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This document is a supplemental appendix to Campbell, Pflueger, and Viceira
(2015). The contents of this appendix are as follows:

1. Section A provides details for the model solution. It discusses equilibrium se-
lection criteria and provides the details of the numerical solution of bond and
stock returns.

2. Section B provides additional model details. It re-derives the log-linearized
Phillips curve following the framework of Smets and Wouters (2003). It also
approximates log habit as a distributed lag of log consumption and provides
additional details on how the preferences in this paper compare to Wachter
(2006).

3. Section C shows robustness to allowing for a small probability of regime switches.

4. Section D provides additional empirical results. It calibrates the model with an
additional regime break in 1987 to coincide with Alan Greenspan’s appointment
as Fed chairman. It also shows that estimated monetary policy rules are robust
to excluding the financial crisis and to using a real time measure of the output
gap. Section D also shows that the bond-stock correlation has the opposite sign
from the inflation-output gap correlation in all three subperiods.

A Model Solution

We solve the model with an additional shock vt, driving a wedge between the output
gap and consumption and trend consumption growth g

ct = gt+ τ (xt + (1− φ)[xt−1 + xt−2 + ...]) + vt. (1)

The error term vt ∼ N(0, σ2
v) is conditionally homoskedastic white noise uncorrelated

with current or lagged consumption, or any other information variables known in
advance. If there are shocks to potential output, which increase consumption relative
to the output gap, the shock vt would capture such shocks. We set σ2

v = 0 for all
equilibria in the main paper.

It follows that consumption satisfies

ct = g + ct−1 + τ (xt − φxt−1) + vt − vt−1. (2)
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The Euler equation becomes

xt =
−lnδ + γg − γ2σ2

c

2
(1 + λ(s̄))2

γ(τφ− θ1)︸ ︷︷ ︸
mx

− 1

γ(τφ− θ1)︸ ︷︷ ︸
ψ

rt +
τ

τφ− θ1︸ ︷︷ ︸
ρx+

Etxt+1 +
θ2

τφ− θ1︸ ︷︷ ︸
ρx−

xt−1

+− vt
τφ− θ1︸ ︷︷ ︸
uISt

. (3)

The dynamics of the log surplus consumption ratio can be written as

ŝt = st − s̄, (4)

ŝt = θ0ŝt−1 + θ1x̂t−1 + θ2x̂t−2 + λ(ŝt−1 + s̄, S̄)QMut, (5)

QM = τe1Q− (τφ− θ1)e1. (6)

It then follows that the volatility of consumption surprises is given by

σ2
c = QMΣuQ

′
M . (7)

We assume that xt is the demeaned output gap, i.e. it has mean zero. The steady
state real short-term interest rate at xt = 0 and st = s̄ is then exactly as in Campbell
and Cochrane (1999)

r̄ = γg − 0.5γ2σ2
c/S̄

2 − log(δ). (8)

The steady-state surplus consumption ratio and the sensitivity function λ are
given by

S̄ = σc

√
γ

1− θ0

, (9)

s̄ = log(S̄), (10)

smax = s̄+ 0.5(1− S̄2), (11)

λ(ŝt, S̄) = λ0

√
1− 2ŝt − 1, ŝt ≤ smax − s̄, (12)

λ(ŝt, S̄) = 0, ŝt ≥ smax − s̄ (13)

λ0 =
1

S̄
. (14)

A.1 Macroeconomic Dynamics

Let π∗t denote the central bank’s inflation target at time t. We solve the model in
terms of the output gap xt and inflation and nominal interest rate gaps:

π̂t = πt − π∗t , (15)

ît = it − π∗t . (16)
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Denote the vector of state variables by:

Ŷt = [xt, π̂t, ît]
′. (17)

We can re-write the model dynamics in terms of the state vector Ŷt:

xt = ρx−xt−1 + ρx+Etxt+1 − ψ
(
ît − Etπ̂t+1

)
+ uISt , (18)

π̂t = ρππ̂t−1 + (1− ρπ)Etπ̂t+1 + λxt − ρπu∗t + uPCt , (19)

it = ρiit−1 + (1− ρi) [γxxt + γπ(πt − π∗t ) + π∗t ] + uMP
t (20)

= ρi(it−1 − π∗t−1) + (1− ρi) [γxxt + γπ(πt − π∗t )] + π∗t − ρiu∗t + uMP
t (21)

π∗t − π∗t−1 = u∗t . (22)

The fundamental shocks are assumed to be independent and iid with variance-covariance
matrix:

Et1[utu
′
t] = Σu =


(
σIS
)2

0 0 0

0
(
σPC

)2
0 0

0 0
(
σMP

)2
0

0 0 0 (σ∗)2

 . (23)

We can write the model as:

0 = FEtŶt+1 +GŶt +HŶt−1 +Mut. (24)

where

F =

 ρx+ ψ 0
0 (1− ρπ) 0
0 0 0

 , (25)

G =

 −1 0 −ψ
λ −1 0

(1− ρi)γx (1− ρi)γπ −1

 , (26)

H =

 ρx− 0 0
0 ρπ 0
0 0 ρi

 , (27)

M =

 1 0 0 0
0 1 0 −ρπ
0 0 1 −ρi

 . (28)

We focus on solutions of the form:

Ŷt = PŶt−1 +Qut. (29)

Additional solutions, such as solutions depending on two lags of state variables, may
exist, see e.g. Evans and McGough (2005). P has to satisfy:

FP 2 +GP +H = 0. (30)
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Following Uhlig (1999), we first solve for the generalized eigenvectors and eigen-
values of Ξ with respect to ∆, where:

Ξ =

[
−G −H
I3 03

]
, (31)

∆ =

[
F 03

03 I3

]
. (32)

For three generalized eigenvalues λ1, λ2, λ3 with generalized eigenvectors [λ1z
′
1, z
′
1]′,

[λ2z
′
2, z
′
2]′, [λ3z

′
3, z
′
3]′, a solution is given by

P = ΩΛΩ−1, (33)

where Λ = diag(λ1, λ2, λ3) and Ω = [z1, z2, z3]. Generalized eigenvalues are stable if
their absolute value is < 1.

The matrix Q has to satisfy

Q = −[FP +G]−1M (34)

As long as we focus on solutions of the form (29) and the matrix of lagged terms H
is non-singular, the solution cannot contain arbitrary random variables, or ‘sunspots’.
If we were to allow for more complicated solution forms, where Ŷt can depend on two
lags of itself as well as current and lagged shocks, sunspot solutions may be possible
(Evans and McGough, 2005).

To see that solutions of the form (29) do not allow for sunspots, suppose the
contrary. Assume that for some vector of random variables εt uncorrelated with Ŷt−1

and ut:
Ŷt = PŶt−1 +Qut + εt. (35)

The expression (35) corresponds to the definition of sunspot equilibria, see e.g. Cho
and Moreno (2011). Then substituting (35) into (24) gives the same conditions for P
and M as before and:

(FP +G)εt ≡ 0. (36)

But from (30), (FP+G)×P = −H is non-singular. Therefore, FP+G is non-singular
and εt ≡ 0. This completes the proof that there are no sunspot solutions.

A.2 Equilibrium Selection and Properties

We are essentially solving a quadratic matrix equation, so picking a solution amounts
to picking three out of six generalized eigenvalues. We only consider dynamically sta-
ble solutions with all eigenvalues less than 1 in absolute value, yielding non-explosive
solutions for the output gap, inflation, and the real interest rate. When there are only
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four generalized eigenvalues with absolute values less than 1, there exists a unique dy-
namically stable solution. For the period 1 calibration, we have γπ < 1 and there exist
multiple real-valued, dynamically stable solutions. The period 2 and 3 calibrations
have unique dynamically stable solutions.

We only consider solutions that are real-valued, and have finite entries for Q. We
also require the diagonal entries of Q to be positive. This requirement means that
the immediate impact of a positive IS shock on the output gap is positive rather than
negative.

We apply multiple equilibrium selection criteria, which have been proposed in the
literature, to rule out unreasonable solutions. These different equilibrium refinements
are not identical, but coincide in many cases. Therefore, there exists a unique solution
satisfying all criteria for a large part of our parameter space.

McCallum (1983) proposes to pick the minimum state variable solution. This
solution has a minimum set of state variables and satisfies a continuity criterion. Un-
fortunately, Uhlig (1999) points out that implementing this criterion directly can be
computationally demanding. We therefore follow Uhlig (1999) in picking the solu-
tion with the minimum absolute eigenvalues, which under certain conditions coincides
with the minimum state variable solution (McCallum 2004).

We also require that our solution is locally E-stable (Evans 1985, 1986, Evans
and Honkapohja 1994) as a plausible necessary, but not sufficient, condition. Local
E-stability intuitively requires that the solution is learnable. If agents expectations
deviate slightly from equilibrium dynamics, the system will return to an E-stable
equilibrium under a simple revision rule.

Finally, we ensure uniqueness of our solution by requiring that it equals the forward
solution of Cho and Moreno (2011). The forward solution is obtained by imposing
a zero terminal condition. Expectations about shocks far in the future do not affect
the current equilibrium. Viewed differently, if we assume that all state variables are
constant from time t+T onwards, we can solve for the time t output gap, inflation
gap, and interest rate gap recursively. The forward solution obtains by letting T go
to infinity.

Let vec denote vectorization. Applying Proposition 1.3 of Fudenberg and Levine
(1998, p.25) the E-stability condition translates into the requirement that the eigen-
values of the derivative

∂vec([FP +G]−1H)

∂vec(P )
(37)

have eigenvalues with absolute values less than 1.

We implement the Cho and Moreno (2011) criterion by requiring that the following
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sequence Pn, n = 0, 1, ... converges to P

P0 = 03×3 (38)

Pn+1 = −[FPn +G]−1 ×H (39)

This sequence Pn has at most one limit and therefore this selection criterion yields a
unique solution.

A.2.1 Recursion for Zero-Coupon Dividend Claims

In our calculations of asset prices, we repeatedly use the following expression for the
real short rate Euler equation

log(δ)− γg + γŝt + γτφxt − γEtŝt+1 − γτφEtxt+1 (40)

= −rf − (e3 − e2P )A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt). (41)

Let
P d
nt

Dt
denote the price-dividend ratio of a zero coupon claim on the dividend paid

at time t + n. The price of a zero coupon claim for the dividend at time t is given

by
P d
0t

Dt
= 1. We now show that for n ≥ 1, there exists a function Fn(Z̃t, ŝt, xt−1), such

that

P d
nt

Dt

= exp((γ − δeq)vt)Fn
(
Z̃t, ŝt, xt−1

)
. (42)

We use the following factorization for Mt+1
Dt+1

Dt
:

Mt+1
Dt+1

Dt

= δexp(−γ(ŝt+1 − ŝt)− (γ − δeq)(ct+1 − ct)),
= δexp(−γ(ŝt+1 − ŝt)− (γ − δeq)(g + τxt+1 − τφxt + vt+1 − vt)). (43)

Let fn denote the log of Fn

fn = log(Fn). (44)
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For n = 1, we can derive f1 explicitly:

f1(Z̃t, ŝt, xt−1) = log(δ)− (γ − δeq) g + γŝt + (γ − δeq)τφxt︸ ︷︷ ︸
factor1init

−γ (θ0ŝt + θ1xt + θ2xt−1)

− (γ − δeq) τe1PA
−1Z̃t

+
1

2
(γλ(ŝt) + (γ − δeq))2σ2

c ,

= δeqg + δeqτe1[P − φI]A−1Z̃t − rf − (e3 − e2P )A−1Z̃t

−γ
2

(1− θ0)(1− 2ŝt)

+
1

2
(γλ(ŝt) + (γ − δeq))2σ2

c . (45)

For n > 1, fn is given by the recursion

fn(Z̃t, ŝt, xt−1) = log

[
Et

[
exp

(
log(δ)− (γ − δeq)g + γŝt

−γŝt+1 − (γ − δeq)τEtxt+1 + (γ − δeq)τφxt

+ −(γ − δeq)τe1A
−1e1εt+1 +−(γ − δeq)τe1A

−1(e2 + e3)εt+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

,

= log
[
Et

[
exp

(
δeqg + δeqτe1[P − φI]A−1Z̃t

−rf − (e3 − e2P )A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt) (46)

−(γ(1 + λ(ŝt))− δeq)τe1A
−1e1︸ ︷︷ ︸

ve1

εt+1 (47)

−(γ(1 + λ(ŝt))− δeq)τe1A
−1(e2 + e3)︸ ︷︷ ︸
ve2

εt+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (48)

A.2.2 Recursion for Zero Coupon Bond Prices

Let P $
n,t and Pn,t denote the prices of nominal and real zero coupon bonds. The log

yields on n-period nominal and real bonds are then given by

y$
n,t = −p$

n,t/n, (49)

yn,t = −pn,t/n. (50)
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One-period bond prices are given by

P $
1,t = exp(−ît − π∗t − rf ), (51)

P1,t = exp(−ît + Etπ̂t+1 − rf ). (52)

For n > 1, the prices of real and nominal zero coupon bonds with maturity n are of
the form

Pn,t = exp(γvt)Bn(Z̃t, ŝt, xt−1), (53)

P $
n,t = exp(γvt − nπ∗t )B$

n(Z̃t, ŝt, xt−1). (54)

It hence follows that

B$
2 = exp

log(δ)− γg + γŝt︸ ︷︷ ︸
factor1bonds

+ γτφxt


×exp

(
Et

(
−γŝt+1 − γτxt+1 − ît+1 − π̂t+1 − rf

))
×Etexp

(−γ (λ(ŝt) + 1)QM − (e2 + e3)Q− 2e4)︸ ︷︷ ︸
v$

ut+1


b$

2 = log(δ)− γg + γŝt︸ ︷︷ ︸
factor1bonds

+ γτφxt − γ (θ0ŝt + θ1xt + θ2xt−1)

−(γτe1 + e2 + e3)PA−1Z̃t +
1

2
v$Σuv

$′ − rf (55)

= −e3[I + P ]A−1Z̃t − 2rf

+
1

2
v$Σuv

$′ − γ

2
(1− θ0)(1− 2ŝt). (56)

The two-period real bond price then solves

B2 = exp

log(δ)− γg + γŝt︸ ︷︷ ︸
factor1bonds

+ γτφxt


×exp

(
Et

(
−γŝt+1 − γτxt+1 − ît+1 + Et+1π̂t+2 − rf

))
×Etexp

(−γ(λ(ŝt) + 1)QM − (e3 − e2P )Q)︸ ︷︷ ︸
v

ut+1


b2 = (log(δ)− γg + γŝt︸ ︷︷ ︸

factor1bonds

+ γτφxt − γ (θ0ŝt + θ1xt + θ2xt−1)

−(γτe1 + e3 − e2P )PA−1Z̃t +
1

2
vΣuv

′ − rf , (57)

= −(e3 − e2P ) [I + P ]A−1Z̃t − 2rf +
1

2
vΣuv

′ − γ

2
(1− θ0)(1− 2ŝt) (58)
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For n > 2 the function Bn satisfies the recursion

Bn(Z̃t, ŝt, xt−1) = Et

exp
log(δ)− γg + γŝt︸ ︷︷ ︸

factor1bonds

(59)

+−γŝt+1 + γτφxt − γτxt+1︸ ︷︷ ︸
factor2real

+ bn−1(Z̃t+1, ŝt+1, xt)

 ,
= Et

[
exp

(
−rf − (e3 − e2P )A−1Z̃t −

γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))τe1A
−1e1︸ ︷︷ ︸

ve1

εt+1 − γ(1 + λ(ŝt))τe1A
−1(e2 + e3)︸ ︷︷ ︸
ve2

εt+1

+bn−1(Z̃t+1, ŝt+1, xt)
)]
.

The solution for nominal bond prices is similar with

B$
n(Z̃t, ŝt, xt−1) = Et [exp (log(δ)− γg + γŝt + γτφxt (60)

+−γŝt+1 − γτxt+1 − π̂t+1 − nu∗t+1 + b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]
.

Now, in order to evaluate (65) numerically, it is useful to split up u∗t+1 into a com-
ponent that is spanned by the normalized shocks εt+1 and one component that is
orthogonal ε⊥t+1 ∼ N(0, 1). Hence, we need a vector v∗ such that

u∗t+1 = v∗εt+1 + σ⊥ε⊥t+1, (61)

Et
(
u∗t+1ε

⊥
t+1

)
= 0. (62)

Now, the distribution of u∗t+1 conditional on εt+1 is normal with

u∗t+1 |εt+1 ∼ N

(AQΣue
′
4︸ ︷︷ ︸

v∗

εt+1, (σ
∗)2 − (AQΣue

′
4)′(AQΣue

′
4)︸ ︷︷ ︸

(σ⊥)
2

 . (63)
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The nominal bond price iteration therefore simplifies

B$
n(Z̃t, ŝt, xt−1) = Et

exp
log(δ)− γg + γŝt︸ ︷︷ ︸

factor1bonds

+
n2

2
(σ⊥)2 (64)

+−γŝt+1 − γτxt+1 + γτφxt − π̂t+1 − nv∗εt+1 + b$
n−1(Z̃t+1, ŝt+1, B

$xt)

)]
.

= Et

exp
log(δ)− γg + γŝt︸ ︷︷ ︸

factor1bonds

+
n2

2
(σ⊥)2

+−γŝt+1 − γτEtxt+1 − Etπ̂t+1 + γτφxt

+(−γτe1A
−1 − e2A

−1)e1εt+1 − nv∗e1εt+1

+(−γτe1A
−1 − e2A

−1))(e2 + e3)εt+1 − nv∗(e2 + e3)εt+1

+b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]
.

= Et

[
exp

(
−rf − e3A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

+(−γ(1 + λ(ŝt))ve1 − e2A
−1e1︸ ︷︷ ︸

vpi1

)εt+1 − nv∗e1εt+1

+(−γ(1 + λ(ŝt))ve2 − e2A
−1(e2 + e3)︸ ︷︷ ︸
vpi2

)εt+1 − nv∗(e2 + e3)εt+1

+
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

)]
(65)

A.2.3 Scaled State Vector

For our numerical asset pricing solution, it is convenient to scale the state vector Ŷt
so that innovations to the sclaed state vector are independent standard normal. The
dynamics for Ŷt are given by:

Ŷt = PŶt−1 +Qut, (66)

Ŷt = Yt − Ȳ , (67)

= [xt, πt − π∗t , it − π∗t − rf ], (68)

E[utu
′
t] = diag(σ2

u) = Σu. (69)

The dynamics for consumption and surplus consumption follow

ct = g + ct−1 + τ (xt − φxt−1) + vt − vt−1, (70)

st+1 = (1− θ0)s̄+ θ0st + θ1xt + θ2xt−1 + λ(st)εc,t+1 (71)

εc,t+1 = ct+1 − Etct+1 = τ (xt+1 − Etxt+1) + vt+1. (72)
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The process Z̃t scales and rotates the variables in Ŷt such that shocks to Z̃t are
independent standard normal. Moreover, the first element of Z̃t is conditionally
perfectly correlated with consumption (and hence SDF) surprises.

Z̃t = AŶt, (73)

Z̃t = P̃ Z̃t−1 + εt, (74)

P̃ = APA−1, (75)

εt+1 = AQut+1. (76)

We therefore solve for a matrix A with the following two properties:

σce1AQ = QM , (77)

AQΣuQ
′A′ = I3×3. (78)

Provided that σIS = 0, we can find a vector vc such that

vc ×Q = QM . (79)

Next, we pick an orthonormal matrix X, such that

e1X = vc (QΣuQ
′)

1/2
/σc. (80)

Then, define

A = X (QΣuQ
′)
−1/2

. (81)

The matrix A satisfies conditions (77) and (78).

The unconditional variance-covariance matrix of Z̃ is determined by

V ar(Z̃) = P̃ V ar(Z̃)P̃ ′ + I4. (82)

We can use linear algebra to solve for V arZ̃. We use Std(Z̃) to denote the vector of
unconditional standard deviations of Z̃.

A.2.4 Numerical Implementation

We need to evaluate the expectational terms in expressions (48), (59) and (65). We
evaluate the functions F1, B2 and B$

2 along a grid. We then use the knowledge of
Fn−1, B$

n−1 and Bn−1 along this grid combined with loglinear interpolation.

We start by constructing a three-dimensional grid for Z̃t. Let N denote the num-
ber of grid points along each dimension and m the width of the grid as a multiple of
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the unconditional standard deviation of Z̃t,k. Our baseline solution sets N = 2 and
m = 2. For a 3-tuple
n = (n1, n2, n3) ∈ {1, 2, ..., N}3 the corresponding grid point is given by zn =
(zn,1, zn,2, zn,3) with

zn,k = −m · std(Z̃k) (83)

+(n− 1) · 2m · std(Z̃k)

N − 1
. (84)

First, we compute expectations conditional on e2Z̃t+1 and e3Z̃t+1, integrating over
e1Z̃t+1. We use 40-point Gauss-Legendre quadrature as in Wachter (2006) for this
first integration step. We bound the integral at -8 and +8 standard deviations of
e1εt+1. Second, we compute the time-t expectation by integrating over e2Z̃t+1 and
e2Z̃t+1. We do this using 10-point Gauss-Legendre quadrature along each dimension
and again bound the integral along each dimension at -8 and +8. We use that εt+1 is
independent and standard normal for computing the probability density functions.

A.3 Risk-Neutral Returns

In order to better understand the role of risk-premia, we compute bond and stock
returns when there are no risk premia (i.e. expected excess returns are constant).
Note that risk-neutrality is not consistent with the Euler equation. Consumption
dynamics therefore rely crucially on risk-aversion. However, it is still instructive to
compute bond and stock returns without risk premia, holding constant consumption
dynamics.

For this subsection, we use the superscript rn to refer to risk-neutral quantities.
We denote log returns on nominal and real zero coupon bonds by r$

n−1,t+1 and rn−1,t+1.

Unexpected nominal bond returns with no risk premia are simply given by the
innovation to expected nominal bond yields

r$,rn
n−1,t+1 − Etr

$,rn
n−1,t+1 = − (Et+1 − Et)

n−1∑
j=1

(
ît+j + π∗t+j

)
(85)

= −(n− 1)u∗t+1 − e3

n−1∑
j=1

P j−1Qut+1 (86)

= −(n− 1)u∗t+1 − e3

[
I − P n−1

]
[I − P ]−1A−1εt+1. (87)

Unexpected real bond returns with no risk premia are similarly given by

rrnn−1,t+1 − Etrrnn−1,t+1 = − (e3 − e2P )
[
I − P n−1

]
[I − P ]−1A−1εt+1. (88)
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Now, we compute unexpected returns without risk premia using the Campbell-
Shiller loglinearization. For this, define the loglinearization constant

ρ =
1

1 + 1/exp
(
p− d

) . (89)

We obtain the numerical value for ρ from simulated model price-dividend ratios as
reported in the main paper.

Ignoring return surprises due to changes in expected stock returns, the loglinear
decomposition by Campbell (1991) gives us

re,rnt+1 − Etr
e,rn
t+1 = (Et+1 − Et)

∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+j, (90)

= (1− ρ) vt+1 + δτ(1− ρφ)e1 [I − ρP ]−1A−1εt+1 − ρ(e3 − e2P ) [I − ρP ]−1A−1εt+1.

We can similarly compute bond yields and equity dividend yields using Campbell-
Shiller loglinearizations while imposing constant expected excess returns. With con-
stant expected equity excess returns, we obtain the following expression for the log
dividend yield:

(d− p)rnt = −Et
∞∑
j=0

ρj∆dt+1+j + Et

∞∑
j=0

ρjrt+1+j. (91)

First, we derive an expression for the discounted sum of future expected real rates

Et

∞∑
j=0

ρjrt+1+j =
∞∑
j=0

ρj(e3 − e2P )P j+1Ŷt, (92)

= (e3 − e2P )P [I − ρP ]−1Ŷt. (93)

Next,

−Et
∞∑
j=0

ρj∆dt+1+j (94)

= −δEt
∞∑
j=0

ρj (τ(xt+1+j − φxt+j) + vt+1+j − vt+j) (95)

= δvt + φδxt − δτ(1− ρφ)Et

∞∑
j=0

ρjxt+1+j, (96)

= δvt + φδxt − δτ(1− ρφ)e1P [I − ρP ]−1 Ŷt. (97)

It then follows that the no-risk-premium log dividend yield can be approximated
as

(d− p)rnt = δvt + V eqŶt, (98)

V eq = φδe1 + ((e3 − e2P )− δτ(1− ρφ)e1)P [I − ρP ]−1 . (99)
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Next, nominal bond yields with no risk premia are simply given by the average of
expected future nominal short rates, as under the expectations hypothesis

y$,rn
n,t =

1

n
Et

n−1∑
j=0

(
π∗t+j + ît+j

)
, (100)

= π∗t +
1

n

n−1∑
j=0

e3P
jŶt, (101)

= π∗t + V nomŶt, (102)

V nom =
1

n
e3 [I − P n] [I − P ]−1 . (103)

Real bond yields without risk premia are given by

yrnn,t =
1

n
Et

n−1∑
j=0

(
ît+j − Et+jπ̂t+j+1

)
, (104)

= V realŶt, (105)

V real =
1

n
(e3 − e2P ) [I − P n] [I − P ]−1 . (106)

We compute the risk premium components of dividend yields and bond yields as
the difference between total and risk-neutral quantities:

(d− p)rpt = (d− p)t − (d− p)rnt , (107)

y$,rp
n,t = y$

n,t − y
$,rn
n,t . (108)

A.4 A Note on Units

Empirical yields and returns are in annualized percent units. Log real dividends and
the log output gap are in natural percent units. Our empirical units are analogous
to those used by CGG. Our empirical coefficients in Table 3 in the main paper can
therefore be compared directly to those in CGG.

We solve the model in natural units and subsequently report scaled parameters
and model moments reflecting our choice of empirical units. Let a superscript c denote
natural units used for solving the calibrated model. Values with no superscript denote
the parameters and variables corresponding to empirical units.

Our quantities in empirical units are related to quantities in calibration units
according to: xt = 100xct , it = 400ict , πt = 400πct , and y$,n

t = 400y$,n
t and π∗t = 400π∗t .

We can therefore write the model as:
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xt = ρx−,cxt−1 + ρx+,cEtxt+1 −
ψc

4
(it − Etπt+1) + 100× uIS,ct (109)

πt = ρπ,cπt−1 + (1− ρπ,c)Etπt+1 + 4λcxt + 400× uPC,ct (110)

it = ρi,cit−1 + (1− ρi,c) [4γx,cxt + γπ,c(πt − π∗t ) + π∗t ] + 400uMP,c
t (111)

π∗t = π∗t−1 + 400u∗t (112)

Equations (109) through (112) imply relations between the empirical and calibra-
tion parameters:

ρx− = ρx−,c, ρx+ = ρx+,c, ψ =
ψc

4
(113)

ρπ = ρπ,c, λ = 4λc (114)

ρi = ρi,c, γx = 4γx,c, γπ = γπ,c (115)

σ̄IS = 100σ̄IS,c, σ̄PC = 400σ̄PC,c, σ̄MP = 400σ̄MP,c, σ̄∗ = 400σ̄∗ (116)

Yogo (2004) scales interest rates and inflation to quarterly units. Our calibrated
values for ψc in natural units can therefore be compared directly to the estimated
values in Yogo (2004). We report the value ψc corresponding to natural units rather
than ψ corresponding to empirical units throughout the paper for comparability with
values in the literature.

We report the persistence parameter θ0 and φ in annualized units for comparability
with Campbell and Cochrane (1999) and Wachter (2006). That is, θ0 = (θc0)4. All
other parameters (τ , θ1, θ2) are reported in calibration units.

A.5 Consumption Variance Ratios

This subsection derives expressions for variance ratios for consumption innovations.
The volatility of consumption surprises is given by

σ2
c = QMΣuQ

′
M . (117)
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We can use (2) to compute the variance of consumption at different horizons.

V art (ct+1) = QMΣuQ
′
M = σ2

c , (118)

V art (ct+2) = V art (τ (xt+2 + (1− φ)xt+1 − φxt) + vt+2)

= V art (τe1Qut+2 + τe1PQut+1 + τ(1− φ)e1Qut+1 − (τφ− θ1)e1ut+2)

= σ2
c + (τe1PQ+ τ(1− φ)e1Q)Σu(τe1PQ+ τ(1− φ)e1Q)′ (119)

V art (ct+3) = V art (τ (xt+3 + (1− φ) (xt+2 + xt+1)− φxt) + vt+3)

= V art((τe1Q− (τφ− θ1) e1)ut+3

+ (τe1PQ+ τ (1− φ) e1Q)ut+2

+
(
τe1P

2Q+ τ (1− φ) e1PQ+ τ (1− φ) e1Q
)
ut+1) (120)

= σ2
c + (τe1PQ+ τ (1− φ) e1Q) Σu (τe1PQ+ τ (1− φ) e1Q)′

+
(
τe1P

2Q+ τ (1− φ) e1PQ+ τ (1− φ) e1Q
)

Σu(
τe1P

2Q+ τ (1− φ) e1PQ+ τ (1− φ) e1Q
)′

(121)

In order to derive the expression of conditional variance V art (ct+k) for any k > 0, it
is useful to realize the recursion rule of ct+k − Etct+k:

ct+k − Etct+k = g + ct+k−1 + τ (xt+k − φxt+k−1) + vt+k − vt+k−1

−g − Etct+k−1 − τ (Etxt+k − φEtxt+k−1)− Etvt+k + Etvt+k−1(122)

ct+k−1 − Etct+k−1 = g + ct+k−2 + τ (xt+k−1 − φxt+k−2) + vt+k−1 − vt+k−2

−g − Etct+k−2 − τ (Etxt+k−1 − φEtxt+k−2)− Etvt+k−1 + Etvt+k−2

(123)

Given this recursion, we can derive the formula for conditional variance as follows:

V art (ct+k) = V art (ct+k − Etct+k)
= V art

(
τxt+k + τ (1− φ) Σk−1

j=1xt+k−j − τφxt + vt+k − vt
)

= V art(τe1Qut+k + τΣk−1
l=1 e1P

lQut+k−l +

τ (1− φ) Σk−1
j=1Σj−1

i=0e1P
iQut+k−i + vt+k)

= V art(τe1Qut+k +

Σk−1
j=1

(
τe1P

jQ+ τ (1− φ) Σj−1
i=0e1P

iQ
)
ut+k−i − (τφ− θ1) e1ut+k)

(124)

V art (ct+k) = V art((τe1Q− (τφ− θ1))ut+k +

Σk−1
j=1

(
τe1P

jQ+ τ (1− φ) Σj−1
i=0e1P

iQ
)
ut+k−j)

= σ2
c + Σk−1

j=1(
(
τe1P

jQ+ τ (1− φ) Σj−1
i=0e1P

iQ
)

Σu(
τe1P

jQ+ τ (1− φ) Σj−1
i=0e1P

iQ
)′

)

= σ2
c + Σk−1

j=1(
(
τe1P

jQ+ τ (1− φ) e1 (I − P )−1 (I − P j
)
Q
)

Σu(
τe1P

jQ+ τ (1− φ) e1 (I − P )−1 (I − P j
)
Q
)′

) (125)
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This allows us to calculate the variance ratio:

Vt (k) =
V art (ct+k)

kV art (ct+1)
. (126)

B Additional Model Details

B.1 Deriving the Log-Linearized Phillips Curve

This section derives the loglinearized forward- and backward-looking Phillips curve
(equation (2) in the main paper). Firms set prices to maximize future expected
profits discounted at the investors’ stochastic discount factor. Similarly to us, Smets
and Wouters (2003) use difference habit preferences, so we can naturally extend their
derivation to our framework. The main difference in our model is that we allow for
steady-state growth in consumption. All expressions remain the same if we replace
the pure time discount rate by a growth-adjusted discount rate.

This section follows the notation of Smets and Wouters (2003). For standard
algebra, see also Walsh (2010, Chapter 8.6.1). Intermediate good producer j faces
downward-sloping demand in terms of his own price pjt relative to the aggregate price
level Pt

yjt =
(
pjt/Pt

)−(1+λp,t)/λp,t
Yt, (127)

where Yt is aggregate output. The stochastic parameter λp,t represents a markup
shock. Aggregate output and prices are given by

Pt =

[∫ 1

0

(pjt)
−1/λp,tdj

]−λp,t
, (128)

Yt =

[∫ 1

0

(yjt )
1/(1+λp,t)dj

]1+λp,t

(129)

Nominal intermediate firm profits are given by

πjt = (pjt −MCt)

(
pjt
Pt

)−(1+λp,t)/λp,t

Yt −MCtΦ, (130)

where MCt is the nominal marginal cost of production and Φ is a fixed cost. Taking
the first order condition of (130) shows that in a flexible-price equilibrium the optimal
price at time t is

p∗t = (1 + λp,t)MCt. (131)

We assume that firms get the chance to update prices in every period with fixed
probability ξp, as in Calvo (1983). When firms cannot update prices, their prices
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are partially indexed to lagged inflation (Smets and Wouters 2003) with indexation
parameter γp. The time t+ i nominal price of a firm that last re-set its price at time

t to p̃jt is given by

p̃jt (Pt−1+i/Pt−1)γp . (132)

The law of motion for the price level is given by

P
−1/λp,t
t = ξp

(
Pt−1

(
Pt−1

Pt−2

)γp)−1/λp,t

+ (1− ξp)(p̃
j
t)
−1/λp,t . (133)

A firm j that has the ability to re-set its price at time t therefore maximizes the
expected value of future profits discounted with the consumer’s stochastic discount
factor. Now, we denote the SDF for pricing period t+ i cash flows at time t

Mt→t+i = βiexp (−γ (ct+i + st+i − ct − st)) , (134)

= βigλt+i, (135)

βg = βexp(−γg), (136)

The factor λt+i is constant at one in the nonstochatic steady-state.

The first order condition for optimal price-setting behavior is given by

Et

∞∑
i=0

ξipMt→t+iy
j
t+i

(
p̃jt
Pt

(
(Pt−1+i/Pt−1)γp

Pt+i/Pt

)
− (1 + λp,t+i)mct+i

)
= 0, (137)

where mct+i = MCt+i

Pt+i
is the real marginal cost of production.

Now, we approximate (137) loglinearly around the nonstochastic steady-state.
Rewrite (137) as:

p̃jt
Pt
Et

[
∞∑
i=0

(
βgξp

)i
λt+iy

j
t+i

(
(Pt−1+i/Pt−1)γp

Pt+i/Pt

)]
= Et

[
∞∑
i=0

(
βgξp

)i
λt+iy

j
t+i (1 + λp,t+i)mct+i

]
(138)

Now, we will approximate the left-hand side. The ratios of all prices in steady state
equal to one (i.e. p̃j/P = 1 and P/P = 1). From now on, we drop the superscript j
indicating the particular firm to keep the notation simple; the percentage deviations
from the steady-state values are denoted by hat; moreover, ˆ̃pt is the percentage de-
viation of p̃

Pt
from steady-state. Accordingly, the left-hand side can be approximated

in the following way:(
1 + ˆ̃pt

)
Et

[
∞∑
i=0

(
βgξp

)i (
1 + λ̂t+i

)
y (1 + ŷt+1)

(
1 + γp (p̂t−1+i − p̂t−1)

)
(1 + p̂t − p̂t+i)

]
(139)

18



Multiplying out and dropping the terms consisting of a product of at least two devi-
ation variables (i.e. for instance, ŷt+iλ̂t+i ≈ 0), leads to following expression:

Et

[
∞∑
i=0

(
βgξp

)i
y
(

1 + ˆ̃pt + λ̂t+i + ŷt+1 + γp (p̂t−1+i − p̂t−1) + p̂t − p̂t+i
)]

(140)

Some of the terms in the above expression do not depend on time (i.e. not indexed
by i), so the expression simplifies:

y

1− βgξp
+

y ˆ̃pt
1− βgξp

+ yEt

[
∞∑
i=0

(
βgξp

)i (
λ̂t+i + ŷt+1 + γp (p̂t−1+i − p̂t−1) + p̂t − p̂t+i

)]
(141)

The above expression is the linear approximation of the left-hand side of equation
(138). Now, let’s look at the right-hand side. Let’s denote the term (1 + λp,t+i) as
Lt+i. Moreover, in the steady state the following should hold: (1 + λp)mc = Lmc = 1.
The right-hand side of equation (138) can be approximated as follows:

Et

[
∞∑
i=0

(
βgξp

)i (
1 + λ̂t+i

)
y (1 + ŷt+i)L

(
1 + l̂t+i

)
mc (1 + m̂ct+i)

]
(142)

Multiplying out and dropping the terms consisting of at least two percentage deviation
terms gives:

Et

[
∞∑
i=0

(
βgξp

)i
y
(

1 + λ̂t+i + ŷt+i + m̂ct+i + l̂t+i

)]
(143)

Again, we can simplify the expression for the not indexed terms:

y

1− βgξp
+ yEt

[
∞∑
i=0

(
βgξp

)i (
λ̂t+i + ŷt+i + m̂ct+i + l̂t+i

)]
(144)

The above expression is the linear approximation of the right-hand side of equation
(138). Now, if we plug in (141) and (144) into (138), the first term on both sides can-

cels. Then we can divide both sides by y and subtract Et

[∑∞
i=0

(
βgξp

)i (
λ̂t+i + ŷt+i

)]
.

This gives following equation:

ˆ̃pt
1− βgξp

+ Et

[
∞∑
i=0

(
βgξp

)i (
γp (p̂t−1+i − p̂t−1) + p̂t − p̂t+i

)]
= Et

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i + l̂t+i

)]
(145)
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The terms γpp̂t−1 and p̂t are not indexed by index i and their sums can be expressed
explicitly:

ˆ̃pt
1− βgξp

−
γpp̂t−1

1− βgξp
+

p̂t
1− βgξp

+ Et

[
∞∑
i=0

(
βgξp

)i (
γpp̂t−1+i − p̂t+i

)]
=

Et

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i + l̂t+i

)]
(146)

We solve for ˆ̃pt + p̂t:

ˆ̃pt + p̂t =
(
1− βgξp

)
Et

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i + l̂t+i − γpp̂t−1+i + p̂t+i

)]
+ γpp̂t−1(147)

Now, we shift the whole expression by one period forward. The forward-shifted
expression will be used later to plug in and simplify.

ˆ̃pt+1 + p̂t+1 =
(
1− βgξp

)
Et+1

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i+1 + l̂t+i+1 − γpp̂t+i + p̂t+i+1

)]
+ γpp̂t

(148)

Now, let’s go back to the current expression (147) and and pull out of the sum the
terms with index i = 0:

ˆ̃pt + p̂t =
(
1− βgξp

) (
m̂ct + l̂t

)
−
(
1− βgξp

)
γpp̂t−1 +

(
1− βgξp

)
p̂t + γpp̂t−1 +

+
(
1− βgξp

)
βgξpEt

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i+1 + l̂t+i+1 − γpp̂t+i + p̂t+i+1

)]
Now, we rearrange the terms and add and subtract βgξpγpp̂t in order to get a term

proportional to ˆ̃pt+1 + p̂t+1 on the right-hand side:

ˆ̃pt + p̂t =
(
1− βgξp

) (
m̂ct + l̂t

)
+ βgξpγpp̂t−1 +

(
1− βgξp

)
p̂t − βgξpγpp̂t +

+βgξp

((
1− βgξp

)
Et

[
∞∑
i=0

(
βgξp

)i (
m̂ct+i+1 + l̂t+i+1 − γpp̂t+i + p̂t+i+1

)]
+ βgξpγpp̂t

)
(149)

We can see that the last term is βgξp

(
Et

[
ˆ̃pt+1 + p̂t+1

])
:

ˆ̃pt + p̂t =
(
1− βgξp

) (
m̂ct + l̂t

)
+ βgξpγpp̂t−1 +

(
1− βgξp

)
p̂t − βgξpγpp̂t + βgξp

(
Et

[
ˆ̃pt+1 + p̂t+1

])
(150)

Now we should recall that the percentage deviation of the inflation from steady state
is π̂t = p̂t − p̂t−1.

ˆ̃pt =
(
1− βgξp

) (
m̂ct + l̂t

)
− βgξpγpπ̂t + βgξpEt [π̂t+1] + βgξpEt

[
ˆ̃pt+1

]
(151)
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Loglinearizing the law of motion for the price level (133) gives:

ξpπ̂t = ξpγpπ̂t−1 + (1− ξp)(ˆ̃pt). (152)

The loglinear approximation to the law of motion implies that

ˆ̃pt =
ξp

1− ξp

(
π̂t − γpπ̂t−1

)
(153)

Now we can use above expression and plug it into equation (151). We will do it for
ˆ̃pt on the left-hand side and for ˆ̃pt+1 on the right-hand side. We also multiply by

1−ξp
ξp

to get:

(
π̂t − γpπ̂t−1

)
=

(
1− ξp

)
ξp

(
1− βgξp

) (
m̂ct + l̂t

)
−
(
1− ξp

)
βγpπ̂t +

(
1− ξp

)
βgEt [π̂t+1] +

+βgξp
(
Et [π̂t+1]− γpπ̂t

)
(154)

Now we can rearrange the terms:

(
π̂t − γpπ̂t−1

)
=

(
1− ξp

)
ξp

(
1− βgξp

) (
m̂ct + l̂t

)
− βgγpπ̂t + βgEt [π̂t+1] (155)

We rearrange again:

(
1 + βγp

)
π̂t =

(
1− ξp

)
ξp

(
1− βgξp

) (
m̂ct + l̂t

)
+ γpπ̂t−1 + βgEt [π̂t+1] (156)

We divide by
(
1 + βg

)
and get the expression for the New Keynesian Phillips curve:

π̂t =
βg

1 + βgγp
Et [π̂t+1] +

γp
1 + βgγp

π̂t−1 +
1

1 + βγp

(
1− βgξp

) (
1− ξp

)
ξp

(
m̂ct + l̂t

)
(157)

Now, if we follow Romer (2006, Chapter 6.6) in assuming that wages and marginal
costs increase in the output gap, the loglinearized Phillips curve (157) takes the form
of equation (2) in the paper. In the case with labor market imperfections, firms may
pay wages above the market-clearing level and wages may be given by a “real-wage
function” rather than the elasticity of labor supply. Markup shocks l̂t, productivity
shocks, and labor supply shocks, can drive a wedge between marginal costs and the
output gap and therefore act as Phillips Curve shocks. The only difference between
(157) and the corresponding expression in Smets and Wouters (2003) is that we need
to replace the pure discount rate β by a different constant close to one, the growth-
adjusted discount rate βg = βexp(−γg).
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B.2 Loglinear Habit Dynamics Around Steady State

We now show that a loglinear approximation around the nonstochastic steady-state
yields approximate log habit dynamics of the form

ht+1 =
∞∑
j=0

ajct−j. (158)

Approximating

ŝt =

(
1− 1

S̄

)
(ht − ct − h) , (159)

we get loglinear approximate dynamics for log-habit ht (ignoring constants):

ht+1 ≈ θ0ht + (1− θ0)ct +
θ1

τ(1− 1
S̄

)
xt +

θ2

τ(1− 1
S̄

)
xt−1, (160)

= (1− θ0)
∞∑
j=0

θj0ct−j −
θ1

τ( 1
S̄
− 1)

(
ct − (1− φ)

∞∑
j=1

φjct−j

)
(161)

− θ2

τ( 1
S̄
− 1)

(
ct−1 − (1− φ)

∞∑
j=1

φjct−1−j

)
. (162)

Note that if θ1 = θ2 = 0, the loglinear approximation to surplus consumption
takes the form

ŝt ≈
(

1

S̄
− 1

)(
ct − (1− θ0)

∞∑
j=0

θj0ct−1−j + h

)
. (163)

This is essentially the same functional form as for the output gap (equation (9) in
the main paper)

xt = τ−1

(
ct − (1− φ)

∞∑
j=0

φjct−1−j

)
. (164)

With θ0 > φ, the approximate surplus consumption ratio (163) is proportional to
consumption in excess of a long-term moving average, whereas the output gap (164)
is proportional to consumption in excess of a more medium-term moving average.

Positive values for θ1 > 0 and θ2 > 0 decrease a0 and a1 in (158) while increasing
the weight on medium-term lags. With φ < θ0, aj converges to (1− θ0)θj0 as j goes to
infinity. Hence, approximate log habit dynamics load onto long lags of consumption
exactly as in Campbell and Cochrane (1999).
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B.3 Comparison with Wachter (2006) Preferences

Wachter (2006) uses a slightly different modification for Campbell and Cochrane
(1999) preferences to generate time-varying bond risk premia. She assumes iid ho-
moskedastic consumption growth and specifies the following dynamics for the surplus
consumption ratio

st+1 = (1− φ)s̄+ φst + λ(st, fS̄(φ+ b/γ))εc,t+1 (165)

Here, b is a constant determining the dynamics of short-term real interest rates and
we denote the function

fS̄(θ) = σc

√
γ

1− θ
, (166)

so fS̄(φ) gives the steady-state surplus consumption ratio in the Campbell-Cochrane
model. Now, define

θ0 = φ+ b/γ. (167)

Then, we can re-write the dynamics (165) as

st+1 = (1− θ0)s̄+ θ0st −
b

γ
st + λ(st, fS̄(θ0))εc,t+1 (168)

This compares to our model for surplus consumption dynamics

st+1 = (1− θ0)s̄+ θ0st + θ1xt + θ2xt−1 + λ(st, fS̄(θ0))εc,t+1 (169)

Therefore, the difference between the two types of preferences is only that we
replace a term

−b
γ
st (170)

by

θ1xt + θ2xt−1. (171)

If the output gap is closely related to consumption in excess of habit, as is the
case in our model, these two variants for obtaining time-varying real interest rates
are also very closely related.

Wachter (2006) chooses a positive value for b to obtain a negative covariance
between real interest rates and surplus consumption and a positive real bond beta.
The relation in our model between interest rate cyclicality and θ1 and θ2 is more
complicated. It depends on the endogenous output gap dynamics and the relative
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values of θ1 and θ2. As we see in the calibration, we can obtain both positive and
negative nominal and real bond betas with θ1 > 0 and θ2 > 0.

There are two reasons for us to choose our specification for surplus consumption
ratio dynamics rather than Wachter’s (2006). First, our specification avoids sunspot
fluctuations in macreconomic equilibrium dynamics by including an additional lag
term. Second, it generates dynamics for consumption, the output gap, inflation,
and interest rates that are conditionally homoskedastic, consistent with no strong
heteroskedasticity in macroeconomic data.

C Additional Calibration Features and Robustness

C.1 Solution with Regime Switches

For robustness, we consider a simple regime-switching modification of our baseline
model. Suppose that with probability q, the system switches from state a to states b or
c, each with equal probability. Let Xt denote the regime in period t. If Xt ∈ {a, b, c},
we assume that the state vector at time t+ 1 Ŷt+1 satisfies

Ŷt+1 = PXtŶt +QXtut+1. (172)

Regime Xt+1 is realized after Ŷt+1, so at time t the transition matrix from time t
to time t+ 1 is known.

Next, we solve for asset prices in the regime-switching model. In states b and
c, the solutions for zero coupon bond prices and zero coupon dividend claims are
unchanged, because those are absorbing states. In state a, we have to modify the
solution recursions. We start with equity zero coupon dividend claims. The one-
period claim fa,1 is unchanged. For n > 1, f1,n is given by the recursion

fa,n = log
[
Et

[
exp

(
δeqg + δeqτe1[P − φI]A−1Z̃t

−rf − (e3 − e2P )A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt) (173)

−(γ(1 + λ(ŝt))− δeq)τe1A
−1e1︸ ︷︷ ︸

ve1

εt+1 (174)

−(γ(1 + λ(ŝt))− δeq)τe1A
−1(e2 + e3)︸ ︷︷ ︸
ve2

εt+1

+f̄a,n−1

)]]
. (175)

f̄a,n = log
(

(1− q)Fa,n−1(Z̃t+1, ŝt+1, xt) +
q

2

(
Fb,n−1 + Fc,n−1)(Z̃t+1, ŝt+1, xt)

))
.
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Similarly, the recursions for real and nominal bonds remain unchanged, except for
replacing bn−1 and b$

n−1 by

b̄a,n−1 = log
(

(1− q)Ba,n−1) +
q

2
(Bb,n−1 +Bc,n−1)

)
, (176)

b̄$
a,n−1 = log

(
(1− q)B$

a,n−1 +
q

2

(
B$
b,n−1 +B$

c,n−1

))
. (177)

We first solve numerically for asset prices in regimes b and c. We then use loglinear
interpolation to compute regime b and c asset prices along grid points for the grid
chosen for regime b. We then solve for regime a asset prices.

Table A.1 is analogous to Table 5 in the main paper, except that we allow for
a regime switching probability of q = 1%. This regime switching probability corre-
sponds to a regime half-life of 20 years, consistent with our empirical regimes lasting
between between 10 and 24 years. All asset pricing properties shown in Table A.1
are almost indistinguishable from Table 5 in the main paper, indicating that we do
not lose much by formally modeling regimes as lasting an infinite amount of time in
our baseline model.

D Additional Empirical Results

This section reports additional empirical results.

D.1 Additional Break in 1987

Next, we split the second subperiod 1977.Q2-2000.Q4 into two periods, according to
Alan Greenspan’s appointment as Fed chairman. We choose the pre-1987 monetary
policy parameters to minimize the distance between empirical and model regressions
of the Federal Funds rate on the output gap, inflation, and the lagged Federal Funds
rate. We force the post-1987 monetary policy parameters to be identical to those
for our full subperiod 3 to capture the notion that the monetary policy rule changed
with Fed chairmen. We subsequently choose the volatilities of shocks to minimize the
distance between empirical and model second asset pricing moments and standard
deviations of VAR(1) residuals.

Table A.2 reports the parameter values. All non-reported parameters are as in
Table 4 in the main paper. The pre-1987 period is characterized by an even stronger
inflation reaction coefficient and a smaller output gap coefficient than the full period
2, further driving up bond betas relative to the full period 2. The pre-1987 period
is characterized by very volatile monetary policy shocks, consistent with a volatile
Federal Funds rate during this period.
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The volatilities of shocks in the 1987-2000 sample are a convex combination of
those for our full subperiods 2 and 3. Phillips curve shocks are as volatile as in the
full subperiod 2. However, monetary policy shocks are not volatile, similarly to the
full subperiod 3. The inflation target volatility is between the values for our full
subsamples 2 and 3, but closer to the subsample 2 value.

Table A.3 is analogous to Table 5 in the main paper. It shows that we can fit
the empirical Taylor rule regressions and asset pricing moments for the pre-1987 and
post-1987 subsamples. The beta of nominal bonds was strongly positive before 1987,
but slightly negative during 1987-2000 sample.

Overall, if we force the monetary policy rule to be constaFnt from 1987 onwards,
the model relies on a decrease in the volatility of PC shocks and an increase in
persistent monetary policy shocks to explain the substantial decline in nominal bond
betas after 2000.

D.2 Allowing for Non-Zero Correlation Between Monetary
Policy Shocks and Inflation Target Shocks

We now investigate whether allowing for a non-zero correlation between monetary
policy and inflation target shocks can help us generate more volatile bond returns.
When the central bank is less credible in controlling inflation, it might not be able
to generate an independent inflation target shock simply by communicating the new
target. In our main calibration, we capture this through reduced inflation target
volatility in subperiods 1 and 2. An alternative way of capturing this notion might
be through allowing a negative correlation between monetary policy and inflation
target shocks. If the central bank has to raise the policy rate first in order to credibly
signal its commitment to a lower inflation target, this might act similarly to a reduced
overall inflation target volatility in periods 1 and 2.

We choose parameters by first optimizing over the volatility of shocks and the mon-
etary policy-inflation target correlation, while holding all other parameters constant.
Next, we reoptimize over the monetary policy parameters to match the empirical
Taylor rule regression as closely as possible for all three subperiods.

Table A.4 shows the resulting parameter values. The MP-inflation target corre-
lation is highly negative for the first two subperiods, but close to zero for the third
subperiod. At the same time, the inflation target volatility is smaller than in our
main calibration and roughly constant across subperiods.

Tablle A.5 compares empirical and model moments for this alternative calibra-
tion. The model fits broad change in bond betas across subperiods, similarly to our
main calibration. This alternative calibration generates more volatile bond returns,
especially in the second subperiod. However, this increased volatility comes at the
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expense of significantly more volatility in the output gap and stock returns than in
our baseline calibration. We conclude that allowing for a negative correlation between
inflation target shocks and monetary policy shocks acts similarly to a lower overall
inflation target volatility on betas.

D.3 Robustness of Monetary Policy Rule

Next, we estimate empirical monetary policy regressions for pre- and post-crisis sam-
ples. Table A.6 is analogous to Table 3 in the main paper, except that it splits
superiod 3 (2001.Q-2011.Q4) into a pre-crisis subsample (2001.Q1-2008.Q2) and a
post-crisis subsample (2008.Q3-2011.Q4). The estimates for the pre-crisis subsample
are in line with the estimates for the full subperiod 3. The Federal Funds rate is
persistent and responds strongly to the output gap. The estimated naive inflation re-
action coefficient γ̂π is even below one, but a two-standard deviation interval includes
one. The estimated monetary policy rule for the post-crisis period has all coefficients
very close to zero. This is not surprising, since the Federal Funds rate was stuck at
the zero lower bound at this time.

Table A.7 reports monetary policy rule estimates using a real-time measure of the
output gap. We are grateful to Athanasios Orphanides for providing this real time
measure to us. Table A.7 is analogous to Table 3 in the main paper, except that it
uses this alternative measure for the output gap. Subperiod 2 is again characterized
by a naive inflation gap coefficient γ̂π above one and a small naive output gap reac-
tion coefficient γ̂x. The estimated persistence parameter increased substantially from
period 2 to period 3. With the real time output gap, the estimated naive estimated
output gap coefficient γ̂x for the most recent subperiod is negative. However, we have
to keep in mind that the identification of regime break dates is necessarily imprecise.
If we use a break date of 1997 instead, which is when bond betas turned negative, we
again estimate a large and positive naive output gap coefficient γ̂x.

D.4 Macroeconomic Correlations

If changes in bond risks are driven by macroeconomic factors, then changes in bond
risks should be reflected in changing macroeconomic correlations. Lower than ex-
pected inflation raises nominal bond prices, all else equal, so the inflation-output
correlation should typically take the opposite sign from the bond-stock correlation.

Table A.8 compares sub-sample correlations of asset prices and macroeconomic
variables. The empirical output gap is highly persistent and it is therefore unsur-
prising that three year equity excess returns are more strongly correlated with the
output gap than highly volatile quarterly stock returns. We therefore use quarterly
overlapping three year bond and stock excess returns for our comparison of asset re-
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turn correlations and macroeconomic correlations. Table A.8 confirms our intuition
that bond excess returns should at least partly reflect news about inflation and that
equity excess returns should reflect the business cycle. In each sub period, empirical
bond excess returns are negatively correlation with inflation and equity excess returns
are positively correlated with the output gap.

Table A.8 confirms that the changes in the bond-stock comovement documented
in Figure 1 and Table 5 are robust to using three year returns instead of daily or
quarterly returns. The correlation between three year stock returns and three year
bond returns was positive and significant in the first sub-period, increased in the
second sub period, and became negative and significant in the last sub period.

The bond-output gap, inflation-stock, and inflation-output gap correlations con-
firm our intuition that changing bond risks are related to the prevalence of inflationary
recessions versus deflationary recessions during different regimes. The bond-output
gap correlation typically has the same sign as the bond-stock correlation, while the
inflation-stock return correlation and the inflation-output correlation has the oppo-
site sign. The only exception to this pattern is the first sub period bond-output gap
correlation, which takes a negative, but small and insignificant, value.
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Table A.1: Model and Empirical Moments with Regime Switches

Panel A: Estimated MP Rule – Fed Funds onto Output Gap, Infl. and Lag. Fed Funds

60.Q2-77.Q1 77.Q2-00.Q4 01.Q1-11.Q4
Empirical Model Empirical Model Empirical Model

Output Gap 0.17** 0.15 0.03 -0.10 0.04 0.06
Inflation 0.21** 0.28 0.41* 0.36 0.21** 0.16
Lagged Fed Funds 0.69** 0.71 0.66* 0.63 0.83** 0.84

Panel B: Subperiod Second Moments

60.Q2-77.Q1 77.Q2-00.Q4 01.Q1-11.Q4
Std. Asset Returns Empirical Model Empirical Model Empirical Model

Std. Eq. Ret. 18.35 16.77 15.68 16.53 20.34 14.91
Std. Nom. Bond Ret. 4.92 1.42 8.11 2.61 5.92 3.57
Nominal Bond Beta 0.07** 0.05 0.12 0.12 -0.18** -0.17
Std. Real Bond Ret. 4.59 2.16 4.27 2.08
Real Bond Beta -0.25 0.05 -0.08 -0.06

Std. VAR(1) Residuals
Output Gap 0.83 1.23 0.76 1.06 0.67 0.97
Inflation 1.05 0.79 1.04 0.33 0.86 0.26
Fed Funds Rate 0.90 0.75 1.55 1.52 0.47 0.57
Log Nominal Yield 0.47 0.15 0.77 0.27 0.56 0.38

This table is analogous to Table 5 in the main paper, except that it allows for a probability of regime switches, as described in
Section C.1. The probability of switching out of the current regime is set to 1% per quarter, corresponding to a regime half-life
of 20 years.
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Table A.2: Parameter Choices: Additional Break in 1987

Monetary Policy Rule 77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Output Weight γx 0.28 0.23 0.84
Inflation Weight γπ 1.61 1.91 1.60
Persistence MP ρi 0.64 0.54 0.82

Std. Shocks
Std. PC 0.49 0.64 0.34
Std. MP 1.60 2.34 0.52
Std. Infl. Target 0.13 0.05 0.17

Panel B: Implied Parameters
77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4

Discount Rate β 0.85 0.88 0.88
IS Curve lag Coefficient ρx− 0.02 0.02 0.02
IS Curve Forward Coefficient ρx+ 1.10 1.10 1.10
IS Curve Real Rate Slope ψ 0.41 0.41 0.41
Steady-State Surplus Cons. Ratio S̄ 0.12 0.14 0.09
Log Max. Surplus Cons. Ratio smax -1.65 -1.49 -1.88
Max Surplus Cons. Ratio Smax 0.19 0.23 0.15
Std. Cons. Innovation σc 2.51 2.70 1.81
Twelve-Quarter Cons. VR 0.70 1.10 0.77
AR(1) Coefficient Output Gap 0.89 0.94 0.91
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Table A.3: Additional Break in 1987: Model and Empirical Moments

Panel A: Estimated MP Rule – Fed Funds onto Output Gap, Infl. and Lag. Fed Funds

77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Empirical Model Empirical Model Empirical Model

Output 0.03 -0.03 -0.11 -0.11 0.17** 0.16
Inflation 0.41* 0.33 0.44* 0.35 0.25* 0.34
Lagged Fed Funds 0.66* 0.66 0.50* 0.52 0.80** 0.66

Panel B: Subperiod Second Moments

77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Std. Asset Returns Empirical Model Empirical Model Empirical Model

Std. Eq. Ret. 15.68 18.14 15.63 21.16 15.86 13.55
Std. Nom. Bond Ret. 8.11 2.93 10.51 4.24 5.74 1.55
Nominal Bond Beta 0.12 0.12 0.32 0.18 -0.03 -0.03
Std. Real Bond Ret. 2.13 2.55 2.09
Real Bond Beta 0.03 0.06 -0.14

Std. VAR(1) Residuals
Output Gap 0.76 1.40 0.95 1.96 0.50 0.65
Inflation 1.04 0.45 1.33 0.59 0.61 0.33
Fed Funds Rate 1.55 1.56 2.17 2.29 0.46 0.48
Log Nominal Yield 0.77 0.30 0.96 0.44 0.58 0.16

This table reports average model moments from 5 simulations of length 10000. * and ** denote significance at the 5% and 1%
levels. We use Newey-West standard erros with 2 lags for the nominal bond beta and Newey-West standard errors with 6 lags
for the empirical Taylor rule estimation in the bottom panel.
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Table A.4: Parameter Choices with Correlation (MP Shocks, Infl. Tgt. Shocks)

Monetary Policy Rule 77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Output Weight γx 0.48 0.11 0.72
Inflation Weight γπ 0.75 1.21 1.43
Persistence MP ρi 0.53 0.90 0.77

Std. Shocks
Std. PC 0.68 0.09 0.29
Std. MP 0.77 1.82 0.66
Std. Infl. Target 0.22 0.27 0.27

Corr(Infl. Tgt., MP Shocks) -0.80 -0.88 -0.12

Panel B: Implied Parameters
77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4

Discount Rate β 0.85 0.85 0.85
IS Curve lag Coefficient ρx− 0.02 0.02 0.02
IS Curve Forward Coefficient ρx+ 1.10 1.10 1.10
IS Curve Real Rate Slope ψ 0.41 0.41 0.41
Steady-State Surplus Cons. Ratio S̄ 0.08 0.21 0.06
Log Max. Surplus Cons. Ratio smax -2.00 -1.10 -2.25
Max Surplus Cons. Ratio Smax 0.13 0.33 0.11
Std. Cons. Innovation σc 1.75 4.38 1.38
Twelve-Quarter Cons. VR 1.06 0.37 0.81
AR(1) Coefficient Output Gap 0.94 0.81 0.91
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Table A.5: Model and Empirical Moments with Correlation (MP Shocks, Infl. Tgt. Shocks)

Panel A: Estimated MP Rule – Fed Funds onto Output Gap, Infl. and Lag. Fed Funds

77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Empirical Model Empirical Model Empirical Model

Output Gap 0.17** 0.16 0.03 -0.38 0.04 0.05
Inflation 0.21** 0.28 0.41* 0.31 0.21** 0.20
Lagged Fed Funds 0.69** 0.72 0.66* 0.68 0.83** 0.80

Panel B: Subperiod Second Moments

77.Q2-00.Q4 77.Q2-87.Q2 87.Q3-00.Q4
Std. Asset Returns Empirical Model Empirical Model Empirical Model

Std. Eq. Ret. 18.35 14.60 15.68 25.08 20.34 14.62
Std. Nom. Bond Ret. 4.92 1.40 8.11 7.10 5.92 2.29
Nominal Bond Beta 0.07** 0.00 0.12 0.27 -0.18** -0.07
Std. Real Bond Ret. 4.31 11.44 4.27 1.92
Real Bond Beta -0.27 0.44 -0.08 -0.06

Std. VAR(1) Residuals
Output Gap 0.83 0.98 0.76 2.49 0.67 0.78
Inflation 1.05 0.66 1.04 0.13 0.86 0.28
Fed Funds Rate 0.90 0.66 1.55 1.80 0.47 0.61
Log Nominal Yield 0.47 0.15 0.77 0.72 0.56 0.24

This table reports average model moments from 5 simulations of length 10000. * and ** denote significance at the 5% and 1%
levels. We use Newey-West standard erros with 2 lags for the nominal bond beta and Newey-West standard errors with 6 lags
for the empirical Taylor rule estimation in the bottom panel.
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Table A.6: Empirical Monetary Policy Function Crisis Sample

Fed Funds it 00.Q1-11.Q4 00.Q1-08.Q2 08.Q3-11.Q4
Output Gap 0.04 0.41** -0.02

(0.03) (0.10) (0.03)
Inflation 0.21** 0.23** -0.00

(0.07) (0.05) (0.01)
Lagged Fed Funds 0.83** 0.73** 0.01

(0.08) (0.09) (0.06)
Constant -0.12 0.18 -0.02

(0.22) (0.19) (0.27)
R2 0.94 0.93 0.14
Implied γ̂x 0.22 1.52** -0.02

(0.12) (0.53) (0.04)
Implied γ̂π 1.19** 0.87** 0.00

(0.68) (0.25) (0.01)
Implied ρ̂i 0.83** 0.73** 0.01

(0.08) (0.09) (0.06)

This table estimates the monetary policy rule before and after the Lehman brothers bankruptcy in 2008.Q3. All variables and
test specifications are described in Table 3 in the main text.
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Table A.7: Estimating the Monetary Policy Function - Real-Time Output Gap from Orphanides

Fed Funds it 60.Q2-77.Q1 77.Q2-00.Q4 01.Q1-11.Q4 97.Q1-11.Q4
Output Gap 0.11** 0.03 -0.02 0.07

(0.03) (0.04) (0.04) (0.05)
Inflation 0.21* 0.42* 0.26** 0.15*

(0.08) (0.16) (0.08) (0.07)
Lagged Fed Funds Rate 0.70** 0.67** 0.89** 0.88**

(0.06) (0.13) (0.07) (0.07)
Constant 1.23** 1.12 -0.51 0.04

(0.25) (0.58) (0.25) (0.28)
R2 0.85 0.77 0.94 0.95
Implied γ̂x 0.36** 0.10 -0.20 0.61**

(0.10) (0.15) (0.40) (0.17)
Implied γ̂π 0.71** 1.27** 2.22** 1.31**

(0.19) (0.15) (1.55) (1.02)
Implied ρ̂i 0.85** 0.58** 0.56** 0.89**

(0.04) (0.11) (0.15) (0.06)

This table is identical to Table 4 in the main text, but it uses a different measure of the output gap. We are grateful to
Athanasios Orphanides for sharing his real-time output gap data with us.

37



Table A.8: Sub-Period Correlations of Bond Returns, Stock Returns, Output Gap, and Inflation

60.Q2-77.Q1 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns 0.28* 1
Output Gap -0.14 0.41* 1.00
Inflation -0.34* -0.73* -0.13 1.00

77.Q2-00.Q4 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns 0.36* 1
Output Gap 0.22* 0.40* 1
Inflation -0.63* -0.42* -0.18 1

01.Q1-11.Q4 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns -0.78* 1
Output Gap -0.56* 0.39* 1
Inflation -0.36* 0.45* 0.57* 1

Quarterly overlapping 3 year log equity returns in excess of log three month T-bill, 3 year log excess return on 5 year nominal
bond in excess of three month log T-bill. Quarterly inflation and output as in Table 1. We report correlations of log excess
returns from time t− 12 to t and macroeconomic variables as of quarter t. * and ** denote significance at the 5% and 1% level.
Significance levels not adjusted for time series dependence.
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