### 13.2.3 Hypotheses

Individual games For both the anonymous, mixed and homogeneous public-good game, we test the following list of hypotheses for the outcomes on contributions and contribution minus beliefs, using specification (81).

- Contributions or contributions minus beliefs are different in Kenya and Tanzania:
$-H_{F-P G 1}: \beta_{1}=0$
- Contributions or contributions minus beliefs are different in Kenya, closer to elections:

$$
-H_{F-P G 2}: \beta_{2}=0
$$

- There are differences in treatment effects between Kenya and Tanzania.
$-H_{F-P G 3}: \beta_{6}=0$
- $H_{F-P G 4}: \beta_{7}=0$
$-H_{F-P G 5}: \beta_{8}=0$
- There are differences in treatment effects between Kenya, closer to elections.
- $H_{F-P G 6}: \beta_{9}=0$
$-H_{F-P G 7}: \beta_{10}=0$
$-H_{F-P G 8}: \beta_{11}=0$
- There are differences among the differences in treatment effects between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{F-P G 9}: \beta_{6}=\beta_{7} \\
& -H_{F-P G 10}: \beta_{6}=\beta_{8} \\
& -H_{F-P G 11}: \beta_{7}=\beta_{8}
\end{aligned}
$$

- There are differences among the differences in treatment effects closer to elections.
- $H_{F-P G 12}: \beta_{9}=\beta_{10}$
- $H_{F-P G 13}: \beta_{9}=\beta_{11}$
- $H_{F-P G 14}: \beta_{10}=\beta_{11}$
- Priming has different impacts in Kenya and Tanzania.
$-H_{F-P G 15}: \beta_{6}=\beta_{7}=\beta_{8}=0$
- Priming has different impacts closer to elections.
$-H_{F-P G 16}: \beta_{9}=\beta_{10}=\beta_{11}=0$
- Priming has different impacts in Kenya and Tanzania, or closer to elections in Kenya.

$$
-H_{F-P G 17}: \beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=0
$$

Pooled analysis Now, we list hypotheses related to specification (84). Except for $H_{F-P G 18}$ : $H_{F-P G 21}$ this analysis is more exploratory.

- Contributions in the identified games are different in Kenya and Tanzania.

$$
\begin{aligned}
& -H_{F-P G 18}: \beta_{5}=0 \\
& -H_{F-P G 19}: \beta_{6}=0
\end{aligned}
$$

- Contributions in the identified games are different in Kenya, closer to elections.

$$
\begin{aligned}
& -H_{F-P G 20}: \beta_{7}=0 \\
& -H_{F-P G 21}: \beta_{8}=0
\end{aligned}
$$

- The differential effects of identification between Kenya and Tanzania are different for the mixed and homogeneous public-good game.

$$
-H_{F-P G 22}: \beta_{5}=\beta_{6}
$$

- The differential effects of identification between Kenya and Tanzania are different closer to elections in Kenya.

$$
-H_{F-P G 23}: \beta_{7}=\beta_{8}
$$

- There are differences in the differential impact of priming in the identified publicgood games in Kenya and Tanzania.
- $H_{F-P G 24}: \beta_{24}=0$
- $H_{F-P G 25}: \beta_{25}=0$
- $H_{F-P G 26}: \beta_{26}=0$
- $H_{F-P G 27}: \beta_{27}=0$
- $H_{F-P G 28}: \beta_{28}=0$
- $H_{F-P G 29}: \beta_{29}=0$
- There are differences in the differential impact of priming in the identified publicgood games in Kenya, closer to elections.
- $H_{F-P G 30}: \beta_{30}=0$
- $H_{F-P G 31}: \beta_{31}=0$
- $H_{F-P G 32}: \beta_{32}=0$
- $H_{F-P G 33}: \beta_{33}=0$
- $H_{F-P G 34}: \beta_{34}=0$
- $H_{F-P G 35}: \beta_{35}=0$
- There are differences in the differences in the differential impact of priming in the identified public-good games in Kenya and Tanzania.
- $H_{F-P G 36}: \beta_{24}=\beta_{25}$
$-H_{F-P G 37}: \beta_{24}=\beta_{26}$
$-H_{F-P G 38}: \beta_{25}=\beta_{26}$
$-H_{F-P G 39}: \beta_{27}=\beta_{28}$
$-H_{F-P G 40}: \beta_{27}=\beta_{29}$
$-H_{F-P G 41}: \beta_{28}=\beta_{29}$
- There are differences in the differences in the differential impact of priming in the identified public-good games in Kenya, closer to elections.
- $H_{F-P G 42}: \beta_{30}=\beta_{31}$
$-H_{F-P G 43}: \beta_{30}=\beta_{32}$
- $H_{F-P G 44}: \beta_{31}=\beta_{32}$
- $H_{F-P G 45}: \beta_{33}=\beta_{34}$
$-H_{F-P G 46}: \beta_{33}=\beta_{35}$
$-H_{F-P G 47}: \beta_{34}=\beta_{35}$
- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{F-P G 48}: \beta_{5}=\beta_{6}=\beta_{24}=\beta_{25}=\beta_{26}=\beta_{27}=\beta_{28}=\beta_{29}=0 \\
& -H_{F-P G 49}: \beta_{6}=\beta_{7}=\beta_{30}=\beta_{31}=\beta_{32}=\beta_{33}=\beta_{34}=\beta_{35}=0 \\
& -H_{F-P G 50}: \forall i=1: 35, \beta_{i}=0
\end{aligned}
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous, mixed and homogeneous public-good game, where we group ( $H_{F-P G 1}$ till $H_{F-P G 17}$ ) in one set of hypotheses. In a separate set of hypotheses, we group together the set of hypotheses $H_{F-P G 18}$ : $H_{F-P G 21}$.

Comparison of distributions In addition to the hypotheses above, we will also test the equality of the conditional and unconditional distributions for the outcome variables of the different games across Kenya and Tanzania, using a Pearson Chi-squared test.

### 13.3 Choose-your-dictator Game

For the choose-your-dictator game, we continue to apply the above specified maximum likelihood strategy. The equations below specify the latent variables for the ordered logit.

### 13.3.1 Individual Games

We start again by comparing the individual games across the three lab rounds, where we have both the anonymous and identified choose-your-dictator game.

- First specification of the latent variable:

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Tanz }_{i}+\beta_{3} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{3+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{6+k} T_{k} * \text { Tanz }_{i} * C E_{i p}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\varepsilon_{i p} \tag{86}
\end{align*}
$$

- Specification with controls :

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Tanz }_{i}+\beta_{3} * C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{3+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{6+k} T_{k} * \text { Tanz }_{i} * C E_{i p}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{12} X_{i} * C E_{i p}+\varepsilon_{i p} \tag{87}
\end{align*}
$$

- Specification for heterogeneous treatment effects:

$$
\begin{align*}
V_{i p}= & \beta_{1} * C E_{i p}+\beta_{2} * C E_{i p} * \text { Tanz }_{i}+\beta_{3} * C E_{i p} * \text { Elect }_{i}+\beta_{4} * C E_{i p} * \text { Tanz }_{i} * X_{i} \\
& +\beta_{5} * C E_{i p} * \text { Elect }_{i} * X_{i}+\sum_{k=1}^{3} \beta_{5+k} T_{k} * C E_{i p}+\sum_{k=1}^{3} \beta_{8+k} T_{k} * \text { Tanz }_{i} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{11+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * C E_{i p} * X_{i} \\
& +\sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Tanz }_{i} * C E_{i p} * X_{i}+\sum_{k=1}^{3} \beta_{12+k} T_{k} * \text { Elect }_{i} * C E_{i p} * X_{i}+\varepsilon_{i p} \tag{88}
\end{align*}
$$

### 13.3.2 Pooled Analysis

Here, we pool the data from the first, anonymous-chooser round and second, identifiedchooser round of the choose-your-dictator game together.

- First specification

$$
\begin{align*}
V_{i j p}= & \beta_{1} C E_{i p}+\beta_{2} C E_{i p} * \text { Tanz }_{i}+\beta_{3} C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{3+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{6+k} T_{k} * \text { Tanz }_{i} * C E_{i p}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{13} C E_{i p} * I D_{i j} \\
& +\beta_{14} * C E_{i p} * I D_{i j} * \text { Tanz }_{i}+\beta_{15} * C E_{i p} * I D_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{15+k} T_{k} * C E_{i p} * I D_{i j} \\
& +\sum_{k=1}^{3} \beta_{18+k} T_{k} * C E_{i p} * I D_{i j} * \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{21+k} T_{k} * C E_{i p} * I D_{i j} * \text { Elect }_{i}+\varepsilon_{i j p} \tag{89}
\end{align*}
$$

- Specification with controls

$$
\begin{align*}
V_{i j p}= & \beta_{1} C E_{i p}+\beta_{2} C E_{i p} * \text { Tanz }_{i}+\beta_{3} C E_{i p} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{3+k} T_{k} * C E_{i p} \\
& +\sum_{k=1}^{3} \beta_{6+k} T_{k} * \text { Tanz }_{i} * C E_{i p}+\sum_{k=1}^{3} \beta_{9+k} T_{k} * \text { Elect }_{i} * C E_{i p}+\beta_{13} C E_{i p} * I D_{i j} \\
& +\beta_{14} * C E_{i p} * I D_{i j} * \text { Tanz }_{i}+\beta_{15} * C E_{i p} * I D_{i j} * \text { Elect }_{i}+\sum_{k=1}^{3} \beta_{15+k} T_{k} * C E_{i p} * I D_{i j} \\
& +\sum_{k=1}^{3} \beta_{18+k} T_{k} * C E_{i p} * I D_{i j} * \operatorname{Tanz}_{i}+\sum_{k=1}^{3} \beta_{21+k} T_{k} * C E_{i p} * I D_{i j} * \text { Elect }_{i} \\
& +\beta_{25} X_{i} * C E_{i p}+\varepsilon_{i j p} \tag{90}
\end{align*}
$$

### 13.3.3 Hypotheses

Individual games For both the anonymous and identified chooser round of the choose-your-dictator game, we test the following list of hypotheses for specification (86).

- Coethnicity affects dictator choice differently in Kenya and Tanzania:

$$
-H_{F-C D 1}: \beta_{2}=0
$$

- Coethnicity affects dictator choice differently in Kenya, closer to elections:

$$
-H_{F-C D 1}: \beta_{3}=0
$$

- There are differences in the differential impact of coethnicity due to priming in Kenya and Tanzania.
$-H_{F-C D 2}: \beta_{7}=0$
- $H_{F-C D 3}: \beta_{8}=0$
- $H_{F-C D 4}: \beta_{9}=0$
- There are differences in the differential impact of coethnicity due to priming in Kenya, closer to elections.
$-H_{F-C D 5}: \beta_{10}=0$
$-H_{F-C D 6}: \beta_{11}=0$
$-H_{F-C D 7}: \beta_{12}=0$
- There are differences among the differences in treatment effects between Kenya and Tanzania.

$$
-H_{F-C D 8}: \beta_{7}=\beta_{8}
$$

$$
\begin{aligned}
& -H_{F-C D 9}: \beta_{7}=\beta_{9} \\
& -H_{F-C D 10}: \beta_{8}=\beta_{9}
\end{aligned}
$$

- There are differences among the differences in treatment effects between Kenya, closer to elections.

$$
\begin{aligned}
& -H_{F-C D 11}: \beta_{10}=\beta_{11} \\
& -H_{F-C D 12}: \beta_{10}=\beta_{12} \\
& -H_{F-C D 13}: \beta_{11}=\beta_{12}
\end{aligned}
$$

- The joint null hypothesis for differences between Kenya and Tanzania.

$$
\begin{aligned}
& -H_{F-C D 14}: \beta_{2}=\beta_{7}=\beta_{8}=\beta_{9}=0 \\
& -H_{F-C D 15}: \beta_{3}=\beta_{10}=\beta_{11}=\beta_{12}=0 \\
& -H_{F-C D 16}: \beta_{2}=\beta_{3}=\beta_{6}=\beta_{7}=\beta_{8}=\beta_{10}=\beta_{11}=\beta_{12}=0
\end{aligned}
$$

Now, we list hypotheses related to specification (89). Except for $H_{F-C D 17}$ and $H_{F-C D 18}$, this analysis is more exploratory.

- Identification of the chooser has a differential effect on the impact of coethnicity in Kenya and Tanzania.

$$
-H_{F-C D 17}: \beta_{14}=0
$$

- Identification of the chooser has a differential effect on the impact of coethnicity in Kenya, closer to elections.

$$
-H_{F-C D 18}: \beta_{15}=0
$$

- There are differences among the differential effect of identification of the chooser on the impact of coethnicity in Kenya and Tanzania.
- $H_{F-C D 19}: \beta_{19}=0$
- $H_{F-C D 20}: \beta_{20}=0$
- $H_{F-C D 21}: \beta_{21}=0$
- There are differences among the differential effect of identification of the chooser on the impact of coethnicity in Kenya, closer to elections.

$$
\begin{aligned}
& -H_{F-C D 22}: \beta_{22}=0 \\
& -H_{F-C D 23}: \beta_{23}=0 \\
& -H_{F-C D 24}: \beta_{24}=0
\end{aligned}
$$

- There are differential differences in the differential effect of identification of the chooser on the impact of coethnicity in Kenya and Tanzania.
$-H_{F-C D 25}: \beta_{19}=\beta_{20}$

$$
\begin{aligned}
& -H_{F-C D 26}: \beta_{19}=\beta_{21} \\
& -H_{F-C D 27}: \beta_{20}=\beta_{21}
\end{aligned}
$$

- There are differential differences in the differential effect of identification of the chooser on the impact of coethnicity in Kenya, closer to elections.

$$
\begin{aligned}
& -H_{F-C D 28}: \beta_{22}=\beta_{23} \\
& -H_{F-C D 29}: \beta_{22}=\beta_{24} \\
& -H_{F-C D 30}: \beta_{23}=\beta_{24}
\end{aligned}
$$

- The joint null hypothesis on the following coefficients:

$$
\begin{aligned}
& -H_{F-C D 31}: \beta_{14}=\beta_{19}=\beta_{20}=\beta_{21}=0 \\
& -H_{F-C D 32}: \beta_{15}=\beta_{22}=\beta_{23}=\beta_{24}=0 \\
& -H_{F-C D 33}: \forall i=1: 24, \beta_{i}=0
\end{aligned}
$$

Multiple Inference Adjustment We will provide FWER adjusted p-values separately for both the anonymous and identified choose-your-dictator game, where we group the set of hypotheses $\left(H_{F-C D 1}\right.$ till $\left.H_{F-C D 16}\right)$.

## References

Alesina, A. and E. L. Ferrara (2005, September). Ethnic Diversity and Economic Performance. Journal of Economic Literature 43, 762-800.

Anderson, M. (2008, December). Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. Journal of the American Statistical Association 103(484), 14811495.

Bates, R. H. (1982). Modernization, Ethnic Competition, and the Rationality of Politics in Contemporary Africa. In D. Rothchild and V. A. Olorunsola (Eds.), State Versus Ethnic Claims: African Policy Dilemmas. Westview Press.

Beaman, L., R. Chattopadhyay, E. Duflo, R. Pande, and P. Topalova (2009, November). Powerful Women: Does Exposure Reduce Bias? Quarterly Journal of Economics 124(4), 1497-1540.

Benjamin, D. J., J. J. Choi, and A. J. Strickland (2010, September). Social Identity and Preferences. American Economic Review 100(4), 1913-1928.

Carlson, E. (2011). Great Expectations: Ethnicity, Candidate Performance, and Voters in Uganda. Mimeo.

Easterly, W. and R. Levine (1997). Africa's Growth Tragedy: Policies and Ethnic Divisions. Quarterly Journal of Economics 112(4), 1203-50.

Eifert, B., E. Miguel, and D. N. Posner (2010). Political Competition and Ethnic Identification in Africa. American Journal of Political Science 54(2), 494-510.

Fearon, J. (1999). Why Ethnic Politics and "Pork" Tend to Go Together. Mimeo.
Horowitz, D. L. (1985). Ethnic Groups in Conflict. University of California Press, Ltd.
James, W. (1890). The Principles of Psychology. New York: Henry Holt.
Kramon, E. (December 2011). Why Do Politicians Buy Votes When The Ballot Is Secret? Theory And Experimental Evidence From Kenya. WGAPE.

Lane, K., M. Banaji, B. Nosek, and A. Greenwald (2007). Understanding and using the implicit association test : Iv. In B. Wittenbrink and N. Schwarz (Eds.), Implicit Measures of Attitudes, Chapter 3, pp. 59-102. The Guilford Press.

Miguel, E. (2004). Tribe or Nation? Nation-Building and Public Goods in Kenya versus Tanzania. World Politics 56(3), 327-362.

Miguel, E. and M. K. Gugerty (2005). Ethnic Diversity, Social Sanctions, and Public Goods in Kenya. Journal of Public Economics 89, 2325-2368.

Nosek, B., A. Greenwald, and M. Banaji (2007). The implicit association test at age 7: A methodological and conceptual review. In J. Bargh (Ed.), Automatic processes in social thinking and behavior., pp. 265-292. Psychology Press.

Pande, R. (2003, November). Can Mandated Political Representation Increase Policy Influence for Disadvantaged Minorities? Theory and Evidence from India. American Economic Review 93(4), 1132-1151.

Posner, D. N. (2004, October). Measuring ethnic fractionalization in africa. American Journal of Political Science 48(4), 849-863.

Posner, D. N. (2005). Institutions and Ethnic Politics in Africa. Cambridge University Press.

Turner, J. C. (1985). Social Categorization and the Self-Concept: A Social Cognitive Theory of Group Behavior, Volume 2. Greenwich, CT: JAI Press.

Wantchekon, L. (2003). Clientelism and Voting Behavior: Evidence from a Field Experiment in Benin. World Politics 55(3), 399-422.

Wilkinson, S. I. (2006). Votes And Violence: Electoral Competition And Ethnic Riots in India. Cambridge University Press.

Woolridge, J. M. (2001). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press.

# How Strong are Ethnic Preferences? Appendix E: Pre-Analysis Plan Results 

Lars Ivar Oppedal Berge, Kjetil Bjorvatn, Simon Galle, Edward Miguel, Daniel Posner, Bertil Tungodden and Kelly Zhang

April 2016


#### Abstract

This appendix contains the results for the full set of hypotheses specified in the pre-analysis plans for the Non-election Round and the Election Round. The first part of the appendix contains the results for the Non-election Round pre-analysis plan, and the second part has the results for the Election Round pre-analysis plan.


# Appendix E - Part 1 Results for the Non-election Round Pre-analysis Plan 

## Contents

1 Summary Statistics ..... 2
2 Dictator Game: analysis within Non-election period ..... 3
2.1 Summary Statistics and Distributions ..... 3
2.1.1 Anonymous Dictator Game ..... 4
2.1.2 Coethnic Dictator Game ..... 6
2.1.3 Pooled Dictator Game ..... 8
2.2 Regression Analysis ..... 9
2.2.1 Anonymous Dictator Game ..... 9
2.2.2 Coethnic Dictator Game ..... 11
2.2.3 Pooled Dictator Game ..... 13
3 Public-good Game: analysis within Non-election period ..... 18
3.1 Summary Statistics and Distributions ..... 18
3.1.1 Anonymous Public-good Game ..... 19
3.1.2 Mixed Public-good Game ..... 22
3.1.3 Coethnic Public-good Game ..... 25
3.1.4 Pooled Public-good Game ..... 28
3.2 Regression Analysis ..... 29
3.2.1 Anonymous Public-good Game ..... 29
3.2.2 Mixed Public-good Game ..... 34
3.2.3 Coethnic Public-good Game ..... 41
3.2.4 Pooled Public-good Game ..... 46
4 Choose-your-dictator Game: analysis within Non-election period ..... 57
4.1 Summary Statistics and Distributions ..... 57
4.2 Regression Analysis ..... 58
4.2.1 Anonymous Chooser ..... 58
4.2.2 Identified Chooser ..... 63
4.2.3 Pooled Choose-your-dictator Game ..... 67

## 1 Summary Statistics

Table 1.1: Balance across treatment and control groups

|  | Full Sample | Control | National Prime | Ethnic-Cultural Prime | Political-Competition Prime |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Observations | 608 | 150 | 153 | 153 | 152 |
| Female (\%) | $\begin{gathered} 53 \\ (50) \end{gathered}$ | $\begin{gathered} 52.7 \\ (50.1) \end{gathered}$ | $\begin{aligned} & 53.6 \\ & (50) \end{aligned}$ | $\begin{aligned} & 53.6 \\ & (50) \end{aligned}$ | $\begin{gathered} 52 \\ (50.1) \end{gathered}$ |
| Kikuyu (\%) | $\begin{aligned} & 35.9 \\ & (48) \end{aligned}$ | $\begin{gathered} 36.7 \\ (48.4) \end{gathered}$ | $\begin{gathered} 34.6 \\ (47.7) \end{gathered}$ | $\begin{gathered} 34.6 \\ (47.7) \end{gathered}$ | $\begin{gathered} 37.5 \\ (48.6) \end{gathered}$ |
| Luo (\%) | $\begin{gathered} 20.9 \\ (40.7) \end{gathered}$ | $\begin{aligned} & 22.7 \\ & (42) \end{aligned}$ | $\begin{gathered} 20.9 \\ (40.8) \end{gathered}$ | $\begin{gathered} 19.6 \\ (39.8) \end{gathered}$ | $\begin{gathered} 20.4 \\ (40.4) \end{gathered}$ |
| Luhya (\%) | $\begin{gathered} 19.6 \\ (39.7) \end{gathered}$ | $\begin{gathered} 20 \\ (40.1) \end{gathered}$ | $\begin{gathered} 19.6 \\ (39.8) \end{gathered}$ | $\begin{gathered} 17.6 \\ (38.2) \end{gathered}$ | $\begin{gathered} 21.1 \\ (40.9) \end{gathered}$ |
| Kisii (\%) | $\begin{gathered} 6.25 \\ (24.2) \end{gathered}$ | $\begin{aligned} & 6.67 \\ & (25) \end{aligned}$ | $\begin{gathered} 3.92 \\ (19.5) \end{gathered}$ | $\begin{gathered} 9.15 \\ (28.9) \end{gathered}$ | $\begin{gathered} 5.26 \\ (22.4) \end{gathered}$ |
| Kamba (\%) | $\begin{aligned} & 17.4 \\ & (38) \end{aligned}$ | $\begin{gathered} 14 \\ (34.8) \end{gathered}$ | $\begin{gathered} 20.9 \\ (40.8) \end{gathered}$ | $\begin{gathered} 19 \\ (39.3) \end{gathered}$ | $\begin{gathered} 15.8 \\ (36.6) \end{gathered}$ |
| Age | $\begin{aligned} & 32.7 \\ & (11) \end{aligned}$ | $\begin{gathered} 32.4 \\ (11.3) \end{gathered}$ | $\begin{gathered} 32.9 \\ (10.3) \end{gathered}$ | $\begin{gathered} 33.5 \\ (11.2) \end{gathered}$ | $\begin{gathered} 31.8 \\ (11.4) \end{gathered}$ |
| Years Education | $\begin{gathered} 9.73 \\ (3.15) \end{gathered}$ | $\begin{gathered} 9.75 \\ (3.24) \end{gathered}$ | $\begin{gathered} 9.76 \\ (3.31) \end{gathered}$ | $\begin{gathered} 9.67 \\ (3.02) \end{gathered}$ | $\begin{gathered} 9.74 \\ (3.05) \end{gathered}$ |

The table analyzes the balance across treatment and control groups. The first row shows the number of individuals for each of the groups specified at the top. The other rows show the average within a group for the variables in the first column. Whenever so indicated, the values are in percentage terms.

Table 1.2: Joint significance of treatment indicators

|  | P-value of F-test |
| :--- | :---: |
| Female | 0.990 |
| 1(Kikuyu) | 0.937 |
| 1(Luo) | 0.928 |
| 1(Luhya) | 0.900 |
| 1(Kisii) | 0.273 |
| 1(Kamba) | 0.386 |
| Age | 0.602 |
| Years Education | 0.993 |

The table shows the p-values from the F-test for the joint significance of the treatment indicators in a regression of the row-variable on the three treatment indicators.

## 2 Dictator Game: analysis within Non-election period

### 2.1 Summary Statistics and Distributions

Table 2.1: Dictator Game: Summary Statistics

|  | Anonymous Dictator Game | Coethnic Dictator Game |
| :--- | :---: | :---: |
| Number of Observations | 608 | 1178 |
| Individuals | 608 | 589 |
| Full Sample | 41.9 | 40.4 |
|  | $(18.5)$ | $(22.2)$ |
| Control | 43.7 | 41.8 |
|  | $(17.7)$ | $(20.3)$ |
| National Prime | 39.3 | 38.2 |
|  | $(20.2)$ | $(22.2)$ |
| Ethnic-Cultural Prime | 43.2 | 42.4 |
|  | $(18.7)$ | $(24.8)$ |
| Political-Competition Prime | 41.5 | 39.2 |
|  | $(17.2)$ | $(21.1)$ |
| Female | 43.4 | 41.2 |
|  | $(19.4)$ | $(23.2)$ |
| Male | 40.2 | 39.5 |
| Kamba | $(17.4)$ | $(21)$ |
| Below Median Education | 41.3 | 42.9 |
| Kisia | $(18)$ | $(22.9)$ |
| Median Education or Above | $(20.3)$ | 38.5 |
|  | 42.4 | $(21.5)$ |
|  | $(17)$ | 40.7 |
|  | 41.8 | $(20.7)$ |

[^11]
### 2.1.1 Anonymous Dictator Game

Figure 2.1: Distribution of Play - Full Sample


Table 2.2: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | .303 | .294 |
| Ethnic-Cultural Prime | .259 | .578 |
| Political-Competition Prime | .222 | .892 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 2.2: Distribution of Play by Control and Treatment Groups


### 2.1.2 Coethnic Dictator Game

Figure 2.3: Distribution of Play - Full Sample


Table 2.3: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.112 | 0.236 |
| Ethnic-Cultural Prime | 0.081 | 0.876 |
| Political-Competition Prime | 0.081 | 0.284 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the contro group.

Figure 2.4: Coethnic Dictator, Distribution of Play by Control and Treatment Groups


### 2.1.3 Pooled Dictator Game

Figure 2.5: Distribution of Play - Full Sample


Table 2.4: Comparison of distribution across dictator games

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| Anonymous versus Coethnic | 0.0000 | 0.0000 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the anonymous and coethnic dictator game.

### 2.2 Regression Analysis

### 2.2.1 Anonymous Dictator Game

Table 2.5: Anonymous Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | -4.426** | -4.691** | -23.84* |
|  | (2.125) | (2.122) | (10.21) |
| Ethnic-Cultural Prime | -0.517 | -0.721 | -27.28*** |
|  | (2.125) | (2.120) | (8.440) |
| Political-Competition Prime | -2.194 | -2.294 | -11.94 |
|  | (2.128) | (2.121) | (9.175) |
| 1(Female) |  | $3.373^{* *}$ | 4.334 |
|  |  | (1.552) | (3.147) |
| Education (demeaned) |  | 0.233 | -0.252 |
|  |  | (0.217) | (0.419) |
| 1(Kikuyu) |  | -0.484 | -14.72** |
|  |  | (3.281) | (6.436) |
| 1(Luo) |  | -3.544 | -12.59* |
|  |  | (3.418) | (6.730) |
| 1(Luhya) |  | 1.134 | -13.26* |
|  |  | (3.498) | (6.891) |
| 1(Kamba) |  | 1.961 | -12.08* |
|  |  | (3.520) | (7.167) |
| National Prime * 1 (Kamba) |  |  | $23.18^{* *}$ |
|  |  |  | (10.91) |
| National Prime * 1 (Kikuyu) |  |  | 25.59** |
|  |  |  | (10.27) |
| National Prime * 1 (Luhya) |  |  | 21.20* |
|  |  |  | (10.83) |
| National Prime * 1 (Luo) |  |  | 18.95* |
|  |  |  | (10.61) |
| National Prime * Education |  |  | -0.0439 |
|  |  |  | (0.588) |
| National Prime * 1 (Female) |  |  | -3.840 |
|  |  |  | (4.452) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | $23.57^{* *}$ |
|  |  |  | (9.417) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | $22.25 * * *$ |
|  |  |  | (8.582) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | $31.77^{* * *}$ |
|  |  |  | (9.315) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 14.12 |
|  |  |  | (8.987) |
| Ethnic-Cultural Prime * Education |  |  | $1.703^{* * *}$ |
|  |  |  | (0.629) |
| Ethnic-Cultural Prime * 1(Female) |  |  | 3.896 |
|  |  |  | (4.434) |
| Political-Competition Prime * 1(Kamba) |  |  | 11.98 |
|  |  |  | (10.37) |
| Political-Competition Prime * 1(Kikuyu) |  |  | 11.40 |
|  |  |  | (9.451) |
| Political-Competition Prime * 1(Luhya) |  |  | $\begin{gathered} 8.422 \\ (10.06) \end{gathered}$ |


| Political-Competition Prime * 1(Luo) |  | 3.964 |
| :--- | :---: | :---: |
|  |  | $(9.896)$ |
| Political-Competition Prime * Education |  | 0.784 |
|  |  |  |
| Political-Competition Prime * |  |  |
|  |  |  |
| Constant |  | $-1.012)$ |
|  |  |  |
| Observations |  | $(4.396)$ |
| Standard errors in parentheses | $(1.510)$ | $(3.513)$ |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ | 608 | 608 |

Table 2.6: p-values: D1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{D 1}:$ National Prime $=0$ | 0.043 | 0.161 |
| $H_{D 2}:$ Ethnic-Cultural Prime $=0$ | 0.805 | 0.801 |
| $H_{D 3}:$ Political-Competition (PC) Prime $=0$ | 0.275 | 0.589 |
| $H_{D 4}:$ National Prime $=$ Ethnic-Cultural Prime | 0.080 | 0.246 |
| $H_{D 5}:$ National Prime $=$ PC Prime | 0.300 | 0.589 |
| $H_{D 6}:$ Ethnic-Cultural Prime $=$ PC Prime | 0.415 | 0.590 |
| $H_{D 7}:$ National = Ethnic-Cultural $=$ PC Prime $=0$ | 0.180 | 0.438 |
| Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan. |  |  |

### 2.2.2 Coethnic Dictator Game

Table 2.7: Coethnic Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | -3.733* | -3.810* | -1.377 |
|  | (2.208) | (2.188) | (12.70) |
| Ethnic-Cultural Prime | 0.396 | 0.489 | -16.97** |
|  | (2.341) | (2.337) | (7.943) |
| Political-Competition Prime | -2.899 | -2.936 | -18.59 |
|  | (2.185) | (2.163) | (11.43) |
| 1(Female) |  | 0.723 | $5.197^{*}$ |
|  |  | (1.726) | (2.863) |
| Education (demeaned) |  | -0.479** | -0.546 |
|  |  | (0.219) | (0.432) |
| 1(Kikuyu) |  | 6.146 | -7.787 |
|  |  | (4.666) | (6.118) |
| 1(Luo) |  | 6.083 | -2.504 |
|  |  | (3.886) | (5.449) |
| 1(Luhya) |  | 6.047 | -3.930 |
|  |  | (3.942) | (5.523) |
| 1(Kamba) |  | 8.155 | -5.329 |
|  |  | (4.957) | (6.682) |
| National Prime * 1(Kamba) |  |  | 7.736 |
|  |  |  | (12.79) |
| National Prime * 1(Kikuyu) |  |  | 10.64 |
|  |  |  | (12.29) |
| National Prime * 1(Luhya) |  |  | 3.885 |
|  |  |  | (12.99) |
| National Prime * 1 (Luo) |  |  | $5.824$ |
|  |  |  | (12.52) |
| National Prime * Education |  |  | -0.482 |
|  |  |  | (0.607) |
| National Prime * 1(Female) |  |  | -14.78*** |
|  |  |  | (4.708) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 15.82* |
|  |  |  | (8.450) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | 16.79** |
|  |  |  | (7.767) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | $20.46^{* *}$ |
|  |  |  | (8.579) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 8.572 |
|  |  |  | (8.600) |
| Ethnic-Cultural Prime * Education |  |  | 0.960 |
|  |  |  | (0.698) |
| Ethnic-Cultural Prime * 1(Female) |  |  | 2.162 |
|  |  |  | (4.841) |
| Political-Competition Prime * 1(Kamba) |  |  | $23.88^{* *}$ |
|  |  |  | (11.63) |
| Political-Competition Prime * 1(Kikuyu) |  |  | 20.78* |
|  |  |  | (11.46) |
| Political-Competition Prime * 1(Luhya) |  |  | 13.75 |
|  |  |  | (11.97) |
| Political-Competition Prime * 1(Luo) |  |  | 18.26 |
|  |  |  | (11.70) |


| Political-Competition Prime * Education |  |  | -0.122 |
| :--- | :---: | :---: | :---: |
|  |  |  | $(0.582)$ |
| Political-Competition Prime * 1 (Female) |  | -3.429 |  |
| Profile 2 | -2.413 | -2.383 | $(4.338)$ |
|  | $(2.666)$ | $(2.678)$ | -0.926 |
| Profile 3 | 3.321 | 3.219 | 4.3353 |
|  | $(2.930)$ | $(2.975)$ | $(2.989)$ |
| Profile 4 | 1.113 | 0.949 | 1.547 |
|  | $(2.847)$ | $(2.852)$ | $(2.826)$ |
| Profile 5 | -1.648 | -1.826 | -1.337 |
| Profile 6 | $(3.720)$ | $(3.764)$ | $(3.781)$ |
|  | -0.167 | -0.350 | -0.305 |
| Profile 7 | $(2.738)$ | $(2.758)$ | $(2.667)$ |
| Profile 8 | -0.489 | 1.511 | 0.953 |
|  | $(3.157)$ | $(3.127)$ | $(3.105)$ |
| Profile 9 | -5.037 | -2.762 | -3.959 |
|  | $(3.273)$ | $(3.251)$ | $(3.320)$ |
| Profile 10 | -0.373 | 1.155 | 0.283 |
|  | $(3.544)$ | $(3.620)$ | $(3.552)$ |
| Profile 11 | -1.905 | 0 | 0 |
|  | $(3.126)$ | $()$. | $()$. |
| Profile 12 | -1.874 | -0.537 | -1.334 |
|  | $(3.350)$ | $(3.329)$ | $(3.277)$ |
| Constant | -2.188 | -0.373 | -1.775 |
|  | $(3.313)$ | $(3.253)$ | $(3.173)$ |
| Observations | $42.92^{* * *}$ | $36.76^{* * *}$ | $45.44^{* * *}$ |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 2.8: p-values: D2

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{D 1}:$ National Prime $=0$ | 0.091 | 0.313 |
| $H_{D 2}:$ Ethnic-Cultural Prime $=0$ | 0.866 | 0.923 |
| $H_{D 3}:$ Political-Competition (PC) Prime $=0$ | 0.185 | 0.438 |
| $H_{D 4}:$ National Prime $=$ Ethnic-Cultural Prime | 0.092 | 0.313 |
| $H_{D 5}:$ National Prime $=$ PC Prime | 0.718 | 0.923 |
| $H_{D 6}:$ Ethnic-Cultural Prime $=$ PC Prime | 0.179 | 0.438 |
| $H_{D 7}:$ National = Ethnic-Cultural $=$ PC Prime $=0$ | 0.195 | 0.438 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

### 2.2.3 Pooled Dictator Game

Table 2.9: Pooled Dictator Game

|  | Dictator Transfer (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Coethnic Dictator Game | -0.799 | -1.396 |
|  | (2.553) | (2.538) |
| National Prime | -4.426** | -4.667** |
|  | (2.188) | (2.189) |
| Ethnic-Cultural Prime | -0.517 | -0.573 |
|  | (2.095) | (2.105) |
| Political-Competition Prime | -2.194 | -2.296 |
|  | (2.014) | (2.024) |
| Coethnic Dictator Game * National Prime | 0.693 | 0.814 |
|  | (2.449) | (2.436) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 0.913 | 0.996 |
|  | (2.563) | (2.563) |
| Coethnic Dictator Game * Political-Competition Prime | -0.705 | -0.609 |
|  | (2.376) | (2.378) |
| 1(Female) |  | 1.661 |
|  |  | (1.412) |
| Education (demeaned) |  | -0.230 |
|  |  | (0.189) |
| 1(Kikuyu) |  | 3.524 |
|  |  | (3.281) |
| 1(Luo) |  | 2.748 |
|  |  | (3.372) |
| 1(Luhya) |  | 4.332 |
|  |  | (3.395) |
| 1(Kamba) |  | 5.676 |
|  |  | (3.457) |
| Profile 2 | -2.413 | -2.439 |
|  | (2.663) | (2.671) |
| Profile 3 | 3.321 | 3.126 |
|  | (2.927) | (2.954) |
| Profile 4 | 1.113 | 0.944 |
|  | (2.844) | (2.850) |
| Profile 5 | -1.648 | -1.948 |
|  | (3.716) | (3.724) |
| Profile 6 | -0.167 | -0.400 |
|  | (2.735) | (2.749) |
| Profile 7 | -0.489 | 0.934 |
|  | (3.153) | (3.240) |
| Profile 8 | -5.037 | -3.413 |
|  | (3.270) | (3.306) |
| Profile 9 | -0.373 | 0.700 |
|  | (3.540) | (3.596) |
| Profile 10 | -1.905 | -0.459 |
|  | (3.123) | (3.178) |
| Profile 11 | -1.874 | -1.042 |
|  | (3.347) | (3.443) |
| Profile 12 | -2.188 | -0.853 |
|  | (3.310) | (3.415) |
| Constant | $43.72^{* * *}$ | $39.78^{* * *}$ |


|  | $(1.448)$ | $(3.572)$ |
| :--- | :---: | :---: |
| Observations | 1731 | 1731 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 2.10: p-values: DGPool

| Null Hypothesis | Regular p-value |
| :--- | :---: |
| $H_{D 8}:$ Coethnic Dictator Game $(\mathrm{DG})=0$ | 0.754 |
| $H_{D 9}:$ Coethnic DG $*$ National Prime $=0$ | 0.777 |
| $H_{D 10}:$ Coethnic DG * Ethnic-Cultural Prime $=0$ | 0.722 |
| $H_{D 11}:$ Coethnic DG * Political-Competition (PC) Prime $=0$ | 0.767 |
| $H_{D 12}:($ National Prime $=$ Ethnic-Cultural Prime $) *$ Coethnic DG | 0.935 |
| $H_{D 13}:($ National Prime $=$ Political-Competition Prime $) *$ Coethnic DG | 0.580 |
| $H_{D 14}:($ Ethnic Prime $=$ Political-Competition Prime $) *$ Coethnic DG | 0.541 |
| $H_{D 15}:$ Coethnic DG $*($ National $=$ Ethnic-Cultural $=$ Political-Competion Prime $)=0$ | 0.923 |
| $H_{D 16}:$ All coefficients $=0$ | 0.396 |

Regular p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

Table 2.11: Pooled Dictator Game

|  | Dictator Transfer (Percent of Endowment) <br> (1) |
| :---: | :---: |
| Coethnic Dictator Game (DG) | -9.149 |
|  | (7.691) |
| National Prime | -23.84** |
|  | (11.70) |
| Ethnic-Cultural Prime | -27.28*** |
|  | (8.433) |
| Political-Competition Prime | -11.94 |
|  | (8.895) |
| Coethnic Dictator Game * National Prime | 22.46 ** |
|  | (9.046) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 10.31 |
|  | (9.347) |
| Coethnic Dictator Game * Political-Competition Prime | -6.647 |
|  | (11.27) |
| 1(Female) | 4.334 |
|  | (2.882) |
| Education (demeaned) | -0.252 |
|  | (0.354) |
| 1(Kikuyu) | -14.72** |
|  | (5.936) |
| 1(Luo) | -12.59* |
|  | (6.559) |
| 1(Luhya) | -13.26** |
|  | (6.365) |
| 1(Kamba) | -12.08* |
|  | (7.041) |
| Coethnic Dictator Game * Kikuyu | 6.929 |
|  | (8.087) |
| Coethnic Dictator Game * Luo | 10.09 |
|  | (7.745) |
| Coethnic Dictator Game * Luhya | 9.335 |
|  | (8.096) |
| Coethnic Dictator Game * Kamba | 6.750 |
|  | (8.552) |
| Coethnic Dictator * 1(Female) | 0.863 |
|  | (3.064) |
| Coethnic Dictator * Education | -0.294 |
|  | (0.412) |
| National Prime * 1(Kamba) | 23.18* |
|  | (12.14) |
| National Prime * 1(Kikuyu) | 25.59** |
|  | (11.54) |
| National Prime * 1 (Luhya) | 21.20* |
|  | (11.83) |
| National Prime * 1 (Luo) | 18.95 |
|  | (11.75) |
| National Prime * Education | -0.0439 |
|  | (0.598) |
| National Prime * 1(Female) | -3.840 |
|  | (4.466) |
| Ethnic-Cultural Prime * 1(Kamba) | $23.57^{* * *}$ |


|  | (9.038) |
| :---: | :---: |
| Ethnic-Cultural Prime * 1(Kikuyu) | $22.25^{* * *}$ |
|  | (8.034) |
| Ethnic-Cultural Prime * 1(Luhya) | $31.77^{* * *}$ |
|  | (8.890) |
| Ethnic-Cultural Prime * 1(Luo) | 14.12 |
|  | (8.851) |
| Ethnic-Cultural Prime * Education | $1.703^{* * *}$ |
|  | (0.627) |
| Ethnic-Cultural Prime * 1(Female) | 3.896 |
|  | (4.336) |
| Political-Competition Prime * 1(Kamba) | 11.98 |
|  | (9.787) |
| Political-Competition Prime * 1(Kikuyu) | 11.40 |
|  | (8.578) |
| Political-Competition Prime * 1(Luhya) | 8.422 |
|  | (9.335) |
| Political-Competition Prime * 1(Luo) | 3.964 |
|  | (9.353) |
| Political-Competition Prime * Education | 0.784 |
|  | (0.583) |
| Political-Competition Prime * 1(Female) | -1.004 |
|  | (4.063) |
| Coethnic DG * National Prime * 1 (Kikuyu) | -14.95* |
|  | (8.983) |
| Coethnic DG * National Prime * 1(Luo) | -13.13 |
|  | (8.926) |
| Coethnic DG * National Prime * 1(Luhya) | -17.32* |
|  | (9.941) |
| Coethnic DG * National Prime * 1 (Kamba) | -15.45* |
|  | (9.236) |
| Coethnic DG * National Prime * 1(Female) | -10.94** |
|  | (5.063) |
| Coethnic DG * National Prime * Education | -0.438 |
|  | (0.660) |
| Coethnic DG * Ethnic-Cultural Prime * 1(Kikuyu) | -5.459 |
|  | (9.117) |
| Coethnic DG * Ethnic-Cultural Prime * 1(Luo) | -5.545 |
|  | (10.28) |
| Coethnic DG * Ethnic-Cultural Prime * 1(Luhya) | -11.32 |
|  | (10.65) |
| Coethnic DG * Ethnic-Cultural Prime * 1(Kamba) | -7.747 |
|  | (9.711) |
| Coethnic DG * Ethnic-Cultural Prime * 1(Female) | -1.734 |
|  | (5.243) |
| Coethnic DG * Ethnic-Cultural Prime * Education | -0.743 |
|  | (0.787) |
| Coethnic DG * Political-Competition Prime * 1(Kikuyu) | 9.384 |
|  | (11.46) |
| Coethnic DG * Political-Competition Prime * 1(Luo) | 14.29 |
|  | (11.64) |
| Coethnic DG * Political-Competition Prime * 1(Luhya) | 5.328 |
|  | (12.32) |
| Coethnic DG * Political-Competition Prime * 1(Kamba) | 11.90 |
|  | (12.30) |


| Coethnic DG * Political-Competition Prime * 1(Female) | -2.425 |
| :---: | :---: |
|  | (4.562) |
| Coethnic DG * Political-Competition Prime * Education | -0.906 |
|  | (0.648) |
| Profile 2 | -0.926 |
|  | (2.611) |
| Profile 3 | 4.333 |
|  | (2.996) |
| Profile 4 | 1.547 |
|  | (2.832) |
| Profile 5 | -1.337 |
|  | (3.790) |
| Profile 6 | -0.305 |
|  | (2.673) |
| Profile 7 | 0.953 |
|  | (3.112) |
| Profile 8 | -3.959 |
|  | (3.327) |
| Profile 9 | 0.283 |
|  | (3.560) |
| Profile 10 | 0 |
|  | (.) |
| Profile 11 | -1.334 |
|  | (3.285) |
| Profile 12 | -1.775 |
|  | (3.180) |
| Constant | 54.59*** |
|  | (5.823) |
| Observations | 1731 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

## 3 Public-good Game: analysis within Non-election period

### 3.1 Summary Statistics and Distributions

Table 3.1: Public-good Game: Summary Statistics

|  | Anonymous PG Game | Mixed PG Game | Coethnic PG Game |
| :---: | :---: | :---: | :---: |
| Number of Observations | 608 | 608 | 596 |
| Full Sample | $\begin{gathered} 46.4 \\ (27.1) \end{gathered}$ | $\begin{aligned} & 47.7 \\ & (29) \end{aligned}$ | $\begin{gathered} 49.4 \\ (30.4) \end{gathered}$ |
| Control | $\begin{gathered} 47.9 \\ (25.2) \end{gathered}$ | $\begin{gathered} 49.9 \\ (28.2) \end{gathered}$ | $\begin{gathered} 48.2 \\ (28.2) \end{gathered}$ |
| National Prime | $\begin{gathered} 43.2 \\ (28.4) \end{gathered}$ | $\begin{gathered} 45.1 \\ (30.6) \end{gathered}$ | $\begin{gathered} 44.8 \\ (29.8) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 48.2 \\ (27.3) \end{gathered}$ | $\begin{gathered} 49.1 \\ (28.3) \end{gathered}$ | $\begin{gathered} 53 \\ (31.5) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 46.2 \\ (27.2) \end{gathered}$ | $\begin{gathered} 46.8 \\ (29.6) \end{gathered}$ | $\begin{gathered} 51.7 \\ (31.5) \end{gathered}$ |
| Female | $\begin{gathered} 46 \\ (27.1) \end{gathered}$ | $\begin{aligned} & 46.7 \\ & (29) \end{aligned}$ | $\begin{gathered} 48 \\ (30.9) \end{gathered}$ |
| Male | $\begin{aligned} & 46.8 \\ & (27) \end{aligned}$ | $\begin{gathered} 48.9 \\ (28.9) \end{gathered}$ | $\begin{gathered} 50.9 \\ (29.8) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 48.1 \\ (28.6) \end{gathered}$ | $\begin{gathered} 50.2 \\ (29.1) \end{gathered}$ | $\begin{gathered} 49.3 \\ (29.9) \end{gathered}$ |
| Luo | $\begin{gathered} 41.4 \\ (24.7) \end{gathered}$ | $\begin{gathered} 42.3 \\ (27.9) \end{gathered}$ | $\begin{aligned} & 44.9 \\ & (30) \end{aligned}$ |
| Luhya | $\begin{gathered} 48.7 \\ (24.5) \end{gathered}$ | $\begin{gathered} 45.2 \\ (27.8) \end{gathered}$ | $\begin{gathered} 47.9 \\ (29.9) \end{gathered}$ |
| Kisii | $\begin{gathered} 47.4 \\ (30.4) \end{gathered}$ | $\begin{gathered} 51.9 \\ (35.3) \end{gathered}$ | 60.8 <br> (35) |
| Kamba | $\begin{gathered} 45.7 \\ (27.9) \end{gathered}$ | $\begin{gathered} 50.5 \\ (28.2) \end{gathered}$ | $\begin{gathered} 52.6 \\ (29.7) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 50.3 \\ (25.4) \end{gathered}$ | $\begin{gathered} 48.2 \\ (27.3) \end{gathered}$ | $\begin{gathered} 50 \\ (28.9) \end{gathered}$ |
| Above Median Education | $\begin{gathered} 42.4 \\ (28.1) \end{gathered}$ | $\begin{gathered} 47.3 \\ (30.7) \end{gathered}$ | $\begin{gathered} 48.8 \\ (31.9) \end{gathered}$ |

The first row shows the number of observations for each public-good game. The other rows show the average contribution for the group specified in the first column. Standard deviations in parentheses.

### 3.1.1 Anonymous Public-good Game

Table 3.2: Anonymous Public-good Game

|  | Contribution | Belief of others' contribution | Belief - Contribution |
| :---: | :---: | :---: | :---: |
| Number of Observations | 608 | 608 | 608 |
| Full Sample | $\begin{gathered} 46.4 \\ (27.1) \end{gathered}$ | $\begin{gathered} 50.7 \\ (20.5) \end{gathered}$ | $\begin{gathered} -4.34 \\ (28.8) \end{gathered}$ |
| Control | $\begin{gathered} 47.9 \\ (25.2) \end{gathered}$ | $\begin{gathered} 47.3 \\ (18.8) \end{gathered}$ | $\begin{gathered} .589 \\ (26.1) \end{gathered}$ |
| National Prime | $\begin{gathered} 43.2 \\ (28.4) \end{gathered}$ | $\begin{gathered} 51.7 \\ (21.2) \end{gathered}$ | $\begin{gathered} -8.56 \\ (29.3) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 48.2 \\ (27.3) \end{gathered}$ | $\begin{gathered} 51.8 \\ (20.8) \end{gathered}$ | $\begin{gathered} -3.62 \\ (27.3) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 46.2 \\ (27.2) \end{gathered}$ | $\begin{gathered} 51.9 \\ (20.9) \end{gathered}$ | $\begin{gathered} -5.69 \\ (31.9) \end{gathered}$ |
| Female | $\begin{gathered} 46 \\ (27.1) \end{gathered}$ | $\begin{gathered} 50.8 \\ (20.7) \end{gathered}$ | $\begin{gathered} -4.77 \\ (29.7) \end{gathered}$ |
| Male | $\begin{aligned} & 46.8 \\ & (27) \end{aligned}$ | $\begin{gathered} 50.6 \\ (20.3) \end{gathered}$ | $\begin{gathered} -3.86 \\ (27.9) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 48.1 \\ (28.6) \end{gathered}$ | $\begin{gathered} 50.2 \\ (19.7) \end{gathered}$ | $\begin{gathered} -2.1 \\ (28.2) \end{gathered}$ |
| Luo | $\begin{gathered} 41.4 \\ (24.7) \end{gathered}$ | $\begin{gathered} 49.5 \\ (20.6) \end{gathered}$ | $\begin{gathered} -8.12 \\ (28.8) \end{gathered}$ |
| Luhya | $\begin{gathered} 48.7 \\ (24.5) \end{gathered}$ | $\begin{gathered} 50.6 \\ (19.6) \end{gathered}$ | $\begin{gathered} -1.89 \\ (29) \end{gathered}$ |
| Kisii | $\begin{gathered} 47.4 \\ (30.4) \end{gathered}$ | $\begin{gathered} 55 \\ (23.1) \end{gathered}$ | $\begin{gathered} -7.59 \\ (30.9) \end{gathered}$ |
| Kamba | $\begin{gathered} 45.7 \\ (27.9) \end{gathered}$ | $\begin{aligned} & 51.7 \\ & (22) \end{aligned}$ | $\begin{aligned} & -6.01 \\ & (29.1) \end{aligned}$ |
| Below Median Education | $\begin{gathered} 50.3 \\ (25.4) \end{gathered}$ | $\begin{gathered} 49.3 \\ (20.1) \end{gathered}$ | $\begin{gathered} .933 \\ (26.5) \end{gathered}$ |
| Above Median Education | $\begin{gathered} 42.4 \\ (28.1) \end{gathered}$ | $\begin{gathered} 52.1 \\ (20.8) \end{gathered}$ | $\begin{gathered} -9.76 \\ (30.2) \end{gathered}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.1: Distribution of Play - Full Sample


Table 3.3: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.030 | 0.283 |
| Ethnic-Cultural Prime | 0.221 | 0.850 |
| Political-Competition Prime | 0.453 | 0.808 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 3.2: Anonymous Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.2 Mixed Public-good Game

Table 3.4: Mixed Public-good Game

|  | Contribution | Belief of others' contribution | Belief - Contribution |
| :---: | :---: | :---: | :---: |
| Number of Observations | 608 | 608 | 608 |
| Full Sample | $\begin{aligned} & 47.7 \\ & (29) \end{aligned}$ | $\begin{aligned} & 53.3 \\ & (24) \end{aligned}$ | $\begin{gathered} -5.57 \\ (31) \end{gathered}$ |
| Control | $\begin{gathered} 49.9 \\ (27.3) \end{gathered}$ | $\begin{gathered} 50.4 \\ (22.4) \end{gathered}$ | $\begin{gathered} -.422 \\ (28.7) \end{gathered}$ |
| National Prime | $\begin{gathered} 45.1 \\ (30.6) \end{gathered}$ | $\begin{gathered} 53.7 \\ (25.6) \end{gathered}$ | $\begin{gathered} -8.56 \\ (33.7) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 49.1 \\ (28.3) \end{gathered}$ | $\begin{gathered} 55.2 \\ (23.4) \end{gathered}$ | $\begin{gathered} -6.06 \\ (28.1) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 46.8 \\ (29.6) \end{gathered}$ | $\begin{gathered} 53.9 \\ (24.6) \end{gathered}$ | $\begin{gathered} -7.14 \\ (32.7) \end{gathered}$ |
| Female | $\begin{aligned} & 46.7 \\ & (29) \end{aligned}$ | $\begin{gathered} 51.7 \\ (23.3) \end{gathered}$ | $\begin{aligned} & -4.91 \\ & (31.2) \end{aligned}$ |
| Male | $\begin{gathered} 48.9 \\ (28.9) \end{gathered}$ | $\begin{gathered} 55.2 \\ (24.8) \end{gathered}$ | $\begin{gathered} -6.3 \\ (30.8) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 50.2 \\ (29.1) \end{gathered}$ | $\begin{gathered} 50.6 \\ (23.8) \end{gathered}$ | $\begin{gathered} -.39 \\ (28.7) \end{gathered}$ |
| Luo | $\begin{gathered} 42.3 \\ (27.9) \end{gathered}$ | $\begin{gathered} 54.9 \\ (23.8) \end{gathered}$ | $\begin{gathered} -12.6 \\ (33.3) \end{gathered}$ |
| Luhya | $\begin{gathered} 45.2 \\ (27.8) \end{gathered}$ | $\begin{gathered} 55.6 \\ (22.7) \end{gathered}$ | $\begin{gathered} -10.3 \\ (30.5) \end{gathered}$ |
| Kisii | $\begin{gathered} 51.9 \\ (35.3) \end{gathered}$ | $\begin{gathered} 52.9 \\ (25.2) \end{gathered}$ | $\begin{gathered} -.965 \\ (32.3) \end{gathered}$ |
| Kamba | $\begin{gathered} 50.5 \\ (28.2) \end{gathered}$ | $\begin{gathered} 54.6 \\ (25.7) \end{gathered}$ | $\begin{gathered} -4.08 \\ (31) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 48.2 \\ (27.3) \end{gathered}$ | $\begin{gathered} 52.9 \\ (23.6) \end{gathered}$ | $\begin{gathered} -4.71 \\ (30.8) \end{gathered}$ |
| Above Median Education | $\begin{gathered} 47.3 \\ (30.7) \end{gathered}$ | $\begin{gathered} 53.7 \\ (24.5) \end{gathered}$ | $\begin{aligned} & -6.45 \\ & (31.2) \end{aligned}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.3: Distribution of Play - Full Sample


Table 3.5: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.218 | 0.341 |
| Ethnic-Cultural Prime | 0.583 | 0.980 |
| Political-Competition Prime | 0.747 | 0.857 |

[^12] group and the control group.

Figure 3.4: Mixed Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.3 Coethnic Public-good Game

Table 3.6: Coethnic Public-good Game

|  | Contribution | Belief of others' contribution | Belief - Contribution |
| :---: | :---: | :---: | :---: |
| Number of Observations | 596 | 596 | 596 |
| Full Sample | $\begin{gathered} 49.4 \\ (30.4) \end{gathered}$ | $\begin{gathered} 54.2 \\ (24.7) \end{gathered}$ | $\begin{gathered} -4.77 \\ (33.8) \end{gathered}$ |
| Control | $\begin{gathered} 48.2 \\ (28.2) \end{gathered}$ | $\begin{gathered} 52.3 \\ (23.6) \end{gathered}$ | $\begin{gathered} -4.12 \\ (31.8) \end{gathered}$ |
| National Prime | $\begin{gathered} 44.8 \\ (29.8) \end{gathered}$ | 55.2 <br> (24) | $\begin{aligned} & -10.4 \\ & (32.6) \end{aligned}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 53 \\ (31.5) \end{gathered}$ | $\begin{gathered} 53.3 \\ (25.9) \end{gathered}$ | $\begin{gathered} -.338 \\ (35) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 51.7 \\ (31.5) \end{gathered}$ | $\begin{gathered} 56 \\ (25.4) \end{gathered}$ | $\begin{gathered} -4.24 \\ (35.3) \end{gathered}$ |
| Female | $\begin{gathered} 48 \\ (30.9) \end{gathered}$ | $\begin{gathered} 52.8 \\ (23.5) \end{gathered}$ | $\begin{gathered} -4.79 \\ (34.6) \end{gathered}$ |
| Male | $\begin{gathered} 50.9 \\ (29.8) \end{gathered}$ | $\begin{gathered} 55.7 \\ (25.9) \end{gathered}$ | $\begin{gathered} -4.74 \\ (33) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 49.3 \\ (29.9) \end{gathered}$ | $\begin{gathered} 54.2 \\ (25.3) \end{gathered}$ | $\begin{aligned} & -4.91 \\ & (34.3) \end{aligned}$ |
| Luo | $\begin{aligned} & 44.9 \\ & (30) \end{aligned}$ | $\begin{aligned} & 55.6 \\ & (25) \end{aligned}$ | $\begin{aligned} & -10.7 \\ & (33.6) \end{aligned}$ |
| Luhya | $\begin{gathered} 47.9 \\ (29.9) \end{gathered}$ | $\begin{gathered} 50.8 \\ (22.2) \end{gathered}$ | $\begin{gathered} -2.91 \\ (33.9) \end{gathered}$ |
| Kisii | $\begin{aligned} & 60.8 \\ & (35) \end{aligned}$ | $\begin{gathered} 58.6 \\ (26.2) \end{gathered}$ | $\begin{gathered} 2.23 \\ (33.6) \end{gathered}$ |
| Kamba | $\begin{gathered} 52.6 \\ (29.7) \end{gathered}$ | $\begin{gathered} 54.7 \\ (25.4) \end{gathered}$ | $\begin{gathered} -2.09 \\ (32.8) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 50 \\ (28.9) \end{gathered}$ | $\begin{gathered} 52.4 \\ (24.7) \end{gathered}$ | $\begin{gathered} -2.38 \\ (30.7) \end{gathered}$ |
| Above Median Education | $\begin{gathered} 48.8 \\ (31.9) \\ \hline \end{gathered}$ | $\begin{gathered} 56 \\ (24.6) \end{gathered}$ | $\begin{gathered} -7.18 \\ (36.7) \\ \hline \end{gathered}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.5: Distribution of Play - Full Sample


Table 3.7: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.091 | 0.724 |
| Ethnic-Cultural Prime | 0.167 | 0.493 |
| Political-Competition Prime | 0.121 | 0.626 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 3.6: Coethnic Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.4 Pooled Public-good Game

Figure 3.7: Distribution of Play - Full Sample


Table 3.8: Comparison of distribution across public-good games

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| Anonymous versus Mixed | 0.8209 | 0.8014 |
| Anonymous versus Coethnic | 0.0812 | 0.0708 |
| Mixed versus Coethnic | 0.8105 | 0.7902 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated game-types.

### 3.2 Regression Analysis

### 3.2.1 Anonymous Public-good Game

Table 3.9: Anonymous Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | -4.697 | -4.473 | 2.275 |
|  | (3.110) | (3.092) | (15.02) |
| Ethnic-Cultural Prime | 0.325 | 0.194 | -9.006 |
|  | (3.110) | (3.090) | (12.42) |
| Political-Competition Prime | -1.716 | -1.809 | 24.01* |
|  | (3.115) | (3.090) | (13.50) |
| 1(Female) |  | -2.871 | 0.983 |
|  |  | (2.261) | (4.629) |
| Education (demeaned) |  | -1.000*** | -0.774 |
|  |  | (0.317) | (0.616) |
| 1(Kikuyu) |  | -0.851 | 0.0152 |
|  |  | (4.782) | (9.467) |
| 1(Luo) |  | -6.175 | 0.599 |
|  |  | (4.980) | (9.900) |
| 1(Luhya) |  | -0.841 | -0.689 |
|  |  | (5.097) | (10.14) |
| 1(Kamba) |  | -2.817 | -4.467 |
|  |  | (5.129) | (10.54) |
| National Prime * 1(Kamba) |  |  | -5.805 |
|  |  |  | (16.05) |
| National Prime * 1(Kikuyu) |  |  | 0.406 |
|  |  |  | (15.11) |
| National Prime * 1(Luhya) |  |  | -1.210 |
|  |  |  | (15.92) |
| National Prime * 1 (Luo) |  |  | -9.092 |
|  |  |  | (15.60) |
| National Prime * Education |  |  | -0.422 |
|  |  |  | (0.865) |
| National Prime * 1(Female) |  |  | -4.390 |
|  |  |  | (6.550) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 17.77 |
|  |  |  | (13.85) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | 9.341 |
|  |  |  | (12.62) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | 13.32 |
|  |  |  | (13.70) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 3.367 |
|  |  |  | (13.22) |
| Ethnic-Cultural Prime * Education |  |  | 0.826 |
|  |  |  | (0.926) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -3.553 |
|  |  |  | (6.523) |
| Political-Competition Prime * 1(Luhya) |  |  | -12.19 |
|  |  |  | (15.25) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -20.25 |
|  |  |  | (13.90) |
| Political-Competition Prime * 1(Luhya) |  |  | -19.98 |
|  |  |  | (14.80) |


| Political-Competition Prime * 1(Luo) |  | $-30.46^{* *}$ |
| :--- | :---: | :---: |
|  |  | $(14.56)$ |
| Political-Competition Prime * Education |  | -0.900 |
|  |  | $(0.900)$ |
| Political-Competition Prime * 1(Female) |  | -7.078 |
|  |  | $(6.467)$ |
| Constant | $47.89^{* * *}$ | $53.90^{* * *}$ |
|  | $(2.210)$ | $(5.119)$ |
| Observations | 608 | 608 |

Standard errors in parentheses

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.10: Anonymous Public-good Game

|  | Contribution minus Belief (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | $-9.146^{* * *}$ | -8.912*** | -10.76 |
|  | (3.300) | (3.275) | (15.85) |
| Ethnic-Cultural Prime | -4.211 | -4.169 | -10.08 |
|  | (3.300) | (3.273) | (13.10) |
| Political-Competition Prime | -6.274* | -6.382* | 7.398 |
|  | (3.306) | (3.273) | (14.24) |
| 1(Female) |  | -3.362 | 2.466 |
|  |  | (2.395) | (4.883) |
| Education (demeaned) |  | -1.213*** | -0.965 |
|  |  | (0.335) | (0.649) |
| 1(Kikuyu) |  | 3.478 | -2.541 |
|  |  | (5.065) | (9.985) |
| 1(Luo) |  | -0.831 | 2.623 |
|  |  | (5.275) | (10.44) |
| 1(Luhya) |  | 2.957 | -0.625 |
|  |  | (5.399) | (10.69) |
| 1(Kamba) |  | 0.359 | -3.164 |
|  |  | (5.433) | (11.12) |
| National Prime * 1(Kamba) |  |  | -2.885 |
|  |  |  | (16.93) |
| National Prime * 1(Kikuyu) |  |  | 13.68 |
|  |  |  | (15.94) |
| National Prime * 1(Luhya) |  |  | 11.92 |
|  |  |  | (16.80) |
| National Prime * 1 (Luo) |  |  | -6.187 |
|  |  |  | (16.46) |
| National Prime * Education |  |  | -0.270 |
|  |  |  | (0.912) |
| National Prime * 1(Female) |  |  | -4.871 |
|  |  |  | (6.908) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 17.98 |
|  |  |  | (14.61) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | 9.351 |
|  |  |  | (13.31) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | 6.211 |
|  |  |  | (14.45) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 5.012 |
|  |  |  | (13.94) |


| Ethnic-Cultural Prime * Education | 0.678 |
| :--- | :---: |
| Ethnic-Cultural Prime * 1(Female) | $(0.976)$ |
| Political-Competition Prime * 1(Luhya) | -7.903 |
|  | $(6.880)$ |
| Political-Competition Prime * 1(Kikuyu) | -2.865 |
| Political-Competition Prime * 1(Luhya) | $(16.09)$ |
|  | -1.667 |
| Political-Competition Prime * 1(Luo) | $(14.66)$ |
| Political-Competition Prime * Education | -7.443 |
|  |  |
| Political-Competition Prime * 1(Female) |  |
| Constant |  |
| Observations |  |
| Standard errors in parentheses | $-17.61)$ |
| $* p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ | 0.589 |

Table 3.11: p-values: P1

|  |  | Regular p-value | FWER p-value |
| :--- | :--- | :---: | :---: |
| $H_{P G 1}:$ National Prime $=0$ | Contribution | 0.132 | 0.469 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution | 0.917 | 0.913 |
| $H_{P G 3}:$ Political-Competition $(P C)$ Prime $=0$ | Contribution | 0.582 | 0.821 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.105 | 0.395 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution | 0.337 | 0.680 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution | 0.511 | 0.775 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution | 0.349 | 0.694 |
| $H_{P G 1}:$ National Prime $=0$ | Contribution - Belief | 0.006 | 0.036 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.202 | 0.544 |
| $H_{P G 3}:$ Political-Competition $($ PC $)$ Prime $=0$ | Contribution - Belief | 0.058 | 0.269 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.133 | 0.469 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution - Belief | 0.383 | 0.733 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution - Belief | 0.531 | 0.792 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution - Belief | 0.044 | 0.215 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

Table 3.12: Anonymous Public-good Game, Beliefs


|  |  | $(0.628)$ |  |
| :--- | :---: | :---: | :---: |
| Political-Competition Prime * 1(Female) |  | 2.639 |  |
|  |  | $(4.787)$ |  |
| Constant | $47.30^{* * *}$ | $50.57^{* * *}$ | $47.37^{* * *}$ |
|  | $(1.532)$ | $(4.080)$ | $(5.877)$ |
| Observations | 1216 | 1216 | 1216 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.13: p-values: PB1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{P G 8}:$ National Prime $=0$ | 0.053 | 0.177 |
| $H_{P G 9}:$ Ethnic-Cultural Prime $=0$ | 0.046 | 0.177 |
| $H_{P G 10}:$ Political-Competition $(P C)$ Prime $=0$ | 0.046 | 0.177 |
| $H_{P G 21}:$ National Prime $=$ Ethnic-Cultural Prime | 0.971 | 0.999 |
| $H_{P G 22}:$ National Prime $=$ PC Prime | 0.963 | 0.999 |
| $H_{P G 23}:$ Ethnic-Cultural Prime $=$ PC Prime | 0.992 | 0.999 |
| $H_{P G 33}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | 0.105 | 0.256 |
| Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan. |  |  |

### 3.2.2 Mixed Public-good Game

Table 3.14: Mixed Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
| National Prime | -4.814 | -4.915 | 14.98 |
|  | (3.331) | (3.328) | (16.28) |
| Ethnic-Cultural Prime | -0.816 | -1.235 | 12.34 |
|  | (3.331) | (3.326) | (13.45) |
| Political-Competition Prime | -3.157 | -3.291 | 8.794 |
|  | (3.336) | (3.326) | (14.63) |
| 1(Female) |  | -2.896 | -0.645 |
|  |  | (2.434) | (5.016) |
| Education (demeaned) |  | -0.219 | -0.368 |
|  |  | (0.341) | (0.667) |
| 1(Kikuyu) |  | -1.594 | 4.547 |
|  |  | (5.147) | (10.26) |
| 1(Luo) |  | -9.445* | 3.206 |
|  |  | (5.360) | (10.73) |
| 1(Luhya) |  | -6.669 | 2.916 |
|  |  | (5.486) | (10.98) |
| 1(Kamba) |  | -0.967 | 11.18 |
|  |  | (5.521) | (11.42) |
| National Prime * 1(Kamba) |  |  | -21.59 |
|  |  |  | (17.39) |
| National Prime * 1 (Kikuyu) |  |  | -11.41 |
|  |  |  | (16.38) |
| National Prime * 1 (Luhya) |  |  | -21.80 |
|  |  |  | (17.26) |
| National Prime * 1(Luo) |  |  | -17.88 |
|  |  |  | (16.91) |
| National Prime * Education |  |  | 0.274 |
|  |  |  | (0.937) |
| National Prime * 1(Female) |  |  | -8.425 |
|  |  |  | (7.097) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -17.61 |
|  |  |  | (15.01) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -8.394 |
|  |  |  | (13.68) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -12.95 |
|  |  |  | (14.85) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -17.47 |
|  |  |  | (14.33) |
| Ethnic-Cultural Prime * Education |  |  | -0.155 |
|  |  |  | (1.003) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -2.214 |
|  |  |  | (7.069) |
| Political-Competition Prime * 1(Luhya) |  |  | -12.98 |
|  |  |  | (16.53) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -9.735 |
|  |  |  | (15.07) |
| Political-Competition Prime * 1(Luhya) |  |  | -9.673 |
|  |  |  | (16.03) |
| Political-Competition Prime * 1(Luo) |  |  | -21.41 |


|  |  |  |
| :--- | :---: | :---: |
| Political-Competition Prime * Education |  | $(15.78)$ |
|  |  | 0.348 |
| Political-Competition Prime * 1(Female) |  | $(0.975)$ |
|  |  | -1.586 |
| Constant | $49.94^{* * *}$ | $56.15^{* * *}$ |
|  | $(2.367)$ | $(5.510)$ |
| Observations | 608 | 608 |
| Standard errors in parentheses |  | $6.56^{* * *}$ |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  | 608 |

Table 3.15: Mixed Public-good Game


| Ethnic-Cultural Prime * 1(Female) |  |  | (1.057) |
| :---: | :---: | :---: | :---: |
|  |  |  | -4.750 |
|  |  |  | (7.445) |
| Political-Competition Prime * 1(Luhya) |  |  | -3.057 |
|  |  |  | (17.41) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -2.651 |
|  |  |  | (15.87) |
| Political-Competition Prime * 1(Luhya) |  |  | -13.00 |
|  |  |  | (16.89) |
| Political-Competition Prime * 1 (Luo) |  |  | -21.44 |
|  |  |  | (16.62) |
| Political-Competition Prime * Education |  |  | 0.0644 |
|  |  |  | (1.027) |
| Political-Competition Prime * 1(Female) |  |  | $-5.793$ |
|  |  |  | (7.381) |
| Constant | -0.422 | 3.060 | -5.051 |
|  | (2.524) | (5.843) | (10.15) |
| Observations | 608 | 608 | 608 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.16: p-values: P2

|  |  | Regular p-value | FWER p-value |
| :--- | :--- | :---: | :---: |
| $H_{P G 1}:$ National Prime $=0$ | Contribution | 0.149 | 0.540 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution | 0.807 | 0.947 |
| $H_{P G 3}:$ Political-Competition $(P C)$ Prime $=0$ | Contribution | 0.344 | 0.773 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.228 | 0.657 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution | 0.618 | 0.905 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution | 0.481 | 0.819 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution | 0.454 | 0.803 |
| $H_{P G 1}:$ National Prime $=0$ | Contribution - Belief | 0.022 | 0.131 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.113 | 0.474 |
| $H_{P G 3}:$ Political-Competition $($ PC $)$ Prime $=0$ | Contribution - Belief | 0.060 | 0.298 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.481 | 0.819 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution - Belief | 0.689 | 0.947 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution - Belief | 0.761 | 0.947 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution - Belief | 0.112 | 0.471 |

[^13]Table 3.17: Mixed Public-good Game, Beliefs


|  | (19.05) |
| :---: | :---: |
| Political-Competition Prime * 1(Kikuyu) | $\begin{aligned} & -11.44 \\ & (17.83) \end{aligned}$ |
| Political-Competition Prime * 1(Luhya) | -5.382 |
|  | (18.30) |
| Political-Competition Prime * 1(Luo) | -8.755 |
|  | (18.39) |
| Political-Competition Prime * Education | 0.358 |
|  | (0.879) |
| Political-Competition Prime * 1(Female) | 2.383 |
|  | (7.138) |
| Coethnic Group Member * Natn. Prime * Kikuyu | 0 |
|  | (.) |
| Coethnic Group Member * Natn. Prime * Luo | -25.28* |
|  | (13.95) |
| Coethnic Group Member * Natn. Prime * Luhya | -23.20 |
|  | (15.01) |
| Coethnic Group Member * Natn. Prime * Kamba | 6.952 |
|  | (8.265) |
| Coethnic Group Member * Natn. Prime * female | -2.563 |
|  | (5.375) |
| Coethnic Group Member * Natn. Prime * educ_ydm | -0.205 |
|  | (0.725) |
| Coethnic Group Member * Natn. Prime * Kikuyu | -8.531 |
|  | (18.27) |
| Coethnic Group Member * Ethnic Prime * Kikuyu | 28.36* |
|  | (17.18) |
| Coethnic Group Member * Pol Comp Prime * Kikuyu | 9.350 |
|  | (17.29) |
| Coethnic Group Member * Natn. Prime * Luo | -1.978 |
|  | (18.78) |
| Coethnic Group Member * Ethnic Prime * Luo | $39.21^{* *}$ |
|  | (17.35) |
| Coethnic Group Member * Pol Comp Prime * Luo | 18.54 |
|  | (17.70) |
| Coethnic Group Member * Natn. Prime * Luhya | -6.834 |
|  | (19.33) |
| Coethnic Group Member * Ethnic Prime * Luhya | 40.86** |
|  | (18.57) |
| Coethnic Group Member * Pol Comp Prime * Luhya | 17.29 |
|  | (18.65) |
| Coethnic Group Member * Natn. Prime * Kamba | -1.109 |
|  | (19.09) |
| Coethnic Group Member * Ethnic Prime * Kamba | 24.57 |
|  | (18.45) |
| Coethnic Group Member * Pol Comp Prime * Kamba | 19.38 |
|  | (18.53) |
| Coethnic Group Member * Natn. Prime * female | 0.0929 |
|  | (7.223) |
| Coethnic Group Member * Ethnic Prime * female | -13.14* |
|  | (7.822) |
| Coethnic Group Member * Pol Comp Prime * female | 2.458 |
|  | (7.588) |
| Coethnic Group Member * Natn. Prime * educ_ydm | 0.275 |
|  | (0.968) |


| Coethnic Group Member * Ethnic Prime * educ_ydm |  |  | -1.110 |
| :--- | :---: | :---: | :---: |
|  |  | $(1.031)$ |  |
| Coethnic Group Member * Pol Comp Prime * educ_ydm |  | -0.397 |  |
| Profile 2 | -2.866 | -3.251 | $(1.030)$ |
|  |  | -4.737 |  |
| Profile 3 | $(4.053)$ | $(4.026)$ | $(4.076)$ |
| Profile 4 | 2.787 | 2.338 | 2.119 |
|  | $(3.981)$ | $(3.969)$ | $(3.922)$ |
| Profile 5 | -0.253 | -0.528 | -1.552 |
|  | $(4.330)$ | $(4.307)$ | $(4.370)$ |
| Profile 6 | -1.338 | -1.556 | -3.217 |
|  | $(3.875)$ | $(3.907)$ | $(3.967)$ |
| Profile 7 | 0.104 | -0.468 | -1.556 |
| Profile 8 | $(3.946)$ | $(3.943)$ | $(3.972)$ |
|  | -6.442 | $-6.814^{*}$ | 2.437 |
| Profile 9 | $(3.930)$ | $(3.938)$ | $(8.195)$ |
| Profile 10 | -1.093 | -1.545 | 7.962 |
|  | $(3.983)$ | $(3.995)$ | $(8.105)$ |
| Profile 11 | -0.818 | -1.299 | 7.838 |
|  | $(3.906)$ | $(3.893)$ | $(7.898)$ |
| Profile 12 | -1.690 | -1.980 | 7.392 |
|  | $(3.711)$ | $(3.717)$ | $(7.829)$ |
| Constant | -4.396 | -4.356 | 6.169 |
|  | $(3.957)$ | $(3.950)$ | $(8.020)$ |
| Observations | -0.719 | -1.152 | 7.561 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.18: p-values: PBMix

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{P G 11}$ : Coethnic Profile (CE) $=0$ | 0.928 | 1.000 |
| $H_{P G 12}$ : National Prime $=0$ | 0.916 | 1.000 |
| $H_{P G 13}$ : Ethnic-Cultural Prime $=0$ | 0.654 | 1.000 |
| $H_{P G 14}$ : Political Competition (PC) Prime $=0$ | 0.754 | 1.000 |
| $H_{P G 15}:$ National Prime $+($ National Pr $*$ CE $)=0$ | 0.200 | 0.851 |
| $H_{P G 16}$ : Ethnic-Cultural Prime $+($ Ethnic-Cultural $\operatorname{Pr} * \mathrm{CE})=0$ | 0.067 | 0.499 |
| $H_{P G 17}:$ PC Prime $+($ PC Pr $* \mathrm{CE})=0$ | 0.189 | 0.838 |
| $H_{P G 18}:($ National Prime $*$ CE) $=0$ | 0.819 | 1.000 |
| $H_{P G 19}$ : $($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.900 | 1.000 |
| $H_{P G 20}:($ PC Prime $*$ CE) $=0$ | 0.941 | 1.000 |
| $H_{P G 24}$ : National Prime $=$ Ethnic-Cultural Prime | 0.798 | 1.000 |
| $H_{P G 25}$ : National Prime $=$ PC Prime | 0.873 | 1.000 |
| $H_{P G 26}$ : Ethnic-Cultural Prime $=$ PC Prime | 0.924 | 1.000 |
| $H_{P G 27}:$ National Prime $+($ National Pr $* \mathrm{CE})=$ Ethnic-Cultural Prime $+($ Ethnic-Cultural Pr $* \mathrm{CE})$ | 0.634 | 1.000 |
| $H_{P G 28}$ : National Prime $+($ National Pr $* \mathrm{CE})=\mathrm{PC}$ Prime $+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.989 | 1.000 |
| $H_{P G 29}:$ Ethnic Prime $+($ Ethnic Pr $* \mathrm{CE})=\mathrm{PC} \operatorname{Prime}+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.639 | 1.000 |
| $H_{P G 30}:($ National Pr $* \mathrm{CE})=($ Ethnic-Cultural Pr $* \mathrm{CE})$ | 0.902 | 1.000 |
| $H_{P G 31}:($ National Pr $* \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.880 | 1.000 |
| $H_{P G 32}:($ Ethnic-Cultural Pr $* \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.967 | 1.000 |
| $H_{P G 34}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | 0.973 | 1.000 |
| $H_{P G 35}:($ National Pr $* \mathrm{CE})=($ Ethnic-Cultural Pr $* \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})=0$ | 0.997 | 1.000 |
| $H_{P G 36}$ : All coefficients on priming treatments $=0$ | 0.680 | 1.000 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

### 3.2.3 Coethnic Public-good Game

Table 3.19: Coethnic Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | -3.396 | -3.127 | 27.03 |
|  | (3.514) | (3.499) | (16.91) |
| Ethnic-Cultural Prime | 4.800 | 4.187 | 20.68 |
|  | (3.497) | (3.480) | (13.93) |
| Political-Competition Prime | 3.560 | 3.592 | 26.12* |
|  | (3.538) | (3.517) | (15.61) |
| 1(Female) |  | -4.345* | 2.698 |
|  |  | (2.564) | (5.256) |
| Education (demeaned) |  | -0.673* | -0.400 |
|  |  | (0.358) | (0.697) |
| 1(Kikuyu) |  | -12.24** | -3.294 |
|  |  | (5.429) | (10.64) |
| 1(Luo) |  | -15.65*** | -2.798 |
|  |  | (5.665) | (11.15) |
| 1(Luhya) |  | -14.02** | -5.177 |
|  |  | (5.775) | (11.37) |
| 1(Kamba) |  | -8.465 | 5.837 |
|  |  | (5.818) | (11.83) |
| National Prime * 1(Kamba) |  |  | -27.80 |
|  |  |  | (18.03) |
| National Prime * 1(Kikuyu) |  |  | -13.71 |
|  |  |  | (16.99) |
| National Prime * 1(Luhya) |  |  | -25.02 |
|  |  |  | (17.88) |
| National Prime * 1(Luo) |  |  | -23.57 |
|  |  |  | (17.53) |
| National Prime * Education |  |  | -0.340 |
|  |  |  | (0.986) |
| National Prime * 1(Female) |  |  | -17.94** |
|  |  |  | (7.461) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -18.91 |
|  |  |  | (15.54) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -12.33 |
|  |  |  | (14.18) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -8.826 |
|  |  |  | (15.37) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -16.23 |
|  |  |  | (14.86) |
| Ethnic-Cultural Prime * Education |  |  | -0.750 |
|  |  |  | (1.043) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -4.274 |
|  |  |  | (7.362) |
| Political-Competition Prime * 1(Luhya) |  |  | -19.04 |
|  |  |  | (17.59) |
| Political-Competition Prime * 1 (Kikuyu) |  |  | -20.18 |
|  |  |  | (16.14) |
| Political-Competition Prime * 1(Luhya) |  |  | -12.86 |
|  |  |  | (17.10) |
| Political-Competition Prime * 1(Luo) |  |  | -22.83 |


|  |  | $(16.93)$ |
| :--- | :---: | :---: |
| Political-Competition Prime * Education |  | -0.0710 |
|  |  | $(1.017)$ |
| Political-Competition Prime * 1(Female) |  | -8.863 |
| Constant | $48.15^{* * *}$ | $63.93^{* * *}$ |
|  | $(2.497)$ | $(5.798)$ |
| Observations | 596 | 596 |
| Standard errors in parentheses |  | $\left(9.989^{* * *}\right.$ |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 3.20: Coethnic Public-good Game


|  |  | $(1.156)$ |
| :--- | :---: | :---: |
| Ethnic-Cultural Prime * 1(Female) | -7.264 |  |
|  | $(8.162)$ |  |
| Political-Competition Prime * 1(Luhya) | -5.088 |  |
|  | $(19.51)$ |  |
| Political-Competition Prime * 1(Kikuyu) | -5.812 |  |
| Political-Competition Prime * 1(Luhya) | $(17.90)$ |  |
| Political-Competition Prime * 1(Luo) | -16.94 |  |
|  |  | $(18.96)$ |
| Political-Competition Prime * Education |  | -14.08 |
| Political-Competition Prime * 1(Female) |  | $(18.78)$ |
|  |  | $-2.373^{* *}$ |
| Constant | -4.116 | 6.073 |
|  | $(2.781)$ | $(6.481)$ |
| Observations | 596 | 596 |
| Standard | $\left(8.1766^{*}\right.$ |  |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.21: p-values: P3

|  |  | Regular p-value | FWER p-value |
| :--- | :--- | :---: | :---: |
| $H_{P G 1}:$ National Prime $=0$ | Contribution | 0.334 | 0.719 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution | 0.170 | 0.452 |
| $H_{P G 3}:$ Political-Competition $(P C)$ Prime $=0$ | Contribution | 0.315 | 0.696 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.019 | 0.099 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution | 0.049 | 0.216 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution | 0.724 | 0.896 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution | 0.082 | 0.328 |
| $H_{P G 1}:$ National Prime $=0$ | Contribution - Belief | 0.107 | 0.395 |
| $H_{P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.332 | 0.719 |
| $H_{P G 3}:$ Political-Competition $($ PC $)$ Prime $=0$ | Contribution - Belief | 0.975 | 0.974 |
| $H_{P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.009 | 0.056 |
| $H_{P G 5}:$ National Prime $=$ PC Prime | Contribution - Belief | 0.115 | 0.395 |
| $H_{P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution - Belief | 0.317 | 0.700 |
| $H_{P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution - Belief | 0.074 | 0.303 |

[^14]Table 3.22: Coethnic Public-good Game, Beliefs


|  |  | $(0.795)$ |  |
| :--- | :---: | :---: | :---: |
| Political-Competition Prime * 1(Female) |  | 5.654 |  |
|  |  | $(5.827)$ |  |
| Constant | $51.94^{* * *}$ | $57.20^{* * *}$ | $59.76^{* * *}$ |
|  | $(1.925)$ | $(4.629)$ | $(5.793)$ |
| Observations | 1216 | 1216 | 1216 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.23: p-values: PB2

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{P G 8}:$ National Prime $=0$ | 0.250 | 0.603 |
| $H_{P G 9}:$ Ethnic-Cultural Prime $=0$ | 0.728 | 0.930 |
| $H_{P G 10}:$ Political-Competition (PC) Prime $=0$ | 0.168 | 0.492 |
| $H_{P G 21}:$ National Prime $=$ Ethnic-Cultural Prime | 0.454 | 0.785 |
| $H_{P G 22}:$ National Prime $=$ PC Prime | 0.777 | 0.930 |
| $H_{P G 23}:$ Ethnic-Cultural Prime $=$ PC Prime | 0.323 | 0.669 |
| $H_{P G 33}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | 0.480 | 0.785 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

### 3.2.4 Pooled Public-good Game

Table 3.24: Pooled Public-good Game

|  | Contribution (Percent of Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Mixed Group | 2.056 | 2.056 |
|  | $(2.129)$ | $(2.133)$ |
| Coethnic Group | 0.263 | $(2.234$ |
|  | $(2.321)$ | -4.611 |
| National Prime | -4.697 | $(3.078)$ |
|  | $(3.085)$ | -0.0716 |
| Ethnic-Cultural Prime | 0.325 | $(3.045)$ |
|  | $(3.019)$ | -1.787 |
| Political-Competition Prime | -1.716 | $(2.988)$ |
|  | $(3.020)$ | -0.117 |
| Mixed Group * National Prime | -0.117 | $(2.995)$ |
|  | $(2.990)$ | -1.141 |
| Mixed Group * Ethnic-Cultural Prime | -1.141 | $(3.119)$ |
|  | $(3.114)$ | -1.442 |
| Mixed Group * Political-Competition Prime | -1.442 | $(3.065)$ |
|  | $(3.060)$ | 1.414 |
| Coethnic Group * National Prime | 1.301 | $(3.249)$ |
| Coethnic Group * Ethnic-Cultural Prime | $(3.243)$ | 4.505 |
|  | 4.476 | $(3.449)$ |
| Coethnic Group * Political-Competition Prime | $(3.442)$ | 5.258 |
| 1(Female) | 5.276 | $(3.324)$ |
| Education (demeaned) | $(3.315)$ | -3.369 |
| 1(Kikuyu) |  | $(2.086)$ |
|  |  | $-0.630^{* *}$ |
| 1(Luo) | $(0.274)$ |  |
| 1(Luhya) | -4.835 |  |
| 1(Kamba) |  | $(5.096)$ |
| Constant | $-10.38^{* *}$ |  |
|  |  | $(5.198)$ |
| Observations | -7.124 |  |
|  |  | $(5.248)$ |
|  | -4.046 |  |
|  |  | $(5.315)$ |
|  |  | $57.18^{* * *}$ |
|  | $(5.343)$ |  |

Standard errors in parentheses
Standard errors are clustered at the individual level

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.25: Pooled Public-good Game

|  | Contribution (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Mixed Group | -1.011 | -1.011 |
|  | (3.027) | (3.032) |
| Coethnic Group | -4.705 | -4.729 |
|  | (3.097) | (3.110) |
| National Prime | -9.146*** | -9.082*** |
|  | (3.187) | (3.137) |
| Ethnic-Cultural Prime | -4.211 | -4.501 |
|  | (3.070) | (3.114) |
| Political-Competition Prime | -6.274* | -6.379* |
|  | (3.352) | (3.328) |
| Mixed Group * National Prime | 1.011 | 1.011 |
|  | (4.019) | (4.025) |
| Mixed Group * Ethnic-Cultural Prime | -1.429 | -1.429 |
|  | (4.110) | (4.117) |
| Mixed Group * Political-Competition Prime | -0.442 | -0.442 |
|  | (4.193) | (4.200) |
| Coethnic Group * National Prime | 2.833 | 2.928 |
|  | (4.041) | (4.054) |
| Coethnic Group * Ethnic-Cultural Prime | 7.989* | 8.013* |
|  | (4.316) | (4.328) |
| Coethnic Group * Political-Competition Prime | 6.149 | 6.120 |
|  | (4.478) | (4.491) |
| 1(Female) |  | -1.359 |
|  |  | (2.076) |
| Education (demeaned) |  | -0.629** |
|  |  | (0.300) |
| 1(Kikuyu) |  | -1.052 |
|  |  | (4.351) |
| 1(Luo) |  | -8.140* |
|  |  | (4.534) |
| 1(Luhya) |  | -3.984 |
|  |  | (4.528) |
| 1(Kamba) |  | -2.143 |
|  |  | (4.520) |
| Constant | 0.589 | 6.033 |
|  | (2.133) | (4.831) |
| Observations | 1812 | 1812 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

For the FWER-adjustment, we follow the pre-analysis plan for Kenya 2013, as there was no multiple inference adjustment specified in the pre-analysis plan for Kenya 2012. Note also that the the hypothesis for "Mixed $=$ Homogeneous $\mathrm{PG}=0$ " was not specified in the Kenya 2012 pre-analysis plan.

Table 3.26: p-values: Pooled Public-good Game

|  |  | Regular p-value | FWER p-value |
| :--- | :---: | :---: | :---: |
| $H_{P G 37}:$ Mixed Group $=0$ | Contribution | 0.335 | 0.680 |
| $H_{P G 38}:$ Coethnic Group $=0$ | Contribution | 0.910 | 0.931 |
| $H_{P G 39}:$ Mixed $=$ Coethnic Group | Contribution | 0.364 | 0.680 |
| $H_{P G--}:$ Mixed $=$ Coethnic Group $=0$ | Contribution | 0.524 | 0.775 |
| $H_{P G 37}:$ Mixed Group $=0$ | Contribution - Belief | 0.738 | 0.931 |
| $H_{P G 38}:$ Coethnic Group $=0$ | Contribution - Belief | 0.129 | 0.400 |
| $H_{P G 39}:$ Mixed $=$ Coethnic Group | Contribution - Belief | 0.180 | 0.482 |
| $H_{P G--}:$ Mixed $=$ Coethnic Group $=0$ | Contribution - Belief | 0.246 | 0.574 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

Table 3.27: p-values: Pooled PG - regular p-values

| Null Hypothesis |  | Regular p-value |
| :---: | :---: | :---: |
| $H_{P G 40}$ : Mixed Group * National Prime $=0$ | Contribution | 0.969 |
| $H_{P G 41}$ : Mixed Group * Ethnic-Cultural Prime $=0$ | Contribution | 0.714 |
| $H_{P G 42}$ : Mixed Group * Political-Competition (PC) Prime $=0$ | Contribution | 0.638 |
| $H_{P G 43}$ : Coethnic Group * National Prime $=0$ | Contribution | 0.688 |
| $H_{P G 44}$ : Coethnic Group * Ethnic-Cultural Prime $=0$ | Contribution | 0.194 |
| $H_{P G 45}$ : Coethnic Group * Political-Competition (PC) Prime $=0$ | Contribution | 0.112 |
| $H_{P G 46}$ : National Prime * (Mixed Group = Coethnic Group) | Contribution | 0.616 |
| $H_{P G 47}$ : Ethnic-Cultural Prime * (Mixed Group $=$ Coethnic Group) | Contribution | 0.043 |
| $H_{P G 48}:$ PC Prime * (Mixed Group $=$ Coethnic Group) | Contribution | 0.024 |
| $H_{P G 49}$ : Mixed Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution | 0.741 |
| $H_{P G 50}$ : Mixed Group * (National Prime $=$ PC Prime $)$ | Contribution | 0.663 |
| $H_{P G 51}$ : Mixed Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution | 0.924 |
| $H_{P G 52}$ : Coethnic Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution | 0.351 |
| $H_{P G 53}$ : Coethnic Group * (National Prime $=$ PC Prime $)$ | Contribution | 0.225 |
| $H_{P G 54}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution | 0.818 |
| $H_{P G 55}:$ Mixed Group * (National $=$ Ethnic $=$ PC Prime $\left.=\right) 0$ | Contribution | 0.953 |
| $H_{P G 56}$ : Coethnic Group * (National $=$ Ethnic $=$ PC Prime $\left.=\right) 0$ | Contribution | 0.334 |
| $H_{P G 57}:$ All coefficients $=0$ | Contribution | 0.088 |
| $H_{P G 40}$ : Mixed Group * National Prime $=0$ | Contribution - Belief | 0.801 |
| $H_{P G 41}$ : Mixed Group * Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.728 |
| $H_{P G 42}$ : Mixed Group * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.916 |
| $H_{P G 43}$ : Coethnic Group * National Prime $=0$ | Contribution - Belief | 0.483 |
| $H_{P G 44}$ : Coethnic Group * Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.065 |
| $H_{P G 45}$ : Coethnic Group * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.170 |
| $H_{P G 46}$ : National Prime * (Mixed Group = Coethnic Group) | Contribution - Belief | 0.621 |
| $H_{P G 47}$ : Ethnic-Cultural Prime * (Mixed Group $=$ Coethnic Group) | Contribution - Belief | 0.014 |
| $H_{P G 48}:$ PC Prime * (Mixed Group $=$ Coethnic Group) | Contribution - Belief | 0.095 |
| $H_{P G 49}$ : Mixed Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution - Belief | 0.525 |
| $H_{P G 50}$ : Mixed Group * (National Prime $=$ PC Prime $)$ | Contribution - Belief | 0.711 |
| $H_{P G 51}$ : Mixed Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution - Belief | 0.806 |
| $H_{P G 52}$ : Coethnic Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution - Belief | 0.195 |
| $H_{P G 53}$ : Coethnic Group * (National Prime $=$ PC Prime $)$ | Contribution - Belief | 0.424 |
| $H_{P G 54}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution - Belief | 0.677 |
| $H_{P G 55}$ : Mixed Group * (National $=$ Ethnic $=$ PC Prime $\left.=\right) 0$ | Contribution - Belief | 0.937 |
| $H_{P G 56}$ : Coethnic Group * (National $=$ Ethnic $=$ PC Prime $\left.=\right) 0$ | Contribution - Belief | 0.256 |
| $H_{P G 57}$ : All coefficients $=0$ | Contribution - Belief | 0.041 |

Table 3.28: Pooled Public-good Game

|  | (1) |
| :---: | :---: |
|  | PG Game Contribution |
| Mixed Group | -1.667 |
|  | (8.846) |
| Coethnic Group | 1.667 |
|  | (10.64) |
| National Prime | 3.330 |
|  | (16.86) |
| Ethnic-Cultural Prime | -7.951 |
|  | (12.13) |
| Political-Competition Prime | 25.07* |
|  | (14.47) |
| Mixed Group * National Prime | 11.21 |
|  | (18.28) |
| Mixed Group * Ethnic-Cultural Prime | 19.86 |
|  | (14.34) |
| Mixed Group * Political-Competition Prime | -16.71 |
|  | (11.16) |
| Coethnic Group * National Prime | 23.06 |
|  | (17.46) |
| Coethnic Group * Ethnic-Cultural Prime | 27.99* |
|  | (14.85) |
| Coethnic Group * Political-Competition Prime | 0.415 |
|  | (12.32) |
| Coethnic Group * 1(Kikuyu) | -3.291 |
|  | (11.32) |
| Coethnic Group * 1(Luo) | -3.279 |
|  | (11.63) |
| Coethnic Group * 1(Luhya) | -4.667 |
|  | (12.03) |
| Coethnic Group * 1(Kamba) | 10.63 |
|  | (11.72) |
| Mixed Group * 1(Kikuyu) | 3.030 |
|  | (9.617) |
| Mixed Group * 1(Luo) | 1.176 |
|  | (9.881) |
| Mixed Group * 1 (Luhya) | 1.667 |
|  | (9.857) |
| Mixed Group * 1(Kamba) | 14.37 |
|  | (10.35) |
| Coethnic Group * National Prime * 1 (Kikuyu) | -14.13 |
|  | (17.90) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kikuyu) | -21.69 |
|  | (15.31) |
| Coethnic Group * Political-Competition Prime * 1(Kikuyu) | 0.0541 |
|  | (12.77) |
| Coethnic Group * National Prime * 1(Luo) | -14.60 |
|  | (18.15) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luo) | -19.72 |
|  | (15.46) |
| Coethnic Group * Political-Competition Prime * 1(Luo) | 7.509 |
|  | (14.20) |
| Coethnic Group * National Prime * 1(Luhya) | -23.63 |


|  | (18.40) |
| :---: | :---: |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luhya) | -21.96 |
|  | (16.37) |
| Coethnic Group * Political-Competition Prime * 1(Luhya) | 7.292 |
|  | (14.12) |
| Coethnic Group * National Prime * 1 (Kamba) | -22.33 |
|  | (18.54) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kamba) | -37.01** |
|  | (15.64) |
| Coethnic Group * Political-Competition Prime * 1(Kamba) | -7.176 |
|  | (14.13) |
| Coethnic Group * National Prime * 1(Female) | -11.83** |
|  | (4.630) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Female) | 0.995 |
|  | (5.521) |
| Coethnic Group * Political-Competition Prime * 1(Female) | -0.0696 |
|  | (5.027) |
| Coethnic Group * National Prime * Education | 0.457 |
|  | (0.436) |
| Coethnic Group * Ethnic-Cultural Prime * Education | -1.201 |
|  | (0.887) |
| Coethnic Group * Political-Competition Prime * Education | 1.203 |
|  | (0.817) |
| Mixed Group * National Prime * ${ }^{\text {( }}$ (Kikuyu) | -10.32 |
|  | (18.57) |
| Mixed Group * Ethnic-Cultural Prime * 1(Kikuyu) | -16.23 |
|  | (14.54) |
| Mixed Group * Political-Competition Prime * 1(Kikuyu) | 12.01 |
|  | (11.55) |
| Mixed Group * National Prime * 1(Luo) | -7.356 |
|  | (18.83) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luo) | -19.41 |
|  | (14.85) |
| Mixed Group * Political-Competition Prime * 1(Luo) | 10.48 |
|  | (12.42) |
| Mixed Group * National Prime * 1(Luhya) | -18.65 |
|  | (18.99) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luhya) | -24.33 |
|  | (15.14) |
| Mixed Group * Political-Competition Prime * 1(Luhya) | 12.24 |
|  | (12.80) |
| Mixed Group * National Prime * 1(Kamba) | -14.50 |
|  | (19.59) |
| Mixed Group * Ethnic-Cultural Prime * 1(Kamba) | -34.09** |
|  | (15.70) |
| Mixed Group * Political-Competition Prime * 1(Kamba) | 0.499 |
|  | (12.77) |
| Mixed Group * National Prime * 1(Female) | $-5.662$ |
|  | $(4.169)$ |
| Mixed Group * Ethnic-Cultural Prime * 1(Female) | -0.288 |
|  | (5.170) |
| Mixed Group * Political-Competition Prime * 1(Female) | 3.865 |
|  | (4.407) |
| Mixed Group * National Prime * Education | 1.103** |
|  | (0.439) |


| Mixed Group * Ethnic-Cultural Prime * Education | -0.574 |
| :---: | :---: |
|  | (0.783) |
| Mixed Group * Political-Competition Prime * Education | 1.654*** |
|  | (0.586) |
| 1(Female) | 0.997 |
|  | (3.979) |
| Education (demeaned) | -0.515 |
|  | (0.489) |
| 1(Kikuyu) | 0.522 |
|  | (8.753) |
| 1(Luo) | 1.029 |
|  | (8.419) |
| 1(Luhya) | 0.0201 |
|  | (8.380) |
| 1(Kamba) | -4.144 |
|  | (8.834) |
| National Prime * 1(Kamba) | -6.129 |
|  | (16.94) |
| National Prime * 1(Kikuyu) | -0.101 |
|  | (16.54) |
| National Prime * 1 (Luhya) | -1.920 |
|  | (17.11) |
| National Prime * 1 (Luo) | -9.521 |
|  | (16.47) |
| National Prime * Education | -0.681 |
|  | (0.822) |
| National Prime * 1(Female) | -4.404 |
|  | (6.555) |
| Ethnic-Cultural Prime * 1(Kamba) | 17.45 |
|  | (12.60) |
| Ethnic-Cultural Prime * 1(Kikuyu) | 8.833 |
|  | (12.27) |
| Ethnic-Cultural Prime * 1(Luhya) | 12.61 |
|  | (12.32) |
| Ethnic-Cultural Prime * 1(Luo) | 2.938 |
|  | (12.27) |
| Ethnic-Cultural Prime * Education | 0.567 |
|  | (0.833) |
| Ethnic-Cultural Prime * 1(Female) | -3.567 |
|  | (6.393) |
| Political-Competition Prime * 1(Luhya) | -12.51 |
|  | (15.88) |
| Political-Competition Prime * 1(Kikuyu) | -20.76 |
|  | (15.19) |
| Political-Competition Prime * 1(Luhya) | -20.69 |
|  | (15.42) |
| Political-Competition Prime * 1 (Luo) | -30.89** |
|  | (14.98) |
| Political-Competition Prime * Education | -1.159 |
|  | (0.753) |
| Political-Competition Prime * 1(Female) | -7.092 |
|  | (6.021) |
| Constant | 48.66*** |
|  | (7.800) |


| Observations | 1812 |
| :--- | :---: |
| Standard errors in parentheses |  |
| Standard errors are clustered at the individual level |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |

Table 3.29: Pooled Public-good Game

|  | (1) |
| :---: | :---: |
|  | Contribution - Belief |
| Mixed Group | -2.833 |
|  | (13.33) |
| Coethnic Group | -6.500 |
|  | (11.57) |
| National Prime | -7.282 |
|  | (14.14) |
| Ethnic-Cultural Prime | -6.605 |
|  | (12.82) |
| Political-Competition Prime | 10.88 |
|  | (15.45) |
| Mixed Group * National Prime | 13.85 |
|  | (22.81) |
| Mixed Group * Ethnic-Cultural Prime | 6.467 |
|  | (19.36) |
| Mixed Group * Political-Competition Prime | -7.241 |
|  | (16.87) |
| Coethnic Group * National Prime | 18.63 |
|  | (19.59) |
| Coethnic Group * Ethnic-Cultural Prime | $31.27{ }^{*}$ |
|  | (17.49) |
| Coethnic Group * Political-Competition Prime | 8.355 |
|  | (16.50) |
| Coethnic Group * 1(Kikuyu) | -3.288 |
|  | (12.79) |
| Coethnic Group * 1(Luo) | -2.578 |
|  | (13.06) |
| Coethnic Group * 1(Luhya) | 8.667 |
|  | (13.57) |
| Coethnic Group * 1(Kamba) | $12.97$ |
|  | $(13.86)$ |
| Mixed Group * 1(Kikuyu) | 2.288 |
|  | (14.40) |
| Mixed Group * 1(Luo) | -0.623 |
|  | (14.59) |
| Mixed Group * 1(Luhya) | -0.611 |
|  | (14.35) |
| Mixed Group * 1(Kamba) | 8.905 |
|  | (16.34) |
| Coethnic Group * National Prime * 1(Kikuyu) | -5.512 |
|  | (20.09) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kikuyu) | -20.21 |
|  | (18.30) |
| Coethnic Group * Political-Competition Prime * 1(Kikuyu) | -3.512 |
|  | (17.52) |
| Coethnic Group * National Prime * 1(Luo) | -7.514 |


|  | (20.56) |
| :---: | :---: |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luo) | -27.39 |
|  | (19.02) |
| Coethnic Group * Political-Competition Prime * 1(Luo) | 3.678 |
|  | (17.63) |
| Coethnic Group * National Prime * 1(Luhya) | -31.10 |
|  | (20.96) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luhya) | -31.22 |
|  | (19.98) |
| Coethnic Group * Political-Competition Prime * 1(Luhya) | -8.068 |
|  | (19.11) |
| Coethnic Group * National Prime * 1(Kamba) | -21.95 |
|  | (21.44) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kamba) | -41.63** |
|  | (19.56) |
| Coethnic Group * Political-Competition Prime * 1(Kamba) | -2.672 |
|  | (19.06) |
| Coethnic Group * National Prime * 1(Female) | -6.807 |
|  | (5.679) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Female) | 5.237 |
|  | (6.447) |
| Coethnic Group * Political-Competition Prime * 1(Female) | 0.150 |
|  | (7.065) |
| Coethnic Group * National Prime * Education | 0.477 |
|  | (0.722) |
| Coethnic Group * Ethnic-Cultural Prime * Education | -0.401 |
|  | (1.138) |
| Coethnic Group * Political-Competition Prime * Education | -0.0270 |
|  | (0.953) |
| Mixed Group * National Prime * 1 (Kikuyu) | -10.12 |
|  | (23.16) |
| Mixed Group * Ethnic-Cultural Prime * 1(Kikuyu) | $-8.172$ |
|  | (20.42) |
| Mixed Group * Political-Competition Prime * 1(Kikuyu) | -0.140 |
|  | (17.56) |
| Mixed Group * National Prime * 1(Luo) | -15.06 |
|  | (23.46) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luo) | -19.96 |
|  | (21.19) |
| Mixed Group * Political-Competition Prime * 1(Luo) | -3.417 |
|  | (18.07) |
| Mixed Group * National Prime * 1(Luhya) | -27.40 |
|  | (23.88) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luhya) | -12.41 |
|  | (20.71) |
| Mixed Group * Political-Competition Prime * 1(Luhya) | -4.097 |
|  | (19.38) |
| Mixed Group * National Prime * 1(Kamba) | -13.21 |
|  | (25.08) |
| Mixed Group * Ethnic-Cultural Prime * 1(Kamba) | -29.79 |
|  | (22.65) |
| Mixed Group * Political-Competition Prime * 1(Kamba) | -0.216 |
|  | (20.12) |
| Mixed Group * National Prime * 1(Female) | -0.536 |
|  | (5.446) |


| Mixed Group * Ethnic-Cultural Prime * 1(Female) | 6.049 |
| :---: | :---: |
|  | (5.607) |
| Mixed Group * Political-Competition Prime * 1(Female) | 6.821 |
|  | (5.809) |
| Mixed Group * National Prime * Education | 0.703 |
|  | (0.598) |
| Mixed Group * Ethnic-Cultural Prime * Education | 1.398* |
|  | (0.846) |
| Mixed Group * Political-Competition Prime * Education | $2.115^{* * *}$ |
|  | (0.765) |
| 1(Female) | 4.936 |
|  | (3.705) |
| Education (demeaned) | -0.170 |
|  | (0.533) |
| 1(Kikuyu) | -2.022 |
|  | (9.626) |
| 1(Luo) | 2.827 |
|  | (9.434) |
| 1(Luhya) | 0.340 |
|  | (9.681) |
| 1(Kamba) | -3.314 |
|  | (10.20) |
| National Prime * 1(Kamba) | -2.735 |
|  | (15.38) |
| National Prime * 1(Kikuyu) | 13.16 |
|  | (14.04) |
| National Prime * 1 (Luhya) | 10.96 |
|  | (14.75) |
| National Prime * 1 (Luo) | -6.391 |
|  | (14.78) |
| National Prime * Education | -1.064 |
|  | (0.850) |
| National Prime * 1(Female) | -7.340 |
|  | (6.309) |
| Ethnic-Cultural Prime * 1(Kamba) | 18.13 |
|  | (13.99) |
| Ethnic-Cultural Prime * 1(Kikuyu) | 8.831 |
|  | (13.65) |
| Ethnic-Cultural Prime * 1(Luhya) | 5.247 |
|  | (13.98) |
| Ethnic-Cultural Prime * 1(Luo) | 4.808 |
|  | (13.71) |
| Ethnic-Cultural Prime * Education | -0.117 |
|  | (0.824) |
| Ethnic-Cultural Prime * 1(Female) | -10.37* |
|  | (6.114) |
| Political-Competition Prime * 1(Luhya) | -2.715 |
|  | (16.37) |
| Political-Competition Prime * 1(Kikuyu) | -2.187 |
|  | (15.58) |
| Political-Competition Prime * 1(Luhya) | -8.407 |
|  | (16.35) |
| Political-Competition Prime * 1(Luo) | -17.79 |
|  | (15.53) |
| Political-Competition Prime * Education | -1.795* |


|  | $(0.995)$ |
| :--- | :---: |
| Political-Competition Prime ${ }^{*}$ 1(Female) | $-12.19^{*}$ |
| Constant | $(6.446)$ |
|  | -1.135 |
| Observations | $(8.956)$ |
| Ste | 1812 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

## 4 Choose-your-dictator Game: analysis within Non-election period

### 4.1 Summary Statistics and Distributions

Table 4.1: Choose your dictator: Summary Statistics

|  | Anonymous Chooser |  |  | Identified Chooser |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coethnic | Indifferent | Non-coethnic | Coethnic | Indifferent | Non-coethnic |
| Number of Observations | 608 | 608 | 608 | 608 | 608 | 608 |
| Full Sample | $\begin{gathered} 26.3 \\ (44.1) \end{gathered}$ | $\begin{aligned} & 51.2 \\ & (50) \end{aligned}$ | $\begin{gathered} 22.5 \\ (41.8) \end{gathered}$ | $\begin{gathered} 30.6 \\ (46.1) \end{gathered}$ | $\begin{gathered} 43.8 \\ (49.6) \end{gathered}$ | $\begin{gathered} 25.7 \\ (43.7) \end{gathered}$ |
| Control | $\begin{gathered} 26.7 \\ (44.4) \end{gathered}$ | $\begin{gathered} 45.3 \\ (49.9) \end{gathered}$ | $\begin{gathered} 28 \\ (45.1) \end{gathered}$ | $\begin{gathered} 29.3 \\ (45.7) \end{gathered}$ | $\begin{gathered} 40 \\ (49.2) \end{gathered}$ | $\begin{gathered} 30.7 \\ (46.3) \end{gathered}$ |
| National Prime | $\begin{aligned} & 24.2 \\ & (43) \end{aligned}$ | $\begin{gathered} 53.6 \\ (50) \end{gathered}$ | $\begin{gathered} 22.2 \\ (41.7) \end{gathered}$ | $\begin{gathered} 29.4 \\ (45.7) \end{gathered}$ | $\begin{gathered} 49 \\ (50.2) \end{gathered}$ | $\begin{gathered} 21.6 \\ (41.3) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 28.8 \\ (45.4) \end{gathered}$ | $\begin{gathered} 55.6 \\ (49.9) \end{gathered}$ | $\begin{gathered} 15.7 \\ (36.5) \end{gathered}$ | $\begin{gathered} 33.3 \\ (47.3) \end{gathered}$ | $\begin{aligned} & 39.2 \\ & (49) \end{aligned}$ | $\begin{gathered} 27.5 \\ (44.8) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 25.7 \\ (43.8) \end{gathered}$ | $\begin{gathered} 50 \\ (50.2) \end{gathered}$ | $\begin{gathered} 24.3 \\ (43.1) \end{gathered}$ | $\begin{gathered} 30.3 \\ (46.1) \end{gathered}$ | $\begin{gathered} 46.7 \\ (50.1) \end{gathered}$ | $\begin{gathered} 23 \\ (42.2) \end{gathered}$ |
| Female | $\begin{gathered} 23 \\ (42.1) \end{gathered}$ | $\begin{gathered} 58.1 \\ (49.4) \end{gathered}$ | $\begin{gathered} 18.9 \\ (39.2) \end{gathered}$ | $\begin{gathered} 28 \\ (44.9) \end{gathered}$ | $\begin{aligned} & 47.2 \\ & (50) \end{aligned}$ | $\begin{gathered} 24.8 \\ (43.3) \end{gathered}$ |
| Male | $\begin{gathered} 30.1 \\ (45.9) \end{gathered}$ | $\begin{gathered} 43.4 \\ (49.6) \end{gathered}$ | $\begin{gathered} 26.6 \\ (44.2) \end{gathered}$ | $\begin{gathered} 33.6 \\ (47.3) \end{gathered}$ | $\begin{aligned} & 39.9 \\ & (49) \end{aligned}$ | $\begin{gathered} 26.6 \\ (44.2) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 22.9 \\ (42.1) \end{gathered}$ | $\begin{gathered} 55 \\ (49.9) \end{gathered}$ | $\begin{gathered} 22 \\ (41.5) \end{gathered}$ | $\begin{gathered} 26.6 \\ (44.3) \end{gathered}$ | $\begin{gathered} 47.7 \\ (50.1) \end{gathered}$ | $\begin{gathered} 25.7 \\ (43.8) \end{gathered}$ |
| Luo | $\begin{gathered} 37 \\ (48.5) \end{gathered}$ | $\begin{gathered} 39.4 \\ (49.1) \end{gathered}$ | $\begin{gathered} 23.6 \\ (42.6) \end{gathered}$ | $\begin{gathered} 37.8 \\ (48.7) \end{gathered}$ | $\begin{gathered} 36.2 \\ (48.3) \end{gathered}$ | $\begin{gathered} 26 \\ (44) \end{gathered}$ |
| Luhya | $\begin{gathered} 24.4 \\ (43.1) \end{gathered}$ | $\begin{gathered} 53.8 \\ (50.1) \end{gathered}$ | $\begin{gathered} 21.8 \\ (41.5) \end{gathered}$ | $\begin{gathered} 34.5 \\ (47.7) \end{gathered}$ | $\begin{gathered} 42.9 \\ (49.7) \end{gathered}$ | $\begin{gathered} 22.7 \\ (42.1) \end{gathered}$ |
| Kisii | $\begin{gathered} 31.6 \\ (47.1) \end{gathered}$ | $\begin{gathered} 50 \\ (50.7) \end{gathered}$ | $\begin{gathered} 18.4 \\ (39.3) \end{gathered}$ | $\begin{gathered} 31.6 \\ (47.1) \end{gathered}$ | $\begin{aligned} & 42.1 \\ & (50) \end{aligned}$ | $\begin{gathered} 26.3 \\ (44.6) \end{gathered}$ |
| Kamba | $\begin{gathered} 20.8 \\ (40.7) \end{gathered}$ | $\begin{aligned} & 54.7 \\ & (50) \end{aligned}$ | $\begin{gathered} 24.5 \\ (43.2) \end{gathered}$ | $\begin{gathered} 25.5 \\ (43.8) \end{gathered}$ | $\begin{gathered} 46.2 \\ (50.1) \end{gathered}$ | $\begin{gathered} 28.3 \\ (45.3) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 24 \\ (42.8) \end{gathered}$ | $\begin{gathered} 57.1 \\ (49.6) \end{gathered}$ | $\begin{gathered} 18.8 \\ (39.2) \end{gathered}$ | $\begin{gathered} 26.9 \\ (44.4) \end{gathered}$ | $\begin{gathered} 44.8 \\ (49.8) \end{gathered}$ | $\begin{gathered} 28.2 \\ (45.1) \end{gathered}$ |
| Above Median Education | $\begin{gathered} 28.7 \\ (45.3) \end{gathered}$ | $\begin{gathered} 45 \\ (49.8) \end{gathered}$ | $\begin{gathered} 26.3 \\ (44.1) \end{gathered}$ | $\begin{gathered} 34.3 \\ (47.6) \end{gathered}$ | $\begin{gathered} 42.7 \\ (49.5) \end{gathered}$ | $\begin{gathered} 23 \\ (42.2) \end{gathered}$ |

The number of observations in row 1 shows how often a dictator choice for a game is observed. The other rows show the percentage of choices within the group indicated in the first column selected either a coethnic, remained indifferent or selected a non-coethnic. Standard deviations in parentheses.

### 4.2 Regression Analysis

While the original pre-analysis plan for Kenya 2012 specified multinomial logit estimation for the choose-your-dictator game; we here follow the pre-analysis plans for Tanzania and Kenya 2013, which both specified the ordered logit estimation.

### 4.2.1 Anonymous Chooser

Table 4.2: Anonymous Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.0648 | 0.0771 | 0.192 | 1.156* |
|  | (0.219) | (0.226) | (0.378) | (0.632) |
| Coethnic * National Prime | 0.0908 | 0.117 | 0.132 | -0.893 |
|  | (0.226) | (0.229) | (0.229) | (0.795) |
| Coethnic * Ethnic-Cultural Prime | 0.387* | 0.415* | 0.421* | -1.179 |
|  | (0.221) | (0.226) | (0.225) | (0.946) |
| Coethnic * Political-Competition Prime | 0.0734 | 0.0830 | 0.0970 | -0.753 |
|  | (0.231) | (0.236) | (0.236) | (0.980) |
| Coethnic * 1 (Kikuyu) |  |  | -0.0873 | -0.748 |
|  |  |  | (0.319) | (0.669) |
| Coethnic * 1 (Luo) |  |  | 0.0297 | -1.331* |
|  |  |  | (0.381) | (0.729) |
| Coethnic * 1 (Luhya) |  |  | -0.302 | -1.762** |
|  |  |  | (0.369) | (0.742) |
| Coethnic * 1 (Kamba) |  |  | -0.207 | -1.089 |
|  |  |  | (0.344) | (0.722) |
| Profile 2 |  | -0.221 | -0.220 | -0.186 |
|  |  | (0.275) | (0.276) | (0.281) |
| Profile 3 |  | -0.155 | -0.152 | -0.0927 |
|  |  | (0.264) | (0.265) | (0.270) |
| Profile 4 |  | -0.424 | -0.415 | -0.354 |
|  |  | (0.260) | (0.262) | (0.264) |
| Profile 5 |  | -0.596** | -0.593** | -0.563** |
|  |  | (0.245) | (0.246) | (0.249) |
| Profile 6 |  | -0.184 | -0.181 | -0.137 |
|  |  | (0.258) | (0.260) | (0.267) |
| Profile 7 |  | -0.0906 | -0.0974 | -0.0230 |
|  |  | (0.297) | (0.297) | (0.310) |
| Profile 8 |  | 0.102 | 0.114 | 0.126 |
|  |  | (0.295) | (0.296) | (0.296) |
| Profile 9 |  | 0.0494 | 0.0537 | 0.0877 |
|  |  | (0.279) | (0.278) | (0.288) |
| Profile 10 |  | 0.0252 | 0.0264 | 0.0792 |
|  |  | (0.295) | (0.292) | (0.297) |
| Profile 11 |  | -0.0736 | -0.0897 | -0.0481 |
|  |  | (0.272) | (0.279) | (0.282) |
| Profile 12 |  | -0.0268 | -0.0181 | 0.00867 |
|  |  | (0.247) | (0.248) | (0.256) |
| Coethnic * National Prime * 1(Kamba) |  |  |  | 0.688 |
|  |  |  |  | (0.877) |
| Coethnic * Ethnic-Cultural Prime * 1(Kamba) |  |  |  | 1.710* |
|  |  |  |  | (1.035) |
| Coethnic * Political-Competition Prime * 1(Kamba) |  |  |  | 1.068 |
|  |  |  |  | (1.082) |


| Coethnic * National Prime * 1(Female) |  |  |  | 0.402 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (0.319) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | -0.225 |
|  |  |  |  | (0.316) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | -0.413 |
|  |  |  |  | (0.347) |
| Coethnic * National Prime * 1(Education) |  |  |  | -0.0499 |
|  |  |  |  | (0.0421) |
| Coethnic * Ethnic-Cultural Prime * 1(Education) |  |  |  | 0.0441 |
|  |  |  |  | (0.0425) |
| Coethnic * Political-Competition Prime * 1(Education) |  |  |  | -0.0490 |
|  |  |  |  | (0.0548) |
| Coethnic * National Prime * 1(Kikuyu) |  |  |  | 0.360 |
|  |  |  |  | (0.824) |
| Coethnic * Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | 1.367 |
|  |  |  |  | (0.944) |
| Coethnic * Political-Competition Prime * 1(Kikuyu) |  |  |  | 0.779 |
|  |  |  |  | (1.023) |
| Coethnic * National Prime * 1(Luo) |  |  |  | 1.487 |
|  |  |  |  | (0.933) |
| Coethnic * Ethnic-Cultural Prime * 1(Luo) |  |  |  | 2.145** |
|  |  |  |  | (1.010) |
| Coethnic * Political-Competition Prime * 1(Luo) |  |  |  | 1.806* |
|  |  |  |  | (1.093) |
| Coethnic * National Prime * 1(Luhya) |  |  |  | 1.815** |
|  |  |  |  | (0.898) |
| Coethnic * Ethnic-Cultural Prime * 1(Luhya) |  |  |  | $2.137^{* *}$ |
|  |  |  |  | (1.044) |
| Coethnic * Political-Competition Prime * 1(Luhya) |  |  |  | 1.737 |
|  |  |  |  | (1.074) |
| cut1 | $-1.033^{* * *}$ | $-1.164^{* * *}$ | $-1.163^{* * *}$ | $-1.137^{* * *}$ |
|  | (0.0922) | (0.210) | (0.211) | (0.215) |
| cut2 | $1.237^{* * *}$ | $1.126^{* * *}$ | $1.130^{* * *}$ | $1.185^{* * *}$ |
|  | (0.0967) | (0.215) | (0.217) | (0.221) |
| Observations | 1216 | 1216 | 1216 | 1216 |
| Standard errors in parentheses |  |  |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |  |

Table 4.3: p-values: C1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{C D 1}:$ Coethnic Profile $=0$ | 0.733 | 0.972 |
| $H_{C D 2}:$ National Prime $=0$ | 0.608 | 0.946 |
| $H_{C D 3}:$ Ethnic-Cultural Prime $=0$ | 0.066 | 0.299 |
| $H_{C D 4}:$ Political-Competition (PC) Prime $=0$ | 0.725 | 0.972 |
| $H_{C D 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.148 | 0.476 |
| $H_{C D 6}:$ National Prime $=$ Political-Competition Prime | 0.877 | 0.972 |
| $H_{C D 7}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.117 | 0.431 |
| $H_{C D 8}:$ National = Ethnic-Cultural = PC Prime $=0$ | 0.226 | 0.592 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

Table 4.4: Anonymous Choose-your-dictator, Beliefs

|  | Belief about Dictator's Transfer |  |
| :--- | :---: | :---: |
| $(1)$ | $(2)$ |  |
| Coethnic Profile | 1.720 | 1.720 |
| National Prime | $(1.951)$ | $(1.955)$ |
|  | 4.369 | 4.166 |
| Ethnic-Cultural Prime | $(2.758)$ | $(2.755)$ |
|  | 0.0159 | 0.191 |
| Political-Competition Prime | $(2.726)$ | $(2.709)$ |
|  | 3.831 | 3.756 |
| Coethnic * National Prime | $(2.522)$ | $(2.523)$ |
|  | -2.112 | -2.112 |
| Coethnic * Ethnic-Cultural Prime | $(2.829)$ | $(2.836)$ |
|  | 0.0708 | 0.0708 |
| Coethnic * Political-Competition Prime | $(2.831)$ | $(2.838)$ |
|  | -3.470 | -3.470 |
| 1(Kikuyu) | $(2.748)$ | $(2.754)$ |
|  |  | $5.959^{*}$ |
| 1(Luo) |  | $(3.313)$ |
|  |  | $6.778^{*}$ |
| 1(Luhya) |  | $(3.581)$ |
|  |  | $7.240^{* *}$ |
| 1(Kamba) |  | $(3.558)$ |
|  |  | $6.378^{*}$ |
| Education (demeaned) | $(3.640)$ |  |
| 1(Female) |  | 0.112 |
|  |  | $(0.209)$ |
| Constant |  | 1.629 |
| Observations | $(1.558)$ |  |

[^15]Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 4.5: p-values: CB1

| Null Hypothesis | Regular p-value |
| :---: | :---: |
| $H_{C D 9}$ : Coethnic (CE) Profile $=0$ | 0.380 |
| $H_{C D 10}:$ National Prime $=0$ | 0.104 |
| $H_{C D 11}$ : Ethnic Prime $=0$ | 0.917 |
| $H_{C D 12}$ : Political-Competition (PC) Prime $=0$ | 0.113 |
| $H_{C D 13}$ : National Prime $+($ National Prime $*$ CE $)=0$ | 0.301 |
| $H_{C D 14}:$ Ethnic Prime $+($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.864 |
| $H_{C D 15}:$ PC Prime $+($ PC Prime $* ~ C E) ~=0 ~$ | 0.806 |
| $H_{C D 16}$ : National Prime * $\mathrm{CE}=0$ | 0.458 |
| $H_{C D 17}$ : Ethnic-Cultural Prime $* \mathrm{CE}=0$ | 0.980 |
| $H_{C D 18}$ : PC Prime $*$ CE $=0$ | 0.209 |
| $H_{C D 19}$ : National Prime $=$ Ethnic-Cultural Prime | 0.143 |
| $H_{C D 20}$ : National Prime $=$ PC Prime | 0.849 |
| $H_{C D 21}$ : Ethnic Prime $=$ PC Prime | 0.159 |
| $H_{C D 22}$ : National Prime $+($ National $\operatorname{Pr} * \mathrm{CE})=$ Ethnic Prime $+($ Ethnic $\operatorname{Pr} * \mathrm{CE})$ | 0.391 |
| $H_{C D 24}:$ Ethnic Prime $+($ Ethnic $\operatorname{Pr} * \mathrm{CE})=\mathrm{PC} \operatorname{Prime}+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.933 |
| $H_{C D 23}:$ National Prime $+($ National $\operatorname{Pr} * \mathrm{CE})=\mathrm{PC}$ Prime $+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.467 |
| $H_{C D 25}$ : National Prime * $\mathrm{CE}=$ Ethnic Prime * CE | 0.454 |
| $H_{C D 26}$ : National Prime * $\mathrm{CE}=\mathrm{PC}$ Prime * CE | 0.212 |
| $H_{C D 27}$ : Ethnic-Cultural Prime * $\mathrm{CE}=$ PC Prime * CE | 0.632 |
| $H_{C D 28}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | 0.197 |
| $H_{C D 29}:($ National Pr $* \mathrm{CE})=($ Ethnic-Cultural $\operatorname{Pr} * \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})=0$ | 0.518 |
| $H_{C D 30}$ : All coefficients $=0$ | 0.635 |

[^16]
### 4.2.2 Identified Chooser

Table 4.6: Identified Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.0884 | 0.118 | -0.00509 | 0.0174 |
|  | (0.210) | (0.215) | (0.366) | (0.887) |
| Coethnic * National Prime | 0.221 | 0.250 | 0.253 | 0.526 |
|  | (0.212) | (0.214) | (0.213) | (1.055) |
| Coethnic * Ethnic-Cultural Prime | 0.185 | 0.164 | 0.169 | 0.272 |
|  | (0.228) | (0.227) | (0.227) | (1.131) |
| Coethnic * Political-Competition Prime | 0.210 | 0.210 | 0.210 | -0.188 |
|  | (0.216) | (0.217) | (0.217) | (0.981) |
| Coethnic * 1 (Kikuyu) |  |  | 0.150 | 0.462 |
|  |  |  | (0.299) | (0.896) |
| Coethnic * 1 (Luo) |  |  | 0.142 | -0.0450 |
|  |  |  | (0.361) | (0.970) |
| Coethnic * 1 (Luhya) |  |  | 0.147 | -0.435 |
|  |  |  | (0.354) | (0.959) |
| Coethnic * 1 (Kamba) |  |  | 0.0493 | 0.142 |
|  |  |  | (0.324) | (0.911) |
| Profile 2 |  | 0.314 | 0.320 | 0.312 |
|  |  | (0.275) | (0.277) | (0.281) |
| Profile 3 |  | 0.283 | 0.291 | 0.274 |
|  |  | (0.270) | (0.271) | (0.278) |
| Profile 4 |  | 0.240 | 0.240 | 0.235 |
|  |  | (0.265) | (0.265) | (0.269) |
| Profile 5 |  | 0.200 | 0.197 | 0.149 |
|  |  | (0.306) | (0.306) | (0.312) |
| Profile 6 |  | 0.00343 | 0.0136 | -0.0118 |
|  |  | (0.279) | (0.281) | (0.287) |
| Profile 7 |  | 0.235 | 0.237 | 0.236 |
|  |  | (0.300) | (0.299) | (0.305) |
| Profile 8 |  | 0.459 | 0.460 | 0.456 |
|  |  | (0.309) | (0.311) | (0.316) |
| Profile 9 |  | 0.587* | 0.586* | 0.558* |
|  |  | (0.306) | (0.308) | (0.315) |
| Profile 10 |  | 0.328 | 0.328 | 0.291 |
|  |  | (0.288) | (0.294) | (0.299) |
| Profile 11 |  | 0.631** | $0.633^{* *}$ | $0.634^{* *}$ |
|  |  | (0.284) | (0.283) | (0.283) |
| Profile 12 |  | 0.624* | $0.620^{*}$ | 0.596* |
|  |  | (0.330) | (0.330) | (0.331) |
| Coethnic * National Prime * 1(Kamba) |  |  |  | -0.620 |
|  |  |  |  | (1.100) |
| Coethnic * Ethnic-Cultural Prime * 1(Kamba) |  |  |  | -0.0409 |
|  |  |  |  | (1.193) |
| Coethnic * Political-Competition Prime * 1(Kamba) |  |  |  | 0.375 |
|  |  |  |  | (1.080) |
| Coethnic * National Prime * 1(Female) |  |  |  | 0.305 |
|  |  |  |  | (0.311) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | -0.621* |
|  |  |  |  | (0.354) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | -0.184 |



Standard errors in parentheses

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 4.7: p-values: C2

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{C D 1}:$ Coethnic Profile $=0$ | 0.584 | 0.951 |
| $H_{C D 2}:$ National Prime $=0$ | 0.242 | 0.717 |
| $H_{C D 3}:$ Ethnic-Cultural Prime $=0$ | 0.471 | 0.911 |
| $H_{C D 4}:$ Political-Competition (PC) Prime $=0$ | 0.334 | 0.816 |
| $H_{C D 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.687 | 0.951 |
| $H_{C D 6}:$ National Prime $=$ Political-Competition Prime | 0.841 | 0.964 |
| $H_{C D 7}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.830 | 0.964 |
| $H_{C D 8}:$ National = Ethnic-Cultural $=$ PC Prime $=0$ | 0.681 | 0.951 |

Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

Table 4.8: Identified Choose-your-dictator, Beliefs

|  | Belief about Dictator's Transfer |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Coethnic Profile | 0.800 | 0.800 |
|  | $(1.797)$ | $(1.801)$ |
| National Prime | -0.704 | -0.898 |
|  | $(2.692)$ | $(2.670)$ |
| Ethnic-Cultural Prime | 0.237 | 0.178 |
|  | $(2.647)$ | $(2.628)$ |
| Political-Competition Prime | 0.374 | 0.353 |
|  | $(2.645)$ | $(2.657)$ |
| Coethnic * National Prime | 3.056 | 3.056 |
|  | $(2.756)$ | $(2.763)$ |
| Coethnic * Ethnic-Cultural Prime | 1.906 | 1.906 |
|  | $(2.657)$ | $(2.664)$ |
| Coethnic * Political-Competition Prime | $4.332^{*}$ | $4.332^{*}$ |
|  | $(2.504)$ | $(2.510)$ |
| 1(Kikuyu) |  | -1.701 |
|  |  | $(4.083)$ |
| 1(Luo) |  | 0.428 |
|  |  | $(4.236)$ |
| 1(Luhya) |  | 3.572 |
|  |  | $(4.393)$ |
| 1(Kamba) |  | 1.885 |
|  |  | $(4.272)$ |
| Education (demeaned) | 0.111 |  |
|  |  | $(0.221)$ |
| 1(Female) |  | $3.900^{* *}$ |
| Constant |  | $(1.660)$ |
|  |  | $44.08^{* * *}$ |
| Observations | $4.232)$ |  |

[^17]Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 4.9: p-values: CB2

| Null Hypothesis | Regular p-value |
| :---: | :---: |
| $H_{C D 9}$ : Coethnic (CE) Profile $=0$ | 0.658 |
| $H_{C D 10}:$ National Prime $=0$ | 0.720 |
| $H_{C D 11}$ : Ethnic Prime $=0$ | 0.895 |
| $H_{C D 12}$ : Political-Competition (PC) Prime $=0$ | 0.932 |
| $H_{C D 13}$ : National Prime $+($ National Prime $*$ CE $)=0$ | 0.388 |
| $H_{C D 14}$ : Ethnic Prime $+($ Ethnic-Cultural Prime $*$ CE $)=0$ | 0.354 |
| $H_{C D 15}:$ PC Prime $+($ PC Prime $* \mathrm{CE})=0$ | 0.060 |
| $H_{C D 16}$ : National Prime * $\mathrm{CE}=0$ | 0.270 |
| $H_{C D 17}$ : Ethnic-Cultural Prime $* \mathrm{CE}=0$ | 0.476 |
| $H_{C D 18}$ : PC Prime $*$ CE $=0$ | 0.086 |
| $H_{C D 19}$ : National Prime $=$ Ethnic-Cultural Prime | 0.644 |
| $H_{C D 20}$ : National Prime $=$ PC Prime | 0.680 |
| $H_{C D 21}$ : Ethnic Prime $=$ PC Prime | 0.965 |
| $H_{C D 22}$ : National Prime $+($ National $\operatorname{Pr} * \mathrm{CE})=$ Ethnic Prime $+\left(\right.$ Ethnic Pr $\left.{ }^{*} \mathrm{CE}\right)$ | 0.946 |
| $H_{C D 24}$ : Ethnic Prime $+($ Ethnic $\operatorname{Pr} * \mathrm{CE})=\mathrm{PC} \operatorname{Prime}+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.359 |
| $H_{C D 23}:$ National Prime $+($ National $\operatorname{Pr} * \mathrm{CE})=\mathrm{PC}$ Prime $+(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})$ | 0.328 |
| $H_{C D 25}$ : National Prime ${ }^{*} \mathrm{CE}=$ Ethnic Prime ${ }^{*} \mathrm{CE}$ | 0.689 |
| $H_{C D 26}$ : National Prime * $\mathrm{CE}=$ PC Prime ${ }^{*} \mathrm{CE}$ | 0.358 |
| $H_{C D 27}$ : Ethnic-Cultural Prime $*$ CE $=$ PC Prime * CE | 0.641 |
| $H_{C D 28}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | 0.968 |
| $H_{C D 29}:($ National Pr $* \mathrm{CE})=($ Ethnic-Cultural $\operatorname{Pr} * \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})=0$ | 0.372 |
| $H_{C D 30}$ : All coefficients $=0$ | 0.026 |

[^18]
### 4.2.3 Pooled Choose-your-dictator Game

Table 4.10: Pooled Choose-your-dictator, Ordered Logit

|  | Ordered Choice <br> (1) |
| :---: | :---: |
| Coethnic Profile | 0.0979 |
|  | (0.194) |
| Identified Choice * Coethnic Profile | 0.00340 |
|  | (0.206) |
| Coethnic * National Prime | 0.0929 |
|  | (0.211) |
| Coethnic * Ethnic-Cultural Prime | 0.373* |
|  | (0.208) |
| Coethnic * Political-Competition Prime | 0.0709 |
|  | (0.218) |
| Identified Choice * Coethnic * National Prime | 0.160 |
|  | (0.273) |
| Identified Choice * Coethnic * Ethnic-Cultural Prime | -0.190 |
|  | (0.291) |
| Identified Choice * Coethnic * Political-Competition Prime | 0.152 |
|  | (0.275) |
| Profile 1 | -0.274 |
|  | (0.208) |
| Profile 2 | -0.241 |
|  | (0.210) |
| Profile 3 | -0.228 |
|  | (0.209) |
| Profile 4 | -0.368* |
|  | (0.195) |
| Profile 5 | -0.493** |
|  | (0.209) |
| Profile 6 | -0.385* |
|  | (0.200) |
| Profile 7 | -0.224 |
|  | (0.185) |
| Profile 8 | -0.0134 |
|  | (0.188) |
| Profile 9 | 0.0286 |
|  | (0.181) |
| Profile 10 | -0.123 |
|  | (0.181) |
| Profile 11 | -0.00741 |
|  | (0.171) |
| cut1 | -1.111*** |
|  | (0.139) |
| cut2 | $0.975^{* *}$ |
|  | (0.140) |
| Observations | 2432 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |

Table 4.11: p-values: CYDPool

| Null Hypothesis | Regular p-value |
| :---: | :---: |
| $H_{C D 31}$ : Identified Choice $*$ Coethnic Profile $=0$ | 0.987 |
| $H_{C D 32}$ : Identified ${ }^{*}$ National Prime $*$ Coethnic $=0$ | 0.559 |
| $H_{C D 33}$ : Identified $*$ Ethnic-Cultural Prime $*$ Coethnic $=0$ | 0.514 |
| $H_{C D 34}:$ Identified $*$ Political-Competition (PC) Prime $*$ Coethnic $=0$ | 0.580 |
| $H_{C D 35}:($ National Prime $=$ Ethnic-Cultural Prime) $*$ Identified $*$ Coethnic | 0.199 |
| $H_{C D 36}:($ National Prime $=$ PC Prime) $*$ Identified $*$ Coethnic | 0.977 |
| $H_{C D 37}:($ Ethnic-Cultural Prime $=$ PC Prime) $*$ Identified $*$ Coethnic | 0.209 |
| $H_{C D 38}$ : Identified ${ }^{*}$ Coethnic $*($ National $=$ Ethnic-Cultural $=$ PC Prime $)=0$ | 0.542 |

[^19]
# Appendix E - Part 2 <br> Results for the Election Round Pre-analysis Plan 

## Contents

1 Summary Statistics ..... 4
2 Dictator Game: analysis within Election period ..... 7
2.1 Summary Statistics and Distributions ..... 7
2.1.1 Anonymous Dictator Game ..... 9
2.1.2 Non-coethnic Dictator Game ..... 10
2.1.3 Coethnic Dictator Game ..... 10
2.1.4 Pooled Dictator Game ..... 11
2.2 Regression Analysis ..... 14
2.2.1 Anonymous Dictator Game ..... 14
2.2.2 Non-coethnic Dictator Game ..... 16
2.2.3 Coethnic Dictator Game ..... 19
2.2.4 Pooled Dictator Game ..... 22
3 Public-good Game: analysis within Election period ..... 29
3.1 Summary Statistics and Distributions ..... 29
3.1.1 Anonymous Public-good Game ..... 30
3.1.2 Mixed Public-good Game ..... 33
3.1.3 Coethnic Public-good Game ..... 36
3.1.4 Pooled Public-good Game ..... 39
3.2 Regression Analysis ..... 40
3.2.1 Anonymous Public-good Game ..... 40
3.2.2 Mixed Public-good Game ..... 47
3.2.3 Coethnic Public-good Game ..... 56
3.2.4 Pooled Public-good Game ..... 63
4 Choose-your-dictator Game: analysis within Election period ..... 72
4.1 Summary Statistics ..... 72
4.2 Regression Analysis ..... 73
4.2.1 Anonymous Chooser ..... 73
4.2.2 Identified Chooser ..... 78
4.2.3 Pooled Choose-your-dictator Game ..... 83
5 Implicit Association Test ..... 85
5.1 Ethnic IAT ..... 85
5.2 National IAT ..... 87
6 Anonymous Games: Global Average Treatment Effect ..... 89
6.1 Anonymous Dictator Game ..... 89
6.2 Anonymous Public-good Game ..... 90
7 Kenya versus Tanzania: Cross-country Analysis ..... 92
7.1 Anonymous Dictator game ..... 92
7.2 Anonymous Public-good game ..... 94
8 Kenya 2012 vs Kenya 2013: Election Comparison ..... 98
8.1 Eifert et al: Ethnic Identification ..... 98
8.2 Dictator Game ..... 100
8.2.1 Anonymous Dictator Game ..... 100
8.2.2 Coethnic Dictator Game ..... 102
8.2.3 Pooled Dictator Game ..... 104
8.3 Public-good Game: Contributions ..... 106
8.3.1 Anonymous Public-good Game ..... 106
8.3.2 Mixed Public-good Game ..... 109
8.3.3 Coethnic Public-good Game ..... 112
8.3.4 Pooled Public-good Game ..... 115
8.4 Choose-your-Dictator Game ..... 121
8.4.1 Anonymous Choose-your-Dictator Game ..... 121
8.4.2 Identified Choose your Dictator Game ..... 123
8.4.3 Pooled Choose your Dictator Game ..... 125
9 Political Attitudes ..... 127
9.1 Kenya 2013 only ..... 127
9.2 Kenya 2012 versus Kenya 2013 ..... 131
10 Global Analysis: full specifications ..... 135
10.1 Dictator Game ..... 135
10.1.1 Anonymous Dictator Game ..... 135
10.1.2 Coethnic Dictator Game ..... 137
10.1.3 Non-coethnic Dictator Game ..... 139
10.1.4 Pooled Dictator Game ..... 140
10.2 Public-good Game ..... 143
10.2.1 Anonymous Public-good Game ..... 143
10.2.2 Mixed Public-good Game ..... 147
10.2.3 Coethnic Public-good Game ..... 151
10.2.4 Pooled Public-good Game ..... 155
10.3 Choose-your-dictator Game ..... 161
10.3.1 Anonymous Chooser ..... 161
10.3.2 Identified Chooser ..... 163
10.3.3 Pooled Choose-your-dictator ..... 165
11 Robustness: Analysis with Kamba ..... 167
11.1 Dictator Game ..... 167
11.1.1 Non-coethnic Dictator Game ..... 167
11.1.2 Coethnic Dictator Game ..... 169
11.1.3 Pooled Dictator Game ..... 171
11.2 Public-good Game ..... 173
11.2.1 Mixed Public-good Game ..... 173
11.2.2 Coethnic Public-good Game ..... 180
11.2.3 Pooled Public-good Game ..... 186
11.3 Choose-your-dictator Game ..... 190
11.3.1 Anonymous Choose-your-dictator ..... 190
11.3.2 Identified Choose-your-dictator ..... 193
11.3.3 Pooled Choose-your-dictator ..... 195
11.4 Kenya 2012 vs. Kenya 2013 ..... 197
11.4.1 Dictator Game ..... 197
11.4.2 Public-good Game ..... 200
11.4.3 Choose-your-Dictator Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

1 Summary Statistics
Table 1.1: Balance across treatment and control groups

|  | Full Sample | Control | National Prime | Ethnic-Cultural Prime | Political-Competition Prime | Ethnic-Political Prime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Observations | 754 | 150 | 152 | 151 | 150 | 151 |
| Female (\%) | $\begin{gathered} 66.3 \\ (47.3) \end{gathered}$ | $\begin{gathered} 59.3 \\ (49.3) \end{gathered}$ | $\begin{gathered} 63.2 \\ (48.4) \end{gathered}$ | $\begin{gathered} 70.2 \\ (45.9) \end{gathered}$ | $\begin{gathered} 72 \\ (45.1) \end{gathered}$ | $\begin{gathered} 66.9 \\ (47.2) \end{gathered}$ |
| Age | $\begin{gathered} 33.3 \\ (10.9) \end{gathered}$ | $\begin{gathered} 32.7 \\ (10.6) \end{gathered}$ | $\begin{gathered} 33.5 \\ (11.6) \end{gathered}$ | $\begin{gathered} 32.8 \\ (10.1) \end{gathered}$ | $\begin{gathered} 33.6 \\ (10.9) \end{gathered}$ | $\begin{gathered} 33.6 \\ (11.1) \end{gathered}$ |
| Years Education | $\begin{gathered} 9.55 \\ (2.99) \end{gathered}$ | $\begin{gathered} 9.95 \\ (3.24) \end{gathered}$ | $\begin{aligned} & 9.59 \\ & (3.2) \end{aligned}$ | $\begin{gathered} 9.48 \\ (2.61) \end{gathered}$ | $\begin{gathered} 9.3 \\ (2.75) \end{gathered}$ | $\begin{gathered} 9.42 \\ (3.08) \end{gathered}$ |
| Kikuyu (\%) | $\begin{gathered} 29.3 \\ (45.5) \end{gathered}$ | $\begin{gathered} 25.3 \\ (43.6) \end{gathered}$ | $\begin{gathered} 28.9 \\ (45.5) \end{gathered}$ | $\begin{gathered} 36.4 \\ (48.3) \end{gathered}$ | $\begin{gathered} 26 \\ (44) \end{gathered}$ | $\begin{gathered} 29.8 \\ (45.9) \end{gathered}$ |
| Luo (\%) | $\begin{gathered} 20.8 \\ (40.6) \end{gathered}$ | $\begin{gathered} 21.3 \\ (41.1) \end{gathered}$ | $\begin{gathered} 22.4 \\ (41.8) \end{gathered}$ | $\begin{gathered} 15.2 \\ (36.1) \end{gathered}$ | $\begin{gathered} 24.7 \\ (43.3) \end{gathered}$ | $\begin{gathered} 20.5 \\ (40.5) \end{gathered}$ |
| Luhya (\%) | $\begin{gathered} 23.2 \\ (42.2) \end{gathered}$ | $\begin{gathered} 28 \\ (45.1) \end{gathered}$ | $\begin{gathered} 20.4 \\ (40.4) \end{gathered}$ | $\begin{gathered} 22.5 \\ (41.9) \end{gathered}$ | $\begin{gathered} 26.7 \\ (44.4) \end{gathered}$ | $\begin{aligned} & 18.5 \\ & (39) \end{aligned}$ |
| Kisii (\%) | $\begin{gathered} 6.9 \\ (25.4) \end{gathered}$ | $\begin{gathered} 10 \\ (30.1) \end{gathered}$ | $\begin{aligned} & 7.24 \\ & (26) \end{aligned}$ | $\begin{gathered} 5.3 \\ (22.5) \end{gathered}$ | $\begin{aligned} & 3.33 \\ & (18) \end{aligned}$ | $\begin{gathered} 8.61 \\ (28.1) \end{gathered}$ |
| Kamba (\%) | $\begin{gathered} 19.6 \\ (39.7) \end{gathered}$ | $\begin{gathered} 14.7 \\ (35.5) \end{gathered}$ | $\begin{gathered} 21.1 \\ (40.9) \end{gathered}$ | $\begin{gathered} 20.5 \\ (40.5) \end{gathered}$ | $\begin{gathered} 19.3 \\ (39.6) \end{gathered}$ | $\begin{gathered} 22.5 \\ (41.9) \end{gathered}$ |

The table analyzes the balance across treatment and control groups. The first row shows the number of individuals for each of the groups specified at the top. The other rows show
the average within a group for the variables in the first column. Whenever so indicated, the values are in percentage terms.

Table 1.2: Joint significance of treatment indicators

|  | P-value of F-test |
| :--- | :---: |
| 1(Female) | 0.128 |
| Age | 0.901 |
| Years Education | 0.393 |
| 1(Kikuyu) | 0.227 |
| 1(Luo) | 0.349 |
| 1(Luhya) | 0.241 |
| 1(Kisii) | 0.163 |
| 1(Kamba) | 0.492 |

The table shows the p-values from the F-test for the joint significance of the treatment indicators in a regression of the row-variable on the three treatment indicators.

## 2 Dictator Game: analysis within Election period

### 2.1 Summary Statistics and Distributions

Table 2.1: Dictator Game: Summary Statistics

|  | Anonymous DG | Non-coethnic DG | Coethnic DG |
| :---: | :---: | :---: | :---: |
| Number of Observations | 754 | 751 | 757 |
| Individuals | 754 | 745 | 748 |
| Full Sample | $\begin{gathered} 36 \\ (22.1) \end{gathered}$ | $\begin{gathered} 35.6 \\ (24.8) \end{gathered}$ | $\begin{gathered} 36 \\ (24) \end{gathered}$ |
| Control | $\begin{gathered} 35.1 \\ (23.2) \end{gathered}$ | $\begin{gathered} 31.9 \\ (21.7) \end{gathered}$ | $\begin{gathered} 35.1 \\ (23.2) \end{gathered}$ |
| National Prime | $\begin{gathered} 36.5 \\ (21.8) \end{gathered}$ | $\begin{gathered} 34.3 \\ (25.2) \end{gathered}$ | $\begin{gathered} 34.9 \\ (24.4) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{aligned} & 33.7 \\ & (22) \end{aligned}$ | $\begin{gathered} 37.7 \\ (25.1) \end{gathered}$ | $\begin{gathered} 36.9 \\ (23.9) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 37.1 \\ (22.6) \end{gathered}$ | $\begin{gathered} 36 \\ (24.5) \end{gathered}$ | $\begin{gathered} 36.7 \\ (23.8) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 36.5 \\ (21.8) \end{gathered}$ | $\begin{gathered} 38 \\ (26.9) \end{gathered}$ | $\begin{gathered} 36.3 \\ (24.7) \end{gathered}$ |
| Female | $\begin{gathered} 37.1 \\ (21.9) \end{gathered}$ | $\begin{gathered} 36.6 \\ (24.9) \end{gathered}$ | $\begin{gathered} 37.3 \\ (24.2) \end{gathered}$ |
| Male | $\begin{gathered} 33.7 \\ (22.5) \end{gathered}$ | $\begin{gathered} 33.7 \\ (24.3) \end{gathered}$ | $\begin{gathered} 33.4 \\ (23.3) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 37 \\ (21.9) \end{gathered}$ | $\begin{gathered} 37.5 \\ (24.8) \end{gathered}$ | $\begin{aligned} & 37.9 \\ & (24) \end{aligned}$ |
| Median Education or Above | $\begin{gathered} 35.1 \\ (22.4) \end{gathered}$ | $\begin{gathered} 33.8 \\ (24.6) \end{gathered}$ | $\begin{gathered} 34.2 \\ (23.8) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 38.2 \\ (21.1) \end{gathered}$ | $\begin{gathered} 36.1 \\ (22.2) \end{gathered}$ | $\begin{gathered} 36.3 \\ (22.4) \end{gathered}$ |
| Luo | $\begin{gathered} 32.1 \\ (23.7) \end{gathered}$ | $\begin{gathered} 34.5 \\ (26.4) \end{gathered}$ | $\begin{gathered} 33.4 \\ (25.8) \end{gathered}$ |
| Luhya | $\begin{gathered} 36.1 \\ (20.7) \end{gathered}$ | $\begin{gathered} 35.5 \\ (23.7) \end{gathered}$ | $\begin{gathered} 36.8 \\ (23.2) \end{gathered}$ |
| Kisii | $\begin{gathered} 39.1 \\ (23.6) \end{gathered}$ | $\begin{gathered} 34.8 \\ (24.4) \end{gathered}$ | $\begin{gathered} 35.8 \\ (22.8) \end{gathered}$ |
| Kamba | $\begin{gathered} 35.5 \\ (22.9) \end{gathered}$ | $\begin{gathered} 36.5 \\ (27.8) \end{gathered}$ | $\begin{gathered} 37.6 \\ (25.3) \end{gathered}$ |

The number of observations in row 1 shows how often a transfer for this dictator game is observed. Row 2 indicates how many individuals are observed making such a choice. Aside from rows 1 and 2 , the table shows average transfers in the anonymous and coethnic dictator game for the group specified in the first column. Standard deviations in parentheses.

### 2.1.1 Anonymous Dictator Game

Figure 2.1: Distribution of Play - Full Sample


Table 2.2: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.430 | 0.318 |
| Ethnic-Cultural Prime | 0.292 | 0.948 |
| Political-Competition Prime | 0.527 | 0.574 |
| Ethnic-Political Prime | 0.130 | 0.825 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 2.2: Distribution of Play by Control and Treatment Groups


### 2.1.2 Non-coethnic Dictator Game

Table 2.3: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.425 | 0.836 |
| Ethnic-Cultural Prime | 0.286 | 0.203 |
| Political-Competition Prime | 0.015 | 0.560 |
| Ethnic-Political Prime | 0.029 | 0.017 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the controt group.

### 2.1.3 Coethnic Dictator Game

Table 2.4: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.552 | 0.998 |
| Ethnic-Cultural Prime | 0.039 | 0.833 |
| Political-Competition Prime | 0.133 | 0.974 |
| Ethnic-Political Prime | 0.228 | 0.996 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 2.3: Distribution of Play - Full Sample


### 2.1.4 Pooled Dictator Game

Table 2.5: Comparison of distribution across dictator games

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| Anonymous versus Non-coethnic | 0.000 | 0.000 |
| Anonymous versus Coethnic | 0.006 | 0.005 |
| Non-coethnic versus Coethnic | 0.981 | 0.977 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 2.4: Non-coethnic Dictator, Distribution of Play by Control and Treatment Groups


Figure 2.5: Distribution of Play - Full Sample


Figure 2.6: Coethnic Dictator, Distribution of Play by Control and Treatment Groups


Figure 2.7: Distribution of Play - Full Sample


Density estimated with an Epanechnnikov kernel.

### 2.2 Regression Analysis

### 2.2.1 Anonymous Dictator Game

Table 2.6: Anonymous Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 0.393 | 0.303 | 0.0712 |
|  | (2.551) | (2.547) | (5.917) |
| Ethnic-Cultural Prime | -2.398 | -3.111 | -1.440 |
|  | (2.555) | (2.563) | (6.248) |
| Political-Competition Prime | 0.947 | 0.839 | -1.422 |
|  | (2.559) | (2.566) | (6.515) |
| Ethnic-Political Prime | 0.370 | -0.0420 | -0.475 |
|  | (2.555) | (2.558) | (5.926) |
| 1(Female) |  | $3.532^{*}$ | 4.006 |
|  |  | (1.801) | (3.973) |
| Years of Education (demeaned) |  | -0.223 | -0.534 |
|  |  | (0.292) | (0.565) |
| 1(Kikuyu) |  | -2.353 | -1.142 |
|  |  | (3.449) | (5.543) |
| 1(Luo) |  | -8.514** | -9.676* |
|  |  | (3.549) | (5.719) |
| 1(Luhya) |  | -5.187 | -7.390 |
|  |  | (3.602) | (5.535) |
| 1(Kamba) |  | -5.438 | -5.844 |
|  |  | (3.619) | (3.695) |
| National Prime * 1(Female) |  |  | -3.142 |
|  |  |  | (5.556) |
| National Prime * Education |  |  | 0.377 |
|  |  |  | (0.711) |
| National Prime * 1 (Kikuyu) |  |  | -2.849 |
|  |  |  | (7.013) |
| National Prime * 1(Luo) |  |  | 6.495 |
|  |  |  | (7.394) |
| National Prime * 1 (Luhya) |  |  | 6.198 |
|  |  |  | (7.501) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -2.981 |
|  |  |  | (5.664) |
| Ethnic-Cultural Prime * Education |  |  | 0.272 |
|  |  |  | (0.856) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | 0.776 |
|  |  |  | (6.934) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -5.126 |
|  |  |  | (7.945) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | 2.105 |
|  |  |  | (7.327) |
| Political-Competition Prime * 1(Female) |  |  | 4.742 |
|  |  |  | (5.762) |
| Political-Competition Prime * Education |  |  | 0.762 |
|  |  |  | (0.761) |
| Political-Competition Prime * 1(Kikuyu) |  |  | 0.0641 |
|  |  |  | (7.351) |
| Political-Competition Prime * ${ }^{\text {(Luo) }}$ |  |  | -5.958 |
|  |  |  | (7.546) |


| Political-Competition Prime * 1(Luhya) |  |  | 1.065 |
| :---: | :---: | :---: | :---: |
|  |  |  | (7.285) |
| Ethnic-Political Prime * 1(Female) |  |  | 0.329 |
|  |  |  | (5.552) |
| Ethnic-Political Prime * Education |  |  | 0.0403 |
|  |  |  | (0.703) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -5.580 |
|  |  |  | (6.903) |
| Ethnic-Political Prime * 1(Luo) |  |  | 7.397 |
|  |  |  | (7.409) |
| Ethnic-Political Prime * 1(Luhya) |  |  | -0.422 |
|  |  |  | (7.430) |
| Constant | $36.12^{* * *}$ | $38.78^{* * *}$ | $39.24{ }^{* * *}$ |
|  | (1.810) | (3.480) | (4.760) |
| Observations | 754 | 754 | 754 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 2.7: p-values: D1

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{D 1}:$ National Prime $=0$ | 0.878 | 0.994 |
| $H_{D 2}:$ Ethnic-Cultural Prime $=0$ | 0.348 | 0.843 |
| $H_{D 3}:$ Political-Competition (PC) Prime $=0$ | 0.712 | 0.983 |
| $H_{D 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.885 | 0.994 |
| $H_{D 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.273 | 0.773 |
| $H_{D 6}:$ National Prime $=$ Political-Competition Prime | 0.828 | 0.994 |
| $H_{D 7}:$ National Prime $=$ Ethnic-Political Prime | 0.993 | 0.994 |
| $H_{D 8}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.191 | 0.653 |
| $H_{D 9}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.278 | 0.773 |
| $H_{D 10}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.822 | 0.994 |
| $H_{D 11}:$ National = Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.717 | 0.983 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 2.2.2 Non-coethnic Dictator Game

Table 2.8: Non-Coethnic Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 2.823 | 2.635 | 13.08 |
|  | (3.123) | (3.139) | (10.24) |
| Ethnic-Cultural Prime | 2.550 | 2.346 | 1.911 |
|  | (3.112) | (3.128) | (11.88) |
| Political-Competition Prime | 3.557 | 3.313 | 1.734 |
|  | (3.073) | (3.101) | (12.83) |
| Ethnic-Political Prime | 4.807 | 4.661 | 10.74 |
|  | (3.117) | (3.134) | (9.793) |
| 1(Female) |  | 0.594 | -3.697 |
|  |  | (2.237) | (4.903) |
| Years of Education (demeaned) |  | -0.319 | -0.283 |
|  |  | (0.354) | (0.676) |
| 1(Kikuyu) |  | 2.562 | 11.66 |
|  |  | (6.473) | (9.468) |
| 1(Luo) |  | -0.166 | 6.465 |
|  |  | (3.965) | (7.635) |
| 1(Luhya) |  | 0.357 | 4.700 |
|  |  | (4.052) | (7.636) |
| National Prime * 1(Female) |  |  | 0.718 |
|  |  |  | (7.034) |
| National Prime * Education |  |  | -0.0675 |
|  |  |  | (0.849) |
| National Prime * 1(Kikuyu) |  |  | -17.09 |
|  |  |  | (11.21) |
| National Prime * 1(Luo) |  |  | -14.28 |
|  |  |  | (11.43) |
| National Prime * 1 (Luhya) |  |  | -3.360 |
|  |  |  | (11.83) |
| Ethnic-Cultural Prime * 1(Female) |  |  | 3.686 |
|  |  |  | (6.960) |
| Ethnic-Cultural Prime * Education |  |  | -0.981 |
|  |  |  | (1.033) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -3.068 |
|  |  |  | (12.75) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 3.964 |
|  |  |  | (13.33) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -6.608 |
|  |  |  | (13.20) |
| Political-Competition Prime * 1(Female) |  |  | 8.680 |
|  |  |  | (7.093) |
| Political-Competition Prime * Education |  |  | -0.0417 |
|  |  |  | (0.890) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -5.158 |
|  |  |  | (13.91) |
| Political-Competition Prime * 1(Luo) |  |  | -8.451 |
|  |  |  | (14.11) |
| Political-Competition Prime * 1(Luhya) |  |  | -0.524 |
|  |  |  | (14.08) |
| Ethnic-Political Prime * 1(Female) |  |  | 9.537 |
|  |  |  | (6.918) |


| Ethnic-Political Prime * Education |  |  | 0.686 |
| :---: | :---: | :---: | :---: |
|  |  |  | (0.841) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -20.17* |
|  |  |  | (10.85) |
| Ethnic-Political Prime * 1(Luo) |  |  | -10.48 |
|  |  |  | (11.07) |
| Ethnic-Political Prime * 1(Luhya) |  |  | -7.742 |
|  |  |  | (11.57) |
| Profile 2 | 6.700 | 6.484 | 6.814 |
|  | (4.597) | (4.619) | (4.722) |
| Profile 3 | 1.567 | 1.392 | 1.561 |
|  | (4.451) | (4.481) | (4.667) |
| Profile 4 | 1.676 | 1.497 | 1.787 |
|  | (4.577) | (4.611) | (4.722) |
| Profile 5 | 8.093* | 7.980* | 8.561* |
|  | (4.443) | (4.465) | (4.574) |
| Profile 6 | 8.288* | 8.553* | 8.763* |
|  | (4.559) | (4.587) | (4.708) |
| Profile 7 | 2.325 | 0 | 0 |
|  | (5.499) | (.) | (.) |
| Profile 8 | 6.825 | 4.054 | 5.166 |
|  | (5.018) | (5.727) | (5.812) |
| Profile 9 | 11.55** | 8.622 | 9.332 |
|  | (5.432) | (6.104) | (6.231) |
| Profile 10 | 1.029 | -1.597 | 0.0233 |
|  | (5.545) | (6.194) | (6.365) |
| Profile 11 | 3.805 | 1.200 | 2.037 |
|  | (5.098) | (5.778) | (5.866) |
| Profile 12 | 7.327 | 4.957 | 4.942 |
|  | (5.033) | (5.701) | (5.785) |
| Constant | $27.73{ }^{* * *}$ | $27.51^{* * *}$ | $23.73{ }^{* * *}$ |
|  | (3.959) | (5.248) | (7.806) |
| Observations | 593 | 593 | 593 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 2.9: p-values: D2

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{D 1}:$ National Prime $=0$ | 0.353 | 0.827 |
| $H_{D 2}:$ Ethnic-Cultural Prime $=0$ | 0.341 | 0.827 |
| $H_{D 3}:$ Political-Competition (PC) Prime $=0$ | 0.262 | 0.753 |
| $H_{D 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.111 | 0.460 |
| $H_{D 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.983 | 0.980 |
| $H_{D 6}:$ National Prime $=$ Political-Competition Prime | 0.852 | 0.979 |
| $H_{D 7}:$ National Prime $=$ Ethnic-Political Prime | 0.508 | 0.921 |
| $H_{D 8}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.870 | 0.980 |
| $H_{D 9}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.522 | 0.921 |
| $H_{D 10}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.631 | 0.950 |
| $H_{D 11}:$ National = Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.605 | 0.945 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 2.2.3 Coethnic Dictator Game

Table 2.10: Coethnic Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 0.810 | 0.595 | 18.19* |
|  | (3.086) | (3.090) | (10.12) |
| Ethnic-Cultural Prime | 0.306 | -0.0624 | 12.61 |
|  | (3.086) | (3.091) | (11.54) |
| Political-Competition Prime | 3.095 | 2.880 | 9.605 |
|  | (3.063) | (3.077) | (12.73) |
| Ethnic-Political Prime | 1.648 | 1.433 | 20.53** |
|  | (3.122) | (3.128) | (9.666) |
| 1(Female) |  | 2.670 | 3.320 |
|  |  | (2.217) | (4.863) |
| Years of Education (demeaned) |  | -0.412 | -0.840 |
|  |  | (0.347) | (0.664) |
| 1(Kikuyu) |  | 2.030 | 14.47 |
|  |  | (6.441) | (9.007) |
| 1(Luo) |  | -3.560 | 6.246 |
|  |  | (3.942) | (7.551) |
| 1(Luhya) |  | -1.167 | 12.01 |
|  |  | (4.028) | (7.544) |
| National Prime * 1(Female) |  |  | -2.095 |
|  |  |  | (6.931) |
| National Prime * Education |  |  | 0.522 |
|  |  |  | (0.840) |
| National Prime * 1(Kikuyu) |  |  | -23.55** |
|  |  |  | (11.11) |
| National Prime * 1 (Luo) |  |  | -15.01 |
|  |  |  | (11.35) |
| National Prime * 1(Luhya) |  |  | -14.47 |
|  |  |  | (11.73) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -3.543 |
|  |  |  | (6.941) |
| Ethnic-Cultural Prime * Education |  |  | -0.632 |
|  |  |  | (1.017) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -12.18 |
|  |  |  | (12.46) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -6.592 |
|  |  |  | (12.99) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -16.51 |
|  |  |  | (12.94) |
| Political-Competition Prime * 1(Female) |  |  | -0.516 |
|  |  |  | (7.010) |
| Political-Competition Prime * Education |  |  | 0.487 |
|  |  |  | (0.875) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -6.473 |
|  |  |  | (13.79) |
| Political-Competition Prime * 1 (Luo) |  |  | -6.081 |
|  |  |  | (13.97) |
| Political-Competition Prime * 1(Luhya) |  |  | -10.34 |
|  |  |  | (13.92) |
| Ethnic-Political Prime * 1(Female) |  |  | 2.269 |
|  |  |  | (6.909) |


| Ethnic-Political Prime * Education |  |  | 1.273 |
| :---: | :---: | :---: | :---: |
|  |  |  | (0.830) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -25.40** |
|  |  |  | (10.76) |
| Ethnic-Political Prime * 1(Luo) |  |  | -20.34* |
|  |  |  | (10.94) |
| Ethnic-Political Prime * 1(Luhya) |  |  | -24.38** |
|  |  |  | (11.42) |
| Profile 2 | -1.761 | -1.505 | -0.919 |
|  | (5.811) | (5.804) | (5.860) |
| Profile 3 | -4.081 | -4.195 | -3.133 |
|  | (5.766) | (5.758) | (5.832) |
| Profile 4 | -1.565 | -1.005 | 0.581 |
|  | (6.508) | (6.515) | (6.608) |
| Profile 5 | -6.078 | -6.104 | -5.616 |
|  | (5.685) | (5.678) | (5.756) |
| Profile 6 | -7.548 | -7.738 | -7.614 |
|  | (5.953) | (5.948) | (6.043) |
| Profile 7 | -5.212 | -1.558 | -2.035 |
|  | (5.442) | (4.519) | (4.608) |
| Profile 8 | -4.546 | 0 | 0 |
|  | (5.457) | (.) | (.) |
| Profile 9 | -7.140 | -2.830 | -3.261 |
|  | (5.353) | (4.418) | (4.528) |
| Profile 10 | -5.864 | -1.862 | -3.514 |
|  | (5.354) | (4.409) | (4.516) |
| Profile 11 | -1.872 | 2.447 | 2.347 |
|  | (5.311) | (4.328) | (4.403) |
| Profile 12 | -5.649 | -1.678 | -2.788 |
|  | (5.279) | (4.331) | (4.413) |
| Constant | $39.02^{* * *}$ | $35.38^{* * *}$ | $24.89^{* * *}$ |
|  | (4.820) | (5.011) | (7.348) |
| Observations | 593 | 593 | 593 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 2.11: p-values: D3

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{D 1}:$ National Prime $=0$ | 0.849 | 0.990 |
| $H_{D 2}:$ Ethnic-Cultural Prime $=0$ | 0.858 | 0.990 |
| $H_{D 3}:$ Political-Competition (PC) Prime $=0$ | 0.325 | 0.843 |
| $H_{D 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.568 | 0.963 |
| $H_{D 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.991 | 0.992 |
| $H_{D 6}:$ National Prime $=$ Political-Competition Prime | 0.436 | 0.914 |
| $H_{D 7}:$ National Prime $=$ Ethnic-Political Prime | 0.708 | 0.988 |
| $H_{D 8}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.429 | 0.914 |
| $H_{D 9}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.700 | 0.988 |
| $H_{D 10}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.690 | 0.988 |
| $H_{D 11}:$ National = Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.874 | 0.990 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 2.2.4 Pooled Dictator Game

Table 2.12: Pooled Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Dictator Game | -4.283 | -4.088 | -3.908 |
|  | (3.350) | (3.316) | (3.329) |
| Non-coethnic Dictator Game | $-5.878^{*}$ | -5.677* | -5.535 |
|  | (3.439) | (3.414) | (3.427) |
| National Prime | 0.324 | 0.110 | 0.116 |
|  | (2.826) | (2.812) | (2.816) |
| Ethnic-Cultural Prime | -3.259 | -3.777 | -3.770 |
|  | (2.866) | (2.848) | (2.853) |
| Political-Competition Prime | -0.564 | -0.721 | -0.732 |
|  | (2.812) | (2.783) | (2.787) |
| Ethnic-Political Prime | -1.605 | -1.927 | -1.915 |
|  | (2.810) | (2.786) | (2.790) |
| Coethnic Dictator Game * National Prime | 0.511 | 0.456 | 0.477 |
|  | (3.215) | (3.217) | (3.221) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 3.900 | 3.854 | 3.833 |
|  | (3.284) | (3.285) | (3.291) |
| Coethnic Dictator Game * Political-Competition Prime | 3.838 | 3.857 | 3.827 |
|  | (3.115) | (3.117) | (3.121) |
| Coethnic Dictator Game * Ethnic-Political Prime | 3.546 | 3.544 | 3.531 |
|  | (3.263) | (3.266) | (3.269) |
| Non-coethnic Dictator Game * National Prime | 2.389 | 2.305 | 3.053 |
|  | (3.224) | (3.226) | (3.806) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime | 6.023* | 5.968* | 9.260** |
|  | (3.234) | (3.234) | (4.065) |
| Non-coethnic Dictator Game * Political-Competition Prime | $3.993$ | $3.999$ | 2.731 |
|  | $(3.052)$ | $(3.054)$ | (3.677) |
| Non-coethnic Dictator Game * Ethnic-Political Prime | 6.364** | 6.354** | 5.637 |
|  | (3.194) | (3.194) | (3.728) |
| 1(Female) |  | 2.195 | 2.179 |
|  |  | (1.748) | (1.748) |
| Years of Education (demeaned) |  | -0.294 | -0.288 |
|  |  | (0.256) | (0.256) |
| 1(Kikuyu) |  | -0.614 | -0.486 |
|  |  | (3.015) | (3.021) |
| 1(Luo) |  | -3.983 | -3.766 |
|  |  | (3.190) | (3.191) |
| 1(Luhya) |  | -1.806 | -1.550 |
|  |  | (3.147) | (3.159) |
| 2nd ID Dict * Non-coethnic * National Prime |  |  | -1.664 |
|  |  |  | (4.557) |
| 2nd ID Dict * Non-coethnic * Ethnic-Cultural Prime |  |  | -7.111 |
|  |  |  | (4.754) |
| 2nd ID Dict * Non-coethnic * Political-Competition Prime |  |  | 2.294 |
|  |  |  | (4.094) |
| 2nd ID Dict * Non-coethnic * Ethnic-Political Prime |  |  | 1.799 |
|  |  |  | (4.987) |
| Profile 2 | 3.652 | 3.334 | 3.168 |
|  | (3.629) | (3.605) | (3.621) |
| Profile 3 | -0.490 | -0.776 | -0.853 |
|  | (3.496) | (3.469) | (3.465) |


| Profile 4 | -0.00884 | -0.157 | -0.261 |
| :--- | :---: | :---: | :---: |
|  | $(3.541)$ | $(3.498)$ | $(3.473)$ |
| Profile 5 | 2.806 | 2.547 | 2.549 |
|  | Profile 6 | $(3.439)$ | $(3.405)$ |
|  | 2.461 | 2.512 | $2.417)$ |
| Profile 7 | $(3.658)$ | $(3.654)$ | $(3.663)$ |
| Profile 8 | 0.110 | -0.220 | -0.0325 |
|  | $(3.476)$ | $(3.442)$ | $(3.430)$ |
| Profile 9 | 2.257 | 2.141 | 1.875 |
|  | $(3.393)$ | $(3.347)$ | $(3.386)$ |
| Profile 10 | 1.985 | 1.789 | 1.662 |
|  | $(3.429)$ | $(3.380)$ | $(3.400)$ |
| Profile 11 | -0.647 | -0.790 | -1.009 |
| Profile 12 | $(3.533)$ | $(3.495)$ | $(3.543)$ |
|  | 2.697 | 2.562 | 2.373 |
| Constant | $(3.520)$ | $(3.526)$ | $(3.531)$ |
|  | 1.687 | 1.543 | 0.945 |
| Observations | $(3.391)$ | $(3.386)$ | $(3.461)$ |

Standard errors in parentheses
Standard errors are clustered at the individual level.
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 2.13: p-values: Pooled Dictator

| Null Hypothesis | Individual Hypothesis p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{D 13}:$ Coethnic Dictator Game $=0$ | 0.201 | 0.337 |
| $H_{D 14}:$ Non-Coethnic Dictator Game $=0$ | 0.088 | 0.196 |
| $H_{D 15}:$ Coethnic $=$ Non-Coethnic Dictator Game | 0.388 | 0.389 |
| $H_{D 16}:$ Coethnic $=$ Non-Coethnic Dictator Game $=0$ | 0.220 | 0.337 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 2.14: p-values: DGPool

| Null Hypothesis | Regular p-value |
| :---: | :---: |
| $H_{D 17}:$ Coethnic DG * National Prime $=0$ | 0.874 |
| $H_{D 18}$ : Coethnic DG * Ethnic-Cultural Prime $=0$ | 0.236 |
| $H_{D 19}$ : Coethnic DG * Political-Competition (PC) Prime $=0$ | 0.218 |
| $H_{D 20}$ : Coethnic DG * Ethnic-Political Prime $=0$ | 0.278 |
| $H_{D 21}$ : Non-coethnic DG $*$ National Prime $=0$ | 0.459 |
| $H_{D 22}$ : Non-coethnic DG $*$ Ethnic-Cultural Prime $=0$ | 0.063 |
| $H_{D 23}:$ Non-coethnic DG * Political-Competition (PC) Prime $=0$ | 0.191 |
| $H_{D 24}:$ Non-coethnic DG $*$ Ethnic-Political Prime $=0$ | 0.047 |
| $H_{D 25}$ : National Prime * (Coethnic DG $=$ Non-coethnic DG) | 0.478 |
| $H_{D 26}$ : Ethnic-Cultural Prime * (Coethnic DG $=$ Non-coethnic DG) | 0.484 |
| $H_{D 27}$ : Political-Competition Prime * (Coethnic DG $=$ Non-coethnic DG) | 0.953 |
| $H_{D 28}$ : Ethnic-Political Prime * (Coethnic DG $=$ Non-coethnic DG) | 0.287 |
| $H_{D 29}:($ National Prime $=$ Ethnic-Cultural Prime) $*$ Coethnic DG | 0.270 |
| $H_{D 30}:($ National Prime $=$ Political-Competition Prime) $*$ Coethnic DG | 0.246 |
| $H_{D 31}:($ National Prime $=$ Ethnic-Political Prime) $*$ Coethnic DG | 0.317 |
| $H_{D 32}$ : (Ethnic-Cultural Prime $=$ Political-Competition Prime) $*$ Coethnic DG | 0.983 |
| $H_{D 33}:($ Ethnic-Cultural Prime $=$ Ethnic-Political Prime) $*$ Coethnic DG | 0.910 |
| $H_{D 34}:($ Political-Competition Prime $=$ Ethnic-Political Prime) $*$ Coethnic DG | 0.921 |
| $H_{D 35}:($ National Prime $=$ Ethnic-Cultural Prime) $*$ Non-coethnic DG | 0.247 |
| $H_{D 36}:($ National Prime $=$ Political-Competition Prime) $*$ Non-coethnic DG | 0.588 |
| $H_{D 37}:($ National Prime $=$ Ethnic-Political Prime) $*$ Non-coethnic DG | 0.200 |
| $H_{D 38}:($ Ethnic-Cultural Prime $=$ Political-Competition Prime) $*$ Non-coethnic DG | 0.493 |
| $H_{D 39}:($ Ethnic-Cultural Prime $=$ Ethnic-Political Prime) $*$ Non-coethnic DG | 0.914 |
| $H_{D 40}:($ Political-Competition Prime $=$ Ethnic-Political Prime) $*$ Non-coethnic DG | 0.419 |
| $H_{D 41}:$ Coethnic DG * (National $=$ Ethnic $=\mathrm{PC}=$ Ethnic-Political Prime $)=0$ | 0.547 |
| $H_{D 42}$ : Non-coethnic DG * (National $=$ Ethnic $=\mathrm{PC}=$ Ethnic-Political Prime $)=0$ | 0.243 |
| $H_{D 43}$ : All priming coefficients for the identified games $=0$ | 0.570 |
| $H_{D 44}:$ All coefficients $=0$ | 0.828 |

Table 2.15: Pooled Dictator Game

|  | Dictator Transfer (Percent of Endowment) <br> (1) |
| :---: | :---: |
| Coethnic Dictator Game | -1.767 |
|  | (4.770) |
| Non-coethnic Dictator Game | -43.11*** |
|  | (8.615) |
| National Prime | -4.253 |
|  | (8.824) |
| Ethnic-Cultural Prime | -6.503 |
|  | (10.86) |
| Political-Competition Prime | -7.745 |
|  | (11.73) |
| Ethnic-Political Prime | -17.59* |
|  | (9.795) |
| Coethnic Dictator Game * National Prime | 21.58** |
|  | (10.07) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 17.22* |
|  | (8.994) |
| Coethnic Dictator Game * Political-Competition Prime | 15.12 |
|  | (11.48) |
| Coethnic Dictator Game * Ethnic-Political Prime | $36.96{ }^{* * *}$ |
|  | (11.05) |
| Non-coethnic Dictator Game * National Prime | 15.08 |
|  | (10.12) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime | 6.573 |
|  | (8.683) |
| Non-coethnic Dictator Game * Political-Competition Prime | 8.065 |
|  | (11.12) |
| Non-coethnic Dictator Game * Ethnic-Political Prime | 26.40 ** |
|  | (11.69) |
| Coethnic Dictator Game * female | -4.539 |
|  | (5.082) |
| Coethnic Dictator Game * educ_ydm | -1.024 |
|  | (0.684) |
| Coethnic Dictator Game * Kikuyu | 0 |
|  | (.) |
| Coethnic Dictator Game * Luo | $24.02^{* * *}$ |
|  | (8.724) |
| Coethnic Dictator Game * Luhya | $26.96{ }^{* * *}$ |
|  | (8.878) |
| Non-coethnic Dictator Game * female | -11.31** |
|  | (5.289) |
| Non-coethnic Dictator Game * educ_ydm | -0.339 |
|  | (0.709) |
| Non-coethnic Dictator Game * Kikuyu | $65.36{ }^{* * *}$ |
|  | (16.32) |
| Non-coethnic Dictator Game * Luo | 49.66*** |
|  | (9.319) |
| Non-coethnic Dictator Game * Luhya | $45.23^{* * *}$ |
|  | (8.372) |
| Non-coethnic Dictator Game * Kisii | 27.26*** |
|  | (6.208) |
| 1(Female) | 6.201 |


|  | (4.230) |
| :---: | :---: |
| Years of Education (demeaned) | -0.158 |
|  | (0.570) |
| 1(Kikuyu) | -8.085 |
|  | (7.791) |
| 1(Luo) | -17.04** |
|  | (8.203) |
| 1(Luhya) | -14.61* |
|  | (7.779) |
| National Prime * 1(Female) | -3.681 |
|  | (6.647) |
| National Prime * Education | 0.235 |
|  | (0.881) |
| National Prime * 1(Kikuyu) | 1.599 |
|  | (10.02) |
| National Prime * 1 (Luo) | 11.10 |
|  | (10.54) |
| National Prime * 1(Luhya) | 11.28 |
|  | (10.18) |
| Ethnic-Cultural Prime * 1(Female) | -7.194 |
|  | (6.051) |
| Ethnic-Cultural Prime * Education | -0.574 |
|  | (0.935) |
| Ethnic-Cultural Prime * 1(Kikuyu) | 8.392 |
|  | (11.47) |
| Ethnic-Cultural Prime * 1(Luo) | 3.332 |
|  | (12.33) |
| Ethnic-Cultural Prime * 1(Luhya) | 9.416 |
|  | (12.03) |
| Political-Competition Prime * 1(Female) | -1.522 |
|  | (6.127) |
| Political-Competition Prime * Education | -0.0143 |
|  | (0.638) |
| Political-Competition Prime * 1(Kikuyu) | 10.15 |
|  | (12.54) |
| Political-Competition Prime * 1(Luo) | 5.134 |
|  | (12.82) |
| Political-Competition Prime * 1(Luhya) | 11.58 |
|  | (12.39) |
| Ethnic-Political Prime * 1(Female) | 0.313 |
|  | (6.063) |
| Ethnic-Political Prime * Education | 0.197 |
|  | (0.665) |
| Ethnic-Political Prime * 1(Kikuyu) | 11.47 |
|  | (10.64) |
| Ethnic-Political Prime * 1(Luo) | $24.24 * *$ |
|  | (11.16) |
| Ethnic-Political Prime * 1(Luhya) | 17.36 |
|  | (11.22) |
| Coethnic Dictator Game * National Prime * female | 3.217 |
|  | (7.370) |
| Coethnic Dictator Game * National Prime * educ_ydm | 0.739 |
|  | (1.126) |
| Coethnic Dictator Game * National Prime * Kikuyu | -24.88** |
|  | (11.28) |


| Coethnic Dictator Game * National Prime * Luo | -27.50** |
| :---: | :---: |
|  | (11.27) |
| Coethnic Dictator Game * National Prime * Luhya | -25.70** |
|  | (11.70) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * female | 6.658 |
|  | (6.500) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * educ_ydm | 0.566 |
|  | (1.115) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * Kikuyu | -20.13** |
|  | (10.07) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * Luo | -10.53 |
|  | (11.31) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * Luhya | $-25.67^{* *}$ |
|  | (10.44) |
| Coethnic Dictator Game * Political-Competition Prime * female | 3.216 |
|  | (6.662) |
| Coethnic Dictator Game * Political-Competition Prime * educ_ydm | 1.205 |
|  | (1.014) |
| Coethnic Dictator Game * Political-Competition Prime * Kikuyu | -15.28 |
|  | (12.79) |
| Coethnic Dictator Game * Political-Competition Prime * Luo | -10.80 |
|  | (12.65) |
| Coethnic Dictator Game * Political-Competition Prime * Luhya | -20.88 |
|  | (12.89) |
| Coethnic Dictator Game * Ethnic-Political Prime * female | 3.407 |
|  | (7.253) |
| Coethnic Dictator Game * Ethnic-Political Prime * educ_ydm | 1.575 |
|  | (1.027) |
| Coethnic Dictator Game * Ethnic-Political Prime * Kikuyu | $-36.07^{* * *}$ |
|  | (12.45) |
| Coethnic Dictator Game * Ethnic-Political Prime * Luo | $-44.17^{* * *}$ |
|  | (12.48) |
| Coethnic Dictator Game * Ethnic-Political Prime * Luhya | -41.05*** |
|  | (14.21) |
| Non-coethnic Dictator Game * National Prime * female | 5.859 |
|  | (7.386) |
| Non-coethnic Dictator Game * National Prime * educ_ydm | -0.0671 |
|  | (1.196) |
| Non-coethnic Dictator Game * National Prime * Kikuyu | $-17.54$ |
|  | $(10.80)$ |
| Non-coethnic Dictator Game * National Prime * Luo | -24.63** |
|  | (11.36) |
| Non-coethnic Dictator Game * National Prime * Luhya | -13.05 |
|  | (11.55) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * female | 11.62* |
|  | (6.629) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * educ_ydm | 0.151 |
|  | (1.215) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * Kikuyu | -10.06 |
|  | (9.474) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * Luo | 1.137 |
|  | (12.12) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * Luhya | -13.99 |
|  | (9.311) |
| Non-coethnic Dictator Game * Political-Competition Prime * female | 12.07* |


|  | (7.138) |
| :---: | :---: |
| Non-coethnic Dictator Game * Political-Competition Prime * educ_ydm | 0.312 |
|  | (1.067) |
| Non-coethnic Dictator Game * Political-Competition Prime * Kikuyu | -15.46 |
|  | (12.03) |
| Non-coethnic Dictator Game * Political-Competition Prime * Luo | -13.80 |
|  | (13.05) |
| Non-coethnic Dictator Game * Political-Competition Prime * Luhya | -11.93 |
|  | (12.23) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * female | 10.46 |
|  | (7.856) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * educ_ydm | 0.547 |
|  | (1.055) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * Kikuyu | -30.80** |
|  | (12.87) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * Luo | -33.26** |
|  | (13.71) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * Luhya | -24.82* |
|  | (14.39) |
| Profile 2 | 3.661 |
|  | (3.619) |
| Profile 3 | -0.558 |
|  | (3.546) |
| Profile 4 | 0.822 |
|  | (3.502) |
| Profile 5 | 2.990 |
|  | (3.403) |
| Profile 6 | 2.506 |
|  | (3.682) |
| Profile 7 | -20.88** |
|  | (9.442) |
| Profile 8 | -17.61* |
|  | (9.332) |
| Profile 9 | -18.21** |
|  | (9.199) |
| Profile 10 | -21.51** |
|  | (9.533) |
| Profile 11 | -17.47* |
|  | (9.394) |
| Profile 12 | -19.33** |
|  | (9.395) |
| Constant | 44.99*** |
|  | (7.273) |
| Observations | 1792 |
| Standard errors in parentheses |  |
| Standard errors are clustered at the individual level. ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |

## 3 Public-good Game: analysis within Election period

### 3.1 Summary Statistics and Distributions

Table 3.1: Public-good Game: Summary Statistics

|  | Anonymous PG | Mixed PG | Homogeneous PG |
| :---: | :---: | :---: | :---: |
| Number of Observations | 754 | 739 | 751 |
| Full Sample | $\begin{gathered} 43 \\ (28.8) \end{gathered}$ | $\begin{gathered} 45.6 \\ (30.8) \end{gathered}$ | $\begin{gathered} 43.1 \\ (30.5) \end{gathered}$ |
| Control | $\begin{gathered} 41.5 \\ (28.8) \end{gathered}$ | $\begin{gathered} 43.4 \\ (29.9) \end{gathered}$ | $\begin{gathered} 42.4 \\ (29.9) \end{gathered}$ |
| National Prime | $\begin{gathered} 45.5 \\ (28.7) \end{gathered}$ | $\begin{gathered} 47.9 \\ (31.9) \end{gathered}$ | $\begin{aligned} & 44.1 \\ & (31) \end{aligned}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 44.2 \\ (30.5) \end{gathered}$ | $\begin{gathered} 44.9 \\ (32.1) \end{gathered}$ | $\begin{gathered} 43.2 \\ (30.3) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 43.8 \\ (27.6) \end{gathered}$ | $\begin{gathered} 46.2 \\ (30.4) \end{gathered}$ | $\begin{gathered} 43.9 \\ (30.5) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 39.8 \\ (28.6) \end{gathered}$ | $\begin{gathered} 45.4 \\ (30.3) \end{gathered}$ | $\begin{gathered} 41.7 \\ (31.3) \end{gathered}$ |
| Female | $\begin{gathered} 43.3 \\ (27.9) \end{gathered}$ | $\begin{gathered} 45.5 \\ (30.3) \end{gathered}$ | $\begin{gathered} 42.3 \\ (29.9) \end{gathered}$ |
| Male | $\begin{gathered} 42.3 \\ (30.6) \end{gathered}$ | $\begin{gathered} 45.6 \\ (31.8) \end{gathered}$ | $\begin{gathered} 44.5 \\ (31.6) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 47 \\ (27.5) \end{gathered}$ | $\begin{gathered} 45.9 \\ (28.6) \end{gathered}$ | $\begin{gathered} 45 \\ (29.2) \end{gathered}$ |
| Median Education or Above | $\begin{gathered} 39.4 \\ (29.5) \end{gathered}$ | $\begin{gathered} 45.3 \\ (32.7) \end{gathered}$ | $\begin{gathered} 41.3 \\ (31.6) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 42.9 \\ (27.1) \end{gathered}$ | $\begin{gathered} 44.7 \\ (29.1) \end{gathered}$ | $\begin{gathered} 41.8 \\ (29.1) \end{gathered}$ |
| Luo | $\begin{gathered} 40.1 \\ (30.7) \end{gathered}$ | $\begin{gathered} 44.6 \\ (32.6) \end{gathered}$ | $\begin{gathered} 40.9 \\ (32.5) \end{gathered}$ |
| Luhya | $\begin{aligned} & 44.5 \\ & (29) \end{aligned}$ | $\begin{gathered} 45.7 \\ (30.4) \end{gathered}$ | $\begin{gathered} 48.1 \\ (30.4) \end{gathered}$ |
| Kisii | $\begin{gathered} 45.1 \\ (29.2) \end{gathered}$ | $\begin{gathered} 54.7 \\ (30.9) \end{gathered}$ | $\begin{gathered} 50.3 \\ (29.4) \end{gathered}$ |
| Kamba | $\begin{gathered} 43.3 \\ (29.2) \end{gathered}$ | $\begin{gathered} 44.5 \\ (31.6) \end{gathered}$ | $\begin{gathered} 38.8 \\ (30.2) \end{gathered}$ |

### 3.1.1 Anonymous Public-good Game

Table 3.2: Anonymous Public-good Game

|  | Contribution | Belief of others' contribution | Contribution - Belief |
| :---: | :---: | :---: | :---: |
| Number of Observations | 754 | 754 | 754 |
| Full Sample | $\begin{gathered} 43 \\ (28.8) \end{gathered}$ | $\begin{gathered} 48.8 \\ (22.7) \end{gathered}$ | $\begin{aligned} & -5.84 \\ & (31.4) \end{aligned}$ |
| Control | $\begin{gathered} 41.5 \\ (28.8) \end{gathered}$ | $\begin{aligned} & 48.9 \\ & (23) \end{aligned}$ | $\begin{gathered} -7.39 \\ (30.4) \end{gathered}$ |
| National Prime | $\begin{gathered} 45.5 \\ (28.7) \end{gathered}$ | $\begin{gathered} 46.9 \\ (23.2) \end{gathered}$ | $\begin{aligned} & -1.36 \\ & (30.2) \end{aligned}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 44.2 \\ (30.5) \end{gathered}$ | $\begin{gathered} 48.4 \\ (21.5) \end{gathered}$ | $\begin{gathered} -4.27 \\ (34.2) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 43.8 \\ (27.6) \end{gathered}$ | $\begin{gathered} 49.6 \\ (22.2) \end{gathered}$ | $\begin{gathered} -5.83 \\ (29.9) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 39.8 \\ (28.6) \end{gathered}$ | $\begin{gathered} 50.1 \\ (23.5) \end{gathered}$ | $\begin{aligned} & -10.4 \\ & (31.6) \end{aligned}$ |
| Female | $\begin{gathered} 43.3 \\ (27.9) \end{gathered}$ | $\begin{gathered} 47.9 \\ (22.3) \end{gathered}$ | $\begin{aligned} & -4.62 \\ & (31.3) \end{aligned}$ |
| Male | $\begin{gathered} 42.3 \\ (30.6) \end{gathered}$ | $\begin{gathered} 50.6 \\ (23.4) \end{gathered}$ | $\begin{gathered} -8.23 \\ (31.4) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 47 \\ (27.5) \end{gathered}$ | $\begin{gathered} 46.2 \\ (22.1) \end{gathered}$ | $\begin{gathered} .829 \\ (28.5) \end{gathered}$ |
| Median Education or Above | $\begin{gathered} 39.4 \\ (29.5) \end{gathered}$ | $\begin{aligned} & 51.1 \\ & (23) \end{aligned}$ | $\begin{aligned} & -11.7 \\ & (32.6) \end{aligned}$ |
| Kikuyu | $\begin{gathered} 42.9 \\ (27.1) \end{gathered}$ | $\begin{gathered} 46.6 \\ (21.2) \end{gathered}$ | $\begin{gathered} -3.71 \\ (30.7) \end{gathered}$ |
| Luo | $\begin{gathered} 40.1 \\ (30.7) \end{gathered}$ | $\begin{gathered} 51.3 \\ (23.7) \end{gathered}$ | $\begin{gathered} -11.1 \\ (33.5) \end{gathered}$ |
| Luhya | $\begin{aligned} & 44.5 \\ & (29) \end{aligned}$ | $\begin{gathered} 48.3 \\ (24.7) \end{gathered}$ | $\begin{aligned} & -3.78 \\ & (31.3) \end{aligned}$ |
| Kisii | $\begin{gathered} 45.1 \\ (29.2) \end{gathered}$ | $\begin{gathered} 49.8 \\ (22.4) \end{gathered}$ | $\begin{aligned} & -4.71 \\ & (27.5) \end{aligned}$ |
| Kamba | $\begin{gathered} 43.3 \\ (29.2) \end{gathered}$ | $\begin{gathered} 49.5 \\ (21.2) \end{gathered}$ | $\begin{gathered} -6.24 \\ (31.2) \end{gathered}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.1: Distribution of Play - Full Sample


Table 3.3: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.773 | 0.937 |
| Ethnic-Cultural Prime | 0.311 | 0.281 |
| Political-Competition Prime | 0.768 | 0.977 |
| Ethnic-Political Prime | 0.854 | 1.000 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 3.2: Anonymous Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.2 Mixed Public-good Game

Table 3.4: Mixed Public-good Game

|  | Contribution | Belief of others' contribution | Contribution - Belief |
| :---: | :---: | :---: | :---: |
| Number of Observations | 739 | 739 | 739 |
| Full Sample | $\begin{gathered} 45.6 \\ (30.8) \end{gathered}$ | $\begin{gathered} 53.5 \\ (24.5) \end{gathered}$ | $\begin{gathered} -7.94 \\ (35.3) \end{gathered}$ |
| Control | $\begin{gathered} 43.4 \\ (29.3) \end{gathered}$ | $\begin{gathered} 51.3 \\ (24.8) \end{gathered}$ | $\begin{gathered} -7.9 \\ (32.7) \end{gathered}$ |
| National Prime | $\begin{gathered} 47.9 \\ (31.9) \end{gathered}$ | $\begin{gathered} 53 \\ (26.3) \end{gathered}$ | $\begin{gathered} -5.15 \\ (36.4) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 44.9 \\ (32.1) \end{gathered}$ | $\begin{gathered} 54.2 \\ (23.4) \end{gathered}$ | $\begin{aligned} & -9.33 \\ & (36.2) \end{aligned}$ |
| Political-Competition Prime | $\begin{gathered} 46.2 \\ (30.4) \end{gathered}$ | $\begin{gathered} 54.1 \\ (22.5) \end{gathered}$ | $\begin{gathered} -7.83 \\ (34.9) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 45.4 \\ (30.3) \end{gathered}$ | $\begin{gathered} 54.9 \\ (25.6) \end{gathered}$ | $\begin{aligned} & -9.52 \\ & (36.2) \end{aligned}$ |
| Female | $\begin{gathered} 45.5 \\ (30.3) \end{gathered}$ | $\begin{gathered} 51.8 \\ (24.1) \end{gathered}$ | $\begin{aligned} & -6.28 \\ & (34.8) \end{aligned}$ |
| Male | $\begin{gathered} 45.6 \\ (31.8) \end{gathered}$ | $\begin{gathered} 56.8 \\ (25.1) \end{gathered}$ | $\begin{gathered} -11.2 \\ (36.1) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 45.9 \\ (28.6) \end{gathered}$ | $\begin{gathered} 50.5 \\ (24.5) \end{gathered}$ | $\begin{gathered} -4.53 \\ (32.1) \end{gathered}$ |
| Median Education or Above | $\begin{gathered} 45.3 \\ (32.7) \end{gathered}$ | $\begin{gathered} 56.3 \\ (24.2) \end{gathered}$ | $\begin{gathered} -11 \\ (37.7) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 44.7 \\ (29.1) \end{gathered}$ | $\begin{gathered} 52.7 \\ (23.1) \end{gathered}$ | $\begin{gathered} -8.01 \\ (34.3) \end{gathered}$ |
| Luo | $\begin{gathered} 44.6 \\ (32.6) \end{gathered}$ | $\begin{gathered} 58 \\ (25.6) \end{gathered}$ | $\begin{gathered} -13.4 \\ (38) \end{gathered}$ |
| Luhya | $\begin{gathered} 45.7 \\ (30.4) \end{gathered}$ | $\begin{gathered} 49.5 \\ (25.6) \end{gathered}$ | $\begin{gathered} -3.75 \\ (33.9) \end{gathered}$ |
| Kisii | $\begin{gathered} 54.7 \\ (30.9) \end{gathered}$ | $\begin{gathered} 54.1 \\ (22.9) \end{gathered}$ | $\begin{gathered} .583 \\ (34.9) \end{gathered}$ |
| Kamba | $\begin{gathered} 44.5 \\ (31.6) \end{gathered}$ | $\begin{gathered} 54.8 \\ (23.9) \end{gathered}$ | $\begin{aligned} & -10.3 \\ & (34.6) \end{aligned}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.3: Distribution of Play - Full Sample


Table 3.5: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.386 | 0.677 |
| Ethnic-Cultural Prime | 0.648 | 0.988 |
| Political-Competition Prime | 0.712 | 0.994 |
| Ethnic-Political Prime | 0.392 | 0.996 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 3.4: Mixed Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.3 Coethnic Public-good Game

Table 3.6: Homogeneous Public-good Game

|  | Contribution | Belief of others' contribution | Contribution - Belief |
| :---: | :---: | :---: | :---: |
| Number of Observations | 751 | 751 | 751 |
| Full Sample | $\begin{gathered} 43.1 \\ (30.5) \end{gathered}$ | $\begin{gathered} 53.5 \\ (24.5) \end{gathered}$ | $\begin{gathered} -10.4 \\ (34.4) \end{gathered}$ |
| Control | $\begin{gathered} 42.4 \\ (29.9) \end{gathered}$ | $\begin{aligned} & 53.2 \\ & (26) \end{aligned}$ | $\begin{gathered} -10.9 \\ (33.3) \end{gathered}$ |
| National Prime | $\begin{aligned} & 44.1 \\ & (31) \end{aligned}$ | $\begin{gathered} 50 \\ (23.6) \end{gathered}$ | $\begin{aligned} & -5.84 \\ & (33.1) \end{aligned}$ |
| Ethnic-Cultural Prime | $\begin{gathered} 43.2 \\ (30.3) \end{gathered}$ | $\begin{gathered} 55 \\ (22.5) \end{gathered}$ | $\begin{gathered} -11.8 \\ (33.3) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} 43.9 \\ (30.5) \end{gathered}$ | $\begin{gathered} 52.3 \\ (24.2) \end{gathered}$ | $\begin{gathered} -8.38 \\ (35.6) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 41.7 \\ (31.3) \end{gathered}$ | $\begin{gathered} 57.2 \\ (25.5) \end{gathered}$ | $\begin{gathered} -15.5 \\ (36.3) \end{gathered}$ |
| Female | $\begin{gathered} 42.3 \\ (29.9) \end{gathered}$ | $\begin{gathered} 51.6 \\ (24.2) \end{gathered}$ | $\begin{gathered} -9.27 \\ (33.9) \end{gathered}$ |
| Male | $\begin{gathered} 44.5 \\ (31.6) \end{gathered}$ | $\begin{gathered} 57.2 \\ (24.7) \end{gathered}$ | $\begin{gathered} -12.7 \\ (35.3) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 45 \\ (29.2) \end{gathered}$ | $\begin{gathered} 51.4 \\ (24.3) \end{gathered}$ | $\begin{aligned} & -6.4 \\ & (31) \end{aligned}$ |
| Median Education or Above | $\begin{gathered} 41.3 \\ (31.6) \end{gathered}$ | $\begin{gathered} 55.5 \\ (24.5) \end{gathered}$ | $\begin{gathered} -14.1 \\ (36.9) \end{gathered}$ |
| Kikuyu | $\begin{gathered} 41.8 \\ (29.1) \end{gathered}$ | $\begin{gathered} 52.7 \\ (24.2) \end{gathered}$ | $\begin{gathered} -10.9 \\ (33.7) \end{gathered}$ |
| Luo | $\begin{gathered} 40.9 \\ (32.5) \end{gathered}$ | $\begin{gathered} 57 \\ (25.7) \end{gathered}$ | $\begin{aligned} & -16.1 \\ & (37.5) \end{aligned}$ |
| Luhya | $\begin{gathered} 48.1 \\ (30.4) \end{gathered}$ | $\begin{gathered} 51.4 \\ (25.1) \end{gathered}$ | $\begin{gathered} -3.33 \\ (32.2) \end{gathered}$ |
| Kisii | $\begin{gathered} 50.3 \\ (29.4) \end{gathered}$ | $\begin{gathered} 60.4 \\ (22.7) \end{gathered}$ | $\begin{aligned} & -10.1 \\ & (32.3) \end{aligned}$ |
| Kamba | $\begin{gathered} 38.8 \\ (30.2) \end{gathered}$ | $\begin{gathered} 51.5 \\ (22.6) \end{gathered}$ | $\begin{gathered} -12.7 \\ (33.9) \end{gathered}$ |

The first row shows the number of observations for each variable. The other rows show the average value for the group specified in the first column. Standard deviations in parentheses.

Figure 3.5: Distribution of Play - Full Sample


Table 3.7: Comparison of distribution in treatment group versus control group

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| National Prime | 0.721 | 1.000 |
| Ethnic-Cultural Prime | 0.556 | 0.973 |
| Political-Competition Prime | 0.614 | 0.994 |
| Ethnic-Political Prime | 0.834 | 0.994 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

Figure 3.6: Coethnic Public-good, Distribution of Play by Control and Treatment Groups


### 3.1.4 Pooled Public-good Game

Figure 3.7: Distribution of Play - Full Sample


Table 3.8: Comparison of distribution across public-good games

|  | Pearson Chi2 p-value | Corrected Ksmirnov p-value |
| :--- | :---: | :---: |
| Anonymous versus Mixed | 0.408 | 0.383 |
| Anonymous versus Coethnic | 0.676 | 0.652 |
| Mixed versus Coethnic | 0.824 | 0.806 |

The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming group and the control group.

### 3.2 Regression Analysis

### 3.2.1 Anonymous Public-good Game

Table 3.9: Anonymous Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 3.982 | 3.839 | 9.491 |
|  | (3.320) | (3.326) | (11.83) |
| Ethnic-Cultural Prime | 2.617 | 2.369 | 21.02 |
|  | (3.326) | (3.347) | (13.20) |
| Political-Competition Prime | 2.244 | 2.059 | 0.971 |
|  | (3.331) | (3.350) | (15.07) |
| Ethnic-Political Prime | -1.765 | -2.141 | 2.300 |
|  | (3.326) | (3.340) | (11.35) |
| 1(Female) |  | -0.693 | 3.228 |
|  |  | (2.352) | (5.184) |
| Years of Education (demeaned) |  | $-1.011^{* * *}$ | -0.773 |
|  |  | (0.381) | (0.736) |
| 1(Kikuyu) |  | -4.565 | -3.603 |
|  |  | (4.504) | (8.675) |
| 1(Luo) |  | $-6.257$ | 0.927 |
|  |  | $(4.634)$ | (8.838) |
| 1(Luhya) |  | -3.942 | -0.650 |
|  |  | (4.703) | (8.746) |
| 1(Kamba) |  | -4.159 | -8.112 |
|  |  | (4.725) | (9.555) |
| National Prime * 1(Female) |  |  | -4.139 |
|  |  |  | (7.257) |
| National Prime * Education |  |  | 0.730 |
|  |  |  | (0.926) |
| National Prime * 1(Kikuyu) |  |  | 3.821 |
|  |  |  | (13.10) |
| National Prime * 1 (Luo) |  |  | -13.76 |
|  |  |  | (13.38) |
| National Prime * 1(Luhya) |  |  | -8.810 |
|  |  |  | (13.70) |
| National Prime * 1(Kamba) |  |  | 4.846 |
|  |  |  | (13.92) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -8.261 |
|  |  |  | (7.408) |
| Ethnic-Cultural Prime * Education |  |  | -1.983* |
|  |  |  | (1.133) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -14.95 |
|  |  |  | (14.20) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -16.95 |
|  |  |  | (14.85) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -18.25 |
|  |  |  | (14.73) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -3.317 |
|  |  |  | (15.27) |
| Political-Competition Prime * 1(Female) |  |  | 3.529 |
|  |  |  | (7.603) |
| Political-Competition Prime * Education |  |  | -0.152 |
|  |  |  | (0.991) |


| Political-Competition Prime * 1(Kikuyu) |  |  | 3.540 |
| :---: | :---: | :---: | :---: |
|  |  |  | (16.35) |
| Political-Competition Prime * 1(Luo) |  |  | -14.60 |
|  |  |  | (16.57) |
| Political-Competition Prime * 1(Luhya) |  |  | 2.026 |
|  |  |  | (16.48) |
| Political-Competition Prime * 1(Kamba) |  |  | 1.462 |
|  |  |  | (17.23) |
| Ethnic-Political Prime * 1(Female) |  |  | -8.565 |
|  |  |  | (7.284) |
| Ethnic-Political Prime * Education |  |  | -0.469 |
|  |  |  | (0.919) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -1.951 |
|  |  |  | (12.68) |
| Ethnic-Political Prime * 1(Luo) |  |  | 4.517 |
|  |  |  | (13.02) |
| Ethnic-Political Prime * 1(Luhya) |  |  | 0.0513 |
|  |  |  | (13.38) |
| Ethnic-Political Prime * 1 (Kamba) |  |  | 5.978 |
|  |  |  | (13.57) |
| Constant | 41.53*** | 46.56*** | 42.02*** |
|  | (2.355) | (4.545) | (7.703) |
| Observations | 754 | 754 | 754 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 3.10: Anonymous Public-good Game

|  | Contribution minus Belief (Percent of Endowment) <br> (1) <br> (2) <br> (3) |  |  |
| :---: | :---: | :---: | :---: |
| National Prime | 6.029* | 5.530 | 21.70* |
|  | (3.602) | (3.565) | (12.73) |
| Ethnic-Cultural Prime | 3.117 | 2.067 | 17.16 |
|  | (3.608) | (3.587) | (14.20) |
| Political-Competition Prime | 1.561 | 0.814 | -0.0413 |
|  | (3.614) | (3.591) | (16.21) |
| Ethnic-Political Prime | -2.981 | -3.959 | 20.93* |
|  | (3.608) | (3.580) | (12.21) |
| 1(Female) |  | 0.791 | 3.493 |
|  |  | (2.520) | (5.578) |
| Years of Education (demeaned) |  | $-1.805^{* * *}$ | -0.750 |
|  |  | (0.408) | (0.792) |
| 1(Kikuyu) |  | -3.296 | 9.607 |
|  |  | (4.827) | (9.334) |
| 1(Luo) |  | -8.799* | 7.675 |
|  |  | (4.967) | (9.510) |
| 1(Luhya) |  | -5.328 | 3.725 |
|  |  | (5.040) | (9.411) |
| 1(Kamba) |  | -5.916 | -2.833 |
|  |  | (5.065) | (10.28) |
| National Prime * 1(Female) |  |  | -5.375 |
|  |  |  | (7.808) |
| National Prime * Education |  |  | -0.944 |
|  |  |  | (0.996) |
| National Prime * 1(Kikuyu) |  |  | -10.61 |
|  |  |  | (14.10) |
| National Prime * 1 (Luo) |  |  | -24.81* |
|  |  |  | (14.40) |
| National Prime * 1 (Luhya) |  |  | -13.58 |
|  |  |  | (14.74) |
| National Prime * 1(Kamba) |  |  | -5.695 |
|  |  |  | (14.98) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -1.683 |
|  |  |  | (7.971) |
| Ethnic-Cultural Prime * Education |  |  | -1.651 |
|  |  |  | (1.219) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -20.32 |
|  |  |  | (15.28) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -21.72 |
|  |  |  | (15.98) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -15.81 |
|  |  |  | (15.85) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 0.592 |
|  |  |  | (16.43) |
| Political-Competition Prime * 1(Female) |  |  | 3.860 |
|  |  |  | (8.180) |
| Political-Competition Prime * Education |  |  | -1.436 |
|  |  |  | (1.066) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -6.481 |
|  |  |  | (17.60) |
| Political-Competition Prime * 1(Luo) |  |  | -10.90 |


| Political-Competition Prime * 1(Luhya) |  |  | (17.83) |
| :---: | :---: | :---: | :---: |
|  |  |  | 2.764 |
|  |  |  | (17.73) |
| Political-Competition Prime * 1(Kamba) |  |  | 5.030 |
|  |  |  | (18.54) |
| Ethnic-Political Prime * 1(Female) |  |  | -7.949 |
|  |  |  | (7.838) |
| Ethnic-Political Prime * Education |  |  | -0.931 |
|  |  |  | (0.989) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -23.84* |
|  |  |  | (13.65) |
| Ethnic-Political Prime * 1(Luo) |  |  | -23.40* |
|  |  |  | (14.01) |
| Ethnic-Political Prime * 1(Luhya) |  |  | -17.96 |
|  |  |  | (14.40) |
| Ethnic-Political Prime * 1(Kamba) |  |  | -17.38 |
|  |  |  | (14.60) |
| Constant | -7.389*** | -2.062 | -13.86* |
|  | (2.556) | (4.871) | (8.289) |
| Observations | 754 | 754 | 754 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.11: p-values: P1

| Null Hypothesis | LHS Variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{P G 1}$ : National Prime $=0$ | Contribution | 0.231 | 0.787 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution | 0.432 | 0.893 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution | 0.501 | 0.918 |
| $H_{P G 4}:$ Ethnic-Political (EP) Prime $=0$ | Contribution | 0.596 | 0.964 |
| $H_{P G 5}$ : National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.681 | 0.964 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution | 0.601 | 0.964 |
| $H_{P G 7}:$ National Prime $=$ Ethnic-Political Prime | Contribution | 0.083 | 0.469 |
| $H_{P G 8}$ : Ethnic-Cultural Prime = Political-Competition Prime | Contribution | 0.911 | 0.964 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution | 0.187 | 0.747 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution | 0.228 | 0.787 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | Contribution | 0.436 | 0.893 |
| $H_{P G 1}$ : National Prime $=0$ | Contribution - Belief | 0.095 | 0.496 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.388 | 0.893 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.666 | 0.964 |
| $H_{P G 4}$ : Ethnic-Political (EP) Prime $=0$ | Contribution - Belief | 0.409 | 0.893 |
| $H_{P G 5}$ : National Prime = Ethnic-Cultural Prime | Contribution - Belief | 0.418 | 0.893 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution - Belief | 0.215 | 0.781 |
| $H_{P G 7}$ : National Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.012 | 0.105 |
| $H_{P G 8}$ : Ethnic-Cultural Prime = Political-Competition Prime | Contribution - Belief | 0.666 | 0.964 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.091 | 0.482 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.209 | 0.770 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | Contribution - Belief | 0.136 | 0.628 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 3.12: Anonymous Public-good Game, Beliefs


|  |  |  | (12.75) |
| :---: | :---: | :---: | :---: |
| Political-Competition Prime * 1(Luhya) |  |  | -0.738 |
|  |  |  | (13.06) |
| Political-Competition Prime * 1(Kamba) |  |  | -3.568 |
|  |  |  | (13.73) |
| Ethnic-Political Prime * 1(Female) |  |  | -0.616 |
|  |  |  | (5.832) |
| Ethnic-Political Prime * Education |  |  | 0.461 |
|  |  |  | (0.694) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | 21.89** |
|  |  |  | (9.245) |
| Ethnic-Political Prime * 1(Luo) |  |  | 27.92*** |
|  |  |  | (9.923) |
| Ethnic-Political Prime * 1(Luhya) |  |  | 18.01* |
|  |  |  | (10.29) |
| Ethnic-Political Prime * 1(Kamba) |  |  | $23.36{ }^{* *}$ |
|  |  |  | (10.32) |
| Constant | 48.92*** | 48.62*** | $55.87^{* * *}$ |
|  | (1.875) | (3.500) | (5.176) |
| Observations | 1508 | 1508 | 1508 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 3.13: p-values: PB1

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{P G 12}:$ National Prime $=0$ | 0.440 | 0.921 |
| $H_{P G 13}:$ Ethnic-Cultural Prime $=0$ | 0.845 | 0.990 |
| $H_{P G 14}:$ Political-Competition $(P C)$ Prime $=0$ | 0.793 | 0.990 |
| $H_{P G 15}:$ Ethnic-Political (EP) Prime $=0$ | 0.650 | 0.967 |
| $H_{P G 29}:$ National Prime $=$ Ethnic-Cultural Prime | 0.547 | 0.953 |
| $H_{P G 30}:$ National Prime $=$ Political-Competition Prime | 0.295 | 0.805 |
| $H_{P G 31}:$ National Prime $=$ Ethnic-Political PC Prime | 0.223 | 0.717 |
| $H_{P G 32}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.639 | 0.965 |
| $H_{P G 33}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.508 | 0.938 |
| $H_{D P G 34}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.840 | 0.990 |
| $H_{P G 53}:$ National $=$ Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.774 | 0.987 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 3.2.2 Mixed Public-good Game

Table 3.14: Mixed Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
| National Prime | 3.076 | 3.240 | 16.48 |
|  | (3.936) | (3.951) | (12.96) |
| Ethnic-Cultural Prime | -1.084 | -0.551 | -1.285 |
|  | (3.936) | (3.968) | (14.90) |
| Political-Competition Prime | 2.125 | 2.793 | 16.27 |
|  | (3.919) | (3.943) | (16.31) |
| Ethnic-Political Prime | -0.815 | -0.833 | 14.15 |
|  | (3.963) | (3.981) | (12.45) |
| 1(Female) |  | 0.580 | 1.359 |
|  |  | (2.835) | (6.216) |
| Years of Education (demeaned) |  | -0.223 | 0.427 |
|  |  | (0.445) | (0.855) |
| 1(Kikuyu) |  | -11.02** | 1.514 |
|  |  | (4.909) | (9.536) |
| 1(Luo) |  | -11.11** | -3.892 |
|  |  | (5.041) | (9.701) |
| 1(Luhya) |  | -10.40** | -5.109 |
|  |  | (5.152) | (9.697) |
| National Prime * 1(Female) |  |  | -4.341 |
|  |  |  | (8.871) |
| National Prime * Education |  |  | -0.220 |
|  |  |  | (1.079) |
| National Prime * 1(Kikuyu) |  |  | -18.10 |
|  |  |  | (14.24) |
| National Prime * 1(Luo) |  |  | -12.40 |
|  |  |  | (14.55) |
| National Prime * 1(Luhya) |  |  | -2.655 |
|  |  |  | (15.06) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -1.486 |
|  |  |  | (8.864) |
| Ethnic-Cultural Prime * Education |  |  | -1.210 |
|  |  |  | (1.306) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -5.681 |
|  |  |  | (16.06) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 8.862 |
|  |  |  | (16.75) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | 4.875 |
|  |  |  | (16.66) |
| Political-Competition Prime * 1(Female) |  |  | 8.978 |
|  |  |  | (8.992) |
| Political-Competition Prime * Education |  |  | -1.514 |
|  |  |  | (1.123) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -20.40 |
|  |  |  | (17.69) |
| Political-Competition Prime * 1(Luo) |  |  | -24.99 |
|  |  |  | (17.92) |
| Political-Competition Prime * 1(Luhya) |  |  | -18.38 |
|  |  |  | (17.88) |
| Ethnic-Political Prime * 1(Female) |  |  | -3.447 |


|  |  | $(8.797)$ |
| :--- | :---: | :---: |
| Ethnic-Political Prime * Education |  | -0.173 |
|  |  | $(1.067)$ |
| Ethnic-Political Prime * 1(Kikuyu) |  | -19.69 |
|  |  | $(13.79)$ |
| Ethnic-Political Prime * 1(Luo) |  | -9.854 |
|  |  | $(14.12)$ |
| Ethnic-Political Prime * 1(Luhya) |  | -12.83 |
|  |  | $(14.70)$ |
| Constant | $45.17^{* * *}$ | $54.45^{* * *}$ |
|  | $(2.731)$ | $46.42^{* * *}$ |
| Observations | 593 | 593 |

Standard errors in parentheses

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.15: Mixed Public-good Game

|  | Contribution minus Belief (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 0.851 | 0.655 | 6.422 |
|  | (4.559) | (4.529) | (14.82) |
| Ethnic-Cultural Prime | -4.149 | -4.554 | -6.232 |
|  | (4.559) | (4.549) | (17.04) |
| Political-Competition Prime | -1.457 | -1.294 | 11.76 |
|  | (4.539) | (4.519) | (18.66) |
| Ethnic-Political Prime | -4.274 | -4.593 | 15.48 |
|  | (4.590) | (4.563) | (14.24) |
| 1(Female) |  | 6.331* | 4.102 |
|  |  | (3.250) | (7.110) |
| Years of Education (demeaned) |  | -0.730 | -0.103 |
|  |  | (0.510) | (0.978) |
| 1(Kikuyu) |  | -12.64** | 1.200 |
|  |  | (5.627) | (10.91) |
| 1(Luo) |  | -17.66*** | -4.781 |
|  |  | (5.779) | (11.10) |
| 1(Luhya) |  | -10.18* | -3.737 |
|  |  | (5.905) | (11.09) |
| National Prime * 1(Female) |  |  | -1.432 |
|  |  |  | (10.15) |
| National Prime * Education |  |  | -0.334 |
|  |  |  | (1.235) |
| National Prime * 1(Kikuyu) |  |  | -9.468 |
|  |  |  | (16.29) |
| National Prime * 1 (Luo) |  |  | -15.39 |
|  |  |  | (16.64) |
| National Prime * 1 (Luhya) |  |  | 10.12 |
|  |  |  | (17.22) |
| Ethnic-Cultural Prime * 1(Female) |  |  | $1.111$ |
|  |  |  | $(10.14)$ |
| Ethnic-Cultural Prime * Education |  |  | -0.841 |
|  |  |  | (1.493) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | $-3.709$ |
|  |  |  | (18.37) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 2.523 |
|  |  |  | (19.15) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | $4.829$ |
|  |  |  | (19.06) |
| Political-Competition Prime * 1(Female) |  |  | 0.776 |
|  |  |  | (10.28) |
| Political-Competition Prime * Education |  |  | -1.419 |
|  |  |  | (1.284) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -13.92 |
|  |  |  | (20.23) |
| Political-Competition Prime * 1(Luo) |  |  | -19.43 |
|  |  |  | (20.50) |
| Political-Competition Prime * 1(Luhya) |  |  | -11.47 |
|  |  |  | (20.45) |
| Ethnic-Political Prime * 1(Female) |  |  | 13.90 |
|  |  |  | (10.06) |
| Ethnic-Political Prime * Education |  |  | -0.145 |


|  |  | $(1.220)$ |
| :--- | :---: | :---: |
| Ethnic-Political Prime * 1(Kikuyu) | $-38.08^{* *}$ |  |
| Ethnic-Political Prime * 1(Luo) |  | $(15.78)$ |
|  |  | $-27.56^{*}$ |
| Ethnic-Political Prime * 1(Luhya) |  | $(16.15)$ |
| Constant | $-5.602^{*}$ | 2.615 |
| Observations | $(3.163)$ | $(5.776)$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.16: p-values: P2

| Null Hypothesis | LHS Variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{P G 1}$ : National Prime $=0$ | Contribution | 0.435 | 0.965 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution | 0.783 | 0.997 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution | 0.588 | 0.987 |
| $H_{P G 4}:$ Ethnic-Political (EP) Prime $=0$ | Contribution | 0.837 | 0.998 |
| $H_{P G 5}$ : National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.300 | 0.916 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution | 0.812 | 0.998 |
| $H_{P G 7}$ : National Prime $=$ Ethnic-Political Prime | Contribution | 0.335 | 0.938 |
| $H_{P G 8}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | Contribution | 0.422 | 0.961 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution | 0.947 | 0.998 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution | 0.465 | 0.965 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | Contribution | 0.791 | 0.997 |
| $H_{P G 1}$ : National Prime $=0$ | Contribution - Belief | 0.852 | 0.998 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.363 | 0.944 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.748 | 0.995 |
| $H_{P G 4}:$ Ethnic-Political (EP) Prime $=0$ | Contribution - Belief | 0.352 | 0.944 |
| $H_{P G 5}$ : National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.282 | 0.901 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution - Belief | 0.618 | 0.987 |
| $H_{P G 7}$ : National Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.273 | 0.892 |
| $H_{P G 8}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | Contribution - Belief | 0.561 | 0.987 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.979 | 0.998 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.545 | 0.987 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | Contribution - Belief | 0.726 | 0.994 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 3.17: Mixed Public-good Game, Beliefs


|  | (8.047) |
| :---: | :---: |
| Coethnic GM * National Prime * 1(Luo) | $\begin{gathered} 11.98 \\ (9.662) \end{gathered}$ |
| Coethnic GM * Ethnic-Cultural Prime * 1(Luo) | $\begin{gathered} 13.21 \\ (9.349) \end{gathered}$ |
| Coethnic GM * Political-Competition Prime * 1(Luo) | $\begin{aligned} & -3.250 \\ & (16.17) \end{aligned}$ |
| Coethnic GM * Ethnic-Political Prime * 1(Luo) | $\begin{aligned} & -8.467 \\ & (8.744) \end{aligned}$ |
| Coethnic GM * National Prime * 1(Luhya) | $\begin{gathered} 12.03 \\ (10.30) \end{gathered}$ |
| Coethnic GM * Ethnic-Cultural Prime * 1(Luhya) | $\begin{aligned} & -1.879 \\ & (9.197) \end{aligned}$ |
| Coethnic GM * Political-Competition Prime * 1(Luhya) | $\begin{aligned} & -2.718 \\ & (15.94) \end{aligned}$ |
| Coethnic GM * Ethnic-Political Prime * 1(Luhya) | $\begin{aligned} & -2.205 \\ & (9.193) \end{aligned}$ |
| National Prime * 1(Female) | $\begin{gathered} -2.946 \\ (6.906) \end{gathered}$ |
| National Prime * Education | $\begin{gathered} 0.198 \\ (0.933) \end{gathered}$ |
| National Prime * 1 (Kikuyu) | $\begin{aligned} & -8.809 \\ & (10.31) \end{aligned}$ |
| National Prime * 1(Luo) | $\begin{aligned} & -3.006 \\ & (11.09) \end{aligned}$ |
| National Prime * 1(Luhya) | $\begin{gathered} -18.85^{*} \\ (10.51) \end{gathered}$ |
| Ethnic-Cultural Prime * 1(Female) | $\begin{aligned} & -1.577 \\ & (7.185) \end{aligned}$ |
| Ethnic-Cultural Prime * Education | $\begin{gathered} 0.227 \\ (1.004) \end{gathered}$ |
| Ethnic-Cultural Prime * 1(Kikuyu) | $\begin{aligned} & -2.653 \\ & (11.93) \end{aligned}$ |
| Ethnic-Cultural Prime * 1(Luo) | $\begin{gathered} -0.0136 \\ (13.36) \end{gathered}$ |
| Ethnic-Cultural Prime * 1 (Luhya) | $\begin{gathered} 1.161 \\ (12.87) \end{gathered}$ |
| Political-Competition Prime * 1(Female) | $\begin{gathered} 9.865 \\ (7.540) \end{gathered}$ |
| Political-Competition Prime * Education | $\begin{aligned} & -0.371 \\ & (1.158) \end{aligned}$ |
| Political-Competition Prime * 1(Kikuyu) | $\begin{aligned} & -15.26 \\ & (19.17) \end{aligned}$ |
| Political-Competition Prime * 1(Luo) | $\begin{aligned} & -3.952 \\ & (19.35) \end{aligned}$ |
| Political-Competition Prime * 1(Luhya) | $\begin{gathered} -5.561 \\ (19.41) \end{gathered}$ |
| Ethnic-Political Prime * 1(Female) | $\begin{gathered} -17.62^{* *} \\ (7.263) \end{gathered}$ |
| Ethnic-Political Prime * Education | $\begin{gathered} 0.137 \\ (0.992) \end{gathered}$ |
| Ethnic-Political Prime * 1(Kikuyu) | $\begin{gathered} 18.74 \\ (11.55) \end{gathered}$ |
| Ethnic-Political Prime * 1(Luo) | $\begin{aligned} & 21.85^{*} \\ & (12.09) \\ & \hline \end{aligned}$ |


| Ethnic-Political Prime * 1(Luhya) |  | 19.49 |  |
| :--- | :---: | :---: | :---: |
|  |  |  | $(12.70)$ |
| Constant | $52.05^{* * *}$ | $53.11^{* * *}$ | $53.53^{* * *}$ |
|  | $(2.690)$ | $(4.275)$ | $(7.838)$ |
| Observations | 1186 | 1186 | 1186 |

Standard errors in parentheses
Standard errors are clustered at the individual level.
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.18: p-values: PBMix

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{P G 16}$ : Coethnic Profile (CE) $=0$ | 0.380 | 0.986 |
| $H_{P G 17}$ : National Prime $=0$ | 0.457 | 0.988 |
| $H_{P G 18}$ : Ethnic-Cultural (EC) Prime $=0$ | 0.425 | 0.986 |
| $H_{P G 19}$ : Political-Competition (PC) Prime $=0$ | 0.385 | 0.986 |
| $H_{P G 20}$ : Ethnic-Political (EP) Prime $=0$ | 0.050 | 0.491 |
| $H_{P G 21}$ : National Prime $+($ National Prime $*$ CE $)=0$ | 0.663 | 1.000 |
| $H_{P G 22}$ : Ethnic-Cultural Prime $+($ Ethnic-Cultural Prime $*$ CE $)=0$ | 0.400 | 0.986 |
| $H_{P G 23}$ : Political-Competition Prime $+($ Political-Competition Pr $* \mathrm{CE})=0$ | 0.291 | 0.964 |
| $H_{P G 24}$ : Ethnic-Political Prime $+($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.827 | 1.000 |
| $H_{P G 25}:($ National Prime $*$ CE) $=0$ | 0.780 | 1.000 |
| $H_{P G 26}:($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.957 | 1.000 |
| $H_{P G 27}:($ Political-Competition Prime $* \mathrm{CE})=0$ | 0.907 | 1.000 |
| $H_{P G 28}:($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.030 | 0.374 |
| $H_{P G 35}$ : National Prime $=$ Ethnic-Cultural Prime | 0.959 | 1.000 |
| $H_{P G 36}$ : National Prime $=$ Political-Competition Prime | 0.880 | 1.000 |
| $H_{P G 37}$ : National Prime $=$ Ethnic-Political Prime | 0.198 | 0.909 |
| $H_{P G 38}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.919 | 1.000 |
| $H_{P G 39}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.212 | 0.922 |
| $H_{P G 40}$ : Political-Competition Prime $=$ Ethnic-Political Prime | 0.267 | 0.957 |
| $H_{P G 41}$ : National Prime $+($ National Prime $*$ CE $)=$ Ethnic-Cultural Prime $+($ EC Prime $*$ CE $)$ | 0.708 | 1.000 |
| $H_{P G 42}$ : National Prime $+($ National Prime $*$ CE $)=$ PC Prime $+($ PC Prime $*$ CE $)$ | 0.578 | 0.997 |
| $H_{P G 43}$ : National Prime $+($ National Prime $*$ CE $)=$ Ethnic-Political Prime $+\left(\right.$ EP Prime ${ }^{*}$ CE $)$ | 0.530 | 0.994 |
| $H_{P G 44}$ : Ethnic-Cultural Prime $+\left(\right.$ EC Prime $\left.{ }^{*} \mathrm{CE}\right)=$ Politcal-Competition Prime $+($ PC Prime $*$ CE $)$ | 0.862 | 1.000 |
| $H_{P G 45}$ : Ethnic-Cultural Prime $+\left(\right.$ EC Prime $\left.{ }^{*} \mathrm{CE}\right)=$ Ethnic-Political Prime $+(\mathrm{EP} * \mathrm{CE})$ | 0.307 | 0.968 |
| $H_{P G 46}$ : Political-Competition Prime $+($ PC Prime $* \mathrm{CE})=$ Ethnic-Political Prime $+(\mathrm{EP} * \mathrm{CE})$ | 0.217 | 0.922 |
| $H_{P G 47}:($ National Prime $* \mathrm{CE})=($ Ethnic-Cultural Prime $* \mathrm{CE})$ | 0.744 | 1.000 |
| $H_{P G 48}$ : $($ National Prime $* \mathrm{CE})=($ Political-Competition Prime $* \mathrm{CE})$ | 0.701 | 1.000 |
| $H_{P G 49}:($ National Prime $*$ CE) $=($ Ethnic-Political Prime * CE) | 0.042 | 0.445 |
| $H_{P G 50}:($ Ethnic-Cultural Prime $* \mathrm{CE})=($ Political-Competition Prime $*$ CE) | 0.951 | 1.000 |
| $H_{P G 51}:($ Ethnic-Cultural Prime $* \mathrm{CE})=($ Ethnic-Political Prime $* \mathrm{CE})$ | 0.031 | 0.381 |
| $H_{P G 52}:($ Political-Competition Prime $* \mathrm{CE})=($ Ethnic-Political Prime $*$ CE) | 0.031 | 0.381 |
| $H_{P G 54}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | 0.417 | 0.986 |
| $H_{P G 55}:($ National Prime $* \mathrm{CE})=($ EC Prime $* \mathrm{CE})=($ PC Prime $* \mathrm{CE})=($ EP Prime $* \mathrm{CE})=0$ | 0.099 | 0.711 |
| $H_{P G 56}$ : All coefficients on priming treatments $=0$ | 0.303 | 0.967 |

[^20]
### 3.2.3 Coethnic Public-good Game

Table 3.19: Coethnic Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 1.931 | 2.589 | $35.85{ }^{* * *}$ |
|  | (3.938) | (3.938) | (12.92) |
| Ethnic-Cultural Prime | 0.478 | 1.265 | 11.91 |
|  | (3.955) | (3.972) | (14.85) |
| Political-Competition Prime | 2.696 | 3.459 | 11.29 |
|  | (3.929) | (3.938) | (16.26) |
| Ethnic-Political Prime | 1.421 | 2.033 | 5.992 |
|  | (3.974) | (3.976) | (12.41) |
| 1(Female) |  | -2.684 | 4.472 |
|  |  | (2.829) | (6.242) |
| Years of Education (demeaned) |  | -0.332 | 0.461 |
|  |  | (0.444) | (0.852) |
| 1(Kikuyu) |  | -8.989* | -2.454 |
|  |  | (4.888) | (9.504) |
| 1(Luo) |  | -9.655* | 0.819 |
|  |  | (5.025) | (9.669) |
| 1(Luhya) |  | -2.732 | 2.601 |
|  |  | (5.136) | (9.733) |
| National Prime * 1(Female) |  |  | -13.96 |
|  |  |  | (8.874) |
| National Prime * Education |  |  | -0.950 |
|  |  |  | (1.076) |
| National Prime * 1(Kikuyu) |  |  | -26.90* |
|  |  |  | (14.19) |
| National Prime * 1 (Luo) |  |  | -30.04** |
|  |  |  | (14.50) |
| National Prime * 1 (Luhya) |  |  | -24.86 * |
|  |  |  | (15.05) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -7.040 |
|  |  |  | (8.879) |
| Ethnic-Cultural Prime * Education |  |  | -1.640 |
|  |  |  | (1.307) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -6.965 |
|  |  |  | (16.02) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -5.713 |
|  |  |  | (16.73) |
| Ethnic-Cultural Prime * 1 (Luhya) |  |  | -7.622 |
|  |  |  | (16.65) |
| Political-Competition Prime * 1(Female) |  |  | -4.420 |
|  |  |  | (9.000) |
| Political-Competition Prime * Education |  |  | -1.245 |
|  |  |  | (1.119) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -2.220 |
|  |  |  | (17.63) |
| Political-Competition Prime * 1(Luo) |  |  | -13.70 |
|  |  |  | (17.88) |
| Political-Competition Prime * 1(Luhya) |  |  | -3.401 |
|  |  |  | (17.86) |
| Ethnic-Political Prime * 1(Female) |  |  | -8.831 |


|  |  | $(8.811)$ |
| :--- | :---: | :---: |
| Ethnic-Political Prime * Education |  | -0.0557 |
|  |  | $(1.063)$ |
| Ethnic-Political Prime * 1(Kikuyu) |  | 2.171 |
|  |  | $(13.75)$ |
| Ethnic-Political Prime * 1(Luo) |  | -3.187 |
|  |  | $(14.10)$ |
| Ethnic-Political Prime * 1(Luhya) |  | 6.320 |
|  |  | $(14.70)$ |
| Constant | $42.83^{* * *}$ | $50.59^{* * *}$ |
|  | $(2.738)$ | $(5.019)$ |
| Observations | 588 | 588 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.20: Coethnic Public-good Game

|  | Contribution minus Belief (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| National Prime | 5.062 | 5.174 | 26.52* |
|  | (4.435) | (4.413) | (14.52) |
| Ethnic-Cultural Prime | -2.633 | -2.974 | 7.971 |
|  | (4.455) | (4.451) | (16.69) |
| Political-Competition Prime | 2.350 | 2.259 | -3.546 |
|  | (4.425) | (4.412) | (18.27) |
| Ethnic-Political Prime | -4.318 | -4.137 | 4.711 |
|  | (4.475) | (4.455) | (13.95) |
| 1(Female) |  | 1.259 | 5.541 |
|  |  | (3.170) | (7.016) |
| Years of Education (demeaned) |  | -0.854* | 0.0755 |
|  |  | (0.497) | (0.958) |
| 1(Kikuyu) |  | -4.114 | 4.413 |
|  |  | (5.477) | (10.68) |
| 1(Luo) |  | -8.955 | 0.355 |
|  |  | (5.631) | (10.87) |
| 1(Luhya) |  | 2.039 | 4.516 |
|  |  | (5.756) | (10.94) |
| National Prime * 1(Female) |  |  | -9.334 |
|  |  |  | (9.974) |
| National Prime * Education |  |  | -0.849 |
|  |  |  | (1.209) |
| National Prime * 1(Kikuyu) |  |  | -19.66 |
|  |  |  | (15.95) |
| National Prime * 1 (Luo) |  |  | -21.48 |
|  |  |  | (16.30) |
| National Prime * 1(Luhya) |  |  | -9.939 |
|  |  |  | (16.91) |
| Ethnic-Cultural Prime * 1(Female) |  |  | -3.537 |
|  |  |  | (9.980) |
| Ethnic-Cultural Prime * Education |  |  | -2.114 |
|  |  |  | (1.469) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -14.81 |
|  |  |  | (18.01) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -3.353 |
|  |  |  | (18.80) |
| Ethnic-Cultural Prime * 1 (Luhya) |  |  | -6.510 |
|  |  |  | (18.72) |
| Political-Competition Prime * 1(Female) |  |  | -7.057 |
|  |  |  | (10.12) |
| Political-Competition Prime * Education |  |  | -1.391 |
|  |  |  | (1.258) |
| Political-Competition Prime * 1(Kikuyu) |  |  | 11.18 |
|  |  |  | (19.81) |
| Political-Competition Prime * 1(Luo) |  |  | 5.225 |
|  |  |  | (20.09) |
| Political-Competition Prime * 1(Luhya) |  |  | 14.00 |
|  |  |  | (20.07) |
| Ethnic-Political Prime * 1(Female) |  |  | 0.464 |
|  |  |  | (9.904) |
| Ethnic-Political Prime * Education |  |  | -0.294 |


|  |  | $(1.195)$ |
| :--- | :---: | :---: |
| Ethnic-Political Prime * 1(Kikuyu) | -11.32 |  |
| Ethnic-Political Prime * 1(Luo) | $(15.45)$ |  |
|  |  | -16.88 |
| Ethnic-Political Prime * 1(Luhya) |  | $(15.85)$ |
| Constant | $-10.03^{* * *}$ | -7.572 |
| Observations | $(3.084)$ | $(5.624)$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 3.21: p-values: P3

| Null Hypothesis | LHS Variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{P G 1}$ : National Prime $=0$ | Contribution | 0.624 | 0.992 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution | 0.904 | 0.997 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution | 0.493 | 0.985 |
| $H_{P G 4}:$ Ethnic-Political (EP) Prime $=0$ | Contribution | 0.721 | 0.992 |
| $H_{P G 5}$ : National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.718 | 0.992 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution | 0.848 | 0.997 |
| $H_{P G 7}$ : National Prime $=$ Ethnic-Political Prime | Contribution | 0.900 | 0.997 |
| $H_{P G 8}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | Contribution | 0.580 | 0.992 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution | 0.816 | 0.997 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution | 0.752 | 0.992 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | Contribution | 0.962 | 0.997 |
| $H_{P G 1}$ : National Prime $=0$ | Contribution - Belief | 0.254 | 0.888 |
| $H_{P G 2}$ : Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.555 | 0.992 |
| $H_{P G 3}$ : Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.596 | 0.992 |
| $H_{P G 4}$ : Ethnic-Political (EP) Prime $=0$ | Contribution - Belief | 0.335 | 0.943 |
| $H_{P G 5}$ : National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.090 | 0.557 |
| $H_{P G 6}$ : National Prime $=$ Political-Competition Prime | Contribution - Belief | 0.547 | 0.992 |
| $H_{P G 7}$ : National Prime = Ethnic-Political Prime | Contribution - Belief | 0.040 | 0.330 |
| $H_{P G 8}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | Contribution - Belief | 0.270 | 0.891 |
| $H_{P G 9}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.712 | 0.992 |
| $H_{P G 10}$ : Political-Competition Prime $=$ Ethnic-Political Prime | Contribution - Belief | 0.142 | 0.709 |
| $H_{P G 11}:$ National $=$ Ethnic-Cultural $=\mathrm{PC}=\mathrm{EP}$ Prime $=0$ | Contribution - Belief | 0.241 | 0.872 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 3.22: Coethnic Public-good Game, Beliefs


|  |  | $(0.969)$ |
| :--- | :---: | :---: |
| Ethnic-Political Prime ${ }^{*} 1$ (Kikuyu) | 13.49 |  |
|  |  | $(10.56)$ |
| Ethnic-Political Prime * 1 (Luo) | 13.70 |  |
|  |  | $(11.13)$ |
| Ethnic-Political Prime ${ }^{*} 1$ (Luhya) |  | 9.256 |
|  |  | $(11.78)$ |
| Constant | $52.86^{* * *}$ | $58.16^{* * *}$ |
|  | $(2.321)$ | $(4.197)$ |
| Observations | 1176 | 1176 |
| Standard errors in parentheses | $\left(85.93^{* * *}\right.$ |  |
| Standard errors are clustered at the individual level. |  | 1176 |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 3.23: p-values: PB2

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{P G 12}:$ National Prime $=0$ | 0.335 | 0.764 |
| $H_{P G 13}:$ Ethnic-Cultural Prime $=0$ | 0.321 | 0.764 |
| $H_{P G 14}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.914 | 0.917 |
| $H_{P G 15}:$ Ethnic-Political (EP) Prime $=0$ | 0.093 | 0.385 |
| $H_{P G 29}:$ National Prime $=$ Ethnic-Cultural Prime | 0.044 | 0.226 |
| $H_{P G 30}:$ National Prime $=$ Political-Competition Prime | 0.272 | 0.711 |
| $H_{P G 31}:$ National Prime $=$ Ethnic-Political PC Prime | 0.009 | 0.061 |
| $H_{P G 32}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.364 | 0.764 |
| $H_{P G 33}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.422 | 0.764 |
| $H_{D P G 34}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.106 | 0.397 |
| $H_{P G 53}:$ National $=$ Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.086 | 0.367 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 3.2.4 Pooled Public-good Game

Table 3.24: Pooled Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Mixed Group | 2.620 | 2.661 | 1.913 |
|  | (2.762) | (2.768) | (2.816) |
| Coethnic Group | 0.275 | 0.322 | -0.616 |
|  | (2.235) | (2.239) | (2.268) |
| National Prime | 2.392 | 2.715 | 2.392 |
|  | (3.550) | (3.580) | (3.551) |
| Ethnic-Cultural Prime | 0.0868 | 0.586 | 0.0868 |
|  | (3.721) | (3.758) | (3.722) |
| Political-Competition Prime | 1.525 | 2.114 | 1.525 |
|  | (3.521) | (3.538) | (3.522) |
| Ethnic-Political Prime | -2.481 | -2.261 | -2.481 |
|  | (3.778) | (3.782) | (3.779) |
| Mixed Group * National Prime | 0.684 | 0.612 | 0.616 |
|  | (3.999) | (4.007) | (4.006) |
| Mixed Group * Ethnic-Cultural Prime | -1.170 | -1.203 | -1.266 |
|  | (4.137) | (4.137) | (4.134) |
| Mixed Group * Political-Competition Prime | 0.600 | 0.554 | 0.545 |
|  | (3.820) | (3.823) | (3.824) |
| Mixed Group * Ethnic-Political Prime | 1.666 | 1.623 | 1.605 |
|  | (3.959) | (3.967) | (3.966) |
| Coethnic Group * National Prime | -0.461 | -0.540 | -0.386 |
|  | (3.597) | (3.603) | (3.593) |
| Coethnic Group * Ethnic-Cultural Prime | 0.391 | 0.327 | 0.479 |
|  | (3.640) | (3.635) | (3.637) |
| Coethnic Group * Political-Competition Prime | 1.171 | 1.098 | 1.226 |
|  | (3.608) | (3.611) | (3.609) |
| Coethnic Group * Ethnic-Political Prime | 3.902 | 3.827 | 3.976 |
|  | (3.926) | (3.932) | (3.915) |
| 1(Female) |  | -1.253 |  |
|  |  | (2.334) |  |
| Years of Education (demeaned) |  | -0.453 |  |
|  |  | (0.338) |  |
| 1(Kikuyu) |  | -7.838** |  |
|  |  | (3.799) |  |
| 1(Luo) |  | -8.788** |  |
|  |  | (4.032) |  |
| 1(Luhya) |  | -5.305 |  |
|  |  | (4.042) |  |
| 2nd Identified Pub G Game |  |  | 1.591 |
|  |  |  | (1.116) |
| Constant | $42.55{ }^{* * *}$ | 49.73*** | $42.55 * * *$ |
|  | (2.496) | (3.905) | (2.497) |
| Observations | 1787 | 1787 | 1787 |
| Standard errors in parentheses |  |  |  |
| Standard errors are clustered at the individual level. ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 3.25: Pooled Public-good Game

|  | Contribution minus Belief (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Mixed Group | 0.511 | 0.576 | -0.146 |
|  | (3.510) | (3.519) | (3.589) |
| Coethnic Group | -3.920 | -3.868 | -4.748 |
|  | (2.902) | (2.909) | (2.997) |
| National Prime | 5.099 | 4.999 | 5.099 |
|  | (3.790) | (3.782) | (3.791) |
| Ethnic-Cultural Prime | -0.408 | -0.824 | -0.408 |
|  | (4.132) | (4.177) | (4.133) |
| Political-Competition Prime | -0.161 | -0.201 | -0.161 |
|  | (3.802) | (3.787) | (3.803) |
| Ethnic-Political Prime | -2.690 | -2.967 | -2.690 |
|  | (3.962) | (3.970) | (3.963) |
| Mixed Group * National Prime | -4.248 | -4.409 | -4.311 |
|  | (4.991) | (4.999) | (5.002) |
| Mixed Group * Ethnic-Cultural Prime | -3.741 | -3.853 | -3.830 |
|  | (5.323) | (5.318) | (5.319) |
| Mixed Group * Political-Competition Prime | -1.296 | -1.328 | -1.347 |
|  | (4.668) | (4.677) | (4.681) |
| Mixed Group * Ethnic-Political Prime | -1.584 | -1.585 | -1.640 |
|  | (5.041) | (5.050) | (5.050) |
| Coethnic Group * National Prime | -0.0376 | -0.186 | 0.0322 |
|  | (4.361) | (4.368) | (4.351) |
| Coethnic Group * Ethnic-Cultural Prime | -2.226 | -2.338 | -2.143 |
|  | (4.655) | (4.649) | (4.658) |
| Coethnic Group * Political-Competition Prime | 2.511 | 2.453 | 2.562 |
|  | (4.488) | (4.497) | (4.481) |
| Coethnic Group * Ethnic-Political Prime | -1.628 | -1.657 | $-1.558$ |
|  | (4.721) | (4.733) | (4.716) |
| 1(Female) |  | 2.673 |  |
|  |  | (2.385) |  |
| Years of Education (demeaned) |  | $-1.027^{* * *}$ |  |
|  |  | (0.359) |  |
| 1(Kikuyu) |  | -6.250 |  |
|  |  | (4.053) |  |
| 1(Luo) |  | -11.55*** |  |
|  |  | (4.283) |  |
| 1(Luhya) |  | -4.009 |  |
|  |  | (4.297) |  |
| 2nd Identified Pub G Game |  |  | 1.479 |
|  |  |  | (1.478) |
| Constant | -6.113** | -1.219 | -6.113** |
|  | $(2.620)$ | (4.218) | (2.621) |
| Observations | 1787 | 1787 | 1787 |
| Standard errors in parentheses |  |  |  |
| Standard errors are clustered at the individual level. ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 3.26: p-values: Pooled Public-good Game

|  |  | Regular p-value | FWER p-value |
| :--- | :--- | :---: | :---: |
| $H_{P G 59}:$ Mixed Group $=0$ | Contribution | 0.343 | 0.691 |
| $H_{P G 60}:$ Coethnic Group $=0$ | Contribution | 0.902 | 0.987 |
| $H_{P G 61}:$ Mixed $=$ Coethnic Group | Contribution | 0.345 | 0.691 |
| $H_{P G 62}:$ Mixed $=$ Coethnic Group $=0$ | Contribution | 0.579 | 0.824 |
| $H_{P G 59}:$ Mixed Group $=0$ | Contribution - Belief | 0.884 | 0.987 |
| $H_{P G 60}:$ Coethnic Group $=0$ | Contribution - Belief | 0.177 | 0.496 |
| $H_{P G 61}:$ Mixed $=$ Coethnic Group | Contribution - Belief | 0.167 | 0.491 |
| $H_{P G 62}:$ Mixed $=$ Coethnic Group $=0$ | Contribution - Belief | 0.249 | 0.583 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 3.27: p-values: Pooled PG - regular p-values

| Null Hypothesis | LHS variable | Regular p-value |
| :---: | :---: | :---: |
| $H_{P G 62}$ : Mixed Group * National Prime $=0$ | Contribution | 0.864 |
| $H_{P G 63}$ : Mixed Group * Ethnic-Cultural Prime $=0$ | Contribution | 0.777 |
| $H_{P G 64}$ : Mixed Group * Political-Competition (PC) Prime $=0$ | Contribution | 0.875 |
| $H_{P G 65}$ : Mixed Group * Ethnic-Political Prime $=0$ | Contribution | 0.674 |
| $H_{P G 66}$ : Coethnic Group * National Prime $=0$ | Contribution | 0.898 |
| $H_{P G 67}$ : Coethnic Group * Ethnic-Cultural Prime $=0$ | Contribution | 0.915 |
| $H_{P G 68}$ : Coethnic Group * Political-Competition (PC) Prime $=0$ | Contribution | 0.746 |
| $H_{P G 69}$ : Coethnic Group * Ethnic-Political Prime $=0$ | Contribution | 0.321 |
| $H_{P G 70}$ : National Prime * (Mixed Group $=$ Coethnic Group) | Contribution | 0.742 |
| $H_{P G 71}$ : Ethnic-Cultural Prime * (Mixed Group $=$ Coethnic Group) | Contribution | 0.661 |
| $H_{P G 72}$ : Political-Competition Prime * (Mixed Group = Coethnic Group) | Contribution | 0.866 |
| $H_{P G 73}$ : Ethnic-Political Prime * (Mixed Group $=$ Coethnic Group) | Contribution | 0.552 |
| $H_{P G 74}$ : Mixed Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution | 0.661 |
| $H_{P G 75}:$ Mixed Group * (National Prime $=$ PC Prime) | Contribution | 0.983 |
| $H_{P G 76}$ : Mixed Group * (National Prime $=$ Ethnic-Political Prime) | Contribution | 0.808 |
| $H_{P G 77}$ : Mixed Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution | 0.663 |
| $H_{P G 78}:$ Mixed Group * (Ethnic-Cultural Prime $=$ Ethnic-Political Prime) | Contribution | 0.498 |
| $H_{P G 80}$ : Coethnic Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution | 0.832 |
| $H_{P G 81}$ : Coethnic Group * (National Prime $=$ Political-Competition Prime) | Contribution | 0.683 |
| $H_{P G 82}$ : Coethnic Group * (National Prime $=$ Ethnic-Political Prime) | Contribution | 0.309 |
| $H_{P G 83}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ Political-Competition Prime) | Contribution | 0.847 |
| $H_{P G 84}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ Ethnic-Political Prime) | Contribution | 0.417 |
| $H_{P G 85}$ : Coethnic Group * (Political-Competition Prime $=$ Ethnic-Political Prime) | Contribution | 0.525 |
| $H_{P G 86}$ : Mixed Group * (National $=$ Ethnic-Cultural $=\mathrm{PC}=$ Ethnic-Political Prime $\left.=\right) 0$ | Contribution | 0.974 |
| $H_{P G 87}$ : Coethnic Group * (National $=$ Ethnic-Cultural $=\mathrm{PC}=$ Ethnic-Political Prime $\left.=\right) 0$ | Contribution | 0.863 |
| $H_{P G 88}$ : All priming coefficients for the identified games $=0$ | Contribution | 0.985 |
| $H_{P G 89}$ : All coefficients $=0$ | Contribution | 0.820 |

Table 3.28: p-values: Pooled PG - regular p-values

| Null Hypothesis | LHS variable | Regular p-value |
| :---: | :---: | :---: |
| $H_{P G 62}$ : Mixed Group * National Prime $=0$ | Contribution - Belief | 0.395 |
| $H_{P G 63}$ : Mixed Group * Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.482 |
| $H_{P G 64}$ : Mixed Group * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.781 |
| $H_{P G 65}$ : Mixed Group * Ethnic-Political Prime $=0$ | Contribution - Belief | 0.754 |
| $H_{P G 66}$ : Coethnic Group * National Prime $=0$ | Contribution - Belief | 0.993 |
| $H_{P G 67}$ : Coethnic Group * Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.633 |
| $H_{P G 68}$ : Coethnic Group * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.576 |
| $H_{P G 69}$ : Coethnic Group $*$ Ethnic-Political Prime $=0$ | Contribution - Belief | 0.730 |
| $H_{P G 70}$ : National Prime * (Mixed Group = Coethnic Group) | Contribution - Belief | 0.345 |
| $H_{P G 71}$ : Ethnic-Cultural Prime * (Mixed Group = Coethnic Group) | Contribution - Belief | 0.752 |
| $H_{P G 72}$ : Political-Competition Prime * (Mixed Group = Coethnic Group) | Contribution - Belief | 0.385 |
| $H_{P G 73}$ : Ethnic-Political Prime * (Mixed Group = Coethnic Group) | Contribution - Belief | 0.993 |
| $H_{P G 74}$ : Mixed Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution - Belief | 0.925 |
| $H_{P G 75}$ : Mixed Group * (National Prime $=$ PC Prime) | Contribution - Belief | 0.530 |
| $H_{P G 76}$ : Mixed Group * (National Prime $=$ Ethnic-Political Prime) | Contribution - Belief | 0.599 |
| $H_{P G 77}$ : Mixed Group * (Ethnic-Cultural Prime $=$ PC Prime $)$ | Contribution - Belief | 0.628 |
| $H_{P G 78}$ : Mixed Group * (Ethnic-Cultural Prime $=$ Ethnic-Political Prime) | Contribution - Belief | 0.689 |
| $H_{P G 80}$ : Coethnic Group * (National Prime $=$ Ethnic-Cultural Prime) | Contribution - Belief | 0.654 |
| $H_{P G 81}$ : Coethnic Group * (National Prime $=$ Political-Competition Prime) | Contribution - Belief | 0.590 |
| $H_{P G 82}$ : Coethnic Group * (National Prime $=$ Ethnic-Political Prime) | Contribution - Belief | 0.748 |
| $H_{P G 83}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ Political-Competition Prime) | Contribution - Belief | 0.343 |
| $H_{P G 84}$ : Coethnic Group * (Ethnic-Cultural Prime $=$ Ethnic-Political Prime) | Contribution - Belief | 0.909 |
| $H_{P G 85}$ : Coethnic Group $*$ (Political-Competition Prime $=$ Ethnic-Political Prime) | Contribution - Belief | 0.414 |
| $H_{P G 86}$ : Mixed Group * (National $=$ Ethnic-Cultural $=\mathrm{PC}=$ Ethnic-Political Prime $\left.=\right) 0$ | Contribution - Belief | 0.913 |
| $H_{P G 87}$ : Coethnic Group * (National $=$ Ethnic-Cultural $=\mathrm{PC}=$ Ethnic-Political Prime $\left.=\right) 0$ | Contribution - Belief | 0.896 |
| $H_{P G 88}$ : All priming coefficients for the identified games $=0$ | Contribution - Belief | 0.968 |
| $H_{P G 89}$ : All coefficients $=0$ | Contribution - Belief | 0.302 |

Table 3.29: Pooled Public-good Game

|  | Contribution (Percent of Endowment) <br> (1) |
| :---: | :---: |
| Mixed Group | 1.147 |
|  | (9.888) |
| Coethnic Group | -5.710 |
|  | (8.600) |
| National Prime | 2.348 |
|  | (3.629) |
| Ethnic-Cultural Prime | 0.130 |
|  | (3.817) |
| Political-Competition Prime | 1.686 |
|  | (3.581) |
| Ethnic-Political Prime | -2.590 |
|  | (3.847) |
| Mixed Group * National Prime | 11.18 |
|  | (13.30) |
| Mixed Group * Ethnic-Cultural Prime | -4.921 |
|  | (15.79) |
| Mixed Group * Political-Competition Prime | 12.49 |
|  | (11.80) |
| Mixed Group * Ethnic-Political Prime | 14.94 |
|  | (12.40) |
| Coethnic Group * National Prime | 30.73 *** |
|  | (11.52) |
| Coethnic Group * Ethnic-Cultural Prime | 8.640 |
|  | (15.09) |
| Coethnic Group * Political-Competition Prime | 7.598 |
|  | (16.40) |
| Coethnic Group * Ethnic-Political Prime | 7.239 |
|  | (11.93) |
| 1(Female) | -1.656 |
|  | (2.797) |
| Years of Education (demeaned) | -0.799* |
|  | (0.427) |
| 1(Kikuyu) | -3.643 |
|  | (4.657) |
| 1(Luo) | -5.752 |
|  | (4.887) |
| 1(Luhya) | -2.857 |
|  | (4.948) |
| Coethnic Group * 1 (Kikuyu) | 0.261 |
|  | (8.773) |
| Coethnic Group * 1(Luo) | 6.314 |
|  | (9.215) |
| Coethnic Group * 1(Luhya) | 4.455 |
|  | (9.016) |
| Coethnic Group * 1(Female) | 4.515 |
|  | (5.754) |
| Coethnic Group * Education | 0.651 |
|  | (0.828) |
| Mixed Group * 1(Kikuyu) | 4.138 |
|  | (10.69) |
| Mixed Group * 1(Luo) | 1.581 |


|  | (10.70) |
| :---: | :---: |
| Mixed Group * 1(Luhya) | -3.330 |
|  | (10.62) |
| Mixed Group * 1(Female) | 1.219 |
|  | (5.830) |
| Mixed Group * Education | 0.556 |
|  | (0.845) |
| Coethnic Group * National Prime * 1(Female) | -11.52 |
|  | (8.555) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Female) | -5.216 |
|  | (8.868) |
| Coethnic Group * Political-Competition Prime * 1(Female) | -2.727 |
|  | (8.454) |
| Coethnic Group * Ethnic-Political Prime * 1(Female) | -7.519 |
|  | (9.333) |
| Coethnic Group * National Prime * Education | -0.0376 |
|  | (1.238) |
| Coethnic Group * Ethnic-Cultural Prime * Education | -0.743 |
|  | (1.393) |
| Coethnic Group * Political-Competition Prime * Education | -0.700 |
|  | (1.323) |
| Coethnic Group * Ethnic-Political Prime * Education | 0.365 |
|  | (1.400) |
| Coethnic Group * National Prime * 1(Kikuyu) | $-25.55^{* *}$ |
|  | (12.39) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kikuyu) | -4.737 |
|  | (16.10) |
| Coethnic Group * Political-Competition Prime * 1(Kikuyu) | -1.093 |
|  | (17.23) |
| Coethnic Group * Ethnic-Political Prime * 1(Kikuyu) | 2.734 |
|  | (12.84) |
| Coethnic Group * National Prime * 1(Luo) | $-30.06^{* *}$ |
|  | (13.15) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luo) | -4.480 |
|  | (17.19) |
| Coethnic Group * Political-Competition Prime * 1(Luo) | -13.39 |
|  | (17.33) |
| Coethnic Group * Ethnic-Political Prime * 1(Luo) | -3.086 |
|  | (13.76) |
| Coethnic Group * National Prime * 1(Luhya) | -22.48* |
|  | (13.51) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Luhya) | -4.791 |
|  | (16.90) |
| Coethnic Group * Political-Competition Prime * 1(Luhya) | -2.281 |
|  | (17.41) |
| Coethnic Group * Ethnic-Political Prime * 1(Luhya) | 6.763 |
|  | (14.56) |
| Mixed Group * National Prime * 1(Female) | $-1.776$ |
|  | (8.731) |
| Mixed Group * Ethnic-Cultural Prime * 1(Female) | 0.698 |
|  | (8.556) |
| Mixed Group * Political-Competition Prime * 1(Female) | 10.69 |
|  | (7.983) |
| Mixed Group * Ethnic-Political Prime * 1(Female) | -1.791 |
|  | (8.817) |


| Mixed Group * National Prime * Education | 0.826 |
| :---: | :---: |
|  | (1.218) |
| Mixed Group * Ethnic-Cultural Prime * Education | -0.131 |
|  | (1.306) |
| Mixed Group * Political-Competition Prime * Education | -1.019 |
|  | (1.245) |
| Mixed Group * Ethnic-Political Prime * Education | 0.405 |
|  | (1.217) |
| Mixed Group * National Prime * 1(Kikuyu) | -16.61 |
|  | (14.46) |
| Mixed Group * Ethnic-Cultural Prime * 1(Kikuyu) | -3.327 |
|  | (16.92) |
| Mixed Group * Political-Competition Prime * 1(Kikuyu) | -19.17 |
|  | (13.05) |
| Mixed Group * Ethnic-Political Prime * 1(Kikuyu) | -18.84 |
|  | (13.47) |
| Mixed Group * National Prime * 1(Luo) | -12.27 |
|  | (15.31) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luo) | 10.03 |
|  | (17.84) |
| Mixed Group * Political-Competition Prime * 1(Luo) | -24.63* |
|  | (13.22) |
| Mixed Group * Ethnic-Political Prime * 1(Luo) | -9.701 |
|  | (14.10) |
| Mixed Group * National Prime * 1(Luhya) | -0.216 |
|  | (15.19) |
| Mixed Group * Ethnic-Cultural Prime * 1(Luhya) | 7.841 |
|  | (17.70) |
| Mixed Group * Political-Competition Prime * 1(Luhya) | -17.23 |
|  | (13.21) |
| Mixed Group * Ethnic-Political Prime * 1(Luhya) | -11.97 |
|  | (14.36) |
| Constant | 47.29*** |
|  | (4.622) |
| Observations | 1787 |
| Standard errors in parentheses |  |
| Standard errors are clustered at the individual level. |  |
| * $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |

## 4 Choose-your-dictator Game: analysis within Election period

### 4.1 Summary Statistics

Table 4.1: Choose your dictator: Summary Statistics - Full Sample

|  | Anonymous Chooser |  |  | Identified Chooser |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coethnic | Indifferent | Non-coethnic | Coethnic | Indifferent | Non-coethnic |
| Number of Observations | 739 | 739 | 739 | 739 | 739 | 739 |
| Full Sample | $\begin{gathered} 23.7 \\ (42.6) \end{gathered}$ | $\begin{aligned} & 52.3 \\ & (50) \end{aligned}$ | $\begin{gathered} 24 \\ (42.7) \end{gathered}$ | $\begin{aligned} & 30.4 \\ & (46) \end{aligned}$ | $\begin{gathered} 43 \\ (49.5) \end{gathered}$ | $\begin{gathered} 26.7 \\ (44.2) \end{gathered}$ |
| Control | $\begin{gathered} 25.3 \\ (43.6) \end{gathered}$ | $\begin{gathered} 47.3 \\ (50.1) \end{gathered}$ | $\begin{gathered} 27.3 \\ (44.7) \end{gathered}$ | $\begin{gathered} 32.7 \\ (47.1) \end{gathered}$ | $\begin{gathered} 44.7 \\ (49.9) \end{gathered}$ | $\begin{aligned} & 22.7 \\ & (42) \end{aligned}$ |
| National Prime | $\begin{gathered} 23.7 \\ (42.7) \end{gathered}$ | $\begin{gathered} 52.6 \\ (50.1) \end{gathered}$ | $\begin{gathered} 23.7 \\ (42.7) \end{gathered}$ | $\begin{gathered} 30.3 \\ (46.1) \end{gathered}$ | $\begin{aligned} & 46.1 \\ & (50) \end{aligned}$ | $\begin{gathered} 23.7 \\ (42.7) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{aligned} & 21.2 \\ & (41) \end{aligned}$ | $\begin{gathered} 53 \\ (50.1) \end{gathered}$ | $\begin{gathered} 25.8 \\ (43.9) \end{gathered}$ | $\begin{gathered} 25.2 \\ (43.5) \end{gathered}$ | $\begin{gathered} 47 \\ (50.1) \end{gathered}$ | $\begin{aligned} & 27.8 \\ & (45) \end{aligned}$ |
| Political-Competition Prime | $\begin{aligned} & 22.7 \\ & (42) \end{aligned}$ | $\begin{gathered} 56 \\ (49.8) \end{gathered}$ | $\begin{gathered} 21.3 \\ (41.1) \end{gathered}$ | $\begin{gathered} 36.7 \\ (48.4) \end{gathered}$ | $\begin{aligned} & 35.3 \\ & (48) \end{aligned}$ | $\begin{gathered} 28 \\ (45.1) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 25.8 \\ (43.9) \end{gathered}$ | $\begin{gathered} 52.3 \\ (50.1) \end{gathered}$ | $\begin{gathered} 21.9 \\ (41.5) \end{gathered}$ | $\begin{gathered} 27.2 \\ (44.6) \end{gathered}$ | $\begin{gathered} 41.7 \\ (49.5) \end{gathered}$ | $\begin{gathered} 31.1 \\ (46.5) \end{gathered}$ |
| Female | $\begin{gathered} 19.4 \\ (39.6) \end{gathered}$ | $\begin{gathered} 57.8 \\ (49.4) \end{gathered}$ | $\begin{aligned} & 22.8 \\ & (42) \end{aligned}$ | $\begin{gathered} 25 \\ (43.3) \end{gathered}$ | $\begin{aligned} & 48.4 \\ & (50) \end{aligned}$ | $\begin{gathered} 26.6 \\ (44.2) \end{gathered}$ |
| Male | $\begin{gathered} 32.3 \\ (46.8) \end{gathered}$ | $\begin{gathered} 41.3 \\ (49.3) \end{gathered}$ | $\begin{gathered} 26.4 \\ (44.2) \end{gathered}$ | $\begin{gathered} 40.9 \\ (49.3) \end{gathered}$ | $\begin{gathered} 32.3 \\ (46.8) \end{gathered}$ | $\begin{gathered} 26.8 \\ (44.4) \end{gathered}$ |
| Below Median Education | $\begin{gathered} 20.3 \\ (40.3) \end{gathered}$ | $\begin{gathered} 57.9 \\ (49.4) \end{gathered}$ | $\begin{gathered} 21.8 \\ (41.3) \end{gathered}$ | $\begin{gathered} 28.5 \\ (45.2) \end{gathered}$ | $\begin{gathered} 46.3 \\ (49.9) \end{gathered}$ | $\begin{gathered} 25.1 \\ (43.4) \end{gathered}$ |
| Median Education or Above | $\begin{gathered} 26.8 \\ (44.3) \end{gathered}$ | $\begin{aligned} & 47.3 \\ & (50) \end{aligned}$ | $\begin{gathered} 26 \\ (43.9) \end{gathered}$ | $\begin{gathered} 32 \\ (46.7) \end{gathered}$ | $\begin{gathered} 40 \\ (49.1) \end{gathered}$ | $\begin{gathered} 28 \\ (45) \end{gathered}$ |
| Kikuyu | $\begin{aligned} & 19.9 \\ & (40) \end{aligned}$ | $\begin{gathered} 57.9 \\ (49.5) \end{gathered}$ | $\begin{gathered} 22.2 \\ (41.6) \end{gathered}$ | $\begin{gathered} 26.2 \\ (44.1) \end{gathered}$ | $\begin{aligned} & 46.6 \\ & (50) \end{aligned}$ | $\begin{gathered} 27.1 \\ (44.6) \end{gathered}$ |
| Luo | $\begin{gathered} 28 \\ (45.1) \end{gathered}$ | $\begin{gathered} 44.6 \\ (49.9) \end{gathered}$ | $\begin{gathered} 27.4 \\ (44.7) \end{gathered}$ | $\begin{gathered} 36.3 \\ (48.2) \end{gathered}$ | $\begin{gathered} 40.8 \\ (49.3) \end{gathered}$ | $\begin{gathered} 22.9 \\ (42.2) \end{gathered}$ |
| Luhya | $\begin{gathered} 25.7 \\ (43.8) \end{gathered}$ | $\begin{aligned} & 53.7 \\ & (50) \end{aligned}$ | $\begin{gathered} 20.6 \\ (40.5) \end{gathered}$ | $\begin{gathered} 31.4 \\ (46.6) \end{gathered}$ | $\begin{aligned} & 39.4 \\ & (49) \end{aligned}$ | $\begin{gathered} 29.1 \\ (45.6) \end{gathered}$ |
| Kisii | $\begin{gathered} 38.5 \\ (49.1) \end{gathered}$ | $\begin{gathered} 40.4 \\ (49.5) \end{gathered}$ | $\begin{gathered} 21.2 \\ (41.2) \end{gathered}$ | $\begin{gathered} 32.7 \\ (47.4) \end{gathered}$ | $\begin{gathered} 36.5 \\ (48.6) \end{gathered}$ | $\begin{gathered} 30.8 \\ (46.6) \end{gathered}$ |
| Kamba | $\begin{gathered} 17.6 \\ (38.2) \end{gathered}$ | $\begin{aligned} & 54.1 \\ & (50) \end{aligned}$ | $\begin{gathered} 28.4 \\ (45.2) \end{gathered}$ | $\begin{gathered} 27.7 \\ (44.9) \end{gathered}$ | $\begin{gathered} 46.6 \\ (50.1) \end{gathered}$ | $\begin{gathered} 25.7 \\ (43.8) \end{gathered}$ |

[^21]
### 4.2 Regression Analysis

### 4.2.1 Anonymous Chooser

Table 4.2: Anonymous Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.311* | 0.251 | 1.324*** | $0.846^{* * *}$ |
|  | (0.185) | (0.183) | (0.168) | (0.311) |
| Coethnic * National Prime | -0.0354 | -0.0223 | 0.00973 | 0.0454 |
|  | (0.194) | (0.192) | (0.194) | (0.697) |
| Coethnic * Ethnic-Cultural Prime | -0.190 | -0.160 | -0.119 | 0.533 |
|  | (0.194) | (0.196) | (0.197) | (0.807) |
| Coethnic * Political-Competition Prime | 0.160 | 0.159 | 0.206 | 0.448 |
|  | (0.205) | (0.206) | (0.207) | (1.258) |
| Coethnic * Ethnic-Political Prime | -0.0640 | -0.0575 | -0.0438 | 0.298 |
|  | (0.202) | (0.204) | (0.203) | (0.625) |
| Coethnic * 1 (Female) |  |  | -0.305** | -0.256 |
|  |  |  | (0.150) | (0.346) |
| Coethnic * Years of Education (demeaned) |  |  | -0.000254 | 0.0901* |
|  |  |  | (0.0220) | (0.0535) |
| Coethnic * 1 (Kikuyu) |  |  | $-0.884^{* * *}$ | -0.213 |
|  |  |  | (0.237) | (0.403) |
| Coethnic * 1(Luo) |  |  | $-0.913^{* * *}$ | -0.790* |
|  |  |  | (0.254) | (0.416) |
| Coethnic * 1 (Luhya) |  |  | -0.921*** | -0.467 |
|  |  |  | (0.255) | (0.444) |
| Coethnic * 1 (Kisii) |  |  | -0.833*** | -0.561 |
|  |  |  | (0.291) | (0.526) |
| Coethnic * National Prime * 1(Female) |  |  |  | 0.637 |
|  |  |  |  | (0.452) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | 0.109 |
|  |  |  |  | (0.481) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | -0.0944 |
|  |  |  |  | (0.489) |
| Coethnic * Ethnic-Political Prime * 1(Female) |  |  |  | -0.854* |
|  |  |  |  | (0.467) |
| Coethnic * National Prime * 1(Education) |  |  |  | -0.0794 |
|  |  |  |  | (0.0674) |
| Coethnic * Ethnic-Cultural Prime * 1(Education) |  |  |  | -0.149** |
|  |  |  |  | (0.0701) |
| Coethnic * Political-Competition Prime * 1(Education) |  |  |  | -0.0836 |
|  |  |  |  | (0.0759) |
| Coethnic * Ethnic-Political Prime * 1(Education) |  |  |  | $-0.157^{* *}$ |
|  |  |  |  | (0.0728) |
| Coethnic * National Prime * 1(Kikuyu) |  |  |  | -1.193 |
|  |  |  |  | (0.727) |
| Coethnic * Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -0.728 |
|  |  |  |  | (0.870) |
| Coethnic * Political-Competition Prime * 1(Kikuyu) |  |  |  | -0.438 |
|  |  |  |  | (1.323) |
| Coethnic * Ethnic-Political Prime * 1(Kikuyu) |  |  |  | 0.0261 |
|  |  |  |  | (0.678) |
| Coethnic * National Prime * 1(Luo) |  |  |  | $0.305$ |
|  |  |  |  | (0.773) |



Table 4.3: p-values: C1

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{C D 1}:$ Coethnic Profile $=0$ | 0.425 | 0.930 |
| $H_{C D 2}:$ National Prime $=0$ | 0.975 | 0.974 |
| $H_{C D 3}:$ Ethnic-Cultural Prime $=0$ | 0.472 | 0.930 |
| $H_{C D 4}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.395 | 0.930 |
| $H_{C D 5}:$ Ethnic-Political $(\mathrm{EP})$ Prime $=0$ | 0.585 | 0.930 |
| $H_{C D 6}:$ National Prime $=$ Ethnic-Cultural Prime | 0.472 | 0.930 |
| $H_{C D 7}:$ National Prime $=$ Political-Competition Prime | 0.358 | 0.908 |
| $H_{C D 8}:$ National Prime $=$ Ethnic-Political Prime | 0.549 | 0.930 |
| $H_{C D 9}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.097 | 0.489 |
| $H_{C D 10}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.192 | 0.715 |
| $H_{C D 11}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.785 | 0.951 |
| $H_{C D 12}:$ National $=$ Ethnic $=$ PC $=$ EP Prime $=0$ | 0.524 | 0.930 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 4.4: Anonymous Choose-your-dictator, Beliefs

|  | (1) | (2) |
| :---: | :---: | :---: |
|  | CYD: Belief | CYD: Belief |
| Coethnic Profile | 2.206 | 6.924* |
|  | (2.198) | (4.027) |
| National Prime | 1.203 | 1.261 |
|  | (2.832) | (2.884) |
| Ethnic-Cultural Prime | 1.596 | 1.716 |
|  | (3.086) | (3.149) |
| Political-Competition Prime | 1.728 | 1.690 |
|  | (2.991) | (3.069) |
| Ethnic-Political Prime | 0.967 | 1.071 |
|  | (3.284) | (3.327) |
| Coethnic * National Prime | -0.172 | 0.158 |
|  | (3.079) | (3.135) |
| Coethnic * Ethnic-Cultural Prime | -0.377 | 0.104 |
|  | (3.369) | (3.449) |
| Coethnic * Political-Competition Prime | -0.862 | -0.482 |
|  | (2.967) | (3.026) |
| Coethnic * Ethnic-Political Prime | -0.101 | 0.211 |
|  | (3.299) | (3.340) |
| Female |  | 0.265 |
|  |  | (2.274) |
| Years of Education (demeaned) |  | -0.127 |
|  |  | (0.361) |
| 1(Kikuyu) |  | -1.345 |
|  |  | (3.952) |
| 1(Luo) |  | -0.645 |
|  |  | (3.955) |
| 1(Luhya) |  | 0.527 |
|  |  | (4.195) |
| Coethnic * 1 (Female) |  | -2.102 |
|  |  | (2.188) |
| Coethnic * Education |  | 0.175 |
|  |  | (0.365) |
| Coethnic * 1 (Kikuyu) |  | -4.326 |
|  |  | (4.548) |
| Coethnic * 1(Luo) |  | -3.240 |
|  |  | (4.363) |
| Coethnic * 1(Luhya) |  | -3.360 |
|  |  | (4.632) |
| Coethnic * 1 (Kisii) |  | -3.104 |
|  |  | (3.873) |
| Constant | 42.52 ${ }^{* * *}$ | $42.82^{* *}$ |
|  | (2.027) | (3.780) |
| Observations | 1186 | 1186 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 4.5: p-values: CB1

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{C D 13}$ : Coethnic Profile ( CE ) $=0$ | 0.316 | 0.985 |
| $H_{C D 14}$ : National Prime $=0$ | 0.671 | 1.000 |
| $H_{C D 15}$ : Ethnic-Cultural (EC) Prime $=0$ | 0.605 | 1.000 |
| $H_{C D 16}$ : Political-Competition (PC) Prime $=0$ | 0.551 | 1.000 |
| $H_{C D 17}$ : Ethnic-Political (EP) Prime $=0$ | 0.768 | 1.000 |
| $H_{C D 18}$ : National Prime $+($ National Prime $*$ CE) $=0$ | 0.708 | 1.000 |
| $H_{C D 19}$ : Ethnic-Cultural Prime $+($ Ethnic-Cultural Prime $*$ CE $)=0$ | 0.680 | 1.000 |
| $H_{C D 20}$ : Political-Competition Prime $+($ Political-Competition Prime $* \mathrm{CE})=0$ | 0.778 | 1.000 |
| $H_{C D 21}$ : Ethnic-Political Prime $+($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.781 | 1.000 |
| $H_{C D 22}:($ National Prime $* \mathrm{CE})=0$ | 0.955 | 1.000 |
| $H_{C D 23}$ : $($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.911 | 1.000 |
| $H_{C D 24}:($ Political-Competition Prime $* \mathrm{CE})=0$ | 0.747 | 1.000 |
| $H_{C D 25}:($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.976 | 1.000 |
| $H_{C D 26}$ : National Prime $=$ Ethnic-Cultural Prime | 0.898 | 1.000 |
| $H_{C D 27}$ : National Prime $=$ Political-Competition Prime | 0.846 | 1.000 |
| $H_{C D 28}$ : National Prime $=$ Ethnic-Political Prime | 0.942 | 1.000 |
| $H_{C D 29}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.955 | 1.000 |
| $H_{C D 30}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.857 | 1.000 |
| $H_{C D 31}$ : Political-Competition Prime $=$ Ethnic-Political Prime | 0.811 | 1.000 |
| $H_{C D 32}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=$ Ethnic-Cultural Prime $+(\mathrm{EC} \mathrm{Pr} * \mathrm{CE})$ | 0.948 | 1.000 |
| $H_{C D 33}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=\mathrm{PC}$ Prime $+\left(\right.$ PC Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.941 | 1.000 |
| $H_{C D 34}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=\mathrm{EP}$ Prime $+\left(\mathrm{EP}\right.$ Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.957 | 1.000 |
| $H_{C D 35}$ : Ethnic-Cultural Prime $+(\mathrm{EC} * \mathrm{CE})=\mathrm{PC}$ Prime $+(\mathrm{PC} \mathrm{Prime} * \mathrm{CE})$ | 0.897 | 1.000 |
| $H_{C D 36}$ : Ethnic-Cultural Prime $+(\mathrm{EC} * \mathrm{CE})=$ Ethnic-Political Prime $+(\mathrm{EP} \mathrm{Pr} * \mathrm{CE})$ | 0.914 | 1.000 |
| $H_{C D 37}:$ PC Prime $+($ PC Prime $* \mathrm{CE})=$ Ethnic-Political Prime $+(\mathrm{EP} * \mathrm{CE})$ | 0.988 | 1.000 |
| $H_{C D 38}:($ National Prime $* \mathrm{CE})=($ Ethnic-Cultural Prime $* \mathrm{CE})$ | 0.951 | 1.000 |
| $H_{C D 39}$ : (National Prime $*$ CE) $=\left(\right.$ PC Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.789 | 1.000 |
| $H_{C D 40}:($ National Prime $* \mathrm{CE})=(\mathrm{EP}$ Prime $* \mathrm{CE})$ | 0.983 | 1.000 |
| $H_{C D 41}:($ Ethnic-Cultural Prime $* \mathrm{CE})=($ Political-Competition Prime $*$ CE) | 0.858 | 1.000 |
| $H_{C D 42}:($ Ethnic-Cultural Prime $* \mathrm{CE})=\left(\right.$ Ethnic-Political Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.938 | 1.000 |
| $H_{C D 43}:\left(\right.$ Political-Competition Prime $\left.{ }^{*} \mathrm{CE}\right)=($ Ethnic-Political Prime $*$ CE) | 0.787 | 1.000 |
| $H_{C D 44}:$ National $=$ Ethnic-Cultural $=$ Political-Competition $=\mathrm{EP}$ Prime $=0$ | 0.979 | 1.000 |
| $H_{C D 45}:($ National Pr * CE $)=(\mathrm{EC} \mathrm{Pr} * \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})=(\mathrm{EP}$ Prime $* \mathrm{CE})=0$ | 0.998 | 1.000 |
| $H_{C D 46}$ : All coefficients on priming treatments $=0$ | 1.000 | 1.000 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 4.2.2 Identified Chooser

Table 4.6: Identified Choose-your-dictator, Ordered Logit 1

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.370* | 0.308 | 0.481 | 0.703 |
|  | (0.206) | (0.210) | (0.351) | (0.614) |
| Coethnic * National Prime | -0.0459 | -0.0373 | -0.0422 | -0.679 |
|  | (0.230) | (0.234) | (0.239) | (0.834) |
| Coethnic * Ethnic-Cultural Prime | -0.150 | -0.132 | -0.0954 | 0.178 |
|  | (0.229) | (0.235) | (0.239) | (0.920) |
| Coethnic * Political-Competition Prime | 0.155 | 0.158 | 0.161 | -0.639 |
|  | (0.244) | (0.249) | (0.251) | (1.384) |
| Coethnic * Ethnic-Political Prime | -0.234 | -0.223 | -0.239 | -0.298 |
|  | (0.240) | (0.246) | (0.245) | (0.802) |
| Coethnic * 1(Female) |  |  | -0.455** | -0.331 |
|  |  |  | (0.192) | (0.376) |
| Coethnic * Years of Education (demeaned) |  |  | -0.0191 | 0.0617 |
|  |  |  | (0.0273) | (0.0594) |
| Coethnic * 1 (Kikuyu) |  |  | 0.127 | 0.151 |
|  |  |  | (0.279) | (0.598) |
| Coethnic * 1(Luo) |  |  | 0.277 | -0.728 |
|  |  |  | (0.335) | (0.692) |
| Coethnic * 1 (Luhya) |  |  | 0.0288 | -0.262 |
|  |  |  | (0.339) | (0.641) |
| Coethnic * National Prime * 1(Female) |  |  |  | 0.164 |
|  |  |  |  | (0.550) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | 0.341 |
|  |  |  |  | (0.616) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | -0.0843 |
|  |  |  |  | (0.565) |
| Coethnic * Ethnic-Political Prime * 1(Female) |  |  |  | $-1.016^{*}$ |
|  |  |  |  | (0.540) |
| Coethnic * National Prime * 1(Education) |  |  |  | -0.0213 |
|  |  |  |  | (0.0838) |
| Coethnic * Ethnic-Cultural Prime * 1(Education) |  |  |  | $-0.105$ |
|  |  |  |  | (0.0849) |
| Coethnic * Political-Competition Prime * 1(Education) |  |  |  | -0.0810 |
|  |  |  |  | (0.0924) |
| Coethnic * Ethnic-Political Prime * 1(Education) |  |  |  | -0.203** |
|  |  |  |  | (0.0860) |
| Coethnic * National Prime * 1(Kikuyu) |  |  |  | -0.530 |
|  |  |  |  | (0.860) |
| Coethnic * Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -0.561 |
|  |  |  |  | (0.993) |
| Coethnic * Political-Competition Prime * 1(Kikuyu) |  |  |  | 0.661 |
|  |  |  |  | (1.465) |
| Coethnic * Ethnic-Political Prime * 1(Kikuyu) |  |  |  | 0.288 |
|  |  |  |  | (0.842) |
| Coethnic * National Prime * 1(Luo) |  |  |  | 1.705* |
|  |  |  |  | (0.909) |
| Coethnic * Ethnic-Cultural Prime * 1(Luo) |  |  |  | -0.333 |
|  |  |  |  | (1.115) |
| Coethnic * Political-Competition Prime * 1(Luo) |  |  |  | 1.693 |



Table 4.7: p-values: C2

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{C D 1}:$ Coethnic Profile $=0$ | 0.142 | 0.607 |
| $H_{C D 2}:$ National Prime $=0$ | 0.873 | 0.944 |
| $H_{C D 3}:$ Ethnic-Cultural Prime $=0$ | 0.575 | 0.936 |
| $H_{C D 4}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.521 | 0.936 |
| $H_{C D 5}:$ Ethnic-Political $(\mathrm{EP})$ Prime $=0$ | 0.364 | 0.869 |
| $H_{C D 6}:$ National Prime $=$ Ethnic-Cultural Prime | 0.688 | 0.944 |
| $H_{C D 7}:$ National Prime $=$ Political-Competition Prime | 0.426 | 0.898 |
| $H_{C D 8}:$ National Prime $=$ Ethnic-Political Prime | 0.446 | 0.907 |
| $H_{C D 9}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.243 | 0.734 |
| $H_{C D 10}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.710 | 0.944 |
| $H_{C D 11}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.140 | 0.607 |
| $H_{C D 12}:$ National $=$ Ethnic $=$ PC $=$ EP Prime $=0$ | 0.641 | 0.936 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

Table 4.8: Identified Choose-your-dictator, Beliefs

|  | (1) | (2) |
| :---: | :---: | :---: |
|  | CYD: Belief | CYD: Belief |
| Coethnic Profile | 1.476 | 0.728 |
|  | (2.041) | (3.849) |
| National Prime | -0.105 | 0.282 |
|  | (2.989) | (3.023) |
| Ethnic-Cultural Prime | 5.416* | $5.505^{*}$ |
|  | (3.147) | (3.191) |
| Political-Competition Prime | -1.494 | -1.383 |
|  | (2.979) | (3.022) |
| Ethnic-Political Prime | -0.518 | -0.0566 |
|  | (3.215) | (3.248) |
| Coethnic * National Prime | -2.280 | -2.194 |
|  | (3.036) | (3.098) |
| Coethnic * Ethnic-Cultural Prime | -2.673 | -2.152 |
|  | (3.541) | (3.509) |
| Coethnic * Political-Competition Prime | 2.557 | 2.355 |
|  | (3.012) | (3.026) |
| Coethnic * Ethnic-Political Prime | -0.388 | -0.222 |
|  | (3.343) | (3.398) |
| Female |  | -0.213 |
|  |  | (2.260) |
| Years of Education (demeaned) |  | 0.561 |
|  |  | (0.352) |
| 1(Kikuyu) |  | 2.991 |
|  |  | (3.623) |
| 1(Luo) |  | 2.669 |
|  |  | (3.662) |
| 1(Luhya) |  | 5.117 |
|  |  | (3.944) |
| Coethnic * 1 (Female) |  | 0.766 |
|  |  | (2.352) |
| Coethnic * Education |  | 0.330 |
|  |  | (0.392) |
| Coethnic * 1 (Kikuyu) |  | -1.933 |
|  |  | (4.023) |
| Coethnic * 1(Luo) |  | 4.033 |
|  |  | (4.152) |
| Coethnic * 1 (Luhya) |  | -0.296 |
|  |  | (4.327) |
| Coethnic * 1 (Kisii) |  | -1.478 |
|  |  | (3.825) |
| Constant | $47.75^{* * *}$ | $44.41^{* * *}$ |
|  | (1.944) | (3.718) |
| Observations | 1186 | 1186 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 4.9: p-values: CB2

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{C D 13}$ : Coethnic Profile ( CE ) $=0$ | 0.470 | 0.996 |
| $H_{C D 14}$ : National Prime $=0$ | 0.972 | 1.000 |
| $H_{C D 15}$ : Ethnic-Cultural (EC) Prime $=0$ | 0.086 | 0.704 |
| $H_{C D 16}$ : Political-Competition (PC) Prime $=0$ | 0.642 | 0.998 |
| $H_{C D 17}$ : Ethnic-Political (EP) Prime $=0$ | 0.872 | 1.000 |
| $H_{C D 18}$ : National Prime $+($ National Prime $*$ CE $)=0$ | 0.397 | 0.993 |
| $H_{C D 19}$ : Ethnic-Cultural Prime $+($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.376 | 0.992 |
| $H_{C D 20}$ : Political-Competition Prime $+($ Political-Competition Prime $* \mathrm{CE})=0$ | 0.750 | 1.000 |
| $H_{C D 21}$ : Ethnic-Political Prime $+($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.768 | 1.000 |
| $H_{C D 22}$ : (National Prime $*$ CE) $=0$ | 0.453 | 0.996 |
| $H_{C D 23}:($ Ethnic-Cultural Prime $* \mathrm{CE})=0$ | 0.451 | 0.996 |
| $H_{C D 24}$ : $($ Political-Competition Prime $* \mathrm{CE})=0$ | 0.433 | 0.996 |
| $H_{C D 25}$ : $($ Ethnic-Political Prime $* \mathrm{CE})=0$ | 0.908 | 1.000 |
| $H_{C D 26}$ : National Prime $=$ Ethnic-Cultural Prime | 0.101 | 0.737 |
| $H_{C D 27}$ : National Prime $=$ Political-Competition Prime | 0.690 | 0.999 |
| $H_{C D 28}$ : National Prime $=$ Ethnic-Political Prime | 0.904 | 1.000 |
| $H_{C D 29}$ : Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.042 | 0.482 |
| $H_{C D 30}$ : Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.096 | 0.733 |
| $H_{C D 31}$ : Political-Competition Prime $=$ Ethnic-Political Prime | 0.800 | 1.000 |
| $H_{C D 32}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=$ Ethnic-Cultural Prime $+\left(\right.$ EC Pr $\left.{ }^{*} \mathrm{CE}\right)$ | 0.098 | 0.733 |
| $H_{C D 33}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=$ PC Prime $+\left(\right.$ PC Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.273 | 0.966 |
| $H_{C D 34}$ : National Prime $+($ Nation Prime $* \mathrm{CE})=\mathrm{EP}$ Prime $+(\mathrm{EP}$ Prime $* \mathrm{CE})$ | 0.629 | 0.998 |
| $H_{C D 35}$ : Ethnic-Cultural Prime $+(\mathrm{EC} * \mathrm{CE})=\mathrm{PC}$ Prime $+(\mathrm{PC}$ Prime $* \mathrm{CE})$ | 0.596 | 0.998 |
| $H_{C D 36}$ : Ethnic-Cultural Prime $+(\mathrm{EC} * \mathrm{CE})=$ Ethnic-Political Prime $+(\mathrm{EP} \mathrm{Pr} * \mathrm{CE})$ | 0.272 | 0.966 |
| $H_{C D 37}:$ PC Prime $+($ PC Prime $* \mathrm{CE})=$ Ethnic-Political Prime $+(\mathrm{EP} * \mathrm{CE})$ | 0.568 | 0.998 |
| $H_{C D 38}:($ National Prime $* \mathrm{CE})=($ Ethnic-Cultural Prime $* \mathrm{CE})$ | 0.915 | 1.000 |
| $H_{C D 39}$ : (National Prime $\left.{ }^{*} \mathrm{CE}\right)=\left(\right.$ PC Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.141 | 0.834 |
| $H_{C D 40}:($ National Prime $*$ CE) $=($ EP Prime $*$ CE) | 0.586 | 0.998 |
| $H_{C D 41}:($ Ethnic-Cultural Prime $* \mathrm{CE})=($ Political-Competition Prime $* \mathrm{CE})$ | 0.167 | 0.877 |
| $H_{C D 42}:($ Ethnic-Cultural Prime $* \mathrm{CE})=\left(\right.$ Ethnic-Political Prime $\left.{ }^{*} \mathrm{CE}\right)$ | 0.560 | 0.998 |
| $H_{C D 43}:($ Political-Competition Prime $* \mathrm{CE})=($ Ethnic-Political Prime $* \mathrm{CE})$ | 0.426 | 0.995 |
| $H_{C D 44}:$ National $=$ Ethnic-Cultural $=$ Political-Competition $=\mathrm{EP}$ Prime $=0$ | 0.294 | 0.973 |
| $H_{C D 45}:($ National Pr * CE $)=(\mathrm{EC} \mathrm{Pr} * \mathrm{CE})=(\mathrm{PC} \mathrm{Pr} * \mathrm{CE})=(\mathrm{EP}$ Prime $* \mathrm{CE})=0$ | 0.572 | 0.998 |
| $H_{C D 46}$ : All coefficients on priming treatments $=0$ | 0.443 | 0.996 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 4.2.3 Pooled Choose-your-dictator Game

Table 4.10: Pooled Choose-your-dictator, Ordered Logit 1

|  | (1) |
| :---: | :---: |
|  | Ordered Choice |
| Coethnic Profile | 0.187 |
|  | (0.203) |
| Identified Choice * Coethnic Profile | 0.130 |
|  | (0.182) |
| Coethnic * National Prime | 0.00821 |
|  | (0.232) |
| Coethnic * Ethnic-Cultural Prime | -0.175 |
|  | (0.235) |
| Coethnic * Political-Competition Prime | 0.156 |
|  | (0.222) |
| Coethnic * Ethnic-Political Prime | 0.128 |
|  | (0.238) |
| Identified Choice * Coethnic * National Prime | -0.0605 |
|  | (0.291) |
| Identified Choice * Coethnic * Ethnic-Cultural Prime | 0.0330 |
|  | (0.291) |
| Identified Choice * Coethnic * Political-Competition Prime | 0.0143 |
|  | (0.264) |
| Identified Choice * Coethnic * Ethnic-Political Prime | -0.382 |
|  | (0.291) |
| Profile 2 | -0.198 |
|  | (0.188) |
| Profile 3 | -0.172 |
|  | (0.186) |
| Profile 4 | -0.294 |
|  | (0.183) |
| Profile 5 | -0.110 |
|  | (0.205) |
| Profile 6 | -0.0552 |
|  | (0.193) |
| Profile 7 | 0.0575 |
|  | (0.209) |
| Profile 8 | 0.160 |
|  | (0.200) |
| Profile 9 | 0.0746 |
|  | (0.212) |
| Profile 10 | -0.0706 |
|  | (0.218) |
| Profile 11 | 0.0920 |
|  | (0.208) |
| Profile 12 | 0.0718 |
|  | (0.217) |
| cut1 | -0.974*** |
|  | (0.153) |
| cut2 | 1.139*** |
|  | (0.156) |
| Observations | 2372 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |

Table 4.11: p-values: CYDPool

| Null Hypothesis | Regular p-value |
| :---: | :---: |
| $H_{C D 49}$ : Identified Choice ${ }^{*}$ Coethnic Profile $=0$ | 0.476 |
| $H_{C D 50}$ : Identified ${ }^{*}$ National Prime $*$ Coethnic $=0$ | 0.835 |
| $H_{C D 51}$ : Identified $*$ Ethnic-Cultural Prime $*$ Coethnic $=0$ | 0.910 |
| $H_{C D 52}$ : Identified $*$ Political-Competition (PC) Prime $*$ Coethnic $=0$ | 0.957 |
| $H_{C D 53}:$ Identified $*$ Political-Competition (PC) Prime $*$ Coethnic $=0$ | 0.189 |
| $H_{C D 54}:($ National Prime $=$ Ethnic-Cultural Prime) $*$ Identified $*$ Coethnic | 0.770 |
| $H_{C D 55}:($ National Prime $=$ Political-Competition Prime) $*$ Identified $*$ Coethnic | 0.800 |
| $H_{C D 56}:($ National Prime $=$ Ethnic-Political Prime) $*$ Identified $*$ Coethnic | 0.314 |
| $H_{C D 57}:\left(\right.$ Ethnic Prime $=$ PC Prime) ${ }^{*}$ Identified $*$ Coethnic | 0.950 |
| $H_{C D 58}:($ Ethnic Prime $=$ Blatant PC Prime) $*$ Identified $*$ Coethnic | 0.196 |
| $H_{C D 59}:\left(\right.$ PC Prime $=$ Blatant PC Prime) ${ }^{*}$ Identified $*$ Coethnic | 0.181 |
| $H_{C D 60}$ : Identified ${ }^{*}$ Coethnic $*($ National $=$ Ethnic $=$ PC $=$ EP Prime $)=0$ | 0.655 |
| $H_{C D 61}$ : All coefficients $=0$ | 0.567 |

## 5 Implicit Association Test

### 5.1 Ethnic IAT

Table 5.1: Ethnic IAT

|  | Ethnic D-score |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Dissonance 1st | $\begin{gathered} -0.936^{* * *} \\ (0.0589) \end{gathered}$ | $\begin{gathered} -0.926^{* * *} \\ (0.0576) \end{gathered}$ | $\begin{gathered} -0.970^{* * *} \\ (0.122) \end{gathered}$ | $\begin{gathered} -0.954^{* * *} \\ (0.119) \end{gathered}$ |
| National IAT 1st | $\begin{gathered} -0.170^{* * *} \\ (0.0603) \end{gathered}$ | $\begin{gathered} -0.204^{* * *} \\ (0.0597) \end{gathered}$ | $\begin{gathered} -0.349^{* * *} \\ (0.133) \end{gathered}$ | $\begin{gathered} -0.383^{* * *} \\ (0.131) \end{gathered}$ |
| Dissonance 1st * National IAT first | $\begin{aligned} & 0.292^{* * *} \\ & (0.0864) \end{aligned}$ | $\begin{aligned} & 0.313^{* * *} \\ & (0.0848) \end{aligned}$ | $\begin{gathered} 0.586^{* * *} \\ (0.191) \end{gathered}$ | $\begin{gathered} 0.563^{* * *} \\ (0.187) \end{gathered}$ |
| National Prime | $\begin{gathered} -0.107 \\ (0.0674) \end{gathered}$ | $\begin{gathered} -0.0901 \\ (0.0661) \end{gathered}$ | $\begin{aligned} & -0.148 \\ & (0.135) \end{aligned}$ | $\begin{aligned} & -0.126 \\ & (0.132) \end{aligned}$ |
| Ethnic-Cultural Prime | $\begin{gathered} -0.106 \\ (0.0670) \end{gathered}$ | $\begin{gathered} -0.0836 \\ (0.0657) \end{gathered}$ | $\begin{aligned} & -0.103 \\ & (0.133) \end{aligned}$ | $\begin{gathered} -0.0788 \\ (0.130) \end{gathered}$ |
| Political-Competition Prime | $\begin{gathered} -0.154^{* *} \\ (0.0671) \end{gathered}$ | $\begin{aligned} & -0.152^{* *} \\ & (0.0660) \end{aligned}$ | $\begin{gathered} -0.245^{* *} \\ (0.123) \end{gathered}$ | $\begin{gathered} -0.256^{* *} \\ (0.121) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} -0.102 \\ (0.0671) \end{gathered}$ | $\begin{aligned} & -0.0894 \\ & (0.0657) \end{aligned}$ | $\begin{aligned} & -0.158 \\ & (0.137) \end{aligned}$ | $\begin{aligned} & -0.160 \\ & (0.135) \end{aligned}$ |
| 1(Female) |  | $\begin{aligned} & 0.0834^{*} \\ & (0.0477) \end{aligned}$ |  | $\begin{aligned} & 0.0826^{*} \\ & (0.0489) \end{aligned}$ |
| Years of Education (demeaned) |  | $\begin{gathered} -0.00726 \\ (0.00746) \end{gathered}$ |  | $\begin{aligned} & -0.00845 \\ & (0.00759) \end{aligned}$ |
| 1(Kikuyu) |  | $\begin{gathered} -0.316^{* * *} \\ (0.0814) \end{gathered}$ |  | $\begin{gathered} -0.322^{* * *} \\ (0.0822) \end{gathered}$ |
| 1(Luo) |  | $\begin{aligned} & -0.181^{* *} \\ & (0.0837) \end{aligned}$ |  | $\begin{aligned} & -0.195^{* *} \\ & (0.0849) \end{aligned}$ |
| 1(Luhya) |  | $\begin{gathered} -0.0760 \\ (0.0857) \end{gathered}$ |  | $\begin{aligned} & -0.0919 \\ & (0.0868) \end{aligned}$ |
| National Prime * National IAT 1st |  |  | $\begin{gathered} 0.150 \\ (0.197) \end{gathered}$ | $\begin{gathered} 0.140 \\ (0.192) \end{gathered}$ |
| Ethnic-Cultural Prime * National IAT 1st |  |  | $\begin{gathered} 0.128 \\ (0.189) \end{gathered}$ | $\begin{gathered} 0.117 \\ (0.185) \end{gathered}$ |
| Political Competition * National IAT 1st |  |  | $\begin{aligned} & 0.308^{*} \\ & (0.184) \end{aligned}$ | $\begin{aligned} & 0.324^{*} \\ & (0.181) \end{aligned}$ |
| Ethnic-Political Prime * National IAT 1st |  |  | $\begin{gathered} 0.299 \\ (0.194) \end{gathered}$ | $\begin{gathered} 0.299 \\ (0.190) \end{gathered}$ |
| Dissonance 1st * National Prime |  |  | $\begin{aligned} & 0.0857 \\ & (0.184) \end{aligned}$ | $\begin{aligned} & 0.0280 \\ & (0.180) \end{aligned}$ |


| Dissonance 1st * Ethnic-Cultural Prime |  |  | $\begin{gathered} 0.00766 \\ (0.187) \end{gathered}$ | $\begin{gathered} \hline-0.0138 \\ (0.183) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Dissonance 1st * Political-Competition Prime |  |  | $\begin{aligned} & 0.0813 \\ & (0.180) \end{aligned}$ | $\begin{aligned} & 0.0819 \\ & (0.177) \end{aligned}$ |
| Dissonance 1st * Ethnic-Political Prime |  |  | $\begin{gathered} -0.0110 \\ (0.182) \end{gathered}$ | $\begin{aligned} & 0.0210 \\ & (0.179) \end{aligned}$ |
| National Prime * National IAT \& Dissonance 1st |  |  | $\begin{gathered} -0.340 \\ (0.275) \end{gathered}$ | $\begin{aligned} & -0.219 \\ & (0.269) \end{aligned}$ |
| Ethnic-Cultural Prime * National IAT \& Dissonance 1st |  |  | $\begin{aligned} & -0.306 \\ & (0.272) \end{aligned}$ | $\begin{gathered} -0.239 \\ (0.266) \end{gathered}$ |
| Political-Competition * National IAT \& Dissonance 1st |  |  | $\begin{gathered} -0.418 \\ (0.277) \end{gathered}$ | $\begin{gathered} -0.378 \\ (0.271) \end{gathered}$ |
| Ethnic-Political Prime * National IAT \& Dissonance 1st |  |  | $\begin{aligned} & -0.371 \\ & (0.275) \end{aligned}$ | $\begin{aligned} & -0.377 \\ & (0.268) \end{aligned}$ |
| Constant | $\begin{aligned} & 0.493^{* * *} \\ & (0.0590) \end{aligned}$ | $\begin{aligned} & 0.621^{* * *} \\ & (0.0900) \end{aligned}$ | $\begin{aligned} & 0.534^{* * *} \\ & (0.0935) \end{aligned}$ | $\begin{gathered} 0.677^{* * *} \\ (0.118) \end{gathered}$ |
| Observations | 547 | 547 | 547 | 547 |

Table 5.2: p-values: I1

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{I A T 1}:$ National Prime $=0$ | 0.114 | 0.459 |
| $H_{I A T 2}:$ Ethnic-Cultural Prime $=0$ | 0.116 | 0.459 |
| $H_{I A T 3}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.022 | 0.133 |
| $H_{I A T 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.128 | 0.459 |
| $H_{I A T 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.988 | 0.998 |
| $H_{I A T 6}:$ National Prime $=$ Political-Competition Prime | 0.493 | 0.882 |
| $H_{I A T 7}:$ National Prime $=$ Ethnic-Political Prime | 0.951 | 0.998 |
| $H_{I A T 8}:$ Ethnic Prime $=$ Political-Competition Prime | 0.480 | 0.882 |
| $H_{I A T 9}:$ Ethnic Prime $=$ Ethnic-Political Prime | 0.963 | 0.998 |
| $H_{I A T 10}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.455 | 0.879 |
| $H_{I A T 11}:$ National $=$ Ethnic $=$ PC $=$ EP Prime $=0$ | 0.219 | 0.621 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 5.2 National IAT

Table 5.3: National IAT

|  | National D-score |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Dissonance 1st | $\begin{gathered} \hline-0.169^{* * *} \\ (0.0544) \end{gathered}$ | $\begin{gathered} \hline-0.163^{* * *} \\ (0.0543) \end{gathered}$ | $\begin{gathered} \hline-0.0935 \\ (0.115) \end{gathered}$ | $\begin{aligned} & \hline-0.0896 \\ & (0.116) \end{aligned}$ |
| National IAT 1st | $\begin{gathered} -0.0472 \\ (0.0564) \end{gathered}$ | $\begin{gathered} -0.0573 \\ (0.0564) \end{gathered}$ | $\begin{gathered} 0.196 \\ (0.132) \end{gathered}$ | $\begin{gathered} 0.172 \\ (0.133) \end{gathered}$ |
| Dissonance 1st * National IAT 1st | $\begin{gathered} -0.0403 \\ (0.0785) \end{gathered}$ | $\begin{aligned} & -0.0410 \\ & (0.0784) \end{aligned}$ | $\begin{gathered} -0.477^{* * *} \\ (0.181) \end{gathered}$ | $\begin{gathered} -0.485^{* * *} \\ (0.182) \end{gathered}$ |
| National Prime | $\begin{gathered} 0.0210 \\ (0.0624) \end{gathered}$ | $\begin{gathered} 0.0139 \\ (0.0626) \end{gathered}$ | $\begin{gathered} 0.123 \\ (0.118) \end{gathered}$ | $\begin{gathered} 0.110 \\ (0.119) \end{gathered}$ |
| Ethnic-Cultural Prime | $\begin{gathered} -0.0460 \\ (0.0624) \end{gathered}$ | $\begin{gathered} -0.0460 \\ (0.0628) \end{gathered}$ | $\begin{aligned} & -0.0303 \\ & (0.128) \end{aligned}$ | $\begin{aligned} & -0.0505 \\ & (0.129) \end{aligned}$ |
| Political-Competition Prime | $\begin{aligned} & -0.0262 \\ & (0.0625) \end{aligned}$ | $\begin{gathered} -0.0384 \\ (0.0630) \end{gathered}$ | $\begin{aligned} & 0.0348 \\ & (0.117) \end{aligned}$ | $\begin{gathered} 0.00987 \\ (0.118) \end{gathered}$ |
| Ethnic-Political Prime | $\begin{gathered} 0.0130 \\ (0.0623) \end{gathered}$ | $\begin{gathered} -0.000679 \\ (0.0626) \end{gathered}$ | $\begin{aligned} & 0.0412 \\ & (0.121) \end{aligned}$ | $\begin{aligned} & 0.0254 \\ & (0.122) \end{aligned}$ |
| 1(Female) |  | $\begin{gathered} 0.0313 \\ (0.0445) \end{gathered}$ |  | $\begin{gathered} 0.0314 \\ (0.0450) \end{gathered}$ |
| Years of Education (demeaned) |  | $\begin{aligned} & -0.0163^{* *} \\ & (0.00720) \end{aligned}$ |  | $\begin{aligned} & -0.0164^{* *} \\ & (0.00723) \end{aligned}$ |
| 1(Kikuyu) |  | $\begin{gathered} -0.147^{*} \\ (0.0847) \end{gathered}$ |  | $\begin{gathered} -0.149^{*} \\ (0.0855) \end{gathered}$ |
| 1(Luo) |  | $\begin{gathered} -0.0348 \\ (0.0874) \end{gathered}$ |  | $\begin{gathered} -0.0258 \\ (0.0884) \end{gathered}$ |
| 1(Luhya) |  | $\begin{gathered} -0.123 \\ (0.0889) \end{gathered}$ |  | $\begin{gathered} -0.126 \\ (0.0898) \end{gathered}$ |
| 1(Kamba) |  | $\begin{gathered} -0.105 \\ (0.0880) \end{gathered}$ |  | $\begin{gathered} -0.117 \\ (0.0890) \end{gathered}$ |
| National Prime * National IAT 1st |  |  | $\begin{aligned} & -0.315^{*} \\ & (0.176) \end{aligned}$ | $\begin{aligned} & -0.292^{*} \\ & (0.176) \end{aligned}$ |
| Ethnic-Cultural Prime * National IAT 1st |  |  | $\begin{aligned} & -0.249 \\ & (0.189) \end{aligned}$ | $\begin{aligned} & -0.216 \\ & (0.190) \end{aligned}$ |
| Political Competition * National IAT 1st |  |  | $\begin{gathered} -0.280 \\ (0.181) \end{gathered}$ | $\begin{aligned} & -0.260 \\ & (0.182) \end{aligned}$ |
| Ethnic-Political Prime * National IAT 1st |  |  | $\begin{aligned} & -0.317^{*} \\ & (0.182) \end{aligned}$ | $\begin{aligned} & -0.322^{*} \\ & (0.182) \end{aligned}$ |
| National Prime * Dissonance 1st |  |  | -0.207 | -0.203 |


|  |  | $(0.173)$ | $(0.173)$ |
| :--- | :---: | :---: | :---: |
| Ethnic-Cultural Prime * Dissonance 1st | -0.0688 | -0.0553 |  |
| Political-Competition Prime * Dissonance 1st | $(0.174)$ | $(0.175)$ |  |
| Ethnic-Political Prime * Dissonance 1st | -0.119 | -0.113 |  |
|  |  | $(0.165)$ | $(0.166)$ |
| National Prime * National IAT \& Dissonance 1st | -0.00199 | -0.0143 |  |
|  |  | $(0.166)$ | $(0.166)$ |
| Ethnic-Cultural Prime * National IAT \& Dissonance 1st |  | $0.593^{* *}$ | $0.570^{* *}$ |
|  |  | $(0.252)$ | $(0.253)$ |
| Political-Competition * National IAT \& Dissonance 1st |  | $0.516^{* *}$ | $0.511^{* *}$ |
|  |  |  | $(0.254)$ |
| Ethnic-Political Prime * National IAT \& Dissonance 1st |  | $0.525^{* *}$ | $0.531^{* *}$ |
|  |  |  | $(0.253)$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 5.4: p-values: I2

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{I A T 1}:$ National Prime $=0$ | 0.737 | 0.985 |
| $H_{I A T 2}:$ Ethnic-Cultural Prime $=0$ | 0.462 | 0.928 |
| $H_{I A T 3}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.675 | 0.985 |
| $H_{I A T 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.835 | 0.985 |
| $H_{I A T 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.278 | 0.787 |
| $H_{I A T 6}:$ National Prime $=$ Political-Competition Prime | 0.446 | 0.925 |
| $H_{I A T 7}:$ National Prime $=$ Ethnic-Political Prime | 0.897 | 0.985 |
| $H_{I A T 8}:$ Ethnic Prime $=$ Political-Competition Prime | 0.750 | 0.985 |
| $H_{I A T 9}:$ Ethnic Prime $=$ Ethnic-Political Prime | 0.341 | 0.850 |
| $H_{I A T 10}:$ Political-Competition Prime $=$ Ethnic-Political Prime | 0.527 | 0.941 |
| $H_{I A T 11}:$ National $=$ Ethnic $=$ PC $=$ EP Prime $=0$ | 0.803 | 0.985 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

## 6 Anonymous Games: Global Average Treatment Effect

### 6.1 Anonymous Dictator Game

Table 6.1: Anonymous Dictator Game, Global ATE

|  | Dictator Transfer (Percent of Endowment) |  |
| :--- | :---: | :---: |
| $(1)$ | $(2)$ |  |
| National Prime | $-3.240^{* *}$ | $-3.306^{* *}$ |
| Ethnic-Cultural Prime | $(1.363)$ | $(1.363)$ |
|  | -1.883 | -2.106 |
| Political-Competition Prime | $(1.364)$ | $(1.365)$ |
|  | $-2.678^{* *}$ | $-2.865^{* *}$ |
| 1 (Female) | $(1.359)$ | $(1.358)$ |
|  |  | $3.348^{* * *}$ |
| Years of Education (demeaned) |  | $(1.010)$ |
|  |  | $(0.0657$ |
| Constant | $40.78^{* * *}$ | $39.145)$ |
|  | $(0.912)$ | $(1.084)$ |
| Observations | 1924 | 1917 |
| Standard errors in parentheses |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 6.2: p -values: D1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{A-D 1}:$ National Prime $=0$ | 0.017 | 0.076 |
| $H_{A-D 2}:$ Ethnic-Cultural Prime $=0$ | 0.177 | 0.421 |
| $H_{A-D 3}:$ Political-Competition Prime $=0$ | 0.052 | 0.176 |
| $H_{A-D 4}:$ National Prime $=$ Ethnic-Cultural Prime | 0.326 | 0.588 |
| $H_{A-D 5}:$ National Prime $=$ Political-Competition Prime | 0.669 | 0.793 |
| $H_{A-D 6}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.577 | 0.793 |
| $H_{A-D 7}:$ National = Ethnic-Cultural = Political-Competition Prime $=0$ | 0.084 | 0.239 |

### 6.2 Anonymous Public-good Game

Table 6.3: Anonymous Public-good Game, Global ATE

|  | Contribution (Percent of Endowment) |  |
| :--- | :---: | :---: |
| $(1)$ | $(2)$ |  |
| National Prime | -1.241 | -1.014 |
|  | $(1.818)$ | $(1.819)$ |
| Ethnic-Cultural Prime | 0.128 | 0.137 |
|  | $(1.819)$ | $(1.821)$ |
| Political-Competition Prime | 0.370 | 0.324 |
|  | $(1.820)$ | $(1.821)$ |
| 1 (Female) |  | 0.00419 |
|  |  | $(1.350)$ |
| Years of Education (demeaned) |  | $-0.620^{* * *}$ |
|  |  | $(0.192)$ |
| Constant | $44.82^{* * *}$ | $45.30^{* * *}$ |
|  | $(1.225)$ | $(1.456)$ |
| Observations | 1889 | 1882 |
| Standard errors in parentheses |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 6.4: Anonymous Public-good Game, Global ATE

|  | Contribution minus Belief (Percent of Endowment) <br> $(1)$ |  |
| :--- | :---: | :---: |
| National Prime | -0.907 | -0.607 |
| Ethnic-Cultural Prime | $(1.974)$ | $(1.970)$ |
|  | -0.134 | -0.181 |
| Political-Competition Prime | $(1.975)$ | $(1.972)$ |
| 1(Female) | -0.472 | -0.647 |
|  | $(1.977)$ | $(1.972)$ |
| Years of Education (demeaned) |  | 1.196 |
|  |  | $-1.461)$ |
| Constant | $-5.312^{* * *}$ | $-009^{* * *}$ |
|  | $(1.330)$ | $-5.106^{* * *}$ |
| Observations | 1889 | $(1.577)$ |
| Standard errors in parentheses |  | 1882 |
| $* p<0.10,{ }^{* *} p<0.05,^{* * *} p<0.01$ |  |  |

Table 6.5: p-values: P1

|  |  | Regular p-value | FWER p-value |
| :--- | :--- | :---: | :---: |
| $H_{A-P G 1}:$ National Prime $=0$ | Contribution | 0.455 | 0.912 |
| $H_{A-P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution | 0.944 | 0.996 |
| $H_{A-P G 3}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | Contribution | 0.819 | 0.996 |
| $H_{A-P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution | 0.435 | 0.900 |
| $H_{A-P G 5}:$ National Prime $=$ PC Prime | Contribution | 0.352 | 0.830 |
| $H_{A-P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution | 0.879 | 0.996 |
| $H_{A-P G 7}:$ National $=$ Ethnic-Cultural = PC Prime $=0$ | Contribution | 0.793 | 0.996 |
| $H_{A-P G 1}:$ National Prime $=0$ | Contribution - Belief | 0.620 | 0.983 |
| $H_{A-P G 2}:$ Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.957 | 0.996 |
| $H_{A-P G 3}:$ Political-Competition $($ PC $)$ Prime $=0$ | Contribution - Belief | 0.825 | 0.996 |
| $H_{A-P G 4}:$ National Prime $=$ Ethnic-Cultural Prime | Contribution - Belief | 0.673 | 0.987 |
| $H_{A-P G 5}:$ National Prime $=$ PC Prime | Contribution - Belief | 0.793 | 0.996 |
| $H_{A-P G 6}:$ Ethnic-Cultural Prime $=$ PC Prime | Contribution - Belief | 0.873 | 0.996 |
| $H_{A-P G 7}:$ National $=$ Ethnic-Cultural $=$ PC Prime $=0$ | Contribution - Belief | 0.963 | 0.996 |

Table 6.6: Anonymous Public-good Game, Global ATE

|  | Belief about Group Member Contribution (\% Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| National Prime | -0.334 | -0.405 |
|  | $(1.432)$ | $(1.428)$ |
| Ethnic-Cultural Prime | 0.242 | 0.306 |
|  | $(1.383)$ | $(1.385)$ |
| Political-Competition Prime | 0.841 | 0.973 |
|  | $(1.396)$ | $(1.396)$ |
| 1(Female) |  | -1.195 |
|  |  | $(1.049)$ |
| Years of Education (demeaned) | $0.391^{* * *}$ |  |
|  |  | $(0.148)$ |
| Constant | $50.13^{* * *}$ | $50.41^{* * *}$ |
|  | $(0.949)$ | $(1.141)$ |
| Observations | 3786 | 3772 |
| Standard errors in parentheses |  |  |
| $* p<0.10, * * p<0.05, * * * p<0.01$ |  |  |

## 7 Kenya versus Tanzania: Cross-country Analysis

### 7.1 Anonymous Dictator game

Table 7.1: Anonymous Dictator Game, Kenya vs Tanzania

| Dictator Transfer (Percent of Endowment) |  |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Tanzania | 1.866 | $(1.1673)$ |
| National Prime | $(1.829)$ | -2.096 |
|  | -2.012 | $(1.749)$ |
| Ethnic-Cultural Prime | $(1.754)$ | -1.635 |
|  | -1.427 | $(1.751)$ |
| Political-Competition Prime | $(1.755)$ | -0.823 |
|  | -0.609 | $(1.754)$ |
| Tanzania * National Prime | $(1.758)$ | -2.838 |
|  | -2.973 | $(2.830)$ |
| Tanzania * Ethnic-Cultural Prime | $(2.827)$ | -0.564 |
|  | -0.619 | $(2.836)$ |
| Tanzania * Political-Competition Prime | $(2.832)$ | $-5.231^{*}$ |
|  | $-5.387^{*}$ | $(2.803)$ |
| 1(Female) | $(2.802)$ | $3.300^{* * *}$ |
|  |  | $(1.018)$ |
| Years of Education (demeaned) |  | -0.0609 |
|  |  | $(0.146)$ |
| Constant | $39.92^{* * *}$ | $38.15^{* * *}$ |
|  | $(1.245)$ | $(1.396)$ |
| Observations | 1924 | 1917 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 7.2: p-values: D1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{K T-D 1}:$ Tanzania $(\mathrm{TZ})=0$ | 0.273 | 0.659 |
| $H_{K T-D 2}: \mathrm{TZ} *$ Nation Prime $=0$ | 0.233 | 0.633 |
| $H_{K T-D 3}: \mathrm{TZ}$ * Ethnic-Cultural Prime $=0$ | 0.790 | 0.790 |
| $H_{K T-D 4}: \mathrm{TZ}$ * Political-Competition Prime $=0$ | 0.048 | 0.217 |
| $H_{K T-D 5}: \mathrm{TZ}$ * National Prime $=\mathrm{TZ}$ * Ethnic-Cutural Prime | 0.391 | 0.691 |
| $H_{K T-D 6}: \mathrm{TZ}$ * National Prime $=\mathrm{TZ}$ * Political-Competition | 0.476 | 0.720 |
| $H_{K T-D 7}: \mathrm{TZ}$ * Ethnic-Cultural Prime $=\mathrm{TZ}$ * Political-Competition Prime | 0.115 | 0.409 |
| $H_{K T-D 8}: \mathrm{TZ}$ * (National, Ethnic-Cultural, Political-Competition Prime) $=0$ | 0.199 | 0.574 |

### 7.2 Anonymous Public-good game

| Table 7.3: Anonymous Public-good Game, Kenya vs Tanzania |  |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
|  | PG Contribution | PG Contribution |
| Tanzania | 0.243 | -0.536 |
|  | $(2.464)$ | $(2.484)$ |
| National Prime | -0.361 | -0.428 |
|  | $(2.319)$ | $(2.313)$ |
| Ethnic-Cultural Prime | 1.484 | 1.326 |
|  | $(2.321)$ | $(2.316)$ |
| Political-Competition Prime | 0.272 | 0.0815 |
|  | $(2.325)$ | $(2.320)$ |
| Tanzania * National Prime | -2.637 | -1.990 |
|  | $(3.788)$ | $(3.793)$ |
| Tanzania * Ethnic-Cultural Prime | -4.106 | -3.875 |
|  | $(3.789)$ | $(3.797)$ |
| Tanzania * Political-Competition Prime | 0.390 | 0.563 |
|  | $(3.786)$ | $(3.790)$ |
| 1 Female) |  | -0.202 |
|  |  | $(1.360)$ |
| Years of Education (demeaned) | $-0.644^{* * *}$ |  |
| Constant | $44.71^{* * *}$ | $(0.194)$ |
|  | $(1.647)$ | $45.67^{* * *}$ |
| Observations | 1889 | $(1.851)$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 7.4: Anonymous Public-good Game, Kenya vs Tanzania

|  | $(1)$ | $(2)$ |
| :--- | :---: | :---: |
|  | Contribution - Belief | Contribution - Belief |
| Tanzania | -4.283 | $-5.452^{* *}$ |
|  | $(2.673)$ | $(2.686)$ |
| National Prime | -1.570 | -1.708 |
|  | $(2.516)$ | $(2.501)$ |
| Ethnic-Cultural Prime | -0.545 | -0.874 |
|  | $(2.518)$ | $(2.505)$ |
| Political-Competition Prime | -2.356 | -2.741 |
|  | $(2.522)$ | $(2.509)$ |
| Tanzania * National Prime | 0.405 | 1.483 |
|  | $(4.109)$ | $(4.101)$ |
| Tanzania * Ethnic-Cultural Prime | -0.367 | 0.181 |
|  | $(4.110)$ | $(4.105)$ |
| Tanzania * Political-Competition Prime | 4.195 | 4.517 |
|  | $(4.107)$ | $(4.098)$ |
| 1(Female) |  | 0.784 |
|  |  | $(1.471)$ |
| Years of Education (demeaned) |  | $-1.076^{* * *}$ |
| Constant | $-3.400^{*}$ | $(0.210)$ |
|  | $(1.786)$ | -2.425 |
| Observations | 1889 | $(2.001)$ |
| Sar |  | 1882 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 7.5: p-values: P1

| Null Hypothesis | LHS variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{K T-P G 1}$ : Tanzania (TZ) $=0$ | Contribution | 0.985 | 1.000 |
| $H_{K T-P G_{2}}: \mathrm{TZ} *$ National Prime $=0$ | Contribution | 0.458 | 0.944 |
| $H_{K T-P G 3}:$ TZ $*$ Ethnic-Cultural Prime $=0$ | Contribution | 0.304 | 0.885 |
| $H_{K T-P G 4}:$ TZ $*$ Political-Competition (PC) Prime $=0$ | Contribution | 0.880 | 1.000 |
| $H_{K T-P G 5}:$ TZ $*$ National Prime $=$ TZ $*$ Ethnic-Cultural Prime | Contribution | 0.791 | 0.998 |
| $H_{K T-P G 6}: \mathrm{TZ} *$ National Prime $=$ TZ * PC Prime | Contribution | 0.406 | 0.932 |
| $H_{K T-P G 7}:$ TZ * Ethnic Prime $=$ TZ * PC Prime | Contribution | 0.272 | 0.866 |
| $H_{K T-P G 8}:$ TZ * (National, Ethnic-Cultural, PC Prime) $=0$ | Contribution | 0.618 | 0.979 |
| $H_{K T-P G 1}$ : Tanzania (TZ) $=0$ | Contribution - Belief | 0.096 | 0.523 |
| $H_{K T-P G 2}$ : TZ $*$ National Prime $=0$ | Contribution - Belief | 0.931 | 1.000 |
| $H_{K T-P G 3}:$ TZ * Ethnic-Cultural Prime $=0$ | Contribution - Belief | 0.986 | 1.000 |
| $H_{K T-P G 4}:$ TZ * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.291 | 0.885 |
| $H_{K T-P G 5}: \mathrm{TZ} *$ National Prime $=\mathrm{TZ} *$ Ethnic-Cultural Prime | Contribution - Belief | 0.923 | 1.000 |
| $H_{K T-P G 6}: \mathrm{TZ} *$ National Prime $=\mathrm{TZ} *$ PC Prime | Contribution - Belief | 0.368 | 0.907 |
| $H_{K T-P G 7}:$ TZ * Ethnic Prime $=$ TZ * PC Prime | Contribution - Belief | 0.318 | 0.885 |
| $H_{K T-P G 8}:$ TZ * (National, Ethnic-Cultural, PC Prime) $=0$ | Contribution - Belief | 0.696 | 0.990 |

Table 7.6: Anonymous Public-good Game, Kenya vs Tanzania

|  | Belief about Group Member Contribution (\% Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Tanzania | $4.519^{* *}$ | $\left(1.914^{* *}\right.$ |
| National Prime | $(1.923)$ | 1.277 |
|  | 1.202 | $(1.748)$ |
| Ethnic-Cultural Prime | $(1.755)$ | 2.178 |
|  | 1.994 | $(1.712)$ |
| Political-Competition Prime | $(1.707)$ | 2.820 |
|  | 2.620 | $(1.729)$ |
| Tanzania * National Prime | $(1.728)$ | -3.471 |
|  | -3.035 | $(3.042)$ |
| Tanzania * Ethnic-Cultural Prime | $(3.033)$ | -4.034 |
|  | -3.704 | $(2.912)$ |
| Tanzania * Political-Competition Prime | $(2.908)$ | -3.952 |
|  | -3.796 | $(2.928)$ |
| 1 Female) | $(2.923)$ | -0.991 |
|  |  | $(1.050)$ |
| Years of Education $($ demeaned $)$ |  | $0.433^{* * *}$ |
|  |  | $(0.149)$ |
| Constant |  | $48.10^{* * *}$ |
|  | $(18.371)$ |  |
| Observations | $(1.206)$ | 3772 |
| Standard errors in parentheses |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 7.7: p-values: PB1

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{K T-D 1}:$ Tanzania $(\mathrm{TZ})=0$ | 0.021 | 0.105 |
| $H_{K T-D 2}:$ TZ $*$ National Prime $=0$ | 0.300 | 0.709 |
| $H_{K T-D 3}:$ TZ * Ethnic-Cultural Prime $=0$ | 0.195 | 0.709 |
| $H_{K T-D 4}:$ TZ $*$ Political-Competition Prime $=0$ | 0.201 | 0.709 |
| $H_{K T-D 5}:$ TZ $*$ National Prime $=$ TZ * Ethnic-Cultural Prime | 0.845 | 0.988 |
| $H_{K T-D 6}:$ TZ $*$ National Prime $=$ TZ $*$ Political-Competition Prime | 0.855 | 0.988 |
| $H_{K T-D 7}:$ TZ $*$ Ethnic-Cultural Prime $=$ TZ $*$ Political-Competition Prime | 0.991 | 0.999 |
| $H_{K T-D 8}:$ TZ * (National, Ethnic-Cultural, Political-Competition Prime) $=0$ | 0.492 | 0.999 |

## 8 Kenya 2012 vs Kenya 2013: Election Comparison

### 8.1 Eifert et al: Ethnic Identification

Table 8.1: Ethnic identification, Kenya 2012-2013

|  | 1(Ethnic Identification) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Election Period | 0.00831 | -0.00503 | -0.144* |
|  | (0.0185) | (0.0196) | (0.0769) |
| 1(Kikuyu) |  | -0.0837** | $-0.197^{* * *}$ |
|  |  | (0.0394) | (0.0598) |
| 1(Luo) |  | -0.0683* | -0.123** |
|  |  | (0.0408) | (0.0623) |
| 1(Luhya) |  | -0.0385 | -0.101 |
|  |  | (0.0415) | (0.0637) |
| 1(Kamba) |  | -0.0921** | -0.171*** |
|  |  | (0.0418) | (0.0641) |
| 1(Female) |  | 0.0252 | 0.0222 |
|  |  | (0.0198) | (0.0284) |
| Education (demeaned) |  | -0.00347 | -0.00473 |
|  |  | (0.00297) | (0.00397) |
| Election Period * 1(Kikuyu) |  |  | 0.204** |
|  |  |  | (0.0797) |
| Election Period * 1(Luo) |  |  | 0.0925 |
|  |  |  | (0.0826) |
| Election Period * 1(Luhya) |  |  | 0.109 |
|  |  |  | (0.0842) |
| Election Period * 1(Kamba) |  |  | 0.135 |
|  |  |  | (0.0847) |
| Election Period * 1(Female) |  |  | 0.00293 |
|  |  |  | (0.0396) |
| Election Period * Education |  |  | 0.00224 |
|  |  |  | (0.00598) |
| Constant | $0.127^{* * *}$ | $0.189^{* * *}$ | $0.271^{* * *}$ |
|  | (0.0137) | (0.0400) | (0.0597) |
| Observations | 1349 | 1349 | 1349 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Note: the measure for ethnic identification is the least conservative measure for ethnic identification. During the phone call interview, several respondents were interviewed twice. Among the 1349 respondents, 27 gave conflicting answers on the Afrobarometer identification question. In 15 of the 27 cases, the respondents switched between 'ethnic' and 'non-ethnic' responses. The measure for ethnic identification below codes all of these 15 cases as 'ethnic identification'.

Table 8.2: p-values: Ethnic identification

|  | Regular p-value |
| :--- | :---: |
| Null Hypothesis | 0.207 |
| $H_{E L-I D 1}:$ Election Period $=0$ | 0.055 |
| $H_{E L-I D 2}:$ Election Period $*$ Kikuyu $=0$ | 0.556 |
| $H_{E L-I D 2}:$ Election Period $*$ Luo $=0$ | 0.433 |
| $H_{E L-I D 2}:$ Election Period $*$ Luhya $=0$ | 0.324 |
| $H_{E L-I D 2}:$ Election Period $*$ Kamba $=0$ | 0.794 |
| $H_{E L-I D 2}:$ Election Period $*$ Female $=0$ | 0.655 |
| $H_{E L-I D 2}:$ Election Period $*$ Education-years $=0$ |  |

### 8.2 Dictator Game

### 8.2.1 Anonymous Dictator Game

Table 8.3: Anonymous Dictator Game, Kenya 2012-2013


Table 8.4: p-values: D1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{E L-D 1}:$ Election Period (EL) $=0$ | 0.001 | 0.008 |
| $H_{E L-D 2}: \mathrm{EL} *$ National Prime $=0$ | 0.148 | 0.408 |
| $H_{E L-D 3}: \mathrm{EL}^{*}$ Ethnic-Cultural Prime $=0$ | 0.572 | 0.815 |
| $H_{E L-D 4}: \mathrm{EL}^{*}$ Political-Competition Prime $=0$ | 0.346 | 0.675 |
| $H_{E L-D 5}: \mathrm{EL}^{*}$ National Prime $=\mathrm{EL}^{*}$ Ethnic Prime | 0.043 | 0.170 |
| $H_{E L-D 6}: \mathrm{EL} *$ National Prime $=\mathrm{EL}^{*}$ Political-Competition Prime | 0.613 | 0.815 |
| $H_{E L-D 7}: \mathrm{EL}^{*}$ Ethnic-Cultural Prime $=$ EL * Political-Competition Prime | 0.131 | 0.395 |
| $H_{E L-D 8}: \mathrm{EL}^{*}$ (Nation, Ethnic-Cultural, Political-Competition Prime) $=0$ | 0.174 | 0.410 |

### 8.2.2 Coethnic Dictator Game

Table 8.5: Coethnic Dictator Game, Kenya 2012-2013


Table 8.6: p-values: D2

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{E L-D 1}$ : Election Period (EL) $=0$ | 0.004 | 0.025 |
| $H_{E L-D 2}:$ EL ${ }^{*}$ National Prime $=0$ | 0.270 | 0.596 |
| $H_{E L-D 3}:$ EL $*$ Ethnic-Cultural Prime $=0$ | 0.925 | 0.925 |
| $H_{E L-D 4}:$ EL $*$ Political-Competition Prime $=0$ | 0.072 | 0.260 |
| $H_{E L-D 5}:$ EL $*$ National Prime $=$ EL $*$ Ethnic Prime | 0.354 | 0.661 |
| $H_{E L-D 6}:$ EL $*$ National Prime $=$ EL $*$ Political-Competition Prime | 0.523 | 0.775 |
| $H_{E L-D 7}:$ EL $*$ Ethnic-Cultural Prime $=$ EL $*$ Political-Competition Prime | 0.118 | 0.352 |
| $H_{E L-D 8}:$ EL ${ }^{*}($ Nation, Ethnic-Cultural, Political-Competition Prime) $=0$ | 0.246 | 0.566 |

### 8.2.3 Pooled Dictator Game

Table 8.7: Pooled Dictator Game, Kenya 2012-2013

|  | Dictator Transfer (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Election Period | -6.519*** | -6.951*** |
|  | (2.499) | (2.531) |
| Coethnic Dictator Game (DG) | -1.854 | -1.855 |
|  | (1.803) | (1.808) |
| National Prime | -4.917** | -4.911** |
|  | (2.425) | (2.419) |
| Ethnic-Cultural Prime | -1.047 | -0.995 |
|  | (2.293) | (2.305) |
| Political-Competition Prime | -2.847 | -2.881 |
|  | (2.145) | (2.148) |
| Coethnic Dictator Game * National Prime | 1.232 | 1.363 |
|  | (2.722) | (2.722) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 1.222 | 1.314 |
|  | (2.907) | (2.910) |
| Coethnic Dictator Game * Political-Competition Prime | -1.021 | -0.990 |
|  | (2.623) | (2.627) |
| Election Period * National Prime | 5.241 | 4.994 |
|  | (3.715) | (3.710) |
| Election Period * Ethnic-Cultural Prime | -2.212 | -2.851 |
|  | (3.661) | (3.661) |
| Election Period * Political-Competition Prime | 2.283 | 1.974 |
|  | (3.528) | (3.509) |
| Election Period * Coethnic Dictator Game (DG) | $-0.827$ | $-0.826$ |
|  | (3.013) | $(3.016)$ |
| Election Period * Non-coethnic Dictator Game (DG) | -4.538* | -4.538* |
|  | (2.345) | (2.347) |
| Election Period * Coethnic DG * National Prime | -0.976 | -1.133 |
|  | (4.193) | (4.193) |
| Election Period * Non-coethnic DG * National Prime | 2.541 | 2.515 |
|  | (3.221) | (3.222) |
| Election Period * Coethnic DG * Ethnic-Cultural Prime | $2.583$ | 2.453 |
|  | $(4.382)$ | $(4.383)$ |
| Election Period * Non-coethnic DG * Ethnic-Cultural Prime | 6.192* | $6.153^{*}$ |
|  | (3.218) | (3.219) |
| Election Period * Coethnic DG * Political-Competition Prime | 4.569 | 4.558 |
|  | (4.065) | (4.067) |
| Election Period * Non-coethnic DG * Political-Competition Prime | 4.009 | 4.030 |
|  | (3.037) | (3.039) |
| 1(Female) |  | 1.398 |
|  |  | (1.219) |
| Education (demeaned) |  | -0.279* |
|  |  | (0.165) |
| 1(Kikuyu) |  | 2.583 |
|  |  | (2.361) |
| 1(Luo) |  | -0.569 |
|  |  | (2.480) |
| 1(Luhya) |  | 1.884 |
|  |  | (2.469) |
| Constant | $43.63^{* * *}$ | $42.11^{* * *}$ |


|  | $(1.523)$ | $(2.780)$ |
| :--- | :---: | :---: |
| Observations | 2881 | 2881 |
| Standard errors in parentheses |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

This set of FWER adjustments groups the non-exploratory hypotheses for the pooled PG from Kenya 2012 and Kenya 2013. The reason is that there was no non-coethnic DG in Kenya 2012, and as such it was impossible to apply FWER adjustment on just one hypothesis for the pooled specification in Kenya 2012.

Table 8.8: Pooled Dictator Game - FWER adjustment

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{D 13}:$ Coethnic Dictator Game $=0$ | 0.304 | 0.518 |
| $H_{D 14}:$ Election Period $*$ Non-coethnic Dictator Game | 0.053 | 0.153 |
| $H_{E L-D 1}:$ Election Period $=0$ | 0.009 | 0.039 |
| $H_{E L-D 9}:$ Election Period $*$ Coethnic Dictator Game $=0$ | 0.784 | 0.786 |

Table 8.9: p-values: Pooled Dictator Game

| Null Hypothesis | Regular p-value |
| :--- | :---: |
| $H_{E L-D 10}:$ Election Period * Coethnic DG * National Prime $=0$ | 0.816 |
| $H_{E L-D 11}:$ Election Period* Coethnic DG * Ethnic-Cultural Prime $=0$ | 0.556 |
| $H_{E L-D 12}:$ Election Period * Coethnic DG * Political-Competition (PC) Prime $=0$ | 0.261 |
| $H_{E L-D 13}:$ Election * Coethnic DG * (National Prime $=$ Ethnic Prime) | 0.410 |
| $H_{E L-D 14}:$ Election * Coethnic DG * (National Prime $=$ PC Prime $)$ | 0.165 |
| $H_{E L-D 15}:$ Election * Coethnic DG * (Ethnic-Cultural Prime $=$ PC Prime) | 0.636 |
| $H_{E L-D 16}:$ Election * Coethnic DG * (No Prime $=$ National $=$ Ethnic-Cultural $=$ PC Prime $\left.=0\right)$ | 0.619 |
| $H_{E L-D 17}:$ All coefficients $=0$ | 0.013 |

### 8.3 Public-good Game: Contributions

### 8.3.1 Anonymous Public-good Game

Table 8.10: Anonymous Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Election Period | -6.356** | -8.126** |
|  | (3.234) | (3.251) |
| National Prime | -4.697 | -4.509 |
|  | (3.218) | (3.199) |
| Ethnic-Cultural Prime | 0.325 | 0.104 |
|  | (3.218) | (3.197) |
| Political-Competition Prime | -1.716 | -1.784 |
|  | (3.223) | (3.200) |
| Election Period * National Prime | 8.679* | 8.390* |
|  | (4.555) | (4.526) |
| Election Period * Ethnic-Cultural Prime | 2.292 | 2.078 |
|  | (4.558) | (4.538) |
| Election Period * Political-Competition Prime | 3.960 | 3.977 |
|  | (4.566) | (4.543) |
| 1(Female) |  | -1.264 |
|  |  | (1.719) |
| Education (demeaned) |  | -0.940*** |
|  |  | (0.257) |
| 1(Kikuyu) |  | -2.391 |
|  |  | (3.502) |
| 1(Luo) |  | -7.520** |
|  |  | (3.622) |
| 1(Luhya) |  | -2.616 |
|  |  | (3.669) |
| 1(Kamba) |  | -3.514 |
|  |  | (3.720) |
| Constant | 47.89*** | $54.24{ }^{* * *}$ |
|  | (2.287) | (4.033) |
| Observations | 1211 | 1211 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.11: Anonymous Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Election Period | $-7.978^{* *}$ | $-10.35^{* * *}$ |
| National Prime | $(3.464)$ | $(3.462)$ |
|  | $-9.146^{* * *}$ | $-8.967^{* * *}$ |
| Ethnic-Cultural Prime | $(3.447)$ | $(3.407)$ |
| Political-Competition Prime | -4.211 | -4.328 |
|  | $(3.447)$ | $(3.405)$ |
| Election Period * National Prime | $-6.274^{*}$ | $-6.381^{*}$ |
|  | $(3.453)$ | $(3.408)$ |
| Election Period * Ethnic-Cultural Prime | $15.17^{* * *}$ | $14.54^{* * *}$ |
|  | $(4.879)$ | $(4.820)$ |
| Election Period * Political-Competition Prime | 7.328 | 6.476 |
|  | $(4.883)$ | $(4.833)$ |
| 1(Female) | 7.835 | 7.219 |
|  | $(4.891)$ | $(4.839)$ |
| Education (demeaned) |  | -0.751 |
|  |  | $(1.830)$ |
| 1(Kikuyu) |  | $-1.400^{* * *}$ |
|  |  | $(0.274)$ |
| 1(Luo) |  | 2.380 |
|  |  | $(3.730)$ |
| 1(Luhya) | -2.937 |  |
|  |  | $(3.858)$ |
| 1(Kamba) | 1.125 |  |
| Constant |  | $(3.907)$ |
|  | 0.196 |  |
| Observations | $(3.962)$ |  |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.12: p-values: P1

| Null Hypothesis | LHS variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution | 0.055 | 0.321 |
| $H_{E L-P G 2}$ : EL $*$ National Prime $=0$ | Contribution | 0.064 | 0.321 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution | 0.651 | 0.840 |
| $H_{E L-P G 4}$ : EL * Political-Competition (PC) Prime $=0$ | Contribution | 0.400 | 0.664 |
| $H_{E L-P G 5}:$ EL $*$ National Prime $=$ EL * EC Prime | Contribution | 0.160 | 0.443 |
| $H_{E L-P G 6}:$ EL $*$ National Prime $=$ EL * PC Prime | Contribution | 0.311 | 0.648 |
| $H_{E L-P G 7}:$ EL ${ }^{*}$ Ethnic-Cultural Prime $=$ EL $*$ PC Prime | Contribution | 0.695 | 0.840 |
| $H_{E L-P G 8}:$ EL * (National, Ethnic-Cultural, PC Prime) $=0$ | Contribution | 0.289 | 0.622 |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution - Belief | 0.023 | 0.157 |
| $H_{E L-P G 2}:$ EL $*$ National Prime $=0$ | Contribution - Belief | 0.002 | 0.017 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution - Belief | 0.144 | 0.443 |
| $H_{E L-P G 4}$ : EL $*$ Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.112 | 0.431 |
| $H_{E L-P G 5}:$ EL $*$ National Prime $=$ EL * EC Prime | Contribution - Belief | 0.106 | 0.431 |
| $H_{E L-P G 6}:$ EL $*$ National Prime $=$ EL * PC Prime | Contribution - Belief | 0.138 | 0.443 |
| $H_{E L-P G 7}:$ EL $*$ Ethnic-Cultural Prime $=$ EL * PC Prime | Contribution - Belief | 0.897 | 0.898 |
| $H_{E L-P G 8}:$ EL ${ }^{*}$ (National, Ethnic-Cultural, PC Prime $)=0$ | Contribution - Belief | 0.024 | 0.162 |

### 8.3.2 Mixed Public-good Game

Table 8.13: Mixed Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Election Period | -3.730 | -4.081 |
|  | (3.747) | (3.787) |
| National Prime | -3.957 | -3.739 |
|  | (3.786) | (3.783) |
| Ethnic-Cultural Prime | 0.0229 | -0.243 |
|  | (3.762) | (3.759) |
| Political-Competition Prime | -3.134 | -3.101 |
|  | (3.732) | (3.728) |
| Election Period * National Prime | 7.033 | 6.810 |
|  | (5.393) | (5.395) |
| Election Period * Ethnic-Cultural Prime | -1.107 | -1.033 |
|  | (5.376) | (5.387) |
| Election Period * Political-Competition Prime | 5.259 | 5.752 |
|  | (5.343) | (5.348) |
| 1(Female) |  | -0.0254 |
|  |  | (2.051) |
| Education (demeaned) |  | -0.188 |
|  |  | (0.298) |
| 1(Kikuyu) |  | -4.488 |
|  |  | (3.818) |
| 1(Luo) |  | -9.304** |
|  |  | (3.941) |
| 1(Luhya) |  | -6.760* |
|  |  | (4.006) |
| Constant | 48.90*** | $55.25^{* * *}$ |
|  | (2.634) | (4.496) |
| Observations | 981 | 981 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 8.14: Mixed Public-good Game, Kenya 2012-2013

|  | Contribution minus Belief (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Election Period | -4.465 | -4.653 |
|  | (4.154) | (4.170) |
| National Prime | -6.893 | -6.827 |
|  | (4.197) | (4.166) |
| Ethnic-Cultural Prime | -4.448 | -4.773 |
|  | (4.171) | (4.140) |
| Political-Competition Prime | -7.782* | -7.868* |
|  | (4.138) | (4.106) |
| Election Period * National Prime | 7.744 | 7.427 |
|  | (5.979) | (5.941) |
| Election Period * Ethnic-Cultural Prime | 0.299 | -0.581 |
|  | (5.961) | (5.933) |
| Election Period * Political-Competition Prime | 6.325 | 6.585 |
|  | (5.924) | (5.890) |
| 1(Female) |  | 4.365* |
|  |  | (2.259) |
| Education (demeaned) |  | -0.0543 |
|  |  | (0.328) |
| 1(Kikuyu) |  | -1.132 |
|  |  | (4.205) |
| 1(Luo) |  | -11.44*** |
|  |  | (4.340) |
| 1(Luhya) |  | -4.526 |
|  |  | (4.412) |
| Constant | -1.137 | 1.263 |
|  | (2.920) | (4.951) |
| Observations | 981 | 981 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.15: p-values: P2

| Null Hypothesis | LHS variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution | 0.328 | 0.831 |
| $H_{E L-P G 2}:$ EL $*$ National Prime $=0$ | Contribution | 0.204 | 0.767 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution | 0.812 | 0.968 |
| $H_{E L-P G 4}:$ EL $*$ Political-Competition (PC) Prime $=0$ | Contribution | 0.329 | 0.831 |
| $H_{E L-P G 5}:$ EL ${ }^{*}$ National Prime $=$ EL * EC Prime | Contribution | 0.138 | 0.617 |
| $H_{E L-P G 6}:$ EL * National Prime $=$ EL * PC Prime | Contribution | 0.765 | 0.946 |
| $H_{E L-P G 7}:$ EL $*$ Ethnic-Cultural Prime $=$ EL * PC Prime | Contribution | 0.231 | 0.767 |
| $H_{E L-P G 8}:$ EL $*($ National, Ethnic-Cultural, PC Prime $)=0$ | Contribution | 0.368 | 0.831 |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution - Belief | 0.289 | 0.831 |
| $H_{E L-P G 2}:$ EL $*$ National Prime $=0$ | Contribution - Belief | 0.204 | 0.767 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution - Belief | 0.998 | 0.998 |
| $H_{E L-P G 4}:$ EL * Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.286 | 0.831 |
| $H_{E L-P G 5}:$ EL $*$ National Prime $=$ EL * EC Prime | Contribution - Belief | 0.212 | 0.767 |
| $H_{E L-P G 6}:$ EL ${ }^{*}$ National Prime $=\mathrm{EL} *$ PC Prime | Contribution - Belief | 0.834 | 0.974 |
| $H_{E L-P G 7}:$ EL $*$ Ethnic-Cultural Prime $=$ EL $*$ PC Prime | Contribution - Belief | 0.294 | 0.831 |
| $H_{E L-P G 8}:$ EL $*$ (National, Ethnic-Cultural, PC Prime) $=0$ | Contribution - Belief | 0.436 | 0.831 |

### 8.3.3 Coethnic Public-good Game

Table 8.16: Coethnic Public-good Game, Kenya 2012-2013


Table 8.17: Coethnic Public-good Game, Kenya 2012-2013

|  | Contribution minus Belief (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Election Period | -4.504 | -6.371 |
|  | (4.288) | (4.316) |
| National Prime | -2.853 | -2.514 |
|  | (4.333) | (4.309) |
| Ethnic-Cultural Prime | 4.642 | 4.585 |
|  | (4.297) | (4.273) |
| Political-Competition Prime | -1.110 | -1.117 |
|  | (4.314) | (4.291) |
| Election Period * National Prime | 7.915 | 7.707 |
|  | (6.153) | (6.126) |
| Election Period * Ethnic-Cultural Prime | -7.275 | -7.345 |
|  | (6.142) | (6.125) |
| Election Period * Political-Competition Prime | 3.460 | 3.649 |
|  | (6.134) | (6.110) |
| 1(Female) |  | -0.136 |
|  |  | (2.334) |
| Education (demeaned) |  | -0.740** |
|  |  | (0.338) |
| 1(Kikuyu) |  | -5.081 |
|  |  | (4.346) |
| 1(Luo) |  | -9.319** |
|  |  | (4.491) |
| 1(Luhya) |  | -1.122 |
|  |  | (4.558) |
| Constant | -5.529* | 0.972 |
|  | (3.026) | (5.118) |
| Observations | 967 | 967 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.18: p-values: P3

| Null Hypothesis | LHS variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution | 0.313 | 0.797 |
| $H_{E L-P G 2}:$ EL $*$ National Prime $=0$ | Contribution | 0.487 | 0.809 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution | 0.338 | 0.797 |
| $H_{E L-P G 4}:$ EL $*$ Political-Competition (PC) Prime $=0$ | Contribution | 0.846 | 0.850 |
| $H_{E L-P G 5}:$ EL $*$ National Prime $=$ EL * EC Prime | Contribution | 0.104 | 0.491 |
| $H_{E L-P G 6}:$ EL ${ }^{*}$ National Prime $=$ EL * PC Prime | Contribution | 0.381 | 0.797 |
| $H_{E L-P G 7}:$ EL ${ }^{*}$ Ethnic-Cultural Prime $=$ EL $*$ PC Prime | Contribution | 0.451 | 0.809 |
| $H_{E L-P G 8}:$ EL ${ }^{*}($ National, Ethnic-Cultural, PC Prime $)=0$ | Contribution | 0.442 | 0.803 |
| $H_{E L-P G 1}$ : Election Period (EL) $=0$ | Contribution - Belief | 0.290 | 0.768 |
| $H_{E L-P G 2}:$ EL $*$ National Prime $=0$ | Contribution - Belief | 0.186 | 0.686 |
| $H_{E L-P G 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | Contribution - Belief | 0.250 | 0.754 |
| $H_{E L-P G 4}:$ EL ${ }^{*}$ Political-Competition (PC) Prime $=0$ | Contribution - Belief | 0.541 | 0.809 |
| $H_{E L-P G 5}:$ EL $*$ National Prime $=$ EL * EC Prime | Contribution - Belief | 0.015 | 0.111 |
| $H_{E L-P G 6}:$ EL $*$ National Prime $=$ EL * PC Prime | Contribution - Belief | 0.482 | 0.809 |
| $H_{E L-P G 7}:$ EL $*$ Ethnic-Cultural Prime $=$ EL $*$ PC Prime | Contribution - Belief | 0.082 | 0.436 |
| $H_{E L-P G 8}: \mathrm{EL}^{*}($ National, Ethnic-Cultural, PC Prime $)=0$ | Contribution - Belief | 0.094 | 0.465 |

### 8.3.4 Pooled Public-good Game

Table 8.19: Pooled Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
| Election Period | -6.027* | -7.144** |
|  | (3.363) | (3.398) |
| Coethnic Group | -1.727 | -1.756 |
|  | (2.541) | (2.545) |
| Mixed Group | 0.323 | 0.323 |
|  | (2.287) | (2.289) |
| National Prime | -3.813 | -3.481 |
|  | (3.377) | (3.360) |
| Ethnic-Cultural Prime | -1.388 | -1.599 |
|  | (3.346) | (3.364) |
| Political-Competition Prime | -3.188 | -3.123 |
|  | (3.294) | (3.248) |
| Election Period * National Prime | 6.205 | 6.043 |
|  | (4.899) | (4.888) |
| Election Period * Ethnic-Cultural Prime | 1.475 | 1.784 |
|  | (5.003) | (5.031) |
| Election Period * Political-Competition Prime | 4.713 | 5.268 |
|  | (4.821) | (4.781) |
| Election Period * Coethnic Group | 2.002 | 2.064 |
|  | (3.383) | (3.389) |
| Election Period * Mixed Group | 2.297 | 2.330 |
|  | (3.585) | (3.590) |
| Election Period * Mixed Group * National Prime | 0.827 | 0.758 |
|  | (5.114) | (5.120) |
| Election Period * Coethnic Group * National Prime | -2.395 | -2.503 |
|  | (5.072) | (5.079) |
| Election Period * Mixed Group * Ethnic-Cultural Prime | -2.581 | -2.613 |
|  | (5.353) | (5.353) |
| Election Period * Coethnic Group * Ethnic-Cultural Prime | -6.712 | -6.801 |
|  | (5.312) | (5.311) |
| Election Period * Mixed Group * Political-Competition Prime | 0.545 | 0.516 |
|  | (5.076) | (5.081) |
| Election Period * Coethnic Group * Political-Competition Prime | -5.616 | -5.680 |
|  | (5.110) | (5.118) |
| Mixed Group * National Prime | -0.144 | -0.144 |
|  | (3.190) | (3.193) |
| Mixed Group * Ethnic-Cultural Prime | 1.411 | 1.411 |
|  | (3.398) | (3.401) |
| Mixed Group * Political-Competition Prime | 0.0546 | 0.0546 |
|  | (3.345) | (3.348) |
| Coethnic Group * National Prime | 1.933 | 1.972 |
|  | (3.578) | (3.583) |
| Coethnic Group * Ethnic-Cultural Prime | 7.103* | 7.132* |
|  | (3.870) | (3.874) |
| Coethnic Group * Political-Competition Prime | $6.787^{*}$ | 6.788* |
|  | (3.619) | (3.626) |
| 1(Female) |  | -1.565 |
|  |  | (1.688) |
| Education (demeaned) |  | -0.513** |


|  |  |
| :--- | :---: |
| 1 (Kikuyu) | $(0.232)$ |
|  | $-5.981^{*}$ |
| 1 (Luo) | $(3.381)$ |
|  |  |
| 1 (Luhya) | $-10.12^{* * *}$ |
|  | $(3.477)$ |
| Constant |  |
|  |  |
| Observations | $48.58^{* * *}$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.20: Pooled Public-good Game, Kenya 2012-2013

|  | Contribution minus Belief (Percent of Endowment) <br> (1) <br> (2) |  |
| :---: | :---: | :---: |
| Election Period | -7.140** | -8.490** |
|  | (3.498) | (3.570) |
| Coethnic Group | $-6.556^{*}$ | -6.584* |
|  | (3.367) | (3.376) |
| Mixed Group | -2.164 | -2.164 |
|  | (3.170) | (3.173) |
| National Prime | -6.964** | -6.749** |
|  | (3.387) | (3.330) |
| Ethnic-Cultural Prime | -6.303* | -6.386* |
|  | (3.442) | (3.486) |
| Political-Competition Prime | -6.984* | -6.994* |
|  | (3.705) | (3.669) |
| Election Period * National Prime | $12.06{ }^{* *}$ | 11.72** |
|  | (5.082) | (5.004) |
| Election Period * Ethnic-Cultural Prime | 5.895 | 5.331 |
|  | (5.377) | (5.426) |
| Election Period * Political-Competition Prime | 6.823 | 6.820 |
|  | (5.308) | (5.252) |
| Election Period * Coethnic Group | 2.636 | 2.688 |
|  | (4.444) | (4.454) |
| Election Period * Mixed Group | 2.676 | 2.704 |
|  | (4.729) | (4.734) |
| Election Period * Mixed Group * National Prime | -4.319 | -4.405 |
|  | (6.550) | (6.556) |
| Election Period * Coethnic Group * National Prime | -4.148 | -4.288 |
|  | (6.194) | (6.205) |
| Election Period * Mixed Group * Ethnic-Cultural Prime | -5.596 | -5.676 |
|  | (6.909) | (6.908) |
| Election Period * Coethnic Group * Ethnic-Cultural Prime | $-13.17^{* *}$ | $-13.29^{* *}$ |
|  | (6.661) | (6.662) |
| Election Period * Mixed Group * Political-Competition Prime | -0.498 | -0.494 |
|  | (6.478) | (6.484) |
| Election Period * Coethnic Group * Political-Competition Prime | -3.363 | -3.359 |
|  | (6.652) | (6.665) |
| Mixed Group * National Prime | 0.0704 | 0.0704 |
|  | (4.243) | (4.247) |
| Mixed Group * Ethnic-Cultural Prime | 1.855 | 1.855 |


|  |  | $(4.407)$ |
| :--- | :---: | :---: |
| Mixed Group * Political-Competition Prime | -0.798 | -0.498 |
| Coethnic Group * National Prime | $(4.493)$ | $(4.497)$ |
|  | 4.111 | 4.169 |
| Coethnic Group * Ethnic-Cultural Prime | $(4.400)$ | $(4.411)$ |
|  | $10.94^{* *}$ | $10.97^{* *}$ |
| Coethnic Group * Political-Competition Prime | $(4.766)$ | $(4.774)$ |
|  | 5.874 | 5.838 |
| 1 (Female) | $(4.912)$ | $(4.923)$ |
|  |  | 1.069 |
| Education (demeaned) |  | $(1.738)$ |
|  |  | $-0.663^{* * *}$ |
| $1($ Kikuyu) |  | $(0.253)$ |
|  |  | -1.062 |
| 1 (Luo) |  | $(3.129)$ |
|  |  | $-7.829^{* *}$ |
| $1($ Luhya) |  | $(3.307)$ |
|  |  | -1.266 |
| Constant |  | $(3.307)$ |
| Observations |  | 4.699 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.21: Pooled Public-good Game - FWER adjustment

| Null Hypothesis | LHS variable | Regular p-value | FWER p-value |
| :---: | :---: | :---: | :---: |
| $H_{P G 59}$ : Mixed Group $=0$ | Contribution | 0.888 | 0.988 |
| $H_{P G 60}$ : Homogeneous Group $=0$ | Contribution | 0.497 | 0.984 |
| $H_{P G 61}$ : Homogeneous = Mixed Group | Contribution | 0.353 | 0.934 |
| $H_{P G 62}$ : Homogeneous Group $=$ Mixed Group $=0$ | Contribution | 0.636 | 0.984 |
| $H_{E L-P G 9}$ : Election * Mixed Group $=0$ | Contribution | 0.522 | 0.984 |
| $H_{E L-P G 10}$ : Election * Homogeneous Group $=0$ | Contribution | 0.554 | 0.984 |
| $H_{E L-P G 12}$ : Election $*($ Homogeneous $=$ Mixed Group $)$ | Contribution | 0.929 | 0.988 |
| $H_{E L-P G 11}$ : Election * (Homogeneous Group $=$ Mixed Group $)=0$ | Contribution | 0.781 | 0.984 |
| $H_{P G 59}:$ Mixed Group $=0$ | Contribution - Belief | 0.495 | 0.984 |
| $H_{P G 60}$ : Homogeneous Group $=0$ | Contribution - Belief | 0.052 | 0.302 |
| $H_{P G 61}$ : Homogeneous = Mixed Group | Contribution - Belief | 0.152 | 0.659 |
| $H_{P G 62}$ : Homogeneous Group $=$ Mixed Group $=0$ | Contribution - Belief | 0.133 | 0.605 |
| $H_{E L-P G 9}$ : Election * Mixed Group $=0$ | Contribution - Belief | 0.572 | 0.984 |
| $H_{E L-P G 10}$ : Election * Homogeneous Group $=0$ | Contribution - Belief | 0.553 | 0.984 |
| $H_{E L-P G 12}$ : Election $*($ Homogeneous $=$ Mixed Group $)$ | Contribution - Belief | 0.993 | 0.992 |
| $H_{E L-P G 11}$ : Election * (Homogeneous Group $=$ Mixed Group $)=0$ | Contribution - Belief | 0.803 | 0.984 |

Table 8.22: p-values: Pooled PG - Contribution

| Null Hypothesis | Regular p-value |
| :--- | :---: |
| $H_{E L-P G 13}:$ Election * Mixed Group * National Prime $=0$ | 0.871 |
| $H_{E L-P G 14}:$ Election * Mixed Group * Ethnic-Cultural (EC) Prime $=0$ | 0.630 |
| $H_{E L-P G 15}:$ Election * Mixed Group * Political-Competition (PC) Prime $=0$ | 0.914 |
| $H_{E L-P G 16}:$ Election * Coethnic Group * National Prime $=0$ | 0.637 |
| $H_{E L-P G 17}:$ Election * Coethnic Group * Ethnic-Cultural Prime $=0$ | 0.207 |
| $H_{E L-P G 18}:$ Election * Coethnic Group * Political-Competition (PC) Prime $=0$ | 0.272 |
| $H_{E L-P G 19}:$ Election * Mixed PG * (National Prime $=$ Ethnic Prime) | 0.528 |
| $H_{E L-P G 20}:$ Election * Mixed PG * (National Prime $=$ PC Prime) | 0.956 |
| $H_{E L-P G 21}:$ Election * Mixed PG * (Ethnic-Cultural Prime $=$ PC Prime) | 0.560 |
| $H_{E L-P G 22}:$ Election * Coethnic Group * (National Prime $=$ EC Prime) | 0.439 |
| $H_{E L-P G 23}:$ Election * Coethnic Group * (National Prime $=$ PC Prime) | 0.549 |
| $H_{E L-P G 24}:$ Election * Coethnic Group * (Ethnic-Cultural Prime $=$ PC Prime) | 0.845 |
| $H_{E L-P G 25}:$ Election * Mixed/Coethnic Group * (No $=$ National $=$ EC $=$ PC Prime $\left.=0\right)$ | 0.467 |
| $H_{E L-P G 26}:$ All coefficients $=0$ | 0.634 |

Table 8.23: p-values: Pooled PG - Contribution minus Belief

| Null Hypothesis | Regular p-value |
| :--- | :---: |
| $H_{E L-P G 13}:$ Election * Mixed Group * National Prime $=0$ | 0.510 |
| $H_{E L-P G 14}:$ Election * Mixed Group * Ethnic-Cultural (EC) Prime $=0$ | 0.418 |
| $H_{E L-P G 15}:$ Election * Mixed Group * Political-Competition (PC) Prime $=0$ | 0.939 |
| $H_{E L-P G 16}:$ Election * Coethnic Group * National Prime $=0$ | 0.503 |
| $H_{E L-P G 17}:$ Election * Coethnic Group * Ethnic-Cultural Prime $=0$ | 0.048 |
| $H_{E L-P G 18}:$ Election * Coethnic Group * Political-Competition (PC) Prime $=0$ | 0.613 |
| $H_{E L-P G 19}:$ Election * Mixed PG * (National Prime $=$ Ethnic Prime) | 0.850 |
| $H_{E L-P G 20: ~ E l e c t i o n ~ * ~ M i x e d ~ P G ~ * ~(N a t i o n a l ~ P r i m e ~}=$ PC Prime) | 0.547 |
| $H_{E L-P G 21}:$ Election * Mixed PG * (Ethnic-Cultural Prime $=$ PC Prime) | 0.447 |
| $H_{E L-P G 22: ~ E l e c t i o n ~ * ~ C o e t h n i c ~ G r o u p ~ * ~(N a t i o n a l ~ P r i m e ~}=$ EC Prime) | 0.170 |
| $H_{E L-P G 23:}:$ Election * Coethnic Group * (National Prime $=$ PC Prime) | 0.905 |
| $H_{E L-P G 24}:$ Election * Coethnic Group * (Ethnic-Cultural Prime $=$ PC Prime) | 0.162 |
| $H_{E L-P G 25}:$ Election * Mixed/Coethnic Group * (No $=$ National $=$ EC $=$ PC Prime $\left.=0\right)$ | 0.628 |
| $H_{E L-P G 26: ~ A l l ~ c o e f f i c i e n t s ~=~ 0 ~}$ | 0.479 |

### 8.4 Choose-your-Dictator Game

### 8.4.1 Anonymous Choose-your-Dictator Game

Table 8.24: Anonymous Choose-your-dictator

|  | Ordered Choice |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Profile | 0.101 | 0.0731 | 0.0530 |
|  | (0.182) | (0.183) | (0.205) |
| Election Period * Coethnic Profile | 0.135 | 0.0903 | 0.109 |
|  | (0.243) | (0.244) | (0.247) |
| Coethnic Profile * National Prime | 0.158 | 0.149 | 0.148 |
|  | (0.243) | (0.244) | (0.244) |
| Coethnic Profile * Ethnic-Cultural Prime | $0.410^{*}$ | 0.413* | 0.414* |
|  | (0.240) | (0.241) | (0.241) |
| Coethnic Profile * Political-Competition Prime | 0.110 | 0.105 | 0.106 |
|  | (0.241) | (0.242) | (0.242) |
| Election Period * Coethnic * National Prime | -0.178 | -0.146 | -0.142 |
|  | (0.345) | (0.346) | (0.346) |
| Election Period * Coethnic * Ethnic-Cultural Prime | -0.638* | -0.584* | -0.583* |
|  | (0.343) | (0.345) | (0.345) |
| Election Period * Coethnic * Political-Competition Prime | 0.0629 | 0.0774 | 0.0821 |
|  | (0.341) | (0.342) | (0.343) |
| Coethnic Profile * 1 (Female) |  |  | -0.000799 |
|  |  |  | (0.132) |
| Coethnic Profile * Education |  |  | 0.00929 |
|  |  |  | (0.0186) |
| Profile 2 |  | -0.255 | -0.255 |
|  |  | (0.209) | (0.209) |
| Profile 3 |  | 0.0422 | 0.0442 |
|  |  | (0.209) | (0.209) |
| Profile 4 |  | -0.229 | -0.230 |
|  |  | (0.207) | (0.207) |
| Profile 5 |  | -0.403* | -0.403* |
|  |  | (0.212) | (0.212) |
| Profile 6 |  | -0.155 | -0.154 |
|  |  | (0.214) | (0.214) |
| Profile 7 |  | -0.0253 | -0.0265 |
|  |  | (0.215) | (0.215) |
| Profile 8 |  |  | 0.286 |
|  |  | $(0.211)$ | (0.211) |
| Profile 9 |  | 0.0726 | 0.0706 |
|  |  | (0.206) | (0.206) |
| Profile 10 |  | -0.0193 | -0.0244 |
|  |  | (0.217) | (0.217) |
| Profile 11 |  | 0.155 | 0.154 |
|  |  | (0.212) | (0.212) |
| Profile 12 |  | 0.0287 | 0.0275 |
|  |  | (0.207) | (0.207) |
| cut1 | $-1.028^{* * *}$ | $-1.096^{* * *}$ | $-1.097^{* * *}$ |
|  | (0.0668) | (0.155) | (0.155) |
| cut2 | $1.274^{* * *}$ | 1.222*** | $1.222^{* * *}$ |
|  | (0.0694) | (0.156) | (0.156) |
| Observations | 1962 | 1962 | 1962 |

$$
\begin{aligned}
& \text { Standard errors in parentheses } \\
& { }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01
\end{aligned}
$$

Table 8.25: p-values: C1

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{E L-C D 1}:$ Elect (EL) * Coethnic $=0$ | 0.857 | 0.978 |
| $H_{E L-C D 2}: \mathrm{EL}^{*}$ Coethnic * National Prime $=0$ | 0.774 | 0.978 |
| $H_{E L-C D 3}: \mathrm{EL}^{*}$ Coethnic * Ethnic-Cultural (EC) Prime $=0$ | 0.119 | 0.438 |
| $H_{E L-C D 4}: \mathrm{EL}^{*}$ Coethnic * Political-Competition (PC) Prime $=0$ | 0.718 | 0.978 |
| $H_{E L-C D 5}: \mathrm{EL}^{*}$ Coethnic * National Prime $=\mathrm{EL}^{*}$ EC Prime | 0.204 | 0.594 |
| $H_{E L-C D 6}: \mathrm{EL}^{*}$ Coethnic * National Prime $=\mathrm{EL} *$ PC Prime | 0.516 | 0.897 |
| $H_{E L-C D 7}: \mathrm{EL}^{*}$ Coethnic * Ethnic-Cultural Prime $=\mathrm{EL} *$ PC Prime | 0.053 | 0.244 |
| $H_{E L-C D 8}: \mathrm{EL}^{*}$ Coethnic * (National, EC, PC Prime) $=0$ | 0.239 | 0.611 |

### 8.4.2 Identified Choose your Dictator Game

Table 8.26: Identified Choose-your-dictator

|  | Ordered Choice |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Profile | 0.161 | 0.130 | 0.0935 |
|  | (0.178) | (0.179) | (0.200) |
| Election Period * Coethnic Profile | 0.233 | 0.199 | 0.264 |
|  | (0.235) | (0.237) | (0.238) |
| Coethnic Profile * National Prime | 0.275 | 0.283 | 0.268 |
|  | (0.236) | (0.237) | (0.238) |
| Coethnic Profile * Ethnic-Cultural Prime | 0.243 | 0.250 | 0.244 |
|  | (0.238) | (0.239) | (0.239) |
| Coethnic Profile * Political-Competition Prime | 0.209 | 0.214 | 0.205 |
|  | (0.234) | (0.234) | (0.234) |
| Election Period * Coethnic * National Prime | -0.321 | -0.323 | -0.286 |
|  | (0.334) | (0.336) | (0.337) |
| Election Period * Coethnic * Ethnic-Cultural Prime | -0.394 | -0.370 | -0.340 |
|  | (0.335) | (0.338) | (0.338) |
| Election Period * Coethnic * Political-Competition Prime | -0.0531 | -0.0495 | -0.0158 |
|  | (0.334) | (0.336) | (0.336) |
| Coethnic Profile * 1(Female) |  |  | -0.0616 |
|  |  |  | (0.130) |
| Coethnic Profile * Education |  |  | 0.0361** |
|  |  |  | (0.0180) |
| Profile 2 |  | -0.0645 | -0.0600 |
|  |  | (0.212) | (0.212) |
| Profile 3 |  | -0.188 | -0.185 |
|  |  | (0.209) | (0.209) |
| Profile 4 |  | -0.201 | -0.201 |
|  |  | (0.206) | (0.206) |
| Profile 5 |  | 0.0165 | 0.0142 |
|  |  | (0.211) | (0.211) |
| Profile 6 |  | -0.136 | -0.124 |
|  |  | (0.210) | (0.211) |
| Profile 7 |  | 0.0671 | 0.0563 |
|  |  | (0.209) | (0.209) |
| Profile 8 |  | 0.125 | 0.115 |
|  |  | (0.208) | (0.209) |
| Profile 9 |  | 0.0953 | 0.0938 |
|  |  | (0.210) | (0.210) |
| Profile 10 |  | -0.00210 | -0.00466 |
|  |  | (0.209) | (0.210) |
| Profile 11 |  | 0.150 | 0.146 |
|  |  | (0.215) | (0.216) |
| Profile 12 |  | 0.303 | 0.291 |
|  |  | (0.214) | (0.214) |
| cut1 | -0.755*** | -0.768*** | -0.771*** |
|  | (0.0640) | (0.159) | (0.159) |
| cut2 | 1.118*** | 1.112*** | 1.114*** |
|  | (0.0671) | (0.160) | (0.160) |
| Observations | 1962 | 1962 | 1962 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 8.27: p-values: C2

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{E L-C D 1}:$ Elect (EL) * Coethnic $=0$ | 0.625 | 0.958 |
| $H_{E L-C D 2}: \mathrm{EL}^{*}$ Coethnic * National Prime $=0$ | 0.476 | 0.912 |
| $H_{E L-C D 3}: \mathrm{EL}^{*}$ Coethnic * Ethnic-Cultural (EC) Prime $=0$ | 0.396 | 0.888 |
| $H_{E L-C D 4}: \mathrm{EL}^{*}$ Coethnic * Political-Competition (PC) Prime $=0$ | 0.920 | 0.989 |
| $H_{E L-C D 5}: \mathrm{EL}^{*}$ Coethnic * National Prime $=\mathrm{EL} * \mathrm{EC}$ Prime | 0.890 | 0.989 |
| $H_{E L-C D 6}: \mathrm{EL}^{*}$ Coethnic * National Prime $=\mathrm{EL} *$ PC Prime | 0.417 | 0.888 |
| $H_{E L-C D 7}: \mathrm{EL}^{*}$ Coethnic * Ethnic-Cultural Prime $=\mathrm{EL} *$ PC Prime | 0.344 | 0.849 |
| $H_{E L-C D 8}: \mathrm{EL}^{*}$ Coethnic * (National, EC, PC Prime) $=0$ | 0.705 | 0.958 |

### 8.4.3 Pooled Choose your Dictator Game

Table 8.28: Pooled Choose-your-dictator

|  | Ordered Choice |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Profile | 0.133 | 0.0962 | 0.0628 |
|  | (0.172) | (0.173) | (0.185) |
| Election Period * Coethnic Profile | 0.124 | 0.0968 | 0.146 |
|  | (0.236) | (0.237) | (0.238) |
| Identified Choice * Coethnic Profile | -0.00140 | 0.00183 | 0.00742 |
|  | (0.239) | (0.241) | (0.241) |
| Coethnic Profile * National Prime | 0.145 | 0.140 | 0.139 |
|  | (0.236) | (0.237) | (0.237) |
| Coethnic Profile * Ethnic-Cultural Prime | 0.378 | 0.379 | 0.382 |
|  | (0.234) | (0.235) | (0.235) |
| Coethnic Profile * Political-Competition Prime | 0.101 | 0.102 | 0.104 |
|  | (0.235) | (0.235) | (0.235) |
| Election Period * Coethnic * National Prime | -0.164 | -0.136 | -0.124 |
|  | (0.336) | (0.336) | (0.336) |
| Election Period * Coethnic * Ethnic-Cultural Prime | -0.589* | -0.544 | -0.537 |
|  | (0.334) | (0.335) | (0.335) |
| Election Period * Coethnic * Political-Competition Prime | 0.0582 | 0.0579 | 0.0739 |
|  | (0.332) | (0.333) | (0.333) |
| Identified * Coethnic * National Prime | 0.151 | 0.169 | 0.162 |
|  | (0.338) | (0.339) | (0.340) |
| Identified * Coethnic * Ethnic-Cultural Prime | -0.116 | -0.112 | -0.118 |
|  | (0.337) | (0.338) | (0.338) |
| Identified * Coethnic * Political-Competition Prime | 0.124 | 0.129 | 0.122 |
|  | (0.335) | (0.336) | (0.336) |
| Election Period * Identified * Coethnic Profile | 0.128 | 0.127 | 0.120 |
|  | (0.337) | (0.338) | (0.338) |
| Election Period * Identified * Coethnic * Nation Prime | -0.182 | -0.223 | -0.213 |
|  | (0.479) | (0.480) | (0.480) |
| Election Period * Identified * Coethnic * Ethnic-Cultural Prime |  | $0.144$ | $0.154$ |
|  | $(0.479)$ | (0.480) | $(0.480)$ |
| Election Period * Identified * Coethnic * Political-Competition Prime | -0.116 | -0.117 | -0.112 |
|  | (0.477) | (0.478) | (0.478) |
| Coethnic Profile * 1 (Female) |  |  | -0.0335 |
|  |  |  | (0.0921) |
| Coethnic Profile * Education |  |  | 0.0235* |
|  |  |  | (0.0129) |
| Profile 2 |  | -0.159 | -0.159 |
|  |  | (0.148) | (0.148) |
| Profile 3 |  | -0.0833 | -0.0803 |
|  |  | (0.147) | (0.147) |
| Profile 4 |  | -0.216 | -0.218 |
|  |  | (0.146) | (0.146) |
| Profile 5 |  | -0.183 | -0.184 |
|  |  | (0.149) | (0.149) |
| Profile 6 |  | -0.150 | -0.146 |
|  |  | (0.149) | (0.150) |
| Profile 7 |  | 0.0178 | 0.0124 |
|  |  | (0.149) | (0.149) |
| Profile 8 |  | 0.194 | 0.192 |


|  | Profile 9 | $(0.148)$ | $(0.148)$ |
| :--- | :---: | :---: | :---: |
|  | Profile 10 | 0.0828 | 0.0794 |
|  | Profile 11 | $(0.147)$ | $(0.147)$ |
|  |  | -0.0152 | -0.0229 |
| Profile 12 | $(0.150)$ | $(0.150)$ |  |
|  | cut1 |  | 0.149 |
|  | 0.146 |  |  |
|  | cut2 |  | $(0.150)$ |
| $(0.150)$ |  |  |  |
|  |  | 0.163 | 0.157 |
|  |  | $(0.148)$ | $(0.148)$ |
| Observations | $-0.887^{* * *}$ | $-0.929^{* * *}$ | $-0.931^{* * *}$ |

Standard errors in parentheses

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

The following set of adjustments groups the non-exploratory hypotheses on the pooled CYD for Kenya 2012 and Kenya 2013. We group these hypotheses here, as they are single non-exploratory hypotheses otherwise, and this is a natural level of aggregation for applying the multiple inference adjustment.

Table 8.29: Pooled Choose-your-dictator Game: FWER p-values

|  | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{C D 1}:$ Coethnic Profile $=0$ | 0.628 | 0.979 |
| $H_{C D 49}:$ Identified Choice ${ }^{*}$ Coethnic $=0$ | 0.994 | 0.993 |
| $H_{E L-C D 1}:$ Election Period $*$ Coethnic $=0$ | 0.694 | 0.979 |
| $H_{E L-C D 9}:$ Election $*$ Identified Choice ${ }^{*}$ Coethnic $=0$ | 0.662 | 0.979 |

## 9 Political Attitudes

### 9.1 Kenya 2013 only

Table 9.1: Vote for Kenyatta or Odinga, 2013 only

|  | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: |
|  | 1(Uhuru or Raila) | 1(Uhuru or Raila) | 1(Uhuru or Raila) |
| National Prime | 0.0635 | 0.0519 | -0.221 |
|  | (0.0509) | (0.0499) | (0.179) |
| Ethnic-Cultural Prime | $0.154^{* * *}$ | $0.153^{* * *}$ | 0.0311 |
|  | (0.0510) | (0.0502) | (0.199) |
| Political-Competition Prime | 0.0400 | 0.0398 | -0.0764 |
|  | (0.0511) | (0.0502) | (0.227) |
| Ethnic-Political Prime | 0.0220 | 0.00845 | -0.0303 |
|  | (0.0510) | (0.0501) | (0.171) |
| 1(Kikuyu) |  | -0.0226 | -0.133 |
|  |  | (0.0675) | (0.131) |
| 1(Luo) |  | 0.0427 | 0.00869 |
|  |  | (0.0695) | (0.133) |
| 1(Luhya) |  | -0.246*** | -0.249* |
|  |  | (0.0705) | (0.132) |
| 1(Kamba) |  | -0.138* | -0.209 |
|  |  | (0.0708) | (0.144) |
| Female |  | -0.0268 | -0.119 |
|  |  | (0.0352) | (0.0782) |
| Years of Education (demeaned) |  | -0.00851 | -0.0117 |
|  |  | (0.00571) | (0.0111) |
| National Prime * 1(Female) |  |  | 0.0628 |
|  |  |  | (0.109) |
| National Prime * Education |  |  | 0.00913 |
|  |  |  | (0.0140) |
| National Prime * 1(Kikuyu) |  |  | 0.305 |
|  |  |  | (0.198) |
| National Prime * 1(Luo) |  |  | 0.250 |
|  |  |  | (0.202) |
| National Prime * 1(Luhya) |  |  | 0.272 |
|  |  |  | (0.207) |
| National Prime * 1(Kamba) |  |  | 0.209 |
|  |  |  | (0.210) |
| Ethnic-Cultural Prime * 1(Female) |  |  | 0.0843 |
|  |  |  | (0.112) |
| Ethnic-Cultural Prime * Education |  |  | 0.00130 |
|  |  |  | (0.0171) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | 0.118 |
|  |  |  | (0.214) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | -0.0154 |
|  |  |  | (0.224) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | 0.0580 |
|  |  |  | (0.222) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 0.156 |
|  |  |  | (0.230) |
| Political-Competition Prime * 1(Female) |  |  | 0.163 |
|  |  |  | (0.115) |
| Political-Competition Prime * Education |  |  | -0.000585 |



Table 9.2: p-values: Vote for Kenyatta or Odinga

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{P A 1}:$ National Prime $=0$ | 0.156 | 0.463 |
| $H_{P A 2}:$ Ethnic-Cultural Prime $=0$ | 0.001 | 0.011 |
| $H_{P A 3}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.339 | 0.721 |
| $H_{P A 4}:$ Ethnic-Political $(\mathrm{EP})$ Prime $=0$ | 0.545 | 0.854 |
| $H_{P A 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.075 | 0.301 |
| $H_{P A 6}:$ National Prime $=$ Political-Competition Prime | 0.646 | 0.859 |
| $H_{P A 7}:$ National Prime $=$ Ethnic-Political Prime | 0.416 | 0.763 |
| $H_{P A 8}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.026 | 0.133 |
| $H_{P A 9}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.010 | 0.060 |
| $H_{P A 10}:$ Political-CompetitionPrime $=$ Ethnic-Political Prime | 0.725 | 0.859 |
| $H_{P A 11}:$ National $=$ Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.020 | 0.105 |

[^22]Table 9.3: Violence is justified? (2013 only)

|  | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: |
|  | 1(Violence justified) | 1(Violence justified) | 1(Violence justified) |
| National Prime | 0.0476 | 0.0511 | -0.0656 |
|  | (0.0564) | (0.0554) | (0.198) |
| Ethnic-Cultural Prime | -0.00914 | 0.0109 | -0.0847 |
|  | (0.0565) | (0.0557) | (0.221) |
| Political-Competition Prime | 0.0333 | 0.0254 | 0.357 |
|  | (0.0565) | (0.0558) | (0.252) |
| Ethnic-Political Prime | -0.00252 | 0.000109 | 0.167 |
|  | (0.0565) | (0.0556) | (0.190) |
| 1(Kikuyu) |  | -0.239*** | -0.0878 |
|  |  | (0.0750) | (0.145) |
| 1(Luo) |  | 0.00162 | 0.0422 |
|  |  | (0.0771) | (0.148) |
| 1(Luhya) |  | -0.0510 | -0.0117 |
|  |  | (0.0783) | (0.146) |
| 1(Kamba) |  | -0.101 | -0.141 |
|  |  | (0.0787) | (0.160) |
| Female |  | -0.00541 | -0.0406 |
|  |  | (0.0391) | (0.0868) |
| Years of Education (demeaned) |  | -0.0219*** | -0.0316** |
|  |  | (0.00634) | (0.0123) |
| National Prime * 1(Female) |  |  | 0.0752 |
|  |  |  | (0.122) |
| National Prime * Education |  |  | 0.00810 |
|  |  |  | (0.0155) |
| National Prime * 1(Kikuyu) |  |  | -0.0534 |
|  |  |  | (0.219) |
| National Prime * 1 (Luo) |  |  | 0.0214 |
|  |  |  | (0.224) |
| National Prime * 1(Luhya) |  |  | 0.157 |
|  |  |  | (0.229) |
| National Prime * 1(Kamba) |  |  | 0.213 |
|  |  |  | (0.233) |
| Ethnic-Cultural Prime * 1(Female) |  |  | 0.177 |
|  |  |  | (0.124) |
| Ethnic-Cultural Prime * Education |  |  | 0.0109 |
|  |  |  | (0.0190) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  | -0.163 |
|  |  |  | (0.238) |
| Ethnic-Cultural Prime * 1(Luo) |  |  | 0.0922 |
|  |  |  | (0.249) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  | -0.0583 |
|  |  |  | (0.247) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 0.107 |
|  |  |  | (0.256) |
| Political-Competition Prime * 1(Female) |  |  | 0.0226 |
|  |  |  | (0.127) |
| Political-Competition Prime * Education |  |  | 0.0208 |
|  |  |  | (0.0166) |
| Political-Competition Prime * 1(Kikuyu) |  |  | -0.428 |
|  |  |  | (0.274) |
| Political-Competition Prime * 1(Luo) |  |  | -0.353 |


| Political-Competition Prime * 1(Luhya) |  |  | (0.278) |
| :---: | :---: | :---: | :---: |
|  |  |  | -0.343 |
|  |  |  | (0.276) |
| Political-Competition Prime * 1(Kamba) |  |  | -0.278 |
|  |  |  | (0.289) |
| Ethnic-Political Prime * 1(Female) |  |  | -0.0677 |
|  |  |  | (0.122) |
| Ethnic-Political Prime * Education |  |  | 0.0105 |
|  |  |  | (0.0154) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  | -0.269 |
|  |  |  | (0.212) |
| Ethnic-Political Prime * 1(Luo) |  |  | -0.0985 |
|  |  |  | (0.218) |
| Ethnic-Political Prime * 1(Luhya) |  |  | -0.0911 |
|  |  |  | (0.224) |
| Ethnic-Political Prime * 1(Kamba) |  |  | -0.0242 |
|  |  |  | (0.227) |
| Constant | $0.380^{* * *}$ | $0.481^{* * *}$ | $0.454^{* * *}$ |
|  | (0.0400) | (0.0756) | (0.129) |
| Observations | 754 | 754 | 754 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Table 9.4: p-values: 2007 Violence Justified?

| Null Hypothesis | Regular p-value | FWER adjusted p-value |
| :--- | :---: | :---: |
| $H_{P A 1}:$ National Prime $=0$ | 0.351 | 0.863 |
| $H_{P A 2}:$ Ethnic-Cultural Prime $=0$ | 0.849 | 0.992 |
| $H_{P A 3}:$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.498 | 0.931 |
| $H_{P A 4}:$ Ethnic-Political (EP) Prime $=0$ | 0.965 | 0.992 |
| $H_{P A 5}:$ National Prime $=$ Ethnic-Cultural Prime | 0.262 | 0.769 |
| $H_{P A 6}:$ National Prime $=$ Political-Competition Prime | 0.801 | 0.992 |
| $H_{P A 7}:$ National Prime $=$ Ethnic-Political Prime | 0.375 | 0.864 |
| $H_{P A 8}:$ Ethnic-Cultural Prime $=$ Political-Competition Prime | 0.386 | 0.864 |
| $H_{P A 9}:$ Ethnic-Cultural Prime $=$ Ethnic-Political Prime | 0.815 | 0.992 |
| $H_{P A 10}:$ Political-CompetitionPrime $=$ Ethnic-Political Prime | 0.527 | 0.931 |
| $H_{P A 11}:$ National $=$ Ethnic-Cultural $=$ PC $=$ EP Prime $=0$ | 0.759 | 0.989 |

Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

### 9.2 Kenya 2012 versus Kenya 2013

Table 9.5: Vote for Kenyatta or Odinga

|  | 1(Uhuru or Raila) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | $0.124^{* * *}$ | 0.0267 | 0.0334 | -0.00627 |
|  | (0.0267) | (0.0535) | (0.0522) | (0.115) |
| National Prime |  | -0.0454 | -0.0270 | -0.0180 |
|  |  | (0.0532) | (0.0514) | (0.0512) |
| Ethnic-Political Prime |  | -0.00614 | 0.00376 | 0.0104 |
|  |  | (0.0532) | (0.0513) | (0.0511) |
| Political-Competition Prime |  | -0.0809 | -0.0720 | -0.0681 |
|  |  | (0.0533) | (0.0514) | (0.0511) |
| Election Period * National Prime |  | 0.109 | 0.0899 | 0.0733 |
|  |  | (0.0753) | (0.0727) | (0.0725) |
| Election Period * Ethnic-Cultural Prime |  | 0.161** | 0.165** | $0.146^{* *}$ |
|  |  | (0.0754) | (0.0729) | (0.0728) |
| Election Period * Political-Competition Prime |  | 0.121 | 0.118 | 0.109 |
|  |  | (0.0755) | (0.0729) | (0.0728) |
| 1(Kikuyu) |  |  | -0.0303 | -0.0634 |
|  |  |  | (0.0562) | (0.0791) |
| 1(Luo) |  |  | 0.109* | 0.149* |
|  |  |  | (0.0582) | (0.0824) |
| 1(Luhya) |  |  | -0.199*** | -0.222*** |
|  |  |  | (0.0589) | (0.0843) |
| 1(Kamba) |  |  | -0.242*** | -0.375*** |
|  |  |  | (0.0597) | (0.0849) |
| 1(Female) |  |  | -0.0356 | -0.0298 |
|  |  |  | (0.0276) | (0.0374) |
| Education (demeaned) |  |  | -0.00613 | -0.00528 |
|  |  |  | (0.00413) | (0.00524) |
| Election Period * 1(Kikuyu) |  |  |  | 0.0664 |
|  |  |  |  | (0.112) |
| Election Period * 1(Luo) |  |  |  | -0.0817 |
|  |  |  |  | (0.116) |
| Election Period * 1(Luhya) |  |  |  | 0.0437 |
|  |  |  |  | (0.118) |
| Election Period * 1(Kamba) |  |  |  | $0.257^{* *}$ |
|  |  |  |  | (0.119) |
| Election Period * 1(Female) |  |  |  | -0.0132 |
|  |  |  |  | (0.0553) |
| Election Period * Education |  |  |  | -0.00312 |
|  |  |  |  | (0.00846) |
| Constant | $0.613^{* * *}$ | $0.647^{* * *}$ | $0.739^{* * *}$ | $0.760^{* * *}$ |
|  | (0.0188) | (0.0378) | (0.0647) | (0.0847) |
| Observations | 1211 | 1211 | 1211 | 1211 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |  |

Table 9.6: p-values: Vote for Kenyatta or Odinga

| Null Hypothesis | Regular p-value | FWER p-value |
| :---: | :---: | :---: |
| $H_{E L-P A 1}$ : Election period (EL) $=0$ | 0.707 | 0.934 |
| $H_{E L-P A 2}$ : EL * National Prime $=0$ | 0.119 | 0.395 |
| $H_{E L-P A 3}:$ EL $*$ Ethnic-Cultural (EC) Prime $=0$ | 0.025 | 0.125 |
| $H_{E L-P A 4}:$ EL $*$ Political-Competition (PC) Prime $=0$ | 0.086 | 0.328 |
| $H_{E L-P A 5}:$ EL $*$ National Prime $=$ EL * EC Prime | 0.495 | 0.887 |
| $H_{E L-P A 6}:$ EL * National Prime $=$ EL * PC Prime | 0.871 | 0.934 |
| $H_{E L-P A 7}: \mathrm{EL} *$ EC Prime $=\mathrm{EL} *$ PC Prime | 0.604 | 0.934 |
| $H_{E L-P A 8}:$ EL $*($ National, EC, PC Prime $)=0$ | 0.134 | 0.412 |

Table 9.7: Violence is justified?

|  | 1(Voilence Justified) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | $0.0477^{*}$ | -1.81e-15 | -0.0532 | -0.108 |
|  | (0.0278) | (0.0559) | (0.0553) | (0.122) |
| National Prime |  | -0.0924* | -0.0839 | -0.0788 |
|  |  | (0.0556) | (0.0544) | (0.0545) |
| Ethnic-Political Prime |  | 0.0122 | 0.0130 | 0.0161 |
|  |  | (0.0556) | (0.0544) | (0.0545) |
| Political-Competition Prime |  | -0.0379 | -0.0325 | -0.0311 |
|  |  | (0.0557) | (0.0545) | (0.0545) |
| Election Period * National Prime |  | 0.140* | 0.140* | 0.127* |
|  |  | (0.0787) | (0.0770) | (0.0773) |
| Election Period * Ethnic-Cultural Prime |  | -0.0213 | -0.000496 | -0.0113 |
|  |  | (0.0787) | (0.0772) | (0.0775) |
| Election Period * Political-Competition Prime |  | 0.0712 | 0.0611 | 0.0511 |
|  |  | (0.0789) | (0.0773) | (0.0776) |
| 1(Kikuyu) |  |  | -0.230 ${ }^{* * *}$ | $-0.262^{* * *}$ |
|  |  |  | (0.0596) | (0.0843) |
| 1(Luo) |  |  | -0.0110 | -0.0468 |
|  |  |  | (0.0616) | (0.0878) |
| 1(Luhya) |  |  | -0.0453 | -0.0646 |
|  |  |  | (0.0624) | (0.0899) |
| 1(Kamba) |  |  | -0.169*** | -0.269*** |
|  |  |  | (0.0633) | (0.0904) |
| 1(Female) |  |  | 0.0265 | 0.0279 |
|  |  |  | (0.0292) | (0.0399) |
| Education (demeaned) |  |  | -0.0164*** | -0.0128** |
|  |  |  | (0.00438) | (0.00558) |
| Election Period * 1(Kikuyu) |  |  |  | 0.0608 |
|  |  |  |  | (0.119) |
| Election Period * 1(Luo) |  |  |  | 0.0688 |
|  |  |  |  | (0.124) |
| Election Period * 1(Luhya) |  |  |  | 0.0356 |
|  |  |  |  | (0.125) |
| Election Period * 1(Kamba) |  |  |  | 0.194 |
|  |  |  |  | (0.127) |
| Election Period * 1(Female) |  |  |  | -0.00843 |
|  |  |  |  | (0.0589) |
| Election Period * Education |  |  |  | -0.00974 |
|  |  |  |  | (0.00901) |
| Constant | 0.350 *** | $0.380^{* * *}$ | $0.522^{* * *}$ | $0.551^{* * *}$ |
|  | (0.0196) | (0.0395) | (0.0686) | (0.0902) |
| Observations | 1211 | 1211 | 1211 | 1211 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 9.8: p-values: 2007 Violence justified?

| Null Hypothesis | Regular p-value | FWER p-value |
| :--- | :---: | :---: |
| $H_{E L-P A 1}:$ Election period (EL) $=0$ | 0.987 | 0.986 |
| $H_{E L-P A 2}: \mathrm{EL} *$ National Prime $=0$ | 0.065 | 0.272 |
| $H_{E L-P A 3}: \mathrm{EL} *$ Ethnic-Cultural (EC) Prime $=0$ | 0.771 | 0.948 |
| $H_{E L-P A 4}: \mathrm{EL} *$ Political-Competition $(\mathrm{PC})$ Prime $=0$ | 0.334 | 0.775 |
| $H_{E L-P A 5}: \mathrm{EL} *$ National Prime $=\mathrm{EL} *$ EC Prime | 0.033 | 0.163 |
| $H_{E L-P A 6}: \mathrm{EL} *$ National Prime $=\mathrm{EL} * \mathrm{PC}$ Prime | 0.381 | 0.775 |
| $H_{E L-P A 7}: \mathrm{EL} *$ Ethnic-Cultural Prime $=\mathrm{EL} * \mathrm{PC}$ Prime | 0.208 | 0.593 |
| $H_{E L-P A 8}: \mathrm{EL} *$ (National, EC, PC Prime) $=0$ | 0.128 | 0.423 |

## 10 Global Analysis: full specifications

Note: the analysis in this section is provided for completeness, but suffers from small sample issues in the Tanzania sample due to a programming glitch for the identified games in Tanzania. Since we don't want to over interpret these results, we are not providing FWER-adjusted p-values in this section.

### 10.1 Dictator Game

### 10.1.1 Anonymous Dictator Game

Table 10.1: Anonymous Dictator Game, Full analysis

|  | Dictator Transfer (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Tanzania | -1.934 | -2.178 |
|  | (2.199) | (2.217) |
| Election Period | -7.600*** | -8.312*** |
|  | (2.474) | (2.477) |
| National Prime | -4.426* | -4.426* |
|  | (2.462) | (2.450) |
| Ethnic-Cultural Prime | -0.517 | -0.569 |
|  | (2.462) | (2.450) |
| Political-Competition Prime | -2.194 | -2.168 |
|  | (2.466) | (2.454) |
| Tanzania * National Prime | -0.559 | -0.325 |
|  | (3.304) | (3.296) |
| Tanzania * Ethnic-Cultural Prime | -1.528 | -1.614 |
|  | (3.307) | (3.301) |
| Tanzania * Political-Competition Prime | -3.802 | -3.897 |
|  | (3.283) | (3.274) |
| Election Period * National Prime | 4.819 | 4.587 |
|  | (3.485) | (3.469) |
| Election Period * Ethnic-Cultural Prime | -1.881 | -2.344 |
|  | (3.488) | (3.472) |
| Election Period * Political-Competition Prime | 3.140 | 2.489 |
|  | (3.494) | (3.480) |
| 1(Female) |  | $3.633^{* *}$ |
|  |  | (1.012) |
| Years of Education (demeaned) |  | -0.257* |
|  |  | (0.149) |
| Constant | $43.72^{* * *}$ | 42.38*** |
|  | (1.750) | (1.869) |
| Observations | 1924 | 1917 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.2: p-values: Anonymous Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-D 1}$ : Election Period $=0$ | 0.002 |
| $H_{F-D 2}$ : Tanzania $=0$ | 0.379 |
| $H_{F-D 3}$ : Tanzania * National prime $=0$ | 0.866 |
| $H_{F-D 4}$ : Tanzania * Ethnic-Cultural prime $=0$ | 0.644 |
| $H_{F-D 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.247 |
| $H_{F-D 6}$ : Election $*$ National prime $=0$ | 0.167 |
| $H_{F-D 7}$ : Election $*$ Ethnic-Cultural prime $=0$ | 0.590 |
| $H_{F-D 8}$ : Election * Political-Competition (PC) prime $=0$ | 0.369 |
| $H_{F-D 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime) | 0.781 |
| $H_{F-D 10}$ : Tanzania * (National $=$ PC prime $)$ | 0.350 |
| $H_{F-D 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.513 |
| $H_{F-D 12}$ : Election $*($ National $=$ Ethnic prime $)$ | 0.054 |
| $H_{F-D 13}$ : Election * (National $=$ PC prime $)$ | 0.630 |
| $H_{F-D 14}$ : Election * (Ethnic-Cultural $=$ PC prime $)$ | 0.149 |
| $H_{F-D 15}$ : Tanzania $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.684 |
| $H_{F-D 16}$ : Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.210 |
| $H_{F-D 17}$ : No differential priming effects in Kenya or Tanzania | 0.179 |

### 10.1.2 Coethnic Dictator Game

Table 10.3: Coethnic Dictator Game, Full analysis


Table 10.4: p-values: Coethnic Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-D 1}$ : Election Period $=0$ | 0.004 |
| $H_{F-D 2}$ : Tanzania $=0$ | 0.877 |
| $H_{F-D 3}$ : Tanzania $*$ National prime $=0$ | 0.648 |
| $H_{F-D 4}$ : Tanzania $*$ Ethnic-Cultural (EC) prime $=0$ | 0.048 |
| $H_{F-D 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.613 |
| $H_{F-D 6}$ : Election $*$ National prime $=0$ | 0.271 |
| $H_{F-D 7}$ : Election * Ethnic-Cultural (EC) prime $=0$ | 0.926 |
| $H_{F-D 8}$ : Election * Political-Competition (PC) prime $=0$ | 0.073 |
| $H_{F-D 9}:$ Tanzania $*($ National $=$ Ethnic-Cultural prime $)$ | 0.186 |
| $H_{F-D 10}$ : Tanzania * (National $=$ PC prime $)$ | 0.390 |
| $H_{F-D 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.030 |
| $H_{F-D 12}$ : Election * (National $=$ Ethnic-Cultural prime $)$ | 0.354 |
| $H_{F-D 13}$ : Election * (National $=$ PC prime $)$ | 0.523 |
| $H_{F-D 14}$ : Election * (Ethnic-Cultural $=$ PC prime $)$ | 0.119 |
| $H_{F-D 15}$ : Tanzania $*($ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.109 |
| $H_{F-D 16}$ : Election * (National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.247 |
| $H_{F-D 17}$ : No differential priming effects in Kenya or Tanzania | 0.147 |

### 10.1.3 Non-coethnic Dictator Game

Table 10.5: Non-coethnic Dictator Game, Full analysis

| Dictator Transfer (Percent of Endowment) |  |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Tanzania | $6.332^{* * *}$ | $\left(2.580^{* * *}\right.$ |
| National Prime | 2.864 | $(2.300)$ |
|  | $(2.962)$ | 2.675 |
| Ethnic-Cultural Prime | 2.933 | $(2.967)$ |
|  | $(2.982)$ | $(2.960$ |
| Political-Competition Prime | 3.445 | 3.217 |
|  | $(2.834)$ | $(2.834)$ |
| Tanzania * National Prime | $-8.405^{* *}$ | $-8.211^{* *}$ |
|  | $(3.580)$ | $(3.589)$ |
| Tanzania * Ethnic-Cultural Prime | $-7.073^{* *}$ | $-7.076^{* *}$ |
|  | $(3.564)$ | $(3.571)$ |
| Tanzania * Political-Competition Prime | $-6.174^{*}$ | $-6.205^{*}$ |
|  | $(3.557)$ | $(3.564)$ |
| 1(Female) |  | 0.840 |
|  |  | $(1.278)$ |
| Years of Education (demeaned) |  | -0.252 |
|  | $(0.196)$ |  |
| Constant | $32.57^{* * *}$ | $32.18^{* * *}$ |
|  | $(1.887)$ | $(2.039)$ |
| Observations | 1767 | 1754 |
| Standard errors in parentheses |  |  |
| $* p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.6: p-values: Non-Coethnic Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-D 2}$ : Tanzania $=0$ | 0.006 |
| $H_{F-D 3}$ : Tanzania $*$ National prime $=0$ | 0.019 |
| $H_{F-D 4}$ : Tanzania $*$ Ethnic-Cultural (EC) prime $=0$ | 0.047 |
| $H_{F-D 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.083 |
| $H_{F-D 9}:$ Tanzania $*($ National $=$ Ethnic-Cultural prime) | 0.732 |
| $H_{F-D 10}$ : Tanzania $*$ (National $=$ PC prime $)$ | 0.565 |
| $H_{F-D 11}$ : Tanzania $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.816 |
| $H_{F-D 15}$ : Tanzania $*($ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.070 |

### 10.1.4 Pooled Dictator Game

Note: the 'baseline' non-coethnic dictator game in the table below is the Kenya 2013 dictator game, as there was no non-coethnic dictator game in Kenya 2012.

Table 10.7: Pooled Dictator Game, Kenya vs Tanzania

|  | Dictator Transfer (Percent of Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Election Period | $-6.519^{* * *}$ | $-7.262^{* * *}$ |
| Tanzania | $(2.498)$ | $-2.502)$ |
| Coethnic Recipient | -1.842 | $(2.160)$ |
| Non-Coethnic Recipient | $(2.148)$ | -1.876 |
|  | -1.854 | $(1.798)$ |
| Tanzania * Coethnic Recipient | $(1.802)$ | $-4.531^{*}$ |
|  | $-4.538^{*}$ | $(2.345)$ |
| Tanzania * Non-Coethnic Recipient | $(2.344)$ | 0.749 |
|  | 1.168 | $(4.434)$ |
| Election * Coethnic Recipient | $(4.429)$ | 1.650 |
|  | 1.656 | $(2.856)$ |
| National Prime | $(2.842)$ | -0.797 |
| Ethnic-Cultural Prime | -0.827 | $(3.010)$ |
|  | $(3.012)$ | $-4.837^{* *}$ |
| Political-Competition Prime | $-4.917^{* *}$ | $(2.411)$ |
| Tanzania * National Prime | $(2.424)$ | -0.999 |
|  | -1.047 | $(2.302)$ |
| Tanzania * Ethnic-Cultural Prime | $(2.293)$ | -2.769 |
| Tanzania * Political-Competition Prime | -2.847 | $(2.140)$ |
| Election Period * National Prime | $(2.144)$ | 0.0492 |


|  | (3.714) | (3.700) |
| :---: | :---: | :---: |
| Election Period * Ethnic-Cultural Prime | -2.212 | -2.558 |
|  | (3.660) | (3.657) |
| Election Period * Political-Competition Prime | 2.283 | 1.801 |
|  | (3.526) | (3.514) |
| Coethnic Dictator Game * National Prime | 1.232 | 1.318 |
|  | (2.721) | (2.717) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 1.222 | 1.289 |
|  | (2.906) | (2.903) |
| Coethnic Dictator Game * Political-Competition Prime | -1.021 | -0.950 |
|  | (2.622) | (2.619) |
| Non-coethnic Dictator Game * National Prime | 2.541 | 2.498 |
|  | (3.219) | (3.221) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime | 6.192* | 6.166* |
|  | (3.216) | (3.216) |
| Non-coethnic Dictator Game * Political-Competition Prime | 4.009 | 4.009 |
|  | (3.036) | (3.037) |
| Tanzania * Coethnic DG * National Prime | -3.088 | -2.739 |
|  | (7.003) | (7.028) |
| Tanzania * Coethnic DG * Ethnic-Cultural Prime | -11.41* | -11.24* |
|  | (6.347) | (6.424) |
| Tanzania * Coethnic DG * Political-Competition Prime | 6.867 | 7.921 |
|  | (7.636) | (7.565) |
| Tanzania * Non-coethnic DG * National Prime | -3.096 | -3.121 |
|  | (4.004) | (4.013) |
| Tanzania * Non-coethnic DG * Ethnic-Cultural Prime | $-8.287^{* *}$ | -8.254** |
|  | (4.026) | (4.043) |
| Tanzania * Non-coethnic DG * Political-Competition Prime | -0.742 | -0.821 |
|  | (4.026) | (4.036) |
| Election Period * Coethnic DG * National Prime | -0.976 | -1.104 |
|  | (4.191) | (4.188) |
| Election Period * Coethnic DG * Ethnic-Cultural Prime | 2.583 | 2.490 |
|  | (4.380) | (4.377) |
| Election Period * Coethnic DG * Political-Competition Prime | 4.569 | 4.497 |
|  | (4.063) | (4.062) |
| 1(Female) |  | 1.957** |
|  |  | (0.891) |
| Years of Education (demeaned) |  | -0.351*** |
|  |  | (0.125) |
| Constant | $43.63^{* * *}$ | $43.36{ }^{* *}$ |
|  | (1.522) | (1.642) |
| Observations | 4984 | 4963 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.8: p-values: Pooled Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-D 18}$ : Tanzania $*$ Coethnic Recipient $=0$ | 0.792 |
| $H_{F-D 19}$ : Tanzania * Non-coethnic Recipient $=0$ | 0.560 |
| $H_{F-D 20}$ : Election Period $=0$ | 0.784 |
| $H_{F-D 3}$ : Tanzania $*$ Coethnic $*$ National prime $=0$ | 0.659 |
| $H_{F-D 4}$ : Tanzania * Coethnic * Ethnic-Cultural (EC) prime $=0$ | 0.072 |
| $H_{F-D 5}$ : Tanzania $*$ Coethnic $*$ Political-Competition (PC) prime $=0$ | 0.369 |
| $H_{F-D 6}$ : Election * Coethnic * National prime $=0$ | 0.816 |
| $H_{F-D 7}$ : Election $*$ Coethnic $*$ Ethnic-Cultural prime $=0$ | 0.555 |
| $H_{F-D 8}$ : Election * Coethnic * Political-Competition (PC) prime $=0$ | 0.261 |
| $H_{F-D 9}$ : Tanzania * Coethnic * (National $=$ EC prime) | 0.240 |
| $H_{F-D 10}$ : Tanzania $*$ Coethnic $*($ National $=$ PC prime $)$ | 0.228 |
| $H_{F-D 11}$ : Tanzania $*$ Coethnic $*(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.018 |
| $H_{F-D 12}$ : Election * Coethnic * (National $=$ EC prime) | 0.409 |
| $H_{F-D 13}$ : Election * Coethnic * (National $=$ PC prime $)$ | 0.165 |
| $H_{F-D 14}$ : Election $*$ Coethnic $*(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.636 |
| $H_{F-D 15}$ : Tanzania $*$ Coethnic $*($ No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.140 |
| $H_{F-D 16}$ : Election* Coethnic ${ }^{*}($ No prime $=$ National $=\mathrm{EC}=$ PC prime $)=0$ | 0.619 |
| $H_{F-D 17}$ : All coefficients $=0$ | 0.000 |

### 10.2 Public-good Game

### 10.2.1 Anonymous Public-good Game

Table 10.9: Anonymous Public-good Game, Full analysis

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Tanzania | -2.935 | -4.513 |
|  | (2.962) | (2.990) |
| Election Period | -6.356* | -7.742** |
|  | (3.291) | (3.299) |
| National Prime | -4.697 | -4.597 |
|  | (3.275) | (3.263) |
| Ethnic-Cultural Prime | 0.325 | 0.271 |
|  | (3.275) | (3.263) |
| Political-Competition Prime | -1.716 | -1.715 |
|  | (3.280) | (3.268) |
| Tanzania * National Prime | 1.699 | 2.271 |
|  | (4.437) | (4.432) |
| Tanzania * Ethnic-Cultural Prime | -2.947 | -2.817 |
|  | (4.437) | (4.435) |
| Tanzania * Political-Competition Prime | 2.378 | 2.344 |
|  | (4.436) | (4.430) |
| Election Period * National Prime | 8.679* | 8.305* |
|  | (4.635) | (4.619) |
| Election Period * Ethnic-Cultural Prime | 2.292 | 1.990 |
|  | (4.639) | (4.624) |
| Election Period * Political-Competition Prime | 3.960 | 3.469 |
|  | (4.647) | (4.634) |
| 1(Female) |  | -0.000645 |
|  |  | (1.361) |
| Years of Education (demeaned) |  | -0.759*** |
|  |  | (0.200) |
| Constant | 47.89*** | 49.58*** |
|  | (2.327) | (2.492) |
| Observations | 1889 | 1882 |
| Standard errors in parentheses |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.10: p-values: Anonymous Public-good Game, contributions

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.054 |
| $H_{F-P G 2}:$ Tanzania $=0$ | 0.322 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.702 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.507 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.592 |
| $H_{F-P G 6}$ : Election $*$ National prime $=0$ | 0.061 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.621 |
| $H_{F-P G 8}$ : Election $*$ Political-Competition (PC) prime $=0$ | 0.394 |
| $H_{F-P G 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime) | 0.320 |
| $H_{F-P G 10}:$ Tanzania * (National $=$ PC prime $)$ | 0.884 |
| $H_{F-P G 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime) | 0.254 |
| $H_{F-P G 12}$ : Election * (National $=$ Ethnic-Cultural prime $)$ | 0.167 |
| $H_{F-P G 13}$ : Election * (National $=$ PC prime $)$ | 0.308 |
| $H_{F-P G 14}$ : Election $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.719 |
| $H_{F-P G 15}$ : Tanzania $*$ (National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.671 |
| $H_{F-P G 16}$ : Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.286 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.475 |

Table 10.11: Anonymous Public-good Game, Full analysis

|  | Contribution - Belief (Percent of Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Tanzania | $-8.272^{* *}$ | $-10.59^{* * *}$ |
| Election Period | $(3.210)$ | $(3.232)$ |
| National Prime | $-7.978^{* *}$ | $\left(3.14^{* * *}\right.$ |
|  | $(3.567)$ | $-9.003^{* *}$ |
| Ethnic-Cultural Prime | $-9.146^{* *}$ | $(3.527)$ |
|  | $(3.550)$ | -4.301 |
| Political-Competition Prime | -4.211 | $(3.527)$ |
|  | $(3.550)$ | $-6.267^{*}$ |
| Tanzania * National Prime | $-6.274^{*}$ | $(3.533)$ |
|  | $(3.556)$ | $8.837^{*}$ |
| Tanzania * Ethnic-Cultural Prime | $7.980^{*}$ | $(4.791)$ |
|  | $(4.809)$ | 3.609 |
| Tanzania * Political-Competition Prime | 3.299 | $(4.794)$ |
|  | $(4.809)$ | $8.032^{*}$ |
| Election Period * National Prime | $8.114^{*}$ | $(4.789)$ |
| Election Period * Ethnic-Cultural Prime | $(4.809)$ | $14.58^{* * *}$ |
|  | $15.17^{* * *}$ | $(4.993)$ |
| Election Period * Political-Competition Prime | $(5.024)$ | 6.779 |
|  | 7.328 | $(4.999)$ |
| 1(Female) | $(5.028)$ | 6.969 |
|  | 7.835 | $(5.009)$ |
| Years of Education (demeaned) | $(5.037)$ | 0.909 |
| Constant |  | $(1.472)$ |
|  | $-1.150^{* * *}$ |  |
| Observations | $(0.216)$ |  |
| Stan | 2.673 |  |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.12: p-values: Anonymous Public-good Game, Contributions minus Belief

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.025 |
| $H_{F-P G 2}:$ Tanzania $=0$ | 0.010 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.097 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.493 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.092 |
| $H_{F-P G 6}$ : Election * National prime $=0$ | 0.003 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.145 |
| $H_{F-P G 8}$ : Election $*$ Political-Competition (PC) prime $=0$ | 0.120 |
| $H_{F-P G 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime $)$ | 0.355 |
| $H_{F-P G 10}$ : Tanzania * (National $=$ PC prime $)$ | 0.979 |
| $H_{F-P G 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.342 |
| $H_{F-P G 12}$ : Election $*($ National $=$ Ethnic-Cultural prime $)$ | 0.117 |
| $H_{F-P G 13}$ : Election * (National $=$ PC prime $)$ | 0.144 |
| $H_{F-P G 14}$ : Election $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.920 |
| $H_{F-P G 15}$ : Tanzania * (National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.258 |
| $H_{F-P G 16}:$ Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.028 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.104 |

### 10.2.2 Mixed Public-good Game

Table 10.13: Mixed Public-good Game, Full analysis


Table 10.14: p-values: Mixed Public-good Game, contributions

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.320 |
| $H_{F-P G 2}$ : Tanzania $=0$ | 0.249 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.137 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.129 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.285 |
| $H_{F-P G 6}$ : Election $*$ National prime $=0$ | 0.193 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.837 |
| $H_{F-P G 8}$ : Election $*$ Political-Competition (PC) prime $=0$ | 0.326 |
| $H_{F-P G 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime $)$ | 0.964 |
| $H_{F-P G 10}$ : Tanzania * (National $=$ PC prime $)$ | 0.717 |
| $H_{F-P G 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.739 |
| $H_{F-P G 12}$ : Election * (National $=$ Ethnic-Cultural prime) | 0.138 |
| $H_{F-P G 13}$ : Election * (National $=$ PC prime $)$ | 0.745 |
| $H_{F-P G 14}$ : Election $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.241 |
| $H_{F-P G 15}:$ Tanzania $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.345 |
| $H_{F-P G 16}:$ Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.365 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.395 |

Table 10.15: Mixed Public-good Game, Full analysis

|  | Contribution - Belief (Percent of Endowment) |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Tanzania | -3.363 | -2.003 |
| Election Period | $(5.922)$ | $-5.982)$ |
| National Prime | -4.465 | $(4.152)$ |
| Ethnic-Cultural Prime | $(4.137)$ | -6.843 |
|  | $-6.893^{*}$ | $(4.165)$ |
| Political-Competition Prime | $(4.180)$ | -4.415 |
|  | -4.448 | $(4.138)$ |
| Tanzania * National Prime | $(4.154)$ | $-7.683^{*}$ |
|  | $-7.782^{*}$ | $(4.105)$ |
| Tanzania * Ethnic-Cultural Prime | $(4.121)$ | 3.900 |
|  | 5.484 | $(9.675)$ |
| Tanzania * Political-Competition Prime | $(9.678)$ | 13.23 |
|  | $15.21^{*}$ | $(9.182)$ |
| Election Period * National Prime | $(9.180)$ | 4.739 |
|  | 6.330 | $(9.772)$ |
| Election Period * Ethnic-Cultural Prime | $(9.775)$ | 7.231 |
|  | 7.744 | $(5.936)$ |
| Election Period * Political-Competition Prime | $(5.955)$ | -0.283 |
| 1(Female) | 0.299 | $(5.917)$ |
|  | 6.325 | 5.590 |
| Years of Education (demeaned) | $(5.900)$ | $(5.883)$ |
| Constant |  | $4.206^{* *}$ |
|  | $(2.125)$ |  |
| Observations | -0.324 |  |
| Stan | $(0.299)$ |  |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.16: p-values: Mixed Public-good Game, Contributions minus Belief

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.281 |
| $H_{F-P G 2}$ : Tanzania $=0$ | 0.570 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.571 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.098 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.517 |
| $H_{F-P G 6}$ : Election $*$ National prime $=0$ | 0.194 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.960 |
| $H_{F-P G 8}$ : Election * Political-Competition (PC) prime $=0$ | 0.284 |
| $H_{F-P G 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime $)$ | 0.349 |
| $H_{F-P G 10}$ : Tanzania $*($ National $=$ PC prime $)$ | 0.938 |
| $H_{F-P G 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.397 |
| $H_{F-P G 12}$ : Election * (National $=$ Ethnic-Cultural prime $)$ | 0.218 |
| $H_{F-P G 13}$ : Election $*$ (National $=$ PC prime $)$ | 0.813 |
| $H_{F-P G 14}$ : Election $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.314 |
| $H_{F-P G 15}$ : Tanzania $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.432 |
| $H_{F-P G 16}$ : Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.438 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.422 |

### 10.2.3 Coethnic Public-good Game

Table 10.17: Coethnic Public-good Game, Full analysis

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Tanzania | -5.397 | -6.565 |
|  | (6.996) | (7.019) |
| Election Period | -4.025 | -4.872 |
|  | (3.822) | (3.850) |
| National Prime | -1.880 | -1.715 |
|  | (3.862) | (3.858) |
| Ethnic-Cultural Prime | 5.715 | 5.802 |
|  | (3.830) | (3.825) |
| Political-Competition Prime | 3.599 | 3.618 |
|  | (3.846) | (3.841) |
| Tanzania * National Prime | 14.18 | 14.38 |
|  | (10.67) | (10.67) |
| Tanzania * Ethnic-Cultural Prime | 1.830 | 1.548 |
|  | (12.17) | (12.15) |
| Tanzania * Political-Competition Prime | -6.130 | -5.537 |
|  | (11.27) | (11.26) |
| Election Period * National Prime | 3.811 | 3.544 |
|  | (5.485) | (5.482) |
| Election Period * Ethnic-Cultural Prime | -5.238 | -5.235 |
|  | (5.475) | (5.471) |
| Election Period * Political-Competition Prime | -0.903 | -0.940 |
|  | (5.468) | (5.466) |
| 1(Female) |  | -2.767 |
|  |  | (2.016) |
| Years of Education (demeaned) |  | -0.566** |
|  |  | (0.285) |
| Constant | 46.85*** | 49.52*** |
|  | (2.697) | (3.017) |
| Observations | 1028 | 1028 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.18: p-values: Coethnic Public-good Game, contributions

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.293 |
| $H_{F-P G 2}:$ Tanzania $=0$ | 0.441 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.184 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.880 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.587 |
| $H_{F-P G 6}$ : Election * National prime $=0$ | 0.487 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.339 |
| $H_{F-P G 8}$ : Election * Political-Competition (PC) prime $=0$ | 0.869 |
| $H_{F-P G 9}:$ Tanzania * (National $=$ Ethnic-Cultural prime $)$ | 0.335 |
| $H_{F-P G 10}:$ Tanzania $*$ (National $=$ PC prime $)$ | 0.090 |
| $H_{F-P G 11}$ : Tanzania * (Ethnic-Cultural $=$ PC prime $)$ | 0.550 |
| $H_{F-P G 12}$ : Election * (National $=$ Ethnic-Cultural prime $)$ | 0.104 |
| $H_{F-P G 13}$ : Election $*$ (National $=$ PC prime $)$ | 0.396 |
| $H_{F-P G 14}$ : Election $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.434 |
| $H_{F-P G 15}:$ Tanzania $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.365 |
| $H_{F-P G 16}$ : Election $*$ (National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.443 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.503 |

Table 10.19: Coethnic Public-good Game, Full analysis

|  | Contribution - Belief (Percent of Endowment) |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Tanzania | 10.07 | 7.958 |
|  | (7.802) | (7.814) |
| Election Period | -4.504 | -6.094 |
|  | (4.263) | (4.286) |
| National Prime | -2.853 | -2.645 |
|  | (4.307) | (4.295) |
| Ethnic-Cultural Prime | 4.642 | 4.735 |
|  | (4.271) | (4.259) |
| Political-Competition Prime | -1.110 | -1.009 |
|  | (4.289) | (4.276) |
| Tanzania * National Prime | -9.184 | -8.131 |
|  | (11.90) | (11.87) |
| Tanzania * Ethnic-Cultural Prime | -4.178 | -4.609 |
|  | (13.57) | (13.53) |
| Tanzania * Political-Competition Prime | -13.23 | -11.82 |
|  | (12.57) | (12.54) |
| Election Period * National Prime | 7.915 | 7.254 |
|  | (6.117) | (6.103) |
| Election Period * Ethnic-Cultural Prime | -7.275 | -7.661 |
|  | (6.106) | (6.090) |
| Election Period * Political-Competition Prime | 3.460 | 2.868 |
|  | (6.097) | (6.086) |
| 1(Female) |  | 0.350 |
|  |  | (2.245) |
| Years of Education (demeaned) |  | -0.856*** |
|  |  | (0.317) |
| Constant | -5.529* | -3.836 |
|  | (3.008) | (3.358) |
| Observations | 1028 | 1028 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.20: p-values: Coethnic Public-good Game, Contributions minus Belief

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 1}$ : Election Period $=0$ | 0.291 |
| $H_{F-P G 2}:$ Tanzania $=0$ | 0.197 |
| $H_{F-P G 3}$ : Tanzania $*$ National prime $=0$ | 0.441 |
| $H_{F-P G 4}$ : Tanzania $*$ Ethnic-Cultural prime $=0$ | 0.758 |
| $H_{F-P G 5}$ : Tanzania * Political-Competition (PC) prime $=0$ | 0.293 |
| $H_{F-P G 6}$ : Election * National prime $=0$ | 0.196 |
| $H_{F-P G 7}$ : Election * Ethnic-Cultural prime $=0$ | 0.234 |
| $H_{F-P G 8}$ : Election * Political-Competition (PC) prime $=0$ | 0.571 |
| $H_{F-P G 9}$ : Tanzania * (National $=$ Ethnic-Cultural prime) | 0.726 |
| $H_{F-P G 10}$ : Tanzania * (National $=$ PC prime $)$ | 0.761 |
| $H_{F-P G 11}$ : Tanzania $*$ (Ethnic-Cultural $=$ PC prime $)$ | 0.542 |
| $H_{F-P G 12}$ : Election $*$ (National $=$ Ethnic-Cultural prime $)$ | 0.014 |
| $H_{F-P G 13}$ : Election $*$ (National $=$ PC prime $)$ | 0.472 |
| $H_{F-P G 14}$ : Election $*($ (Ethnic-Cultural $=$ PC prime $)$ | 0.082 |
| $H_{F-P G 15}:$ Tanzania $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.733 |
| $H_{F-P G 16}$ : Election $*($ National $=$ Ethnic-Cultural $=$ PC prime $)=0$ | 0.093 |
| $H_{F-P G 17}$ : No differential priming effects in Kenya or Tanzania | 0.186 |

### 10.2.4 Pooled Public-good Game

Table 10.21: Pooled Public-good Game, Full analysis

|  | Contribution (Percent of Endowment) |  |
| :---: | :---: | :---: |
| Election Period | -6.027* | -6.850** |
|  | (3.365) | (3.376) |
| Tanzania | -3.625 | -4.654 |
|  | (2.870) | (2.889) |
| Mixed Group | 0.323 | 0.323 |
|  | (2.289) | (2.289) |
| Coethnic Group | -1.727 | -1.703 |
|  | (2.542) | (2.543) |
| Tanzania * Mixed Group | -2.569 | -1.649 |
|  | (5.135) | (5.195) |
| Tanzania * Coethnic Group | -1.772 | -1.902 |
|  | (6.412) | (6.399) |
| Election Period * Mixed Group | 2.297 | 2.285 |
|  | (3.587) | (3.590) |
| Election Period * Coethnic Group | 2.002 | 1.960 |
|  | (3.385) | (3.387) |
| National Prime | -3.813 | -3.669 |
|  | (3.379) | (3.358) |
| Ethnic-Cultural Prime | -1.388 | -1.304 |
|  | (3.347) | (3.339) |
| Political-Competition Prime | -3.188 | -3.118 |
|  | (3.296) | (3.267) |
| Tanzania * National Prime | 0.814 | 1.125 |
|  | (4.536) | (4.528) |
| Tanzania * Ethnic-Cultural Prime | -1.234 | -1.249 |
|  | (4.550) | (4.558) |
| Tanzania * Political-Competition Prime | 3.851 | 3.777 |
|  | (4.550) | (4.530) |
| Election Period * National Prime | 6.205 | 5.857 |
|  | (4.901) | (4.901) |
| Election Period * Ethnic-Cultural Prime | 1.475 | 1.297 |
|  | (5.005) | (4.995) |
| Election Period * Political-Competition Prime | 4.713 | 4.435 |
|  | (4.823) | (4.801) |
| Coethnic Group * National Prime | 1.933 | 1.916 |
|  | (3.580) | (3.581) |
| Coethnic Group * Ethnic-Cultural Prime | 7.103* | 7.079* |
|  | (3.872) | (3.873) |
| Coethnic Group * Political-Competition Prime | $6.787^{*}$ | $6.763^{*}$ |
|  | (3.621) | (3.622) |
| Mixed Group * National Prime | -0.144 | -0.144 |
|  | (3.192) | (3.193) |
| Mixed Group * Ethnic-Cultural Prime | 1.411 | 1.411 |
|  | (3.400) | (3.401) |
| Mixed Group * Political-Competition Prime | 0.0546 | 0.0546 |
|  | (3.346) | (3.347) |
| Tanzania * Mixed Group * National Prime | 12.25 | 11.19 |
|  | (8.942) | (8.961) |
| Tanzania * Mixed Group * Ethnic-Cultural Prime | 13.87* | $13.27^{*}$ |


|  | $(7.654)$ | $(7.680)$ |
| :--- | :---: | :---: |
| Tanzania * Mixed Group * Political-Competition Prime | 5.623 | $(9.289)$ |
| Tanzania * Coethnic Group * National Prime | $(9.296)$ | 13.53 |
|  | 13.36 | $(11.15)$ |
| Tanzania * Coethnic Group * Ethnic-Cultural Prime | $(11.08)$ | $(10.331$ |
| Tanzania * Coethnic Group * Political-Competition Prime | $(10.39)$ | -9.181 |
|  | -9.981 | $(9.771)$ |
| Election Period * Mixed Group * National Prime | $(9.897)$ | 0.816 |
| Election Period * Mixed Group * Ethnic-Cultural Prime | 0.827 | $(5.119)$ |
|  | $(5.117)$ | -2.595 |
| Election Period * Mixed Group * Political-Competition Prime | -2.581 | $(5.359)$ |
| Election Period * Coethnic Group * National Prime | 0.545 | 0.549 |
|  | $(5.079)$ | $(5.080)$ |
| Election Period * Coethnic Group * Ethnic-Cultural Prime | -2.395 | -2.383 |
| Election Period * Coethnic Group * Political-Competition Prime | $(5.075)$ | $(5.077)$ |
| 1(Female) | -6.712 | -6.690 |
|  | -5.616 | $(5.318)$ |
| Years of Education (demeaned) | $(5.112)$ | -5.587 |
| Constant |  | $(5.114)$ |
| Observations |  | -0.587 |
| Sa |  | $(1.386)$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.22: p-values: Pooled Public-good Game - Contribution

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 18}$ : Tanzania * Mixed Group $=0$ | 0.617 |
| $H_{F-P G 19}$ : Tanzania $*$ Coethnic Group $=0$ | 0.782 |
| $H_{F-P G 20}$ : Election * Mixed Group $=0$ | 0.522 |
| $H_{F-P G 21}$ : Election * Coethnic PG $=0$ | 0.554 |
| $H_{F-P G 22}$ : Tanzania $*$ (Mixed Group $=$ Coethnic Group) | 0.900 |
| $H_{F-P G 23}$ : Election * (Mixed Group $=$ Coethnic Group) | 0.929 |
| $H_{F-P G 24}$ : Tanzania * Mixed Group * National prime $=0$ | 0.171 |
| $H_{F-P G 25}$ : Tanzania * Mixed Group * Ethnic-Cultural (EC) prime $=0$ | 0.070 |
| $H_{F-P G 26}$ : Tanzania * Mixed Group * Political-Competition (PC) prime $=0$ | 0.545 |
| $H_{F-P G 27}$ : Tanzania * Coethnic Group * National prime $=0$ | 0.228 |
| $H_{F-P G 28}$ : Tanzania $*$ Coethnic Group * Ethnic-Cultural prime $=0$ | 0.768 |
| $H_{F-P G 29}$ : Tanzania * Coethnic Group * PC prime $=0$ | 0.313 |
| $H_{F-P G 30}$ : Election * Mixed Group * National prime $=0$ | 0.872 |
| $H_{F-P G 31}$ : Election * Mixed Group * Ethnic-Cultural (EC) prime $=0$ | 0.630 |
| $H_{F-P G 32}$ : Election * Mixed Group * Political-Competition (PC) prime $=0$ | 0.915 |
| $H_{F-P G 33}$ : Election $*$ Coethnic Group * National prime $=0$ | 0.637 |
| $H_{F-P G 34}$ : Election * Coethnic Group * Ethnic-Cultural prime $=0$ | 0.207 |
| $H_{F-P G 35}$ : Election * Coethnic Group * PC prime $=0$ | 0.272 |
| $H_{F-P G 36}$ : Tanzania * Mixed Group * (National = EC prime) | 0.861 |
| $H_{F-P G 37}$ : Tanzania * Mixed Group * (National $=$ PC prime) | 0.534 |
| $H_{F-P G 38}$ : Tanzania * Mixed Group * (EC $=$ PC prime $)$ | 0.390 |
| $H_{F-P G 39}$ : Tanzania * Coethnic Group * (National $=$ EC prime) | 0.398 |
| $H_{F-P G 40}$ : Tanzania * Coethnic Group * (National $=$ PC prime) | 0.048 |
| $H_{F-P G 41}$ : Tanzania * Coethnic Group * (EC $=$ PC prime) | 0.241 |
| $H_{F-P G 42}$ : Election * Mixed Group * (National $=$ EC prime) | 0.528 |
| $H_{F-P G 43}$ : Election * Mixed Group * (National $=$ PC prime) | 0.956 |
| $H_{F-P G 44}$ : Election * Mixed Group * (EC $=$ PC prime) | 0.560 |
| $H_{F-P G 45}$ : Election * Coethnic Group * (National $=$ EC prime) | 0.439 |
| $H_{F-P G 46}$ : Election * Coethnic Group * (National $=$ PC prime) | 0.550 |
| $H_{F-P G 47}$ : Election * Coethnic Group * (EC $=$ PC prime) | 0.845 |
| $H_{F-P G 48}$ : Tanzania * Mixed/Coethnic Group * (No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime) $=0$ | 0.207 |
| $H_{F-P G 49}$ : Election * Mixed/Coethnic Group $*($ No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.467 |

Table 10.23: Pooled Public-good Game, Full analysis


|  | $(10.01)$ | $(9.786)$ |
| :--- | :---: | :---: |
| Tanzania * Coethnic Group * National Prime | -14.98 | $(11.38)$ |
| Tanzania * Coethnic Group * Ethnic-Cultural Prime | $(11.62)$ | -10.07 |
| Tanzania * Coethnic Group * Political-Competition Prime | -9.569 | $(10.54)$ |
|  | $-20.49)$ | $-20.53^{*}$ |
| Election Period * Mixed Group * National Prime | $(11.71)$ |  |
| Election Period * Mixed Group * Ethnic-Cultural Prime | -4.319 | -4.373 |
|  | $(6.553)$ | $-5.556)$ |
| Election Period * Mixed Group * Political-Competition Prime | -5.596 | $(6.935$ |
|  | -0.498 | -0.495 |
| Election Period * Coethnic Group * National Prime | $(6.481)$ | $(6.483)$ |
|  | -4.148 | -4.156 |
| Election Period * Coethnic Group * Ethnic-Cultural Prime | $(6.197)$ | $(6.200)$ |
| Election Period * Coethnic Group * Political-Competition Prime | $-13.17^{* *}$ | $-13.12^{* *}$ |
|  | $-3.664)$ | $(6.665)$ |
| 1(Female) | $(6.656)$ | -3.314 |
|  |  | $(6.659)$ |
| Years of Education (demeaned) | 1.629 |  |
| Constant |  | $(1.425)$ |
| Observations |  | $-0.775^{* * *}$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.24: p-values: Pooled Public-good Game - Contribution minus Belief

|  | Regular p-value |
| :---: | :---: |
| $H_{F-P G 18}$ : Tanzania * Mixed Group $=0$ | 0.360 |
| $H_{F-P G 19}$ : Tanzania * Coethnic Group $=0$ | 0.007 |
| $H_{F-P G 20}$ : Election * Mixed Group $=0$ | 0.572 |
| $H_{F-P G 21}$ : Election * Coethnic PG $=0$ | 0.553 |
| $H_{F-P G 22}$ : Tanzania * (Mixed Group $=$ Coethnic Group) | 0.064 |
| $H_{F-P G 23}$ : Election $*$ (Mixed Group $=$ Coethnic Group) | 0.993 |
| $H_{F-P G 24}$ : Tanzania * Mixed Group * National prime $=0$ | 0.977 |
| $H_{F-P G 25}$ : Tanzania * Mixed Group * Ethnic-Cultural (EC) prime $=0$ | 0.236 |
| $H_{F-P G 26}$ : Tanzania * Mixed Group * Political-Competition (PC) prime $=0$ | 0.803 |
| $H_{F-P G 27}$ : Tanzania $*$ Coethnic Group * National prime $=0$ | 0.198 |
| $H_{F-P G 28}$ : Tanzania $*$ Coethnic Group * Ethnic-Cultural prime $=0$ | 0.362 |
| $H_{F-P G 29}$ : Tanzania * Coethnic Group * PC prime $=0$ | 0.065 |
| $H_{F-P G 30}$ : Election * Mixed Group * National prime $=0$ | 0.510 |
| $H_{F-P G 31}$ : Election * Mixed Group * Ethnic-Cultural (EC) prime $=0$ | 0.418 |
| $H_{F-P G 32}$ : Election * Mixed Group * Political-Competition (PC) prime $=0$ | 0.939 |
| $H_{F-P G 33}:$ Election * Coethnic Group * National prime $=0$ | 0.503 |
| $H_{F-P G 34}$ : Election * Coethnic Group * Ethnic-Cultural prime $=0$ | 0.048 |
| $H_{F-P G 35}$ : Election * Coethnic Group * PC prime $=0$ | 0.613 |
| $H_{F-P G 36}$ : Tanzania * Mixed Group * (National = EC prime) | 0.361 |
| $H_{F-P G 37}$ : Tanzania * Mixed Group * (National $=$ PC prime) | 0.861 |
| $H_{F-P G 38}$ : Tanzania * Mixed Group * (EC $=$ PC prime) | 0.220 |
| $H_{F-P G 39}$ : Tanzania $*$ Coethnic Group * (National $=$ EC prime) | 0.657 |
| $H_{F-P G 40}$ : Tanzania * Coethnic Group * (National $=$ PC prime) | 0.599 |
| $H_{F-P G 41}$ : Tanzania * Coethnic Group * (EC $=$ PC prime) | 0.318 |
| $H_{F-P G 42}$ : Election * Mixed Group * (National $=$ EC prime) | 0.851 |
| $H_{F-P G 43}$ : Election * Mixed Group * (National $=$ PC prime) | 0.547 |
| $H_{F-P G 44}$ : Election * Mixed Group * (EC $=$ PC prime) | 0.447 |
| $H_{F-P G 45}$ : Election * Coethnic Group * (National $=$ EC prime) | 0.170 |
| $H_{F-P G 46}$ : Election * Coethnic Group * (National $=$ PC prime) | 0.905 |
| $H_{F-P G 47}$ : Election ${ }^{*}$ Coethnic Group * (EC $=$ PC prime $)$ | 0.162 |
| $H_{F-P G 48}$ : Tanzania * Mixed/Coethnic Group * (No prime $=$ National $=$ EC $=$ PC prime $)=0$ | 0.062 |
| $H_{F-P G 49}$ : Election * Mixed/Coethnic Group * (No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime) $=0$ | 0.629 |

### 10.3 Choose-your-dictator Game

### 10.3.1 Anonymous Chooser

Table 10.25: Anonymous Choose-your-dictator, full analysis

|  | Ordered Choice |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Coethnic Profile | 0.0363 | 0.0490 |
|  | (0.193) | (0.216) |
| Tanzania * Coethnic Profile | 0.423 | 0.417 |
|  | (0.405) | (0.406) |
| Election Period * Coethnic Profile | 0.128 | 0.123 |
|  | (0.252) | (0.256) |
| Coethnic * National Prime | 0.150 | 0.151 |
|  | (0.242) | (0.242) |
| Coethnic * Ethnic-Cultural Prime | 0.391* | 0.391* |
|  | (0.234) | (0.235) |
| Coethnic * Political-Competition Prime | 0.105 | 0.105 |
|  | (0.248) | (0.248) |
| Tanzania * Coethnic * National Prime | -0.873 | -0.873 |
|  | (0.579) | (0.579) |
| Tanzania * Coethnic * Ethnic-Cultural Prime | $-0.965$ | -0.962 |
|  | $(0.672)$ | $(0.671)$ |
| Tanzania * Coethnic * Political-Competition Prime | -0.0694 | -0.0719 |
|  | (0.594) | (0.595) |
| Election * Coethnic * National Prime | -0.169 | -0.170 |
|  | (0.340) | (0.340) |
| Election * Coethnic * Ethnic-Cultural Prime | -0.609* | -0.609* |
|  | (0.335) | (0.336) |
| Election * Coethnic * Political-Competition Prime | 0.0601 | 0.0596 |
|  | (0.337) | (0.337) |
| Coethnic * 1(Female) |  | -0.00988 |
|  |  | (0.126) |
| Coethnic * Education |  | -0.00320 |
|  |  | (0.0177) |
| cut1 | -1.029*** | $-1.030^{* * *}$ |
|  | (0.0416) | (0.0418) |
| cut2 | $1.144^{* * *}$ | $1.145^{* * *}$ |
|  | (0.0428) | (0.0430) |
| Observations | 3352 | 3338 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |

Table 10.26: p-values: Anonymous Choose-your-Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-C D 1}$ : Tanzania $*$ Coethnic $=0$ | 0.296 |
| $H_{F-C D 1}$ : Election Period $*$ Coethnic $=0$ | 0.611 |
| $H_{F-C D 2}$ : Coethnic $*$ Tanzania $*$ National prime $=0$ | 0.132 |
| $H_{F-C D 3}:$ Coethnic $*$ Tanzania * Ethnic-Cultural (EC) prime $=0$ | 0.151 |
| $H_{F-C D 4}$ : Coethnic * Tanzania * Political-Competition (PC) prime $=0$ | 0.907 |
| $H_{F-C D 5}:$ Coethnic $*$ Election $*$ National prime $=0$ | 0.618 |
| $H_{F-C D 6}$ : Coethnic * Election $*$ Ethnic-Cultural (EC) prime $=0$ | 0.069 |
| $H_{F-C D 7}$ : Coethnic * Election * Political Competition (PC) prime $=0$ | 0.858 |
| $H_{F-C D 8}$ : Coethnic ${ }^{*}$ Tanzania $*($ National $=$ EC prime $)$ | 0.891 |
| $H_{F-C D 9}:$ Coethnic ${ }^{*}$ Tanzania $*($ National $=$ PC prime $)$ | 0.181 |
| $H_{F-C D 10}:$ Coethnic $*$ Tanzania $*(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.194 |
| $H_{F-C D 11}$ : Coethnic * Election * (National $=$ EC prime $)$ | 0.167 |
| $H_{F-C D 12}$ : Coethnic * Election * (National $=$ PC prime $)$ | 0.472 |
| $H_{F-C D 13}$ : Coethnic * Election * $(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.033 |
| $H_{F-C D 14}:$ Coethnic $*$ Tanzania $*($ National $=\mathrm{EC}=$ PC prime $)=0$ | 0.266 |
| $H_{F-C D 15}:$ Coethnic $*$ Election * (National $=\mathrm{EC}=$ PC prime $)=0$ | 0.143 |
| $H_{F-C D 16}$ : No differential priming effects in Kenya or Tanzania | 0.226 |

### 10.3.2 Identified Chooser

Table 10.27: Identified Choose-your-dictator, full analysis

|  | Ordered Choice |  |
| :--- | :---: | :---: |
|  | $(1)$ | $(2)$ |
| Coethnic Profile | 0.0552 | 0.0365 |
| Tanzania * Coethnic Profile | $(0.189)$ | $(0.207)$ |
|  | 0.0194 | 0.206 |
| Election Period * Coethnic Profile | $(0.357)$ | $(0.358)$ |
|  | 0.223 | 0.278 |
| Coethnic * National Prime | $(0.234)$ | $(0.235)$ |
|  | 0.263 | 0.252 |
| Coethnic * Ethnic-Cultural Prime | $(0.229)$ | $(0.231)$ |
|  | 0.233 | 0.229 |
| Coethnic * Political-Competition Prime | $(0.242)$ | $(0.241)$ |
|  | 0.200 | 0.193 |
| Tanzania * Coethnic * National Prime | $(0.231)$ | $(0.231)$ |
|  | -0.471 | -0.613 |
| Tanzania * Coethnic * Ethnic-Cultural Prime | $(0.508)$ | $(0.511)$ |
|  | -0.141 | -0.263 |
| Tanzania * Coethnic * Political-Competition Prime | $(0.497)$ | $(0.497)$ |
|  | -0.297 | -0.449 |
| Election * Coethnic * National Prime | $(0.573)$ | $(0.577)$ |
| Election * Coethnic * Ethnic-Cultural Prime | -0.307 | -0.276 |
|  | $(0.319)$ | $(0.320)$ |
| Election * Coethnic * Political-Competition Prime | -0.377 | -0.351 |
| Coethnic * 1(Female) | $-0.327)$ | $(0.328)$ |
|  | $(0.330)$ | -0.0211 |
| Coethnic * Education |  | $-0.330)$ |
| cut1 |  | $(0.12097$ |
|  |  | $0.0298^{*}$ |
| cut2 | $-0.800^{* * *}$ | $-0.0166)$ |
|  | $(0.0392)$ | $(0.0393$ |
| Observations | $0.949^{* * *}$ | $0.955 * *$ |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 10.28: p-values: Identified Choose-your-Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-C D 1}$ : Tanzania $*$ Coethnic $=0$ | 0.957 |
| $H_{F-C D 1}$ : Election Period $*$ Coethnic $=0$ | 0.340 |
| $H_{F-C D 2}$ : Coethnic * Tanzania $*$ National prime $=0$ | 0.354 |
| $H_{F-C D 3}$ : Coethnic $*$ Tanzania $*$ Ethnic-Cultural (EC) prime $=0$ | 0.777 |
| $H_{F-C D 4}$ : Coethnic * Tanzania * Political-Competition (PC) prime $=0$ | 0.604 |
| $H_{F-C D 5}$ : Coethnic * Election $*$ National prime $=0$ | 0.335 |
| $H_{F-C D 6}$ : Coethnic * Election $*$ Ethnic-Cultural (EC) prime $=0$ | 0.249 |
| $H_{F-C D 7}$ : Coethnic * Election * Political Competition (PC) prime $=0$ | 0.878 |
| $H_{F-C D 8}$ : Coethnic * Tanzania * (National $=$ EC prime) | 0.510 |
| $H_{F-C D 9}$ : Coethnic * Tanzania * (National $=$ PC prime) | 0.763 |
| $H_{F-C D 10}$ : Coethnic * Tanzania $*$ ( $\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.783 |
| $H_{F-C D 11}$ : Coethnic * Election * (National $=$ EC prime) | 0.824 |
| $H_{F-C D 12}$ : Coethnic * Election * (National $=$ PC prime $)$ | 0.418 |
| $H_{F-C D 13}$ : Coethnic * Election * $(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.316 |
| $H_{F-C D 14}$ : Coethnic * Tanzania * (National $=$ EC $=$ PC prime $)=0$ | 0.815 |
| $H_{F-C D 15}$ : Coethnic $*$ Election $*($ National $=\mathrm{EC}=$ PC prime $)=0$ | 0.575 |
| $H_{F-C D 16}$ : No differential priming effects in Kenya or Tanzania | 0.833 |

### 10.3.3 Pooled Choose-your-dictator

Table 10.29: Pooled Choose-your-dictator, full analysis

|  | Ordered Choice |  |
| :---: | :---: | :---: |
|  | (1) | (2) |
| Coethnic Profile | 0.0467 | 0.0386 |
|  | (0.175) | (0.193) |
| Tanzania * Coethnic Profile | 0.391 | 0.425 |
|  | (0.376) | (0.379) |
| Election Period * Coethnic Profile | 0.118 | 0.150 |
|  | (0.233) | (0.235) |
| Identified Choice * Coethnic Profile | -0.00134 | 0.00232 |
|  | (0.217) | (0.217) |
| Coethnic * National Prime | 0.139 | 0.139 |
|  | (0.224) | (0.225) |
| Coethnic * Ethnic-Cultural Prime | 0.361* | 0.364* |
|  | (0.217) | (0.217) |
| Coethnic * Political-Competition Prime | 0.0966 | 0.0975 |
|  | (0.229) | (0.230) |
| Identified Choice * Coethnic * National Prime | 0.144 | 0.139 |
|  | (0.289) | (0.290) |
| Identified Choice * Coethnic * Ethnic-Cultural Prime | -0.111 | -0.115 |
|  | (0.298) | (0.298) |
| Identified Choice * Coethnic * Political-Competition Prime | 0.119 | 0.114 |
|  | (0.293) | (0.293) |
| Tanzania * Coethnic * National Prime | -0.807 | -0.827 |
|  | (0.536) | (0.542) |
| Tanzania * Coethnic * Ethnic-Cultural Prime | -0.892 | -0.916 |
|  | (0.622) | (0.628) |
| Tanzania * Coethnic * Political-Competition Prime | -0.0638 | -0.0710 |
|  | (0.552) | (0.555) |
| Election * Coethnic * National Prime | -0.156 | $-0.148$ |
|  | $(0.314)$ | $(0.314)$ |
| Election * Coethnic * Ethnic-Cultural Prime | -0.562* | -0.556* |
|  | (0.310) | (0.310) |
| Election * Coethnic * Political-Competition Prime | $0.0558$ | 0.0679 |
|  | (0.311) | (0.311) |
| Tanzania * Identified * Coethnic Profile | -0.371 | -0.242 |
|  | (0.444) | (0.442) |
| Tanzania * Identified Choice * Coethnic * National Prime | $0.300$ | 0.179 |
|  | $(0.695)$ | (0.697) |
| Tanzania * Identified Choice * Coethnic * Ethnic-Cultural Prime | 0.741 | 0.632 |
|  | (0.666) | (0.668) |
| Tanzania * Identified Choice * Coethnic * Political-Competition Prime | -0.256 | -0.395 |
|  | (0.697) | (0.697) |
| Election Period * Identified * Coethnic Profile | 0.122 | 0.118 |
|  | (0.277) | (0.278) |
| Election Period * Identified * Coethnic * Nation Prime | -0.174 | -0.167 |
|  | (0.398) | (0.399) |
| Election Period * Identified * Coethnic * Ethnic-Cultural Prime | 0.156 | 0.164 |
|  | (0.405) | (0.406) |
| Election Period * Identified * Coethnic * Political-Competition Prime | -0.111 | -0.108 |
|  | (0.385) | (0.386) |
| Coethnic * 1(Female) |  | -0.0413 |


|  |  | $(0.0962)$ |
| :--- | :---: | :---: |
| Coethnic $*$ Education |  | 0.0143 |
| cut1 |  | $(0.0137)$ |
|  | cut2 | $-0.912^{* * *}$ |
|  | $-0.912^{* * *}$ |  |
|  | $(0.0333)$ | $(0.0334)$ |
| Observations | $1.044^{* * *}$ | $1.048^{* * *}$ |
| Standard errors in parentheses | $(0.0342)$ | $(0.0344)$ |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ | 6704 | 6676 |

Table 10.30: p-values: Pooled Dictator Game

|  | Regular p-value |
| :---: | :---: |
| $H_{F-C D 17}$ : Tanzania * Identified Choice (ID) * Coethnic Recipient $=0$ | 0.404 |
| $H_{F-C D 18}$ : Election Period * Identified Choice (ID) * Coethnic Recipient $=0$ | 0.660 |
| $H_{F-C D 19}$ : Tanzania * ID * Coethnic * National prime $=0$ | 0.666 |
| $H_{F-C D 20}$ : Tanzania * ID $*$ Coethnic $*$ Ethnic-Cultural (EC) prime $=0$ | 0.266 |
| $H_{F-C D 21}$ : Tanzania * ID * Coethnic * Political-Competition (PC) prime $=0$ | 0.713 |
| $H_{F-C D 22}$ : Election * ID ${ }^{*}$ Coethnic $*$ National prime $=0$ | 0.662 |
| $H_{F-C D 23}$ : Election $*$ ID $*$ Coethnic $*$ Ethnic-Cultural (EC) prime $=0$ | 0.699 |
| $H_{F-C D 24}$ : Election * ID * Coethnic * Political-Competition (PC) prime $=0$ | 0.774 |
| $H_{F-C D 25}$ : Tanzania $*$ ID $*$ Coethnic * (National $=$ EC prime $)$ | 0.546 |
| $H_{F-C D 26}$ : Tanzania * ID * Coethnic * (National $=$ PC prime $)$ | 0.463 |
| $H_{F-C D 27}$ : Tanzania * ID * Coethnic * (EC $=$ PC prime $)$ | 0.173 |
| $H_{F-C D 28}$ : Election * ID * Coethnic * (National $=$ EC prime) | 0.421 |
| $H_{F-C D 29}$ : Election * ID * Coethnic * (National $=$ PC prime) | 0.871 |
| $H_{F-C D 30}:$ Election $*$ ID $*$ Coethnic $*(\mathrm{EC}=\mathrm{PC}$ prime $)$ | 0.502 |
| $H_{F-C D 31}$ : Tanzania * ID * Coethnic * (No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.621 |
| $H_{F-C D 32}$ : Election * ID * Coethnic * (No prime $=$ National $=\mathrm{EC}=\mathrm{PC}$ prime $)=0$ | 0.891 |
| $H_{F-C D 33}$ : All coefficients $=0$ | 0.415 |

## 11 Robustness: Analysis with Kamba

### 11.1 Dictator Game

### 11.1.1 Non-coethnic Dictator Game

Table 11.1: Non-Coethnic Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | 2.099 | 1.835 | 2.674 | 14.19 |
|  | (2.914) | (2.922) | (3.219) | (10.43) |
| Ethnic-Cultural Prime | 5.411* | 4.971* | 2.514 | 3.705 |
|  | (2.913) | (2.926) | (3.211) | (12.15) |
| Political-Competition Prime | 4.020 | 3.505 | 3.404 | 3.071 |
|  | (2.895) | (2.919) | (3.170) | (13.18) |
| Ethnic-Political Prime | 5.929** | 5.530* | 4.784 | 13.94 |
|  | (2.907) | (2.922) | $(3.216)$ | (9.974) |
| 1(Female) |  | 1.901 |  | 0.477 |
|  |  | (2.058) |  | (4.551) |
| Years of Education (demeaned) |  | -0.472 |  | -0.130 |
|  |  | (0.333) |  | (0.646) |
| 1(Kikuyu) |  | 2.687 |  | 12.51 |
|  |  | (6.119) |  | (9.209) |
| 1(Luo) |  | -0.696 |  | 5.716 |
|  |  | (4.078) |  | (7.872) |
| 1(Luhya) |  | -0.758 |  | 3.370 |
|  |  | (4.150) |  | (7.850) |
| 1(Kamba) |  | 2.964 | -5.160 | 3.501 |
|  |  | (6.181) | (6.062) | (9.864) |
| National Prime * 1(Kamba) |  |  | $-0.883$ | -10.99 |
|  |  |  | $(7.691)$ | (12.27) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 15.35** | 13.91 |
|  |  |  | (7.723) | (13.99) |
| Political-Competition Prime * 1(Kamba) |  |  | $4.413$ | $-1.318$ |
|  |  |  | $(7.837)$ | $(15.12)$ |
| Ethnic-Political Prime * 1 Kamba) |  |  | 6.835 | -5.987 |
|  |  |  | (7.614) | (11.97) |
| National Prime * 1(Female) |  |  |  | -2.275 |
|  |  |  |  | (6.387) |
| National Prime * Education |  |  |  | -0.140 |
|  |  |  |  | (0.812) |
| National Prime * 1(Kikuyu) |  |  |  | -17.02 |
|  |  |  |  | (11.53) |
| National Prime * 1(Luo) |  |  |  | -13.80 |
|  |  |  |  | (11.77) |
| National Prime * 1(Luhya) |  |  |  | -2.167 |
|  |  |  |  | (12.14) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -1.297 |
|  |  |  |  | (6.501) |
| Ethnic-Cultural Prime * Education |  |  |  | -1.089 |
|  |  |  |  | (0.991) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -2.271 |
|  |  |  |  | (13.08) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | 5.151 |
|  |  |  |  | (13.72) |


| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -4.763 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (13.51) |
| Political-Competition Prime * 1(Female) |  |  |  | 6.803 |
|  |  |  |  | (6.662) |
| Political-Competition Prime * Education |  |  |  | -0.246 |
|  |  |  |  | (0.869) |
| Political-Competition Prime * 1(Kikuyu) |  |  |  | -6.269 |
|  |  |  |  | (14.31) |
| Political-Competition Prime * 1(Luo) |  |  |  | -9.051 |
|  |  |  |  | (14.52) |
| Political-Competition Prime * 1(Luhya) |  |  |  | -0.579 |
|  |  |  |  | (14.47) |
| Ethnic-Political Prime * 1(Female) |  |  |  | 4.614 |
|  |  |  |  | (6.373) |
| Ethnic-Political Prime * Education |  |  |  | -0.0390 |
|  |  |  |  | (0.803) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  |  | -21.03* |
|  |  |  |  | (11.15) |
| Ethnic-Political Prime * 1(Luo) |  |  |  | -9.949 |
|  |  |  |  | (11.40) |
| Ethnic-Political Prime * 1(Luhya) |  |  |  | -8.500 |
|  |  |  |  | (11.86) |
| Profile 2 | 6.990 | 6.676 | 6.708 | 6.569 |
|  | (4.750) | (4.765) | (4.746) | (4.865) |
| Profile 3 | 1.739 | 1.601 | 1.561 | 1.658 |
|  | (4.596) | (4.618) | (4.596) | (4.800) |
| Profile 4 | 1.656 | 1.461 | 1.667 | 1.512 |
|  | (4.727) | (4.754) | (4.726) | (4.865) |
| Profile 5 | 7.969* | 7.922* | 8.085* | 8.157* |
|  | (4.589) | (4.604) | (4.588) | (4.709) |
| Profile 6 | 8.333* | 8.825* | 8.286* | 8.641* |
|  | (4.711) | (4.732) | (4.707) | (4.850) |
| Profile 7 | 4.068 | 0.825 | 4.508 | 0.978 |
|  | (4.789) | (4.687) | (4.954) | (4.806) |
| Profile 8 | 6.664 | 2.891 | 6.716 | 3.619 |
|  | (4.662) | (4.556) | (4.755) | (4.608) |
| Profile 9 | 7.346 | 3.516 | 7.467 | 3.931 |
|  | (4.802) | (4.689) | (4.941) | (4.741) |
| Profile 10 | 4.010 | 0 | 3.086 | 0 |
|  | (4.843) | (.) | (5.001) | (.) |
| Profile 11 | 4.910 | 1.360 | 5.167 | 2.170 |
|  | (4.718) | (4.621) | (4.813) | (4.708) |
| Profile 12 | 6.155 | 2.961 | 6.136 | 3.056 |
|  | (4.652) | (4.556) | (4.754) | (4.620) |
| Constant | $27.02^{* * *}$ | 26.81*** | 27.80*** | $22.19^{* * *}$ |
|  | (4.005) | (5.325) | (4.088) | (7.948) |
| Observations | 739 | 739 | 739 | 739 |

Standard errors in parentheses
Standard errors are clustered at the individual level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior:

- A Kamba level effect. $H_{0}: \beta_{K a m b a}=0, \mathrm{p}$-value $=0.453$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0$, p-value $=0.340$


### 11.1.2 Coethnic Dictator Game

Table 11.2: Coethnic Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | -0.292 | -0.502 | 0.794 | 18.69* |
|  | (2.831) | (2.832) | (3.128) | (10.12) |
| Ethnic-Cultural Prime | 1.311 | 0.830 | 0.210 | 12.92 |
|  | (2.845) | (2.849) | (3.127) | (11.59) |
| Political-Competition Prime | 1.609 | 1.159 | 3.225 | 10.15 |
|  | (2.834) | (2.848) | (3.105) | (12.83) |
| Ethnic-Political Prime | 0.816 | 0.436 | 1.490 | 22.73 ** |
|  | (2.860) | (2.867) | (3.156) | (9.651) |
| 1(Female) |  | 2.925 |  | 6.014 |
|  |  | (2.000) |  | (4.431) |
| Years of Education (demeaned) |  | -0.481 |  | -0.930 |
|  |  | (0.322) |  | (0.624) |
| 1(Kikuyu) |  | -1.591 |  | 10.60 |
|  |  | (5.831) |  | (8.657) |
| 1(Luo) |  | -3.526 |  | 5.645 |
|  |  | (3.981) |  | (7.637) |
| 1(Luhya) |  | -1.466 |  | 10.61 |
|  |  | (4.051) |  | (7.607) |
| 1 (Kamba) |  | -0.632 | 4.429 | 12.11 |
|  |  | (5.849) | (5.897) | (9.383) |
| National Prime * 1(Kamba) |  |  | -6.309 | -21.68* |
|  |  |  | (7.528) | (11.94) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 4.126 | -6.002 |
|  |  |  | (7.559) | (13.47) |
| Political-Competition Prime * 1(Kamba) |  |  | -9.440 | -16.56 |
|  |  |  | (7.658) | (14.73) |
| Ethnic-Political Prime * 1(Kamba) |  |  | -4.516 | $-24.03^{* *}$ |
|  |  |  | (7.434) | (11.62) |
| National Prime * 1(Female) |  |  |  | -4.438 |
|  |  |  |  | (6.207) |
| National Prime * Education |  |  |  | 0.670 |
|  |  |  |  | (0.789) |
| National Prime * 1 (Kikuyu) |  |  |  | $-22.83 * *$ |
|  |  |  |  | (11.21) |
| National Prime * 1 (Luo) |  |  |  | -14.50 |
|  |  |  |  | (11.47) |
| National Prime * 1(Luhya) |  |  |  | $-12.91$ |
|  |  |  |  | $(11.80)$ |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -6.194 |
|  |  |  |  | (6.354) |
| Ethnic-Cultural Prime * Education |  |  |  | -0.418 |
|  |  |  |  | (0.959) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -11.24 |
|  |  |  |  | (12.54) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | -5.762 |
|  |  |  |  | (13.11) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -14.55 |
|  |  |  |  | (13.00) |
| Political-Competition Prime * 1(Female) |  |  |  | -2.058 |
|  |  |  |  | (6.463) |


| Political-Competition Prime * Education |  |  |  | 0.396 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (0.839) |
| Political-Competition Prime * 1(Kikuyu) |  |  |  | -5.965 |
|  |  |  |  | (13.94) |
| Political-Competition Prime * 1 (Luo) |  |  |  | -6.157 |
|  |  |  |  | (14.09) |
| Political-Competition Prime * 1(Luhya) |  |  |  | -9.791 |
|  |  |  |  | (14.05) |
| Ethnic-Political Prime * 1(Female) |  |  |  | -3.484 |
|  |  |  |  | (6.226) |
| Ethnic-Political Prime * Education |  |  |  | 1.211 |
|  |  |  |  | (0.777) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  |  | -24.61** |
|  |  |  |  | (10.84) |
| Ethnic-Political Prime * 1(Luo) |  |  |  | -19.20* |
|  |  |  |  | (11.06) |
| Ethnic-Political Prime * 1(Luhya) |  |  |  | -22.43* |
|  |  |  |  | (11.49) |
| Profile 2 | -0.818 | -0.389 | -0.448 | 0.294 |
|  | (4.341) | (4.342) | (4.361) | (4.377) |
| Profile 3 | -1.399 | -1.233 | -0.971 | -0.375 |
|  | (4.405) | (4.423) | (4.447) | (4.483) |
| Profile 4 | 2.012 | 2.426 | 2.463 | 3.300 |
|  | (4.894) | (4.894) | (4.910) | (4.942) |
| Profile 5 | -1.602 | -1.221 | -1.509 | -1.042 |
|  | (4.276) | (4.287) | (4.311) | (4.344) |
| Profile 6 | 0.145 | 0.0724 | 0.0445 | 0.00574 |
|  | (4.433) | (4.439) | (4.448) | (4.496) |
| Profile 7 | -2.135 | -1.321 | -1.726 | -1.813 |
|  | (4.518) | (4.573) | (4.706) | (4.660) |
| Profile 8 | -1.746 | 0 | -1.014 | 0 |
|  | (4.531) | (.) | (4.723) | (.) |
| Profile 9 | -4.172 | -2.691 | -3.649 | -3.069 |
|  | (4.408) | (4.472) | (4.598) | (4.582) |
| Profile 10 | -2.701 | -1.589 | -2.382 | -3.411 |
|  | (4.399) | (4.458) | (4.596) | (4.569) |
| Profile 11 | 0.913 | 2.398 | 1.645 | 2.497 |
|  | (4.356) | (4.386) | (4.550) | (4.454) |
| Profile 12 | -2.607 | -1.550 | -2.158 | -3.025 |
|  | (4.306) | (4.377) | (4.506) | (4.462) |
| Constant | 36.57 *** | $35.84 * * *$ | $35.54{ }^{* * *}$ | 24.11*** |
|  | (3.697) | (5.001) | (3.961) | (7.351) |
| Observations | 739 | 739 | 739 | 739 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior:

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba }}=0: \mathrm{p}$-value $=0.179$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0$, p-value $=0.216$


### 11.1.3 Pooled Dictator Game

Table 11.3: Pooled Dictator Game

|  | Dictator Transfer (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Dictator Game | -2.756 | -2.705 | -4.715 |
|  | (2.973) | (2.951) | (3.144) |
| Non-coethnic Dictator Game | -5.823* | -5.763* | -6.416** |
|  | (2.985) | (2.973) | (3.203) |
| National Prime | 0.393 | 0.157 | 0.324 |
|  | (2.565) | (2.562) | (2.832) |
| Ethnic-Cultural Prime | -2.398 | -3.048 | -3.259 |
|  | (2.583) | (2.580) | (2.871) |
| Political-Competition Prime | 0.947 | 0.542 | -0.564 |
|  | (2.619) | (2.604) | (2.817) |
| Ethnic-Political Prime | 0.370 | -0.123 | -1.605 |
|  | (2.574) | (2.559) | (2.815) |
| Coethnic Dictator Game * National Prime | -0.563 | -0.622 | 0.505 |
|  | (3.016) | (3.019) | (3.213) |
| Coethnic Dictator Game * Ethnic-Cultural Prime | 4.120 | 4.062 | 3.816 |
|  | (3.065) | (3.066) | (3.292) |
| Coethnic Dictator Game * Political-Competition Prime | 0.801 | 0.817 | 3.818 |
|  | (2.962) | (2.965) | (3.119) |
| Coethnic Dictator Game * Ethnic-Political Prime | 0.962 | 0.945 | 3.412 |
|  | (2.939) | (2.942) | (3.261) |
| Non-coethnic Dictator Game * National Prime | 1.900 | 1.825 | 2.468 |
|  | (2.999) | (3.003) | (3.228) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime | 8.067*** | 8.006*** | 6.019* |
|  | (2.942) | (2.943) | (3.236) |
| Non-coethnic Dictator Game * Political-Competition Prime |  | 3.139 | 3.980 |
|  | $(2.976)$ | (2.979) | (3.048) |
| Non-coethnic Dictator Game * Ethnic-Political Prime | 5.630* | 5.602* | 6.419** |
|  | (2.930) | (2.932) | (3.196) |
| 1(Female) |  | 2.768* |  |
|  |  | (1.575) |  |
| Years of Education (demeaned) |  | -0.386 |  |
|  |  | (0.237) |  |
| 1(Kikuyu) |  | -1.118 |  |
|  |  | (3.006) |  |
| 1(Luo) |  | -4.233 |  |
|  |  | (3.172) |  |
| 1(Luhya) |  | -2.413 |  |
|  |  | (3.133) |  |
| 1(Kamba) |  | -1.695 | $-6.746$ |
|  |  | (3.182) | (5.382) |
| Non-coethnic DG * 1 (Kamba) |  |  | 2.321 |
|  |  |  | (5.914) |
| Coethnic DG * 1(Kamba) |  |  | 11.64* |
|  |  |  | (6.641) |
| National Prime * 1(Kamba) |  |  | 2.375 |
|  |  |  | (6.842) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 6.122 |
|  |  |  | (6.801) |
| Political-Competition Prime * 1(Kamba) |  |  | $\begin{gathered} 9.442 \\ (7.463) \end{gathered}$ |


| Ethnic-Political Prime * 1(Kamba) |  |  | 11.12 |
| :---: | :---: | :---: | :---: |
|  |  |  | (6.985) |
| Coethnic Dictator Game * National Prime * Kamba |  |  | -8.361 |
|  |  |  | (8.607) |
| Coethnic Dictator Game * Ethnic-Cultural Prime * Kamba |  |  | -1.949 |
|  |  |  | (8.541) |
| Coethnic Dictator Game * Political-Competition Prime * Kamba |  |  | -18.38** |
|  |  |  | (8.879) |
| Coethnic Dictator Game * Ethnic-Political Prime * Kamba |  |  | -14.96* |
|  |  |  | (7.795) |
| Non-coethnic Dictator Game * National Prime * Kamba |  |  | -3.200 |
|  |  |  | (8.334) |
| Non-coethnic Dictator Game * Ethnic-Cultural Prime * Kamba |  |  | 9.054 |
|  |  |  | (7.616) |
| Non-coethnic Dictator Game * Political-Competition Prime * Kamba |  |  | -4.874 |
|  |  |  | (9.389) |
| Non-coethnic Dictator Game * Ethnic-Political Prime * Kamba |  |  | -4.429 |
|  |  |  | (7.963) |
| Profile 2 | 2.846 | 2.705 | 2.960 |
|  | (3.080) | (3.060) | (3.122) |
| Profile 3 | -0.164 | -0.266 | 0.0535 |
|  | (3.082) | (3.070) | (3.160) |
| Profile 4 | 0.980 | 0.956 | 1.298 |
|  | (3.166) | (3.134) | (3.223) |
| Profile 5 | 2.987 | 2.989 | 3.170 |
|  | (3.016) | (2.995) | (3.065) |
| Profile 6 | 3.993 | 4.135 | 3.998 |
|  | (3.132) | (3.123) | (3.147) |
| Profile 7 | 0.753 | 0.681 | 1.239 |
|  | (3.039) | (3.017) | (3.149) |
| Profile 8 | 2.288 | 2.311 | 2.766 |
|  | (3.057) | (3.026) | (3.153) |
| Profile 9 | 1.263 | 1.227 | 1.658 |
|  | (2.888) | (2.854) | (3.020) |
| Profile 10 | 0.448 | 0.248 | 0.260 |
|  | (3.097) | (3.077) | (3.191) |
| Profile 11 | 2.733 | 2.796 | 3.334 |
|  | (3.084) | (3.087) | (3.146) |
| Profile 12 | 1.546 | 1.612 | 1.861 |
|  | (2.873) | (2.874) | (3.016) |
| Constant | $36.12^{* * *}$ | $36.74 * * *$ | $37.11^{* * *}$ |
|  | (1.857) | (3.221) | (1.994) |
| Observations | 2232 | 2232 | 2232 |
| Standard errors in parentheses |  |  |  |
| Standard errors are clustered at the individual level. |  |  |  |
| * $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba }}$ Mix $=\beta_{\text {Kamba } * \text { Hom }}=0: \mathrm{p}$-value $=0.125$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{M i x * T_{i} * K a m b a}=\beta_{H o m * T_{i} * K a m b a}=0$, p -value $=0.114$


### 11.2 Public-good Game

### 11.2.1 Mixed Public-good Game

Table 11.4: Mixed Public-good Game

|  | Contribution (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | 4.451 | 4.672 | 3.076 | 15.17 |
|  | (3.585) | (3.599) | (3.960) | (12.86) |
| Ethnic-Cultural Prime | 1.486 | 1.964 | -1.084 | -0.325 |
|  | (3.591) | (3.623) | (3.960) | (14.83) |
| Political-Competition Prime | 2.800 | 3.302 | 2.125 | 15.69 |
|  | (3.597) | (3.623) | (3.942) | (16.30) |
| Ethnic-Political Prime | 2.004 | 2.032 | -0.815 | 14.85 |
|  | (3.591) | (3.616) | (3.987) | (12.34) |
| 1(Female) |  | 0.0380 |  | 0.926 |
|  |  | (2.544) |  | (5.631) |
| Years of Education (demeaned) |  | -0.446 |  | 0.154 |
|  |  | (0.410) |  | (0.796) |
| 1(Kikuyu) |  | -11.45** |  | 1.042 |
|  |  | (4.914) |  | (9.563) |
| 1(Luo) |  | -11.08** |  | -4.065 |
|  |  | (5.053) |  | (9.733) |
| 1(Luhya) |  | -10.75** |  | -5.673 |
|  |  | (5.141) |  | (9.701) |
| 1(Kamba) |  | -11.73** | -12.24* | -14.85 |
|  |  | (5.148) | (7.270) | (10.59) |
| National Prime * 1(Kamba) |  |  | 10.50 | -0.145 |
|  |  |  | (9.524) | (15.19) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 16.16* | 16.46 |
|  |  |  | (9.574) | (17.20) |
| Political-Competition Prime * 1(Kamba) |  |  | 6.605 | -15.56 |
|  |  |  | (9.737) | (18.73) |
| Ethnic-Political Prime * 1(Kamba) |  |  | 16.90* | 4.722 |
|  |  |  | (9.443) | (14.82) |
| National Prime * 1(Female) |  |  |  | -2.474 |
|  |  |  |  | (7.888) |
| National Prime * Education |  |  |  | 0.0683 |
|  |  |  |  | (1.007) |
| National Prime * 1 (Kikuyu) |  |  |  | -17.98 |
|  |  |  |  | (14.27) |
| National Prime * 1 (Luo) |  |  |  | -12.65 |
|  |  |  |  | (14.58) |
| National Prime * 1(Luhya) |  |  |  | -2.473 |
|  |  |  |  | (15.03) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -2.944 |
|  |  |  |  | (8.069) |
| Ethnic-Cultural Prime * Education |  |  |  | -1.402 |
|  |  |  |  | (1.222) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -5.595 |
|  |  |  |  | (16.04) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | 9.166 |
|  |  |  |  | (16.77) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | 4.613 |
|  |  |  |  | (16.60) |


| Political-Competition Prime * 1(Female) |  |  |  | 9.136 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (8.234) |
| Political-Competition Prime * Education |  |  |  | -1.349 |
|  |  |  |  | (1.069) |
| Political-Competition Prime * 1(Kikuyu) |  |  |  | -19.89 |
|  |  |  |  | (17.72) |
| Political-Competition Prime * 1(Luo) |  |  |  | -24.74 |
|  |  |  |  | (17.94) |
| Political-Competition Prime * 1(Luhya) |  |  |  | -17.82 |
|  |  |  |  | (17.89) |
| Ethnic-Political Prime * 1(Female) |  |  |  | -4.877 |
|  |  |  |  | (7.887) |
| Ethnic-Political Prime * Education |  |  |  | -0.252 |
|  |  |  |  | (0.992) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  |  | -19.57 |
|  |  |  |  | (13.82) |
| Ethnic-Political Prime * 1(Luo) |  |  |  | -9.612 |
|  |  |  |  | (14.16) |
| Ethnic-Political Prime * 1(Luhya) |  |  |  | -12.88 |
|  |  |  |  | (14.68) |
| Constant | 43.42*** | $53.62^{* * *}$ | 45.17*** | 47.14*** |
|  | (2.543) | (4.948) | (2.748) | (8.483) |
| Observations | 739 | 739 | 739 | 739 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba }}=0: \mathrm{p}$-value $=0.093$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0$, p-value $=0.356$

Table 11.5: Mixed Public-good Game

|  | Contribution - Belief (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | 2.746 | 2.915 | 0.851 | 5.221 |
|  | (4.108) | (4.089) | (4.539) | (14.62) |
| Ethnic-Cultural Prime | -1.433 | -1.736 | -4.149 | -6.592 |
|  | (4.115) | (4.117) | (4.539) | (16.86) |
| Political-Competition Prime | 0.0624 | 0.0748 | -1.457 | 10.63 |
|  | (4.122) | (4.116) | (4.519) | (18.53) |
| Ethnic-Political Prime | -1.625 | -1.815 | -4.274 | 17.82 |
|  | (4.115) | (4.108) | (4.570) | (14.03) |
| 1(Female) |  | 4.291 |  | 2.137 |
|  |  | (2.890) |  | (6.401) |
| Years of Education (demeaned) |  | -0.977** |  | -0.405 |
|  |  | (0.466) |  | (0.905) |
| 1(Kikuyu) |  | -12.75** |  | 0.963 |
|  |  | (5.583) |  | (10.87) |
| 1(Luo) |  | -17.31*** |  | -4.679 |
|  |  | (5.741) |  | (11.06) |
| 1(Luhya) |  | -10.09* |  | -3.735 |
|  |  | (5.841) |  | (11.03) |
| 1(Kamba) |  | $-15.40^{* * *}$ | -16.06* | -18.23 |
|  |  | (5.849) | (8.333) | (12.04) |
| National Prime * 1 (Kamba) |  |  | 14.20 | 9.662 |
|  |  |  | (10.92) | (17.26) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 18.07 | 19.10 |
|  |  |  | (10.97) | (19.55) |
| Political-Competition Prime * 1(Kamba) |  |  | 11.99 | -3.696 |
|  |  |  | (11.16) | (21.30) |
| Ethnic-Political Prime * 1(Kamba) |  |  | 17.61 | -12.79 |
|  |  |  | (10.82) | (16.84) |
| National Prime * 1(Female) |  |  |  | $0.504$ |
|  |  |  |  | (8.967) |
| National Prime * Education |  |  |  | -0.104 |
|  |  |  |  | (1.145) |
| National Prime * 1(Kikuyu) |  |  |  | $-9.322$ |
|  |  |  |  | $(16.22)$ |
| National Prime * 1 (Luo) |  |  |  | -15.53 |
|  |  |  |  | (16.57) |
| National Prime * 1(Luhya) |  |  |  | 9.929 |
|  |  |  |  | (17.08) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | 0.110 |
|  |  |  |  | (9.173) |
| Ethnic-Cultural Prime * Education |  |  |  | $-0.612$ |
|  |  |  |  | (1.389) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -2.261 |
|  |  |  |  | (18.24) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | 3.622 |
|  |  |  |  | (19.06) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | 5.971 |
|  |  |  |  | (18.87) |
| Political-Competition Prime * 1(Female) |  |  |  | 2.182 |
|  |  |  |  | (9.360) |
| Political-Competition Prime * Education |  |  |  | -1.203 |



Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{K a m b a}=0: p$-value $=0.054$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0, \mathrm{p}$-value $=0.489$

Table 11.6: Mixed Public-good Game, Beliefs

|  | Belief about Other's Contribution (\% Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Group Member (GM) | -3.277 | -3.277 | -2.553 | 7.586 |
|  | (2.657) | (2.663) | (2.911) | (7.764) |
| National Prime | 2.667 | 2.719 | 2.765 | 19.29* |
|  | (3.365) | (3.314) | (3.721) | (10.12) |
| Ethnic-Cultural Prime | 3.066 | 3.847 | 2.950 | 12.51 |
|  | (3.414) | (3.430) | (3.700) | (11.87) |
| Political-Competition Prime | 3.141 | 3.630 | 3.328 | 10.37 |
|  | (3.503) | (3.533) | (3.840) | (19.25) |
| Ethnic-Political Prime | $6.500^{*}$ | 6.718* | 7.745* | 4.807 |
|  | (3.506) | (3.481) | (3.961) | (11.31) |
| Coethnic GM * National Prime | -1.925 | -1.925 | -1.080 | -19.07* |
|  | (3.504) | (3.511) | (3.864) | (11.40) |
| Coethnic GM * Ethnic-Cultural Prime | -0.293 | -0.293 | 0.231 | -12.74 |
|  | (3.774) | (3.782) | (4.259) | (10.40) |
| Coethnic GM * Political-Competition Prime | -0.805 | -0.805 | 0.508 | -10.89 |
|  | (4.000) | (4.008) | (4.379) | (17.64) |
| Coethnic GM * Ethnic-Political Prime | -5.744 | -5.744 | -8.573** | -15.96 |
|  | (3.628) | (3.636) | (3.943) | (10.78) |
| 1(Female) |  | -4.253** |  | -2.661 |
|  |  | (1.988) |  | (5.353) |
| Years of Education (demeaned) |  | 0.531* |  | 0.817 |
|  |  | (0.316) |  | (0.774) |
| 1(Kikuyu) |  | 1.293 |  | 8.330 |
|  |  | (3.665) |  | (9.088) |
| 1(Luo) |  | 6.234 |  | 6.058 |
|  |  | (3.877) |  | (9.476) |
| 1(Luhya) |  | -0.661 |  | 3.661 |
|  |  | (3.933) |  | (9.143) |
| 1(Kamba) |  | 3.671 | 6.362 | 11.65 |
|  |  | (3.855) | (7.487) | (10.48) |
| Coethnic GM * National Prime * ${ }^{*}$ (Kamba) |  |  | -2.239 | 16.21 |
|  |  |  | (9.131) | (14.10) |
| Coethnic GM * Ethnic-Cultural Prime * 1(Kamba) |  |  | -0.891 | 14.42 |
|  |  |  | (9.307) | (13.36) |
| Coethnic GM * Political-Competition Prime * 1(Kamba) |  |  | -5.627 | 7.311 |
|  |  |  | (10.62) | (21.03) |
| Coethnic GM * Ethnic-Political Prime * 1(Kamba) |  |  | 14.23 | 24.00* |
|  |  |  | (9.632) | (13.85) |
| Coethnic GM * 1 (Kamba) |  |  | -5.066 | -16.61* |
|  |  |  | (7.121) | (10.02) |
| National Prime * 1(Kamba) |  |  | -2.583 | -17.85 |
|  |  |  | (9.136) | (12.57) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -1.470 | -9.777 |
|  |  |  | (9.624) | (14.35) |
| Political-Competition Prime * 1(Kamba) |  |  | -2.574 | -15.52 |
|  |  |  | (9.649) | (21.20) |
| Ethnic-Political Prime * 1 (Kamba) |  |  | -7.824 | 5.596 |
|  |  |  | (9.144) | (13.63) |
| Coethnic GM * 1 (Female) |  |  |  | 2.714 |
|  |  |  |  | (6.297) |
| Coethnic GM * Years of Education (demeaned) |  |  |  | -0.598 |


|  | (0.855) |
| :---: | :---: |
| Coethnic GM * 1 (Kikuyu) | -16.64* |
|  | (9.276) |
| Coethnic GM * 1 (Luo) | -10.93 |
|  | (9.900) |
| Coethnic GM * 1 (Luhya) |  |
|  | (9.160) |
| Coethnic GM $*$ National Prime * 1(Female) | -1.314 |
|  | (8.123) |
| Coethnic GM * National Prime * Education | 0.826 |
|  | (1.289) |
| Coethnic GM * National Prime * 1 (Kikuyu) | 17.32 |
|  | (13.18) |
| Coethnic GM * National Prime * 1(Luo) | 22.62 |
|  | (13.79) |
| Coethnic GM * National Prime * 1 (Luhya) | 24.73* |
|  | (13.70) |
| Coethnic GM * Ethnic-Cultural Prime * 1(Female) | -4.471 |
|  | (8.608) |
| Coethnic GM * Ethnic-Cultural Prime * Education | -0.0448 |
|  | (1.438) |
| Coethnic GM * Ethnic-Cultural Prime * 1(Kikuyu) | 19.71 |
|  | (12.46) |
| Coethnic GM * Ethnic-Cultural Prime * 1(Luo) | 24.71* |
|  | (13.52) |
| Coethnic GM * Ethnic-Cultural Prime * 1(Luhya) | 11.51 |
|  | (12.68) |
| Coethnic GM * Political-Competition Prime * 1(Female) | $-2.879$ |
|  | $(9.055)$ |
| Coethnic GM * Political-Competition Prime * Education | 0.598 |
|  | (1.537) |
| Coethnic GM * Political-Competition Prime * 1(Kikuyu) | $32.06$ |
|  | (19.70) |
| Coethnic GM * Political-Competition Prime * 1(Luo) | 5.346 |
|  | (20.14) |
| Coethnic GM * Political-Competition Prime * 1(Luhya) | 5.798 |
|  | (19.71) |
| Coethnic GM * Ethnic-Political Prime * 1(Female) | -4.062 |
|  | (8.702) |
| Coethnic GM * Ethnic-Political Prime * Education | 0.556 |
|  | (1.219) |
| Coethnic GM * Ethnic-Political Prime * 1(Kikuyu) | 17.17 |
|  | (12.28) |
| Coethnic GM * Ethnic-Political Prime * 1(Luo) | 3.285 |
|  | (13.29) |
| Coethnic GM * Ethnic-Political Prime * 1(Luhya) | 11.26 |
|  | (12.95) |
| National Prime * 1(Female) | -2.206 |
|  | (7.139) |
| National Prime * Education | -0.132 |
|  | (0.941) |
| National Prime * 1(Kikuyu) | -17.17 |
|  | (11.31) |
| National Prime * 1(Luo) | -8.357 |
|  | (12.04) |


| National Prime * 1(Luhya) | $-24.56^{* *}$ |
| :--- | :---: |
| Ethnic-Cultural Prime * 1(Female) | $(11.45)$ |
|  | -0.736 |
| Ethnic-Cultural Prime * Education | $(7.411)$ |
| Ethnic-Cultural Prime * 1(Kikuyu) | -0.730 |
|  | $(1.031)$ |
| Ethnic-Cultural Prime * 1(Luo) | -13.11 |
| Ethnic-Cultural Prime * 1(Luhya) | $(12.59)$ |
|  |  |
| Political-Competition Prime * 1(Female) | -6.762 |
| Political-Competition Prime * Education | $(13.98)$ |
|  |  |
| Political-Competition Prime * 1(Kikuyu) | -7.015 |
| Political-Competition Prime * 1(Luo) | $(13.45)$ |
| Political-Competition Prime * 1(Luhya) | 8.529 |
| Ethnic-Political Prime * 1(Female) | $(7.817)$ |
| Ethnic-Political Prime * Education | -0.360 |
| Ethnic-Political Prime * 1(Kikuyu) | $(1.169)$ |
| Ethnic-Political Prime * 1(Luo) | -22.39 |
| Ethnic-Political Prime * 1(Luhya) | $(20.11)$ |
| Constant | -8.127 |
| Observations |  |

Standard errors in parentheses
Standard errors are clustered at the individual level.
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{K a m b a}=0: p$-value $=0.396$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0$, p-value $=0.900$
- A Kamba level effect on beliefs about coethnics. $H_{0}: \beta_{C E * K a m b a}=0: \mathrm{p}$-value $=0.477$
- Differential priming effects for Kamba on beliefs about coethnics. $H_{0}: \forall i: 1-4, \beta_{C E * T_{i} * K a m b a}=0$, p-value $=0.259$


### 11.2.2 Coethnic Public-good Game

Table 11.7: Coethnic Public-good Game

|  | Contribution (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | 1.753 | 2.560 | 1.931 | $35.45{ }^{* * *}$ |
|  | (3.561) | (3.554) | (3.932) | (12.71) |
| Ethnic-Cultural Prime | 0.822 | 1.786 | 0.478 | 12.88 |
|  | (3.579) | (3.589) | (3.950) | (14.67) |
| Political-Competition Prime | 1.530 | 2.329 | 2.696 | 10.95 |
|  | (3.579) | (3.583) | (3.924) | (16.12) |
| Ethnic-Political Prime | -0.651 | 0.165 | 1.421 | 5.960 |
|  | (3.579) | (3.581) | (3.968) | (12.20) |
| 1(Female) |  | -2.984 |  | 4.639 |
|  |  | (2.518) |  | (5.604) |
| Years of Education (demeaned) |  | -0.654 |  | 0.152 |
|  |  | (0.405) |  | (0.788) |
| 1(Kikuyu) |  | -9.614** |  | -3.115 |
|  |  | (4.848) |  | (9.455) |
| 1(Luo) |  | -9.823** |  | 0.493 |
|  |  | (4.992) |  | (9.623) |
| 1(Luhya) |  | -3.689 |  | 1.657 |
|  |  | (5.078) |  | (9.654) |
| 1(Kamba) |  | -12.41** | -3.144 | -3.612 |
|  |  | (5.084) | (7.209) | (10.47) |
| National Prime * 1(Kamba) |  |  | 0.209 | -24.54 |
|  |  |  | (9.442) | (15.01) |
| Ethnic-Cultural Prime * 1 (Kamba) |  |  | 2.635 | -3.711 |
|  |  |  | (9.500) | (17.01) |
| Political-Competition Prime * 1(Kamba) |  |  | -5.295 | -12.07 |
|  |  |  | (9.657) | (18.52) |
| Ethnic-Political Prime * 1 (Kamba) |  |  | -8.023 | -7.306 |
|  |  |  | (9.411) | (14.70) |
| National Prime * 1(Female) |  |  |  | -13.92* |
|  |  |  |  | (7.824) |
| National Prime * Education |  |  |  | -0.824 |
|  |  |  |  | (0.996) |
| National Prime * 1(Kikuyu) |  |  |  | -26.60* |
|  |  |  |  | (14.11) |
| National Prime * 1 (Luo) |  |  |  | -29.82** |
|  |  |  |  | (14.41) |
| National Prime * 1 (Luhya) |  |  |  | -24.71* |
|  |  |  |  | (14.90) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -10.39 |
|  |  |  |  | (8.012) |
| Ethnic-Cultural Prime * Education |  |  |  | -1.620 |
|  |  |  |  | (1.213) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -5.628 |
|  |  |  |  | (15.87) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | -4.440 |
|  |  |  |  | (16.62) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -6.264 |
|  |  |  |  | (16.46) |
| Political-Competition Prime * 1(Female) |  |  |  | -3.998 |


|  |  | $(8.170)$ |
| :--- | :--- | :---: |
| Political-Competition Prime * Education | -1.284 |  |
| Political-Competition Prime * 1(Kikuyu) | $(1.057)$ |  |
|  | -2.196 |  |
| Political-Competition Prime * 1(Luo) | $(17.52)$ |  |
| Political-Competition Prime * 1(Luhya) | -14.04 |  |
|  |  | $(17.75)$ |
| Ethnic-Political Prime * 1(Female) | -3.405 |  |
|  |  | $(17.72)$ |
| Ethnic-Political Prime * Education |  | -7.778 |
|  |  | $(7.867)$ |
| Ethnic-Political Prime * 1(Kikuyu) |  | -0.258 |
|  |  | $(0.981)$ |
| Ethnic-Political Prime * 1(Luo) |  | 1.248 |
|  |  | $(13.66)$ |
| Ethnic-Political Prime * 1(Luhya) |  | -3.599 |
| Constant |  |  |
| Observations |  |  |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba }}=0: \mathrm{p}$-value $=0.663$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0$, p-value $=0.732$

Table 11.8: Coethnic Public-good Game

|  | Contribution - Belief (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | 5.029 | 5.298 | 5.062 | 26.69* |
|  | (3.999) | (3.982) | (4.427) | (14.29) |
| Ethnic-Cultural Prime | -0.896 | -1.240 | -2.633 | 9.499 |
|  | (4.020) | (4.021) | (4.447) | (16.49) |
| Political-Competition Prime | 2.494 | 2.254 | 2.350 | -4.566 |
|  | (4.020) | (4.014) | (4.417) | (18.12) |
| Ethnic-Political Prime | -4.589 | -4.485 | -4.318 | 6.597 |
|  | (4.020) | (4.012) | (4.467) | (13.72) |
| 1(Female) |  | 1.526 |  | 7.264 |
|  |  | (2.821) |  | (6.301) |
| Years of Education (demeaned) |  | -1.019** |  | -0.123 |
|  |  | (0.453) |  | (0.886) |
| 1(Kikuyu) |  | -4.735 |  | 3.677 |
|  |  | (5.431) |  | (10.63) |
| 1(Luo) |  | -9.215* |  | -0.174 |
|  |  | (5.592) |  | (10.82) |
| 1(Luhya) |  | 1.271 |  | 3.196 |
|  |  | (5.689) |  | (10.86) |
| 1(Kamba) |  | -6.720 | -5.840 | -3.986 |
|  |  | (5.696) | (8.116) | (11.77) |
| National Prime * 1(Kamba) |  |  | 1.775 | -12.97 |
|  |  |  | (10.63) | (16.88) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 10.07 | 1.483 |
|  |  |  | (10.69) | (19.13) |
| Political-Competition Prime * 1(Kamba) |  |  | 2.214 | 9.852 |
|  |  |  | (10.87) | (20.83) |
| Ethnic-Political Prime * 1(Kamba) |  |  | 0.923 | -8.279 |
|  |  |  | (10.59) | (16.52) |
| National Prime * 1(Female) |  |  |  | -10.65 |
|  |  |  |  | (8.798) |
| National Prime * Education |  |  |  | -0.759 |
|  |  |  |  | (1.120) |
| National Prime * 1(Kikuyu) |  |  |  | -19.22 |
|  |  |  |  | (15.86) |
| National Prime * 1 (Luo) |  |  |  | -21.09 |
|  |  |  |  | (16.21) |
| National Prime * 1(Luhya) |  |  |  | -9.196 |
|  |  |  |  | (16.75) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -8.631 |
|  |  |  |  | (9.009) |
| Ethnic-Cultural Prime * Education |  |  |  | -2.097 |
|  |  |  |  | (1.364) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -13.05 |
|  |  |  |  | (17.85) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | -1.703 |
|  |  |  |  | (18.68) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -4.348 |
|  |  |  |  | (18.51) |
| Political-Competition Prime * 1(Female) |  |  |  | -3.861 |
|  |  |  |  | (9.187) |
| Political-Competition Prime * Education |  |  |  | -1.069 |


|  |  |  |  | (1.189) |
| :---: | :---: | :---: | :---: | :---: |
| Political-Competition Prime * 1(Kikuyu) |  |  |  | 10.00 |
|  |  |  |  | (19.70) |
| Political-Competition Prime * 1 (Luo) |  |  |  | 3.207 |
|  |  |  |  | (19.96) |
| Political-Competition Prime * 1(Luhya) |  |  |  | 12.94 |
|  |  |  |  | (19.93) |
| Ethnic-Political Prime * 1(Female) |  |  |  | -3.984 |
|  |  |  |  | (8.846) |
| Ethnic-Political Prime * Education |  |  |  | -0.433 |
|  |  |  |  | (1.103) |
| Ethnic-Political Prime * 1(Kikuyu) |  |  |  | -10.66 |
|  |  |  |  | (15.36) |
| Ethnic-Political Prime * 1(Luo) |  |  |  | -16.08 |
|  |  |  |  | (15.77) |
| Ethnic-Political Prime * 1(Luhya) |  |  |  | -1.867 |
|  |  |  |  | (16.37) |
| Constant | $-10.87^{* * *}$ | -7.522 | -10.03*** | -16.33* |
|  | (2.842) | (5.470) | (3.078) | (9.431) |
| Observations | 733 | 733 | 733 | 733 |
| Standard errors in parentheses ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{K a m b a}=0:$ p-value $=0.472$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0, \mathrm{p}$-value $=0.861$

Table 11.9: Coethnic Public-good Game, Beliefs

|  | Belief about Other's Contribution (\% Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| National Prime | -3.276 | -2.737 | -3.131 | 8.762 |
|  | (2.893) | (2.873) | (3.248) | (10.28) |
| Ethnic-Cultural Prime | 1.718 | 3.026 | 3.111 | 3.379 |
|  | (2.842) | (2.854) | (3.138) | (11.49) |
| Political-Competition Prime | -0.965 | 0.0745 | 0.346 | 15.51 |
|  | (2.938) | (2.928) | (3.202) | (12.99) |
| Ethnic-Political Prime | 3.938 | 4.650 | 5.739* | -0.637 |
|  | (3.014) | (3.016) | (3.414) | (9.284) |
| 1(Female) |  | -4.510** |  | -2.625 |
|  |  | (1.988) |  | (4.591) |
| Years of Education (demeaned) |  | 0.365 |  | 0.275 |
|  |  | (0.339) |  | (0.706) |
| 1(Kikuyu) |  | -4.880 |  | -6.793 |
|  |  | (3.848) |  | (8.604) |
| 1(Luo) |  | -0.608 |  | 0.667 |
|  |  | (4.037) |  | (8.917) |
| 1(Luhya) |  | -4.959 |  | -1.539 |
|  |  | (4.076) |  | (8.460) |
| 1(Kamba) |  | -5.688 | 2.696 | 0.375 |
|  |  | (3.967) | (6.180) | (9.451) |
| National Prime * 1(Kamba) |  |  | -1.566 | -11.57 |
|  |  |  | (7.475) | (12.14) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -7.430 | -5.194 |
|  |  |  | (7.594) | (13.23) |
| Political-Competition Prime * 1(Kamba) |  |  | -7.509 | -21.92 |
|  |  |  | (8.090) | (14.78) |
| Ethnic-Political Prime * 1(Kamba) |  |  | -8.946 | 0.973 |
|  |  |  | (7.596) | (11.31) |
| National Prime * 1(Female) |  |  |  | -3.264 |
|  |  |  |  | (6.250) |
| National Prime * Education |  |  |  | -0.0643 |
|  |  |  |  | (0.855) |
| National Prime * 1(Kikuyu) |  |  |  | -7.385 |
|  |  |  |  | (11.62) |
| National Prime * 1(Luo) |  |  |  | -8.731 |
|  |  |  |  | (11.95) |
| National Prime * 1(Luhya) |  |  |  | -15.51 |
|  |  |  |  | (11.88) |
| Ethnic-Cultural Prime * 1(Female) |  |  |  | -1.760 |
|  |  |  |  | (6.396) |
| Ethnic-Cultural Prime * Education |  |  |  | 0.477 |
|  |  |  |  | (0.928) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | 7.426 |
|  |  |  |  | (12.33) |
| Ethnic-Cultural Prime * 1(Luo) |  |  |  | -2.736 |
|  |  |  |  | (13.37) |
| Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -1.916 |
|  |  |  |  | (12.66) |
| Political-Competition Prime * 1(Female) |  |  |  | -0.137 |
|  |  |  |  | (6.296) |
| Political-Competition Prime * Education |  |  |  | -0.215 |


|  |  | $(0.828)$ |
| :--- | :---: | :---: |
| Political-Competition Prime * 1(Kikuyu) | -12.20 |  |
| Political-Competition Prime * 1(Luo) | $(13.89)$ |  |
|  |  | -17.24 |
| Political-Competition Prime * 1(Luhya) | $(14.09)$ |  |
| Ethnic-Political Prime * 1(Female) | -16.35 |  |
|  |  | $(13.91)$ |
| Ethnic-Political Prime * Education |  | -3.794 |
|  |  | $(6.251)$ |
| Ethnic-Political Prime * 1(Kikuyu) |  | 0.175 |
|  |  | $(0.880)$ |
| Ethnic-Political Prime * 1(Luo) |  | 11.91 |
|  |  | $(10.49)$ |
| Ethnic-Political Prime * 1(Luhya) |  | 12.48 |
|  |  | $(11.12)$ |
| Constant |  | 6.697 |
|  |  | $(11.68)$ |
| Observations |  |  |

Standard errors in parentheses
Standard errors are clustered at the individual level.
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba }}=0:$ p-value $=0.663$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{T_{i} * K a m b a}=0, \mathrm{p}$-value $=0.625$


### 11.2.3 Pooled Public-good Game

Table 11.10: Pooled Public-good Game

|  | Contribution (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Mixed Group | 1.891 | 1.911 | 3.639 |
|  | (2.436) | (2.439) | (2.786) |
| Coethnic Group | 0.841 | 0.864 | 1.293 |
|  | (2.067) | (2.069) | (2.348) |
| National Prime | 3.982 | 4.308 | 3.982 |
|  | (3.310) | (3.332) | (3.317) |
| Ethnic-Cultural Prime | 2.617 | 3.024 | 2.617 |
|  | (3.421) | (3.446) | (3.429) |
| Political-Competition Prime | 2.244 | 2.655 | 2.244 |
|  | (3.254) | (3.264) | (3.262) |
| Ethnic-Political Prime | -1.765 | -1.581 | -1.765 |
|  | (3.306) | (3.320) | (3.313) |
| Mixed Group * National Prime | 0.469 | 0.422 | -0.906 |
|  | (3.471) | (3.476) | (4.082) |
| Mixed Group * Ethnic-Cultural Prime | -1.131 | -1.143 | -3.700 |
|  | (3.651) | (3.650) | (4.144) |
| Mixed Group * Political-Competition Prime | 0.556 | 0.526 | -0.119 |
|  | (3.507) | (3.508) | (3.867) |
| Mixed Group * Ethnic-Political Prime | 3.769 | 3.752 | 0.950 |
|  | (3.534) | (3.540) | (3.879) |
| Coethnic Group * National Prime | -2.229 | -2.278 | -2.051 |
|  | (3.215) | (3.220) | (3.741) |
| Coethnic Group * Ethnic-Cultural Prime | -1.795 | -1.818 | -2.139 |
|  | (3.379) | (3.377) | (3.722) |
| Coethnic Group * Political-Competition Prime | -0.715 | -0.761 | 0.451 |
|  | (3.325) | (3.326) | (3.685) |
| Coethnic Group * Ethnic-Political Prime | 1.114 | 1.070 | 3.186 |
|  | (3.390) | (3.394) | (3.856) |
| 1(Female) |  | -1.208 |  |
|  |  | (2.099) |  |
| Years of Education (demeaned) |  | -0.706** |  |
|  |  | (0.312) |  |
| 1(Kikuyu) |  | -8.502** |  |
|  |  | (3.774) |  |
| 1(Luo) |  | -9.016** |  |
|  |  | (4.001) |  |
| 1(Luhya) |  | -6.110 |  |
|  |  | (3.998) |  |
| 1(Kamba) |  | -9.382** |  |
|  |  | (3.978) |  |
| Coethnic Group * 1(Kamba) |  |  | -3.144 |
|  |  |  | (7.486) |
| Mixed Group * 1(Kamba) |  |  | -12.24* |
|  |  |  | (6.242) |
| Coethnic Group * National Prime * 1(Kamba) |  |  | 0.209 |
|  |  |  | (9.567) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kamba) |  |  | 2.635 |
|  |  |  | (9.758) |
| Coethnic Group * Political-Competition Prime * 1(Kamba) |  |  | -5.295 |


|  |  | $(10.04)$ |
| :--- | :--- | :---: |
| Coethnic Group * Ethnic-Political Prime * 1(Kamba) | -8.023 |  |
|  |  | $(9.263)$ |
| Mixed Group * National Prime * 1(Kamba) | 10.50 |  |
|  |  | $(8.829)$ |
| Mixed Group * Ethnic-Cultural Prime * 1(Kamba) |  | $16.16^{*}$ |
|  |  | $(9.392)$ |
| Mixed Group * Political-Competition Prime * 1(Kamba) |  | 6.605 |
| Mixed Group * Ethnic-Political Prime * 1(Kamba) |  | $(9.135)$ |
| Constant |  |  |
| Observations | $41.53^{* * *}$ | $49.70^{* * *}$ |

Standard errors in parentheses
Standard errors are clustered at the individual level.

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba } * \text { Mix }}=\beta_{\text {Kamba } * H o m}=0: \mathrm{p}$-value $=0.044$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{M i x * T_{i} * K a m b a}=\beta_{H o m * T_{i} * K a m b a}=0$, p -value $=0.083$

Table 11.11: Pooled Public-good Game

|  | Contribution - Belief (Percent of Endowment) |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Mixed Group | -0.508 | -0.462 | 1.787 |
|  | (3.125) | (3.133) | (3.480) |
| Coethnic Group | -3.484 | -3.450 | -2.644 |
|  | (2.680) | (2.686) | (2.959) |
| National Prime | 6.029* | 6.092* | 6.029* |
|  | (3.489) | (3.475) | (3.497) |
| Ethnic-Cultural Prime | 3.117 | 2.617 | 3.117 |
|  | (3.733) | (3.778) | (3.742) |
| Political-Competition Prime | 1.561 | 1.270 | 1.561 |
|  | (3.484) | (3.473) | (3.492) |
| Ethnic-Political Prime | -2.981 | -3.322 | -2.981 |
|  | (3.573) | (3.566) | (3.581) |
| Mixed Group * National Prime | -3.283 | -3.400 | -5.178 |
|  | (4.474) | (4.481) | (4.946) |
| Mixed Group * Ethnic-Cultural Prime | -4.550 | -4.633 | -7.266 |
|  | (4.613) | (4.611) | (5.209) |
| Mixed Group * Political-Competition Prime | -1.499 | -1.517 | -3.018 |
|  | (4.321) | (4.329) | (4.645) |
| Mixed Group * Ethnic-Political Prime | 1.356 | 1.359 | -1.293 |
|  | (4.428) | (4.436) | (4.964) |
| Coethnic Group * National Prime | -1.000 | -1.106 | -0.967 |
|  | (3.879) | (3.886) | (4.392) |
| Coethnic Group * Ethnic-Cultural Prime | -4.013 | -4.087 | -5.751 |
|  | (4.170) | (4.168) | (4.583) |
| Coethnic Group * Political-Competition Prime | 0.933 | 0.897 | 0.789 |
|  | (4.122) | (4.129) | (4.495) |
| Coethnic Group * Ethnic-Political Prime | -1.608 | -1.651 | -1.337 |
|  | (4.084) | (4.095) | (4.691) |
| 1(Female) |  | 2.197 |  |
|  |  | (2.127) |  |
| Years of Education (demeaned) |  | -1.270*** |  |
|  |  | (0.326) |  |
| 1(Kikuyu) |  | -6.888* |  |
|  |  | (4.043) |  |
| 1(Luo) |  | -11.73*** |  |
|  |  | (4.275) |  |
| 1(Luhya) |  | -4.723 |  |
|  |  | (4.267) |  |
| 1(Kamba) |  | -9.306** |  |
|  |  | (4.271) |  |
| Coethnic Group * 1(Kamba) |  |  | -5.840 |
|  |  |  | (8.964) |
| Mixed Group * 1(Kamba) |  |  | -16.06** |
|  |  |  | (7.248) |
| Coethnic Group * National Prime * 1 Kamba) |  |  | 1.775 |
|  |  |  | (10.92) |
| Coethnic Group * Ethnic-Cultural Prime * 1(Kamba) |  |  | 10.07 |
|  |  |  | (11.10) |
| Coethnic Group * Political-Competition Prime * 1(Kamba) |  |  | 2.214 |
|  |  |  | (11.58) |
| Coethnic Group * Ethnic-Political Prime * 1(Kamba) |  |  | 0.923 |


|  |  | $(11.30)$ |
| :--- | :---: | :---: |
| Mixed Group * National Prime * 1 (Kamba) | 14.20 |  |
| Mixed Group * Ethnic-Cultural Prime * 1 (Kamba) | $(10.57)$ |  |
|  |  | $18.07^{*}$ |
| Mixed Group * Political-Competition Prime * 1(Kamba) |  | $(9.355)$ |
|  |  | 11.99 |
| Mixed Group * Ethnic-Political Prime * 1(Kamba) |  | $(10.45)$ |
|  |  |  |
| Constant | $-7.389^{* * *}$ | -1.247 |
| Observations | $(2.484)$ | $(4.105)$ |

Standard errors in parentheses
Standard errors are clustered at the individual level.
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect. $H_{0}: \beta_{\text {Kamba*Mix }}=\beta_{\text {Kamba } * H o m}=0: \mathrm{p}$-value $=0.056$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{M i x * T_{i} * K a m b a}=\beta_{H o m * T_{i} * K a m b a}=0$, p -value $=0.665$


### 11.3 Choose-your-dictator Game

### 11.3.1 Anonymous Choose-your-dictator

Table 11.12: Anonymous Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.0492 | 0.438 | 0.116 | -0.163 |
|  | (0.214) | (0.354) | (0.228) | (0.611) |
| Coethnic * National Prime | 0.0562 | 0.116 | -0.00557 | 0.912 |
|  | (0.232) | (0.233) | (0.259) | (0.876) |
| Coethnic * Ethnic-Cultural Prime | -0.0752 | 0.0117 | -0.183 | 0.722 |
|  | (0.231) | (0.234) | (0.261) | (1.166) |
| Coethnic * Political-Competition Prime | 0.0928 | 0.181 | 0.186 | 1.486 |
|  | (0.226) | (0.228) | (0.249) | (1.324) |
| Coethnic * Ethnic-Political Prime | 0.170 | 0.232 | 0.147 | 0.879 |
|  | (0.232) | (0.234) | (0.265) | (0.766) |
| Coethnic * 1 (Female) |  | -0.172 |  | -0.350 |
|  |  | (0.176) |  | (0.394) |
| Coethnic * Years of Education (demeaned) |  | 0.0160 |  | 0.131** |
|  |  | (0.0262) |  | (0.0623) |
| Coethnic * 1(Kikuyu) |  | -0.219 |  | 0.621 |
|  |  | (0.310) |  | (0.675) |
| Coethnic * 1 (Luo) |  | -0.508 |  | 0.294 |
|  |  | (0.369) |  | (0.709) |
| Coethnic * 1 (Luhya) |  | -0.274 |  | 0.549 |
|  |  | (0.360) |  | (0.711) |
| Coethnic * 1(Kamba) |  | -0.467 | -0.540 | -0.0919 |
|  |  | (0.325) | (0.408) | (0.668) |
| Coethnic * National Prime * 1(Kamba) |  |  | 0.528 | -0.905 |
|  |  |  | (0.566) | (0.995) |
| Coethnic * Ethnic-Cultural Prime * 1(Kamba) |  |  | 0.856 | -0.251 |
|  |  |  | (0.555) | (1.298) |
| Coethnic * Political-Competition Prime * 1(Kamba) |  |  | $-0.350$ | -1.526 |
|  |  |  | $(0.565)$ | (1.425) |
| Coethnic * Ethnic-Political Prime * 1(Kamba) |  |  | 0.404 | 0.0680 |
|  |  |  | (0.549) | (0.919) |
| Coethnic * National Prime * 1(Female) |  |  |  | $0.941^{*}$ |
|  |  |  |  | (0.558) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | 0.356 |
|  |  |  |  | (0.580) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | $0.0181$ |
|  |  |  |  | $(0.561)$ |
| Coethnic * Ethnic-Political Prime * 1(Female) |  |  |  | -0.368 |
|  |  |  |  | (0.533) |
| Coethnic * National Prime * 1(Education) |  |  |  | -0.142* |
|  |  |  |  | (0.0840) |
| Coethnic * Ethnic-Cultural Prime * 1(Education) |  |  |  | $-0.206^{* *}$ |
|  |  |  |  | (0.0885) |
| Coethnic * Political-Competition Prime * 1(Education) |  |  |  | -0.137* |
|  |  |  |  | (0.0823) |
| Coethnic * Ethnic-Political Prime * 1(Education) |  |  |  | -0.119 |
|  |  |  |  | (0.0878) |
| Coethnic * National Prime * 1(Kikuyu) |  |  |  | -1.868* |
|  |  |  |  | (0.957) |



Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect on coethnic preference. $H_{0}: \beta_{C E * K a m b a}=0: \mathrm{p}$-value $=0.185$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{C E * T_{i} * K a m b a}=0$, p-value $=0.206$


### 11.3.2 Identified Choose-your-dictator

Table 11.13: Identified Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.412** | 0.568* | 0.308 | 0.604 |
|  | (0.192) | (0.340) | (0.202) | (0.608) |
| Coethnic * National Prime | -0.0479 | -0.0564 | -0.0198 | -0.509 |
|  | (0.210) | (0.216) | (0.237) | (0.843) |
| Coethnic * Ethnic-Cultural Prime | -0.276 | -0.246 | -0.115 | 0.361 |
|  | (0.210) | (0.217) | (0.238) | (0.910) |
| Coethnic * Political-Competition Prime | 0.0230 | 0.0273 | 0.176 | -0.378 |
|  | (0.231) | (0.234) | (0.253) | (1.387) |
| Coethnic * Ethnic-Political Prime | -0.314 | -0.331 | -0.209 | -0.299 |
|  | (0.221) | (0.222) | (0.249) | (0.792) |
| Coethnic * 1(Female) |  | -0.427** |  | -0.0969 |
|  |  | (0.173) |  | (0.338) |
| Coethnic * Years of Education (demeaned) |  | -0.0295 |  | 0.0751 |
|  |  | (0.0250) |  | (0.0553) |
| Coethnic * 1 (Kikuyu) |  | 0.108 |  | 0.120 |
|  |  | (0.292) |  | (0.608) |
| Coethnic * 1 (Luo) |  | 0.276 |  | -0.772 |
|  |  | (0.338) |  | (0.694) |
| Coethnic * 1 (Luhya) |  | 0.00240 |  | -0.340 |
|  |  | (0.342) |  | (0.649) |
| Coethnic * 1 (Kamba) |  | 0.220 | 0.702* | 0.445 |
|  |  | (0.308) | (0.400) | (0.665) |
| Coethnic * National Prime * 1(Kamba) |  |  | -0.354 | 0.216 |
|  |  |  | (0.522) | (0.940) |
| Coethnic * Ethnic-Cultural Prime * 1(Kamba) |  |  | -0.953* | -1.679 |
|  |  |  | (0.518) | (1.039) |
| Coethnic * Political-Competition Prime * 1(Kamba) |  |  | $-0.975$ | 0.0195 |
|  |  |  | $(0.614)$ | (1.529) |
| Coethnic * Ethnic-Political Prime * 1(Kamba) |  |  | -0.696 | 0.240 |
|  |  |  | (0.537) | (0.903) |
| Coethnic * National Prime * 1(Female) |  |  |  | $-0.0754$ |
|  |  |  |  | (0.494) |
| Coethnic * Ethnic-Cultural Prime * 1(Female) |  |  |  | 0.243 |
|  |  |  |  | (0.577) |
| Coethnic * Political-Competition Prime * 1(Female) |  |  |  | -0.522 |
|  |  |  |  | (0.534) |
| Coethnic * Ethnic-Political Prime * 1(Female) |  |  |  | -1.163** |
|  |  |  |  | (0.476) |
| Coethnic * National Prime * 1(Education) |  |  |  | -0.0688 |
|  |  |  |  | (0.0784) |
| Coethnic * Ethnic-Cultural Prime * 1(Education) |  |  |  | -0.168** |
|  |  |  |  | (0.0810) |
| Coethnic * Political-Competition Prime * 1(Education) |  |  |  | -0.119 |
|  |  |  |  | (0.0896) |
| Coethnic * Ethnic-Political Prime * 1(Education) |  |  |  | -0.179** |
|  |  |  |  | (0.0757) |
| Coethnic * National Prime * 1(Kikuyu) |  |  |  | -0.557 |
|  |  |  |  | (0.885) |
| Coethnic * Ethnic-Cultural Prime * 1(Kikuyu) |  |  |  | -0.721 |


|  |  |  |  | (0.987) |
| :---: | :---: | :---: | :---: | :---: |
| Coethnic * Political-Competition Prime * 1(Kikuyu) |  |  |  | 0.664 |
|  |  |  |  | (1.468) |
| Coethnic * Ethnic-Political Prime * 1(Kikuyu) |  |  |  | 0.399 |
|  |  |  |  | (0.849) |
| Coethnic * National Prime * 1(Luo) |  |  |  | 1.754* |
|  |  |  |  | (0.927) |
| Coethnic * Ethnic-Cultural Prime * 1(Luo) |  |  |  | -0.434 |
|  |  |  |  | (1.108) |
| Coethnic * Political-Competition Prime * 1(Luo) |  |  |  | 1.774 |
|  |  |  |  | (1.499) |
| Coethnic * Ethnic-Political Prime * 1(Luo) |  |  |  | 1.710* |
|  |  |  |  | (0.907) |
| Coethnic * National Prime * 1(Luhya) |  |  |  | 1.073 |
|  |  |  |  | (0.975) |
| Coethnic * Ethnic-Cultural Prime * 1(Luhya) |  |  |  | -0.992 |
|  |  |  |  | (1.014) |
| Coethnic * Political-Competition Prime * 1(Luhya) |  |  |  | 0.729 |
|  |  |  |  | (1.467) |
| Coethnic * Ethnic-Political Prime * 1(Luhya) |  |  |  | 0.983 |
|  |  |  |  | (0.917) |
| Profile 2 | -0.178 | -0.171 | -0.164 | -0.175 |
|  | (0.232) | (0.234) | (0.233) | (0.239) |
| Profile 3 | -0.400* | $-0.397^{*}$ | -0.375 | -0.389 |
|  | (0.231) | (0.231) | (0.232) | (0.239) |
| Profile 4 | -0.215 | -0.202 | -0.190 | -0.201 |
|  | (0.225) | (0.226) | (0.226) | (0.233) |
| Profile 5 | 0.245 | 0.250 | 0.266 | 0.213 |
|  | (0.234) | (0.236) | (0.235) | (0.243) |
| Profile 6 | 0.0355 | 0.0442 | 0.0313 | 0.0562 |
|  | (0.235) | (0.236) | (0.238) | (0.246) |
| Profile 7 | 0.0325 | 0.0576 | 0.0618 | 0.0939 |
|  | (0.252) | (0.252) | (0.256) | (0.259) |
| Profile 8 | 0.165 | 0.157 | 0.201 | 0.166 |
|  | (0.228) | (0.231) | (0.232) | (0.237) |
| Profile 9 | 0.192 | 0.210 | 0.231 | 0.203 |
|  | (0.259) | (0.260) | (0.263) | (0.268) |
| Profile 10 | -0.0246 | 0.0347 | 0.000842 | 0.0249 |
|  | (0.242) | (0.243) | (0.243) | (0.247) |
| Profile 11 | 0.0577 | 0.0941 | 0.0928 | 0.0563 |
|  | (0.256) | (0.259) | (0.262) | (0.271) |
| Profile 12 | 0.141 | 0.162 | 0.174 | 0.161 |
|  | (0.253) | (0.254) | (0.257) | (0.258) |
| cut1 | $-0.803^{* * *}$ | $-0.792^{* * *}$ | -0.782*** | -0.813*** |
|  | (0.179) | (0.181) | (0.181) | (0.188) |
| cut2 | $1.106^{* * *}$ | $1.127^{* * *}$ | $1.132^{* *}$ | $1.149^{* * *}$ |
|  | (0.184) | (0.186) | (0.185) | (0.190) |
| Observations | 1478 | 1478 | 1478 | 1478 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$
Testing for differential Kamba behavior, in Specification (3):

- A Kamba level effect on coethnic preference. $H_{0}: \beta_{C E * K a m b a}=0: ~ p-v a l u e=0.079$
- Differential priming effects for Kamba. $H_{0}: \forall i: 1-4, \beta_{C E * T_{i} * K a m b a}=0$, p-value $=0.326$


### 11.3.3 Pooled Choose-your-dictator

Table 11.14: Pooled Choose-your-dictator, Ordered Logit

|  | Ordered Choice |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Coethnic Profile | 0.0806 | 0.159 | 0.469 |
|  | (0.184) | (0.198) | (0.323) |
| Identified Choice * Coethnic Profile | 0.320* | 0.130 | 0.0783 |
|  | (0.178) | (0.185) | (0.412) |
| Coethnic * National Prime | 0.0868 | 0.0102 | 0.124 |
|  | (0.209) | (0.235) | (0.212) |
| Coethnic * Ethnic-Cultural Prime | -0.0294 | -0.167 | 0.0123 |
|  | (0.213) | (0.238) | (0.215) |
| Coethnic * Political-Competition Prime | 0.0839 | 0.160 | 0.155 |
|  | (0.205) | (0.225) | (0.207) |
| Coethnic * Ethnic-Political Prime | 0.173 | 0.132 | 0.207 |
|  | (0.213) | (0.241) | (0.213) |
| Identified Choice * Coethnic * National Prime | -0.162 | -0.0561 | -0.210 |
|  | (0.271) | (0.294) | (0.278) |
| Identified Choice * Coethnic * Ethnic-Cultural Prime | -0.270 | 0.0339 | -0.282 |
|  | (0.264) | (0.295) | (0.273) |
| Identified Choice * Coethnic * Political-Competition Prime | -0.0826 | 0.0174 | -0.146 |
|  | (0.258) | (0.269) | (0.263) |
| Identified Choice * Coethnic * Ethnic-Political Prime | -0.530** | -0.379 | -0.586** |
|  | (0.266) | (0.295) | (0.270) |
| Coethnic * 1(Kamba) |  | -0.512 | -0.471 |
|  |  | (0.378) | (0.315) |
| Identified Choice * Coethnic * 1(Kamba) |  | $1.282^{* *}$ | 0.748* |
|  |  | (0.552) | (0.455) |
| Coethnic * National Prime * 1 Kamba) |  | 0.497 |  |
|  |  | (0.513) |  |
| Coethnic * Ethnic-Cultural Prime * 1(Kamba) |  | $0.790$ |  |
|  |  | (0.507) |  |
| Coethnic * Political-Competition Prime * 1(Kamba) |  | -0.320 |  |
|  |  | (0.520) |  |
| Coethnic * Ethnic-Political Prime * 1(Kamba) |  | $0.356$ |  |
|  |  | (0.506) |  |
| Identified Choice * Coethnic * National Prime * Kamba |  | -0.891 |  |
|  |  | (0.751) |  |
| Identified Choice * Coethnic * Ethnic-Cultural Prime * Kamba |  | $-1.816^{* * *}$ |  |
|  |  | (0.686) |  |
| Identified Choice * Coethnic * Political-Competition Prime * Kamba |  | -0.790 |  |
|  |  | (0.791) |  |
| Identified Choice * Coethnic * Ethnic-Political Prime * Kamba |  | -1.121 |  |
|  |  | (0.701) |  |
| Coethnic * 1(Female) |  |  | -0.158 |
|  |  |  | (0.161) |
| Coethnic * Years of Education (demeaned) |  |  | 0.0151 |
|  |  |  | (0.0238) |
| Coethnic * 1 (Kikuyu) |  |  | -0.239 |
|  |  |  | (0.302) |
| Coethnic * 1 (Luo) |  |  | -0.464 |
|  |  |  | (0.339) |
| Coethnic * 1(Luhya) |  |  | -0.245 |


|  |  |  | (0.331) |
| :---: | :---: | :---: | :---: |
| Identified Choice * Coethnic * 1(Female) |  |  | -0.313 |
|  |  |  | (0.218) |
| Identified Choice * Coethnic * Years of Education (demeaned) |  |  | -0.0461 |
|  |  |  | (0.0314) |
| Identified Choice * Coethnic * 1(Kikuyu) |  |  | 0.407 |
|  |  |  | (0.433) |
| Identified Choice * Coethnic * 1(Luo) |  |  | $0.767^{*}$ |
|  |  |  | (0.450) |
| Identified Choice * Coethnic * 1(Luhya) |  |  | 0.258 |
|  |  |  | (0.442) |
| Profile 2 | -0.175 | -0.162 | -0.171 |
|  | (0.164) | (0.164) | (0.165) |
| Profile 3 | -0.169 | -0.157 | -0.172 |
|  | (0.167) | (0.168) | (0.167) |
| Profile 4 | -0.169 | -0.160 | -0.163 |
|  | (0.166) | (0.166) | (0.166) |
| Profile 5 | -0.000802 | 0.0134 | -0.000157 |
|  | (0.182) | (0.183) | (0.183) |
| Profile 6 | 0.0466 | 0.0196 | 0.0480 |
|  | (0.170) | (0.171) | (0.171) |
| Profile 7 | 0.111 | 0.0968 | 0.119 |
|  | (0.190) | (0.192) | (0.192) |
| Profile 8 | 0.208 | 0.197 | 0.203 |
|  | (0.182) | (0.184) | (0.182) |
| Profile 9 | 0.250 | 0.239 | 0.265 |
|  | (0.192) | (0.195) | (0.193) |
| Profile 10 | 0.0300 | 0.0164 | 0.0562 |
|  | (0.187) | (0.189) | (0.187) |
| Profile 11 | 0.252 | 0.239 | 0.267 |
|  | (0.187) | (0.190) | (0.188) |
| Profile 12 | 0.153 | 0.144 | 0.162 |
|  | (0.190) | (0.192) | (0.190) |
| cut1 | $-0.928^{* * *}$ | -0.935*** | $-0.926^{* * *}$ |
|  | (0.141) | (0.142) | (0.142) |
| cut2 | 1.215*** | $1.214^{* * *}$ | $1.226^{* * *}$ |
|  | (0.143) | (0.145) | (0.144) |
| Observations | 2956 | 2956 | 2956 |

Standard errors in parentheses

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- Differential effect for Kamba on coethnic preference in Identified CYD. $H_{0}: \beta_{I D * C E * K a m b a}=0$ : p -value $=0.020$
- Differential priming effects for Kamba in Identified CYD. $H_{0}: \forall i: 1-4, \beta_{I D * C E * T_{i} * K a m b a}=0$, p -value $=0.111$


### 11.4 Kenya 2012 vs. Kenya 2013

### 11.4.1 Dictator Game

Table 11.15: Coethnic Dictator Game, Kenya 2012-2013

|  | Dictator Transfer (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | -6.684*** | -4.825 | -7.345 ${ }^{* * *}$ | 20.14*** |
|  | (2.401) | (5.570) | (2.561) | (6.922) |
| National Prime | -3.623 | -3.781* | -3.686 | -0.737 |
|  | (2.201) | (2.186) | (2.412) | (12.66) |
| Ethnic-Cultural Prime | 0.587 | 0.624 | 0.174 | -15.27* |
|  | (2.339) | (2.340) | (2.615) | (7.954) |
| Political-Competition Prime | -2.661 | -2.781 | -3.868 | -17.24 |
|  | (2.194) | (2.179) | (2.464) | (11.22) |
| Election Period * National Prime | 3.339 | 2.856 | 4.266 | 17.73 |
|  | (3.532) | (3.520) | (3.874) | (15.16) |
| Election Period * Ethnic-Cultural Prime | 1.176 | -0.0383 | 0.371 | $27.27^{* *}$ |
|  | (3.604) | (3.613) | (3.975) | (13.11) |
| Election Period * Political-Competition Prime | 4.198 | 3.320 | 6.851* | 25.48 |
|  | (3.508) | (3.498) | (3.814) | (17.97) |
| 1(Kamba) |  | 8.500** | 0.380 | -2.641 |
|  |  | (3.810) | (3.913) | (5.807) |
| Election Period * 1(Kamba) |  | -4.391 | 4.620 | 16.08* |
|  |  | (5.966) | (7.279) | (9.312) |
| National Prime * 1(Kamba) |  |  | 0.187 | 6.749 |
|  |  |  | (5.880) | (12.80) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | 2.172 | 14.31* |
|  |  |  | (5.840) | (8.465) |
| Political-Competition Prime * 1(Kamba) |  |  | 7.905 | $23.22^{* *}$ |
|  |  |  | (4.852) | (11.49) |
| Election * National Prime * 1(Kamba) |  |  | -5.883 | -27.24 |
|  |  |  | (9.751) | (16.76) |
| Election * Ethnic-Cultural Prime * 1(Kamba) |  |  | 2.047 | -19.45 |
|  |  |  | (9.636) | (15.01) |
| Election * Political-Competition Prime * 1(Kamba) |  |  | -16.75* | -38.44* |
|  |  |  | (9.551) | (19.82) |
| 1(Female) |  | 0.562 |  | $5.008^{*}$ |
|  |  | (1.731) |  | (2.853) |
| Education (demeaned) |  | -0.485** |  | -0.504 |
|  |  | (0.220) |  | (0.416) |
| 1(Kikuyu) |  | 6.336* |  | -5.332 |
|  |  | (3.619) |  | (5.279) |
| 1(Luo) |  | 6.105 |  | -1.664 |
|  |  | (3.812) |  | (5.422) |
| 1(Luhya) |  | 6.378 |  | -2.564 |
|  |  | (3.898) |  | (5.488) |
| Election Period * 1(Kikuyu) |  | -3.089 |  | 17.30** |
|  |  | (5.605) |  | (7.752) |
| Election Period * 1(Luo) |  | -5.811 |  | 7.860 |
|  |  | (5.940) |  | (8.313) |
| Election Period * 1(Luhya) |  | -3.991 |  | 12.91 |
|  |  | (5.926) |  | (8.146) |
| Election Period * 1(Female) |  | 2.232 |  | 0.145 |
|  |  | (2.731) |  | (4.923) |


| Election Period * Education | -0.249 | -0.609 |
| :---: | :---: | :---: |
|  | (0.386) | (0.692) |
| National Prime * 1 (Kikuyu) |  | 9.883 |
|  |  | (12.27) |
| National Prime * 1 (Luhya) |  | 3.060 |
|  |  | (13.00) |
| National Prime * 1 (Luo) |  | 5.095 |
|  |  | (12.55) |
| National Prime * Education |  | -0.509 |
|  |  | (0.583) |
| National Prime * 1(Female) |  | -14.48*** |
|  |  | (4.696) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  | 15.62** |
|  |  | (7.740) |
| Ethnic-Cultural Prime * 1(Luhya) |  | 18.80** |
|  |  | (8.421) |
| Ethnic-Cultural Prime * 1(Luo) |  | 7.350 |
|  |  | (8.556) |
| Ethnic-Cultural Prime * Education |  | 0.846 |
|  |  | (0.683) |
| Ethnic-Cultural Prime * 1(Female) |  | 1.946 |
|  |  | (4.858) |
| Political-Competition Prime * 1(Kikuyu) |  | 19.75* |
|  |  | (11.33) |
| Political-Competition Prime * 1(Luhya) |  | 12.39 |
|  |  | (11.82) |
| Political-Competition Prime * 1(Luo) |  | 17.18 |
|  |  | (11.57) |
| Political-Competition Prime * Education |  | -0.176 |
|  |  | (0.559) |
| Political-Competition Prime * 1(Female) |  | -3.625 |
|  |  | (4.318) |
| Election * National Prime * 1(Kikuyu) |  | -31.41** |
|  |  | (15.62) |
| Election * Ethnic-Cultural Prime * 1(Kikuyu) |  | -26.29* |
|  |  | (13.57) |
| Election * Political-Competition Prime * 1(Kikuyu) |  | -24.60 |
|  |  | (18.81) |
| Election * National Prime * 1(Luo) |  | -20.36 |
|  |  | (16.44) |
| Election * Ethnic-Cultural Prime * 1(Luo) |  | -13.23 |
|  |  | (15.33) |
| Election * Political-Competition Prime * 1(Luo) |  | -23.02 |
|  |  | (19.13) |
| Election * National Prime * 1(Luhya) |  | -14.73 |
|  |  | (16.80) |
| Election * Ethnic-Cultural Prime * 1(Luhya) |  | -32.03** |
|  |  | (14.60) |
| Election * Political-Competition Prime * 1(Luhya) |  | -21.42 |
|  |  | (19.20) |
| Election * National Prime * 1(Female) |  | 11.06 |
|  |  | (7.446) |
| Election * Ethnic-Cultural Prime * 1(Female) |  | -7.134 |
|  |  | (7.714) |
| Election * Political-Competition Prime * 1(Female) |  | 2.799 |


|  |  |  | $(7.392)$ |
| :--- | :---: | :---: | :---: |
| Election * National Prime * Education |  | 1.652 |  |
|  |  |  | $(1.079)$ |
| Election * Ethnic-Cultural Prime * Education |  | -0.920 |  |
|  |  |  | $(1.177)$ |
| Election * Political-Competition Prime * Education |  |  | 0.923 |
|  |  |  |  |
| Constant | $41.83^{* * *}$ | $36.46^{* * *}$ | $41.77^{* * *}$ |
|  | $(1.453)$ | $(3.783)$ | $(1.591)$ |
| Observations | 1714 | 1714 | 1714 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{E L * K a m b a}=0$, p-value $=0.526$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{E L * T_{i} * K a m b a}=0$, p -value $=0.151$


### 11.4.2 Public-good Game

Table 11.16: Mixed Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | -6.520* | -4.493 | -3.730 | 23.82 |
|  | (3.479) | (7.820) | (3.573) | (32.00) |
| National Prime | -4.814 | -4.915 | -3.957 | 17.59 |
|  | (3.444) | (3.449) | (3.660) | (16.76) |
| Ethnic-Cultural Prime | -0.816 | -1.235 | 0.0229 | 15.47 |
|  | (3.444) | (3.446) | (3.512) | (13.86) |
| Political-Competition Prime | -3.157 | -3.291 | -3.134 | 10.92 |
|  | (3.450) | (3.447) | (3.640) | (15.05) |
| Election Period * National Prime | 9.264* | 9.606* | 7.033 | -2.932 |
|  | (4.900) | (4.914) | (5.406) | (21.08) |
| Election Period * Ethnic-Cultural Prime | 2.302 | 2.988 | -1.107 | -16.88 |
|  | (4.904) | (4.932) | (5.255) | (20.07) |
| Election Period * Political-Competition Prime | 5.958 | 6.414 | 5.259 | 4.710 |
|  | (4.912) | (4.931) | (5.267) | (21.99) |
| 1(Kamba) |  | -0.967 | 7.447 | 11.39 |
|  |  | (5.721) | (6.193) | (11.81) |
| Election Period * 1(Kamba) |  | -10.88 | -19.68** | -46.93 |
|  |  | (8.123) | (8.796) | (33.27) |
| National Prime * 1(Kamba) |  |  | -6.559 | -22.15 |
|  |  |  | (8.883) | (17.97) |
| Ethnic-Cultural Prime * 1 Kamba) |  |  | -6.372 | -18.53 |
|  |  |  | (8.504) | (15.51) |
| Political-Competition Prime * 1(Kamba) |  |  | -0.993 | -13.33 |
|  |  |  | (8.140) | (17.08) |
| Election * National Prime * 1(Kamba) |  |  | 17.06 | 21.35 |
|  |  |  | (12.53) | (23.35) |
| Election * Ethnic-Cultural Prime * 1(Kamba) |  |  | 22.53* | 35.32 |
|  |  |  | (12.67) | (22.82) |
| Election * Political-Competition Prime * 1(Kamba) |  |  | 7.599 | -2.762 |
|  |  |  | (12.24) | (25.05) |
| 1(Female) |  | -2.896 |  | 0.0328 |
|  |  | (2.522) |  | (5.173) |
| Education (demeaned) |  | -0.219 |  | 0.0475 |
|  |  | (0.353) |  | (0.659) |
| 1(Kikuyu) |  | $-1.594$ |  | 5.080 |
|  |  | (5.334) |  | (10.60) |
| 1(Luo) |  | -9.445* |  | 3.594 |
|  |  | (5.555) |  | (11.08) |
| 1(Luhya) |  | -6.669 |  | 3.726 |
|  |  | (5.685) |  | (11.34) |
| Election Period * 1(Kikuyu) |  | -7.523 |  | -25.00 |
|  |  | (7.653) |  | (32.57) |
| Election Period * 1(Luo) |  | -0.510 |  | -28.06 |
|  |  | (7.919) |  | (32.72) |
| Election Period * 1 (Luhya) |  | -1.917 |  | -30.52 |
|  |  | (8.036) |  | (32.94) |
| Election Period * 1(Female) |  | 3.890 |  | -0.0169 |
|  |  | (3.752) |  | (7.572) |
| Election Period * Education |  | -0.311 |  | -0.407 |


|  | (0.572) | (1.067) |
| :---: | :---: | :---: |
| National Prime * 1 (Kikuyu) |  | -12.40 |
|  |  | (16.91) |
| National Prime * 1 (Luhya) |  | -23.08 |
|  |  | (17.82) |
| National Prime * 1 (Luo) |  | -18.30 |
|  |  | (17.47) |
| National Prime * Education |  | -0.287 |
|  |  | (0.917) |
| National Prime * 1(Female) |  | -9.445 |
|  |  | (7.310) |
| Ethnic-Cultural Prime * 1(Kikuyu) |  | -9.655 |
|  |  | (14.13) |
| Ethnic-Cultural Prime * 1(Luhya) |  | -14.62 |
|  |  | (15.33) |
| Ethnic-Cultural Prime * 1 (Luo) |  | -18.12 |
|  |  | (14.80) |
| Ethnic-Cultural Prime * Education |  | -0.810 |
|  |  | (1.007) |
| Ethnic-Cultural Prime * 1(Female) |  | -3.372 |
|  |  | (7.292) |
| Political-Competition Prime * 1(Kikuyu) |  | -10.39 |
|  |  | (15.56) |
| Political-Competition Prime * 1(Luhya) |  | -10.71 |
|  |  | (16.55) |
| Political-Competition Prime * 1(Luo) |  | -21.82 |
|  |  | (16.30) |
| Political-Competition Prime * Education |  | -0.154 |
|  |  | (0.956) |
| Political-Competition Prime * 1(Female) |  | -2.373 |
|  |  | (7.226) |
| Election Period * 1(Kisii) |  | -21.53 |
|  |  | (31.28) |
| Election * National Prime * 1(Kikuyu) |  | -5.774 |
|  |  | (22.01) |
| Election * Ethnic-Cultural Prime * 1(Kikuyu) |  | 4.401 |
|  |  | (21.08) |
| Election * Political-Competition Prime * 1(Kikuyu) |  | -9.887 |
|  |  | (23.31) |
| Election * National Prime * 1(Luo) |  | 4.540 |
|  |  | (22.60) |
| Election * Ethnic-Cultural Prime * 1(Luo) |  | 26.67 |
|  |  | (22.09) |
| Election * Political-Competition Prime * 1(Luo) |  | -3.987 |
|  |  | (23.98) |
| Election * National Prime * 1(Luhya) |  | 21.12 |
|  |  | (23.20) |
| Election * Ethnic-Cultural Prime * 1(Luhya) |  | 20.12 |
|  |  | (22.24) |
| Election * Political-Competition Prime * 1(Luhya) |  | -7.436 |
|  |  | (24.11) |
| Election * National Prime * 1(Female) |  | 8.224 |
|  |  | (10.63) |
| Election * Ethnic-Cultural Prime * 1(Female) |  | 1.752 |
|  |  | (10.80) |


| Election * Political-Competition Prime * 1(Female) |  | 12.40 |  |
| :--- | :---: | :---: | :---: |
|  |  |  | $(10.86)$ |
| Election * National Prime * Education |  | 1.160 |  |
|  |  |  | $(1.616)$ |
| Election * Ethnic-Cultural Prime * Education |  | 0.266 |  |
|  |  |  | $(1.710)$ |
| Election * Political-Competition Prime * Education |  | -0.791 |  |
|  |  |  | $(1.665)$ |
| Constant | $49.94^{* * *}$ | $56.15^{* * *}$ | $48.90^{* * *}$ |
|  | $(2.447)$ | $(5.710)$ | $(2.413)$ |
| Observations | 1199 | 1199 | 1199 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{E L * K a m b a}=0, \mathrm{p}$-value $=0.025$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{E L * T_{i} * K a m b a}=0$, p-value $=0.288$

Table 11.17: Mixed Public-good Game, Kenya 2012-2013

|  | Contribution minus Belief (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | -7.475* | -5.827 | -4.465 | 3.237 |
|  | (3.836) | (8.565) | (4.140) | (14.16) |
| National Prime | -8.134** | -8.211** | -6.893* | 10.23 |
|  | (3.797) | (3.778) | (4.183) | (18.33) |
| Ethnic-Cultural Prime | -5.640 | -6.065 | -4.448 | 4.069 |
|  | (3.797) | (3.775) | (4.157) | (15.16) |
| Political-Competition Prime | -6.716* | -6.841* | -7.782* | 6.667 |
|  | (3.804) | (3.775) | (4.123) | (16.47) |
| Election Period * National Prime | 10.88** | 11.18** | 7.744 | -6.793 |
|  | (5.402) | (5.382) | (5.958) | (22.96) |
| Election Period * Ethnic-Cultural Prime | 4.207 | 4.129 | 0.299 | -12.93 |
|  | (5.407) | (5.402) | (5.940) | (21.85) |
| Election Period * Political-Competition Prime | 6.778 | 6.841 | 6.325 | 2.834 |
|  | (5.416) | (5.401) | (5.904) | (23.96) |
| 1(Kamba) |  | -2.298 | 5.105 | 5.920 |
|  |  | (6.266) | (7.777) | (12.92) |
| Election Period * 1(Kamba) |  | $-7.816$ | -21.17* | -24.54 |
|  |  | (8.897) | (11.01) | (17.15) |
| National Prime * 1(Kamba) |  |  | -7.622 | -16.63 |
|  |  |  | (10.18) | (19.66) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -7.624 | -12.74 |
|  |  |  | (10.34) | (16.97) |
| Political-Competition Prime * 1(Kamba) |  |  | 6.175 | -3.355 |
|  |  |  | (10.70) | (18.69) |
| Election * National Prime * 1(Kamba) |  |  | $21.82$ | 26.91 |
|  |  |  | (14.42) | (25.47) |
| Election * Ethnic-Cultural Prime * 1 (Kamba) |  |  | 25.70* | 33.57 |
|  |  |  | (14.57) | (24.88) |
| Election * Political-Competition Prime * 1(Kamba) |  |  | 5.818 | 0.257 |
|  |  |  | (14.95) | (27.33) |
| 1(Female) |  | 1.140 |  | 6.018 |
|  |  | (2.762) |  | (5.661) |
| Education (demeaned) |  | 0.0920 |  | 0.487 |
|  |  | (0.387) |  | (0.721) |
| 1(Kikuyu) |  | 1.022 |  | 1.107 |
|  |  | (5.842) |  | (11.60) |
| 1(Luo) |  | -11.36* |  | 2.814 |
|  |  | (6.084) |  | (12.13) |
| 1(Luhya) |  | -8.828 |  | 1.006 |
|  |  | (6.227) |  | (12.41) |
| Election Period * 1(Kikuyu) |  | -6.052 |  | -0.744 |
|  |  | (8.382) |  | (15.45) |
| Election Period * 1(Luo) |  | -0.596 |  | -7.684 |
|  |  | (8.673) |  | (15.96) |
| Election Period * 1 (Luhya) |  | 6.237 |  | -5.416 |
|  |  | (8.802) |  | (16.16) |
| Election Period * 1(Female) |  | 1.120 |  | -4.696 |
|  |  | (4.110) |  | (8.283) |
| Election Period * Education |  | -1.077* |  | -1.265 |
|  |  | (0.626) |  | (1.166) |
| National Prime * 1(Kikuyu) |  |  |  | 1.732 |


|  | (18.51) |
| :---: | :---: |
| National Prime * 1 (Luhya) | $-18.21$ |
|  | (19.49) |
| National Prime * 1(Luo) | (19.12) |
| National Prime * Education | -1.168 |
|  | (1.004) |
| National Prime * 1(Female) | -9.309 |
|  | (7.999) |
| Ethnic-Cultural Prime * 1(Kikuyu) | -0.939 |
|  | (15.46) |
| Ethnic-Cultural Prime * 1(Luhya) | -9.342 |
|  | (16.78) |
| Ethnic-Cultural Prime * 1(Luo) | -16.04 |
|  | (16.20) |
| Ethnic-Cultural Prime * Education | 0.374 |
|  | (1.102) |
| Ethnic-Cultural Prime * 1(Female) | -5.907 |
|  | (7.979) |
| Political-Competition Prime * 1(Kikuyu) | -3.246 |
|  | (17.03) |
| Political-Competition Prime * 1(Luhya) | -13.94 |
|  | (18.11) |
| Political-Competition Prime * 1(Luo) | -21.83 |
|  | (17.84) |
| Political-Competition Prime * Education | -0.395 |
|  | (1.046) |
| Political-Competition Prime * 1(Female) | -6.522 |
|  | (7.907) |
| Election * National Prime * 1(Kikuyu) | -9.912 |
|  | (23.99) |
| Election * Ethnic-Cultural Prime * 1(Kikuyu) | 0.322 |
|  | (22.97) |
| Election * Political-Competition Prime * 1(Kikuyu) | -9.518 |
|  | (25.42) |
| Election * National Prime * 1(Luo) | 6.870 |
|  | (24.64) |
| Election * Ethnic-Cultural Prime * 1(Luo) | 20.55 |
|  | (24.07) |
| Election * Political-Competition Prime * 1(Luo) | 2.787 |
|  | (26.15) |
| Election * National Prime * 1(Luhya) | 30.04 |
|  | (25.30) |
| Election * Ethnic-Cultural Prime * 1(Luhya) | 17.48 |
|  | (24.25) |
| Election * Political-Competition Prime * 1(Luhya) | 3.395 |
|  | (26.30) |
| Election * National Prime * 1(Female) | 11.03 |
|  | (11.63) |
| Election * Ethnic-Cultural Prime * 1(Female) | 7.201 |
|  | (11.82) |
| Election * Political-Competition Prime * 1(Female) | 9.503 |
|  | (11.89) |
| Election * National Prime * Education | 1.887 |
|  | (1.767) |


| Election * Ethnic-Cultural Prime * Education |  |  | -0.291 |
| :--- | :---: | :---: | :---: |
|  |  |  | $(1.870)$ |
| Election * Political-Competition Prime * Education |  |  | -0.510 |
|  |  |  | $(1.820)$ |
| Constant | -0.422 | 3.060 | -1.137 |
|  | $(2.698)$ | $(6.254)$ | $(2.910)$ |
| Observations | 1199 | 1199 | 1199 |
| Standard errors in parentheses |  |  | $10.86)$ |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{E L * K a m b a}=0$, p-value $=0.055$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{E L * T_{i} * K a m b a}=0$, p -value $=0.216$

Table 11.18: Coethnic Public-good Game, Kenya 2012-2013

|  | Contribution (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | -5.777 | -10.36 | -4.025 | -6.688 |
|  | (3.545) | (7.926) | (3.629) | (13.02) |
| National Prime | -3.396 | -3.127 | -1.880 | 29.83* |
|  | (3.521) | (3.509) | (3.686) | (16.89) |
| Ethnic-Cultural Prime | 4.800 | 4.187 | 5.715 | 23.52* |
|  | (3.504) | (3.490) | (3.759) | (13.93) |
| Political-Competition Prime | 3.560 | 3.592 | 3.599 | 28.12* |
|  | (3.545) | (3.527) | (3.874) | (15.61) |
| Election Period * National Prime | 5.149 | 5.568 | 3.811 | 4.113 |
|  | (4.988) | (4.978) | (5.390) | (21.13) |
| Election Period * Ethnic-Cultural Prime | -3.978 | -2.450 | -5.238 | -12.50 |
|  | (4.989) | (4.994) | (5.386) | (20.08) |
| Election Period * Political-Competition Prime | -2.031 | -1.268 | -0.903 | -18.21 |
|  | (5.018) | (5.014) | (5.441) | (22.34) |
| 1(Kamba) |  | -8.465 | 9.101 | 6.027 |
|  |  | (5.834) | (6.792) | (11.87) |
| Election Period * 1(Kamba) |  | -4.429 | -12.24 | -9.987 |
|  |  | (8.236) | (10.11) | (15.76) |
| National Prime * 1(Kamba) |  |  | -10.18 | -28.38 |
|  |  |  | (9.193) | (18.09) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -7.070 | -19.69 |
|  |  |  | (9.496) | (15.59) |
| Political-Competition Prime * 1(Kamba) |  |  | -1.426 | -19.34 |
|  |  |  | (8.811) | (17.65) |
| Election * National Prime * 1(Kamba) |  |  | 10.39 | 4.394 |
|  |  |  | (13.27) | (23.42) |
| Election * Ethnic-Cultural Prime * 1(Kamba) |  |  | 9.706 | 17.22 |
|  |  |  | (13.62) | (22.86) |
| Election * Political-Competition Prime * 1(Kamba) |  |  | -3.869 | 7.826 |
|  |  |  | (13.36) | (25.44) |
| 1(Female) |  | -4.345* |  | 3.386 |
|  |  | (2.571) |  | (5.262) |
| Education (demeaned) |  | -0.673* |  | 0.00307 |
|  |  | (0.359) |  | (0.668) |
| 1(Kikuyu) |  | $-12.24^{* *}$ |  | -2.832 |
|  |  | (5.444) |  | (10.67) |
| 1(Luo) |  | $-15.65^{* * *}$ |  |  |
|  |  | (5.681) |  | $(11.19)$ |
| 1(Luhya) |  | -14.02** |  | -4.407 |
|  |  | (5.791) |  | (11.41) |
| Election Period * 1(Kikuyu) |  | 0.383 |  | -0.820 |
|  |  | (7.763) |  | (14.21) |
| Election Period * 1(Luo) |  | 3.777 |  | 2.766 |
|  |  | (8.044) |  | (14.70) |
| Election Period * 1(Luhya) |  | 7.784 |  | 5.446 |
|  |  | (8.149) |  | (14.89) |
| Election Period * 1(Female) |  | 1.511 |  | 0.538 |
|  |  | (3.806) |  | (7.677) |
| Election Period * Education |  | -0.0586 |  | -0.182 |
|  |  | (0.579) |  | (1.075) |
| National Prime * 1(Kikuyu) |  |  |  | -14.74 |


|  | (17.04) |
| :---: | :---: |
| National Prime * 1 (Luhya) | -26.39 |
|  | (17.92) |
| National Prime * 1 (Luo) | -23.98 |
|  | (17.59) |
| National Prime * Education | -0.923 |
|  | (0.936) |
| National Prime * 1(Female) | -19.08** |
|  | (7.458) |
| Ethnic-Cultural Prime * 1(Kikuyu) | -13.40 |
|  | (14.22) |
| Ethnic-Cultural Prime * 1(Luhya) | -10.31 |
|  | (15.41) |
| Ethnic-Cultural Prime * 1(Luo) | -16.80 |
|  | (14.91) |
| Ethnic-Cultural Prime * Education | -1.351 |
|  | (1.016) |
| Ethnic-Cultural Prime * 1(Female) | -5.360 |
|  | (7.373) |
| Political-Competition Prime * 1(Kikuyu) | -20.73 |
|  | (16.19) |
| Political-Competition Prime * 1(Luhya) | -13.82 |
|  | (17.14) |
| Political-Competition Prime * 1 (Luo) | -23.19 |
|  | (16.99) |
| Political-Competition Prime * Education | -0.544 |
|  | (0.967) |
| Political-Competition Prime * 1(Female) | $-9.631$ |
|  | (7.383) |
| Election * National Prime * 1(Kikuyu) | -10.97 |
|  | (22.06) |
| Election * Ethnic-Cultural Prime * 1(Kikuyu) | $9.011$ |
|  | $(21.12)$ |
| Election * Political-Competition Prime * 1(Kikuyu) | 19.19 |
|  | (23.72) |
| Election * National Prime * 1(Luo) | -5.707 |
|  | (22.66) |
| Election * Ethnic-Cultural Prime * 1(Luo) | 12.81 |
|  | (22.17) |
| Election * Political-Competition Prime * 1(Luo) | 9.356 |
|  | (24.44) |
| Election * National Prime * 1(Luhya) | 3.248 |
|  | (23.28) |
| Election * Ethnic-Cultural Prime * 1(Luhya) | 5.672 |
|  | (22.31) |
| Election * Political-Competition Prime * 1(Luhya) | 11.10 |
|  | (24.53) |
| Election * National Prime * 1(Female) | 6.255 |
|  | (10.78) |
| Election * Ethnic-Cultural Prime * 1(Female) | -3.941 |
|  | (10.91) |
| Election * Political-Competition Prime * 1(Female) | 6.374 |
|  | (11.02) |
| Election * National Prime * Education | 0.706 |
|  | (1.633) |


| Election * Ethnic-Cultural Prime * Education |  |  | 0.372 |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  | $(1.725)$ |  |
| Election * Political-Competition Prime * Education |  |  | -0.453 |  |
|  |  |  |  | $(1.677)$ |
| Constant | $48.15^{* * *}$ | $63.93^{* * *}$ | $46.85^{* * *}$ | $47.98^{* * *}$ |
|  | $(2.502)$ | $(5.815)$ | $(2.487)$ | $(9.984)$ |
| Observations | 1183 | 1183 | 1183 | 1183 |
| Standard errors in parentheses |  |  |  |  |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{E L * K a m b a}=0$, p-value $=0.226$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{E L * T_{i} * K a m b a}=0$, p -value $=0.592$

Table 11.19: Coethnic Public-good Game, Kenya 2012-2013

|  | Contribution minus Belief (Percent of Endowment) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Election Period | -6.758* | -14.69* | -4.504 | -3.235 |
|  | (3.948) | (8.837) | (4.263) | (14.47) |
| National Prime | -6.312 | -6.155 | -2.853 | 17.06 |
|  | (3.921) | (3.912) | (4.307) | (18.78) |
| Ethnic-Cultural Prime | 3.778 | 3.322 | 4.642 | 30.16* |
|  | (3.902) | (3.891) | (4.272) | (15.49) |
| Political-Competition Prime | -0.125 | -0.231 | -1.110 | 23.63 |
|  | (3.948) | (3.933) | (4.289) | (17.35) |
| Election Period * National Prime | 11.34** | 11.34** | 7.915 | 7.478 |
|  | (5.555) | (5.550) | (6.117) | (23.49) |
| Election Period * Ethnic-Cultural Prime | -4.674 | -4.580 | -7.275 | -22.81 |
|  | (5.555) | (5.568) | (6.106) | (22.32) |
| Election Period * Political-Competition Prime | 2.620 | 2.363 | 3.460 | -29.54 |
|  | (5.587) | (5.590) | (6.098) | (24.83) |
| 1(Kamba) |  | -4.553 | 9.894 | 9.558 |
|  |  | (6.505) | (7.959) | (13.19) |
| Election Period * 1(Kamba) |  | -0.127 | -15.73 | -13.98 |
|  |  | (9.183) | (11.26) | (17.52) |
| National Prime * 1(Kamba) |  |  | -20.12* | -25.11 |
|  |  |  | (10.53) | (20.11) |
| Ethnic-Cultural Prime * 1(Kamba) |  |  | -6.996 | -24.03 |
|  |  |  | (10.58) | (17.33) |
| Political-Competition Prime * 1(Kamba) |  |  | 4.697 | -5.333 |
|  |  |  | (10.96) | (19.62) |
| Election * National Prime * 1(Kamba) |  |  | 21.90 | 12.89 |
|  |  |  | (14.82) | (26.03) |
| Election * Ethnic-Cultural Prime * 1 (Kamba) |  |  | 17.06 | 26.93 |
|  |  |  | (14.90) | (25.41) |
| Election * Political-Competition Prime * 1(Kamba) |  |  | -2.483 | 15.28 |
|  |  |  | (15.30) | (28.27) |
| 1(Female) |  | -1.865 |  | 7.802 |
|  |  | (2.867) |  | (5.849) |
| Education (demeaned) |  | -0.768* |  | $0.813$ |
|  |  | (0.400) |  | $(0.743)$ |
| 1(Kikuyu) |  | -7.805 |  | -4.701 |
|  |  | (6.070) |  | (11.87) |
| 1(Luo) |  | -12.33* |  | 0.597 |
|  |  | (6.334) |  | (12.44) |
| 1(Luhya) |  | -6.192 |  | 10.29 |
|  |  | (6.457) |  | (12.68) |
| Election Period * 1(Kikuyu) |  | 4.213 |  | 7.711 |
|  |  | (8.655) |  | (15.79) |
| Election Period * 1(Luo) |  | 5.409 |  | -0.986 |
|  |  | (8.969) |  | (16.34) |
| Election Period * 1(Luhya) |  | 8.328 |  | -7.866 |
|  |  | (9.086) |  | (16.55) |
| Election Period * 1(Female) |  | 3.004 |  | -1.428 |
|  |  | (4.244) |  | (8.533) |
| Election Period * Education |  | -0.276 |  | -1.348 |
|  |  | (0.645) |  | (1.195) |
| National Prime * 1(Kikuyu) |  |  |  | 6.290 |


|  | (18.94) |
| :---: | :---: |
| National Prime * 1(Luhya) | -22.22 |
|  | (19.92) |
| National Prime * 1 (Luo) | -14.32 |
|  | (19.55) |
| National Prime * Education | -1.809* |
|  | (1.040) |
| National Prime * 1(Female) | -17.61** |
|  | (8.290) |
| Ethnic-Cultural Prime * 1(Kikuyu) | -12.63 |
|  | (15.80) |
| Ethnic-Cultural Prime * 1(Luhya) | -28.02 |
|  | (17.13) |
| Ethnic-Cultural Prime * 1(Luo) | -23.16 |
|  | (16.58) |
| Ethnic-Cultural Prime * Education | -1.712 |
|  | (1.129) |
| Ethnic-Cultural Prime * 1(Female) | -8.425 |
|  | (8.196) |
| Political-Competition Prime * 1(Kikuyu) | -6.341 |
|  | (18.00) |
| Political-Competition Prime * 1(Luhya) | -17.83 |
|  | (19.05) |
| Political-Competition Prime * 1 (Luo) | -14.46 |
|  | (18.89) |
| Political-Competition Prime * Education | -2.831*** |
|  | (1.075) |
| Political-Competition Prime * 1(Female) | -14.93* |
|  | (8.207) |
| Election * National Prime * 1(Kikuyu) | -24.15 |
|  | (24.52) |
| Election * Ethnic-Cultural Prime * 1 (Kikuyu) | 1.022 |
|  | (23.48) |
| Election * Political-Competition Prime * 1(Kikuyu) | 16.82 |
|  | (26.37) |
| Election * National Prime * 1(Luo) | -6.462 |
|  | (25.18) |
| Election * Ethnic-Cultural Prime * 1(Luo) | 22.01 |
|  | (24.64) |
| Election * Political-Competition Prime * 1(Luo) | 17.81 |
|  | (27.17) |
| Election * National Prime * 1(Luhya) | 15.44 |
|  | (25.88) |
| Election * Ethnic-Cultural Prime * 1(Luhya) | 25.55 |
|  | (24.80) |
| Election * Political-Competition Prime * 1(Luhya) | 31.61 |
|  | (27.27) |
| Election * National Prime * 1(Female) | 8.413 |
|  | (11.98) |
| Election * Ethnic-Cultural Prime * 1(Female) | 1.067 |
|  | (12.13) |
| Election * Political-Competition Prime * 1(Female) | 12.39 |
|  | (12.25) |
| Election * National Prime * Education | 2.027 |
|  | (1.816) |


| Election * Ethnic-Cultural Prime * Education |  |  | 0.348 |
| :--- | :---: | :---: | :---: |
|  |  |  | $(1.918)$ |
| Election * Political-Competition Prime * Education |  |  | 2.563 |
|  |  |  | $(1.864)$ |
| Constant | -4.116 | 6.073 | $-5.529^{*}$ |
|  | $(2.787)$ | $(6.483)$ | $(3.008)$ |
| Observations | 1183 | 1183 | 1183 |
| Standard errors in parentheses |  |  | 11.92 |
| ${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$ |  |  |  |

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{E L * K a m b a}=0$, p-value $=0.163$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{E L * T_{i} * K a m b a}=0$, p -value $=0.233$


### 11.4.3 Choose-your-Dictator Game

Table 11.20: Anonymous Choose-your-dictator

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.0397 | -0.335 | 0.0364 | 0.696 |
|  | (0.169) | (1.750) | (0.182) | (1.889) |
| Election Period * Coethnic Profile | 0.00447 | 0.271 | 0.0886 | -1.380 |
|  | (0.225) | (0.515) | (0.245) | (0.863) |
| Coethnic Profile * National Prime | 0.0992 | 0.114 | 0.149 | -1.123 |
|  | (0.222) | (0.222) | (0.245) | (1.028) |
| Coethnic Profile * Ethnic-Cultural (EC) Prime | 0.421* | 0.418* | 0.419* | -1.467 |
|  | (0.221) | (0.222) | (0.242) | (0.913) |
| Coethnic Profile * Political-Competition (PC) Prime | 0.0777 | 0.0882 | 0.0998 | -0.972 |
|  | (0.223) | (0.223) | (0.243) | (0.984) |
| Election Period * Coethnic * National Prime | -0.0154 | -0.00681 | -0.145 | 1.957 |
|  | (0.314) | (0.315) | (0.347) | (1.321) |
| Election Period * Coethnic * Ethnic-Cultural Prime | -0.441 | -0.405 | -0.588* | 2.113 |
|  | (0.314) | (0.317) | (0.346) | (1.336) |
| Election Period * Coethnic * Political-Competition Prime | 0.0226 | 0.0680 | 0.0800 | 2.413 |
|  | (0.314) | (0.316) | (0.344) | (1.478) |
| Coethnic * 1 (Kamba) |  | 0.380 | 0.00920 | -0.726 |
|  |  | (1.751) | (0.448) | (1.932) |
| Election * Coethnic * 1(Kamba) |  | -0.450 | -0.523 | 1.172 |
|  |  | (0.533) | (0.627) | (1.020) |
| Coethnic * National Prime * 1 Kamba) |  |  | -0.247 | 0.973 |
|  |  |  | (0.588) | (1.103) |
| Coethnic * EC Prime * 1(Kamba) |  |  | 0.0120 | $2.087^{* *}$ |
|  |  |  | (0.599) | (1.012) |
| Coethnic * PC Prime * 1(Kamba) |  |  | -0.125 | 1.389 |
|  |  |  | (0.612) | (1.099) |
| Election * Coethnic * National Prime * 1(Kamba) |  |  | 0.745 | -1.789 |
|  |  |  | (0.827) | (1.463) |
| Election * Coethnic * EC Prime * 1(Kamba) |  |  | 0.811 | -2.268 |
|  |  |  | (0.837) | (1.504) |
| Election * Coethnic * PC Prime * 1(Kamba) |  |  | -0.218 | -2.862* |
|  |  |  | (0.851) | (1.654) |
| Coethnic * 1(Female) |  | -0.0233 |  | 0.489 |
|  |  | (0.163) |  | (0.340) |
| Coethnic * Years of Education (demeaned) |  | -0.0271 |  | -0.0510 |
|  |  | (0.0228) |  | (0.0458) |
| Coethnic * 1(Kikuyu) |  | 0.506 |  | -0.442 |
|  |  | (1.746) |  | (1.907) |
| Coethnic * 1 (Luo) |  | 0.591 |  | -1.105 |
|  |  | (1.746) |  | (1.916) |
| Coethnic * 1 (Luhya) |  | 0.196 |  | -1.602 |
|  |  | (1.747) |  | (1.923) |
| Coethnic * 1 (Kisii) |  | 0.546 |  | 0.595 |
|  |  | (1.709) |  | (1.771) |
| Election * Coethnic * 1(Kikuyu) |  | -0.338 |  | 1.590* |
|  |  | (0.504) |  | (0.941) |
| Election * Coethnic * 1(Luo) |  | -0.590 |  | 1.920** |
|  |  | (0.523) |  | (0.972) |
| Election * Coethnic * 1(Luhya) |  | -0.0630 |  | $2.659^{* * *}$ |


|  | (0.527) | (0.984) |
| :---: | :---: | :---: |
| Election * Coethnic * 1(Female) | -0.00454 | -0.815* |
|  | (0.243) | (0.493) |
| Election * Coethnic * Years of Education (demeaned) | 0.0460 | 0.180** |
|  | (0.0366) | (0.0715) |
| Coethnic * National Prime * 1(Kikuyu) |  | 0.709 |
|  |  | (1.041) |
| Coethnic * National Prime * 1(Luo) |  | 1.849* |
|  |  | (1.086) |
| Coethnic * National Prime * 1(Luhya) |  | $2.246^{* *}$ |
|  |  | (1.101) |
| Coethnic * National Prime * 1(Female) |  | -0.0633 |
|  |  | (0.472) |
| Coethnic * National Prime * Education |  | -0.000679 |
|  |  | (0.0632) |
| Coethnic * EC Prime * 1(Kikuyu) |  | 1.821** |
|  |  | (0.927) |
| Coethnic * EC Prime * 1(Luo) |  | $2.606^{* * *}$ |
|  |  | (0.975) |
| Coethnic * EC Prime * 1(Luhya) |  | $2.681^{* * *}$ |
|  |  | (1.010) |
| Coethnic * EC Prime * 1(Female) |  | -0.714 |
|  |  | (0.472) |
| Coethnic * EC Prime * Education |  | 0.0949 |
|  |  | (0.0663) |
| Coethnic * PC Prime * 1(Kikuyu) |  | 1.165 |
|  |  | (1.016) |
| Coethnic * PC Prime * 1(Luo) |  | $2.193^{* *}$ |
|  |  | $(1.066)$ |
| Coethnic * PC Prime * 1(Luhya) |  | 2.171** |
|  |  | (1.078) |
| Coethnic * PC Prime * 1(Female) |  | $-0.924^{*}$ |
|  |  | (0.472) |
| Coethnic * PC Prime * Education |  | 0.00201 |
|  |  | (0.0669) |
| Election * Coethnic * National Prime * 1(Kikuyu) |  | $-2.461^{*}$ |
|  |  | $(1.382)$ |
| Election * Coethnic * National Prime * 1(Luo) |  | -2.940** |
|  |  | (1.435) |
| Election * Coethnic * National Prime * 1(Luhya) |  | -3.937*** |
|  |  | (1.460) |
| Election * Coethnic * National Prime * 1(Female) |  | 0.955 |
|  |  | (0.688) |
| Election * Coethnic * National Prime * Education |  | -0.140 |
|  |  | (0.101) |
| Election * Coethnic * EC Prime * 1(Kikuyu) |  | -2.763** |
|  |  | (1.402) |
| Election * Coethnic * EC Prime * 1(Luo) |  | $-3.903^{* * *}$ |
|  |  | (1.469) |
| Election * Coethnic * EC Prime * 1(Luhya) |  | -3.931*** |
|  |  | (1.480) |
| Election * Coethnic * EC Prime * 1(Female) |  | 1.044 |
|  |  | (0.699) |
| Election * Coethnic * EC Prime * Education |  | -0.298*** |
|  |  | (0.108) |


| Election * Coethnic * PC Prime * 1(Kikuyu) |  |  |  | -2.590* |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (1.562) |
| Election * Coethnic * PC Prime * 1(Luo) |  |  |  | -3.409** |
|  |  |  |  | (1.603) |
| Election * Coethnic * PC Prime * 1(Luhya) |  |  |  | -3.307** |
|  |  |  |  | (1.607) |
| Election * Coethnic * PC Prime * 1(Female) |  |  |  | 0.922 |
|  |  |  |  | (0.701) |
| Election * Coethnic * PC Prime * Education |  |  |  | -0.139 |
|  |  |  |  | (0.105) |
| Profile 2 | -0.319* | -0.317* | -0.316* | -0.278 |
|  | (0.188) | (0.188) | (0.188) | (0.190) |
| Profile 3 | -0.0920 | -0.0947 | -0.0940 | -0.0421 |
|  | (0.190) | (0.191) | (0.190) | (0.192) |
| Profile 4 | -0.298 | -0.295 | -0.302 | -0.250 |
|  | (0.187) | (0.188) | (0.187) | (0.189) |
| Profile 5 | -0.497*** | -0.501*** | -0.494** | -0.467** |
|  | (0.192) | (0.192) | (0.192) | (0.194) |
| Profile 6 | -0.109 | -0.109 | -0.143 | -0.100 |
|  | (0.193) | (0.194) | (0.195) | (0.196) |
| Profile 7 | 0.0375 | 0.0318 | -0.00162 | 0.0908 |
|  | (0.194) | (0.210) | (0.196) | (0.212) |
| Profile 8 | 0.246 | 0.252 | 0.203 | 0.256 |
|  | (0.189) | (0.204) | (0.191) | (0.205) |
| Profile 9 | 0.153 | 0.170 | 0.111 | 0.205 |
|  | (0.187) | (0.203) | (0.190) | (0.205) |
| Profile 10 | -0.0209 | -0.0229 | -0.0559 | 0.0281 |
|  | (0.192) | (0.207) | (0.195) | (0.209) |
| Profile 11 | 0.185 | 0.182 | 0.144 | 0.209 |
|  | (0.190) | (0.207) | (0.192) | (0.209) |
| Profile 12 | 0.0279 | 0.0410 | -0.00804 | 0.0765 |
|  | (0.186) | (0.200) | (0.189) | (0.203) |
| cut1 | $-1.160^{* * *}$ | $-1.160^{* * *}$ | $-1.186^{* * *}$ | $-1.145^{* * *}$ |
|  | (0.142) | (0.148) | (0.143) | (0.149) |
| cut2 | 1.186 ${ }^{* * *}$ | 1.192*** | 1.166*** | $1.243^{* * *}$ |
|  | (0.142) | (0.148) | (0.143) | (0.149) |
| Observations | 2398 | 2398 | 2398 | 2398 |

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{C E * E L * K a m b a}=0$, p-value $=0.404$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{C E * E L * T_{i} * K a m b a}=0$, p -value $=0.477$

Table 11.21: Identified Choose-your-dictator

|  | Ordered Choice |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Coethnic Profile | 0.140 | 12.80 | 0.130 | 14.19 |
|  | (0.164) | (519.7) | (0.178) | (1324.9) |
| Election Period * Coethnic Profile | 0.290 | 0.619 | 0.188 | 0.714 |
|  | (0.218) | (0.498) | (0.238) | (0.875) |
| Coethnic Profile * National Prime | 0.239 | 0.233 | 0.299 | 0.834 |
|  | (0.215) | (0.215) | (0.238) | (1.040) |
| Coethnic Profile * Ethnic-Cultural (EC) Prime | 0.190 | 0.203 | 0.249 | 0.556 |
|  | (0.218) | (0.218) | (0.240) | (0.924) |
| Coethnic Profile * Political-Competition (PC) Prime | 0.211 | 0.209 | 0.211 | 0.0721 |
|  | (0.215) | (0.215) | (0.235) | (0.935) |
| Election Period * Coethnic * National Prime | -0.297 | -0.289 | -0.323 | -1.224 |
|  | (0.304) | (0.306) | (0.337) | (1.318) |
| Election Period * Coethnic * Ethnic-Cultural Prime | -0.461 | -0.447 | -0.349 | -0.174 |
|  | (0.306) | (0.309) | (0.338) | (1.302) |
| Election Period * Coethnic * Political-Competition Prime | -0.198 | -0.172 | -0.0279 | -0.324 |
|  | (0.308) | (0.310) | (0.337) | (1.434) |
| Coethnic * 1 (Kamba) |  | -12.82 | 0.0614 | -14.39 |
|  |  | (519.7) | (0.418) | (1324.9) |
| Election * Coethnic * 1(Kamba) |  | 0.0516 | 0.701 | 0.617 |
|  |  | (0.513) | (0.601) | (1.017) |
| Coethnic * National Prime * 1(Kamba) |  |  | -0.293 | -0.590 |
|  |  |  | (0.555) | (1.105) |
| Coethnic * EC Prime * 1(Kamba) |  |  | -0.333 | 0.0403 |
|  |  |  | (0.576) | (1.011) |
| Coethnic * PC Prime * 1 Kamba) |  |  | 0.00438 | 0.518 |
|  |  |  | (0.584) | (1.051) |
| Election * Coethnic * National Prime * 1(Kamba) |  |  | -0.112 | 0.649 |
|  |  |  | (0.792) | (1.447) |
| Election * Coethnic * EC Prime * 1(Kamba) |  |  | -0.689 | -1.821 |
|  |  |  | (0.809) | (1.461) |
| Election * Coethnic * PC Prime * 1(Kamba) |  |  | -1.078 | -0.737 |
|  |  |  | (0.834) | (1.616) |
| Coethnic * 1(Female) |  | -0.0151 |  | 0.435 |
|  |  | (0.159) |  | (0.330) |
| Coethnic * Years of Education (demeaned) |  | 0.0360 |  | 0.0576 |
|  |  | (0.0221) |  | (0.0426) |
| Coethnic * 1(Kikuyu) |  | -12.72 |  | -14.09 |
|  |  | (519.7) |  | (1324.9) |
| Coethnic * 1 (Luo) |  | $-12.72$ |  | $-14.51$ |
|  |  | (519.7) |  | $(1324.9)$ |
| Coethnic * 1(Luhya) |  | -12.63 |  | -14.91 |
|  |  | (519.7) |  | (1324.9) |
| Coethnic * 1 (Kisii) |  | -12.89 |  | -14.39 |
|  |  | (519.7) |  | (1324.9) |
| Election * Coethnic * 1(Kikuyu) |  | -0.127 |  | -0.0663 |
|  |  | (0.484) |  | (0.940) |
| Election * Coethnic * 1(Luo) |  | -0.0882 |  | -0.564 |
|  |  | (0.504) |  | (0.980) |
| Election * Coethnic * 1(Luhya) |  | -0.397 |  | 0.271 |
|  |  | (0.509) |  | (0.983) |
| Election * Coethnic * 1(Female) |  | -0.181 |  | -0.545 |


|  | (0.238) | (0.475) |
| :---: | :---: | :---: |
| Election * Coethnic * Years of Education (demeaned) | -0.0395 | 0.0110 |
|  | (0.0357) | (0.0680) |
| Coethnic * National Prime * 1(Kikuyu) |  | -0.732 |
|  |  | (1.054) |
| Coethnic * National Prime * 1(Luo) |  | -0.115 |
|  |  | (1.094) |
| Coethnic * National Prime * 1(Luhya) |  | 0.148 |
|  |  | (1.106) |
| Coethnic * National Prime * 1(Female) |  | -0.136 |
|  |  | (0.458) |
| Coethnic * National Prime * Education |  | -0.0646 |
|  |  | (0.0602) |
| Coethnic * EC Prime * 1(Kikuyu) |  | -0.163 |
|  |  | (0.938) |
| Coethnic * EC Prime * 1(Luo) |  | 0.411 |
|  |  | (0.982) |
| Coethnic * EC Prime * 1(Luhya) |  | 1.240 |
|  |  | (1.022) |
| Coethnic * EC Prime * 1(Female) |  | $-1.045^{* *}$ |
|  |  | (0.466) |
| Coethnic * EC Prime * Education |  | -0.0245 |
|  |  | (0.0653) |
| Coethnic * PC Prime * 1(Kikuyu) |  | -0.0307 |
|  |  | (0.971) |
| Coethnic * PC Prime * 1(Luo) |  | 0.526 |
|  |  | (1.021) |
| Coethnic * PC Prime * 1(Luhya) |  | $1.356$ |
|  |  | (1.039) |
| Coethnic * PC Prime * 1(Female) |  | -0.628 |
|  |  | (0.453) |
| Coethnic * PC Prime * Education |  | 0.0142 |
|  |  | (0.0638) |
| Election * Coethnic * National Prime * 1(Kikuyu) |  | 0.108 |
|  |  | (1.374) |
| Election * Coethnic * National Prime * 1(Luo) |  | $1.761$ |
|  |  | (1.420) |
| Election * Coethnic * National Prime * 1(Luhya) |  | 0.815 |
|  |  | (1.450) |
| Election * Coethnic * National Prime * 1(Female) |  | 0.0243 |
|  |  | (0.666) |
| Election * Coethnic * National Prime * Education |  | 0.00679 |
|  |  | (0.0973) |
| Election * Coethnic * EC Prime * 1(Kikuyu) |  | -0.565 |
|  |  | (1.362) |
| Election * Coethnic * EC Prime * 1(Luo) |  | -0.910 |
|  |  | (1.437) |
| Election * Coethnic * EC Prime * 1(Luhya) |  | -2.247 |
|  |  | (1.445) |
| Election * Coethnic * EC Prime * 1(Female) |  | 1.322* |
|  |  | (0.690) |
| Election * Coethnic * EC Prime * Education |  | -0.133 |
|  |  | (0.105) |
| Election * Coethnic * PC Prime * 1(Kikuyu) |  | 0.558 |
|  |  | (1.519) |


| Election * Coethnic * PC Prime * 1(Luo) |  |  |  | 1.099 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (1.565) |
| Election * Coethnic * PC Prime * 1(Luhya) |  |  |  | -0.756 |
|  |  |  |  | (1.568) |
| Election * Coethnic * PC Prime * 1(Female) |  |  |  | 0.147 |
|  |  |  |  | (0.684) |
| Election * Coethnic * PC Prime * Education |  |  |  | -0.116 |
|  |  |  |  | (0.103) |
| Profile 2 | 0.0711 | 0.0707 | 0.0818 | 0.0505 |
|  | (0.193) | (0.193) | (0.193) | (0.195) |
| Profile 3 | -0.0336 | -0.0341 | -0.0171 | -0.0534 |
|  | (0.189) | (0.190) | (0.190) | (0.192) |
| Profile 4 | 0.0365 | 0.0358 | 0.0594 | 0.0130 |
|  | (0.189) | (0.189) | (0.189) | (0.191) |
| Profile 5 | 0.178 | 0.170 | 0.191 | 0.125 |
|  | (0.195) | (0.195) | (0.195) | (0.197) |
| Profile 6 | -0.00177 | 0.00708 | 0.00123 | -0.0344 |
|  | (0.191) | (0.191) | (0.191) | (0.193) |
| Profile 7 | 0.0978 | 0.107 | 0.112 | 0.105 |
|  | (0.192) | (0.206) | (0.194) | (0.208) |
| Profile 8 | 0.305 | 0.310 | 0.325* | 0.292 |
|  | (0.189) | (0.204) | (0.190) | (0.206) |
| Profile 9 | 0.307 | 0.329 | 0.326* | 0.290 |
|  | (0.192) | (0.208) | (0.194) | (0.211) |
| Profile 10 | 0.0784 | 0.0885 | 0.0846 | 0.0500 |
|  | (0.191) | (0.207) | (0.192) | (0.209) |
| Profile 11 | 0.401** | 0.414* | 0.419** | 0.381* |
|  | (0.196) | (0.211) | (0.198) | (0.213) |
| Profile 12 | 0.390** | 0.382* | 0.407** | 0.370* |
|  | (0.193) | (0.208) | (0.195) | (0.210) |
| cut1 | -0.642*** | -0.640*** | -0.631*** | -0.678*** |
|  | (0.147) | (0.153) | (0.148) | (0.154) |
| cut2 | 1.268*** | $1.275^{* * *}$ | $1.284^{* * *}$ | $1.269^{* * *}$ |
|  | (0.149) | (0.154) | (0.150) | (0.156) |
| Observations | 2398 | 2398 | 2398 | 2398 |

Testing for differential Kamba behavior, in Specification (3):

- A differential Kamba effect in the Election period. $H_{0}: \beta_{C E * E L * K a m b a}=0$, p-value $=0.243$
- Differential priming effects for Kamba in the Election period. $H_{0}: \forall i: 1-4, \beta_{C E * E L * T_{i} * K a m b a}=0$, p -value $=0.502$


[^0]:    Audiofiles:
    CD1_B_P1a
    CD1_B_Plb
    CD1_B_P2a

[^1]:    Audiofiles:
    CD2_B_Pla
    CD2_BPlb
    CD2_B_P2a
    CD2_B_P2b
    CD2_BP3a
    CD2_B_P3b
    CD2_B_P4a
    $C D 2$ _B_P4b

[^2]:    ${ }^{1}$ In order to ensure that we have sufficient variation in partner backgrounds to estimate the coethnic effect for the identified games, we create a set of background profiles from the initial sessions for respondents to be partnered with. The background profiles consist of information about hometown, education and birth year. We randomly assigned profiles to participants for each of these games, matching the choices made by previous participants with the choices made by participants during the actual sessions.
    ${ }^{2}$ We included the two additional attributes (education and birth year) in order to reduce social desirability bias which may lead to underreporting, and experimenter demand effects which may lead to over-reporting. We verify through our exit interviews how likely participants were to infer our interest in tribalism and found that most respondents were not aware of our interest in these issues. In addition, we also conducted interviews after the anonymous games and also found a lack of awareness of our interest in inter-ethnic cooperation.
    ${ }^{3}$ The participants can also choose to be indifferent and to have the computer randomly choose a participant for them.

[^3]:    ${ }^{4}$ For further discussion on politically relevant ethnic groups in Africa, see Posner (2004).

[^4]:    ${ }^{5}$ The reason we group beliefs and behavioral outcomes in separate families is that actual behavior and beliefs are two sufficiently different set of outcomes. To be fully transparent, we will also provide FDR adjusted q-values and FWER adjusted p-values where we group beliefs and behavior together in one family per game.
    ${ }^{6}$ Originally, we intended to have one round with a coethnic and one round with a non-coethnic, but due to a programming error, we ended up with two coethnic rounds.

[^5]:    ${ }^{1}$ The East African Standard (allAfrica.com), January 8, 2008. "Kibaki names cabinet" http:// allafrica.com/stories/200801080673.html

[^6]:    ${ }^{2}$ Daily Nation, December 4, 2012. "Raila and Kalonzo finally sign deal". http: //www.nation.co.ke/News/politics/Raila-and-Kalonzo-finally-sign-deal/-/1064/1635856/ -/a3xmex/-/index.html
    ${ }^{3}$ In order to ensure that we have sufficient variation in partner backgrounds to estimate the coethnic effect for the identified games, we create a set of background profiles from the initial sessions for respondents to be partnered with. The background profiles consist of information about hometown, education and birth year. We randomly assigned profiles to participants for each of these games, matching the choices made by previous participants with the choices made by participants during the actual sessions. For the 15 Tanzanian tribes in our sample, we had 2 profiles each, making 30 profiles in total.
    ${ }^{4}$ In Tanzania, the endowments for the dictator and public-good game were roughly the same as in Kenya. The Tanzanian participants were given 1000 TZS (approximately 0.6 ) in both the dictator and the public-good game.
    ${ }^{5}$ We included the two additional attributes (education and birth year) in order to reduce social desirability bias which may lead to underreporting, and experimenter demand effects which may lead to over-reporting. In the 2012 Kenya lab, we verified through our exit interviews how likely participants were to infer our interest in tribalism and found that most respondents were not aware of our interest in these issues. In addition, we also conducted interviews after the anonymous games during the pilot sessions of the 2012 Kenya lab and also found a lack of awareness of our interest in inter-ethnic cooperation.

[^7]:    ${ }^{6}$ In that case, the computer randomly chooses a participant for them.

[^8]:    ${ }^{7}$ For further discussion on politically relevant ethnic groups in Africa, see Posner (2004).

[^9]:    ${ }^{8}$ Remember that the non-coethnic dictator game was not observed in the Kenya 2012 lab.

[^10]:    ${ }^{9}$ Note that the 2012 Kenya lab had two coethnic dictator rounds, and the Tanzania lab had two non-coethnic dictator rounds for many respondents.

[^11]:    The number of observations in row 1 shows how often a transfer for this dictator game is observed. Row 2 indicates how many individuals are observed making such a choice. Aside from rows 1 and 2, the table shows average transfers in the anonymous and coethnic dictator game for the group specified in the first column. Standard deviations in parentheses.

[^12]:    The table reports the p-values for the test - listed at the top - for equality of the distribution across the indicated priming

[^13]:    Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

[^14]:    Regular and FWER p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

[^15]:    Standard errors in parentheses

[^16]:    Regular p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

[^17]:    Standard errors in parentheses

[^18]:    Regular p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

[^19]:    Regular p-values for the listed hypotheses, documented in the Non-election period's Preanalysis Plan.

[^20]:    Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

[^21]:    The number of observations in row 1 shows how often a dictator choice for a game is observed. The other rows show the percentage of choices within the group indicated in the first column selected either a coethnic, remained indifferent or selected a non-coethnic. Standard deviations in parentheses.

[^22]:    Regular and FWER p-values for the listed hypotheses, documented in the Election period's Preanalysis Plan.

