
A Proofs

Proof of Proposition 1. The choice variable a′tD does not appear in the Planner’s objective

function, so a′tD = 0 at an optimum. Also, (5) must bind for every t at an optimum, so the

planner’s problem is equivalent to

max
{ãtD,ãtI ,atib(i),a′tI}

∞
t=0

E0

∞∑
t=0

βt

[
δ

∫
[εL,εH ]

εa′tI (dε) + (1− α− δ) ε̄atI

+

∫
Bt

∫ ∫
I{i≤b(i)}

[
εiatib(i)

(
εi, εb(i)

)
+ εb(i)atb(i)i

(
εb(i), εi

)]
dG (εi) dG

(
εb(i)

)
di

]
yt

s.t. (2), (3), (6), (7) and δ

∫
[εL,εH ]

a′tI (dε) ≤ vatD + δatI .

Let W ∗ denote the maximum value of this problem. Then clearly, W ∗ ≤ W̄ ∗, where

W̄ ∗ = max
{ãtD,ãtI}∞t=0

E0

[ ∞∑
t=0

βt
[ ∫
Bt

∫ ∫
I{i≤b(i)}max

(
ε, ε′

)
2ãtIdG (ε) dG

(
ε′
)
di

+ εH (vãtD + δãtI) + (1− α− δ) ε̄ãtI
]
πyt

]
+ w,

s.t. (3), where w ≡ [αεB + δεH + (1− α− δ) ε̄] (1− π)As
(
E0
∑∞

t=0 β
tyt
)

and

εB ≡
∫ ∫

max
(
ε, ε′

)
dG (ε) dG

(
ε′
)
.

Rearrange the expression for W̄ ∗ and substitute (3) (at equality) to obtain

W̄ ∗ = max
{ãtI}∞t=0

E0

{ ∞∑
t=0

βt {εHAs + [αεB + δεH + (1− α− δ) ε̄− εH ] ãtI}πyt
}

+ w

= {πεH + (1− π) [αεB + δεH + (1− α− δ) ε̄]}As
(
E0

∞∑
t=0

βtyt

)
.

The allocation ãtD = As/v, ãtI = 0, and atib(i)
(
εi, εb(i)

)
= I{εb(i)<εi}2atI + I{εb(i)=εi}a

o, where

ao ∈ [0, 2atI ], together with the Dirac measure defined in the statement of the proposition,

achieve W̄ ∗ and therefore solve the Planner’s problem.

Proof of Lemma 1. Notice that (8) can be written as

WD
t (at) = φtat +WD

t (0) (59)

55



with WD
t (0) given by (14). With (59), (9) is equivalent to

ŴD
t (at) = max

âmt ,â
s
t

[φmt â
m
t + φst â

s
t + ξ(amt + pta

s
t − âmt − ptâst ) + ςmâ

m
t + ςsâ

s
t ] +WD

t (0)

where ξ is a Lagrange multiplier on the budget constraint âmt + ptâ
s
t ≤ amt + pta

s
t , and ςm and

ςs are the multipliers on the nonnegativity constraints âmt ≥ 0 and âst ≥ 0. The corresponding

first-order necessary and sufficient conditions for âmt and âst are

−ξ + φmt + ςm = 0 (60)

−ξpt + φst + ςs = 0 (61)

ξ(amt + pta
s
t − âmt − ptâst ) = 0. (62)

Clearly âmt = âst = 0 is the solution if and only if amt = ast = 0, but more generally the solution

could take one of three forms: (i) ςs = 0 < ςm, (ii) ςs = ςm = 0, or (iii) ςm = 0 < ςs. In

case (i), (60)-(62) imply âmt = 0, âst = ast + 1
pt
amt , and ptφ

m
t < φst . In case (ii), (60)-(62) imply

âmt ∈ [0, amt + pta
s
t ], â

s
t = ast + 1

pt
(amt − âmt ), and φst = ptφ

m
t . In case (iii), (60)-(62) imply

âst = 0, âmt = amt + pta
s
t , and φst < ptφ

m
t . The expressions for âmtd and âstd in Lemma 1 follow

from these three cases. The value function (13) is obtained by substituting the optimal portfolio

(âmtd, â
s
td) into (9).

Proof of Lemma 2. (i) Notice that (11) can be written as

W I
t (at) = φtat +W I

t (0) (63)

where

W I
t (0) = Tt + max

ãt+1∈R2
+

[
βEt

∫
V I
t+1 (at+1, ε) dG (ε)− φtãt+1

]
s.t. at+1 = (ãmt+1, πã

s
t+1 + (1− π)As).

With (13) and (63) the problem of the investor when he makes the ultimatum offer becomes

max
am
ti∗ ,a

s
ti∗ ,a

m
td,a

s
td

[εyta
s
ti∗ + φmt a

m
ti∗ + φsta

s
ti∗ ]

s.t. amti∗ + amtd + pt(a
s
ti∗ + astd) ≤ amti + amtd + pt(a

s
ti + astd)

amtd + pta
s
td ≥ amtd + pta

s
td

amti∗ , a
s
ti∗ , a

m
td, a

s
td ∈ R+.
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The corresponding Lagrangian is

L = (φmt + ςmi − ξ) amti∗ + (εyt + φst + ςsi − ξpt) asti∗
+ (ρ+ ςmd − ξ) amtd + (ρpt + ςsd − ξpt) astd +K,

where K ≡ ξ [amti + amtd + pt(a
s
ti + astd)]− ρ (amtd + pta

s
td), ξ ∈ R+ is the Lagrange multiplier asso-

ciated with the budget constraint, ρ ∈ R+ is the multiplier on the dealer’s individual rationality

constraint, and ςmi , ς
s
i , ς

m
d , ς

s
d ∈ R+ are the multipliers for the nonnegativity constraints on amti∗ ,

asti∗ , a
m
td, a

s
td, respectively. The first-order necessary and sufficient conditions are

φmt + ςmi − ξ = 0 (64)

εyt + φst + ςsi − ξpt = 0 (65)

ρ+ ςmd − ξ = 0 (66)

ρpt + ςsd − ξpt = 0 (67)

and the complementary slackness conditions

ξ {amti + amtd + pt(a
s
ti + astd)− [amti∗ + amtd + pt(a

s
ti∗ + astd)]} = 0 (68)

ρ [amtd + pta
s
td − (amtd + pta

s
td)] = 0 (69)

ςmi a
m
ti∗ = 0 (70)

ςsi a
s
ti∗ = 0 (71)

ςmd a
m
td = 0 (72)

ςsda
s
td = 0. (73)

First, notice that ξ > 0 at an optimum. To see this, assume the contrary, i.e., ξ = 0. Then

(65) implies εyt + φst = −ςsi ≤ 0 which is a contradiction since εyt + φst > 0. If ρ > 0, then (69)

implies

amtd + pta
s
td = amtd + pta

s
td. (74)

If instead ρ = 0, then (66) and (67) imply ςmd = ξ > 0 and ςsd = ξpt > 0, which (using (72)

and (73)) in turn imply amtd = astd = 0. This can only be a solution if amtd + pta
s
td = 0 (since

amtd + pta
s
td ≥ amtd + pta

s
td must hold at an optimum) in which case (74) also holds. Thus, we

conclude that (74) must always hold at an optimum (and with ρ > 0 unless amtd + pta
s
td = 0).

Since ξ > 0, (68) and (74) imply

amti∗ + pta
s
ti∗ = amti + pta

s
ti. (75)
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From (74) it is immediate that if amtd+pta
s
td = 0, then amtd = astd = 0. So suppose amtd+pta

s
td >

0. In this case ςmd and ςsd cannot both be strictly positive. (To see this, assume the contrary,

i.e., that ςmd > 0 and ςsd > 0. Then (72) and (73) imply amtd = astd = 0, and (74) implies

amtd + pta
s
td = 0, a contradiction.) Moreover, conditions (66) and (67) imply ςsd = ςmd pt, so

ςsd = ςmd = 0 must hold at an optimum. Hence when making the ultimatum offer, the investor

is indifferent between offering the dealer any nonnegative pair (amtd, a
s
td) that satisfies (74).

From (75) it is immediate that amti∗ = asti∗ = 0 if amti + pta
s
ti = 0. So suppose amti + pta

s
ti > 0.

In this case ςmi and ςsi cannot both be strictly positive (if they were, then (70) and (71) would

imply amti∗ = asti∗ = 0, and in turn (75) would imply amti + pta
s
ti = 0, a contradiction). There are

three possible cases: (a) ςsi = 0 < ςmi , (b) ςsi = ςmi = 0, or (c) ςmi = 0 < ςsi . In every case, (64)

and (65) imply

εyt + φst + ςsi = ptφ
m
t + ptς

m
i . (76)

In case (a), (70) implies amti∗ = 0, (75) implies asti∗ = amti /pt + asti, and (76) implies that ε must

satisfy ε > ε∗t , where ε∗t is as defined in (15). In case (b), (76) implies that ε must satisfy ε = ε∗t

and the investor is indifferent between making any offer that leaves him with a nonnegative

post-trade portfolio (amti∗ , a
s
ti∗) that satisfies (75). In case (c), (71) implies asti∗ = 0, (75) implies

amti∗ = amti + pta
s
ti, and (76) implies that ε must satisfy ε < ε∗t . The first, second, and third lines

on the right side of the expressions for amti∗ , a
s
ti∗ , a

m
td, and astd in part (i) of the statement of the

lemma correspond cases (a), (b), and (c), respectively.

(ii) With (13) and (63) the problem of the dealer when it is his turn to make the ultimatum

offer is equivalent to

max
amti ,a

s
ti,a

m
td∗ ,a

s
td∗
φ̄t [amtd∗ + pta

s
td∗ ]

s.t. amti + amtd∗ + pt(a
s
ti + astd∗) ≤ amti + amtd + pt(a

s
ti + astd) (77)

φmt a
m
ti + (εyt + φst ) a

s
ti ≥ φmt amti + (εyt + φst ) a

s
ti (78)

amti , a
s
ti, a

m
td∗ , a

s
td∗ ∈ R+.

The corresponding Lagrangian is

L′ = (φ̄t + ςmd − ξ)amtd∗ + (φ̄tpt + ςsd − ξpt)astd∗
+ (ρφmt + ςmi − ξ) amti + [ρ (εyt + φst ) + ςsi − ξpt] asti +K ′,

where K ′ ≡ ξ [amti + amtd + pt (asti + astd)] − ρ [φmt a
m
ti + (εyt + φst ) a

s
ti], ξ ∈ R+ is the Lagrange

multiplier associated with the budget constraint, ρ ∈ R+ is the multiplier on the investor’s
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individual rationality constraint, and ςmi , ς
s
i , ς

m
d , ς

s
d ∈ R+ are the multipliers for the nonnega-

tivity constraints on amti , a
s
ti, a

m
td∗ , a

s
td∗ , respectively. The first-order necessary and sufficient

conditions are

φ̄t + ςmd − ξ = 0 (79)

φ̄tpt + ςsd − ξpt = 0 (80)

ρφmt + ςmi − ξ = 0 (81)

ρ (εyt + φst ) + ςsi − ξpt = 0 (82)

and the complementary slackness conditions

ξ {amti + amtd + pt(a
s
ti + astd)− [amti + amtd∗ + pt(a

s
ti + astd∗)]} = 0 (83)

ρ {φmt amti + (εy + φst ) a
s
ti − [φmt a

m
ti + (εyt + φst ) a

s
ti]} = 0 (84)

ςmi a
m
ti = 0 (85)

ςsi a
s
ti = 0 (86)

ςmd a
m
td∗ = 0 (87)

ςsda
s
td∗ = 0. (88)

First, notice that ξ > 0 at an optimum. To see this, note that if ξ = 0 then (79) implies

φ̄t + ςmd = 0 which is a contradiction since the left side is strictly positive (φ̄t > 0 and ςmd ≥ 0

in a monetary equilibrium). Hence, at an optimum,

amti + amtd∗ + pt(a
s
ti + astd∗) = amti + amtd + pt(a

s
ti + astd). (89)

Second, observe that conditions (79) and (80), imply ptς
m
d = ςsd , so ςmd and ςsd have the same

sign, i.e., either both are positive or both are zero.

If ρ = 0, then (81) and (82) imply ςmi = ξ > 0 and ςsi = ξpt > 0, which (using (85) and (86))

in turn imply amti = asti = 0. From the buyer’s individual rationality constraint (78) it follows

that this can be a solution only if φmt a
m
ti +(εyt + φst ) a

s
ti = 0, or equivalently only if amti = asti = 0.

To obtain (amtd∗ , a
s
td∗), consider two cases: (a) ςmd = ςsd = 0, in which case (amtd∗ , a

s
td∗) need only

satisfy amtd∗ + pta
s
td∗ = amtd + pta

s
td, or (b) ςmd > 0 and ςsd > 0, in which case amtd∗ = astd∗ = 0,

which according to (77), is only possible if amtd = astd = 0. It is easy to see that the solution

for case (a) can be obtained from the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the

59



statement of the lemma simply by setting amti = asti = 0, and the solution for case (b) can be

obtained similarly, by setting amti = asti = amtd = astd = 0.

If ρ > 0, then (84) implies

φmt a
m
ti + (εyt + φst ) a

s
ti = φmt a

m
ti + (εy + φst ) a

s
ti. (90)

There are eight possible configurations of to be considered: [Configuration 1] ςsi = ςmd = ςsd = 0 <

ςmi . In this case (85) implies amti = 0. Conditions (79)-(82) imply ςmi = (ε− ε∗t ) φ̄tyt/ (εyt + φst ),

and therefore ε∗t < ε. Then from (89) and (90) it follows that

asti = asti +

(
ε∗t yt + φst
εyt + φst

)
1

pt
amti

and (amtd∗ , a
s
td∗) is any nonnegative pair that satisfies

amtd∗ + pta
s
td∗ = amtd + pta

s
td +

(ε− ε∗t ) yt
εyt + φst

amti .

[Configuration 2] ςmi = ςsi = ςmd = ςsd = 0. In this case conditions (79)-(82) imply ε = ε∗t , and

(89) and (90) yield

amti + pta
s
ti = amti + pta

s
ti (91)

amtd∗ + pta
s
td∗ = amtd + pta

s
td. (92)

Hence the dealer is indifferent between making any offer (amti , a
s
ti, a

m
td∗ , a

s
td∗) such that (amti , a

s
ti) ∈

R+ satisfies (91), and (amtd∗ , a
s
td∗) ∈ R+ satisfies (92). [Configuration 3] ςmi = ςmd = ςsd = 0 < ςsi .

In this case condition (86) implies asti = 0. Conditions (81) and (82) imply ςsi = (ε∗t − ε) ytρ,

and therefore ε < ε∗t . Then from (89) and (90) it follows that

amti = amti +
εyt + φst
ε∗t yt + φst

pta
s
ti

and (amtd∗ , a
s
td∗) is any nonnegative pair that satisfies

amtd∗ + pta
s
td∗ = amtd + pta

s
td +

(ε∗t − ε) yt
ε∗t yt + φst

pta
s
ti.

[Configuration 4] ςmd = ςsd = 0, 0 < ςmi and 0 < ςsi . In this case conditions (85) and (86) imply

amti = asti = 0, which according to (90), is only possible if amti = asti = 0. Then (amtd∗ , a
s
td∗) is any

nonnegative pair that satisfies (92). [Configuration 5] ςsi = 0 < ςmi , 0 < ςmd and 0 < ςsd . In this
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case conditions (85), (87) and (88) imply amti = amtd∗ = astd∗ = 0. Conditions (81) and (82) imply

ε∗t < ε. Then from (89) and (90) it follows that the following condition must hold:

astd +
1

pt
amtd = −

[
(ε− ε∗t ) yt

(ε− ε∗t ) yt + ptφmt

]
1

pt
amti .

The term on the left side of the equality is nonnegative and the term on the right side of the

equality is nonpositive (since ε∗t < ε), so this condition can hold only if amti = amtd = astd = 0.

Therefore (89) implies asti = asti. [Configuration 6] ςmi = ςsi = 0, 0 < ςmd and 0 < ςsd . In this case

conditions (87) and (88) imply amtd∗ = astd∗ = 0. Conditions (81) and (82) imply ε = ε∗t , and in

turn conditions (89) and (90) imply amtd + pta
s
td = 0, or equivalently, amtd = astd = 0 must hold,

and (amti , a
s
ti) is any nonnegative pair that satisfies (91). [Configuration 7] ςmi = 0 < ςsi , 0 < ςsd

and 0 < ςsd . In this case conditions (86)-(88) imply asti = amtd∗ = astd∗ = 0. Conditions (81) and

(82) imply ε < ε∗t . Then from (89) and (90) it follows that the following condition must hold:

φmt (amtd + pta
s
td) = − (ε∗t − ε) ytasti.

The term on the left side of the equality is nonnegative and the term on the right side of the

equality is nonpositive (since ε < ε∗t ), so this condition can hold only if φmt (amtd + pta
s
td) = asti =

0. Therefore (90) implies amti = amti . [Configuration 8] 0 < ςmi , 0 < ςsi , 0 < ςsd and 0 < ςsd . In

this case conditions (85)-(88) imply amti = asti = amtd∗ = astd∗ = 0, which according to (89) is only

possible, and the only possible solution if amti = asti = amtd = astd = 0. To conclude, notice that

the solutions for Configurations 1, 2, and 3, correspond to the first, second, and third lines of

the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the statement of the lemma. Similarly,

the solution for Configuration 5 corresponds to the first line of the expressions for amti , a
s
ti, a

m
td∗ ,

and astd∗ in part (ii) of the statement of the lemma, with amti = amtd = astd = 0. The solution

for Configuration 6 corresponds to the second line of the expressions for amti , a
s
ti, a

m
td∗ , and astd∗

in part (ii) of the statement of the lemma, with amtd = astd = 0. The solution for Configuration

7 corresponds to the third line of the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the

statement of the lemma, with φmt (amtd + pta
s
td) = asti = 0. Finally, it is easy to see that the

solution for Configuration 4 can be obtained from the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in

part (ii) of the statement of the lemma simply by setting amti = asti = 0, and the solution for

case Configuration 8 can be obtained similarly, by setting amti = asti = amtd = astd = 0.

Proof of Lemma 3. With (63) investor i’s problem when choosing his take-it-or-leave it offer
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to investor j reduces to

max
am
ti∗ ,a

s
ti∗ ,a

m
tj ,a

s
tj

[(εiyt + φst ) a
s
ti∗ + φmt a

m
ti∗ ]

s.t. amti∗ + amtj ≤ amti + amtj

asti∗ + astj ≤ asti + astj

εjyta
s
tj + φmt a

m
tj + φsta

s
tj ≥ εjytastj + φmt a

m
tj + φsta

s
tj

amti∗ , a
s
ti∗ , a

m
tj , a

s
tj ∈ R+.

If φmt = 0, then asti∗ = asti and astj = astj (the bargaining outcome is no trade between investors

i and j) so suppose φmt > 0 for the rest of the proof. The Lagrangian corresponding to investor

i’s problem is

L = (φmt + ςmi − ξm) amti∗ + (εiyt + φst + ςsi − ξs) asti∗
+
(
ρφmt + ςmj − ξm

)
amtj +

[
ρ (εjyt + φst ) + ςsj − ξs

]
astj +K ′′,

where K ′′ ≡ ξm(amti +amtj ) + ξs(asti +astj)− ρ(εjyta
s
tj +φmt a

m
tj +φsta

s
tj), ξ

m ∈ R+ is the multiplier

associated with the bilateral constraint on money holdings, ξs ∈ R+ is the multiplier associated

with the bilateral constraint on equity holdings, ρ ∈ R+ is the multiplier on investor j’s indi-

vidual rationality constraint, and ςmi , ς
s
i , ς

m
j , ς

s
j ∈ R+ are the multipliers for the nonnegativity

constraints on amti∗ , a
s
ti∗ , a

m
tj , a

s
tj , respectively. The first-order necessary and sufficient conditions

are

φmt + ςmi − ξm = 0 (93)

εiyt + φst + ςsi − ξs = 0 (94)

ρφmt + ςmj − ξm = 0 (95)

ρ (εjyt + φst ) + ςsj − ξs = 0 (96)
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and the complementary slackness conditions

ξm(amti + amtj − amti∗ − amtj ) = 0 (97)

ξs(asti + astj − asti∗ − astj) = 0 (98)

ρ(εjyta
s
tj + φmt a

m
tj + φsta

s
tj − εjytastj − φmt amtj − φstastj) = 0 (99)

ςmi a
m
ti∗ = 0 (100)

ςsi a
s
ti∗ = 0 (101)

ςmj a
m
tj = 0 (102)

ςsj a
s
tj = 0. (103)

If ξm = 0, (93) implies 0 < φmt = −ςmi ≤ 0, a contradiction. If ξs = 0, (94) implies

0 < εiyt + φst = −ςsi ≤ 0, another contradiction. Hence ξm > 0 and ξs > 0, so (97) and (98)

imply

amti∗ + amtj = amti + amtj (104)

asti∗ + astj = asti + astj . (105)

If ρ = 0, (95) and (96) imply ςmj = ξm > 0 and ςsj = ξs > 0, and (102) and (103) imply

amtj = astj = 0. From investor’s j individual rationality constraint, this can only be a solution

if amtj = astj = 0, and if this is the case (97) and (98) imply (amti∗ , a
s
ti∗) = (amti , a

s
ti). Hereafter

suppose ρ > 0 which using (99) implies

φmt a
m
tj + (εjyt + φst )a

s
tj = φmt a

m
tj + (εjyt + φst )a

s
tj . (106)

If ςmi > 0 and ςmj > 0, (100) and (102) imply amti∗ = amtj = 0 which by (104), is only possible

if amti = amtj = 0. But then (106) implies astj = astj , and (105) implies asti∗ = asti. Similarly, if

ςsi > 0 and ςsj > 0, (101) and (103) imply asti∗ = astj = 0 which by (105), is only possible if

asti = astj = 0. But then (106) implies amtj = amtj , and (104) implies amti∗ = amti . If ςmi > 0 and

ςsi > 0, then (100) and (101) imply amti∗ = asti∗ = 0, and according to (104), (105) and (106), this

is only possible if amti = asti = 0. Conditions (104) and (105) in turn imply (amtj , a
s
tj) = (amtj , a

s
tj).

Similarly, if ςmj > 0 and ςsj > 0, then (102) and (103) imply amtj = astj = 0, and according

to (106) this is only possible if amtj = astj = 0. Conditions (104) and (105) in turn imply

(amti∗ , a
s
ti∗) = (amti , a

s
ti). So far we have simply verified that there is no trade between investors i

and j, i.e., (amti∗ , a
s
ti∗) = (amti , a

s
ti) and (amtj , a

s
tj) = (amtj , a

s
tj), if amti = amtj = 0, or asti = astj = 0, or
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amti = asti = 0, or amtj = astj = 0. Thus there are seven binding patterns for (ςmi , ς
s
i , ς

m
j , ς

s
j ) that

remain to be considered.

(i) ςmi = ςsi = ςmj = ςsj = 0. Conditions (93)-(96) imply that this case is only possible if

εi = εj , and conditions (104), (105) and (106), imply that the solution consists of any pair of

post trade portfolios (amti∗ , a
s
ti∗) and (amtj , a

s
tj) that satisfy

amtj = amtj −
εjyt + φst
φmt

(asti − asti∗)

amti∗ = amti +
εjyt + φst
φmt

(asti − asti∗)

astj = asti + astj − asti∗

asti∗ ∈
[
asti −min

(
φmt

εjyt + φst
amtj , a

s
ti

)
, asti + min

(
φmt

εjyt + φst
amti , a

s
tj

)]
.

(ii) ςsi = ςmj = ςsj = 0 < ςmi . Condition (100) implies amti∗ = 0, and from (104) we obtain

amtj = amti + amtj . Then condition (106) yields

astj = astj −
φmt

εjyt + φst
amti

and condition (105) implies

asti∗ = asti +
φmt

εjyt + φst
amti .

Notice that ςsj = 0 requires astj ≥ 0 which is equivalent to

φmt a
m
ti ≤ (εjyt + φst ) a

s
tj .

Conditions (93)-(96) imply ςmi = (εi − εj) yt φmt
εjyt+φst

, so ςmi > 0 requires εj < εi.

(iii) ςmi = ςmj = ςsj = 0 < ςsi . Condition (101) implies asti∗ = 0, and from (105) we obtain

astj = asti + astj . Then condition (106) yields

amtj = amtj −
εjyt + φst
φmt

asti

and condition (104) implies

amti∗ = amti +
εjyt + φst
φmt

asti.

Notice that ςmj = 0 requires amtj ≥ 0 which is equivalent to

(εjyt + φst ) a
s
ti ≤ φmt amtj .
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Conditions (93)-(96) imply ςsi = (εj − εi) yt, so ςsi > 0 requires εi < εj .

(iv) ςmi = ςsi = ςsj = 0 < ςmj . Condition (102) implies amtj = 0, and from (104) we obtain

amti∗ = amti + amtj . Then (105) and (106) imply

astj = astj +
φmt

εjyt + φst
amtj

asti∗ = asti −
φmt

εjyt + φst
amtj .

Notice that ςsi = 0 requires asti∗ ≥ 0 which is equivalent to

φmt a
m
tj ≤ (εjyt + φst ) a

s
ti.

Conditions (93)-(96) imply ςmj = (εj − εi) yt φmt
εjyt+φst

, so ςmj > 0 requires εi < εj .

(v) ςmi = ςsi = ςmj = 0 < ςsj . Condition (103) implies astj = 0, and from (105) we obtain

asti∗ = asti + astj . Then (104) and (106) imply

amtj = amtj +
εjyt + φst
φmt

astj

amti∗ = amti −
εjyt + φst
φmt

astj .

Notice that ςmi = 0 requires amti∗ ≥ 0 which is equivalent to

(εjyt + φst ) a
s
tj ≤ φmt amti .

Conditions (93)-(96) imply ςsj = (εi − εj) yt, so ςsj > 0 requires εj < εi.

(vi) ςmi , ς
s
j ∈ R++ and ςsi = ςmj = 0. In this case, conditions (100) and (103) give amti∗ =

astj = 0, and (104) and (105) imply amtj = amti + amtj and asti∗ = asti + astj . Condition (106) implies

the following restriction must be satisfied

φmt a
m
ti = (εjyt + φst )a

s
tj .

Conditions (93)-(96) imply ςmi = (ρ− 1)φmt and ςsj = (εi − εj) yt−(ρ− 1) (εjyt + φst ), so ςmi > 0

requires ρ > 1, and ςsj requires εj < εi.

(vii) ςmi = ςsj = 0 and ςsi , ς
m
j ∈ R++. In this case, conditions (101) and (102) give asti∗ =

amtj = 0, and (104) and (105) imply amti∗ = amti + amtj and astj = asti + astj . Condition (106) implies

the following restriction must be satisfied

φmt a
m
tj = (εjyt + φst )a

s
ti.
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Conditions (93)-(96) imply ςmj = (1− ρ)φmt and ςsi = (εj − εi) yt−(1− ρ) (εjyt + φst ), so ςmj > 0

requires ρ ∈ (0, 1), and ςsi > 0 requires εi < εj .

Proof of Lemma 4. (i) With Lemma 1, (10) becomes

V D
t (amtd, a

s
td) = κθ

∫
φ̄t [amtd + pta

s
td − (amtd + pta

s
td)] dHt (ati, ε)

+ κ (1− θ)
∫
φ̄t [amtd∗ + pta

s
td∗ − (amtd + pta

s
td)] dHt (ati, ε)

+ φ̄t (amtd + pta
s
td) +WD

t (0)

where we have used the more compact notation introduced in Lemma 2, i.e., akti∗ ≡ aki∗(ati,atd, ε;ψt),
aktd ≡ akd(ati,atd, ε;ψt), akti ≡ aki (ati,atd, ε;ψt), and aktd∗ ≡ akd∗(ati,atd, ε;ψt), for k = m, s. Use

Corollary 1 to arrive at

V D
t (amtd, a

s
td) = κ (1− θ)

∫
φ̄t

[
I{ε<ε∗t }

(ε∗t − ε) yt
ε∗t yt + φst

pta
s
ti + I{ε∗t≤ε}

(ε− ε∗t ) yt
εyt + φst

amti

]
dHt (ati, ε)

+ φ̄t (amtd + pta
s
td) +WD

t (0)

where I{ε<ε∗t } is an indicator function that takes the value 1 if ε < ε∗t , and 0 otherwise. To

obtain (17), use the fact that dHt (ati, ε) = dF It (ati) dG (ε).

(ii) With (63) and the notation introduced in Lemma 2 and Lemma 3, (12) becomes

V I
t (amti , a

s
ti, εi) = δθ

∫
[φmt (amti∗ − amti ) + (εiyt + φst ) (asti∗ − asti)] dFDt (atd)

+ δ (1− θ)
∫

[φmt (amti − amti ) + (εiyt + φst ) (asti − asti)] dFDt (atd)

+ α

∫
η̃ (εi, εj) [φmt (amti∗ − amti ) + (εiyt + φst ) (asti∗ − asti)] dHt (atj , εj)

+ α

∫
[1− η̃ (εi, εj)] [φmt (amti − amti ) + (εiyt + φst ) (asti − asti)] dHt (atj , εj)

+ φmt a
m
ti + (εiyt + φst ) a

s
ti +W I

t (0) .

Use η̃ (εi, εj) ≡ ηI{εj<εi}+(1− η) I{εi<εj}+(1/2) I{εi=εj} and substitute the bargaining outcomes
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reported in Lemma 2 and Lemma 3 to obtain

V I
t (amti , a

s
ti, εi) = δθI{ε∗t≤εi}

(εi − ε∗t ) yt
ε∗t yt + φst

φmt a
m
ti + δθI{εi<ε∗t } (ε∗t − εi) ytasti

+ αη

∫ ∫
I{εj≤εi}

[
−φmt min

{
pot (εj)a

s
tj , a

m
ti

}
+ (εiyt + φst ) min

{
amti

pot (εj)
, astj

}]
dF It (atj) dG (εj)

+ α (1− η)

∫ ∫
I{εi<εj}

[
φmt min

{
pot (εj)a

s
ti, a

m
tj

}
− (εiyt + φst ) min

{
amtj

pot (εj)
, asti

}]
dF It (atj) dG (εj)

+ φmt a
m
ti + (εiyt + φst ) a

s
ti +W I

t (0) . (107)

From (11), we anticipate that as in Lagos and Wright (2005), the beginning-of-period distri-

bution of assets across investors will be degenerate, i.e., (amt+1j , a
s
t+1j) = (AmIt+1, A

s
It+1) for all

j ∈ I, so (107) can be written as (18).

Proof of Lemma 5. With Lemma 4, the dealer’s problem in the second subperiod of period

t, (14), becomes

WD
t (0) = max

ãt+1∈R2
+

[
(−φmt + βEtφ̄t+1)ãmt+1 + (−φst + βπEtφ̄t+1pt+1)ãst+1

]
+ βEtV D

t+1 (0) . (108)

From (18),∫
V I
t+1

(
amt+1, a

s
t+1, εi

)
dG (εi) = φmt+1a

m
t+1 +

∫ (
εiyt+1 + φst+1

)
ast+1dG (εi) +W I

t+1 (0)

+ δθ

∫
I{ε∗t+1≤εi}

(
εi − ε∗t+1

)
yt+1

ε∗t+1yt+1 + φst+1

φmt+1a
m
t+1dG (εi)

+ δθ

∫
I{εi<ε∗t+1}

(
ε∗t+1 − εi

)
yt+1a

s
t+1dG (εi)

+ αη

∫[
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1

εjyt+1 + φst+1

φmt+1a
m
t+1dG (εi) dG (εj)

+ αη

∫ [
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1A
s
It+1dG (εi) dG (εj)

+ α (1− η)

∫[
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj (εj − εi) yt+1

εjyt+1 + φst+1

φmt+1A
m
It+1dG (εi) dG (εj)

+ α (1− η)

∫ [
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj

(εj − εi) yt+1a
s
t+1dG (εi) dG (εj)
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so the investor’s problem (11) can be written as in (63), with

W I
t (0) = max

ãmt+1∈R+

{
− φmt ãmt+1 + βEt

[(
1 + δθ

∫
I{ε∗t+1≤εi}

(
εi − ε∗t+1

)
yt+1

ε∗t+1yt+1 + φst+1

dG (εi)

+ αη

∫[
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1

εjyt+1 + φst+1

dG (εi) dG (εj)

)
φmt+1ã

m
t+1

+ αη

∫ [
φmt+1ã

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1dG (εi) dG (εj)A
s
It+1

]}

+ max
ãst+1∈R+

{
− φst ãst+1 + βEt

[(∫ (
εiyt+1 + φst+1

)
dG (εi)

+ δθ

∫
I{εi<ε∗t+1}

(
ε∗t+1 − εi

)
yt+1dG (εi)

+ α (1− η)

∫ [
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj

(εj − εi) yt+1dG (εi) dG (εj)

)
ast+1

+ α (1− η)

∫[
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj (εj − εi) yt+1

εjyt+1 + φst+1

dG (εi) dG (εj)φ
m
t+1A

m
It+1

]}
+ Tt + βEtW I

t+1 (0) , (109)

where ast+1 = πãst+1 + (1− π)As. The first-order necessary and sufficient conditions for op-

timization of (108) are (19) and (20). The first-order necessary and sufficient conditions for

optimization of (109) are (21) and (22).

Proof of Proposition 2. In a stationary equilibrium, the dealer’s Euler equations in Lemma

5 become

µ ≥ β̄, “ = ” if ãmt+1d > 0

φs ≥ β̄π

1− β̄π ε
∗, “ = ” if ãst+1d > 0.

The maintained assumption µ > β̄ implies ãmt+1d = 0. Similarly, in a stationary monetary

equilibrium the investor’s Euler equations in Lemma 5 become

µ = β̄

[
1 + δθ

∫ εH

ε∗

εi − ε∗
ε∗ + φs

dG (εi)

+ αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)

]
(110)
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φs ≥ β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

(ε∗ − εi)dG (εi) + α (1− η)ϕ (εc)

]
where εc ≡ Z/AsI − φs, ϕ (ε) ≡

∫ ε
εL

∫ εj
εL

(εj − εi) dG (εi) dG (εj), and the second condition holds

with “=” if ãst+1i > 0. Together, the dealer’s and the investor’s Euler equations for equity imply

φs =
β̄π

1− β̄π max

{
ε∗, ε̄+ δθ

∫ ε∗

εL

(ε∗ − εi)dG (εi) + α (1− η)ϕ (εc)

}
. (111)

As µ→ β̄, (110) implies

δθ

∫ εH

ε∗

εi − ε∗
ε∗ + φs

dG (εi) + αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)→ 0,

a condition that can only hold if ε∗ → εH and εc → εH . The fact that ε∗ → εH means that

among investors who contact dealers, only those with preference type εH purchase equity. The

fact that εc → εH implies that in bilateral trades between investors, the investor with the higher

valuation purchases all his counterparty’s equity holdings (the investor who wishes to buy is

never constrained by his real money balances as µ→ β̄). Finally, as µ→ β̄,

φs → β̄π

1− β̄π max {εH , ε̄+ δθ(εH − ε̄) + α (1− η)ϕ (εH)} =
β̄π

1− β̄π εH ,

so ãst+1d = As for all t, i.e., only dealers hold equity overnight.

Lemma 6 Consider µ̂ and µ̄ as defined in (24). Then µ̂ < µ̄.

Proof of Lemma 6. Define Υ (ζ) : R→ R by Υ (ζ) ≡ β̄
[
1 + δθ(1− β̄π)ζ

]
. Let ζ̂ ≡ (1−δθ)(ε̂−ε̄)

δθε̂

and ζ̄ ≡ ε̄−εL
β̄πε̄+(1−β̄π)εL

, so that µ̂ = Υ(ζ̂) and µ̄ = Υ(ζ̄). Since Υ is strictly increasing, µ̂ < µ̄ if

and only if ζ̂ < ζ̄. With (25) and the fact that ε̄ ≡
∫ εH
εL

εdG (ε) = εH −
∫ εH
εL

G (ε) dε,

ζ̂ =

∫ εH
ε̂ [1−G (ε)] dε

ε̄+ δθ
∫ ε̂
εL
G (ε) dε

,

so clearly,

ζ̂ <

∫ εH
εL

[1−G (ε)] dε

ε̄
=
ε̄− εL
ε̄

< ζ̄.

Hence µ̂ < µ̄.
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Lemma 7 In a stationary equilibrium, the interdealer market clearing condition ĀsDt + ĀsIt =

AsDt + δAsIt is equivalent to

δθ [1−G(ε∗)]

(
AsI +

Z

ε∗ + φs

)
+ δ (1− θ)

∫ εH

ε∗

[
AsI +

Z

ε+ φs

]
dG (ε) = AsD + δAsI . (112)

Proof of Lemma 7. Use δ = κv in ĀsDt + ĀsIt = AsDt + δAsIt to obtain

θ

∫
{âsd [ād (ati,atd, ε;ψt) ;ψt] + asi∗(ati,atd, ε;ψt)} dFDt (atd) dF

I
t (ati) dG (ε)

+ (1− θ)
∫
{âsd [ād∗ (ati,atd, ε;ψt) ;ψt] + asi (ati,atd, ε;ψt)} dFDt (atd) dF

I
t (ati) dG (ε)

=

∫
astddF

D
t (atd) +

∫
astidF

I
t (ati) +

(1− κ) v

δ

∫
[astd − âsd(atd;ψt)] dFDt (atd) . (113)

Since φst = φsyt < ε∗yt + φsyt = φ̄syt ≡ ptφmt in a stationary equilibrium, Lemma 1 implies

âsd [ād (ati,atd, ε;ψt) ;ψt] = âsd [ād∗ (ati,atd, ε;ψt) ;ψt] = âsd(atd;ψt) = 0. (114)

With (114) and the fact that
∫
astidF

I
t (ati) = AsI and v

∫
astddF

D
t (atd) = AsD, (113) becomes

AsD + δAsI = δθ

∫
asi∗(ati,atd, ε;ψt)dF

D
t (atd) dF

I
t (ati) dG (ε)

+ δ (1− θ)
∫
asi (ati,atd, ε;ψt)dF

D
t (atd) dF

I
t (ati) dG (ε) . (115)

From Lemma 2,

asi∗(ati,atd, ε;ψt) = I{ε∗<ε}
(
asti +

1

pt
amti

)
+ I{ε=ε∗}asi∗

asi (ati,atd, ε;ψt) = I{ε∗<ε}
[
asti +

(
ε∗ + φs

ε+ φs

)
1

pt
amti

]
+ I{ε=ε∗}asi

where asi∗ , a
s
i ∈ [0, asti + amti /pt], so (115) becomes

δθ [1−G(ε∗)]

(
AsI +

1

pt
AmIt

)
+ δ (1− θ)

∫ εH

ε∗

[
AsI +

(
ε∗ + φs

ε+ φs

)
1

pt
AmIt

]
dG (ε) = AsD + δAsI .

Finally, use the fact that in a stationary equilibrium, φmt A
m
It = Zyt and ptφ

m
t = φ̄syt =

(ε∗ + φs) yt, to arrive at the expression in the statement of the lemma.

Proof of Proposition 3. In an equilibrium with no money (or no valued money), there is

no trade in the OTC market. The first-order conditions for a dealer d and an investor i in the
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time-t Walrasian market are

φst ≥ βπEtφst+1, “ = ” if ãst+1d > 0

φst ≥ βπEt
(
ε̄yt+1 + φst+1

)
, “ = ” if ãst+1i > 0.

In a stationary equilibrium, Et(φst+1/φ
s
t ) = γ̄, and βγ̄π < 1 is a maintained assumption, so

no dealer holds equity. The Walrasian market for equity can only clear if φs = β̄π
1−β̄π ε̄. This

establishes parts (i) and (iii) in the statement of the proposition.

Next, we turn to monetary equilibria. With α = 0, in a stationary equilibrium (19)-(22)

become

µ ≥ β̄, “ = ” if ãmt+1d > 0 (116)

φs ≥ β̄πφ̄s, “ = ” if ãst+1d > 0 (117)

1 ≥ β̄

µ

[
1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + φs

]
, “ = ” if ãmt+1i > 0 (118)

φs ≥ β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
, “ = ” if ãst+1i > 0. (119)

(In (116) we have used the fact that φ̄s = ε∗ + φs > φs.) Under our maintained assumption

β̄ < µ, (116) implies ãmt+1d = ZD = 0, so (118) must hold with equality for some investor in a

monetary equilibrium. Thus, in order to find a monetary equilibrium there are three possible

equilibrium configurations to consider depending on the binding patterns of the complementary

slackness conditions (117) and (119). The market-clearing condition, ĀsDt + ĀsIt = AsDt + δAsIt

must hold for all three configurations. Lemma 7 shows that this condition can be written as

(112) and this condition can be rearranged to deliver (31). The rest of the proof proceeds in

three steps.

Step 1: Try to construct a stationary monetary equilibrium with ãst+1d = 0 for all d ∈ D,

and ãst+1i > 0 for some i ∈ I. The equilibrium conditions for this case are (112) together with

φs > β̄πφ̄s (120)

1 =
β̄

µ

[
1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + φs

]
(121)

φs =
β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
(122)
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and

ãmt+1d = 0 for all d ∈ D (123)

ãmt+1i ≥ 0, with “ > ” for some i ∈ I (124)

ãst+1d = 0 for all d ∈ D (125)

ãst+1i ≥ 0, with “ > ” for some i ∈ I. (126)

Conditions (121) and (122) are to be solved for the two unknowns ε∗ and φs. Substitute (122)

into (121) to obtain

1 =
β̄

µ

1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + β̄π
1−β̄π

[
ε̄+ δθ

∫ ε∗
εL
G (ε) dε

]
 (127)

which is a single equation in ε∗. Define

T (x) ≡
∫ εH
x [1−G (ε)] dε

1
1−β̄πx+ β̄π

1−β̄π T̂ (x)
− µ− β̄

β̄δθ
(128)

with

T̂ (x) ≡ ε̄− x+ δθ

∫ x

εL

G (ε) dε, (129)

and notice that ε∗ solves (127) if and only if it satisfies T (ε∗) = 0. T is a continuous real-valued

function on [εL, εH ], with

T (εL) =
ε̄− εL

εL + β̄π
1−β̄π ε̄

− µ− β̄
β̄δθ

,

T (εH) = −µ− β̄
β̄δθ

< 0,

and

T ′ (x) = −
[1−G(x)]

{
x+ β̄π

1−β̄π

[
ε̄+δθ

∫ x
εL
G(ε)dε

]}
+[
∫ εH
x [1−G(ε)]dε]

{
1+ β̄π

1−β̄π δθG(x)
}

{
x+ β̄π

1−β̄π

[
ε̄+δθ

∫ x
εL
G(ε)dε

]}2 < 0.

Hence if T (εL) > 0, or equivalently, if µ < µ̄ (with µ̄ is as defined in (24)) then there exists a

unique ε∗ ∈ (εL, εH) that satisfies T (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µ̄). Once we know ε∗, φs is

given by (122). Given ε∗ and φs, the values of Z, φ̄s, φmt and pt are obtained using (31) (with

AsI = As and AsD = 0), (28), (29) and (30). To conclude this step, notice that for this case to

be an equilibrium (120) must hold, or equivalently, using φ̄s = ε∗ + φs and (122), it must be
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that T̂ (ε∗) > 0, where T̂ is the continuous function on [εL, εH ] defined in (129). Notice that

T̂ ′ (x) = − [1− δθG (x)] < 0, and T̂ (εH) = − (1− δθ) (εH − ε̄) < 0 < ε̄− εL = T̂ (εL), so there

exists a unique ε̂ ∈ (εL, εH) such that T̂ (ε̂) = 0. (Since T̂ (ε̄) > 0, and T̂ ′ < 0, it follows that

ε̄ < ε̂.) Then T̂ ′ (x) < 0 implies T̂ (ε∗) ≥ 0 if and only if ε∗ ≤ ε̂, with “=” for ε∗ = ε̂. With

(128), we know that ε∗ < ε̂ if and only if T (ε̂) < 0 = T (ε∗), i.e., if and only if

β̄

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε̂ [1−G (ε)] dε

β̄πε̄+
(
1− β̄π

)
ε̂+ β̄πδθ

∫ ε̂
εL
G (ε) dε

]
< µ.

Since T̂ (ε̂) = (1− δθ) (ε̄− ε̂) + δθ
∫ εH
ε̂ [1−G (ε)] dε = 0, this last condition is equivalent to

µ̂ < µ, where µ̂ is as defined in (24). The allocations and asset prices described in this step

correspond to those in the statement of the proposition for the case with µ ∈ (µ̂, µ̄).

Step 2: Try to construct a stationary monetary equilibrium with ast+1d > 0 for some d ∈ D,

and ast+1i = 0 for all i ∈ I. The equilibrium conditions are (112), (121), (123), (124), together

with

φs = β̄πφ̄s (130)

φs >
β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
, “ = ” if ãst+1i > 0. (131)

ãst+1d ≥ 0, with “ > ” for some d ∈ D (132)

ãst+1i = 0, for all i ∈ I. (133)

The conditions (121) and (130) are to be solved for ε∗ and φs. First use φ̄s = ε∗ + φs in (130)

to obtain

φs =
β̄π

1− β̄π ε
∗. (134)

Substitute (134) in (121) to obtain

1 =
β̄

µ

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε∗ [1−G (ε)] dε

ε∗

]
(135)

which is a single equation in ε∗. Define

R (x) ≡
(
1− β̄π

) ∫ εH
x [1−G (ε)] dε

x
− µ− β̄

β̄δθ
(136)
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and notice that ε∗ solves (135) if and only if it satisfies R (ε∗) = 0. R is a continuous real-valued

function on [εL, εH ], with

R (εL) =

(
1− β̄π

)
(ε̄− εL)

εL
− µ− β̄

β̄δθ

R (εH) = −µ− β̄
β̄δθ

and

R′ (x) = − [1−G (x)]x+
∫ εH
x [1−G (ε)] dε

1
1−β̄πx

2
< 0.

Hence if R (εL) > 0, or equivalently, if

µ < β̄

[
1 +

δθ
(
1− β̄π

)
(ε̄− εL)

εL

]
≡ µo

then there exists a unique ε∗ ∈ (εL, εH) that satisfies R (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µo).
Having solved for ε∗, φs is obtained from (134). Given ε∗ and φs, the values of Z, φ̄s, φmt and

pt are obtained using (31) (with AsD = As − AsI = πAs), (28), (29) and (30). Notice that for

this case to be an equilibrium (131) must hold, or equivalently, using (134), it must be that

T̂ (ε∗) < 0, which is in turn equivalent to ε̂ < ε∗. With (136), we know that ε̂ < ε∗ if and only

if R (ε∗) = 0 < R (ε̂), i.e., if and only if

µ < β̄

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε̂ [1−G (ε)] dε

ε̂

]
,

which using the fact that T̂ (ε̂) = 0, can be written as µ < µ̂. To summarize, the prices

and allocations constructed in this step constitute a stationary monetary equilibrium provided

µ ∈ (β̄,min (µ̂, µo)). To conclude this step, we show that µ̂ < µ̄ < µo, which together with

the previous step will mean that there is no stationary monetary equilibrium for µ ≥ µ̄ (thus

establishing part (ii) in the statement of the proposition). It is clear that µ̄ < µo, and we know

that µ̂ < µ̄ from Lemma 6. Therefore the allocations and asset prices described in this step

correspond to those in the statement of the proposition for the case with µ ∈ (β̄,min (µ̂, µo)) =

(β̄, µ̂).

Step 3: Try to construct a stationary monetary equilibrium with ãst+1d > 0 for some d ∈ D,

and ãst+1i > 0 for some i ∈ I. The equilibrium conditions are (112), (121), (122), (123), (124),

and (130) with

ãst+1i ≥ 0 and ãst+1d ≥ 0, with “ > ” for some i ∈ I or some d ∈ I.
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Notice that ε∗ and φs are obtained as in Step 2. Now, however, (122) must also hold, which

together with (134) implies that

0 = ε̄− ε∗ + δθ

∫ ε∗

εL

G (ε) dε

or equivalently, (since the right side is just T̂ (ε∗)), that ε∗ = ε̂. In other words, this condition

requires R (ε̂) = T̂ (ε̂), or equivalently, we must have µ = µ̂. As before, the market-clearing

condition (31) is used to obtain Z, while (28), (29), and (30) imply φ̄s, φmt , and pt, respectively.

The allocations and asset prices described in this step correspond to those in the statement of

the proposition for the case with µ = µ̂.

Combined, Steps 1-3 prove part (iv) in the statement of the proposition. Part (v)(a) is

immediate from (122) and (128), and part (v)(b) from (134) and (136).

Corollary 2 The marginal type, ε∗, characterized in Proposition 3 is strictly decreasing in the

rate of inflation, i.e.,∂ε
∗

∂µ < 0 both for µ ∈ (β̄, µ̂), and for µ ∈ (µ̂, µ̄).

Proof of Corollary 2. For µ ∈
(
β̄, µ̂

)
, implicitly differentiate R (ε∗) = 0 (with R given by

(136)), and for µ ∈ (µ̂, µ̄), implicitly differentiate T (ε∗) = 0 (with T given by (128)) to obtain

∂ε∗

∂µ
=


− ε∗

β̄δθ(1−β̄π)[1−G(ε∗)]+µ−β̄ if β̄ < µ < µ̂

− β̄δθ
∫ εH
ε∗ [1−G(ε)]dε{

1+β̄δθ
[
πG(ε∗)
1−β̄π +

1−G(ε∗)
µ−β̄

]}
(µ−β̄)

2 if µ̂ < µ < µ̄.

Clearly, ∂ε∗/∂µ < 0 for µ ∈ (β̄, µ̂), and for µ ∈ (µ̂, µ̄).

Proof of Proposition 4. With δ = 0, in any stationary equilibrium the Euler equations for

a dealer d obtained in Lemma 5 reduce to

µ ≥ β̄, with “ = ” if ãmt+1d > 0

φs ≥ β̄πφs, with “ = ” if ãmt+1d > 0.

The maintained assumptions µ > β̄ and β̄π < 1, and the fact that the equity will be valued

in any equilibrium imply ãmt+1d = ãmt+1d = 0 for all d ∈ D. Since dealers are inactive in any

stationary equilibrium, we focus on investors for the remainder of the proof. In an equilibrium

with no money (or no valued money), there is no trade in the OTC market. The first-order

condition for an investor i in the time-t Walrasian market is

φst ≥ βπEt
(
ε̄yt+1 + φst+1

)
, “ = ” if ãst+1i > 0.

75



In a stationary equilibrium the Walrasian market for equity can only clear if φst = β̄π
1−β̄π ε̄yt. This

establishes parts (i) and (iii) in the statement of the proposition. In a stationary monetary

equilibrium the Euler equations for an investor obtained in Lemma 5 reduce to

µ = β̄

[
1 + αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)

]
(137)

φs =
β̄π

1− β̄π

[
ε̄+ α (1− η)

∫ εc

εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj)

]
(138)

where

εc ≡ Z

As
− φs. (139)

Condition (137) can be substituted into (138) to obtain a single equation in the unknown εc,

namely T̄ (εc) = 0, where T̄ : [εL, εH ]→ R is defined by

T̄ (εc) ≡ β̄αη
∫ εH

εc

∫ εH

εj

εi−εj
εj+

β̄π
1−β̄π

[
ε̄+α(1−η)

∫ εc
εL

∫ εj
εL

(εj−εi)dG(εi)dG(εj)
]dG (εi) dG (εj) + β̄ − µ.

Notice that T̄ (εH) = β̄ − µ < 0 and

T̄ (εL) = β̄αη

∫ εH

εL

∫ εH

εj

εi − εj
εj + β̄π

1−β̄π ε̄
dG (εi) dG (εj) + β̄ − µ,

so since T̄ is continuous, a stationary monetary equilibrium exists if µ < µ̃ with µ̃ defined as in

(35). In addition,

T̄ ′ (εc) = −
[
β̄αη

∫ εH

εc

εi−εc
εc+φsdG (εi)G

′ (εc)

+
(β̄α)2πη (1− η)

1− β̄π

∫ εH

εc

∫ εH

εj

(εi−εj)
∫ εc
εL

(εc−ε)dG(ε)G′(εc)

(εj+φs)
2 dG (εi) dG (εj)

]

is negative, so a stationary monetary equilibrium exists if and only if µ < µ̃, and there cannot

be more than one stationary monetary equilibrium. Condition (36) is just (138), condition (38)

is T̄ (εc) = 0, and (37) follows from (139). This establishes parts (ii) and (iv). Part (v) is

immediate from (38).

Proof of Proposition 5. Recall that ∂ε∗/∂µ < 0 (Corollary 2). (i) From (27),

∂φs

∂µ
=

β̄π

1− β̄π
[
I{β̄<µ≤µ̂} + I{µ̂<µ<µ̄}δθG (ε∗)

] ∂ε∗
∂µ

< 0.
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(ii) Condition (28) implies ∂φ̄s/∂µ = ∂ε∗/∂µ+ ∂φs/∂µ < 0. (iii) Differentiate (31) to obtain

∂Z

∂ε∗
= δZ

G′(ε∗)AsI+

[
G′(ε∗)(ε∗+φs)+θ[1−G(ε∗)]

(
1+ ∂φs

∂ε∗

)
+(1−θ) ∂φ

s

∂ε∗
∫ εH
ε∗

(
ε∗+φs
ε+φs

)2
dG(ε)

]
Z

(ε∗+φs)2

AsD+δG(ε∗)AsI
> 0.

(140)

Hence ∂Z/∂µ = (∂Z/∂ε∗)(∂ε∗/∂µ) < 0. From (29), ∂φmt /∂µ = (yt/A
m
t ) ∂Z/∂µ < 0.

Proof of Proposition 6. First, notice that ∂εc/∂µ = 1/T̄ ′ (εc) < 0, where T̄ (·) is the mapping

defined in the proof of Proposition 4. (i) Differentiate (36) to obtain

∂φs

∂µ
=

β̄π

1− β̄πα (1− η)G′ (εc)

∫ εc

εL

(εc − εi) dG (εi)
∂εc

∂µ
< 0.

(ii) From (37), ∂Z/∂µ = (∂εc/∂µ + ∂φs/∂µ)As < 0, and since Z = φmt A
m
t /yt, ∂φ

m
t /∂µ =

(∂Z/∂µ) (yt/A
m
t ) < 0.

Proof of Proposition 7. From condition (32),

∂ε∗

∂ (δθ)
=

µ−β̄
δθ [ε∗ + β̄π (ε̄− ε∗) I{µ̂<µ}]

β̄δθ(1− β̄π) [1−G (ε∗)] + (µ− β̄)
{

1 + β̄π [δθG (ε∗)− 1] I{µ̂<µ}
} > 0. (141)

(i) From (36),

∂φs

∂ (δθ)
=


β̄π

1−β̄π
∂ε∗

∂(δθ) > 0 if β̄ < µ ≤ µ̂
β̄π

1−β̄π

[∫ ε∗
εL
G (ε) dε+ δθG (ε∗) ∂ε∗

∂(δθ)

]
> 0 if µ̂ < µ < µ̄.

(ii) From (28), ∂φ̄s/∂ (δθ) = ∂ε∗/∂ (δθ) + ∂φs/∂ (δθ) > 0. (iii) For µ ∈ (µ̂, µ̄), (31) im-

plies ∂Z/∂δ = (∂Z/∂ε∗) (∂ε∗/∂δ) > 0 (the sign follows from (140) and (141)), and therefore

∂φmt /∂δ = (∂Z/∂δ) (yt/A
m
t ) > 0.

Proof of Proposition 8. Implicit differentiation of T̄ (εc) = 0 implies

∂εc

∂α
=

∫ εH
εc

∫ εH
εj

η(1−β̄π)(εi−εj)[(1−β̄π)εj+β̄πε̄]
{(1−β̄π)εj+β̄π[ε̄+α(1−η)ϕ(εc)]}2 dG(εi)dG(εj)

∫ εH
εc

αη(1−β̄π)(εi−εj)

(1−β̄π)εc+β̄π[ε̄+α(1−η)ϕ(εc)]
dG(εi)G′(εc)+

∫ εH
εc

∫ εH
εj

β̄πα2η(1−η)(1−β̄π)(εi−εj)ϕ′(εc)

{(1−β̄π)εj+β̄π[ε̄+α(1−η)ϕ(εc)]}2 dG(εi)dG(εj)
> 0.

(i) Differentiate (36) to arrive at

∂φs

∂α
=
β̄π (1− η)

1− β̄π

[
ϕ (εc) + α

∫ εc

εL

(εc − εi) dG (εi) dG (εc)
∂εc

∂α

]
> 0.
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(ii) From (37),
∂Z

∂α
=

(
∂εc

∂α
+
∂φs

∂α

)
As > 0,

and since Z = φmt A
m
t /yt, it follows that ∂φmt /∂α > 0.

Proof of Proposition 9. (i) The result is immediate from the expression for AsD in Proposition

3. (ii) From (24) and (25),

∂µ̂

∂ (δθ)
= β̄

(
1− β̄π

){ (1− δθ) ε̄
[1− δθG (ε̂)] ε̂2

∫ ε̂

εL

G (ε) dε− ε̂− ε̄
ε̂

}
.

Notice that ∂µ̂/∂ (δθ) approaches a positive value as δθ → 0, and a negative value as δθ → 1.

Also, µ̂→ β̄ both when δθ → 0, and when δθ → 1. Hence µ > β̄ = limδθ→0 µ̂ = limδθ→1 µ̂ for a

range of values of δθ close to 0 and a range of values of δθ close to 1. For those ranges of values

of δθ, AsD = 0. In between those ranges there must exist values of δθ such that µ < µ̂ which

implies AsD > 0.

Proof of Proposition 10. (i) Differentiate (39) to get

∂V
∂µ

= 2δG′ (ε∗) (As − πÃsD)
∂ε∗

∂µ
< 0,

where the inequality follows from Corollary 2. (ii) From (39),

∂V
∂θ

= 2δG′ (ε∗) (As − πÃsD)
∂ε∗

∂θ
∂V
∂δ

= 2

[
G (ε∗) + δG′ (ε∗)

∂ε∗

∂δ

]
(As − πÃsD)

and both are positive since ∂ε∗/∂ (δθ) > 0 (see (141)).

Proof of Proposition 10. Rewrite Ṽ as

Ṽ = αAs
∫ εc

εL

{η [1−G (εi)] + (1− η)G (εi)} dG (εi)

+ αAs
∫ εH

εc
{η [1−G (εi)] + (1− η)G (εi)}

εc + φs

εi + φs
dG (εi) .

Differentiate to obtain

∂Ṽ
∂εc

= αAs
∫ εH

εc
{η [1−G (εi)] + (1− η)G (εi)}

∂

∂εc

[
εc + φs

εi + φs

]
dG (εi) ,
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where
∂

∂εc

[
εc + φs

εi + φs

]
=
εi + φs + (εi − εc) ∂φ

s

∂εc

(εi + φs)2 As > 0 for εi > εc.

Hence, ∂Ṽ/∂εc > 0. Thus ∂Ṽ/∂µ = (∂Ṽ/∂εc) (∂εc/∂µ) < 0, since ∂εc/∂µ < 0 (see proof

of Proposition 6), which establishes (i). For part (ii), simply notice that ∂Ṽ/∂α = Ṽ/α +

(∂Ṽ/∂εc) (∂εc/∂α) > 0.

Proof of Proposition 12. (i) For β̄ < µ ≤ µ̂, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
(∂ε∗/∂µ) < 0, and for

µ̂ < µ < µ̄, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
δθG (ε∗) (∂ε∗/∂µ) < 0. (ii) For β̄ < µ ≤ µ̂, ∂P/∂ (δθ) =[

β̄π/(1− β̄π)
]

(∂ε∗/∂ (δθ)) > 0, and for µ̂ < µ < µ̄, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
{δθG (ε∗) [∂ε∗/∂ (δθ)]+∫ ε∗

εL
G (ε) dε} > 0.

Proof of Proposition 13. (i) ∂P̃/∂µ =
[
β̄π/(1− β̄π)

]
α (1− η)ϕ′ (εc) (∂εc/∂µ) < 0. (ii)

∂P̃/∂α =
[
β̄π/(1− β̄π)

]
(1− η) {αϕ′ (εc) (∂εc/∂α) + ϕ (εc)} > 0.

Proof of Proposition 14. The choice variable a′tD does not appear in the Planner’s objective

function, so a′tD = 0 at an optimum. Since (42) must bind for every t at an optimum, the

planner’s problem is equivalent to

W ∗∗ = max
{vt,ãtD,ãtI ,a′tI}∞t=0

E0

∞∑
t=0

βt

{
δ (vt)

∫
[εL,εH ]

εa′tI (dε) + [1− δ (vt)] ε̄atI − kvt+1

}
yt

subject to (6), (7), (40) and (41). Clearly,
∫

[εL,εH ] εa
′
tI (dε) ≤ εH and (41) must bind at an

optimum, so W ∗∗ ≤ W̄ ∗∗, where

W̄ ∗∗ = max
{vt,ãtD,ãtI}∞t=0

E0

∞∑
t=0

βt {[vtatD + δ (vt) atI ] εH + [1− δ (vt)] ε̄atI − kvt+1} yt

= max
{vt,ãtI}∞t=0

E0

∞∑
t=0

βt {[πεH + (1− π) {δ (vt) εH + [1− δ (vt)] ε̄}]As

− [1− δ (vt)] (εH − ε̄)πãtI − kvt+1} yt

= max
{vt}∞t=0

E0

∞∑
t=0

βt {[πεH + (1− π) {δ (vt) εH + [1− δ (vt)] ε̄}]As − kvt+1} yt

= E0

∞∑
t=0

βt
{

[πεH + (1− π) {δ (v∗t ) εH + [1− δ (v∗t )] ε̄}]As − kv∗t+1

}
yt,

where the maximization in the first line is subject to (6), (7) and (40) (which must bind

at an optimum), the second line has been obtained by substituting these constraints into the
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objective function, and {v∗t } in the last line denotes the sequence of vt characterized by (43). The

allocation in the statement of the proposition achieves W̄ ∗∗ and therefore solves the Planner’s

problem.

Lemma 8 In any equilibrium, the free-entry condition (44) can be written as (45).

Proof of Lemma 8. With (14), the left side of condition (44) can be written as

max
(amt+1,a

s
t+1)∈R2

+

[
βEtV D

t+1

(
amt+1, πa

s
t+1

)
−
(
φmt a

m
t+1 + φsta

s
t+1

)]
− kt.

And with (17), this last expression becomes

max
(amt+1,a

s
t+1)∈R2

+

[(
βEtφ̄t+1 − φmt

)
amt+1 +

(
βπEtφ̄t+1pt+1 − φst

)
ast+1

]
+ βEtV D

t+1 (0)− kt, (142)

where

V D
t+1 (0) ≡ κ (vt+1) (1− θ) φ̄t+1

[
AmIt+1

∫ εH

ε∗t+1

(ε−ε∗t+1)yt+1

εyt+1+φst+1
dG (ε) + pt+1A

s
It+1

∫ ε∗t+1

εL

(ε∗t+1−ε)yt+1

ε∗t+1yt+1+φst+1
dG (ε)

]
+ max

{
WD
t+1 (0)− kt, 0

}
is as in Lemma 4, except for the last term, which reflects the fact that the dealer has to bear

cost k in order to participate in the OTC market of the following period. In equilibrium, the

dealer optimization (conditions (19) and (20)) implies

max
(amt+1,a

s
t+1)∈R2

+

[(
βEtφ̄t+1 − φmt

)
amt+1 +

(
βπEtφ̄t+1pt+1 − φst

)
ast+1

]
= 0.

Also, (44) implies max
{
WD
t+1 (0)− kt, 0

}
= 0. Hence (142) reduces to Φt+1 − kt, with Φt+1 as

defined below (45).

Proof of Proposition 15. Consider a stationary equilibrium with free entry (for the model

with α = 0). As µ→ β̄, (32) implies∫ εH
ε∗ [1−G (ε)] dε

ε∗ + βπ
[
ε̄− ε∗ + δ (v) θ

∫ ε∗
εL
G (ε) dε

]
I{µ̂<µ}

→ 0

which in turn implies ε∗ → εH . The dealer’s and the investor’s Euler equations for equity in

Lemma 5 imply

φs =
β̄π

1− β̄π max

{
ε∗, ε̄+ δ (v) θ

∫ ε∗

εL

(ε∗ − ε)dG (ε)

}
,
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and as ε∗ → εH , max
{
ε∗, ε̄+ δ (v) θ

∫ ε∗
εL

(ε∗ − ε)dG (ε)
}
→ max {εH , ε̄+ δ (v) θ(εH − ε̄)} = εH ,

so ÃsD → As, i.e., only dealers hold equity overnight. Thus, from (48), Φ̄− k → Π (v), where

Π (v) ≡ β̄κ (v) (1− θ) (εH − ε̄) (1− π)As − k.

Notice that

lim
v→∞

Π (v) = −k < 0 < β̄ (1− θ) (εH − ε̄) (1− π)As − k = Π (0)

and Π′ (v) = β̄κ′ (v) (1− θ) (εH − ε̄) (1− π)As < 0, so there exists a unique v ∈ (0,∞) that

satisfies Π (v) = 0. To conclude, we only need to show that under the hypothesis of the

proposition, Π (v) = 0 is equivalent to (43). Notice that δ′′ (v) < 0 implies κ (v) = δ (v) /v ≤
δ′ (0) for any v ≥ 0. In particular, for v = 0 this implies 1 ≤ δ′ (0). Hence

0 < β̄ (1− θ) (εH − ε̄) (1− π)As − k ≤ β̄δ′ (0) (εH − ε̄) (1− π)As − k

which means that v > 0 in the Planner’s solution. Then (43) must hold with equality and the

optimal v satisfies

β̄δ′ (v) (εH − ε̄) (1− π)As − k = 0. (143)

Finally, notice that δ′ (v) = κ (v)+κ′ (v) v, so if 1−θ = 1− −κ′(v)v
κ(v) = δ′(v)

κ(v) then (143) is identical

to Π (v) = 0.
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