A  Proofs

Proof of Proposition 1. The choice variable a;,, does not appear in the Planner’s objective
function, so a;, = 0 at an optimum. Also, (5) must bind for every ¢ at an optimum, so the

planner’s problem is equivalent to

max EOZﬂt [5/ eay; (de) + (1 — a — 6) &ayr
t=0 &

{@eD,Ger,a4i0(3)-011 1§20 leL,en]

+/B //H{igb(i)} [Ez’@tib(i) (£ir€0(1)) + €o(i)@ap(iyi (é?b(i),é?i)] dG (:) dG (ep(sy) di| ys

s.t. (2), (3), (6), (7) and 6 ayr (de) < wvap + dayr.

[EL ’EH]

Let W* denote the maximum value of this problem. Then clearly, W* < W*, where

W* = max EU [Z ﬁt [/ //H{z‘gb(i)} max (6, 6,) Q&t[dG (6) dG (6/) di
=0 B

{atp,a:1}§2,
+en (vagp + 6arr) + (1 — o —9) ééﬂ] wyt} +w,
s.t. (3), where w = [aeg + dey + (1 —a —0) &) (1 — m) A® (Eo > 2, B'y) and
es = / / max (c,¢') dG () dG ().

Rearrange the expression for W* and substitute (3) (at equality) to obtain

W* = max Eg {Zﬁt {egA® +|acp+deg+ (1 —a—08)é—eq] &t[}’ﬂ'yt} +w
t=0

{&tf}toio

={meg+ (1 —7)[acp +deg+ (1 —a—0)&]} A° <Eoz,8tyt> .
t=0

The allocation a;p = A*/v, a;; = 0, and Qyip(i) (81,61,(2»)) = H{ab(i)<5i}2atl =+ H{gb(i)zai}ao, where
a® € [0,2ay], together with the Dirac measure defined in the statement of the proposition,

achieve W* and therefore solve the Planner’s problem. m

Proof of Lemma 1. Notice that (8) can be written as

WP (ar) = ¢p,ay + WP (0) (59)
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with W/ (0) given by (14). With (59), (9) is equivalent to
W (ar) = max [of"a]" + 6707 +&(a" + praf — A" = pedty) + smat]” + s6] + Wy (0)
t "t
where ¢ is a Lagrange multiplier on the budget constraint a;* + pia; < ai* + prai, and ¢, and
s are the multipliers on the nonnegativity constraints a;* > 0 and a; > 0. The corresponding

first-order necessary and sufficient conditions for a;* and a; are

£+ 9" +5n=0 (60)
—Epr+ i+ =0 (61)
§(af" + prag — af" — prag) = 0. (62)

Clearly a;* = aj = 0 is the solution if and only if aj* = aj = 0, but more generally the solution
could take one of three forms: (i) ¢ = 0 < G, (i) 65 = ¢ = 0, or (i) ¢ = 0 < ¢5. In

case (1), (60)-(62) imply aj* =0, ai = aj + p%a{”, and pof* < ¢f. In case (ii), (60)-(62) imply

ay* € [0,ai" + prail], af = aj + p% (aj* —ay"), and ¢; = pd*. In case (4ii), (60)-(62) imply

a; = 0, ai® = a* + praf, and ¢f < p;@*. The expressions for aj; and a;; in Lemma 1 follow
from these three cases. The value function (13) is obtained by substituting the optimal portfolio

(am,a2,) into (9). m
Proof of Lemma 2. (i) Notice that (11) can be written as

Wi (ar) = ¢ra; + WY (0) (63)
where

W/l (0) =T, + max
&t+1€]R§_

[ﬁEt/V}L (ait1,¢€) dG (g) — Qa1
s.t. aiy+1 = (dﬁ_l,ﬂdf+1 + (1 — ’ﬂ') AS)
With (13) and (63) the problem of the investor when he makes the ultimatum offer becomes

—S m—=m S—S
_omax eyl + ¢y g + ¢rag;s]
a, . y,a, . 4,4 a
ti* 7tk td) " td

st aph +ap 4+ pe(ags +agy) < ap 4+ apy + pe(ay; + aly)
Qyy + prayy > agy + pragy

—m =S —m —=S
ati* 9 ati* 9 atd, atd E R+
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The corresponding Lagrangian is

L= (" +" =& ag- + (eye + ¢} + ] — Epr) Ty
+(p+sg" — &) aw + (ppe + <5 — Epe) Gy + K,
where K = £ [a]} + a}y + pi(aj; + a3;)] — p (af) + pray,), € € Ry is the Lagrange multiplier asso-
ciated with the budget constraint, p € R, is the multiplier on the dealer’s individual rationality

constraint, and ¢/, ¢/, ¢/, <5 € Ry are the multipliers for the nonnegativity constraints on @y,

Qg @y, @y, respectively. The first-order necessary and sufficient conditions are

P+t —E=0 (64)
eye+ ¢+ —E&pe =0 (65)
Pt —€=0 (66)

ppt+ g —Epe =0 (67)

and the complementary slackness conditions

§{ati + atg + pelag; + agg) — [agi +agg + pi(ag- +agg)l} =0 (68)
p [aiq + peayg — (agg + pragg)] = 0 (69)

GGy = (70)

Glag« =0 (71)

sjap; =0 (72)

sjaz, = 0. (73)

First, notice that £ > 0 at an optimum. To see this, assume the contrary, i.e., £ = 0. Then
(65) implies ey; + ¢f = —¢; < 0 which is a contradiction since ey; + ¢f > 0. If p > 0, then (69)
implies

g + Pelyq = atg + Piaiq- (74)
If instead p = 0, then (66) and (67) imply ¢* = £ > 0 and ¢; = {p; > 0, which (using (72)
and (73)) in turn imply @} = @;; = 0. This can only be a solution if a}j + piaj;, = 0 (since
ayy + puag,; > ayy + peaf; must hold at an optimum) in which case (74) also holds. Thus, we
conclude that (74) must always hold at an optimum (and with p > 0 unless a}; + piaj; = 0).
Since £ > 0, (68) and (74) imply
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From (74) it is immediate that if a}j+piaj, = 0, then @}; = @;, = 0. So suppose a}j+pia;, >
0. In this case ¢j* and ¢ cannot both be strictly positive. (To see this, assume the contrary,
i.e., that ¢J'* > 0 and ¢j > 0. Then (72) and (73) imply @}; = @;;, = 0, and (74) implies
ayy + prag; = 0, a contradiction.) Moreover, conditions (66) and (67) imply ¢ = <J'ps, so
G = <" = 0 must hold at an optimum. Hence when making the ultimatum offer, the investor
is indifferent between offering the dealer any nonnegative pair (@}, a;;) that satisfies (74).
From (75) it is immediate that a}. = aj;. = 0 if @} + piaj; = 0. So suppose aj} + paf; > 0.
In this case ¢/ and ¢ cannot both be strictly positive (if they were, then (70) and (71) would
imply @} =aj,. =0, and in turn (75) would imply a;} + praj; = 0, a contradiction). There are
three possible cases: (a) ¢f =0 <™, (b) ¢f =¢" =0, 0or (c) ¢" =0 < ¢’. In every case, (64)
and (65) imply
eyt + @7+ = piedy" + pesi (76)

In case (a), (70) implies @} = 0, (75) implies @j;« = a}/p: + a;, and (76) implies that ¢ must
satisfy € > e, where ¢} is as defined in (15). In case (b), (76) implies that € must satisfy ¢ = &}
and the investor is indifferent between making any offer that leaves him with a nonnegative
post-trade portfolio (@}, aj;.) that satisfies (75). In case (¢), (71) implies @j;;. = 0, (75) implies
a;h = ap + paj;, and (76) implies that € must satisfy € < ef. The first, second, and third lines
on the right side of the expressions for @y, , @y;., ajy, and a;; in part (i) of the statement of the
lemma correspond cases (a), (b), and (¢), respectively.

(7) With (13) and (63) the problem of the dealer when it is his turn to make the ultimatum

offer is equivalent to

_omax ¢ [@ge + pragge
Qi s Qp s Ay g s Ay g
s.b. ay + apge + pe(@g; + alye) < ayp + apy + pe(ag; + aiy) (77)
o ay; + (eye + &7) ag; > ¢t ay; + (eye + ¢F) ay; (78)

—=m —=S —=m -8
The corresponding Lagrangian is

L= (¢ + < —E)apg + (dupe + 55 — Ep) sy
+ (poi" + " = &) ay; + [p(ey + &) + 7 — Epdag; + K,

where K’ = &[a]} + a) + pi (af; + a3y)] — pofal} + (eye + ¢f) aj], € € Ry is the Lagrange

multiplier associated with the budget constraint, p € Ry is the multiplier on the investor’s
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individual rationality constraint, and ¢, <7, <}, 7 € Ry are the multipliers for the nonnega-
tivity constraints on @y}, @j;, @jy., @j;., respectively. The first-order necessary and sufficient

conditions are

¢_5t+§§”—£=0

Gt + 55— Epr =0

Pt 6" —E=0
pleye+¢7) +< —&pe =0

and the complementary slackness conditions

§{aiy + agg + pe(ai; + aig) — [ag + ayg- + pe(@j; +ajg )]} =0 (83)
ploiay + (ey + o7) ay; — (9 ali + (eye + 67) agi]} = 0 (84)
¢ap; =0 (85)

sag; =0 (86)

Sq Gy =0 (87)

(88)

First, notice that £ > 0 at an optimum. To see this, note that if £ = 0 then (79) implies
ot + ;' = 0 which is a contradiction since the left side is strictly positive (¢ > 0 and S =0

in a monetary equilibrium). Hence, at an optimum,
afi + ayge + pe(@3; + Thg-) = aii + ajg + pe(ag; + agy). (89)

Second, observe that conditions (79) and (80), imply pis}* = ¢j, so ¢j* and ¢; have the same
sign, i.e., either both are positive or both are zero.

If p =0, then (81) and (82) imply ¢/ = £ > 0 and 7 = {p; > 0, which (using (85) and (86))
in turn imply @;} = @}, = 0. From the buyer’s individual rationality constraint (78) it follows
that this can be a solution only if ¢j"a}} + (cy: + ¢7) af; = 0, or equivalently only if a}} = a;, = 0.
To obtain (ay}.,a;;.), consider two cases: (a) ¢J* = ¢ = 0, in which case (ay}.,a;;.) need only
satisfy ayy. + piay,. = apy + peaiy, or (b) ¢ > 0 and ¢ > 0, in which case a}j. = @}, = 0,
which according to (77), is only possible if a}j = af; = 0. It is easy to see that the solution

for case (a) can be obtained from the expressions for @y}, a3;, ajy., and @}, in part (i) of the
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statement of the lemma simply by setting a;} = aj; = 0, and the solution for case (b) can be
obtained similarly, by setting aj} = aj; = aj; = aj; = 0.

If p > 0, then (84) implies
O ay; + (v + ¢7) @y = o az; + (ey + 6F) ag- (90)

There are eight possible configurations of to be considered: [Configuration 1] ¢/ = ¢ =¢j =0 <
¢™. In this case (85) implies @ = 0. Conditions (79)-(82) imply <™ = (¢ — &}) ¢ryi/ (eyr + ¢5),
and therefore £f < €. Then from (89) and (90) it follows that
_ ety + ¢f) 1
aSA = as. + ti 7am
ti ti <5yt +¢f D ti

and (@j.,ay;.) is any nonnegative pair that satisfies

_ _ €—&)u
Ay + DeGige = apy + prazy + (7tam.
td* T Ptlq td T Ptlq ey + oy b
[Configuration 2] ¢/ = ¢ = ¢J* = ¢; = 0. In this case conditions (79)-(82) imply € = ¢}, and

(89) and (90) yield

Qyi + prag; = ag; + peay; (91)

Qe + Ptlgge = Ay + Pragy. (92)

Hence the dealer is indifferent between making any offer (aj}, af;, ay}., a;,. ) such that (aj},af;) €
R, satisfies (91), and (@}, a;;.) € Ry satisfies (92). [Configuration 3] ¢/” =<' =¢5 =0 < ¢}
In this case condition (86) implies @j; = 0. Conditions (81) and (82) imply ¢ = (¢} —¢) yep,
and therefore ¢ < ¢f. Then from (89) and (90) it follows that

— eyt + ¢;
am = am + L as.
t1 t1 Ez{yt + ¢§pt tt
and (@j.,ay;.) is any nonnegative pair that satisfies
— — (ef —e)u
A + pias .« = aly + pras; + —2"piad.
td* T PtQiq td T Ptlyq Sy + b Diay;

[Configuration 4] ¢J* = ¢ =0, 0 < ¢/™ and 0 < ¢7. In this case conditions (85) and (86) imply
ay = ay; = 0, which according to (90), is only possible if a}} = aj; = 0. Then (a}}.,a;.) is any

nonnegative pair that satisfies (92). [Configuration 5] ¢f =0 < ¢/, 0 < ¢J* and 0 < ¢j. In this
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case conditions (85), (87) and (88) imply a;; = ay;. = a;;. = 0. Conditions (81) and (82) imply
e < e. Then from (89) and (90) it follows that the following condition must hold:
1 m (€ - E;tk) Yt 1 m

ajg+ —apy = — —ag.
T, (e —e)ye +ped™ | pr

The term on the left side of the equality is nonnegative and the term on the right side of the
equality is nonpositive (since €f < ¢), so this condition can hold only if a} = a}j = af; = 0.
Therefore (89) implies @j; = af;. [Configuration 6] ¢/" = ¢’ =0, 0 <" and 0 < ¢j. In this case
conditions (87) and (88) imply @}}. = @;;. = 0. Conditions (81) and (82) imply € = 7, and in
turn conditions (89) and (90) imply ay} + piaj; = 0, or equivalently, a}); = aj; = 0 must hold,
and (@j},ay;) is any nonnegative pair that satisfies (91). [Configuration 7] ¢/ =0 <7, 0 < ¢
and 0 < ¢j. In this case conditions (86)-(88) imply a@;; = @} = a@;; = 0. Conditions (81) and
(82) imply € < ¢f. Then from (89) and (90) it follows that the following condition must hold:

¢y (agg + pragy) = — (67 — &) yeag;.

The term on the left side of the equality is nonnegative and the term on the right side of the
equality is nonpositive (since € < €f), so this condition can hold only if ¢} (ay + paj;) = aj; =
0. Therefore (90) implies a}; = aj}. [Configuration 8] 0 < ¢/, 0 < ¢, 0 < ¢j and 0 < ;. In
this case conditions (85)-(88) imply @y} = ay; = ayj. = a;; = 0, which according to (89) is only
possible, and the only possible solution if aj} = aj; = a}; = aj; = 0. To conclude, notice that
the solutions for Configurations 1, 2, and 3, correspond to the first, second, and third lines of
the expressions for @y}, ay;, a;y., and @;;. in part (ii) of the statement of the lemma. Similarly,
the solution for Configuration 5 corresponds to the first line of the expressions for @7, @y;, a;}.,
and @}, in part (i) of the statement of the lemma, with aj} = a}} = af; = 0. The solution
for Configuration 6 corresponds to the second line of the expressions for @}, @j;, a;y., and @;;.
in part (4) of the statement of the lemma, with a}j = a;; = 0. The solution for Configuration
7 corresponds to the third line of the expressions for aj}, af;, aj., and @;;. in part (i) of the
statement of the lemma, with ¢* (a7 + piaj;) = aj; = 0. Finally, it is easy to see that the
solution for Configuration 4 can be obtained from the expressions for aj}, ay;, @}., and @; . in
part (i7) of the statement of the lemma simply by setting a;} = aj; = 0, and the solution for

case Configuration 8 can be obtained similarly, by setting a;} = af; = a; = aj; = 0. ®

Proof of Lemma 3. With (63) investor i’s problem when choosing his take-it-or-leave it offer
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to investor j reduces to

max [(eyr + ¢f) ag + P ar]

[ A
s.t. Q?il* +QZ‘L < CL?Z + CL?}
aip + af; < af; + a;
ejyeal; + O7'al} + $iaj; > ejynal; + o' al + diai;

m S m S
Qs Q> Ay, Agy © Ry

If ¢7* = 0, then a};. = af; and ay; = ag; (the bargaining outcome is no trade between investors
i and j) so suppose ¢ > 0 for the rest of the proof. The Lagrangian corresponding to investor

i’s problem is

L= (" +¢" = &) ags + (eiye + &7 + 6] — &) ajs
+ (o0} + 6" = &") aif + [p(gjye + ¢)) + 65 — €] ay + K7,

where K" = ™ (ap} + aj}) + &% (af; + af;) — p(ejyeas; + ¢ ap + dfaj;), €™ € Ry is the multiplier
associated with the bilateral constraint on money holdings, £* € R is the multiplier associated
with the bilateral constraint on equity holdings, p € R, is the multiplier on investor j’s indi-
vidual rationality constraint, and ¢",¢;, gjm, cj € R, are the multipliers for the nonnegativity
constraints on Gy, G+, Gy; 5 Gf;, respectively. The first-order necessary and sufficient conditions

are
o+ =" =0 (93)

gyt +¢r+¢ —& =0 (94)

I T (95)

(96)

plejy+ o)+ —& =0
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and the complementary slackness conditions

M (ayy + ag? —aps — Q?}) =0 (97
§°(ay; +aj; —ag» —ag;) =0 (98
p(ejyay; + 7' af} + ¢iag; — ejyay; — ¢7'afy — ¢iag;) =0 (99

Si Qe = (
Giag= =0 (101
sj'ay; =0 (102
sjaj; = 0. (103

If & = 0, (93) implies 0 < ¢} = —¢ < 0, a contradiction. If £ = 0, (94) implies

0 < gy + ¢f = —¢7 < 0, another contradiction. Hence £ > 0 and £° > 0, so (97) and (98)
imply

ap + a4 = ag + ajj (104)

If p =0, (95) and (96) imply ¢;* = ™ > 0 and ¢; = £ > 0, and (102) and (103) imply
aj; = ag; = 0. From investor’s j individual rationality constraint, this can only be a solution
if af} = aj; = 0, and if this is the case (97) and (98) imply (aj,ay+) = (aif, af;). Hereafter

suppose p > 0 which using (99) implies
ot afy + (ejye + 07)ay; = o1 afy + (e5ye + ¢F)ay;- (106)

If ¢/* > 0 and ¢j* > 0, (100) and (102) imply @i = ai} = 0 which by (104), is only possible
if a7 = aj} = 0. But then (106) implies aj; = a;;, and (105) implies af;. = ag;. Similarly, if
§; > 0and ¢; > 0, (101) and (103) imply af;. = af; = 0 which by (105), is only possible if
ag; = aj; = 0. But then (106) implies @i} = a7, and (104) implies aji. = aj. If ¢/* > 0 and
¢? > 0, then (100) and (101) imply ay. = aj;« = 0, and according to (104), (105) and (106), this
is only possible if aj} = aj; = 0. Conditions (104) and (105) in turn imply (a7}, af;) = (af}, af;)-
Similarly, if ¢;* > 0 and ¢; > 0, then (102) and (103) imply ¢;} = aj; = 0, and according
to (106) this is only possible if @i} = af; = 0. Conditions (104) and (105) in turn imply
(%, a3») = (af}, ay;). So far we have simply verified that there is no trade between investors 4

;o m S — m S m S — m S 3 mo __ m __ - J— s __
and j, i.e., (aii, af) = (a}, ay;) and (af}, af;) = (af}, ag;), if aif = af} =0, or af; = aj; =0, or
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ay; = ay; = 0, or a;? =aqaj tj = 0. Thus there are seven binding patterns for (¢, ¢? ,gj : S5 %) that
remain to be considered.

(i) " = =" =¢j = 0. Conditions (93)-(96) imply that this case is only possible if
i = €;, and conditions (104), (105) and (106), imply that the solution consists of any pair of

post trade portfolios (aj,ay;») and (gg‘, gfj) that satisfy

5jyt+¢t
afy = afy = S0 (o i)
t
15 +
= ap + IO e s

o '

s _ s s s
iy = Qg + Afj — Qs

aj;+ € |ay; —min ik ———ay5,ay; |, ay; + min o ———ay,ai; )| -
B gjye+ o7 iyt + 9f !
(i) 7 = <" = ¢ =0 < ¢". Condition (100) implies ajf. = 0, and from (104) we obtain

= ay; + ag;. Then condition (106) yields

s s (bt am
2t t Qi
J Jj 5] n ¢s

m
Qg5

and condition (105) implies
S S ¢?L m

Qpixs = Ay + —————Qy; .
=t t1 ti
E5Y t+¢s

Notice that gj = 0 requires g;fj > 0 which is equivalent to
o agy < (ejye + ¢7) ag;-

Conditions (93)-(96) imply ¢/* = (e; —&;) ytgj;i%(ﬁfa so ¢/ > 0 requires €; < ;.
(iii) " = <" = ¢§ = 0 < 7. Condition (101) implies af; = 0, and from (105) we obtain
aj; = ay; + a;;. Then condition (106) yields

m __ . m gjyt + qst
Q5 = Qg5 — o Ay
t

and condition (104) implies
iyt T ¢ + th

at .
oy ’

Notice that ¢j" = 0 requires a;; > 0 which is equivalent to

mo __
aph = ag +

(ejyr + &%) aj; < ¢ ajf.
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Conditions (93)-(96) imply <7 = (g; — &;) Y¢, so s > 0 requires g; < ;.
(iv) " = ¢ =¢j =0 < ¢". Condition (102) implies a7 = 0, and from (104) we obtain
apt = aj? +ay?. Then (105) and (106) imply

1) t7°
t
s s ¢ m
ay; = Qy; + ——————ay;
t t t
7 T S
im
s t m

S
Apis = Q7 — a;;.
Zta i 13
ejye +of

Notice that ¢7 = 0 requires aj;. > 0 which is equivalent to
oiag; < (€jye + 9%) agi-
Conditions (93)-(96) imply <" = (g; — &) yt%, so ¢;" > 0 requires ¢; < ;.

(v) " =</ =< =0 < ;. Condition (103) implies a;; = 0, and from (105) we obtain

(2

ag; = ag; +aj;. Then (104) and (106) imply

m €Yt + (pf a’

m o _ _ .
Gij = iy =
t
. s
Al = gm €Yt + ¢t s
St — Yti T T o m Yty
ot

Notice that ¢/ = 0 requires ;. > 0 which is equivalent to
(ejye + 07) ajy < " ay; -

Conditions (93)-(96) imply <7 = (&; — &;) ¢, so ¢; > 0 requires €; < &;.
(vi) /" s; € Ryq and ¢ = /" = 0. In this case, conditions (100) and (103) give aj}. =
ag; = 0, and (104) and (105) imply @i% = ai} + afj and ag;. = aj; + af;. Condition (106) implies

the following restriction must be satisfied
o1 ag; = (e5y: + 97 )ag;-

Conditions (93)-(96) imply ¢;" = (p — 1) ¢i" and 67 = (&, —&;) yr—(p — 1) (gjy¢ + &), 80" >0
requires p > 1, and gj requires €; < &;.
(vit) ¢ =¢; = 0 and ¢/, ;" € Ry4. In this case, conditions (101) and (102) give aj;. =

ay; =0, and (104) and (105) imply aji = aj +af} and af; = aj; + aj;. Condition (106) implies

the following restriction must be satisfied
o1 ag; = (e5y: + ¢f)ay;-
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Conditions (93)-(96) imply ¢* = (1 — p) ¢i" and ¢} = (gj — &;) yr— (1 — p) (€Yt + ¢7), 506" >0
requires p € (0,1), and ¢ > 0 requires ¢; < ;. m

Proof of Lemma 4. (i) With Lemma 1, (10) becomes
VP (@l aia) = w8 [ Gy + puy — (af + proiy)) dBE (o)
+£K(1-10) / ot [ahy + pragy — (ajy + pragy)] dHy (ag;, €)
+ 1 (agg + praga) + W2 (0)

where we have used the more compact notation introduced in Lemma 2, i.e., Efi* = Ef* (ati, aiq, €;1,),
—k — =k . —k — =k . -k — =k . _
ayy = @y, Gd, €39, Gy = G (G, Qra, €51 ), and @y = o (@i, Gy, €3 9;), for k= m, s. Use

Corollary 1 to arrive at

VD m’ S\ 1_0/_ |:Hea* (5:_5)%
V- (agg, apg) = K ( ) [ P {<t}75:yt+¢§

+ ¢y (afy + pragy) + WP (0)

(e —&f) ut
ptafi‘i‘ﬂ{a;ge}W ag; | dHy (ag,€)

where [;...+} is an indicator function that takes the value 1 if ¢ < &7, and 0 otherwise. To
obtain (17), use the fact that dH, (ay,e) = dF{ (ay) dG (¢).

(#) With (63) and the notation introduced in Lemma 2 and Lemma 3, (12) becomes
Vi (a7}, afy i) = 59/ (07" (afi — afi) + (ziye + ) (@G- — afi)] dE (awa)

43 -0) [ o @ - ) + s + 60) @ — 63)) dFP (au0)

+ Oé/ (i 65) (97" (ati- — a) + (e + ¢F) (api- — ag)] dHy (@, €5)

t+a / 1= i (ern )] [0 (@ — al) + (eip + 65) (@, — afy)] dHy (asy, ;)
+ ¢ al + (eiye + 6F) af; + W (0).

Use 7] (gi,€5) = nle; ey +(1 —n) Iie, < ;3 +(1/2) I~y and substitute the bargaining outcomes
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reported in Lemma 2 and Lemma 3 to obtain

I (5' - 8*) Yt *
Vi (agf, a3, ei) = MH{EKSZ'}W ¢ag; + 59H{si<s;} (et — &) yray;

+an //]I{aj<ai} |:_¢¥n min {pf(e;)ay;, af; }

+ e+ ot min {5 iy} aF () 4G )

rat=n) [ [Teeey [<Z>§” min {pf (=;)a,, aft}

~ (e + opymin {555} aF (@) G (e

+ o7 ag + (saye + 67) af; + W (0). (107)

From (11), we anticipate that as in Lagos and Wright (2005), the beginning-of-period distri-
bution of assets across investors will be degenerate, i.e., (aii;,a7;1;) = (A7t 1, Ay, ) for all

j €Z,so (107) can be written as (18). m

Proof of Lemma 5. With Lemma 4, the dealer’s problem in the second subperiod of period
t, (14), becomes

WP (0) = max_ [(—¢" + BEibri1)art, + (—¢5 + BrEideiapir1)as | + BEVY, (0). (108)

~ 2
at+1€R+

From (18),

/Vt{f—l (a1, aisr, i) dG (e1) = daits + / (i1 + $i4) a71dG (80) + Wi, (0)
06 / Iier, <e0)
+ 59/]I{ai<a;*+1} (511 —€i) yev1a3,1dG (g4)

(& =€) Ytt1 m m
o /M_@H} 1 / ——— = ¢11a11dG (&) dG (g5)
5 o

(Ei - 5?+1) Yt+1
Eri1Yi1 + Oy

¢;11a;11dG (€4)

e €Y1 T Pfq

AIt+1

P14 10451

+a(l—mn) /[45;11,47%“_(#3 }

aii1 t+1
[4)?@1*4?1“ _

s g e
t+1 j| Yt+1 / (E] — E’L) yt+1a?+1dG (52) dG (8])

1
= )y 510G () 4G (&)
€

J

% (g5 — &) Yes1
RS TSI gm Am G (25) dG (5
| A O ARG () 4G ()

+a(1—n)/
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so the investor’s problem (11) can be written as in (63), with

(i — €541) Ye1
1+60 [ Iy Lad dG (g;
< + / {Et+1<81}82<+1yt+1 + ¢§+1 (5 )

WtI (0) = max { — ¢ ag + BE:

a1 €R4

(ei — ) Yt41
+an/ m am / —dG dG (g;) o7 ah
{M* f+1} ytj—l EjYt+1 + P (€0)dG (e5) ot

Al
t+1

A
o ]ytH / (ei — €5) Yr+1dG (g:) dG (g5) Afyyy
13

J

{‘Pﬁ-l‘iﬂl s
El
+ an

(/ (iyer1 + 6111) dG (e4)

&f+1 eRy

+ max { — ¢iajyy + OE:

+ 59/H{5i<5§+1} (er41 — €i) yer1dG (e4)
AT s

1 Gior| 1 pe
t+1 ]yt“/ (Ej_5i)yt+1dG(€i)dG(sj))af+1

alt-n [

To (1 - 77) /|:¢t+1 Ti41

% (5 — €) Yeg1
L8 Z )Y 1o () dG (2) | AT
[ G () 46 ) i A

Yt }

+ T, + BEW/, . (0), (109)

~951| vy
where af, | = maj,, + (1 —n)A®. The first-order necessary and sufficient conditions for op-

timization of (108) are (19) and (20). The first-order necessary and sufficient conditions for

optimization of (109) are (21) and (22). m

Proof of Proposition 2. In a stationary equilibrium, the dealer’s Euler equations in Lemma

5 become

MZB7 “=7 lf&?j-].d>0

T ~
d)s 2 1?577_5*) “«_—”if aerld > 0.

The maintained assumption ;¢ > 3 implies ait1g = 0. Similarly, in a stationary monetary

equilibrium the investor’s Euler equations in Lemma 5 become

p=75

1+ 660 /EH o dG( )
+ €
e* *+ ¢s

+om/EH/6H o 5jdG<€z>dG( i) (110)
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L
¢ =17

£+ 66 /E (6" —&)dG (i) +a(l—n) (EC)]

where e = Z/A3 — ¢°, p(e) = fEL f (ej —€i)dG (&) dG (g5), and the second condition holds

with “="if af,,; > 0. Together, the dealer’s and the investor’s Euler equations for equity imply
g

1—fBr

o = max{z—: 5—1—50/ e —61)dG(51)—|—a(1—77)g0(56)}. (111)

As p — B, (110) implies

EH EH EH 51 Ej
50 ¢sdG &) +an | LdG (£;) G (¢5) — 0,
8*

a condition that can only hold if ¢* — ¢y and ¢ — eg. The fact that €* — ey means that

among investors who contact dealers, only those with preference type ef purchase equity. The
fact that e — e implies that in bilateral trades between investors, the investor with the higher
valuation purchases all his counterparty’s equity holdings (the investor who wishes to buy is

never constrained by his real money balances as p — ). Finally, as p — j3,

lfwﬂ_w €+56(5H—8)+a(1—n)<p(€H)}—f&rsH,

so aj 4 = A® for all ¢, i.e., only dealers hold equity overnight. m

¢° —

Lemma 6 Consider fi and i as defined in (24). Then i < [i.

Proof of Lemma 6. Define Y () : R = Rby T (¢) = 3 [1 4 06(1 — Br)¢]. Let (= %
E—eg,

and ¢ = et (- fmer” so that o = T(é) and i = Y({). Since Y is strictly increasing, i < fi if
and only if { < (. With (25) and the fact that & = f;LH edG (e) =eg — fEELH G (g) de,

Je" [1—0(6)]618

(=
5—1—56’] G(e)de’
so clearly,
. HI1—G(e)]de &— _
(COE g .

Hence i < 1. m
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Lemma 7 In a stationary equilibrium, the interdealer market clearing condition flsDt + flft =

A, + 0A3, is equivalent to

50[1—G(5*)]< §+6*+Z¢S>+5(1—9)/;H{ §+6f¢s]de(5)= S LA (112)

Proof of Lemma 7. Use § = kv in flsbt + fl?t = A}, + 6Aj, to obtain

0 / {a3 @4 (aui, aca, £:9) ;9] + @3 (ani, awa, € 9,) } FS (awa) dF] (as:) dG (e)

+(1-96) / {03 (@4 (asi, awa, & 9%,) s Py + @ (@ri, ara, €3 9,) } dF (ara) dF] (ay) dG (e)

_ s D s I ) (1 - KV) v s ~S . D

= [ aydFy” (aw) + [ ajdFy (ag) + s lagq — ag(ata; )] dFy (atd) - (113)
Since ¢f = ¢y, < e*ys + ¢*yr = ¢°yr = PP in a stationary equilibrium, Lemma 1 implies

(g (@ (atis ards €5,) ;9] = ag [@ar (ati, ara, €59,) 5] = aglaa; ¥y) = 0. (114)
With (114) and the fact that [ af,dF{ (ay) = A} and v [ a5, dFP (aq) = A3, (113) becomes
047 = 00 [ @ (an aus. 9 )AFD () dFY (@) dG ()

+6(1—6) /af(ati, @i, €0, dEP (awg) dFF (ay) dG (¢) . (115)

From Lemma 2,

_ 1 _
@3 (@, Qyq, €5 ) = ]I{z-:*<€} <afz + pf‘ﬁ) + H{szs*}af*

e +o°\ 1 _
€+¢S> a{’}] + Lfeeerya;

af(a’tia Qyq, € ’(pt) - ]I{E*<E} |:a§l - < Dt

where @, a; € [0,a; + a} /pt], so (115) becomes

ol -] (45+ 2az) +5-0) [ [+ (520) Lag|ac o) - ap+ o
1+ A g T ctor ) it = Ap 1

Finally, use the fact that in a stationary equilibrium, ¢;*AY, = Zy; and p:¢]" = Oy =

(e* + ¢°) yi, to arrive at the expression in the statement of the lemma. m

Proof of Proposition 3. In an equilibrium with no money (or no valued money), there is

no trade in the OTC market. The first-order conditions for a dealer d and an investor 7 in the
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time-t Walrasian market are

¢p = P, “ =" i agy4 >0

¢; > BB (Eyre1 + dfy1), =" if aj4y; > 0.

In a stationary equilibrium, E(¢7,,/¢f) = 7, and fym < 1 is a maintained assumption, so

no dealer holds equity. The Walrasian market for equity can only clear if ¢* = 7 é gﬂe_. This

establishes parts (i) and (%) in the statement of the proposition.

Next, we turn to monetary equilibria. With o = 0, in a stationary equilibrium (19)-(22)

become
w> B, ="t ag >0 (116)
¢° > Brd®, “="if aj, 4> 0 (117)
B JHN-GENde]
12; 1+56 £ 5*+¢5 y = lfat+1i>0 (118)
Br e o~
L 59/ Ge)de|, “ =" ifa,y; > 0. (119)
1 _Bﬂ- €L

(In (116) we have used the fact that ¢° = &* + ¢* > ¢°.) Under our maintained assumption
B < u, (116) implies ayt 14 = Zp = 0, so (118) must hold with equality for some investor in a
monetary equilibrium. Thus, in order to find a monetary equilibrium there are three possible
equilibrium configurations to consider depending on the binding patterns of the complementary
slackness conditions (117) and (119). The market-clearing condition, A%, + A3, = A%, + A3,
must hold for all three configurations. Lemma 7 shows that this condition can be written as
(112) and this condition can be rearranged to deliver (31). The rest of the proof proceeds in
three steps.

Step 1: Try to construct a stationary monetary equilibrium with a;, _,; = 0 for all d € D,

and aj,,; > 0 for some i € Z. The equilibrium conditions for this case are (112) together with

¢° > B (120)
=5 [1 + spde L= G ()] da] (121)
I e+ ¢°
B

¢S:1—B7r

£+ 00 /6* G (e) da] (122)
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and

Gy =0foralld e D (123)
agyqy; > 0, with “> 7 for some i € 7 (124)
a;y1qg = 0 for alld € D (125)
agyq; > 0, with > for some i € 7. (126)

Conditions (121) and (122) are to be solved for the two unknowns ¢* and ¢°. Substitute (122)
into (121) to obtain

3 H1-G(e)d
1= 21460 J" 1= G (o)l de (127)
p e+ 1 e+ 30 [5G (o) de]
which is a single equation in €*. Define
“H1-G(e)d -3
T(x) = fﬂf [ BW(E)J = ”_595 (128)
1757rx+ 1757|_T(1‘) B
with
T(x)=&—z+00 | G(e)de, (129)

and notice that * solves (127) if and only if it satisfies T'(¢*) = 0. T is a continuous real-valued

function on [er, ep], with

T(SL) = 3 - )
e+ %5— B340
T (en) = _Mﬁ;eﬁ <0,

and

(1-G@){a+ 22 [e+60 J7 Ge)de] }+[ [ 1-Gle)de] {1+
[t 2n[evo0 2 Gle)de] )

Hence if T (e1,) > 0, or equivalently, if © < g (with f is as defined in (24)) then there exists a

A 590@:)} o

T () = —

unique £* € (ep,ep) that satisfies T (¢*) = 0 (and €* | e as u 1 ). Once we know &*, ¢° is
given by (122). Given €* and ¢°, the values of Z, ¢°, ¢" and p; are obtained using (31) (with
A7 = A% and A7, = 0), (28), (29) and (30). To conclude this step, notice that for this case to
be an equilibrium (120) must hold, or equivalently, using ¢* = £* + ¢* and (122), it must be
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that 7' (¢*) > 0, where 7' is the continuous function on [ey, ] defined in (129). Notice that
T (2) = —[1 — 860G (2)] <0, and T (egg) = — (1 — 60) (eg — &) <0 < e —ep, =T (1), so there
exists a unique € € (g1, e) such that 7' (¢) = 0. (Since T (&) > 0, and 17" < 0, it follows that
£ < &) Then T’ (z) < 0 implies T (¢*) > 0 if and only if e* < &, with “=” for e* = &, With
(128), we know that e* < £ if and only if T (£) < 0 =T (%), i.e., if and only if

60 (1= Brm) [S¥[1— G (e)] de

B+ = - -
pre+ (1 — Br) € + Bmdb f;L G (g) de

Since T (&) = (1 —d6) (£ — &) + 66 JE" 1 =G (e)]de = 0, this last condition is equivalent to
i < w, where [i is as defined in (24). The allocations and asset prices described in this step
correspond to those in the statement of the proposition for the case with p € (i, ).

Step 2: Try to construct a stationary monetary equilibrium with aj ;> 0 for some d € D,
and aj,; = 0 for all i € Z. The equilibrium conditions are (112), (121), (123), (124), together
with

¢* = pro® (130)
S BTF = 6* ¢ 3 ~S
¢° > =— £+ 00 G(e)de|, “="if aj q; > 0. (131)
1- 67[- €L
a3 19 > 0, with “ > " for some d € D (132)
azyq; =0, forall i € 7. (133)

The conditions (121) and (130) are to be solved for * and ¢*. First use ¢* = £* + ¢° in (130)

to obtain

S /87T *
= __¢*, 134
o= e (134)
Substitute (134) in (121) to obtain
B 660 (1 —Bm) [ZF[1 -G (e)]d
PR P ﬁﬂ)ff*[ (©)] d= (135)
1 €
which is a single equation in £*. Define
1—Bn) [(7[1-G(e))d - B
R(z) = ( ﬂﬂ) f:n [ (5)] e pu—p (136)

x B 566
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and notice that * solves (135) if and only if it satisfies R (¢*) = 0. R is a continuous real-valued

function on [er,ep], with

(1-Br)(e—cL) p—B

e = B T
R(en) = —Mﬁgf
and
R%@Z_D_Gﬁﬂwﬂﬁ H—G@ﬂ@<0

2

1-p8m
Hence if R (e1,) > 0, or equivalently, if
60 (1 — Br) (e —er) .

p<p|l+ =u
€L

then there exists a unique £* € (er,ep) that satisfies R(¢*) = 0 (and €* | er as pu T u°).
Having solved for £*, ¢° is obtained from (134). Given €* and ¢°, the values of Z, ¢*, ¢* and
p¢ are obtained using (31) (with A} = A® — A7 = wA%), (28), (29) and (30). Notice that for
this case to be an equilibrium (131) must hold, or equivalently, using (134), it must be that
T (¢*) < 0, which is in turn equivalent to & < e*. With (136), we know that é < ¢* if and only
if R(e*) =0 < R(é), i.e., if and only if

60 (1 —Brm) [2"[1 =G (e)] de

é

,u<B 1+

which using the fact that T(é) = 0, can be written as p < . To summarize, the prices
and allocations constructed in this step constitute a stationary monetary equilibrium provided
p € (B, min (i1, u°)). To conclude this step, we show that 4 < i < p°, which together with
the previous step will mean that there is no stationary monetary equilibrium for g > i (thus
establishing part (77) in the statement of the proposition). It is clear that i < p°, and we know
that i < i from Lemma 6. Therefore the allocations and asset prices described in this step
correspond to those in the statement of the proposition for the case with p € (3, min (1, u°)) =
(3, ).

Step 3: Try to construct a stationary monetary equilibrium with aj ;> 0 for some d € D,
and aj,,; > 0 for some i € Z. The equilibrium conditions are (112), (121), (122), (123), (124),
and (130) with

aiyq; > 0 and af, ;4 > 0, with “ > 7 for some ¢ € 7 or some d € Z.
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Notice that e* and ¢*° are obtained as in Step 2. Now, however, (122) must also hold, which
together with (134) implies that

5*
Ozs‘—s*—i—é@/ G (e) de
e

or equivalently, (since the right side is just 7' (¢*)), that * = £. In other words, this condition
requires R (¢) = T(é), or equivalently, we must have p = fi. As before, the market-clearing
condition (31) is used to obtain Z, while (28), (29), and (30) imply ¢°, #7*, and p;, respectively.
The allocations and asset prices described in this step correspond to those in the statement of
the proposition for the case with u = fi.

Combined, Steps 1-3 prove part (iv) in the statement of the proposition. Part (v)(a) is
immediate from (122) and (128), and part (v)(b) from (134) and (136). m

Corollary 2 The marginal type, €*, characterized in Proposition 3 is strictly decreasing in the

rate of inflation, i.e.,%—i < 0 both for p € (B, 1), and for u € (1, fi).

Proof of Corollary 2. For p € (B, ,&), implicitly differentiate R (¢*) = 0 (with R given by
(136)), and for p € (fi, i), implicitly differentiate T (¢*) = 0 (with 7" given by (128)) to obtain

de* _569(1_[?”)[18_0(5*)}4_#_5 if < w < ﬂ
o B30 [<H [1-G(e)]de

ey T

Clearly, de*/0u < 0 for € (B, 1), and for pu € (fi,/i). m

Proof of Proposition 4. With § = 0, in any stationary equilibrium the Euler equations for

a dealer d obtained in Lemma 5 reduce to

> B, with “ =7 if ayt1qg >0

¢° > Bre®, with “ =" if ajt,, > 0.
The maintained assumptions x> 3 and A7 < 1, and the fact that the equity will be valued
in any equilibrium imply a;"t,; = a;%,; = 0 for all d € D. Since dealers are inactive in any
stationary equilibrium, we focus on investors for the remainder of the proof. In an equilibrium

with no money (or no valued money), there is no trade in the OTC market. The first-order

condition for an investor 7 in the time-t Walrasian market is
@7 > By (Eyp1 + ¢5q) , =" if gy > 0.
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In a stationary equilibrium the Walrasian market for equity can only clear if ¢j = f—syt This

establishes parts (i) and (7) in the statement of the proposition. In a stationary monetary

equilibrium the Euler equations for an investor obtained in Lemma 5 reduce to

SH [CH g, — g,
1+Oﬂ]/ /J ]+¢sdG(EZ)dG( ) (137)
P = 1 fﬂﬁ—w [_ (1- / / — &) dG (g;) dG (5])] (138)
where
= % -9 (139)

Condition (137) can be substituted into (138) to obtain a single equation in the unknown &¢,

namely T (¢°) = 0, where T : [ef,,eg] — R is defined by

EH —
ﬁom/ / it dG (;) dG (g5) + B — p.
e STIs 577 5+o¢ ]

-) faL Joi (5—2)dG (e1)dG (<)

Notice that T (eyy) = 8 — pu < 0 and

T (e1) Bom/ H/ dG(el)dG(e])—I—B "
& &+

so since T is continuous, a stationary monetary equilibrium exists if 4 < fi with i defined as in
(35). In addition,

T'(°) = — [Ban / CH S75dG (e0) G ()

(Ba)?mn (1 — €H (ei—e;) [°F (e°—&)dG(e) G () ' '
+ gy / / ot dG (g;) dG (&)

is negative, so a stationary monetary equilibrium exists if and only if ; < i, and there cannot
be more than one stationary monetary equilibrium. Condition (36) is just (138), condition (38)
is T (¢°) = 0, and (37) follows from (139). This establishes parts (ii) and (iv). Part (v) is

immediate from (38). m

Proof of Proposition 5. Recall that de*/du < 0 (Corollary 2). (i) From (27),

o¢*  Br e
op  1—pr [ {p<n<i} + Win<n)00G (e )} o <V
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(i) Condition (28) implies 9¢°/Opu = Oe* /O + 0¢°/Op < 0. (iii) Differentiate (31) to obtain

Y4 _5ZGI(€*)A?+{G’(E*)(E*+¢S)+9[1—G(E*)1( 30 ) -0 32 1 (550) a60) | o
90 A5 193G )Ay > 0.

(140)

Hence 0Z/0p = (0Z/0e*)(0e* /Opn) < 0. From (29), 0¢y* /O = (y¢/A}*) 0Z/0pu < 0. m

Proof of Proposition 6. First, notice that 9e¢/0u = 1/T" (¢¢) < 0, where T (-) is the mapping
defined in the proof of Proposition 4. (i) Differentiate (36) to obtain

0¢° B
op 11— pr

c

o (1= )G () / (6° — 1) dG (1) ‘;Z <0.

€L

(#) From (37), 0Z/0p = (0e°/0p + 0¢°/0pn)A® < 0, and since Z = ¢7*AJ" /y, 0¢7" /O =
(0Z/0p) (ye/Af") <0.m

Proof of Proposition 7. From condition (32),

> 0. (141)

oe* _ TB[E +/87T (5_5 )]I{p<,u}]
9(30)  BoO(1 — Br)[1 — G ()] + (u— B) {1+ B [60G (%) — 1 Tgpcyy }

(i) From (36),

v

00° | 5= >0 it B << i
8 (66) S [faLG da+50G(s*)%} >0 ifp<p<i

(ii) From (28), 0¢°/0(50) = 0c* /D (66) + 0¢°/d (60) > 0. (iii) For u € (i1, ji), (31) im-
plies 0Z/0§ = (0Z/0e*) (0e*/) > 0 (the sign follows from (140) and (141)), and therefore
997" /06 = (02/00) (yr/A{") > 0. m

Proof of Proposition 8. Implicit differentiation of T (¢¢) = 0 implies

Jop en n(1=Bm)(e;—¢;)[(1—Bm)e;+Bre]
e = 7% {(1-Bm)ej+Brletai- n)w(s‘)]}

O T rem _ wv(ljBﬂ)(Srfj) CH reg Bran(1—n)(1—Bm)(es—e;)¢’ (=°) ) )
fEC (17BW)EC+57T[5+04(17U)97(56)]dG( )& Ec)Jrf f {(1 Br)ej+Brle+a(l—n 9o(gc)]} 7dG(e:)dG(e5)

5dG(g;)dG(e;)
> 0.

(7) Differentiate (36) to arrive at

d¢*  pr(1—n) [
dae 1—pfr

(9 + Oc/<E (¢ — ) dG (e;) dG (£9) gij > 0.

€L
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(4i) From (37),

072 _ (0e° N 0¢°
da \da O«
and since Z = ¢* A7 [y, it follows that 9¢)"/0a > 0. m

)AS>O,

Proof of Proposition 9. (i) The result is immediate from the expression for A}, in Proposition
3. (i) From (24) and (25),

50 =0 o /G e 55}

Notice that 0/1/0 (60) approaches a positive value as 660 — 0, and a negative value as 66 — 1.

Also, i — /3 both when §0 — 0, and when 6 — 1. Hence p > 3 = limgsg_,0 jt = limgsg_,1 /i for a
range of values of 06 close to 0 and a range of values of §0 close to 1. For those ranges of values
of 06, A7, = 0. In between those ranges there must exist values of 66 such that p < fi which
implies A, > 0. m

Proof of Proposition 10. (i) Differentiate (39) to get
oy <. 0e*

7 25 / * As _ As
o G (%) ( WD)@,u<O’
where the inequality follows from Corollary 2. (i) From (39),
oy y s <, 0"
80_25G( ) (A —FAD)aQ
v — * I * Oe* s A1s
%_Q[G(€)+5G(E)85 (A% —mAD)

and both are positive since 0e*/9 (06) > 0 (see (141)). m

Proof of Proposition 10. Rewrite V as

Y = A’ ) Ml =G E)]+(1—n)G ()} dG (&)

vart [Tl -G e+ (1-n6 ) TG @)
Differentiate to obtain
oV e 0 [+ ¢°
g =t [ -+ - 06 E) 1 S8 a6,
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where

0 [Ec-l-qbs] _ gi+¢° + (6 — €9 g?jAs > 0 for g; > €°.

dec | &i + ¢° (gi + ¢%)?

Hence, V/de® > 0. Thus 0V/du = (9V/de) (9e°/0u) < 0, since 9e¢/du < 0 (see proof
of Proposition 6), which establishes (i). For part (ii), simply notice that dV/da = V/a +
(OV/0e°) (9e°/Bar) > 0. m

Proof of Proposition 12. (i) For 8 < u < fi, 9P/0p = [Br/(1 — Br)] (0*/Op) < 0, and for

fi < p < f, OP/Op = [Br/(1 — Br)]| 660G (%) (0e*/Op) < 0. (ii) For B < p < fi, P/ (60) =
[Bm/(1 — Bm)] (9e*/D(66)) > 0, and for fi < p < f1, OP/Op = [Br /(1 — Br)] {60G (*) [0* /O (66)]+
f: G(e)de} >0.m

Proof of Proposition 13. (i) 0P/0u = [Br/(1 — Br)] a (1 —n) ¢ (%) (9e°/Op) < 0. (i)
OP/0a = [Br/(1— Br)] (1 —n) {ay’ (€°) (9e°/0a) + ¢ ()} > 0. m

Proof of Proposition 14. The choice variable a}, does not appear in the Planner’s objective
function, so a};, = 0 at an optimum. Since (42) must bind for every ¢ at an optimum, the

planner’s problem is equivalent to

W = max Ko Z B {5 (vt)/[ ] eay (de) + [1 — & (vt)] Eaer — kvt+1} Yt
t=0 EL,EH

~ ~ ’
{Ut YAt DAL, 1 }t:O

subject to (6), (7), (40) and (41). Clearly, f[eL en] eay; (de) < eg and (41) must bind at an
optimum, so W** < W**, where

W = max _ [Eq Z B {[vrarp + 6 (v¢) agr) e + [L — 6 (v¢)] Earr — kvesr } ye

{vt,atp,a¢1 } i =0

= Eo» B {[ren + (1 —7) {0 (vi)en + [1— 6 (v)] €}] A°
Vt,Q¢] s 1—0 +—0

—[1 =6 (ve)] (em — &) marr — kveg1} ye

= {vm}a"%( E Zﬁt {lmeg + (1 —m) {0 (ve) e + [1 — 6 (v)] €} A® — kvpgr }
Hi=0 =0

=Eoy ' {lmem + (1 —m) {6 (vf) emr + [1 =6 (vf)] E]A° — kv } e,
t=0
where the maximization in the first line is subject to (6), (7) and (40) (which must bind

at an optimum), the second line has been obtained by substituting these constraints into the
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objective function, and {v; } in the last line denotes the sequence of v; characterized by (43). The
allocation in the statement of the proposition achieves W** and therefore solves the Planner’s

problem. m
Lemma 8 In any equilibrium, the free-entry condition (44) can be written as (45).
Proof of Lemma 8. With (14), the left side of condition (44) can be written as
max [BEVE (a1, magy) — (61 aty + dfagi)] — ke
(a1, ) €RT
And with (17), this last expression becomes
max [(BE:de1 — @) afy + (BTErpes1 — ¢F) afq] + BEVE (0) — Ky, (142)
(a1, ) €RT
where

_ €H (.__=* €1 (v
D _ E—¢€ Yt+1 € €)Yt4+1
Vi1 (0) = k (v141) (1= 0) by | A4y / Ul 46 () 4 Al / L Ly (q)
t+1

+ max {Wt?rl (0) — k¢, 0}

is as in Lemma 4, except for the last term, which reflects the fact that the dealer has to bear
cost k in order to participate in the OTC market of the following period. In equilibrium, the
dealer optimization (conditions (19) and (20)) implies
max [(BEthr1 — &7") a1 + (BTE hr1pe41 — F) afyq] = 0.
(aff1.a1)€RT
Also, (44) implies max {W}}, (0) — k;,0} = 0. Hence (142) reduces to ®y41 — k¢, with @11 as
defined below (45). m

Proof of Proposition 15. Consider a stationary equilibrium with free entry (for the model
with a = 0). As p — 3, (32) implies
[2P =G (o)) de
* = * e*
e+ B [E— e 6 (0) 0 [ G (2) de] Tjncyy

—0

which in turn implies €* — . The dealer’s and the investor’s Euler equations for equity in

Lemma 5 imply

. Bﬂi max{€*7€+5(v)9/s*(e*_5)dG(€)},

1_/87T €L
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and as €* — £y, max {5*, E+0(v) 0[;: (e* —e)dG (5)} —max{ey,E+0(v)0(eyg — &)} =¢cm,
S0 fi“’b — A%, i.e., only dealers hold equity overnight. Thus, from (48), ® — k — II (v), where

M(v)=Br@)(1—0)(eg —&) (1 —7)A° — k.
Notice that

lim [T (v) = k<0< B(1—0)(eg —&)(1 —7)A° —k =11(0)

vV—00
and I’ (v) = BK' (v) (1 —0) (eg — &) (1 — 7) A® < 0, so there exists a unique v € (0,00) that
satisfies I (v) = 0. To conclude, we only need to show that under the hypothesis of the
proposition, II (v) = 0 is equivalent to (43). Notice that 6" (v) < 0 implies k (v) = 6 (v) /v <
8’ (0) for any v > 0. In particular, for v = 0 this implies 1 < ¢’ (0). Hence

0<B(1—0)(ey —&)(1—7)A° —k < B8 (0) (e — &) (1 — ) A° — k

which means that v > 0 in the Planner’s solution. Then (43) must hold with equality and the
optimal v satisfies
B6" (v) (eg — &) (1 —m) A® — k = 0. (143)

Finally, notice that ¢’ (v) = k (v)++’ (v)v,s0if 1 -0 = 1— 7’;(5};)” = ‘:((5)) then (143) is identical
toll(v) =0.m
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