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Abstract
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pure-strategy equilibrium, provide conditions for its uniqueness, and present a number of comparative
static results that apply at this level of generality. We then use this framework to study the dynamics
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1 Introduction

Political change often takes place in the midst of uncertainty and turmoil, which sometimes

brings to power – or paves the road for the rise of – the most radical factions, such as the

militant Jacobins during the Reign of Terror in the French Revolution or the Nazis during the

crisis of the Weimar Republic. The possibility of “extreme” outcomes is of interest not only

because the resulting regimes have caused much human suffering and powerfully shaped the

course of history, but also because, in many episodes, the fear of such radical extremist regimes

has been one of the drivers of repression against a whole gamut of opposition groups. The events

leading up to the October Revolution of 1917 in Russia illustrate both how an extremist fringe

group can ascend to power, and the dynamics of repression partly motivated by the desire of

ruling elites to prevent the empowerment of extremist – and sometimes also of more moderate

– elements.

Russia entered the 20th century as an absolute monarchy, but started a process of limited

political reforms in response to labor strikes and civilian unrest in the aftermath of its defeat in

the Russo-Japanese war of 1904-1905. Despite the formation of political parties (for the first time

in Russian history) and an election with a wide franchise, the repression against the regime’s

opponents continued, and the parliament, the Duma, had limited powers and was considered

by the tsar as an advisory rather than legislative body (Pipes, 1995). The tsar still retained

control, in part relying on repression against the leftist groups, his veto power, the right to

dissolve the Duma, full control of the military and cabinet appointments, and his ability to

rule by decree when the Duma was not in session. This may have been partly motivated by

the fear of further strengthening the two major leftist parties, Social Revolutionaries and Social

Democrats (corresponding to communists, consisting of the Bolsheviks and the Mensheviks),

which together controlled about 2/5 of the 1906 Duma and explicitly targeted a revolution.1

World War I, which became very unpopular following large casualties and territorial losses,

created the opening for the Bolsheviks, bringing to power the Provisional Government in the

February Revolution of 1917, and then later, the moderate Social Revolutionary Alexander

1Lenin, the leader of the Bolshevik wing of the Social Democrats, recognized that a revolution was possible
only by exploiting turmoil. In the context of the 1906 Duma, he stated: “Our task is [. . . ] to use the conflicts
within this Duma, or connected with it, for choosing the right moment to attack the enemy, the right moment for
an insurrection against the autocracy.”Later, he argued: “[. . . ] the Duma should be used for the purposes of the
revolution, should be used mainly for promulgating the Party’s political and socialist views and not for legislative
‘reforms,’which, in any case, would mean supporting the counter-revolution and curtailing democracy in every
way.”
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Kerensky. Additional military defeats of the Russian army in the summer of 1917, the destruc-

tion of the military chain of command by Bolshevik-led soldier committees, and Kerensky’s

willingness to enter into an alliance with Social Democrats to defeat the attempted coup by the

army during the Kornilov affair strengthened the Bolsheviks further. Though in the elections

to the Constituent Assembly in November 1917, they had only a small fraction of the vote, the

Bolsheviks successfully exploited their control of Petrograd Soviets to outmaneuver the more

popular Social Revolutionaries, first entering into an alliance with so-called Left Social Revo-

lutionaries, and then coercing them to leave the government so as to form their own one-party

dictatorship.

This episode thus illustrates both the possibility of a series of transitions bringing to power

some of the most radical groups and the potential implications of the concerns of moderate

political transitions further empowering radical groups. Despite a growing literature on political

transitions, the issues we have just illustrated in the context of the Bolshevik Revolution can-

not be studied with existing models,2 because they necessitate a dynamic model where several

groups can form temporary coalitions and a rich set of stochastic shocks creates a changing

environment, potentially leading to a sequence of political transitions away from current power-

holders. Such a model could also shed further light on key questions in the literature on regime

transitions, including those concerning political transitions with several heterogeneous groups,

gradual enfranchisement, and the interactions between regime dynamics and coalition forma-

tion. In this paper, we develop a framework for the study of dynamic political economy in the

presence of stochastic shocks and changing environments, which we then apply to an analysis

of the implications of potential shifts of power to radical groups during tumultuous times. The

next example provides a first glimpse of the type of abstraction we will use.

Example 1 Consider a society consisting of n groups, spanning from −l < 0 (left-wing) to

r > 0 (right-wing), with group 0 normalized to contain the median voter. For concreteness,

suppose that n = 3, and that the rightmost player corresponds to the Russian tsar, the middle

player to moderate groups, and the leftmost group to Bolsheviks. The stage payoff of each group

depends on current policies, which are determined by the politically powerful coalition in the

current “political state”. Suppose that there are 2n − 1 political states, each state specifying

2These types of political dynamics are not confined to episodes in which extreme left groups might come to
power. The power struggles between secularists and religious groups in Turkey and more recently in the Middle
East and North Africa are also partly motivated by concerns on both sides that political power will irrevocably
– or at least persistently – shift to the other side.
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which of the “extreme”players are repressed and excluded from political decision-making. With

n = 3, the five states are s = 2 (both moderates and Bolsheviks are repressed and the tsar is the

dictator), 1 (Bolsheviks are repressed), 0 (nobody is repressed and power lies with moderates),

−1 (the tsar is repressed or eliminated), and finally −2 (the tsar and moderates are repressed, i.e.

a Bolshevik dictatorship). Since current policies depend on the political state, we can directly

define stage payoffs as a function of the current state for each player, ui(s) (which is inclusive

of repression costs, if any). Suppose that starting in any state s 6= −2, a stochastic shock can

bring the Bolsheviks to power and this shock is more likely when s is lower.

In addition to proving the existence and characterizing the structure of pure-strategy equi-

libria, our framework enables us to establish the following types of results. First, in the absence

of stochastic shocks bringing Bolsheviks to power, s = 0 (no repression or democracy) is stable

in the sense that moderates would not like to initiate repression, but s > 0 may also be stable,

because the tsar may prefer to incur the costs of repression to implement policies more in line

with his preferences. Second, and more interestingly, moderates may also initiate repression

starting with s = 0 if there is the possibility of a switch of power to Bolsheviks. Third, and

paradoxically, the tsar may be more willing to grant political rights to moderates when Bol-

sheviks are stronger, because this might make a coalition between the latter two groups less

likely (this is an illustration of what we refer to as “slippery slope”considerations and shows the

general non-monotonicities in our model: when Bolsheviks are stronger, the tsar has less to fear

from the slippery slope). Fourth, there is history dependence in the sense that once Bolsheviks

come to power and leave power, a new (different) stable state may emerge. Finally, there is

strategic complementarity in repression: the anticipation of repression by Bolsheviks encourages

repression by moderates and the tsar.3

Though stylized, this example communicates the complex strategic interactions involved in

dynamic political transitions in the presence of stochastic shocks and changing environments.

Against this background, the framework we develop will show that, under natural assumptions,

we can characterize the equilibria of this class of environments fairly tightly and perform com-

parative statics, shedding light on these and a variety of other dynamic strategic interactions.

3This result is also interesting as it provides a new perspective on why repression may differ markedly across
societies. For example, Russia before the Bolshevik Revolution repressed the leftists, and after the Bolshevik
Revolution systematically repressed the rightists and centrists, while the extent of repression of either extreme
has been more limited in the United Kingdom. Such differences are often ascribed to differences in “political
culture”. Our result instead suggests that (small) differences in economic interests or political costs of repression
can lead to significantly different repression outcomes.
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Formally, we consider a generalization of the environment discussed in the example. Society

consists of i = 1, 2, ..., n players (groups or individuals) and s = 1, 2, ...,m states, which represent

both different economic arrangements with varying payoffs for different players, and different

political arrangements and institutional choices. Stochastic shocks are modeled as stochastic

changes in environments, which contain information on preferences of all players over states and

the distribution of political power within states. This approach is general enough to capture a

rich set of permanent and transitory (as well as both anticipated or unanticipated) stochastic

shocks depending on the current state and environment. Players care about the expected dis-

counted sum of their utility, and they make joint choices among feasible political transitions,

based on their political power. Our key assumption is that both preferences and the distribution

of political power satisfy a natural single-crossing (increasing differences) property: we assume

that players and states are “ordered,”and higher-indexed players relatively prefer higher-indexed

states and also tend to have greater political power in such states. (Changes in environments

shift these preferences and distribution of political power, but maintain increasing differences).

Our notion of equilibrium is Markov Voting Equilibrium (MVE), which comprises two nat-

ural requirements: (1) that changes in states should take place if there exists a subset of players

with the power to implement them and who will obtain higher continuation utility (along the

equilibrium path) by doing so; (2) that strategies and continuation utilities should only depend

on payoff-relevant variables and states. Under these assumptions, we establish the existence of

pure-strategy equilibria. Furthermore, we show that the stochastic path of states in any MVE

ultimately converges to a limit state – i.e., to a state that does not induce further changes once

reached, though this limit state may depend on the exact timing and sequence of shocks (Theo-

rems 1 and 3).4 Although MVE are not always unique, we also provide suffi cient conditions that

ensure uniqueness (Theorems 2 and 4). We further demonstrate a close correspondence between

these MVE and the pure-strategy Markov perfect equilibria of our environment (Theorem 5).

Despite the generality of the framework described here and the potential countervailing forces

highlighted by our example above, we also establish a number of comparative static results. Here

we only mention one of them. Consider a change in environment which leaves preferences or

the allocation of political power in any of the states s = 1, ...s′ unchanged, but potentially

changes them in states s = s′ + 1, ...,m. The result is that if the steady state of equilibrium

4This last result also implies that, in contrast to many other models of institutional persistence, ours features
“true path dependence” as defined, for example, by Page (2006), who criticizes many existing models of “path
dependence”for being invariant to the sequencing of shocks.
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dynamics described above, x, did not experience change (i.e., x ≤ s′), then the new steady state

emerging after the change in environment can be no smaller than this steady state (Theorem

6). Intuitively, before the change, a transition to any of the smaller states s ≤ x could have

been chosen, but was not. Now, given that preferences and political power did not change for

these states, they have not become more attractive.5 An interesting and novel implication of

this result is that in some environments, there may exist critical states, such as a “suffi ciently

democratic constitution,” and if these critical states are reached before the arrival of certain

major shocks or changes (which might have otherwise led to their collapse), there will be no

turning back (see Corollary 1). This result provides a different interpretation of the durability

of certain democratics regimes than the approaches based on “democratic capital”(e.g., Persson

and Tabellini, 2009): a democracy will survive forever if it is not shocked or challenged severely

while still progressing towards the “suffi ciently democratic constitution/state”, but will fall if

there is a shock before this state is reached.

The second part of the paper applies our framework to the emergence and implications of

radical politics. After establishing that our framework and comparative statics can be directly

applied to the class of problems described in Example 1, we derive a number of additional results

for this application, some of which were outlined above.

Our paper is related to a large political economy literature. First, our previous work, in

particular Acemoglu, Egorov, and Sonin (2012), takes one step in this direction by introducing

a model for the analysis of the dynamics and stability of different political rules and constitutions.

However, that approach not only heavily relies on deterministic and stationary environments

(thus ruling out changes in political power or preferences) but also focuses on environments in

which the discount factor is suffi ciently close to 1 so that all agents just care about the payoff

from a stable state (that will emerge and persists) if such a state exists. Here, in contrast, it is

crucial that political change and choices are motivated by the entire path of payoffs.6

Second, several papers on dynamic political economy and on dynamics of clubs emerge as

5 In contrast, some of the higher-ranked states may have become more attractive, which may induce a transition
to a higher state. In fact, perhaps somewhat surprisingly, transition to a state s ≥ s′ + 1 can take place even if
all states s = s′ + 1, ...,m become less attractive for all agents in society.

6 In Acemoglu, Egorov and Sonin (2010), we studied political selection and government formation in a popula-
tion with heterogeneous abilities and allowed stochastic changes in the competencies of politicians. Nevertheless,
this was done under two assumptions, which significantly simplified the analysis and made it much less applica-
ble. In particular, stochastic shocks were assumed to be very infrequent and the discount factor was taken to be
close to 1. Acemoglu, Egorov and Sonin (2011) took a first step towards introducing stochastic shocks, but only
confined to the exogenous emergence of new extreme states (and without any of the general characterization or
comparative static results presented here).
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special cases of our paper. Among these, Roberts (1999) deserves special mention as an im-

portant precursor of our analysis. Roberts studies a dynamic model of club formation in which

current members of the club vote about whether to admit new members or exclude some of the

existing ones. Roberts focuses on a limited set of transitions, also makes single-crossing type

assumptions and only considers non-stochastic environments and majoritarian voting (see also

Barberà, Maschler, and Shalev, 2001, for a related setup). Both our framework and characteri-

zation results are more general, not only because they incorporate stochastic elements and more

general distributions of political power, but also because we provide conditions for uniqueness,

convergence to steady states, and general comparative static results. In addition, Gomes and

Jehiel’s (2005) paper, which studies dynamics in a related environment with side transfers, is

also noteworthy. This paper, however, does not include stochastic elements or similar general

characterization results either. Strulovici (2010), who studies a voting model with stochastic

arrival of new information, is also related, but his focus is on information leading to ineffi cient

dynamics, while changes in political institutions or voting rules are not part of the model.

Third, our motivation is also related to the literature on political transitions. Acemoglu and

Robinson (2000a, 2001) consider environments in which institutional change is partly motivated

by a desire to reallocate political power in the future to match the current distribution of power.7

Acemoglu and Robinson’s analysis is simplified by focusing on a society consisting of two social

groups (and in Acemoglu and Robinson, 2006, with three social groups). In Acemoglu and

Robinson (2001), Fearon (2004), Powell (2006), Hirshleifer, Boldrin and Levine (2009), and

Acemoglu, Ticchi, and Vindigni (2010), anticipation of future changes in political power leads

to ineffi cient policies, civil war, or collapse of democracy. There is a growing literature that

focuses on situations where decisions of the current policy makers affect the future allocation of

political power (see also, Besley and Coate, 1998).

Fourth, there is a small literature on strategic use of repression, which includes Acemoglu

and Robinson (2000b), Gregory, Schroeder, and Sonin (2011) and Wolitzky (2011). In Wolitzky

(2011), different political positions (rather than different types of players) are repressed in order

to shift the political equilibrium in the context of a two-period model of political economy. In

Acemoglu and Robinson (2000b), repression arises because political concessions can be inter-

preted as a sign of weakness. None of the papers discussed in the previous three paragraphs

7Other related contributions here include Alesina, Angeloni, and Etro (2005), Barberà and Jackson (2004),
Messner and Polborn (2004), Bourguignon and Verdier (2000), Burkart and Wallner (2000), Jack and Lagunoff
(2008), Lagunoff (2006), and Lizzeri and Persico (2004).
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study the issues we focus on or make progress towards a general framework of the sort presented

here.

The rest of the paper is organized as follows. In Section 2, we present our general framework

and introduce the concept of MVE. Section 3 contains the analysis of MVE. We start with the

stationary case (without shocks), then extend the analysis to the general case where shocks are

possible, and then compare the concepts of MVE to Markov Perfect Equilibrium in a properly

defined dynamic game. We also establish several comparative static results that hold even at

this level of generality; this allows us to study the society’s reactions to shocks in applied models.

Section 4 applies our framework to the study of radical politics. Section 5 discusses a number of

extensions. Section 6 concludes.

2 General Framework

Time is discrete and infinite, indexed by t ≥ 1. The society consists of n players (representing

individuals or groups), N = {1, . . . , n}. The set of players is ordered, and the order reflects

the initial distribution of some variable of interest. For example, higher-indexed players may

be richer, or more pro-authoritarian, or more right-wing on social issues. In each period, the

society is in one of the h environments E = {E1, . . . , Eh}, which determine preferences and the

distribution of political power in society (as described below). We model stochastic elements

by assuming that, at each date, the society transitions from environment E to environment E′

with probability π (E,E′). Naturally,
∑

E′∈E
π (E,E′) = 1. We assume:

Assumption 1 (Ordered Transitions) If 1 ≤ x < y ≤ h, then

π (Ey, Ex) = 0.

Assumption 1 implies that there can only be at most a finite number of shocks. It also stipu-

lates that environments are numbered so that only transitions to higher-numbered environments

are possible.8 Though this is without loss of generality, it enables us to use the convention that

once the last environment, Eh, has been reached, there will be no further stochastic shocks.9

We model preferences and the distribution of political power by means of states, belonging

to a finite set S = {1, . . . ,m}.10 The set of states is ordered : loosely speaking, this will generally
8Assumption 1 does not preclude the possibility that the same environment will recur several times. For

example, the possibility of q transitions between E1 and E2 can be modeled by setting E3 = E1, E4 = E2, etc.
9This does not mean that the society must reach Eh on every path: for example, it is permissible to have three

environments with π (E1, E2) = π (E1, E3) > 0, and all other transition probabilities equal to zero.
10The implicit assumption that the set of states is the same for all environments is without any loss of generality.
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imply that higher-indexed states provide both greater economic payoffs and more political power

to higher-indexed players. An example would be a situation in which higher-indexed states

correspond to more non-democratic arrangements, which are both economically and politically

better for richer, more elite groups. The payoff of player i ∈ N in state s ∈ S and environment

E ∈ E is uE,i (s).

To capture relative preferences and power of players in different states, we will frequently

make use of the following definition:

Definition 1 (Increasing Diff erences) Vector {wi (s)}s∈Bi∈A , where A,B ⊂ R, satisfies the

increasing differences condition if for any agents i, j ∈ A such that i > j and any states x, y ∈ B

such that x > y,

wi (x)− wi (y) ≥ wj (x)− wj (y) .

The following is one of our key assumptions:

Assumption 2 (Increasing Diff erences in Payoff s) In every environment E ∈ E, the

vector of utility functions, {uE,i (s)}s∈Si∈N , satisfies the increasing differences condition.

Note that payoffs {uE,i (s)} are directly assigned to combinations of states and environments.

An alternative would be to assign payoffs to some other actions, e.g., “policies”, which are then

determined endogenously by the same political process that determines transitions between

states. This is what we do in Section 4, and as our analysis there shows, under fairly weak

conditions, the current state will determine the choice of action (policy), so payoffs will then be

indirectly defined over states and environments. Here we are thus reducing notation by directly

writing them as {uE,i (s)}.

We model the distribution of political power in a state using the notion of winning coalitions.

This captures information on which subsets of agents have the (political) power to implement

economic or political change, here corresponding to a transition from one state to another. We

denote the set of winning coalitions in state s and environment E by WE,s, and impose the

following standard assumption:

Assumption 3 (Winning Coalitions) For environment E ∈ E and state s ∈ S, the set of

winning coalitions WE,s satisfies:

1. (monotonicity) if X ⊂ Y ⊂ N and X ∈WE,s, then Y ∈WE,s;
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2. (properness) if X ∈WE,s, then N \X /∈WE,s;

3. (decisiveness) WE,s 6= ∅.

The first part of Assumption 3 states that if some coalition has the capacity to implement

change, then a larger coalition also does. The second part ensures that if some coalition has

the capacity to implement change, then the coalition of the remaining players (its complement)

does not (effectively ruling out “submajority rule”). Finally, the third part, in the light of

monotonicity propery, is equivalent to N ∈ WE,s, and thus states that if all players want to

implement a change, they can do so. Several common models of political power are special

cases. For example, if a player is a dictator in some state, then the winning coalitions in that

state are all those that include him; if we need unanimity for transitions, then the only winning

coalition is N ; if there is majoritarian voting in some state, then the set of winning coalitions

consists of all coalitions with an absolute majority of the players.

Assumption 3 puts minimal and natural restrictions on the set of winning coalitions WE,s

in each given state s ∈ S. Our main restriction on the distribution of political power will be,

as discussed in the Introduction, the requirement of some “monotonicity”of political power –

that higher-indexed players have no less political power in higher-indexed states. To formally

formulate this restriction, we need the notion of a quasi-median voter (see Acemoglu, Egorov,

and Sonin, 2012).

Definition 2 (Quasi-Median Voter) Player ranked i is a quasi-median voter (QMV) in

state s (in environment E) if for any winning coalition X ∈WE,s, minX ≤ i ≤ maxX.

Let ME,s denote the set of QMVs in state s in environment E. Then by Assumption 3,

ME,s 6= ∅ for any s ∈ S and E ∈ E ; moreover, the set ME,s is connected: whenever i < j < k

and i, k ∈ ME,s, j ∈ ME,s. In many cases, the set of quasi-median voters is a singleton,

|ME,s| = 1. Examples include: one player is the dictator, i.e., X ∈ WE,s if and only if i ∈ X

(and then ME,s = {i}), or majoritarian voting among sets containing odd numbers of players,

or there is a weighted majority in voting with “generic weights” (see Section 4). An example

where ME,s is not a singleton is the unanimity rule.

The following assumption ensures that the distribution of political power is “monotone”over

states.
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Assumption 4 (Monotone Quasi-Median Voter Property, MQMV) In any environ-

ment E ∈ E, the sequences {minME,s}s∈S and {maxME,s}s∈S are nondecreasing in s.

The essence of Assumption 4 is that political power (weakly) shifts towards higher-indexed

players in higher-indexed states. For example, if a certain number of higher-indexed players are

powerful enough to implement a transition in some state, then they are also suffi ciently powerful

to do so in a higher-indexed state. This would hold in a variety of applications, including the

one we present in Section 4 and Roberts’s (1999) model. Trivially, ifME,s is a singleton in every

state, it is equivalent toME,s being nondecreasing (whereME,s is treated as the single element).

For some applications, one might want to restrict feasible transitions between states that

the society may implement; for example, it might be realistic to assume that only transitions

to adjacent states are possible. To incorporate such possibilities, we introduce the mapping

F = FE : S → 2S , which maps every x ∈ S into the set of states to which society may

transition. In other words, y ∈ FE (x) means that the society may transition from x to y in

environment E. We do not assume that y ∈ FE (x) implies x ∈ FE (y), so certain transitions

may be irreversible. We impose:

Assumption 5 (Feasible Transitions) For each environment E ∈ E, FE satisfies:

1. For any x ∈ S, x ∈ FE (x);

2. For any states x, y, z ∈ S such that x < y < z or x > y > z: If z ∈ FE (x), then y ∈ FE (x)

and z ∈ FE (y).

The key requirement, encapsulated in the second part, is that if a transition between two

states is feasible, then any transitions (in the same direction) between intermediate states are

also feasible. Special cases of this assumption include: (a) any transition is possible: FE (x) = S

for any x and E; (b) one-step transitions: y ∈ FE (x) if and only if |x− y| ≤ 1; (c) one directional

transitions: y ∈ FE (x) if and only if x ≤ y.11

Finally, we assume that the discount factor, β ∈ [0, 1), is the same for all players and across

all environments. To recap, the full description of each environment E ∈ E is given by a tuple(
N,S, β, {uE,i (s)}s∈Si∈N , {WE,s}s∈S , {FE (s)}s∈S

)
.

11 In an earlier version, we also allowed for costs of transitions between states, which we now omit to simplify
the exposition.
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Each period t starts with environment Et−1 ∈ E and with state st−1 inherited from the

previous period; Nature determines Et with probability distribution π (Et−1, Et), and then the

players decide on the transition to any feasible st as we describe next. We take E0 ∈ E and

s0 ∈ S as given. At the end of period t, each player receives the stage payoff

vti = uEt,i (st) . (1)

Denoting the expectation at time t by Et, the expected discounted payoff of player i by the

end of period t can be written as

V t
i = Et

∑∞

k=0
βkuEt+k,i (st+k) .

The timing of events within each period is:

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. There is a change in environment from Et−1 to Et ∈ E with probability π (Et−1, Et).

3. Society (collectively) decides on state st, subject to st ∈ FE (st−1).

4. Each player gets stage payoff given by (1).

We omit the exact sequence of moves determining transitions across states (in step 3) as

this is not required for the Markov Voting Equilibrium (MVE) concept. The exact game form

is introduced when we study the noncooperative foundations of MVE.12

MVE will be characterized by a collection of transition mappings φ = {φE : S → S}E∈E .

We let φkE be the k
th iteration of φE (with φ

0
E (s) = s). With φ, we can associate continuation

payoffs V φ
E,i (s) for player i in state s and environment E, which are recursively given by

V φ
E,i (s) = uE,i (s) + β

∑
E′∈E

π
(
E,E′

)
V φ
E′,i (φE′ (s)) . (2)

As 0 ≤ β < 1, the values V φ
E,i (s) are uniquely defined by (2).

Definition 3 (Markov Voting Equilibrium, MVE) A collection of transition mappings

φ = {φE : S → S}E∈E is a Markov Voting Equilibrium if the following three properties hold:

1. (feasibility) for any environment E ∈ E and for any state x ∈ S, φE (x) ∈ FE (x);

12 In what follows, we use MVE both for the singular (Markov Voting Equilibrium) and plural (Markov Voting
Equilibria).
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2. (core) for any environment E ∈ E and for any states x, y ∈ S such that y ∈ FE (x),{
i ∈ N : V φ

E,i (y) > V φ
E,i (φE (x))

}
/∈WE,x; (3)

3. (status quo persistence) for any environment E ∈ E and for any state x ∈ S,{
i ∈ N : V φ

E,i (φE (x)) ≥ V φ
E,i (x)

}
∈WE,x.

Property 1 requires that MVE involves only feasible transitions (in the current environment).

Property 2 is satisfied if no (feasible) alternative y 6= φ (x) is supported by a winning coalition in

x over φE (x) prescribed by the transition mapping φE . This is analogous to a “core”property:

no alternative should be preferred to the proposed transition by some “suffi ciently powerful”

coalition of players; otherwise, the proposed transition would be blocked. Of course, in this

comparison, players should focus on continuation utilities, which is what (3) imposes. Property

3 requires that it takes a winning coalition to move from any state to some alternative – i.e.,

to move away from the status quo. This requirement singles out the status quo if there is no

alternative strictly preferred by some winning coalition.

In addition, we say φE is monotone if for all x, y ∈ S such that x ≥ y, we have φE(x) ≥ φE(y)

(φ is monotone if each of the φE’s is monotone). For now, we focus on monotone MVE, i.e.,

MVE with monotone transition mappings for each E ∈ E . In many cases this is without loss of

generality, and Theorem 9 states mild suffi cient conditions for when all MVE are (generically)

monotone. We also refer to any state x such that φE(x) = x as a steady state or stable in E.

In what follows, with some abuse of notation, we will often suppress the reference to the

environment and use, e.g., ui (s) instead of uE,i (s) or φ instead of φE , when this causes no

confusion.

3 Analysis

In this section, we analyze the structure of MVE. We first prove existence of monotone MVE in a

stationary (deterministic) environment. We then extend these results to situations in which there

are stochastic shocks and nonstationary elements. After establishing the relationship between

MVE and Markov Perfect Equilibria (MPE) of a dynamic game representing the framework of

Section 2, we present a number of comparative static results for our general model.
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3.1 Nonstochastic environment

We first study the case without any stochastic shocks, or equivalently the case of only one

environment (|E| = 1) and thus suppress the subscript E.

For any mapping φ : S → S, the continuation utility of player i after a transition to s has

taken place is given by

V φ
i (s) = ui (s) +

∑∞

k=1
βkui

(
φk (s)

)
. (4)

We start our analysis with several lemmas which will form the basis of our main results. The

next one emphasizes the role that the notion of quasi-median voters (QMV) plays in our theory.

Lemma 1 Suppose that vector {wi (s)} satisfies increasing differences for S′ ⊂ S. Take x, y ∈

S′, s ∈ S and i ∈ N and let

P = {i ∈ N : wi (y) > wi (x)} .

Then P ∈Ws if and only if Ms ⊂ P . A similar statement is true for relations ≥, <, ≤.

Lemma 1 is a consequence of the following reasoning: From increasing differences in payoffs,

if wi (y) > wi (x) for members of Ws, then this holds for all i ≤ maxMs if y < x and for all

i ≥ minMs if y > x. In either case, this establishes the “if”part of the lemma. The “only if”

part also follows from increasing differences: wi (y) > wi (x) must hold for a connected coalition,

and therefore it holds for all members of Ms (from Definition 2).

For each s ∈ S, let us introduce the binary relation >s on the set of n-dimensional vectors

to designate that there exists a winning coalition in s strictly preferring one payoff vector to

another. Formally:

w1 >s w
2 ⇔

{
i ∈ N : w1

i > w2
i

}
∈Ws.

The relation ≥s is defined similarly. Lemma 1 now implies that if a vector {wi (x)} satisfies

increasing differences, then for any s ∈ S, the relations >s and ≥s are transitive on {w· (x)}x∈S .

Our next result is critical for the rest of our analysis, establishing that, under Assumption 2

and 5, when φ is monotone, then continuation utilities
{
V φ
i (s)

}s∈S
i∈N

satisfy increasing differences.

Lemma 2 For a mapping φ : S → S, the vector
{
V φ
i (s)

}s∈S
i∈N

, given by (4), satisfies increasing

differences if

1. φ is monotone; or

13



2. for all x ∈ S, |φ (x)− x| ≤ 1.

This result is at the root of the central role of QMVs in our model. As is well known,

median voter type results do not generally apply with multidimensional policy choices. Since

our players are effectively voting over infinite dimensional choices (a sequence of policies), a

natural conjecture would have been that such results would not apply in our setting either.

The reason they do has a similar intuition to why voting sequentially over two dimensions of

policy, over each of which preferences satisfy single crossing (increasing differences) or single

peakedness, does lead to the median voter type outcomes. By backward induction, the second

vote has a well-defined median voter, and then given this choice, the median voter over the first

one can be determined. Loosely speaking, our recursive formulation of today’s value enables

us to apply this reasoning between the vote today and the vote tomorrow, and the fact that

continuation utilities satisfy increasing differences is the critical step in this argument.

For mapping φ to constitute a MVE, it must satisfy the three properties of Definition 3. Of

these, the “core”property is the most substantive one. The next lemma simplifies the analysis

considerably by proving that if for a monotone mapping φ the core property is violated (i.e., there

is a deviation that makes all members of some winning coalition in the current state better off),

then one can find a monotone deviation– i.e., a valid deviation such that the resulting mapping

after the deviation is also monotone. We call this result the Monotone Deviation Principle with

analogy to the One-Stage Deviation Principle in extensive form games, which also simplifies the

set of deviations one has to consider (because if some deviation makes a player better off, then

there is a one-stage deviation which also does so).

Lemma 3 (Monotone Deviation Principle) Suppose that φ : S → S is feasible (part 1 of

Definition 3) and monotone but the core property is violated in the sense that for some x, y ∈ S

(such that y ∈ F (x)),

V φ (y) >x V
φ (φ (x)) . (5)

Then there exist x, y ∈ S such that y ∈ F (x), (5) still holds, and the mapping φ′ : S → S given

by

φ′ (s) =

{
φ (s) if s 6= x
y if s = x

(6)

is monotone.

With the help of the Monotone Deviation Principle, we can prove the following result, which

will be used to establish the existence of MVE.
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Lemma 4 (No Double Deviation) Let a ∈ [1,m− 1], and let φ1 : [1, a] → [1, a] and φ2 :

[a+ 1,m]→ [a+ 1,m] be two monotone mappings which are MVE on their respective domains.

Let φ : S → S be defined by

φ (s) =

{
φ1 (s) if s ≤ a
φ2 (s) if s > a

(7)

Then exactly one of the following is true:

1. φ is a MVE on S;

2. there is z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a) and V φ (z) >a V
φ (φ (a));

3. there is z ∈ [φ (a) , a] such that z ∈ F (a+ 1) and V φ (z) >a+1 V
φ (φ (a+ 1)).

Intuitively, this lemma states that if we split the set of states into two subsets, [1, a] and

[a+ 1,m], and find (by induction) the MVE on these respective domains, then the combined

mapping may fail to be an MVE only if either a winning coalition in a prefers to move to some

(feasible) state in [a+ 1,m], or a winning coalition in a + 1 prefers to move to some state in

[1, a]. But crucially, these two possibilities are mutually exclusive – a result which we use to

prove our next theorem, establishing the existence of MVE.

Theorem 1 (Existence) There exists a monotone MVE. Moreover, if φ is a monotone MVE,

then the equilibrium path s0, s1 = φ (s1) , s2 = φ (s2) , . . . is monotone, and there exists a limit

state sτ = sτ+1 = . . . = s∞.

We now provide a brief sketch of the proof of this theorem which is by induction on the

number of states (here we assume for simplicity that all transitions are feasible). If m = 1, then

φ : S → S given by φ (1) = 1 is an MVE for trivial reasons. For m > 1, we assume, to obtain

a contradiction, that there is no MVE. Take any of m − 1 possible splits of S into nonempty

Ca = {1, . . . , a} and Da = {a+ 1, . . . ,m}, where a ∈ {1, . . . ,m− 1}, and then take MVE φa1 on

Ca and MVE φa2 on Da (assume for simplicity that they are unique; the Appendix describes the

way we select φa1 and φ
a
2 in the general case). Lemma 4 implies that either there is a deviation

from a to [a+ 1, φa2 (a+ 1)] or a deviation from a + 1 to [φa1 (a) , a], but not both. Denote

g (a) = r (for “right”) in the former case, and g (a) = l in the latter. Then g is a well-defined

single-valued function. We then have the following possibilities.

If g (1) = r, we can “extend”the MVE φ1
2 onto the entire domain by assigning φ (1) ∈ [2,m]

appropriately; similarly, if g (m− 1) = l, we can extend φm−1
1 by choosing φ (m) ∈ [1,m− 1]
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appropriately (the details are provided in the Appendix). It remains to consider the case where

g (1) = l and g (m− 1) = r. Then there must exist a ∈ {2, . . . ,m− 1} such that g (a− 1) = l

and g (a) = r. We take equilibria φa−1
1 on [1, a− 1] and φa2 on [a+ 1,m], and consider φ : S → S

given by

φ (s) =


φa−1

1 (s) if s < a
b if s = a

φa2 (s) if s > a

,

where b ∈
[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)] is picked so that V φ

i (b) is maximized for

some i ∈ Ma (and b ∈ F (a)). Suppose, without loss of generality, that b < a, then φ|[1,a] is a

MVE on [1, a]. By Lemma 3, to show that the core property is satisfied, it suffi ces to check that

there is no deviation from a+ 1 to [b, a]; this follows from g (a) = r. The other two properties,

feasibility and persitence, hold by construction, and thus φ is MVE. The Appendix fills in the

details of this argument.

We next study the uniqueness of monotone MVE. We first introduce the following definitions.

Definition 4 (Single-Peaked Preferences) Individual preferences are single-peaked if for

every i ∈ N there exists x ∈ S such that whenever, for states y, z ∈ S, z < y ≤ x or z > y ≥ x,

ui (z) < ui (y).

Definition 5 (One-Step Transitions) We say that only one-step transitions are possible if

for any x, y ∈ S with |x− y| > 1, y /∈ F (x).

The next examples shows that a monotone MVE is not always unique.

Example 2 (Example with two MVE) Suppose that there are three states A,B,C, and two

players 1 and 2. The decision-making rule is unanimity in all states. Payoffs are given by

id A B C
1 20 5 10
2 10 5 20

Then, with β suffi ciently close to 1 (e.g., β = 0.9), there are two MVE. In one, φ1 (A) = φ2 (B) =

A and φ1 (C) = C. In another, φ2 (A) = A, φ2 (B) = φ2 (C) = C. This is possible because

preferences are not single-peaked, and there is more than one QMV in all states. Example 6

in the Appendix shows that making preferences single peaked is by itself insuffi cient to restore

uniqueness.

The next theorem provides suffi cient conditions for generic uniqueness of monotone MVE.
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Theorem 2 (Uniqueness) The monotone MVE is (generically) unique if

1. for every s ∈ S, Ms is a singleton; and/or

2. only one-step transitions are possible and preferences are single-peaked.

Though somewhat restrictive, several interesting applied problems satisfy one or the other

parts of the conditions of this theorem. In addition, Theorem 9 below shows that under essen-

tially the same assumptions any MVE is monotone.

3.2 Stochastic environments

We now extend our analysis to the case in which there are stochastic shocks, which will also

enable us to deal with “nonstationary”in the economic environment, for example, because the

distribution of political power or economic preferences will change in a specific direction in the

future. By Assumption 1, environments are ordered as E1, E2, . . . , Eh so that π (Ex, Ey) = 0

if x > y. This means that when (and if) we reach environment Eh, there will be no further

shocks, and the analysis from Section 3.1 is applicable from then on. In particular, we get the

same conditions for existence and uniqueness of MVE. We can now use backward induction from

environment Eh to characterize equilibrium transition mappings in lower-indexed environments,

essentially using Lemma 2, which established that when φ is monotone, continuation utilities

satisfy increasing differences.

Here we outline this backward induction argument. Take an MVE φEh in environment

Eh (its existence is guaranteed by Theorem 1). Suppose that we have characterized an

MVE {φE}E∈{Ek,...,Eh} for some k = 1, . . . , h − 1; let us construct φEk which would make

{φE}E∈{Ek,...,Eh} an MVE in {Ek, . . . , Eh}. Continuation utilities in environment Ek are:

V φ
Ek,i

(s) = uEk,i (s) + β
∑

E′∈{Ek,...,Eh}
π
(
Ek, E

′)V φ
E′,i (φE′ (s))

= uEk,i (s) + β
∑

E′∈{Ek+1,...Eh}
π
(
Ek, E

′)V φ
E′,i (φE′ (s)) (8)

+ βπ (Ek, Ek)V
φ
Ek,i

(
φEk (s)

)
.

By induction, we know φE′ and V
φ
E′ (φE′ (s)) for E

′ ∈ {Ek+1, . . . , Eh}. We next show that there

exists φEk that is an MVE given continuation values
{
V φ
Ek,i

(s)
}
s∈S

from (8). Denote

ũEk,i (s) = uEk,i (s) + β
∑

E′∈{Ek+1,...,Eh}
π
(
Ek, E

′)V φ
E′,j (φE′ (s)) ,

β̃ = βπ (Ek, Ek)
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Then rearranging equation (8):

V φ
Ek,i

(s) = ũEk,i (s) + β̃V φ
Ek,i

(
φEk (s)

)
.

Since {ũEk,i (s)}s∈Si∈N satisfy increasing differences, we can simply apply Theorem 1 to the modified

environment E =
(
N,S, β̃, {ũEk,i (s)}s∈Si∈N , {WEk,s}s∈S , {FEk (s)}s∈S

)
to characterize φEk . Then

by definition of MVE, since {φE}E∈{Ek,...,Eh} was an MVE, we have that {φE}E∈{Ek,...Eh} is an

MVE in {Ek, . . . , Eh}, proving the desired result. Proceeding inductively we characterize an

entire MVE φ = {φE}E∈{E1,...Eh}. This argument establishes:

Theorem 3 (Existence) There exists an MVE φ = {φE}E∈E . Furthermore, there exists a

limit state sτ = sτ+1 = . . . = s∞ (with probability 1) but this limit state depends on the timing

and realization of stochastic shocks and the path to a limit state need not be monotone.

Establishing the uniqueness of MVE is more challenging because single peakedness is not

necessarily inherited by continuation utilities (this is shown, for instance, by Example 7 in the

Appendix). Nevertheless, the following theorem provides straightforward suffi cient conditions

for uniqueness.

Theorem 4 (Uniqueness) The monotone MVE is (generically) unique if at least one of the

following conditions holds:

1. for every environment E ∈ E and any state s ∈ S, ME,s is a singleton;

2. in each environment, only one-step transitions are possible; each player’s preferences are

single-peaked; and, moreover, for each state s there is a player i such that i ∈ME,s for all

E ∈ E and the peaks (for all E ∈ E) of i’s preferences do not lie on different sides of s.

The first suffi cient condition is the same as in Theorem 2, while the second strengthens its

equivalent: it would be satisfied, for example, if players’ bliss points and the distribution of

political power do not change “much”as a result of shocks.

3.3 Noncooperative game

We have so far presented the concept of MVE without introducing an explicit noncooperative

game. This is partly motivated by the fact that several plausible noncooperative games would
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underpin the notional MVE. In this section, we provide one plausible and transparent nonco-

operative game and formally establish the relationship between the Markov Perfect Equilibria

(MPE) of this game and the set of MVE.

For each environment E ∈ E and state s ∈ S, let us introduce a protocol θE,s, which is a

finite sequence of all states in Fs \ {s} capturing the order in which different transitions are

considered within the period. Then the exact sequence of events in this noncooperative game is

given as follows:

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. Environment transitions are realized: Et = E ∈ E with probability π (Et−1, E).

3. The first alternative, θEt,st−1 (j) for j = 1, is voted against the status quo s. That is,

all players are ordered in a sequence and must support either the “current proposal”

θEt,st−1 (j) or the status quo s.13 If the set of those who supported θEt,st−1 (j) is a winning

coalition – i.e., it is in WEt,st−1– then st = θEt,st−1 (j); otherwise, this step repeats for

the next j. If all alternatives have been voted and rejected for j = 1, . . . , |Fs|− 1, then the

new state is st = st−1.

4. Each player gets stage payoff given by (1).

We study (pure-strategy) MPE of this game. Naturally, each MPE induces an equilibrium

behavior which can be represented by a set of transition mappings φ = {φE}E∈E . In particu-

lar, here φE (s) is the state to which the equilibrium play transitions starting with state s in

environment E. Then we have:

Theorem 5 (MVE vs. MPE)

1. For any MVE φ, there exists a set of protocols {θE,s}s∈SE∈E such that there exists a MPE

which induces φ.

2. Conversely, if for some set of protocols {θE,s}s∈SE∈E and some MPE σ, the corresponding

transition mapping φ = {φE}E∈E is monotone, then it is an MVE.
13To avoid the usual problems with equilibria in voting games, we assume sequential voting for some fixed

sequence of players. See Acemoglu, Egorov, and Sonin (2009) for a solution concept which would refine out
unnatural equilibria in voting games with simultaneous voting.

19



This theorem thus establishes the close connection between MVE and MPE. Essentially, any

MVE corresponds to an MPE (for some protocol) and, conversely, any MPE corresponds to an

MVE, provided that this MPE induces monotone transitions.

3.4 Comparative statics

In this section, we present general comparative static results. We assume that parameter values

are generic. We say that environments E1 and E2, defined for the same set of players and set

of states, coincide on S′ ⊂ S, if for each i ∈ N and for any state x ∈ S′, uE1,i (x) = uE2,i (x),

WE1,x = WE2,x, and also FE1 |S′ = FE2 |S′ (in the sense that for x, y ∈ S′, y ∈ FE1 (x) ⇔ y ∈

FE2 (x)).

Our next result shows that in two environments E1 and E2 that coincide on a subset of states

(and differ arbitrarily on other states), there is a simple way of characterizing the transition

mapping of one environment at the steady state of the other. We also say that the MVE is

unique on S′ ⊂ S if there exists a unique equilibrium when (transitions are) restricted to the

set of states S′. For the results in this section, we assume that there exists a unique MVE (e.g.,

either set of conditions of Theorem 4 hold).14

Theorem 6 (General Comparative Statics I) Suppose that environments E1 and E2 coin-

cide on S′ = [1, s] ⊂ S and that there is a unique MVE in both environments. For MVE φ1 in

E1, suppose that φ1 (x) = x for some x ∈ S′. Then for MVE φ2 in E2 we have φ2 (x) ≥ x.

The theorem says that if x is a steady state (limit state) in environment E1 and environments

E1 and E2 coincide on a subset of states [1, s] that includes x, then the MVE in E2 will either

stay at x or induce a transition to a greater state than x. Of course, the two environments can

be swapped: if y ∈ S′ is such that φ2 (y) = y, then φ1 (y) ≥ y. Moreover, since the ordering of

states can be reversed, a similar result applies when S′ = [s,m] rather than [1, s].

The intuition for Theorem 6 is instructive. The fact that φ1 (x) = x implies that in environ-

ment E1, there is no winning coalition wishing to move from x to y < x. But when restricted to

S′, economic payoffs and the distribution of political power are the same in environment E2 as in

E1, so in environment E2 there will also be no winning coalition supporting the move to y < x.

This implies φ2 (x) ≥ x. Note, however, that φ2 (x) > x is possible even though φ1 (x) = x, since

14A similar result can be established without uniqueness. For example, one can show that if for some x ∈ S′,
for each MVE φ1 in E

1, φ1 (x) ≥ x, with at least one MVE φ1 such that φ1 (x) = x, then all MVE φ2 in E
2

satisfy φ2 (x) ≥ x. Because both the statements of these results and the proofs are more involved, we focus here
on situations in which MVE are unique.
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the differences in economic payoffs or distribution of political power in states outside S′ may

make a move to higher states more attractive for some winning coalition in E2. Interestingly,

since how the two environments differ outside S′ is left totally unrestricted, this last possibility

can happen even if in environment E2 payoffs outside S′ are lower for all players (this could be,

for example, because even though all players’payoffs decline outside S′, this change also removes

some “slippery slope”previously discouraging a winning coalition from moving to some state

z > x).

The idea of the proof of the theorem also follows from the intuition given in the previous

paragraph. To obtain the main idea, let us use the notation φ|S′ to represent the transition

function φ restricted to the subset of states S′. Now if we had φ2 (x) < x, then φ1|S′ and φ2|S′

would be two different mappings, both of which would be MVE on S′. But this would contradict

the uniqueness of MVE.

Theorem 6 compares MVE in two distinct environments. In this sense, we can think of it as

a comparative static with respect to an unanticipated shock (taking us from one environment to

the other). The next corollary states a similar result when there is a stochastic transition from

one environment to another.

Corollary 1 Suppose that E = {E1, E2}, E1 and E2 coincide on S′ = [1, s] ⊂ S, and the

MVE is unique in both environments. Suppose also that for MVE φE1 in E1 and some x ∈ S′,

φE1 (x) = x, and this state x is reached before a switch from environment E1 to E2 occurs at

time t. Then the MVE φE2 in environment E2 implies that sτ ≥ x for all τ ≥ t.

Put differently, the corollary states that if steady state x is reached before a shock changes

the environment – in a way that only higher states are affected as a result of this change in

environment – then the equilibrium after the change can only move society further towards

the direction where the shock happened or stay where it was; the equilibrium will never involve

moving back to a lower state than x. A straightforward implication is that the only way society

can stay in the set of states [1, x− 1] is not to leave the set before the shock arrives.

An interesting application of this corollary can be derived when we consider x as a “minimal

democratic state”; states to the right of x as further developments of democracy or other refine-

ments; and environment E2 as representing some sort of threat to democracy. Then the corollary

implies that this threat to democracy may disrupt the emergence of this minimal democracy

if it arrives early. But if it arrives late, after this minimal democratic state – which thus can
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be considered as a “democratic threshold”– has already been reached, it would not create a

reversal. Interestingly, and perhaps paradoxically, such a threat, if it arrives late, may act as an

impetus for additional transitions in a further democratic direction, even though it would have

prevented the emergence of this minimum democratic state had it arrived early.

Corollary 1 was formulated under the assumption that stable state x was reached before the

shock occurred. Our next result removes this constraint under the assumption that the discount

factor is low enough, i.e., that players are suffi ciently myopic.

Theorem 7 (General Comparative Statics II) Suppose that E = {E1, E2}, 0 <

π (E1, E2) < 1, π (E2, E1) = 0, and E1 and E2 coincide on S′ = [1, s] ⊂ S. Then there ex-

ists β0 > 0 such that if β < β0, then in the unique MVE φ, if the initial state is s0 ∈ S′ such

that φE1 (s0) ≥ s0, then the entire path s0, s1, s2, . . . (induced both under environment E1 and

after the switch to E2) is monotone. Moreover, if the shock arrives at time t, then for all τ ≥ t,

sτ ≥ s̃τ , where s̃τ is the hypothetical path if the shock never arrives.

In a monotone MVE, equilibrium paths are monotone without shocks. But with shocks, this

is no longer true because the arrival of the shock can change the direction of the path. This

theorem shows that when the discount factor is suffi ciently low and two environments coincide

on a subset of states, then the equilibrium path is monotone even with shocks, and equilibrium

paths with and without shocks can be ranked.

Under further assumptions on how the shock changes the distribution of political power, we

can also derive additional results on the dynamics of equilibrium paths. This is done in the next

theorem for the case in which shocks change the set of quasi-median voters – i.e., they change

the distribution of political power in a specific way.

Theorem 8 (General Comparative Statics III) Suppose that environments E1 and E2

have the same payoffs, uE1,i (x) = uE2,i (x), that the same transitions are feasible (FE1 = FE2)

and that ME1,x = ME2,x for x ∈ [1, s] and minME1,x = minME2,x for x ∈ [s+ 1,m]. Suppose

also that the MVE φ1 in E1 and MVE φ2 in E2 are unique on any subset of [1, s]. Then

φ1 (x) = φ2 (x) for any x ∈ [1, s].

This result suggests that if the sets of winning coalition in some states to the right (x > s)

change such that the sets of quasi-median voters expand further towards the right (for example,

because some additional players on the right become additional veto players), then the transition
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mapping is unaffected for states on the left that are not directly affected by the change (i.e.,

x < s). For instance, applied to the dynamics of democratization, this theorem implies that an

absolute monarch’s decision of whether to move to a constitutional monarchy is not affected by

the power that the poor will be able to secure in this new regime provided that the monarch

himself still remains a veto player.

4 Application: Implications of Radical Politics

In this section, we apply our general framework to the study of radical politics, already briefly

introduced in Example 1 in the Introduction. We first describe the initial environment, E1.

There is a fixed set of n players N = {−l, . . . , r} (so n = l + r + 1), which we interpret as

groups of individuals with the same preferences (e.g., ethnicities, economic interests or ideological

groupings) that have already solved the within-group collective action problem.

The weight of each group i ∈ N is denoted by γi and represents, for example, the number

of individuals within the group and thus its political power. Throughout this exercise, we

assume “genericity”of {γi}, in the sense that there are no two disjoint combinations of groups

with exactly the same weight (see Acemoglu, Egorov and Sonin, 2008, for a discussion of this

assumption). Group 0 is chosen such that it contains the median voter. Individuals in group i

have preferences (net of repression costs) given

wi (p) = − (p− bi)2 ,

where p is the policy choice of society and bi is the political bliss point of group i. We assume that

{bi} is increasing in i, which ensures that preferences satisfy increasing differences (Assumption

2). For example, those with high index can be interpreted as the “rich”or “right-wing”groups

that prefer higher levels of the (pro-rich or right-wing) policy.

The set of states is S = {−l − r, . . . , l + r}, and so the total number of states is m =

2l+2r+1 = 2n−1. States correspond to different combinations of political rights. Political rights

of certain groups can be reduced by repression (which is potentially costly as described below).

The set of groups that are not repressed in state s is denoted by Hs, where Hs = {−l, . . . , r + s}

for s ≤ 0 and Hs = {−l + s, . . . , r} for s > 0.15 Only the groups that are not repressed

participate in politics. This implies that in state 0, which corresponds to “democracy”with no

15We could allow for the repression of any combination of groups, thus having to consider 2n − 1 rather than
2n−1 states, but choose not to do so to save on notation. Partial repression of some groups could also be allowed,
with similar results.
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repression, group 0 contains the median voter. In states below 0, some groups with right-wing

preferences are repressed, and in the leftmost state s = −l − r, only the group −l participates

in decision-making (all other groups are repressed). Similarly, in states above 0 some of the

left-wing groups are repressed (in rightmost state s = l+ r only group r has power). We assume

that all transitions across states are feasible.

Policy p and transitions across states are decided by a simple majority of those with political

rights (groups that are not repressed). This implies that policy will always be chosen as the

political bliss point of the quasi-median voter (given political rights), bMs . Our assumptions

so far (in particular, the genericity of {γi}) ensure that Ms contains a single group. The cost

of repressing each individual in group j is denoted by Cj and is assumed to be incurred by all

players. So stage payoffs are given as

ui (s) = wi (p)−
∑

j /∈Hs
γjCj ,

= − (bMs − bi)
2 −

∑
j /∈Hs

γjCj .

Finally, we also assume that the radical group−l is smaller than the next group: γ−l < γ−l+1,

which implies that radicals can implement their preferred policy only by repressing all of the

groups in society.

We model power shifts by introducing h “radical”environments R−l−r, . . . , R−l−r+h−1, each

with probability λj for j = 1, . . . ,m at each date starting from E1. Environment Rj is the same

as E1, except that in environment Rj , if the current state is one of −l − r, . . . , j, the radical

group, −l, acquires the ability to force a transition to any other state (in the process incurring

the costs of repression). In particular, the radicals can choose to “grab power”by repressing all

other groups and transitioning to state s = −l − r. In the context of the Bolshevik Revolution,

for example, this corresponds to assuming that in some possible environments (i.e., with some

probability), Bolsheviks are able to grab control with Kerensky in power but not necessarily

with some further right government. Therefore, in state s, the probability of the radicals having

an opportunity to grab power is µs =
∑s

j=−l−r λj , which is naturally (weakly) increasing in s.

We also assume that in each period in any of the environments Rj , there is a probability

ν of returning to the initial environment, E1. This is equivalent to a transition to the “final”

environment Ef identical to E1 in terms of payoffs and winning coalitions (but there will be

no further possibility of radicals coming to power after that). Clearly, ν = 0 corresponds to a

permanent shock, and as ν increases, the expected length of the period during which radicals
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can dictate transitions declines. Note, however, that if the first time they get the opportunity,

radicals grab power permanently, imposing a transition to state s = −l − r (in which they are

the dictator), then they will remain in power even after there is a transition to environment Ef .

The next proposition characterizes MVE in an environment in which there is no possibility

of a radical takeover of power. This environment can be represented by Ef (since from Ef there

is no further transition and thus no possibility of a radical takeover of power), and we use this

convention to avoid introducing further notation.

Proposition 1 (Equilibria without radicals) Without the possibility of radicals grabbing

power (i.e., in environment Ef ), there exists a unique MVE represented by φEf : S → S. In

this equilibrium:

1. Democracy is stable: φEf (0) = 0.

2. For any costs of repression {Cj}j∈N , there is never more repression than the initial state:

i.e., if s < 0 then φEf (s) ∈ [−s, 0], and if s > 0, then φEf (s) ∈ [0, s].

3. Consider repression costs parametrized by k: Cj = kC∗j , where
{
C∗j

}
are positive con-

stants. There exists k∗ > 0 such that: if k > k∗, then φEf (s) = 0 for all s, and if k < k∗,

then φEf (s) 6= 0 for some s.

Without radicals, democracy is stable because the median voter knows that she can choose

policies in the future (and can do so without incurring any cost of repression). Nevertheless, other

states may also be stable. For instance, starting from a situation in which there is repression

of the left, the quasi-median voter in that state may not find it beneficial to reduce repression

because this will typically lead to further left policies (relative to the political bliss point of

the quasi-median voter). But this type of repression is also limited by the cost of repression

which all players, including the quasi-median voter in the initial state, incur. If these costs are

suffi ciently high, then repression becomes unattractive starting from any state, and democracy

becomes the only stable state.

The next proposition shows how political dynamics change when there is a risk of a radical

takeover of power.

Proposition 2 (Radicals) There exists a unique MVE. Suppose that when the society is at

state s, there is a transition to environment Rz (where z ≥ s) so that radicals can grab power.
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Then, when they have the opportunity, the radicals are more likely to move to state s = −l − r

(repressing all other groups) when: (a) they are more radical (meaning their ideal point b−l is

lower, i.e., further from 0); (b) they are “weaker” (i.e., z is smaller) in the sense that there is

a smaller set of states in which they are able to control power.

This proposition is intuitive. When they have more radical preferences, radicals value the

prospect of imposing their political bliss point more and are willing to incur the costs of repression

to do so. They are also more likely to do so when they are “weaker”because when z is lower,

there is a greater range of states in which they cannot control future transitions, encouraging

an immediate transition to s = −l − r.

To state our next proposition, we define

Wi (s) = ui (s) + β
−l−r+h−1∑
z=−l−r

λzVRz ,i (s) ,

which intuitively corresponds to the (counterfactual) expected continuation value of group i

when it permanently stays in state s ∈ S until a shock changes the environment, and from then

on follows the MVE play:

Proposition 3 (Repression by moderates anticipating radicals) The transition mapping

before radicals come to power, φE1, satisfies the following properties.

1. If s ≤ 0, then φE1 (s) ≥ s.

2. If W0 (0) < W0 (s) for some s > 0, then there is a state x ≥ 0 such that φE1 (s) > s. In

other words, there exists some state in which there is an increase in the repression of the

left in order to decrease the probability of a radical takeover of power.

3. If for all states y > x ≥ 0, WMx (y) < WMx (x), then for all s ≥ 0, φE1 (s) ≤ s. In other

words, repression of the left never increases when the cost of repression increase (e.g.,

letting Cj = kC∗j , it declines when k increases).

The first part of the proposition indicates that there is no reason for repression of the right

to increase starting from states below s = 0; rather, in these states the tendency is to reduce

repression. However, the second part shows that if the median voter (in democracy) prefers a

more repressive state when she could counterfactually ensure no further repression unless radicals

come to power (which she cannot do because she is not in control in that state), then there is
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at least one state from which there will be an increase of repression against the left (which does

not necessarily have to be s = 0). An important implication of this result is that even if there

are “slippery slope”considerations, these are not suffi cient to prevent all repression. The third

part of the proposition provides a suffi cient condition for the opposite result.

The first part implies that anticipation of a radical takeover of power leads to (weakly) greater

repression, at least starting from a suffi ciently “democratic”state. In particular, in some states

s > 0, there will necessarily be lower repression after the threat of radicals disappears.

Proposition 4 (Stability of democracy without a threat of radical) Suppose that full

democracy s = 0 does not allow for radicals coming to power (i.e., µs = 0). Then s = 0 is stable

in all environments, and any state s > 0 will lead to (weakly) less repression, in the sense that

φE1 (s) ∈ [0, s] for s > 0.

Proposition 4 shows that if democracy is resilient against radicals’power grabs, then it is

stable regardless of the possibility of radicals taking over power in other, less democratic states.

The next proposition is an application of our general comparative static results given in

Theorem 6.

Proposition 5 (Comparative statics of repression) Suppose that there is a state s ≥

0 (i.e., democracy or some state favoring the right), which is stable in E1 for some set of

probabilities
{
µj
}
. Consider a change from

{
µj
}
to
{
µ′j

}
such that µ′j = µj for j ≥ s. Then

there will be (weakly) less repression of the left after the change, i.e., φ′E1 (s) ≥ φE1 (s) = s.

The intuition is the same as Theorem 6: if the probabilities of a radical takeover of power

change, but only in states that already had repression against the left, and we are in a stable state

without repression against the right, then this can only reduce repression. If there is now a lower

likelihood of a radical grab of power, then this favors less repression. But, paradoxically, even if

there is a higher likelihood of such a grab, because of reduced “slippery slope”considerations,

there may be less repression.

The next result compares the transition in anticipation of radicals (environment E1) and in

the case where radicals are gone – or, equivalently, if they are impossible (environment Ef ).

An implication of this result is a particular type of history dependence in steady-state regime.

Proposition 6 (Role of radicals in history)
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1. If for s ≥ 0, φE1 (s) = 0, then φEf (s) = 0.

2. Suppose the society was in a stable state x ≥ 0 (in environment E1) before the radical

came to power. Then the limit state (as t → ∞), after the radicals come and possibly go

(n environment Ef ), will be some y ≤ x.

The first part of this proposition shows that the society is at least as likely to cease and any

repression and fully democratize once radicals are gone as it is when the arrival of radicals is

possible (conversely, if φEf (s) > 0, then necessarily φE1 (s) > 0).16 Intuitively, initially democ-

ratization increases the chance of a radical grab of power, and hence radicals democratization

is (weakly) more likely after the radicals are gone. The second part has a related logic and es-

tablishes a type of history dependence: the arrival and possible departure of radicals will never

lead to more repression of the left than the initial situation and may lead to less repression. This

may happen in two ways. First, and less interestingly, the radicals may lock in power forever.

Second, when they do not or cannot do that, because the threat of radicals has disappeared,

there will be less repression in the stable state.

In the next result, we apply Theorem 8 to show that all the results come from radicals

grabbing power rather than just becoming influential enough to become veto players. For this

proposition, let us expand our environment to allow for veto players (instead of all decisions

being made by majoritarian voting among groups with political rights).

Proposition 7 (Radicals as veto players) If shocks make radicals veto players while pre-

serving democratic decision-making, then mapping φ (s) |s≥0 is the same as in the benchmark

case where the initial environment is stable.

The intuitionis simple: the current quasi-median voter fears a radical power grab and sub-

sequent dictatorship. If the risk is that the radicals will just become veto players, this is not

suffi cient to induce repression against the left.

Our last result deals with strategic complementarity in repressions. To state this result,

consider a change in the costs of repression so that it becomes cheaper for radicals to repress

right-wing groups. In particular, the state payoff function of radicals changes to

u−l (s) = − (bMs − b−l)
2 − ρ

∑
j /∈Hs

γjCj

16 It is also straightforward to construct an example where φEf (s) = 0 but φE1 (s) > 0 (and even φE1 (s) > s).
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for s < 0 and ρ ∈ [0, 1]. Clearly, ρ = 1 corresponds to our baseline environment, and a decrease

in ρ implies that radicals can repress right-wing groups with less cost to themselves. Then:

Proposition 8 (Strategic Complementarity) Suppose that λz = 0 for all z > 0 (meaning

that radicals can only seize power if they are not currently repressed). Consider a change in the

radicals’repression costs to ρ′ < ρ and denote the MVE before and after the change by φ and φ′

respectively. Then if φE1 (s) > s for some s ≥ 0, φ′E1 (s) > s.

Put differently, the proposition implies that if φE1 (0) > 0, then φ′E1 (0) > 0, so that re-

pression of the radicals is more likely when they themselves have lower costs of repressing other

groups. At the root of this result is a strategic complementarity in repression: anticipating

greater repression by radicals in future radical environments, the current political system now

becomes more willing to repress the radicals. One interesting implication of this result is that

differences in repression of different ends of the political spectrum across societies may result

from small differences in (institutional or social) costs of repression rather than a “culture of re-

pression”in some countries. Thus, the brutal repression of first left- and then right-wing groups

in early 20th-century Russia, contrasted with a lack of such systematic repression in Britain may

not just be a reflection of a Russian culture of repression, but a game-theoretic consequence of

the anticipation of different patterns of repression in different political states in Russia.

5 Extensions

In this section, we first provide (simple and relatively mild) conditions under which all MVE

are monotone. This justifies our focus on monotone MVE throughout the rest of the paper. We

then relate our paper in more detail to Roberts (1999) discussed already in the Introduction.

We also discuss how our results will be different with infinitely many shocks. Finally, we show

how our framework can be extended to economies with a continuum of states and/or players.

5.1 Monotone vs nonmonotone MVE

So far, we focused on monotone MVE. In many interesting cases this is without loss of generatlity,

as the following theorem establishes.

Theorem 9 (Monotonicity of MVE) Under either of the following conditions, all MVE are

generically monotone:
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1. In all environments, the sets of quasi-median voters in two different states have either zero

or exactly one player in common: for all E ∈ E , x, y ∈ S : x 6= y ⇒ |ME,x ∩ME,y| ≤ 1.

2. In all environments, only one-step transitions are possible.

The first part of the theorem covers, among others, situations where the sets of quasi-median

voters are singletons in all states. This implies that whenever there is a dictator in each state

(which may be the same for several states), or there is majority voting among sets of odd

numbers of players, any MVE is monotone, and thus all results in the paper are applicable to all

MVE – rather than the monotone subset of MVE. The second part shows that if only one-step

transitions, i.e., transitions to adjacent states, are possible, then again any MVE is monotone.

This means that our focus on monotone MVE is with little loss of generality for many interesting

and relevant cases.

Note also that the conditions in Theorem 9 are weaker than those in Theorem 2 and 4.

Consequently, when these latter theorems ensure the uniqueness of a monotone MVE, they also

imply that the MVE is in fact unique.

The next example shows that both conditions in Theorem 9 cannot be simultaneously dis-

pensed with.

Example 3 There are three states A,B,C, and two players 1 and 2. The decision-making rule

is unanimity in all states, and all transitions are possible. Payoffs are given by

id A B C
1 30 50 40
2 10 40 50

Suppose β is relatively close to 1, e.g., β = 0.9. This situation does not satisfy either set of

conditions of Theorem 9. It is straightforward to verify that there is a nonmonotone MVE

φ (A) = φ (C) = C, φ (B) = B. (There is also a monotone equilibrium with φ (A) = φ (B) = B,

φ (C) = C.)

The next example shows that monotonicity may fail non-generically even when the conditions

of Theorem 9 are satisfied.

Example 4 There are two states A and B and two players 1 and 2. Player 1 is the dictator

in both stattes. Payoffs are given by
id A B
1 20 20
2 15 25
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Take any discount factor β, e.g., β = 0.5, and any protocol. Then there exists a nonmonotone

(in fact, cyclic) MVE φ given by φ (A) = B and φ (B) = A. However, any perturbation of the

payoffs of player 1 removes this nonmonotonic equilibrium.

Our last result in this section shows that even if nonmonotone MVE exist, they will still

induce “monotone paths”. We say that mapping φ = {φE}E∈E induces monotone paths if for

any E ∈ E and x ∈ S, φ (x) ≥ x implies φ2
E (x) ≥ φE (x).

In other words, all equilibrium paths that this mapping generates, as long as the environment

does not change, are weakly monotone. We have the following result:

Theorem 10 (Monotone Paths) Any MVE φ (not necessarily monotone) generically induces

monotone paths.

5.2 Relationship to Roberts’s model

As discussed in the Introduction, our paper is most closely related to Roberts (1999). Our notion

of MVE extends that of Roberts, who also looks at a dynamic equilibrium in an environment

that satisfies single-crossing type restrictions. More specifically, in Roberts’s model, the society

consists of n players, and there are n possible states sk = {1, . . . , k} , 1 ≤ k ≤ n. Each state sk

describes the situation where players {1, . . . , k} are members of the club, while others are not.

There is the following condition on payoffs:

for all l > k and j > i, uj (sl)− uj (sk) > ui (sl)− ui (sk) ,

which is the same as the strict increasing differences condition we imposed above (Definition 1).

Roberts (1999) focuses on deterministic environments with majoritarian voting among club

members. He then looks at a notion of Markov Voting Equilibrium (defined as an equilibrium

path where there is a transition to a new club whenever there is an absolute majority in favor

of it) and a median voter rule (defined as an equilibrium path where at each point the current

median voter chooses the transition for the next step). Roberts proves existence for mixed-

strategy equilibria for each of the voting rules; they define the same set of clubs that are stable

under these rules.

Roberts’s notion of Markov Voting Equilibrium is also a special case of ours. When our

notion is specialized to majoritarian voting, the two differ only in their treatment of situations

with “clubs”with even numbers of members.
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Overall, our setup and results generalize, extend and strengthen Robert’s in several dimen-

sions. First, Roberts focuses on the deterministic and stationary environment, whereas we allow

for nonstationary elements and rich stochastic shocks. Second, we allow for fairly general dis-

tributions of political power across states, which is crucial for our focus, while Roberts assumes

majority rule for every club. Third, we prove existence of pure strategy equilibria and provide

conditions for uniqueness (results that do not have equivalents in Roberts). Fourth, we provide

a general characterization of the structure of MVE, which in turn paves the way for our general

comparative static results (again results that have no equivalents and Roberts). Fifth, we show

the relationship between this equilibrium concept and MPE of a fully specified dynamic game.

Finally, we show how our framework can be applied to a political economy problem, providing

new and interesting insights in this instance.

5.3 Infinitely many shocks

Suppose that there is a finite set of environments E , but we relax Assumption 1, so that there

can be an infinite number of shocks . In this case, MVE (as defined in Definition 3) may fail to

exist. Example 8 in the Appendix illustrates this possibility.

The reason why MVE may fail to exist is as follows. Take some set of mappings φ = {φE}

and assume that they define transitions from period T onwards (for some large T ). Using the

same technique as in Section 3.2, we can show existence of a mapping φ[T−1] =
{
φ

[T−1]
E

}
which

would determine transitions in period T − 1; then we can do the same for period T − 2, etc.

The problem is that these mappings may be different for different periods, whereas the natural

Markovian property would be to impose that they should be the same. Therefore, with infinitely

many shocks, there exists a pure strategy equilibrium without this latter Markovian requirement,

but if we would also like to insist on this Markovian requirement, one has to work with mixed

strategies.17

5.4 Continuous spaces

In this subsection, we show how our results can be extended to economies with a continuum of

states and/or a continuum of players.

Suppose that the set of states is S = [sl, sh], and the set of players is given by N = [il, ih].

(The construction and reasoning below are easily extendable to the case where the are a finite

17Details are available from the authors upon request.
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number of players but a continuum of states, or vice versa.) We assume that each player has a

utility function ui (s) : S → R, which is continuous as a function of (i, s) ∈ N × S and satisfies

strict increasing differences: for all i > j, x > y,

ui (x)− ui (y) > uj (x)− uj (y) .

The mapping F , which describes feasible transitions, is assumed to be upper-hemicontinuous on

S and to satisfy Assumption 5. Finally, for each state s there is a set of winning coalitions Ws,

which are assumed to satisfy Assumption 3. As before, for each state s, we have a non-empty

set of quasi-median voters Ms (which may nevertheless be a singleton). We make the following

monotonicity of quasi-median voters assumption: functions inf Ms and supMs are continuous

and increasing functions of s.

For simplicity, let us focus on the case without shocks and on monotone transition functions

φ : S → S (this function may be discontinuous). MVE is defined as in Definition 3. The

following result establishing the existence of MVE.

Theorem 11 (Existence in Continuous Spaces) With a continuum of states and/or play-

ers, there exists a MVE φ. Moreover, take any sequence of sets of states S1 ⊂ S2 ⊂ · · · and

any sequence of players N1 ⊂ N2 ⊂ · · · such that
⋃∞
j=1 Sj is dense in S and

⋃∞
j=1Nj is dense

in N . Consider any sequence of monotone functions
{
φj : Sj → Sj

}∞
j=1

which are MVE (not

necessarily unique) in the environment

Ej =
(
N,S, β, {ui (s)}s∈Sji∈Nj , {Ws}s∈Sj , {Fj (s)}s∈Sj

)
.

Existence of such MVE is guaranteed by Theorem 1, as all assumptions are satisfied. Then there

is a subsequence {jk}∞k=1 such that
{
φjk
}∞
k=1

converges pointwise on
⋃∞
j=1 Sj, to some MVE

φ : S → S.

This result therefore shows that an MVE exists and is extended environment and may be

characterized as a limit of equilibria for finite sets of states and players. The idea of the proof is

simple. Take an increasing sequence of sets of states , S1 ⊂ S2 ⊂ · · · and an increasing sequence

of sets of players N1 ⊂ N2 ⊂ · · · such that S∞ =
⋃∞
j=1 Sj is dense in S and N∞ =

⋃∞
j=1Nj is

dense in N . For each Sj , take MVE φj . We know that φi is a monotone function on Si. Let us

extend it to a monotone (not necessarily continuous) function on S which we denote by φ̃i for

each i. Since S∞ and N∞ are countable, there is a subsequence φjk which converges to some
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φ : S∞ → S∞ pointwise. We then extend it to a function φ : S → S by demanding that φ is

either left-continuous or right-continuous at any point (in the Appendix, we show that we can

do that so that the continuation values are either left-continuous or right-continuous as well).

Then this continuity of continuation values will ensure that φ is an MVE.

6 Conclusion

This paper has provided a general framework for the analysis of dynamic political economy prob-

lems, including democratization, extension of political rights or repression of different groups.

The distinguishing feature of our approach is that it enables the analysis of non-stationary,

stochastic environments (e.g., allowing for anticipated and unanticipated shocks changing the

distribution of political power and economic payoffs) under fairly rich heterogeneity and general

political or economic conflict across groups.

We assume that the payoffs are defined either directly on states or can be derived from

states, which represent economic and political institutions. For example, different distribution

of property rights or adoption of policies favoring one vs. another group correspond to different

states. Importantly, states also differ in their distribution of political power: as states change,

different groups become politically pivotal (and in equilibrium different coalitions may form).

Our notion of equilibrium is Markov Voting Equilibrium, which requires that economic and

political changes – transitions across states – should take place if there exists a subset of players

with the power to implement such changes and who will obtain higher expected discounted utility

by doing so.

We assume that both states and players are “ordered”: e.g., states go from more right-

wing to more left-wing (or less to more democratic) and players are ordered according to their

ideology or income level. Our most substantive assumptions are that, given these orders, stage

payoffs satisfy a “single crossing”(increasing differences) type assumption, and the distribution

of political power also shifts in the same direction of economic preferences (e.g., more right-

wing individuals gain relatively more from moving towards right-wing states than do left-wing

individuals, and their political power does not decrease if there is a transition towards such a

right-wing state).

Under these assumptions, we prove the existence of a pure-strategy equilibrium, provide

conditions for its uniqueness, and show that a limit state always exists (though it generally

depends on the order and exact timing of shocks). We also provide a number of comparative
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static results that apply at this level of generality. For example, if there is a change from one

environment to another (with different economic payoffs and distribution of political power) but

the two environments coincide up to a certain state s′ and before the change the steady state of

equilibrium was at some state x ≤ s′, then the new steady state after the change in environment

can be no smaller than x.

We then use this framework to study the dynamics of repression in the presence of radical

groups that can stochastically grab power depending on the distribution of political rights in

society. We characterize the conditions under which the presence of radicals leads to greater

repression (of less radical groups), show a type of path dependence in politics resulting from

radicals coming to power, and identify a novel strategic complementarity in repression.

There are several extensions of this framework that would be useful. These include: a gener-

alization of the results to an infinite number of shocks (our analysis was simplified by assuming

that there are at most a finite number of transitions); greater individual-level heterogeneity,

which can change over time (e.g., a type of “social mobility”); and most importantly extensions

of the results to environments in which heterogeneity cannot be captured by a single dimensional

order. There are also several additional applications of our framework to problems in political

economy, organizational economics and public economics, which can be investigated in future

work.
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Appendix

Proofs

Proof of Lemma 1. “If”: Suppose Ms ⊂ P , so for each i ∈ Ms, wi (y) > wi (x). Consider

two cases. If y > x, then increasing differences implies that wj (y) > wj (x) for all j ≥ minMs.

On the other hand, [minMs, n] is a winning coalition (if not, i = Ms − 1 would be a QMV by

definition, but such i /∈Ms). If y < x, then, similarly, wj (y) > wj (x) for all j ≤ maxMs, which

is a winning coalition for similar reasons. In either case, P contains a subset (either [minMs, n]

or [1,maxMs]) which is a winning coalition, and thus P ∈Ws.

“Only if”: Suppose P ∈ Ws. Consider the case y > x. Let i = minP ; then increasing

differences implies that for all j ≥ i, wj (y) > wj (x). This means that P = [i, n], and is thus a

connected coalition. Since P is winning, we must have i ≤ j ≤ n for any j ∈ Ms by definition

of Ms, and therefore Ms ⊂ P . The case where y < x is similar, so Ms ⊂ P .

The proofs for relations ≥, <, ≤ are similar and are omitted. �

Proof of Lemma 2. Part 1. Take y > x and any i ∈ N . We have:

V φ
i (y)− V φ

i (x) = ui (y) +
∑∞

k=1
βkui

(
φk (y)

)
− ui (x)−

∑∞

k=1
βkui

(
φk (x)

)
= (ui (y)− ui (x)) +

∑∞

k=1
βk
(
ui

(
φk (y)

)
− ui

(
φk (x)

))
.

The first term is (weakly) increasing in i if {ui (s)}s∈Si∈N satisfies increasing differences, and the

second is (weakly) increasing in i as φk (y) ≥ φk (x) for k ≥ 1 due to monotonicity of φ.

Consequently, (4) is (weakly) increasing in i.

Part 2. If φ is monotone, then Part 1 applies. Otherwise, for some x < y we have φ (x) >

φ (y), and this means that y = x+ 1; there may be one or more such pairs. Notice that for such

x and y, we have φ (x) = y and φ (y) = x. Consider

V φ
i (y)− V φ

i (x) =
(
ui (y) +

∑∞

k=1
β2k−1ui (x) +

∑∞

k=1
β2kui (y)

)
−
(
ui (x) +

∑∞

k=1
β2k−1ui (y) +

∑∞

k=1
β2kui (x)

)
=

1

1 + β
(ui (y)− ui (x)) ;

this is (weakly) increasing in i.

Let us now modify stage payoffs and define

ũi (x) =

{
ui (x) if φ (x) = x or φ2 (x) 6= x;

(1− β)Vi (x) if φ (x) 6= x = φ2 (x) .
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Consider mapping φ̃ given by

φ̃ (s) =

{
φ (x) if φ (x) = x or φ2 (x) 6= x;
x if φ (x) 6= x = φ2 (x) .

This φ̃ is monotone and {ũi (x)}x∈Si∈N satisfies increasing differences. By Part 1, the continuation

values
{
Ṽ φ̃
i (x)

}x∈S
i∈N

computed for φ̃ and {ũi (x)}x∈Si∈N using (4) satisfy increasing differences as

well. But by construction, Ṽ φ̃
i (x) = V φ

i (x) for each i and s, and thus
{
V φ
i (x)

}x∈S
i∈N

satisfies

increasing differences. �

Proof of Lemma 3. Suppose, to obtain a contradiction, that for each x, y ∈ S such that

y ∈ F (x) and (5) holds, φ′ given by (6) is not monotone.

Take x, y ∈ S such that |y − φ (x)| is minimal among all such pairs x, y ∈ S (informally, we

consider the shortest deviation). By our assertion, φ′ is not monotone. Since φ is monotone

and φ and φ′ differ by the value at x only, there are two possibilities: either for some z < x,

y = φ′ (x) < φ (z) ≤ φ (x) or for some z > x, φ (x) ≤ φ (z) < φ′ (x) = y. Assume the former (the

latter case may be considered similarly). Let s be defined by

s = min (z ∈ S : φ (z) > y) ;

in the case under consideration, the set of such z is nonempty (e.g., x is its member, and z found

earlier is one as well), and hence state s is well-defined. We have s < x; since φ is monotone,

φ (s) ≤ φ (x).

Notice that a deviation in state s from φ (s) to y is monotone: indeed, there is no state z̃

such that z̃ < s and y < φ (z̃) ≤ φ (s) by construction of s, and there is no state z̃ > s such

that φ (s) ≤ φ (z̃) < y as this would contradict φ (s) > y. Moreover, it is feasible, so y ∈ F (s):

this is automatically true if y = s; if y > s, this follows from s < y < φ (s); and if y < s, this

follows from y = φ′ (x) and y < s ≤ x. By assertion, this deviation cannot be profitable, i.e.,

V φ (y) ≯s V φ (φ (s)). By Lemma 2, since y < φ (s), V φ
maxMs

(y) ≤ V φ
maxMs

(φ (s)). Since s < x,

Assumption 4 implies (for i = maxMx) V
φ
i (y) ≤ V φ

i (φ (s)).

On the other hand, (5) implies V φ
i (y) > V φ

i (φ (x)). We therefore have

V φ
i (φ (s)) ≥ V φ

i (y) > V φ
i (φ (x)) (A1)

and thus, by Lemma 2, since φ (s) < φ (x) (we know φ (s) ≤ φ (x), but φ (s) = φ (x) would

contradict (A1)),

V φ (φ (s)) >x V
φ (φ (x)) .
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Notice, however, that y < φ (s) < φ (x) implies that |φ (s)− φ (x)| < |y − φ (x)|. This

contradicts the choice of y such that |y − φ (x)| is minimal among pairs x, y ∈ S such that

y ∈ F (x) and (5) is satisfied. This contradiction proves that our initial assertion was wrong,

and this proves the lemma. �

Proof of Lemma 4. We show first that if [1] is the case, then [2] and [3] are not satisfied.

We then show that if [1] does not hold, then either [2] or [3] are satisfied, and finish the proof

by showing that [2] and [3] are mutually exclusive.

First, suppose, to obtain a contradiction, that both [1] and [2] hold. Then [2] implies that for

some z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a), V φ (z) >a V
φ (φ (a)), but this contradicts that φ

is MVE, so [1] cannot hold. We can similarly prove that if [1] holds, then [3] is not satisfied.

Second, suppose that [1] does not hold. Notice that for any x ∈ S, φ (x) ∈ F (x) and

V φ (φ (x)) ≥x V φ (x), because these properties hold for φ1 if x ∈ [1, a] and for φ2 if x ∈ [a+ 1,m].

Consequently, if φ is not MVE, then it is because the (core) condition in Definition 3 is violated.

Lemma 3 then implies existence of a monotone deviation, i.e., x, y ∈ S such that y ∈ F (x) and

V φ (y) >x V
φ (φ (x)). Since φ1 and φ2 are MVE on their respective domains, we must have that

either x ∈ [1, a] and y ∈ [a+ 1,m] or x ∈ [a+ 1,m] and y ∈ [1,m]. Assume the former; since

the deviation is monotone, we must have x = a and a + 1 ≤ y ≤ φ (a+ 1). Hence, we have

V φ (y) >a V
φ (φ (a)), and this shows that [2] holds. If we assumed the latter, we would similarly

get that [3] holds. Hence, if [1] does not hold, then either [2] or [3] does.

Third, suppose that both [2] and [3] hold. Let

x ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a)

V φ
minMa

(z) ,

y ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a+1)

V φ
maxMa+1

(z) ;

then x ≥ a + 1 > a ≥ y. By construction, V φ
minMa

(x) > V φ
minMa

(y) and V φ
maxMa+1

(y) >

V φ
maxMa+1

(x) (the inequalities are strict because they are strict in [2] and [3]). But this vio-

lates the increasing differences that
{
V φ
i (s)

}s∈S
i∈N

satisfies as φ is monotone (indeed, minMa ≤

maxMa+1 by Assumption 4). This contradiction proves that [2] and [3] are mutually exclusive,

which completes the proof. �

For the proof of Theorem 1, the following auxiliary result (which is itself a corollary of

Lemma 4) is helpful.
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Lemma 5 (Extension of Equilibrium) Let S1 = [1,m− 1] and S2 = {m}. Suppose that

φ : S1 → S1 is a monotone MVE, and that F (m) 6= {m}. Let

a = max

(
arg max

b∈[φ(m−1),m−1]∩F (m)
V φ

maxMm
(b)

)
. (A2)

If

V φ (a) >m u (m) / (1− β) , (A3)

then mapping φ′ : S → S defined by

φ′ (s) =

{
φ (s) if s < m
a if s = m

is MVE. A similar statement, mutatis mutandis, applies for S1 = {1} and S2 = [2,m].

Proof of Lemma 5. Mapping φ′ satisfies property 1 of Definition 3 by construction. Let

us show that it satisfies property 2. Suppose, to obtain a contradiction, that this is not the case.

By Lemma 3, there are states x, y ∈ S such that

V φ′ (y) >x V
φ′
(
φ′ (x)

)
, (A4)

and this deviation is monotone. Suppose first that x < m, then y ≤ φ (m) = a ≤ m − 1.

For any z ≤ m − 1,
(
φ′
)k

(z) = φk (z) for all k ≥ 0, and thus V φ′ (z) = V φ (z); therefore,

V φ (y) >x V
φ (φ (x)). However, this would contradict that φ is a MVE on S1. Consequently,

x = m. If y < m, then (A4) implies, given a = φ′ (m),

V φ (y) >m V φ (a) . (A5)

Since the deviation is monotone, y ∈ [φ (m− 1) ,m− 1], but then (A5) contradicts the choice of

a in (A2). This implies that x = y = m, so (A4) may be rewritten as

V φ′ (m) >m V φ (a) . (A6)

But since

V φ′ (m) = u (m) + βV φ (a) , (A7)

(A6) implies

u (m) >m (1− β)V φ (a) .

This, however, contradicts (A3), which proves that φ′ satisfies property 2 of Definition 3.
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To prove that φ′ is MVE, we need to establish that it satisfies property 3 of Definition 3, i.e.,

V φ′
(
φ′ (x)

)
≥x V φ′ (x) (A8)

for each x ∈ S′. If x ∈ S (i.e., x < m), then
(
φ′
)k

(x) = φk (x) for any k ≥ 0, so (A8) is

equivalent to V φ (φ (x)) ≥x V φ (x), which is true for x < m, because φ is MVE on S. It remains

to prove that (A8) is satisfied for x = m. In this case, (A8) may be rewritten as

V φ (a) ≥m V φ′ (m) . (A9)

Taking (A7) into account, (A9) is equivalent to (1− β)V φ (a) ≥m u (m),which is true, provided

that (A3) is satisfied. We have thus proved that φ′ is MVE on S′, which completes the proof. �

Proof of Theorem 1. We prove this result by induction by the number of states. For any

set X, let ΦX be the set of monotone MVE, so we have to prove that ΦX 6= ∅.

Base: If m = 1, then φ : S → S given by φ (1) = 1 is MVE for trivial reasons.

Induction Step: Suppose that if |S| < m, then MVE exists. Let us prove this if |S| = m.

Consider the set A = [1,m− 1], and for each a ∈ A, consider two monotone MVE φa1 : [1, a]→

[1, a] and φa2 : [a+ 1,m]→ [a+ 1,m]. Without loss of generality, we may assume that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a+1)

V φ
maxMa+1

(z) ,

φa2 ∈ arg max
φ∈Φ[a+1,m],z∈[a+1,φ(a+1)]∩F (a)

V φ
minMa

(z)

(whenever [φ (a) , a] ∩ F (a+ 1) = ∅ or [a+ 1, φ (a+ 1)] ∩ F (a) are empty, we pick any φa1 or

φa2, respectively). For each a ∈ A, define φa : S → S by

φa (s) =

{
φa1 (s) if s ≤ a
φa2 (s) if s > a

.

Let us define function f : A → {1, 2, 3} as follows. By Lemma 4, for every split S =

[1, a] ∪ [a+ 1,m] given by a ∈ A and for MVE φa1 and φ
a
2, exactly one of three properties hold;

let f (a) be the number of the property. Then, clearly, if for some a ∈ A, f (a) = 1, then φa is a

monotone MVE by construction of function f .

Now let us consider the case where for every a ∈ A, f (a) ∈ {2, 3}. We have the following

possibilities.

First, suppose that f (1) = 2. This means that (since φa1 (1) = 1 for a = 1)

arg max
z∈[1,φ(2)]∩F (1)

V φ1

minM1
(z) ⊂

[
2, φ1 (2)

]
. (A10)
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Let

b ∈ arg max
z∈[2,φ(2)]∩F (1)

V φ1

minM1
(z) (A11)

and define φ′ : S → S by

φ′ (s) =

{
b if s = 1

φ1 (s) if s > 1
; (A12)

let us prove that φ′ is a MVE. Notice that (A10) and (A11) imply

V φ1

minM1
(b) > V φ1

minM1
(1) .

By Lemma 2, since b > 1,

V φ1 (b) >1 V
φ1 (1) . (A13)

Notice, however, that

V φ1 (1) = u (1) / (1− β) ,

and also V φ1 (b) = V φ12 (b); therefore, (A13) may be rewritten as

V φ12 (b) >1 u (1) / (1− β) .

By Lemma 5, φ′ : S → S defined by (A12), is a MVE.

Second, suppose that f (m− 1) = 3. In this case, using the first part of Lemma 5, we can

prove that there is a MVE similarly to the previous case.

Finally, suppose that f (1) = 3 and f (m− 1) = 2 (this already implies m ≥ 3), then there

is a ∈ [2,m− 1] such that f (a− 1) = 3 and f (a) = 2. Define, for s ∈ S \ {a} and i ∈ N ,

V ∗i (s) =

{
V
φa−11
i (s) if s < a

V
φa2
i (s) if s > a

.

Let us first prove that there exists b ∈
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a) such

that

V ∗ (b) >a u (a) / (1− β) , (A14)

and let B be the set of such b (so B ⊂
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a)).

Indeed, since f (a− 1) = 3,

arg max
z∈[φa−1(a−1),φa−1(a)]∩F (a)

V φa−1

maxMa
(z) ⊂

[
φa−1 (a− 1) , a− 1

]
. (A15)

Let

b ∈ arg max
z∈[φa−1(a−1),a−1]∩F (a)

(
V φa−1

maxMa
(z)
)
, (A16)
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then (A15) and (A16) imply

V φa−1

maxMa
(b) > V φa−1

maxMa
(a) . (A17)

By Lemma 2, since b < a,

V φa−1 (b) >a V
φa−1 (a) . (A18)

We have, however,

V φa−1 (a) = V φa−12 (a) = u (a) + βV φa−12
(
φa−1

2 (a)
)
≥a u (a) + βV φa−12 (a) = u (a) + βV φa−1 (a)

(V φa−1 (a) = V φa−12 (a) by definition of φa−1, and the inequality holds because φa−1
2 is MVE on

[a,m]). Consequently, (A17) and (A18) imply (A14). (Notice that using f (a) = 2, we could

similarly prove that there is b ∈ [a+ 1, φa (a+ 1)] such that (A14) holds.)

Let us now take state some quasi-median voter in state a, j ∈Ma, and state d ∈ B such that

d = arg max
b∈B

V ∗j (b) , (A19)

and define monotone mapping φ : S → S as

φ (s) =


φa−1

1 (s) if s < a
d if s = a

φa2 (s) if s > a

(note that V φ (s) = V ∗ (s) for x 6= a). Let us prove that φ is a MVE on S.

By construction of d (A19), we have that b ∈
[
φa−1

1 (a− 1) , φa2 (a+ 1)
]
∩ F (a),

V φ (b) ≯a V φ (d) .

This is automatically true for b ∈ B, whereas if b /∈ F (a) \ B and b 6= a, the opposite would

imply

V φ (b) >a u (a) / (1− β) ,

which would contradict b /∈ B; finally, if b = a,

V φ (a) >a V
φ (d)

is impossible, as this would imply

u (a) >a (1− β)V φ (d)

contradicting (A14), given the definition of d (A19). Now, Lemma 5 implies that φ′ = φ|[1,a] is

a MVE on [1, a].
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Suppose, to obtain a contradiction, that φ is not MVE. Since φ is made from MVE φ′ on

[1, a] and MVE φa2 on [a+ 1,m], properties 1 and 3 of Definition 3 are satisfied, and by Lemma

4 there are only two possible monotone deviations that may prevent φ from being MVE. First,

suppose that for some y ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V φ (y) >a V
φ (d) . (A20)

However, this would contradict (A19) (and if y /∈ B, then (A20) is impossible as d ∈ B). The

second possibility is that for some y ∈ [d, a],

V φ (y) >a+1 V
φ (φa2 (a+ 1)) .

This means that

V φ
maxMa+1

(y) > V φ
maxMa+1

(φa2 (a+ 1)) .

At the same time, for any x ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a), we have

V φ
maxMa+1

(x) ≤ V φ
maxMa+1

(φa2 (a+ 1))

(otherwise Lemma 2 would imply a profitable deviation to x). This implies that for any such x,

V φ
maxMa+1

(y) > V φ
maxMa+1

(x) .

Now, recall that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a)

V φ
maxMa+1

(z) .

This means that there is z ∈ [φa1 (a) , a] ∩ F (a) such that

V
φa1

maxMa+1
(z) ≥ V φ

maxMa+1
(y) ,

and thus for any x ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V
φa1

maxMa+1
(z) > V φ

maxMa+1
(x) .

But φa1 = φa on the left-hand side, and φ = φa on the right-hand side. We therefore have that

the following maximum is achieved on [φa (a) , a]:

arg max
z∈[φa(a),φa(a+1)]∩F (a)

V φa

maxMa+1
(z) ⊂ [φa (a) , a] ,

i.e., that [3] in Lemma 4 holds. But this contradicts that f (a) = 2. This contradiction completes

the induction step, which proves existence of MVE.
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Finally, suppose that φ is a monotone MVE; take any s0. If φ (s0) ≥ s0, then monotonicity

implies φ2 (s0) ≥ φ (s0) etc, and thus the sequence
{
φk (s0)

}
is weakly increasing in k. It must

therefore have a limit. A similar reasoning applies if φ (s0) < s0, which completes the proof. �

Proof of Theorem 2. Part 1. Suppose that there are two MVE φ1 and φ2. Without loss

of generality, assume that m is the minimal number of states for which this is possible, i.e., if

|S| < m, then transition mapping is unique. Obviously, m ≥ 2.

Consider the set Z = {x ∈ S | φ1 (x) 6= φ2 (x)}, and denote a = minZ, b = maxZ. Without

loss of generality, assume that φ1 and φ2 are enumerated such that φ1 (a) < φ2 (a).

Let us first prove the following auxiliary result: a < m; b > 1; if x ∈ [max {2, a} , b], then

φ1 (x) < x ≤ φ2 (x); if x ∈ [a,min {b,m− 1}], then φ1 (x) ≤ x < φ2 (x).

To do this, we first show that if φ1 (x) = x, then x = 1 or x = m. Indeed, assume the

opposite and consider φ2 (x). If φ2 (x) < x, then φ1|[1,x] 6= φ2|[1,x] are two MVE for the set of

states [1, x], which contradicts the choice of m. If φ2 (x) > x, we get a similar contradiction for

[x,m], and if φ2 (x) = x, we get a contradiction by considering [1, x] if a < x and [x,m] if a > x.

Similarly, if φ2 (x) = x, then either x = 1 or x = m.

Now assume, to obtain a contradiction, that a = m. Then Z = {m}, so φ1|[1,m−1] =

φ2|[1,m−1], and then having φ1 (m) 6= φ2 (m) is impossible for generic parameter values. We

would get a similar contradiction if b = 1, which proves that a < m and b > 1, thus proving the

first part of the auxiliary result.

Let us now show that for x ∈ [a, b] \ {1,m}, we have that either φ1 (x) < x < φ2 (x) or

φ2 (x) < x < φ1 (x). Indeed, neither φ1 (x) = x nor φ2 (x) = x is possible. If φ1 (x) < x and

φ2 (x) < x, then φ1|[1,x] and φ2|[1,x] are two different MVE on [1, x], which is impossible; we get

a similar contradiction if φ1 (x) > x and φ2 (x) > x. This also implies that if a < x < b, then

x ∈ Z.

We now prove that for any x ∈ Z, φ1 (x) < φ2 (x). Indeed, suppose that φ2 (x) > φ1 (x)

(equality is impossible as x ∈ Z); then x > a ≥ 1. If x < m, then, as we proved, we must have

φ2 (x) < x < φ1 (x), and if x = m, then φ2 (x) < φ1 (x) ≤ m = x. In either case, φ2 (x) < x, and

since φ2 (a) > φ1 (a) ≥ 1, then by monotonicity of φ2 there must be y : 1 ≤ a < y < x ≤ m such

that φ2 (y) = y, but we proved that this is impossible. Hence, φ1 (x) < φ2 (x) for any x ∈ Z,

and using the earlier result, we have φ1 (x) < x < φ2 (x) for any x ∈ Z \ {1,m}.

To finish the proof, it suffi ces to show that φ1 (1) = 1 and φ2 (m) = m. Suppose, to obtain a

contradiction, that φ1 (1) > 1. We then have φ2 (1) > 1, then φ1 (2) ≥ 2 and φ2 (2) ≥ 2 and thus
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φ1|[2,m] and φ2|[2,m] are MVE on [2,m], and since b 6= 1, they must be different, which would

again contradict the choice of m. We would get a similar contradiction if φ2 (m) = m. This

completes the proof of the auxiliary result.

To finish the proof of the Theorem, notice that the auxiliary result implies, in particular,

that Z = [a, b] ∩ S, so Z has no “gaps”. We define function g : Z → {1, 2} as follows. If

V
φ1
Mx

(x) > V
φ2
Mx

(x), then g (x) = 1, and if V φ2
Mx

(x) > V
φ1
Mx

(x), then g (x) = 2; the exact equality

cannot hold generically. Intuitively g picks the equilibrium (left or right) that agent Mx prefers.

Let us prove that g (a) = 2 and g (b) = 1. Indeed, suppose that g (a) = 1; since a < m, we

must have φ1 (a) ≤ a < φ2 (a) (with equality if a = 1 and strict inequality otherwise). Consider

two cases. If a > 1, then for x < a, φ1 (x) = φ2 (x), and since φ1 (a) < a, then V φ1
Ma

(φ1 (a) | a) =

V
φ2
Ma

(φ1 (a) | a). But V φ1
Mx

(x) > V
φ2
Mx

(x) implies that V φ1
Ma

(φ1 (a) | a) > V
φ2
Ma

(φ2 (a) | a) (pro-

vided that β 6= 0), and thus V φ2
Ma

(φ1 (a) | a) > V
φ2
Ma

(φ2 (a) | a), which contradicts that φ2 is

MVE. If a = 1, then g (a) = 1 would imply that V φ1
M1

(1) > V
φ2
M1

(1). But φ1 (1) = 1, which means
uM1

(1)

1−β > V
φ2
M1

(1), thus uM1 (1) +βV
φ2
M1

(1) > V
φ2
M1

(1). But V φ2
M1

(1) = uM1 (1) +βV
φ2
M1

(φ2 (1) | 1),

and thus, provided that β 6= 0, we have V φ2
M1

(1 | 1) > V
φ2
M1

(φ2 (1) | 1). This contradicts that φ2

is an MVE, thus proving that g (a) = 2. We can similarly prove that g (b) = 1.

Clearly, there must be two states s, s+ 1 ∈ Z such that g (s) = 2 and g (s+ 1) = 1. For such

s, let us construct mapping φ as follows:

φ (x) =

{
φ1 (x) if x ≤ s
φ2 (x) if x > s

;

then φ (s) ≤ s < φ2 (s) (inequality is strict unless s = 1) and φ (s+ 1) ≥ s + 1 >

φ (s) (inequality is strict unless s + 1 = m), which means that mapping φ is monotone.

Now, g (s) = 2 implies that uMs (x) + βV
φ2
Ms

(φ2 (s) | s) = V
φ2
Ms

(s) > V
φ1
Ms

(s) = uMs (x) +

βV
φ1
Ms

(φ1 (s) | s). But V φ2
Ms

(φ2 (s) | s) = V φ
Ms

(φ2 (s) | s) and V φ1
Ms

(φ1 (s) | s) = V φ
Ms

(φ1 (s) | s),

and thus V φ
Ms

(φ2 (s) | s) > V φ
Ms

(φ1 (s) | s) (note also that s+1 ≤ φ2 (s) ≤ φ2 (s+ 1)). Similarly,

g (s+ 1) = 1 implies V φ
Ms+1

(φ1 (s+ 1) | s+ 1) > V φ
Ms+1

(φ2 (s+ 1) | s+ 1). But this contradicts

Lemma 4 for mapping φ. This contradiction completes the proof.

Part 2. As in Part 1, we can assume that m is the minimal number of states for which

this is possible. We can then establish, similarly to Part 1, that if φ1 (x) = x, then x = 1 or

x = m. If φ1 (x) < x < φ2 (x) or vice versa, then for all i ∈ Mx, there must be both a state

x1 < x and a state x2 > x such that ui (x1) > ui (x) and ui (x2) > ui (x), which contradicts

the assumption in this case. Since for 1 < x < m, φ (x) 6= x, we get that φ1 (x) = φ2 (x) for

47



such x. Let us prove that φ1 (1) = φ2 (1). If this is not the case, then φ1 (1) = 1 and φ2 (1) = 2

(or vice versa). If m = 2, then monotonicity implies φ2 (2) = 2, and if m > 2, then, as proved

earlier, we must have φ2 (x) = x + 1 for 1 < x < m and φ2 (m) = m. In both cases, we have

φ1 (x) = φ2 (x) > 1 for 1 < x ≤ m. Hence, V φ1
i (2) = V

φ2
i (2) for all i ∈ N . Since φ1 is

MVE, we must have ui (1) / (1− β) ≥ V 1
i (2) for i ∈ M1, and since φ2 is MVE, we must have

V 2
i (2) ≥ ui (1) / (1− β). Generically, this cannot hold, and this proves that φ1 (1) = φ2 (1).

We can likewise prove that φ1 (m) = φ2 (m), which implies that φ1 = φ2. This contradicts the

hypothesis of non-uniqueness. �

Proof of Theorem 3. The existence is proved in the text. Since, on equilibrium path,

there is only a finite number of shocks, then from some period t on, the environment will be the

same, say Ex. Since φEx is monotone, the sequence {st} has a limit by Theorem 1. The fact

that this limit may depend on the sequence of shocks realization is shown by Example 5. �

Proof of Theorem 4. Part 1. Without loss of generality, suppose that h is the minimal

number for which two monotone MVE φ = {φE}E∈E and φ′ =
{
φ′E
}
E∈E exist. If we take

Ẽ = {E2, . . . , Eh} with the same environments E2, . . . , Eh and the same transition probabilities,

we will (generically) have a unique monotone MVE φ̃ = {φE}E∈E ′ =
{
φ′E
}
E∈E ′ by assumption.

Now, with the help of transformation used in the proof of 3 we get that φE1 and φ
′
E1 must

be MVE in a certain stationary environment E′. However, by Theorem 2 such MVE is unique,

which leads to a contradiction.

Part 2. The proof is similar to that of Part 1. The only step is that we need to verify that

we can apply Part 2 of Theorem 2 to the stationary environment E′. In general, this will not

be the case. However, it is easy to notice (by examining the proof of Part 2 of Theorem 2) that

instead of single-peakedness, we could require a weaker condition: that for each s ∈ S there is

i ∈Ms such that there do not exist x < s and y > s such that ui (x) ≥ ui (s) and ui (y) ≥ ui (s).

We can now prove that if {ui (s)}s∈Si∈N satisfy this property and φ is MVE, then
{
V φ
i (s)

}s∈S
i∈N

also does. Indeed, suppose, to obtain a contradiction, that for some s ∈ S, for all i ∈ Ms there

are xi < s and yi > s such that V φ
i (xi) ≥ V φ

i (s) and V φ
i (yi) ≥ V φ

i (s); without loss of generality,

we may assume that xi and yi minimize |xi − s| and |yi − s| among such xi and yi.

Consider the case φ (s) > s. This implies that for all i ∈ Ms, there is a > s such that

ui (a) > ui (s), and therefore for all i ∈Ms and all a < s, ui (z) < ui (s). Moreover, for all i ∈Ms,

ui (z) < V φ
i (s) / (1− β). Take j = maxMs, and let z = xj . We cannot have φ (z) ≤ z, because
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then V φ
j (φ (z)) ≥ V φ

j (s) would be impossible. Thus, φ (z) > z, and in this case we must have

φ (z) > s, To see this, notice that V φ
j (z) = uj (z)+βV φ

j (φ (z)). If φ (z) < s, then V φ
j (z) ≥ V φ

j (s)

and uj (z) < V φ
i (s) / (1− β), implying V φ

j (φ (z)) > V φ
j (s) and thus contradicting the choice

of z = xj . If φ (z) = s, then V φ
j (z) = uj (z) + βV φ

j (φ (z)) contradicts V φ
j (z) ≥ V φ

j (s) and

uj (z) < V φ
i (s) / (1− β). Consequently, φ (z) > s. Monotonicity of φ implies s < φ (z) ≤ φ (s).

Now, V φ
j (z) ≥ V φ

j (s) and uj (z) < uj (s) implies V φ
j (φ (z)) > V φ

j (φ (s)) (and in particular,

φ (z) < φ (s)). Since j = maxMs, we have V φ (φ (z)) >s V
φ (φ (s)). Since s < φ (z) < φ (s),

φ (z) ∈ Fs, and therefore a deviation in s from φ (s) to φ (z) is feasible and profitable. This

contradicts that φ is a MVE. We would get a similar contradiction if we assumed that φ (s) < s.

Finally, assume φ (s) = s. Then take any i ∈ Ms, and suppose, without loss of generality,

that for any a < s, ui (a) < ui (s). Then, since for all such a, φk (s) ≤ s for all k ≥ 1, we must

have V φ
i (a) < V φ

i (s), which contradicts the assertion. This proves the auxiliary result.

We have thus proved that under the assumptions of the Theorem, the environment con-

structed in the proof of 3 satisfies the requirements Part 2 of Theorem 2. The rest of the proof

follows immediately. �

Proof of Theorem 5. Part 1. It suffi ces to prove this result for stationary case. For

each s ∈ S take any protocol such that if φ (s) 6= s, then θs (|Fs| − 1) = φ (s) (i.e., the desired

transition is the last one to be considered). We claim that there is a strategy profile σ such that

if for state s, φ (s) = s, then no alternative is accepted, and if φ (s) 6= s, then no alternative is

accepted until the last stage, and in this last stage, the alternative φ (s), is accepted.

Indeed, under such profile, the continuation strategies are given by (4). To show that such

outcome is possible in equilibrium, consider first periods where φ (s) 6= s. Consider the subgame

reached if no alternatives were accepted before the last one. Since by property 3 of Definition

3, V φ (φ (s)) ≥s V φ (s), it is a best response for players to accept φ (s). Let us now show,

by backward induction, that if stage k, 1 ≤ k ≤ |Fs| − 1 is reached without any alternatives

accepted, then there is an equilibrium where φ (s) is accepted in the last stage. The base was

just proved. The induction step follows from the following: if at stage k, alternative y = θs (k)

is under consideration, then accepting it yields a vector of payoffs V φ (y), and rejecting it yields,

by induction, V φ (φ (s)). Since by property 2 of Definition 3, V φ (y) ≯s V φ (φ (s)), it is a best

response to reject the alternative y. Consequently, φ (s) will be accepted by induction. This

proves the induction step, and therefore φ (s) is the outcome in a period which started with

s. Now consider a period where φ (s) = s. By backward induction, we can prove that there
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is an equilibrium where no proposal is accepted. Indeed, the last proposal θs (|Fs| − 1) may be

rejected, because V φ (θs (|Fs| − 1)) ≯s V φ (s) by property 2 of Definition 3. Going backward, if

for some stage k, s is the outcome once θs (k) was rejected, suffi ciently many players may reject

θs (k), because V φ (θs (k)) ≯s V φ (s). This proves that in periods where φ (s) = s, it is possible

to have an equilibrium where no proposal is accepted. Combining the equilibrium strategies

for different initial s in the beginning of the period, we get a MPE which induces transition

mappings φ (s).

Part 2. If the transition mapping is monotone, then continuation utilities
{
V φ
E,i (s)

}s∈S
i∈N

={
V σ
E,i (s)

}s∈S
i∈N

satisfy increasing differences for any E ∈ E . Again, the proof that φ is MVE

reduces to the stationary case. For each state s, we consider the set Js ⊂ {1, . . . , |Fs| − 1} of

stages k where the alternative under consideration, θs (k), is accepted if this stage is reached.

Naturally, φ (s) = s if and only if Js = ∅, and if Js 6= ∅, then φ (s) = θs (min Js). Moreover, one

can easily prove by induction that for any j, k ∈ Js such that j ≤ k, V φ (θs (j)) ≥s V φ (θs (k))

and for any j ∈ Js, V φ (θs (j)) ≥s V φ (s).

Take any s ∈ S. Property 1 of Definition 3 holds trivially, because only states in Fs are

considered as alternatives and may be accepted. Let us show that property 2 holds. First,

consider the case φ (s) = s. Suppose, to obtain a contradiction, that for some y ∈ Fs, V φ (y) >s

V φ (s). Suppose that this y is considered at stage k. But then, if stage k is reached, a winning

coalition of players must accept y, because rejecting it leads to s. Then k ∈ Js, contradicting

Js = ∅ for such s. Second, consider the case φ (s) 6= s. Again, suppose that for some y ∈ Fs,

V φ (y) >s V
φ (φ (s)); notice that y 6= s, because V φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (s). Let

k be the stage where y is considered. If k < min Js, so y is considered before φ (s), then a

winning coalition must accept y, which implies k ∈ Js, contradicting k < min Js. If, on the

other hand, k > min Js, then notice that k /∈ Js (otherwise, V φ (y) >s V
φ (φ (s)) is impossible).

If k > max Js, then we have V φ (y) >s V
φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (s), which means

that this proposal must be accepted, so k ∈ Js, a contradiction. If k < max Js, then we can take

l = min {Js ∩ [k + 1, |Fs| − 1]}. Since V φ (y) >s V
φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (θs (l)), it

must again be that y is accepted, so k ∈ Js, again a contradiction. In all cases, the assertion

that such y exists leads to a contradiction, which completes the proof.

Finally, we need to show that Property 3 of Definition 3 holds. This is trivial if φ (s) = s.

Otherwise, we already proved that for all j ∈ Js, V φ (θs (j)) ≥s V φ (s). In particular, this is

true for j = min Js. Consequently, V φ (φ (s)) ≥s V φ (s). This completes the proof that φ is a
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MVE. �

Proof of Theorem 6. Suppose, to obtain a contradiction, that φ2 (x) < x. Then φ1|S′

and φ2|S′ are mappings from S′ to S′ such that both are MVE. Moreover, they are different,

as φ1 (x) = x > φ2 (x). However, this would violate the assumed uniqueness (either assumption

needed for Theorem 2 continues to hold if the domain is restricted), which completes the proof.

�

Proof of Corollary 1. Consider an alternative set of environments E ′ = {E0, E2}, where

E0 coincides with E2 on S, but the transition probabilities are the same as in E . Clearly, φ′

such that φ′E0 = φ′E2 = φE2 is a MVE in E ′. Let us now consider stationary environments Ẽ0

and Ẽ1 obtained from E ′ and E , respectively, using the procedure from the proof of Theorem

3. Suppose, to obtain a contradiction, that φE2 (x) < x, then environments Ẽ0 and Ẽ1 coincide

on [1, s] by construction. Theorem 6 then implies that, since φE1 (x) = x, then φ′E0 (x) ≥ x

(since φ′E0 and φE1 are the unique MVE in Ẽ0 and Ẽ1, respectively). But by definition of φ′,

x < φ′E0 (x) = φE2 (x) ≤ x, a contradiction. This contradiction completes the proof. �

Proof of Theorem 7. Let us first prove this result for the case where each QMV is a

singleton. Both before and after the shock, the mapping that would map any state x to a

state which maximizes the stage payoff uMx (y) would be a monotone MVE for β < β0. By

uniqueness, φE1 and φE2 would be these mappings under E1 and E2, respectively. Now it is

clear that if the shock arrives at period t, and the state at the time of shock is x = st−1, then

φE2 (x) must be either the same as φE1 (x) or must satisfy φE2 (x) > s. In either case, we get a

monotone sequence after the shock. Moreover, the sequence is the same if sτ ≤ s, and if sτ > s,

then we have sτ > s ≥ s̃τ automatically.

The general case may be proved by observing that a mapping that maps each state x to

an alternative which maximizes by uminMx (y) among the states such that ui (y) ≥ ui (x) for

all i ∈ Mx is a monotone MVE. Such mapping is generically unique, and by the assumption of

uniqueness it coincides with the mapping φE1 if the environment is E1 and it coincides with φE2

if the environment is E2. The remainder of the proof is analogous. �

Proof of Theorem 8. It is suffi cient, by transitivity, to prove this Theorem for the case

where maxME1,x 6= maxME2,x for only one state x ∈ [s+ 1,m]. Moreover, without loss of
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generality, we can assume that maxME1,x < maxME2,x. Notice that if φ1 (x) ≥ x, then φ1 is

MVE in environment E2, and by uniqueness must coincide with φ2.

Consider the remaining case φ1 (x) < x; it implies φ1 (x− 1) ≤ x−1. Consequently, φ1|[1,x−1]

is MVE under either environment restricted on [1, x− 1] (they coincide on this interval). Sup-

pose, to obtain a contradiction, that φ1|[1,s] 6= φ2|[1,s]; since x > s, we have φ1|[1,x−1] 6= φ2|[1,x−1].

We must then have φ2 (x− 1) > x−1 (otherwise there would be two MVE φ1|[1,x−1] and φ2|[1,x−1]

on [1, x− 1], and therefore φ2 (x) ≥ x. Consequently, φ2|[x,m] is MVE on [x,m] under environ-

ment E2 restricted on [x,m]. Let us prove that φ2|[x,m] is MVE on [x,m] under environment

E1 restricted on [x,m] as well. Indeed, if it were not the case, then there must be a monotone

deviation, as fewer QMV (in state x) imply that only property 2 of Definition 3 may be vio-

lated. Since under E1, state x has fewer quasi-median voters than under E2, it is only possible

if φ2 (x) > x, in which case φ2 (x+ 1) ≥ x + 1. Then φ2|[x+1,m] would be MVE on [x+ 1,m],

and by Lemma 5 we could get MVE φ̃2 on [x,m] under environment E1. This MVE φ̃2 would

be MVE on [x,m] under environment E2. But then under environment E2 we have two MVE,

φ̃2 and φ2|[x,m] on [x,m], which is impossible.

We have thus shown that φ1|[1,x−1] is MVE on [1, x− 1] under both E1 and E2, and the same

is true for φ2|[x,m] on [x,m]. Take mapping φ given by

φ (y) =

{
φ1 (y) if y < x
φ2 (y) if y > x

.

Since φ1|[1,x−1] 6= φ2|[1,x−1] and φ1|[x,m] 6= φ2|[x,m] (φ1 (x− 1) ≤ x − 1, φ2 (x− 1) > x − 1,

φ1 (x) < x, φ2 (x) ≥ x), φ is not MVE in E1 nor it is in E2. By Lemma 4, in both E1 and

E2 only one type of monotone deviation (at x − 1 to some z ∈ [x, φ2 (x)] or at x to some

z ∈ [φ1 (x− 1) , x]) is possible. But the payoffs under the first deviation are the same under

both E1 and E2; hence, in both environments it is the same type of deviation.

Suppose that it is the former deviation, at x − 1 to some z ∈ [x, φ2 (x)]. Consider the

following restriction on feasible transitions:

F̃ (a) =

{
F (a) if a ≥ x;

F (a) ∩ [1, x− 1] if a < x;

denote the resulting environments by E1 and E2. This makes the deviation impossible, and thus

φ is MVE in E1 (in E2 as well). However, φ1 is also MVE in E1, as it is not affected by the

change is feasibility of transitions, and this contradicts uniqueness. Finally, suppose that the

deviation is at x to some z ∈ [φ1 (x− 1) , x]. Then consider the following restriction on feasible
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transitions:

F̄ (a) =

{
F (a) if a < x;

F (a) ∩ [x,m] if a ≥ x;

denote the resulting environments by Ē1 and Ē2. This makes the deviation impossible, and thus

φ is MVE in E2. However, φ2 is also MVE in E1, as it is not affected by the change in feasibility.

Again, this contradicts uniqueness, which completes the proof. �

Proof of Proposition 1. Part 1. We start by proving that there exists a unique monotone

MVE. To show this, we need to establish that all requirements for existence and generic unique-

ness are satisfied.

(Increasing differences) Consider player i and take two states x, y with x > y. The policy in

state x is bMx and in state y, it is bMy . Since Mx ≥My and b is increasing in the identity of the

player, we have bMx ≥ bMy . Take the difference

ui (x)− ui (y) = − (bMx − bi)
2 −

∑
j /∈Hx

γjCj −
(
−
(
bMy − bi

)2 −∑
j /∈Hy

γjCj

)
=

(
bMx − bMy

) (
2bi − bMx − bMy

)
−
∑

j /∈Hx
γjCj +

∑
j /∈Hy

γjCj .

This only depends on i through bi, which is increasing in bi. Hence, increasing differences is

satisfied.

(Monotone QMV) The QMV in state s is Ms. If s ≥ 0, then an increase in s implies that

players on the right get more power, and s ≤ 0, then a decrease in s implies that players on the

left get more power.

(Feasibility) All transitions are feasible, and thus the assumption holds trivially.

(QMV are singletons) This holds generically, when no two disjoint sets of players have the

same power.

This establishes that there is a unique monotone MVE. To show that φ (0) = 0, suppose not.

Without loss of generality, φ (0) > 0. Then if s1 = 0, monotonicity implies that st > 0 for all

t > 1. But M0 = 0, thus bM0 = b0 and uM0 (0) = 0, while uM0 (s) < 0 for s 6= 0. This shows

that if φ (0) > 0, there is a profitable deviation to 0. This contradiction completes the proof.

Part 2. Consider the case s < 0 (the case s > 0 is considered similarly). Since φ (0) = 0,

monotonicity implies that φ (s) ≤ 0. To show that φ (s) ≥ s, suppose, to obtain a contradiction,

that φ (s) < s. Then, starting from the initial state s1 = s, the equilibrium path will involve

st < s for all t > 1. Notice, however, that for the QMV Ms, uMs (s) = −
∑

j /∈Hs γjCj , and
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for x < s, uMs (x) = − (bMx − bMs) −
∑

j /∈Hx γjCj < uMs (s), as Hx is a strict superset of Hs.

Again, there is a profitable deviation, which completes the proof.

Part 3. Consider the mapping φ such that φ (s) = 0 for all s. Under this mapping,

continuation utilities are given by

V φ
i (s) = − (bMs − bi)

2 − k
∑

j /∈Hs
γjC

∗
j −

β

1− β (b0 − bi)2 .

Now, the two conditions required to hold for φ to be an MVE simplify to:

for any s, x : V φ
Ms

(0) ≥ V φ
Ms

(x) ;

for any s : V φ
Ms

(0) ≥ V φ
Ms

(s) ;

clearly, the second line of inequalities is a subset of the first. This simplifies to

for any s, x: k
∑

j /∈Hx
γjC

∗
j ≥ (bMs)

2 − (bMx − bMs)
2 .

Clearly, as k increases, the number of equations that are true weakly increases. Furthermore,

for k high enough, the left-hand side becomes arbitrarily large for all x except for x = 0 where it

remains zero, but for x = 0, bMx = 0 and thus the right-hand side is zero as well. Finally, if k is

small enough, the left-hand side is arbitrarily close to 0 for all s and x, and thus the inequality

will be violated, e.g., for s = x = 1. This proves that there is a unique positive k∗ with the

required property. �

Proof of Proposition 2. Part 1. The equilibrium exists and is unique because the

required properties hold in each of the environments, and thus Theorems 3 and 4 are applicable.

Let φEf be the mapping after radicals have left. Since the environment Ef allows for no fur-

ther stochastic shocks, φEf coincides with φ from Proposition 1 (i.e., if radicals are impossible).

Now take any radical environment Rz (so states x ≤ z are controlled by radicals). Notice that

φRz (s) is the same for all s ≤ z (otherwise, setting φRz (s) = φRz (z) for all s < z would yield

another MVE, thus violating uniqueness). Consider two situations: z < 0 and z ≥ 0.

Suppose first that z < 0. Then φRz (0) = 0 (similar to the proof of Part 1 of Proposition

1), and thus by monotonicity φRz (s) ∈ [−l − r, 0]. For any x such that z < x < 0, φRz (x) ≥ x

(again, similar to that proof). Notice that as b−l varies, the mapping φRz |[z+1,l+r] does not

change. Indeed, equilibrium paths starting from x ≥ z + 1 remain within that range, and thus

continuation utilities of Mx for any x ≥ z+ 1 do not depend on b−l; moreover, a deviation from
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x ≥ z+ 1 to some y ≤ z cannot be profitable for obvious reasons. The state φRz (z) is such that

it maximizes the continuation utility of the radical −l among the following alternaties: moving

to some state y ≤ z, staying there until transition to environment Ef and moving according to

φEf , and moving to some state y > z, moving according to φRz until the transition to Ef and

according to φEf after the transition. Notice that as b−l decreases, the continuation utilities of

the radical −l under all these options, except of moving to state y = −l − r, strictly decrease,

while the payoff of that option remains unchanged (and equal to − 1
1−βk

∑
j>−l γjC

∗
j ). Hence, a

decrease in b−l makes this transition more likely starting from state z, and thus for all s ≤ z.

Now suppose that z ≥ 0. Trivially, we must have φRz (z) ≤ 0. In this case, φRz |[z+1,l+r]

may depend on b−l, moving to y ∈ [z + 1, l + r] is suboptimal for the radical anyway. So in this

case, the equilibrium φRz (z) maximizes the radical’s continuation utility among the options of

moving to some y ≤ 0, staying there until transition to Ef , and then moving according to φEf .

Again, only for y = −l− r the continuation payoff remains unchanged as b−l decreases, and for

all other options it decreases. Hence, in this case, too, a lower b−l makes φRz (z) = −l− r more

likely. Moreover, since the equilibrium path starting from any y ≤ 0 will only feature states

s ≤ 0, and for all possible y ≤ 0, the path for lower y is first-order stochastically dominated by

the path for higher y, an increase in k makes φRz (z) = −l − r less likely.

It remains to prove that an increase in z decreases the chance of transition to −l− r for any

given s ≤ z. This is equivalent to saying that a higher z decreases the chance that φRz (−l − r) =

−l−r. Suppose that z increases by one. If z ≥ 0 (thus increasing to z+1 ≥ 1), then φRz (−l − r)

does not change as moving to y ≥ 1 was dominated anyway. If z < 0 (thus increasing to

z + 1 ≤ 0), then this increase does not change φRz |[z+2,l+r], and thus the only change is the

option to stay in z + 1 as long as the shock leading to Ef does not arrive. This makes staying

in −l − r weakly less attractive for the radical, and for some parameter values may make him

switch.

Part 2. Suppose, to obtain a contradiction, that for some s ≤ 0, φE1 (s) < s. Without loss of

generality we may assume that this is the lowest such s, meaning φE1 (s) is φE1-stable. Consider

a deviation at s from φE1 (s) to s. This deviation has the following effect on continuation

utility. First, in the period of deviation, the QMV Ms gets a higher state payoff. Second, the

continuation utilities if a transition to Rz for some z takes place immediately after that may

differ (if there is no shock, then both paths will converge at φE1 (s) thus yielding the same

continuation utilities). Now consider two cases: if z ≥ s, then the radicals are in power in both
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s and φE1 (s). As showed in the proof of Part 1, the radicals will transit to the same state, thus

resulting in the same path and continuation utilities. If, however, z < s, then the transition in

Rz will be chosen by Ms if he stayed in s, hence, this transition will maximize his continuation

payoff under Rz, and this need not be true if he moved to φE1 (s) (regardless of whether or not

radicals rule in this state). In all cases, the continuation utility after the current period is weakly

higher if he stayed in s than if he moved to φE1 (s) < s, and taking into account the first effect,

we have a strictly profitable deviation. This contradicts the definition of MVE, which completes

the proof. �

Proof of Proposition 3. Part 1. Suppose, to obtain a contradiction, that φE1 (s) ≤ x for

all x ≥ 0. By Part 2 of Proposition 2, φE1 (s) ≥ s for s ≤ 0, which now implies φE1 (0) = 0.

Part 2. As in Theorem 3, we may treat the environment E1 as static, with Wi (s) as

quasi-utilities and β̃ = β (1− µ) as the discount factor. Assume, to obtain a contradiction,

that for all x ≥ 0, φE1 (s) ≤ s. The payoff from staying in 0 for player M0 = 0 is V0 (0) =

W0(0)

1−β̃ . By definition of MVE, VMs

(
φE1 (s)

)
≥ VMs (s), and since continuation utilities satisfy

increasing differences, φE1 (s) ≤ s, and M0 ≤ Ms, it must be that V0

(
φE1 (s)

)
≥ V0 (s). Since

V0 (s) = W0 (s) + β̃V0

(
φE1 (s)

)
, we have V0

(
φE1 (s)

)
≥ W0(s)

(1−β̃)
. Consequently, it must be that

V0

(
φE1 (s)

)
> V0 (0). This is impossible if φE1 (s) = 0, and it suggests a profitable deviation at

0 from 0 to s otherwise. This contradiction proves that such x exists.

Part 3. Suppose, to obtain a contradiction, that for some s > 0, φE1 (s) > s.

Without loss of generality, assume that φE1 (s) is itself φE1-stable. By definition of MVE,

VMs

(
φE1 (s)

)
≥ VMs (s). This is equivalent to

WMs(φE1 (s))
1−β̃ ≥ WMs (s) +

β̃WMs(φE1 (s))
1−β̃ , thus

implying WMs

(
φE1 (s)

)
≥ WMs (s). Setting y = φE1 (s) and x = s, we have y > x ≥ 0 and

WMx (y) ≥WMx (x), a contradiction. This completes the proof. �

Proof of Proposition 4. Proposition 1 proved this result for environment Ef . For any

of the radical environments Rz (z < 0), the quasi-utility of the QMV of state 0, player 0, is

ũRz ,0 (0) = 0, and for s 6= 0, ũRz ,0 (s) < 0. This means that continuation utility ṼRz ,0 (s) < 0.

Hence, if φRz (0) = s 6= 0, there would be a profitable deviation at 0 from s to 0; this proves

that φRz (0) = 0. Now, monotonicity yields that φRz (s) ≥ s for all s ≥ 0. This tells us that

if we consider Rz|[0,l+r] to be a static environment with quasi-utilities ũRz ,i (s) and the quasi-

discount factor β̃ = β (1− ν), then φRz |[0,l+r] is an MVE. But notice that φEf |[0,l+r] is also an

MVE in this environment, because continuation utilities ṼRz ,i (s) would equal the corresponding
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continuation utilities in the environment Ef , where it is an MVE: ṼRz ,i (s) = VEf ,i (s). Since

the MVE must be unique, we have φRz |[0,l+r] = φEf |[0,l+r], and thus φRz (s) ∈ [0, s] for s ≥ 0,

because this property holds for φEf . Another iteration of this argument would establish the

same for the initial environment E1, which completes the proof. �

Proof of Proposition 5. This is an immediate corollary of Theorem 6. �

Proof of Proposition 6. Part 1. Suppose not; so there are s ≥ 0 such that φE1 (s) = 0

and φEf (s) 6= 0. Since φEf (0) = 0, we must have s > 0 and φEf (s) > 0. Without loss of

generality, assume that s is the minimal of such s > 0. If φEf (s) > 0, it must be that there is

some x > 0 such that uMs (x) ≥ uMs (0), and generically, this means that uMs (x) > uMs (0).

Moreover, there is such x that satisfies 0 < x ≤ s (because for x > 0, uMs (x) < uMs (s)). But

then φE1 (x) = 0; this implies that in environment E1 and state s, a deviation from 0 to x is

profitable for group Ms. This contradiction completes the proof.

Part 2. Let us first prove that for any Rz and any x ≥ 0, φRz (x) ≤ x. Suppose, to obtain a

contradiction, that φRz (x) > x ≥ 0. Consider two cases. If z ≥ x (so radicals are in power), then

at x they have a profitable deviation from φRz (x) to x, since the path starting at x is first-order

stochastically dominated by one starting at φRz (x) > x, both are contained in [0, l + r], and

on this set the preferences are radicals are monotone. Consequently, in this case, φRz (x) > x

is impossible. The second case is z < x, meaning that Mx is the QMV. In that case deviation

to x is again profitable: indeed, VEf ,Mx (x) is maximal among all VEf ,Mx (y) for y ≥ x, and the

path φRz (x) , φ2
Rz (x) , . . . yields, pointwisely, lower utility than the path x, φRz (x) , φ2

Rz (x) , . . ..

This shows that φRz (x) ≤ x.

Now suppose that x ≥ 0 is stable in E. Then it does not change if a shock never arrives,

and the result holds trivially. Once a transition to Rz has taken place, we have φRz (x) ≤ x,

implying that the entire path satisfies this property. If there is never a transition to Ef , then

the statement again holds; otherwise, suppose that this shock arrives when the society is at

s ≤ x. Since φEf (x) ≤ x, we must have that φEf (s) ≤ x, and so the entire path lies below x.

Convergence follows from finiteness of S, and the ultimate state y satisfies y ≤ x. �

Proof of Proposition 7. This result is a direct corollary of Theorem 8. �

Proof of Proposition 8. All the Assumptions hold for trivial reasons, however, we need

to verify that the increasing differences (Assumption 2) hold when one of the agents is group
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−l. Take another group x > −l; we have

us (x)− us (−l) =

{
(bx − b−l)

(
2bMs − bMx − bM−l

)
− (1− ρ)

∑
j /∈Hs γjCj if s < 0

(bx − b−l)
(
2bMs − bMx − bM−l

)
if s ≥ 0

.

But bMs is increasing in s, and
∑

j /∈Hs γjCj is decreasing while remaining positive. This implies

that us (x)− us (−l) is increasing in s, so all Assumptions hold.

Take some ρ and ρ′ such that ρ > ρ′. Suppose, to obtain a contradiction, that φE1 (0) > 0,

but φ′E1 (0) = 0. Since radicals cannot come to power at state 1, we must have φE1 (1) ∈ {0, 1},

and φ′E1 (1) ∈ {0, 1}. We therefore have φE1 (0) = φE1 (1) = 1.

It is easy to check that for any radical environment Rz and for any x ≤ z, φ′Rz (x) ≤ φRz (x) ≤

0, and therefore, if in period t, the environment is Rz and the state is st = s′t ≤ z, then for

all τ ≥ t and for all realizations of shocks, we have s′τ ≤ sτ ≤ 0. From this, we have that

VRz ,0 (0) = V ′Rz ,0 (0) and VRz ,0 (1) = V ′Rz ,0 (1) whenever z < 0 (indeed, the equilibrium paths in

these cases in Rz and Ef are the same and do not involve states x < 0).

Notice also that the mapping φRz |[0,r] = φEf |[0,r] for z < 0. Denote λ∗ = µ−l−r − µ0, so λ
∗

is the probability of a shock to a radical environments other than R0.

Let us prove that φE1 (0) = 1 implies φR0 (0) = 1. Indeed, from φE1 (0) = 1, we have

ũE1,0 (1) ≥ ũE1,0 (0). By definition,

ũE1,0 (1) = u0 (1) + β
(
λ∗VEf ,0 (1) + λ0VR0,0 (1)

)
,

ũE1,0 (0) = u0 (0) + β
(
λ∗VEf ,0 (0) + λ0VR0,0 (0)

)
.

But u0 (1) < u0 (0) and, clearly, VEf ,0 (1) < 0 = VEf ,0 (0). This means VR0,0 (1) > VR0,0 (0),

implying that φR0 (0) = 1 (which in turn implies φR0 (1) = 1).

Now, notice that we have similar formulas for ũE1,0 (1) and ũE1,0 (0), and moreover,

VEf ,0 (1) = V ′Ef ,0 (1) and VEf ,0 (0) = V ′Ef ,0 (0). Therefore,

ũE1,0 (1)− ũ′E1,0 (1) = βλ0

(
VR0,0 (1)− V ′R0,0 (1)

)
,

ũE1,0 (0)− ũ′E1,0 (0) = βλ0

(
VR0,0 (0)− V ′R0,0 (0)

)
.

But φR0 (0) = φR0 (1) = 1 implies VR0,0 (1) = V ′R0,0 (1). On the other hand, VR0,0 (0) ≥ V ′R0,0 (0).

Together, this all implies that(
ũE1,0 (1)− ũ′E1,0 (1)

)
−
(
ũE1,0 (0)− ũ′E1,0 (0)

)
≤ 0.

Since ũE1,0 (1) ≥ ũE1,0 (0), it must be that ũ′E1,0 (1) ≥ ũ′E1,0 (0). This means ũ′E1,M1
(1) ≥

ũ′E1,M1
(0), implying φ′E1 (1) = 1. But then ũ′E1,0 (1) ≥ ũ′E1,0 (0) is incompatible with φ′E1 (0) = 0.

This contradicts our initial assertion, which completes the proof. �

58



Proof of Theorem 9. Part 1. It suffi ces to prove this result in stationary environments.

By Theorem 10, there are no cycles, and thus for any x ∈ S, the sequence x, φ (x) , φ2 (x) , . . .

has a limit. Suppose, to obtain a contradiction, that MVE φ is nonmonotone, which means

there are states x, y ∈ S such that x < y and φ (x) > φ (y). Without loss of generality we can

assume that x and y are such that the set Z =
{
x, φ (x) , φ2 (x) , . . . ; y, φ (y) , φ2 (y) , . . .

}
has

fewest different states. In that case, mapping φ is monotone on the set Z \ {x, y}, which implies

that {V s
i }

s∈Z\{x,y}
i∈N satisfies increasing differences. By property 2 of Definition 3 applied to state

x, we get

VmaxMx (φ (x)) ≥ VmaxMx (φ (y)) , (A21)

and if we apply it to state y,

VminMy (φ (y)) ≥ VminMy (φ (x)) . (A22)

Since maxMx ≤ minMy by assumption, (A21) implies

VminMy (φ (x)) ≥ VminMy (φ (y)) .

Since in the generic case inequalities are strict, this contradicts (A22).

Part 2. Again, consider stationary environments only. If φ is nonmonotone, then for some

x, y ∈ S we have x < y and φ (x) > φ (y), which in this case implies φ (x) = y = x + 1 and

φ (y) = x. But by Theorem 10, this is generically impossible. This contradiction completes the

proof. �

Proof of Theorem 10. Let us first rule out cycles, where for some x, φ (x) 6= x, but

φk (x) = x for some k > 1. Without loss of generality, let k be the minimal one for which this

is true, and x be the highest element in the cycle. In this case, the we have, for any i ∈ N ,

Vi (x)− Vi (φ (x)) = ui (x) + βVi (φ (x))− Vi (φ (x)) = ui (x)− (1− β)Vi (φ (x))

=
∑k−1

j=1

(1− β)βj−1

1− βk
(
ui (x)− ui

(
φj (x)

))
,

which is increasing in i, since each term is increasing in i as x > φj (x) for j = 1, . . . , k− 1. This

means that {Vi (s)}s∈{φ(x),x}
i∈N satisfies the increasing differences. Because of that, property 3 of

Definition 3, when applied to state x, implies that Vi (φ (x)) ≥ Vi (x) for all i ∈ Mx. However,

if we take y = φk−1 (x) (so φ (y) = x), then property 2 of Definition 3 would imply that

Vi (x) ≥ Vi (φ (x)) for at least one i ∈My. Increasing differences implies that Vi (x) ≥ Vi (φ (x))
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for at least one i ∈ Mx, and therefore for such i, Vi (x) = Vi (φ (x)). Generically, this is

impossible, which implies that cycles are generically ruled out.

Now, to prove that any path is monotone, assume the opposite, and take x that generates

the shortest nonmonotone path (i.e., such that the sequence x, φ (x) , φ2 (x) , . . . has the fewest

different states). In that case, either φ (x) > x, but φ2 (x) < φ (x) or vice versa; without loss

of generality consider the former case. Denote y = φ (x); then the sequence y, φ (y) , φ2 (y) , . . .

is monotone by construction of x. Consequently, {Vi (s)}s∈{y,φ(y),φ2(y),...}
i∈N satisfies increasing

differences. By property 3 of Definition 3 applied to state y, for all i ∈ My, Vi (φ (y)) ≥ Vi (y).

This is true for all i ∈Mx. However, property 2 of Definition 3, applied to state x, implies that,

generically, at least for one i ∈ Mx, Vi (y) > Vi (φ (y)). This contradiction completes the proof.

�

Proof of Theorem 11. Take an increasing sequence of sets of points, S1 ⊂ S2 ⊂ S3 ⊂ · · · ,

so that
∞⋃
i=1

Si is dense. For each Si, take MVE φi. We know that φi is a monotone function on Si;

let us complement it to a monotone (not necessarily continuous) function on S which we denote

by φ̃i for each i. Since φ̃i are monotone functions from a bounded set to a bounded set, there is

a subsequence φ̃ik which converges to some φ̃ pointwisely. (Indeed, we can pick a subsequence

which converges on S1, then a subsequence converging on S2 etc; then use a diagonal process.

After it ends, the set of points where convergence was not achieved is at most countable, so we

can repeat the diagonal procedure.) To show that φ̃ is a MVE, suppose not, then there are two

points x and y such that y is preferred to φ̃ (x) by all members of Mx. Here, we need to apply

a continuity argument and say that it means that the same is true for some points in some Si.

But this would yield a contradiction. �

Examples

Example 5 (Example where the limit state depends on the timing of shocks). There are

two environments, E1 and E2, with the probability of transition π (E1, E2) = 0.1. There are

two states A,B, and two players 1 and 2. In both environments, the decision-making rule is

dictatorship of player 1 in state A and dictatorship of player 2 in state B. All transitions are

feasible, and the discound factor is β = 0.9. Payoffs are given by

E1 A B
1 5 20
2 20 30

,
E2 A B
1 30 20
2 20 30

.
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Then the mapping φ is given by φE1 (A,B) = (B,B); φE2 (A,B) = (A,B). Suppose that s0 = 1.

Then, if the shock arrives in period t = 1, the limit state is A, and if the shock arrives later, the

limit state is B.

Example 6 (Example with single-peaked preferences and two MVE) There are three

states A,B,C, and two players 1 and 2. The decision-making rule is unanimity in state A and

dictatorship of player 2 in states B and C. Payoffs are given by

A B C
1 2 25 20
2 1 20 25

Then φ1 given by φ1 (A,B,C) = (B,C,C) and φ2 given by φ2 (A,B,C) = (C,C,C) are both

MVE when the discount factor is any β ∈ [0, 1)

Example 7 (Continuation utilities need not satisfy single-peakedness) There are four

states and three players, player 1 is the dictator in state A, player 2 is the dictator in state B,

and player 3 is the dictator in states C and D. The payoffs are given by the following matrix:

A B C D
1 20 30 90 30
2 5 20 85 90
3 5 25 92 99

.

All payoffs are single-peaked. Suppose β = 0.5; then the unique equilibrium has φ (A) = C,

φ (B) = φ (C) = φ (D) = D. Let us compute the continuation payoffs of player 1. We have:

V1 (A) = 40, V1 (B) = 30, V1 (C) = 50, V1 (D) = 30; the continuation utility of player 1 is thus

not single-peaked.

Example 8 (No MVE with infinite number of shocks) Below is an example with finite

number of states and players and finite number of environments such that all assumptions,

except for the assumption that the number of shocks is finite, are satisfied, but there is no

Markov Voting Equilibrium in pure strategies.
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There are three environments E1, E2, E3, three states A = 1, B = 2, C = 3, and three players

1, 2, 3. The history of environments follows a simple Markov chain; in fact, in each period the

environment is drawn separately. More precisely,

π (E1) : = π (E1, E1) = π (E2, E1) = π (E3, E1) =
1

2
;

π (E2) : = π (E1, E2) = π (E2, E2) = π (E3, E2) =
2

5
;

π (E3) : = π (E1, E2) = π (E2, E3) = π (E3, E3) =
1

10
.

The discount factor is 1
2 .

The following matrices describe stage payoffs, winning coalitions, and feasible transitions.

Environment E1 State A State B State C
Winning coalition Dictatorship of Player 1

Feasible transitions to A,B to B to C
Player 1 60 150 −800
Player 2 30 130 60
Player 3 −100 60 50

Environment E2 State A State B State C
Winning coalition Dictatorship of Player 2

Feasible transitions to A to A,B to C
Player 1 100 80 −800
Player 2 80 70 60
Player 3 −100 60 50

Environment E3 State A State B State C
Winning coalition Dictatorship of Player 3

Feasible transitions to A to B,C to C
Player 1 100 80 −800
Player 2 80 70 60
Player 3 −100 60 50

It is straightforward to see that Sincreasing differences holds; moreover, payoffs are single-peaked,

and in each environment and each state, the set of quasi-median voters is a singleton.

The intuition behind the example is the following. The payoff matrices in environment E2

and E3 coincide, so “essentially”, there are two equally likely environments E1 and “E2 ∪ E3”.

Both player 1 and 2 prefer state B when the environment is E2 and state A when the environment

is E1; given the payoff matrix and the discount factor, player 1 would prefer to move from A to

B when in E1, and knowing this, player 2 would be willing to move to A when in E2. However,

there is a chance that the environment becomes E3 rather than E2, in which case a “maniac”

player 3 will become able to move from state B (but not from A!) to state C; the reason for
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him to do so is that although he likes state B (in all environments), he strongly dislikes A, and

thus if players 1 and 2 are expected to move between these states, player 3 would rather lock

the society in state C, which is only slighly worse for him than B.

State C, however, is really hated by player 1, who would not risk the slightest chance of

getting there. So, if player 3 is expeced to move to C when given such chance, player 1 would

not move from A to B when the environment is E1, because player 3 is only able to move to C

from B. Now player 2, anticipating that if he decides to move from B to A when the environment

is E2, the society will end up in state A forever; this is something player 2 would like to avoid,

because state A is very bad for him when the environment is E1. In short, if player 3 is expected

to move to C when given this chance, then the logic of the previous paragraph breaks down, and

neither player 1 nor player 2 will be willing to move when they are in power. But in this case,

player 3 is better off staying in state B even when given a chance to move to C, as he trades off

staying in B forever versus staying in C forever. These considerations should prove that there

is no MVE.

More formally, note that there are only eight candidate mappings to consider (some transi-

tions are made infeasible precisely to simplify the argument; alternatively, we could allow any

transitions and make player 1 the dictator in state A when the environment is E3). We consider

these eight mappings separately, and point out the deviation. Obviously, the only values of the

transition mappings to be specified are φE1 (A), φE2 (B), and φE3 (B).

1. φE1 (A) = A, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

2. φE1 (A) = B, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

3. φE1 (A) = A, φE2 (B) = B, φE3 (B) = B. Then φ′E1 (A) = B is a profitable deviation.

4. φE1 (A) = B, φE2 (B) = B, φE3 (B) = B. Then φ′E2 (B) = A is a profitable deviation.

5. φE1 (A) = A, φE2 (B) = A, φE3 (B) = C. Then φ′E2 (B) = B is a profitable deviation.

6. φE1 (A) = B, φE2 (B) = A, φE3 (B) = C. Then φ′E1 (A) = A is a profitable deviation.

7. φE1 (A) = A, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.

8. φE1 (A) = B, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.

This proves that there is no MVE in pure strategies (i.e., in the sense of Definition 3).
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