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A Appendix A: Scaling and Miscellaneous Variables

To solve our model, we require that the variables be stationary. To this end, we adopt a

particular scaling of the variables. Because our model satisfies suffi cient conditions for bal-

anced growth, when the equilibrium conditions of the model are written in terms of the scaled

variables, only the growth rates and not the levels of the stationary shocks appear. In this

appendix we describe the scaling of the model that is adopted. In addition, we describe the

mapping from the variables in the scaled model to the variables measured in the data.

Let

qt = ΥtQK̄′,t

Pt
, yz,t =

Yt
z+
t

, it =
It

z+
t Υt

, w̃t ≡
Wt

z+
t Pt

,

k̄t =
K̄t

z+
t−1Υt−1

, rkt = Υtr̃kt , µ
∗
z,t =

z+
t

z+
t−1

, ct =
Ct
z+
t

,

where r̃kt Pt denotes the nominal rental rate on capital. The rate of inflation in the nominal

wage rate is:

πw,t ≡
Wt

Wt−1

=
w̃tµ

∗
z,tπt

w̃t−1

.

Consider gdp growth, according to the model.

Y gdp
t

z+
t

≡ yt = ct +
it
µΥ,t

+ gt,

or,

Y gdp
t = ytz

+
t ,

so that

∆ log Y gdp
t = log Y gdp

t − log Y gdp
t−1 = log (yt)− log (yt−1) + log

(
z+
t

)
− log

(
z+
t−1

)
= log (yt)− log (yt−1) + log

µ∗z,t
µ∗z

.

Note that we have subtracted the steady state value of log µ∗z,t from this expression. This is

because ∆ log Y gdp
t is the growth rate of GDP, after subtracting its steady state value.
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Let Nt+1 denote period t nominal net worth, so that

nt+1 =
Nt+1

Ptz
+
t

.

Then,

∆ log
Nt+1

Pt
= log nt+1 − log nt + log

µ∗z,t
µ∗z

.

Again, this variable is expressed in deviation from its steady state.

Another variable is investment. There is an issue about what units to measure investment

in. Investment times its relative price is given by:

invt ≡
It

ΥtµΥ,t

=
itz

+
t Υt

ΥtµΥ,t

=
itz

+
t

µΥ,t

,

so that, in deviation from steady state:

∆ log invt ≡ log invt − log invt−1 = log it − log it−1 + log
µ∗z,t
µ∗z
−
(
log µΥ,t − log µΥ,t−1

)
.

The relative price of investment goods is given by

PI,t ≡
1

ΥtµΥ,t

,

so that

∆ logPI,t = −t log Υ + (t− 1) log Υ− log µΥ,t + log µΥ,t−1 + log Υ

= − log µΥ,t + log µΥ,t−1,

in deviation from steady state.

∆ logCt = log ct − log ct−1 + log
µ∗z,t
µ∗z

Real credit growth (in deviation from steady state) for entrepreneurs is computed as follows:

Creditet =
[
qtk̄t+1 − nt+1

]
z+
t

∆Creditet = log
[
qtk̄t+1 − nt+1

]
− log

[
qt−1k̄t − nt

]
+ log

µ∗z,t
µ∗z

To obtain total credit growth, we need to add the credit by intermediate good firms for working
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capital. From (2.41), this credit, scaled by Ptz∗t is:

ψk,t
rkt utk̄t
Υµz∗,t

+ ψl,tw̃t.

The real amount of this credit is:

Creditft =

[
ψk,t

rkt utk̄t
Υµz∗,t

+ ψl,tw̃t

]
z∗t .

So total credit, Creditt, is:

Creditt =

[
qtk̄t+1 − nt+1 + ψk,t

rkt utk̄t
Υµz∗,t

+ ψl,tw̃t

]
z∗t ,

and its growth rate (in deviation from steady state) is:

∆Creditt = log

[
qtk̄t+1 − nt+1 + ψk,t

rkt utk̄t
Υµz∗,t

+ ψl,tw̃t

]
− log

[
qt−1k̄t − nt + ψk,t−1

rkt−1ut−1k̄t−1

Υµz∗,t−1

+ ψl,t−1w̃t−1

]
+ log

µ∗z,t
µ∗z

.

The growth rate of the real wage is:

∆ log
Wt

Pt
= log w̃t − log w̃t−1 + log

µ∗z,t
µ∗z

B Appendix B: Dynamic Equations

B.1 Equilibrium Conditions

This section displays all the equilibrium conditions of the model. Numbers in parentheses next

to an equation make it possible to identify the same equation in the Dynare code used to solve,

estimate and analyze our model.

B.1.1 Prices

The equations pertaining to prices are:

(1)p∗t −

(1− ξp)(Kp,t

Fp,t

) λf
1−λf

+ ξp

(
π̃t
πt
p∗t−1

) λf
1−λf


1−λf
λf

= 0 (2.22)

and
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(2)Et

{
ζc,tλz,tyz,t +

(
π̃t+1

πt+1

) 1
1−λf

βξpFp,t+1 − Fp,t

}
= 0, (2.23)

where λz,t denotes λtz∗tPt. Also,

(3)ζc,tλz,tλfyz,tst + βξp

(
π̃t+1

πt+1

) λf
1−λf

Kp,t+1 −Kp,t = 0. (2.24)

Note that both these equations involve Fp,t. This reflects that a lot of equations have been

substituted out. In particular, we have

(4)Fp,t

1− ξp
(
π̃t
πt

) 1
1−λf

1− ξp


1−λf

= Kp,t, p̃t =
Kp,t

Fp,t
,

where p̃t is the price set by price-optimizing firms in period t. In addition, p̃t is substituted out

using the equilibrium condition relating the aggregate price level to the prices of intermediate

goods.

B.1.2 Wages

The demand for labor is the solution to the following problem:

maxWt

=lt︷ ︸︸ ︷[∫ 1

0

(ht,i)
1
λw di

]λw
−
∫ 1

0

Wt,iht,idi,

where Wt,i is the wage rate of i−type workers and Wt is the wage rate for homogeneous labor,

lt. The first order condition is:

ht,i = lt

(
Wt

Wt,i

) λw
λw−1

.

The wages of non-optimizing households evolve as follows:

Wj,t = π̃w,t
(
µz∗,t

)ιµ
(µz∗)

1−ιµWj,t−1, π̃w,t ≡ (π∗t )
ιw1 (πt−1)ιw2 π̄1−ιw1−ιw2 . (2.25)

Nominal wage growth, πw,t, is:

πw,t =
w̃tµ

∗
z,tπt

w̃t−1

,

where w̃t denotes the scaled wage rate:

w̃t ≡
Wt

z∗tPt
.
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The labor input variable that we treat as observed is the sum over the various different

types of labor:

ht =

∫ 1

0

hitdi

= ltW
λw
λw−1

t

∫ 1

0

(Wt,i)
λw

1−λw di

= ltW
λw
λw−1

t (W ∗
t )

λw
1−λw ,

where

W ∗
t ≡

[∫ 1

0

(Wt,i)
λw

1−λw di

] 1−λw
λw

=

[
(1− ξw) W̃t +

∫
ξw monopolists that do not reoptimize

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµWi,t−1

) λw
1−λw di

] 1−λw
λw

=

[
(1− ξw) W̃t + ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµW ∗
t−1

) λw
1−λw

] 1−λw
λw

.

Let w∗t ≡ W ∗
t /Wt, and use linear homogeneity:

w∗t =

(1− ξw)
W̃t

Wt

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t
w∗t−1

) λw
1−λw


1−λw
λw

,

W̃t is the nominal wage set by the 1− ξw wage optimizers in the current period. Rewriting,

w∗t = [(1− ξw)w
λw

1−λw
t + ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw

]
1−λw
λw , (2.26)

where

wt ≡
W̃t

Wt

. (2.27)

We conclude:

ht = lt (w∗t )
λw

1−λw . (2.28)

For purposes of evaluating aggregate utility, it is also convenient to have an expression for
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the following:

∫ 1

0

h1+σL
it di

= l1+σL
t W

−λw(1+σL)
1−λw

t

∫ 1

0

(Wt,i)
λw(1+σL)

1−λw di

= l1+σL
t W

−λw(1+σL)
1−λw

t Ẅ
λw(1+σL)

1−λw
t ,

where

Ẅt ≡
[∫ 1

0

(Wt,i)
λw(1+σL)

1−λw di

] 1−λw
λw(1+σL)

.

Then,

Ẅt =

[∫ 1

0

(Wt,i)
λw(1+σL)

1−λw di

] 1−λw
λw(1+σL)

=

[
(1− ξw)

(
W̃t

)λw(1+σL)
1−λw

+

∫
ξw that change

(Wt,i)
λw(1+σL)

1−λw di

] 1−λw
λw(1+σL)

=

[
(1− ξw)

(
W̃t

)λw(1+σL)
1−λw

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ Ẅt−1

)λw(1+σL)
1−λw

] 1−λw
λw(1+σL)

.

Divide by Wt and make use of the linear homogeneity of the above expression:

Ẅt

Wt

=

(1− ξw)

(
W̃t

Wt

)λw(1+σL)
1−λw

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t

Ẅt−1

Wt−1

)λw(1+σL)
1−λw


1−λw

λw(1+σL)

Define

ẅt =
Ẅt

Wt

,

so that

ẅt =

(1− ξw) (wt)
λw(1+σL)

1−λw + ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t
ẅt−1

)λw(1+σL)
1−λw


1−λw

λw(1+σL)

, (2.29)

using (2.27). We conclude

∫ 1

0

h1+σL
it di =

[
lt (ẅt)

λw
1−λw

](1+σL)

(2.30)

=

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)

.
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using (2.28).

The optimality conditions associated with wage-setting are characterized by:

(5)Et{ζc,tλz,t
(w∗t )

λw
λw−1 ht

(
1− τ lt

)
λw

...(2.31)

+βξw (µz∗)
1−ιµ
1−λw Et

(
µz∗,t+1

) ιµ
1−λw−1

(
1

πw,t+1

) λw
1−λw π̃

1
1−λw
w,t+1

πt+1

Fw,t+1 − Fw,t = 0

and

(6) Et{ζc,tζt
[
(w∗t )

λw
λw−1 ht

]1+σL
+βξw

(
π̃w,t+1

(
µ∗z,t+1

)ιµ
(µ∗z)

1−ιµ

πwt+1

) λw
1−λw (1+σL)

Kw,t+1−Kw,t} = 0.

(7)
1

ψL

1− ξw
(
π̃w,t
πw,t

(µz∗)
1−ιµ (µz∗,t)ιµ) 1

1−λw

1− ξw


1−λw(1+σL)

w̃tFw,t −Kw,t = 0

Optimization by households implies:

wt =

[
ψL
w̃t

Kw,t

Fw,t

] 1−λw
1−λw(1+σL)

,

so that, using (2.26):

w∗t =

(1− ξw)

[
ψL
w̃t

Kw,t

Fw,t

] λw
1−λw(1+σL)

+ ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw


1−λw
λw

.

We can replace Kw,t/Fw,t with the expression implied by (7) above:

(8) w∗t = [(1− ξw)

1− ξw
(
π̃w,t
πw,t

(µz∗)
1−ιµ (µz∗,t)ιµ) 1

1−λw

1− ξw


λw

...

+ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw

]
1−λw
λw

B.1.3 Capital Utilization, Marginal Cost, Return on Capital, Investment, Mon-

etary Policy

The first order necessary condition associated with the capital utilization decision is:

Pt
1

Υt
τ ota

′ (ut) K̄t = Ptr̃
k
t K̄t,

7



or,

τ ota
′ (ut) = Υtr̃kt = rkt ,

after scaling. Making use of our assumed utilization cost function, this reduces to:

(9) rkt = τ otr
k exp(σa [u− 1]).

Marginal cost:

(10)rkt =
αεt[

1 + ψk,tRt

] (Υµ∗z,tLt (w∗t )
λw
λw−1

utk̄t

)1−α

st (2.32)

w̃t =
(1− α) εt[
1 + ψl,tRt

] (Υµ∗z,tLt (w∗t )
λw
λw−1

utk̄t

)−α
st,

where ψk,t and ψl,t denote the fraction of the capital services and labor bills, respectively,

that must be financed in advance. Combining the last two equations, we obtain the familiar

expression for marginal cost:

(11) st =
1

εt

(
rkt
[
1 + ψk,tRt

]
α

)α(
w̃t
[
1 + ψl,tRt

]
1− α

)1−α

(2.33)

Resource constraint:

(12)τ ota(ut)
k̄t

Υµ∗z,t
+ gt + ct +

it
µΥ,t

= yz,t (2.34)

where gt is an exogenous stochastic process and

(13)k̄t+1 = (1− δ) 1

µ∗z,tΥ
k̄t +

[
1− S

(
ζ i,t itµ

∗
z,tΥ

it−1

)]
it, (2.35)

where it is investment scaled by z∗t Υ
t.

Equation defining the nominal non-state contingent rate of interest:

(14)Et{β
1

πt+1µ∗z,t+1

ζc,t+1λz,t+1 (1 +Rt)− ζc,tλz,t} = 0 (2.36)

The derivative of utility with respect to consumption is,

(15)Et

[
(1 + τC)ζc,tλz,t −

µ∗z,tζc,t
ctµ∗z,t − bct−1

+ bβ
ζc,t+1

ct+1µ∗z,t+1 − bct

]
= 0, (2.37)
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where ct denotes consumption scaled by z∗t . The capital first order condition:

(16)Et

{
−ζc,tλzt +

β

πt+1µ∗z,t+1

ζc,t+1λzt+1

(
1 +Rk

t+1

)}
= 0, (2.38)

where Rk
t+1 denotes the rate of return on capital:

(17) 1 +Rk
t =

(1− τ kt−1)
[
utr

k
t − τ ota(ut)

]
+ (1− δ)qt

Υqt−1

πt + τ kt−1δ

where qt denotes the scaled market price of capital, QK̄′,t :

qt = ΥtQK̄′,t

Pt
.

The investment first order condition:

(18) Et{ζc,tλztqt
[
1− S(

ζ i,tµ
∗
z,tΥit

it−1

)− S ′(
ζ i,tµ

∗
z,tΥit

it−1

)
ζ i,tµ

∗
z,tΥit

it−1

]
(2.39)

−
ζc,tλzt

µΥ,t

+
βλzt+1ζc,t+1ζ i,t+1qt+1

µ∗z,t+1Υ
S ′(

ζ i,t+1µ
∗
z,t+1Υit+1

it
)

(
µ∗z,t+1Υit+1

it

)2

} = 0,

where it is scaled (by z∗t Υ
t) investment. The scaled representation of aggregagte output is:

(19) yz,t ≡
Yt
z∗t

= (p∗t )
λf
λf−1

[
εt

(
utk̄t
µ∗z,tΥ

)α (
(w∗t )

λw
λw−1 ht

)1−α
− φ
]

The monetary policy rule:

(20) log (1 +Rt) = (1− ρ̃) log (1 +R) + ρ̃ log (1 +Rt−1) (2.40)

+
1− ρ̃
1 +R

[
ãpπ log

πt+1

π∗t
+ ãy

1

4
log

yt
y

]
+ xpt ,

where xpt is an iid monetary policy shock and yt denotes scaled GDP:

(21) yt = gt + ct +
it
µΥ,t

.

Total nonfinancial sector borrowing is an important variable to match with the data.

Borrowing is an important variable in the model. In the CEE model, borrowing by non-

financial firms is for paying the capital rental bill and the wage bill. In unscaled terms, this

is:

ψk,tPtr̃
k
tKt + ψl,tWtlt.
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We scale this by dividing by Ptz∗t :

ψk,t
r̃kt utK̄t

z∗t
+ ψl,t

Wt

Ptz∗t
lt

= ψk,t
rkt utz

∗
t−1Υt−1k̄t
Υtz∗t

+ ψl,tw̃t

= ψk,t
rkt utk̄t
Υµz∗,t

+ ψl,tw̃t. (2.41)

B.1.4 Entrepreneurs

cutoff equation we obtain:

(16)
qtk̄t+1

nt+1

1 +Rk
t+1

1 +Rt

[Γt(ω̄t+1)− µGt(ω̄t+1)]− qtk̄t+1

nt+1

+ 1 = 0, (2.42)

which must hold in each realized t+ 1 state of nature. Here,

share of entrepreneurial earnings, (1+Rkt+1)qtk̄t+1, received by bank︷ ︸︸ ︷
Γt(ω̄t+1) ≡ ω̄t+1 [1− Ft(ω̄t+1)] +Gt(ω̄t+1)(2.43)

Gt(ω̄t+1) ≡
∫ ω̄t+1

0

ωdFt(ω).

Substituting out for ηt+1 from the second first order condition into the first, we obtain:

(17)Et

{
[1− Γt(ω̄t+1)]

1 +Rk
t+1

1 +Rt

+
Γ′t(ω̄t+1)

Γ′t(ω̄t+1)− µG′t(ω̄t+1)

[
1 +Rk

t+1

1 +Rt

(Γt(ω̄t+1)− µGt(ω̄t+1))− 1

]}
= 0,

(2.44)

where Γ′t(ω̄t+1) = 1−Ft(ω̄t+1). In principle these equations should have been derived separately

for entrepreneurs with each different level of possible net worth. It is clear from the first

order conditions that had we done so, each one’s standard debt contract would have been

characterized by the same %t, {ω̄t+1} .

We now derive the law of motion of net worth. After the loan contract received in t− 1 is

settled, but before it is known which entrepreneur exits and which stays, the (scaled by Ptz∗t )

net worth in period t of entrepreneurs is

Vt =

share of entrepreneurial earnings received by entrepreneurs︷ ︸︸ ︷
[1− Γt−1(ω̄t)] ×Rk

t

qt−1

πtµ∗z,t
k̄t,

where the appearance of πtµ∗z,t in the denominator reflects that qt−1k̄t has been scaled by
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Pt−1z
∗
t−1. The above expression can be written

Vt =

=1−Γt−1(ω̄t)︷ ︸︸ ︷{
1− ω̄t [1− Ft−1(ω̄t)]−

∫ ω̄t

0

ωdFt−1(ω)

}
Rk
t

qt−1

πtµ∗z,t
k̄t

=
(
1 +Rk

t

) qt−1

πtµ∗z,tΥ
k̄t −

earnings of banks, which must equal Bt(1+Rt−1)=(1+Rt−1)(qt−1k̄t−nt)︷ ︸︸ ︷(
ω̄t [1− Ft−1(ω̄t)] + (1− µ)

∫ ω̄t

0

ωdFt−1(ω)

)
Rk
t

qt−1

πtµ∗z,tΥ
k̄t

−µ
∫ ω̄t

0

ωdFt−1(ω)Rk
t

qt−1

πtµ∗z,tΥ
k̄t

=

[
1 +Rk

t − (1 +Rt−1)− µ
∫ ω̄t

0

ωdFt−1(ω)
(
1 +Rk

t

)] qt−1

πtµ∗z,t
k̄t +

1 +Rt−1

πtµ∗z,t
nt.

At this point, γt entrepreneurs exit and are replaced by γt new arrivals. Both surviving

entrepreneurs and new arrivals receive a lump sum transfer in the amount, we. Thus, nt+1 =

γtVt + we, or,

nt+1 =
γt

πtµ∗z,t

{
Rk
t −Rt−1 − µ

∫ ω̄t

0

ωdFt−1(ω)
(
1 +Rk

t

)}
k̄tqt−1 + we + γt

(
1 +Rt−1

πtµ∗z,t

)
nt.

(2.45)

The resource constraint becomes:

dt + ct + gt +
it
µΥ,t

+ Θ
1− γt
γt

[nt+1 − we] + τ ota(ut)
k̄t

Υµ∗z,t
(2.46)

= yz,t

Here, [nt+1 − we] /γt denotes the assets of entrepreneurs before they have received their real

transfer, we, and before it is determined which is selected to exit. The assets of the fraction

of entrepreneurs that exit is (1− γt) times this amount, and they consume Θ of their assets,

with the other 1− Θ being transferred to households. Also, dt denotes the resources used up

in monitoring:

dt =
µG(ω̄t)

(
1 +Rk

t

)
qt−1k̄t

πtµ∗z,t
. (2.47)

In the modified economy, entrepreneurs rather than households accumulate capital. This means

that the household intertemporal equation, (2.38), (i.e., (12)) must be deleted. So, we have

added three new equations, (2.44), (2.13) and (2.45) and deleted one. The net increase in the

number of equations is two. We increase the number of endogenous variables by two: ω̄t+1 and

nt+1 (the first variable is a function of the period t + 1 state of nature, while the second is a
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function of the period t state of nature).

B.1.5 Social Welfare Function

We now turn to developing an expression for the representative household’s utility function

Utilt = ζc,t log(z+
t ct − bz+

t−1ct−1)− ψL
∫ 1

0

h1+σL
it

1 + σL
di

= ζc,t

{
log

[
z+
t (ct − b

z+
t−1

z+
t

ct−1)

]
− ψL

∫ 1

0

h1+σL
it

1 + σL
di

}
= ζc,t

{
log(ct −

b

µ∗z,t
ct−1)− ψL

1 + σL

∫ 1

0

h1+σL
it di

}
,

apart from a constant term. Using (2.30):

ψL
1 + σL

∫ 1

0

h1+σL
it di =

ψL
1 + σL

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)

,

so that

Utilt = ζc,t

log(ct −
b

µ∗z,t
ct−1)− ψL

1 + σL

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)
 ,

where ẅt is defined in (2.29) and w∗t is defined in (8). Both these variables are unity in steady

state.

C Appendix C: Steady State

Here, we discuss an algorithm for computing the steady state of the model. In our analysis,

we distinguish between steady state inflation, π, and the quantity appearing in the price and

wage updating equations, π̄. Equation (2.22) in steady state, is:

p∗ =


(
1− ξp

)(1−ξp( π̃π )
1

1−λf

1−ξp

)λf

1− ξp
(
π̃
π

) λf
1−λf



1−λf
λf

.

Note that, if π = π̄ then p∗ = 1. Equation (2.23):

Fp =

λz (p∗)
λf
λf−1

[(
k

µ∗zΥ

)α (
(w∗)

λw
λw−1 h

)1−α
− φ
]

1−
(
π̃
π

) 1
1−λf βξp

,

12



assuming (
π̃

π

) 1
1−λf

βξp < 1.

Equation (2.24) in steady state is:

Fp =

λzλf (p∗)
λf
λf−1

[(
k
µz

)α (
(w∗)

λw
λw−1 h

)1−α
− φ
]
s[

1−ξp( π̃π )
1

1−λf

1−ξp

]1−λf [
1− βξp

(
π̃
π

) λf
1−λf

]

Equating the preceding two equations:

s =
1

λf

[
1−ξp( π̃π )

1
1−λf

1−ξp

]1−λf [
1− βξp

(
π̃
π

) λf
1−λf

]
1−

(
π̃
π

) 1
1−λf βξp

. (3.48)

In the case, π = π̄, s = 1/λf . Equation (2.31) in steady state is:

Fw =
λz

(w∗)
λw
λw−1 h(1−τ l)

λw

1− βξwπ̃
1

1−λw
w

( 1
π )

λw
1−λw

π

,

as long as the condition,

βξwπ̃
1

1−λw
w

(
1
π

) λw
1−λw

π
< 1,

is satisfied. Also

π̃w = (π)ιw,2 π̄1−ιw,2 .

The expression for Fw is:

Fw =

[
(w∗)

λw
λw−1 h

]1+σL

1
ψL

[
1−ξw( π̃wπ )

1
1−λw

1−ξw

]1−λw(1+σL)

w̃
[
1− βξw

(
π̃w
π

) λw
1−λw (1+σL)

] ,

as long as

βξw

(
π̃w
π

) λw
1−λw (1+σL)

< 1.

Equating the two expressions for Fw, we obtain:

w̃ = Wλw
ψLh

σL

(1− τ l)λz
, (3.49)
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where

W = (w∗)
λw
λw−1

σL

1− ξw
(
π̃w
π

) 1
1−λw

1− ξw

λw(1+σL)−1

1− βξw
(
π̃w
π

) 1
1−λw

1− βξw
(
π̃w
π

) λw
1−λw (1+σL)

. (3.50)

In steady state:

w∗ =


(1− ξw)

(
1−ξw( π̃wπ )

1
1−λw

1−ξw

)λw

1− ξw
(
π̃w
π

) λw
1−λw



1−λw
λw

(3.51)

According to the wage equation, the wage is a markup, Wλw, over the household’s marginal

cost. Note that the magnitude of the markup depends on the degree of wage distortions in the

steady state. These will be important to the extent that π̃w 6= πw.

The marginal cost equation, (2.32) implies:

rk =
αε

[1 + ψkR]

(
Υµ∗zL (w∗)

λw
λw−1

k̄

)1−α

s, (3.52)

where w∗ is determined by (3.51). In steady state, the capital accumulation equation, (2.35),

is

k̄

[
1− 1− δ

µ∗zΥ

]
= i.

In steady state, the equation for the nominal rate of interest, (2.36), reduces to:

1 +R =
πµ∗z
β
. (3.53)

In steady state, the marginal utility of consumption, (2.37), is

λz =
1

(1 + τC)c

µ∗z − bβ
µ∗z − b

. (3.54)

Finally, the euler equation for investment, (2.39), reduces to

q = 1.

We proceed as follows. First, fix the nominal rate of interest according to (3.53). Now, fix

14



a value for rk. Solve (3.52) for

(1)
h

k̄
=

(w∗)
λw

1−λw

Υµ∗z

(
[1 + ψkR] rk

sαε

) 1
1−α

, (3.55)

where s is determined by (3.48). Then,

(2)Rk =
(1− τ k)rk + 1− δ

Υ
π + τ kδ − 1. (3.56)

Then, solve

(3) [1− Γ(ω̄)]
1 +Rk

1 +R
+

Γ′(ω̄)

Γ′(ω̄)− µG′(ω̄)

[
1 +Rk

1 +R
(Γ(ω̄)− µG(ω̄))− 1

]
= 0. (3.57)

for ω̄. When we estimate the model, for each ω̄, we impose that F (ω̄) is equal to a specified

calibrated value. Since F is cdf of the log normal distribution, with Eω = 1, then F has one

free parameter, a variance. For each ω̄, this variance is computed to ensure that F (ω̄) is the

value required. When we compute the Ramsey equilibrium, then we take the variance of the

model in the posterior mode as fixed. To evaluate (3.57) it is useful to have a formula:

G(ω̄) =

∫ ω̄

0

ωdF (ω).

Making the following change of variables: ω = ex, dω = exdx, x = logω, dx = dω/ω, we

obtain: ∫ ω̄

0

ωdF (ω) =

∫ log ω̄

−∞
exf (x) dx.

Here, x = log (ω) and f is the Normal density function. Writing this explicitly:

∫ ω̄

0

ωdF (ω) =

∫ log ω̄

−∞
exf (x) dx

=
1

σx
√

2π

∫ log ω̄

−∞
ex exp

−(x−Ex)2

2σ2
x dx,

where σ2
x is the variance of x. Now, Eω = 1 implies Ex = − (1/2)σ2

x, so that

∫ ω̄

0

ωdF (ω) =
1

σx
√

2π

∫ log ω̄

−∞
ex exp

−(x+ 1
2σ

2
x)

2

2σ2
x dx

=
1

σx
√

2π

∫ log ω̄t

−∞
exp

x2σ2
x−(x+ 1

2σ
2
x)

2

2σ2
x dx

=
1

σx
√

2π

∫ log ω̄t

−∞
exp

−(x− 1
2σ

2
x)

2

2σ2
x dx.

15



Now, make the change of variable,

v =
x− 1

2
σ2
x

σx
=
x+ 1

2
σ2
x

σx
− σx

v̄ =
log (ω̄) + 1

2
σ2
x

σx
− σx

dv =
1

σx
dx

so that

∫ ω̄

0

ωdF (ω) =
1

σx
√

2π

∫ log(ω̄)+ 1
2σ

2
x

σx
−σx

−∞
exp

−v2

2 σxdv

=
1√
2π

∫ log(ω̄)+ 1
2σ

2
x

σx
−σx

−∞
exp

−v2

2 dv

= prob

[
x <

log (ω̄) + 1
2
σ2
x

σx
− σx

]
.

where

Eω = Eex = e[Ex+ 1
2
σ2
x] = 1

Ex = −1

2
σ2
x.

Next, find n/k which solves (2.13):

(4)
n

k̄
= 1− 1 +Rk

1 +R
[Γ(ω̄)− µG(ω̄)] (3.58)

In steady state, (2.45) is

n =
γ

πµ∗z

{
Rk −R− µ

∫ ω̄

0

ωdF (ω)
(
1 +Rk

)}( k̄
n

)
n+ we + γ

(
1 +R

πµ∗z

)
n,

so that

(5)n =
we

1− γ
πµ∗z
{Rk −R− µG (ω̄) (1 +Rk)}

(
k̄
n

)
− γ

(
1+R
πµ∗z

) , (3.59)

k̄ =

(
k̄

n

)
n

h =

(
h

k̄

)
k̄

(6)i =

[
1− (1− δ) 1

µ∗zΥ

]
k̄, (3.60)
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where G (ω̄) is obtained from (2.19).

We now need to solve the resource constraint for consumption. But, first we require φ.

Normally, this parameter is set so that steady state profits of the intermediate good producer

are zero. However, those profits are not constant in the version of the model in which prices

are distorted along a steady state growth path. Instead, we choose φ so that profits are zero

in the version of the model in which there are no distortions in the steady state. We suppose

that this way of setting φ or other ways will make little difference. Thus, we compute φ to

guarantee that firm profits are zero in a steady state where π = π̄. Let h and k̄ denote hours

worked and capital in such a steady state. Also, let F denote gross output of the final good in

that steady state. Write sales of final good firm as F − φ. Real marginal cost in this steady

state is s = 1/λf . Since this is a constant, the total costs of the firm are sF. Zero profits

requires sF = F − φ. Thus, φ = (1− s)F = F (1− 1/λf ), or,

(7)φ =

(
k̄

µ∗zΥ

)α
(h)1−α

(
1− 1

λf

)
. (3.61)

Solve the steady state version of the resource constraint, (2.46), for c :

(8)d+ c+ g +
i

µΥ

+ Θ
1− γ
γ

[n− we] = (p∗)
λf
λf−1

(
k̄

µ∗zΥ

)α [
(w∗)

λw
λw−1 h

]1−α
− φ, (3.62)

where d is determined by the steady state version of (2.47). Compute the steady state real

wage using (2.32):

(9)w̃ = s (1− α)

[
Υµz∗ (w∗)

λw
λw−1 h

k̄

]−α
. (3.63)

Then, solve the labor supply equation, (3.49), for h :

(10)h =

[(
1− τ l

)
λz

WλwψL
w̃

] 1
σL

, (3.64)

where λz is obtained using (3.54) and W is obtained from (3.50). These calculations began

by fixing a value for rk. Adjust rk until the value of h obtained from (3.64) coincides with the

value implied by multiplying h/k̄ in (3.55) by k̄.

It is of interest to understand what happens when µ = 0. In this case, (3.57) implies

R = Rk. So, one chooses rk so that R =
[
rk + (1− δ)

]
π − 1. Then, (3.55) implies a value for

h/k. From (3.64),

n =
we

1− γ
β

.
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In the case, π̄ = π, µ = 0 implies:

c+ I + Θ
1− γ
γ

[n− we] =

(
k

µ∗z

)α
h1−α −

(
k

µ∗z

)α
h1−α

(
1− 1

λf

)
=

1

λf

(
1

µ∗z

)α(
h

k

)1−α

k,

or,
c

k
+
[
1− (1− δ)µ−1

z

]
+ Θ

1− γ
γ

[n− we]
k

=
1

λf

(
1

µ∗z

)α(
h

k

)1−α

The labor-leisure choice implies:

c =

µz−bβ
µz−b

WλwψL
w̃h−σL ,

where w̃ can be computed from (3.63) and W = 1 according to (3.50). Substituting this into

the resource constraint, we obtain:

µz−bβ
µz−b

WλwψL
w̃

1

h1+σL
+ Θ

(1− γ)we

β − γ
1

h
=

1
λf

(
1
µz

)α (
h
k

)1−α −
(

1− 1−δ
µz

)
h
k

,

which is a single equation in one unknown, h. Note that the right side must be positive for

consumption to be positive. Also, the left side goes from 0 to∞ as h goes from∞ to 0. Thus,

there is a unique solution, as long as the model implies positive steady state consumption.

Once this is solved for h, then we have k. Then, given k we can compute ω̄ from (3.58):

n

k
= 1− Γ(ω̄)

Γ(ω̄) = 1− n

k

This gives the same solution as the model without financial frictions, except for the fact that

entrepreneurs consume resources.

D Appendix D: Comparative Static Analysis of the Equi-

librium Loan Contract

Our key empirical finding is that shocks to risk, σ, can account for a large portion of business

cycle fluctuations. To better understand the impact of the risk shock in general equilibrium,

we perform several comparative static exercises with the standard debt contract. We do all

our exercises in partial equilibrium, treating variables treated as given in the market for debt
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contracts as exogenous. Thus, we consider the effects of a change in σ holding the risk free rate

of interest and the aggregate return on capital fixed. In order to gain insight into the general

equilibrium effects of σ, we also do a comparative exercise in which we perturb the premium

on the return on capital over the risk free rate.

Also, motivated by analyses of the 2008 crisis, we also consider a shock to net worth in the

form of a perturbation to γ.50 One of our empirical findings is that, from the perspective of

our model, such a shock is an unlikely candidate as business cycle shock because it implies,

counterfactually, that credit is countercyclical. Comparative static exercises are designed in

order to build intuition into this result. Our results are summarized in the two comparative

statics exercises summarized in Figures 1a and 1b.

To simplify notation and because we are concerned with only one period of time, we delete

time subscripts. We highlight a partial equilibrium and a general equilibrium effect on the loan

contract of an increase in σ. The former effect refers to what happens to the loan contract,

holding fixed the key market variable, Rk/R, taken as given by participants in the market

for entrepreneurial credit. Recall, Rk is the across-entrepreneur average return on capital and

R is the interest rate on the mutual funds’source of funds. The general equilibrium effect

refers to the additional changes to the loan contract that occur when Rk/R also adjusts in

response to a change in risk. The general equilibrium effects of a change in risk are important

for understanding our empirical results.

Entrepreneurs have access to a constant returns to scale project with return, Rkω, where Rk

is common knowledge and ω has a log-normal distribution with Eω = 1 and logω has standard

deviation, σ. Denote the total assets acquired by entrepreneurs by A = N +B, where B is the

size of the loans received from mutual funds. Denote leverage by L = A/N. We characterize

the standard debt contract received by entrepreneurs in terms of a value for L and a interest

rate spread, Z/R, where Z is the interest rate on the entrepreneurial loan. As in (2.11),

ω̄ =
Z

R

R

Rk

L− 1

L
, (4.65)

represents the value of ω that separates bankrupt and non-bankrupt entrepreneurs. The ob-

jective of entrepreneurs is proportional to:

[1− Γ (ω̄)]L. (4.66)

50See Christiano and Ikeda (2012) and the references they cite for analyses of net worth shocks.
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The menu of standard debt contracts available to entrepreneurs is given by:

L =
1

1− [Γ (ω̄)− µG (ω̄)] R
k

R

. (4.67)

In our numerical example, we use the steady state values of the variables used in our

empirical analysis:

µ = 0.21,
Rk

R
= 1.0073, σ = 0.26.

Our partial equilibrium experiment increases σ by 5 percent and holds Rk/R fixed. The

equilibria corresponding to the two values of σ are exhibited in Figure 1a, which displays

the interest rate spread, Z/R, on the vertical axis and leverage, L, on the horizontal. The

graphs of (4.67) corresponding to the two values of σ are indicated in the figure. Both are

upward-sloping, so that an entrepreneur can obtain a loan contract with higher leverage but

this requires paying a higher interest rate spread. This is because, with higher leverage the

entrepreneur imposes a greater cost on its mutual fund in the event of default. In both cases,

the menu of contracts implied by (4.67) is bowed towards the southeast.51

Expression (4.66) can be used to construct an indifference map for entrepreneurs, though

we only display the indifference curves that are tangent to the relevant menu of contracts.

Indifference curves have a positive slope. This is because, holding the interest rate fixed, (4.66)

is increasing in L and holding L fixed (4.66) is decreasing in Z/R.52 The indifference curves

are bowed towards the northwest and entrepreneurial utility is decreasing in that direction.

The equilibrium loan contract occurs at a point of tangency of the entrepreneur’s indifference

curve and the menu of contracts.

The equilibrium for the lower of the two values of σ is associated with a level of leverage,

L = 2.02, and an interest rate spread of 0.616 in annual, percent terms. With the jump in σ,

the indifference curves change shape and the menu of contracts shifts. Not surprisingly, the

menu shifts up. That is, entrepreneurs may still obtain the same leverage as before the rise

in σ, but in this case they must pay a higher interest rate spread. The higher interest rate

spread is required because the rise in σ increases the probability of default, and so raises the

cost of lending to banks. If they chose to do so, entrepreneurs could even select a higher level

51For a thorough discussion of the menu of contracts, see
http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html
52Expression (4.66) may not be increasing in L for small values of L. This is because an increase in L has

two countervailing effects on entrepreneurial utility. For each fixed and finite value of ω̄ fixed, (4.66) indicates
that utility is strictly increasing in L (it is easy to show that 0 < Γ < 1 when F (ω̄) < 1 for each finite ω̄, an
assumption that is satisfied when F corresponds to the log-normal distribution). At the same time, an increase
in L leads to a rise in ω̄ and this makes 1−Γ fall, as the probability that the entrepreneur makes positive profits
falls. This latter effect vanishes for suffi ciently large L because in that case ω̄ ceases to vary with L.For additional
discussion, see http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html
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of leverage in response to the increase in σ. As it happens, the new point of tangency involves

a 3 percent jump in the interest rate premium, to 0.635 percent, and a slightly larger percent

drop in leverage, to 1.95.

In the general equilibrium of our model, there is another effect associated with a temporary

increase in risk. The fall in credit associated with the reduction in leverage leads to a reduction

in entrepreneurial purchases of physical capital. This in turn leads to a fall in the production

of capital by households which results in a fall in its price, QK̄ . The anticipated capital gains

associated with the expectation that the effects on QK̄ will be undone raises Rk. Figure 1b

shows the impact of an increase in Rk/R by 1 percent. This corresponds roughly to a 1

percentage point increase in in the net return, Rk − 1, expressed in the time units of the

model (i.e., one quarter). Given the large rise in the return on capital it is not surprising that

the equilibrium involves a substantial increase in leverage. Thus, we can expect this general

equilibrium effect to mute the negative impact on leverage of a jump in σ. In our numerical

experiments, we have never found examples where this general equilibrium effect on leverage

was actually larger than the partial equilibrium effect.53

We did find that general equilbrium effects tend to dominate partial equilibrium effects in

the case of shocks to equity. Thus, suppose there is a drop in γ, captured in our numerical

example by a drop in N. The impact on leverage in partial equilbirium is nil, since N does

not separately enter the analysis. Thus, the partial equilibrium impact of a drop in N is

an equiproportionate cut in credit, i.e., B. In general equilibrium the consequent drop in

A = N + B produces a drop in QK̄ and a rise in Rk as discussed above. This in turn leads

to a rise in B, as indicated in Figure 1b. We found that there is a tendency for the general

equilibrium rise in B to dominate the partial equilibrium fall in B. That is, in numerical

simulations of our dynamic model, a drop in γ tends to produce a rise in B. Because this rise

in B in practice is smaller than the initial drop in N, N +B still drops when both partial and

general equilibrum effects are accounted for.

E Appendix E: The Fisherian Debt-Deflation Hypothe-

sis

We wish to diagnose the role of the assumption that payments to households are non-state

contingent in nominal terms. We do this by exploring the BGG version of the model in which

53We suspect such an example may be impossible. If the general equilibrium effect dominated, then credit
flows would increase after a positive shock to σ, and these would give rise to a fall in Rk, contradicting the rise
needed to get the general equilibrium effect to be operative in the first place.
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the payment on households’bank deposits is non-state contingent in real terms. Thus, suppose

that instead of earning gross nominal return, 1 + Rt, from t to t + 1 households instead earn

gross nominal return,

Ftπt+1,

from t to t+ 1. Here, Ft denotes the real return from t to t+ 1, which is non-state contingent

in real terms. With two exceptions, we substitute 1 + Rt with Ftπt+1 everywhere. The two

exceptions are the Taylor rule, where we continue to assume a non-state contingent nominal

rate of interest is ‘controlled’. To ensure that that rate of interest is well defined, we keep

equation (10). We add an equation for household deposits:

(10)′Et{β
1

µz
λz,t+1Ft − λz,t} = 0.

We must change the relevant equations associated with the entrepreneur. The zero profit

condition becomes:

(16)′ Γt−1(ω̄t)− µGt−1(ω̄t) =
Ft−1πt
1 +Rk

t

(
1− nt

qt−1kt

)
.

The optimality condition becomes:

(17)′Et

{
[1− Γt(ω̄t+1)]

1 +Rk
t+1

Ftπt+1

+
Γ′t(ω̄t+1)

Γ′t(ω̄t+1)− µG′t(ω̄t+1)

[
1 +Rk

t+1

Ftπt+1

(Γt(ω̄t+1)− µGt(ω̄t+1))− 1

]}
= 0

and the law of motion of net worth becomes:

(18)′nt+1 =
γt
πtµ∗z

{
1 +Rk

t − Ft−1πt − µ
∫ ω̄t

0

ωdFt−1(ω)
(
1 +Rk

t

)}
ktqt−1 + we + γt

Ft−1

µz
nt

F Appendix F: Laplace-type Approximation for Bimodal

Posterior Distribution

When we estimate our model on the standard data set, we find two isolated local modes for the

posterior distribution. The difference of the log posterior distribution, L, is only about 4 points

across these two modes. The local curvature about the two modes makes locally computed

probability intervals seem narrow, yet the properties of the model differs sharply across the

two modes. In this sense, correctly computed probability intervals encompass sharply different

behavior and are not convex sets. In this appendix, we describe a Laplace approximation

procedure computing the posterior distribution under circumstances when the posterior dis-
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tribution is bimodal. We use it, among other things, to create a visual representation of the

posterior distribution in terms of the model property of interest. In particular, at one mode

the fraction of variance in output due to the risk shock is high and the fraction due to the

marginal effi ciency of investment is low. The reverse is true at the other mode. The procedure

developed here approximates the posterior distribution of the fraction of variance due to risk

under these circumstances. When represented visually in a diagram with the fraction of vari-

ance in output due to risk on the horizontal axis and the associated posterior density on the

vertical axis, we obtain the following. The density has two humps, one above a high value for

the fraction of variance and the other over a low value of that fraction. One of the humps is

slightly higher than the other one. The local curvature at each hump greatly exagerates the

precision, according to the posterior distribution, assigned to that value of the fraction. The

small difference in the height of the posteriors over the two humps provides a correct assessment

of the precision with which the two fraction of variances are differentiated according to the

posterior distribution. In the end, our efforts to construct an interesting bimodal distribution

came to naught. Still, we leave this appendix here with an idea of possibly picking this up

again in the future.

Our approximation of the posterior distribution is that it is a mixture of two normals, with

mixture probability, p. The approximation is valid as long as the posterior probability of each

mode is nearly zero under the local approximation about the other mode. We develop this

approximation for two reasons. First, the exact procedure based on the MCMC algorithm is

impractical, because of the great amount of computer time it would require. Second, we wish

to develop an alternative measure of the distance between two posterior modes that is not

based on the posterior odds computed by exponentiating L. In practice, one often has to give

an interpretation to differences in the log criterion on the order of 4 or 10. Such differences

seem small and yet the posterior odds at these points are, exp(4) and exp(10), respectively.

This gives rise to enormous posterior odds, which seem to overstate the significance of such

small differences in the log criterion. We propose, as an alternative to the posterior odds, the

mixture probability parameter, p.

Our approximation procedure simply requires the hessians at the two modes, in addition

to L. With our mixture of normals approximation of the posterior, we can draw the model

parameters, θ, many (say, N) times, θ1, ..., θN . For any statistic of interest, s (θ) , we then

obtain the posterior distribution for that statistic from s (θ1) , ..., s (θN) .

Consider first the standard Laplace approximation to a unimodal distribution. Let f (θ)

denote the product of the likelihood and the prior, so that f (θ) is proportional to the posterior
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distribution, where the factor of proportionality is independent of θ. Let g (θ) ≡ log f (θ).

Define

gθθ = −∂
2g (θ)

∂θ∂θ′
|θ=θ∗ ,

where θ∗ is the mode. The second order Taylor series expansion of g about θ = θ∗ is:

g (θ) = g (θ∗)− 1

2
(θ − θ∗)′ gθθ (θ − θ∗) ,

where the slope term is zero because of our assumption θ∗ is a local maximum of g. Then,

f (θ) ≈ f (θ∗) exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
.

Note that
1

(2π)
n
2

|gθθ|
1
2 exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
is a multivariate normal distribution, so that

∫
1

(2π)
n
2

|gθθ|
1
2 exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
dθ = 1.

Bringing together the previous results, we obtain:

∫
f (θ) dθ

≈
∫
f (θ∗) exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
dθ

=
f (θ∗)

1

(2π)
n
2
|gθθ|

1
2

∫
1

(2π)
n
2

|gθθ|
1
2 exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
dθ

=
f (θ∗)

1

(2π)
n
2
|gθθ|

1
2

,

by the integral property of the normal distribution. Thus, the posterior distribution is, ap-

proximately,

f (θ)
f(θ∗)

1

(2π)
n
2
|gθθ|

1
2

≈
f (θ∗) exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
f(θ∗)

1

(2π)
n
2
|gθθ|

1
2

=
1

(2π)
n
2

|gθθ|
1
2 exp

[
−1

2
(θ − θ∗)′ gθθ (θ − θ∗)

]
.

This covers the unimodal case.

Suppose now that we have two local maxima of g : θ∗1 and θ
∗
2. Denote the analogs of gθθ by
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g1
θθ and g

2
θθ. Suppose we approximate the posterior distribution by a mixture of normals:

F (θ) = p
1

(2π)
n
2

∣∣g1
θθ

∣∣ 1
2 exp

[
−1

2
(θ − θ∗1)′ g1

θθ (θ − θ∗1)

]
+ (1− p) 1

(2π)
n
2

∣∣g2
θθ

∣∣ 1
2 exp

[
−1

2
(θ − θ∗2)′ g2

θθ (θ − θ∗2)

]
= p exp [G1 (θ)] + (1− p) exp [G2 (θ)] ,

where 0 ≤ p ≤ 1 and G1 (θ) is the second order approximation of g (θ) about θ = θ∗i :

Gi (θ) = −n
2

log (2π) +
1

2
log
∣∣giθθ∣∣− 1

2
(θ − θ∗i )

′ giθθ (θ − θ∗i ) , (6.68)

for i = 1, 2. Note that

G′i (θ
∗
i ) = 0︸︷︷︸

N×1

, G′′i (θ) = giθθ︸︷︷︸
N×N

.

Let F (θ) denote logF (θ) . Then,

F ′ (θ) =
1

F (θ)
{p exp [G1 (θ)]G′1 (θ) + (1− p) exp [G2 (θ)]G′2 (θ)}

F ′′ (θ) = − 1

F (θ)
g′ (θ)

{
p exp [G1 (θ)] [G′1 (θ)]

T
+ (1− p) exp [G2 (θ)] [G′2 (θ)]

T
}

+
1

F (θ)
{p exp [G1 (θ)]G′′1 (θ) + (1− p) exp [G2 (θ)]G′′2 (θ)}

Evaluate the latter at θ∗1 :

F ′′ (θ∗1) = − 1

F (θ∗1)
F ′ (θ∗1)

p exp [G1 (θ∗1)]

=0︷ ︸︸ ︷
[G′1 (θ∗1)]

T
+ (1− p)

'0︷ ︸︸ ︷
exp [G2 (θ∗1)] [G′2 (θ∗1)]

T


+

1

F (θ∗1)
{p exp [G1 (θ∗1)]G′′1 (θ∗1) + (1− p)

'0︷ ︸︸ ︷
exp [G2 (θ∗1)]G′′2 (θ∗1)},

where the terms with ' 0 reflect our assumption that θ∗1 is very unlikely under the Laplace

approximation about θ∗2 similarly for θ
∗
2 :

exp [G2 (θ∗1)] ' 0, exp [G1 (θ∗2)] ' 0. (6.69)
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Then,

F ′′ (θ∗1) =
1

F (θ∗1)
p exp [G1 (θ∗1)] g1

θθ

=
p exp [G1 (θ∗1)] g1

θθ

p exp [G1 (θ∗1)] + (1− p) exp [G2 (θ∗1)]

=
p exp [G1 (θ∗1)] g1

θθ

p exp [G1 (θ∗1)]
= g1

θθ.

Thus, under (6.69), the curvature of our mixted Normal approximation about θ = θ∗1 coincides

with the curvature of the actual posterior distribution. This is a basic requirement of consis-

tency. Of course, in practice it is necessary to verify (6.69). We have an analogous result for

F ′′ (θ∗2) .

It remains to compute p, the Normal mixture probability. We obtain this as follows. Let

L denote the difference in the log posterior between the two modes. Thus,

L = g (θ∗1)− g (θ∗2) > 0,

so that θ∗1 is the global maximum of g.We can use L to pin down the value of p in the mixture

distribution. According to our mixture approximation to the posterior distribution,

L = log
p exp [G1 (θ∗1)] + (1− p) exp [G2 (θ∗1)]

p exp [G1 (θ∗2)] + (1− p) exp [G2 (θ∗2)]

= log
p exp [G1 (θ∗1)]

(1− p) exp [G2 (θ∗2)]

= log
p

(1− p) +G1 (θ∗1)−G2 (θ∗2)

= log
p

1− p +
1

2
log
|g1
θθ|
|g2
θθ|
.

The second equality reflects the assumption, (6.69), that under the local approximation, the

alternative mode is highly improbable. The fourth equality uses (6.68). Thus,

p

1− p = exp

[
L− 1

2
log
|g1
θθ|
|g2
θθ|

]
= d,

say, which can be used to solve for p :

p =
d

1 + d
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G Appendix G: Cross section standard deviation of re-

turn on equity

The derivations in this appendix appear in Ferreira (2012). They are included here for com-

pleteness. Define the rate of return on equity as the earnings of an entrepreneur, after account-

ing for expenses on debt, divided by his initial level of net worth. Conditional on the time t

realization of shocks, the earnings of an entrepreneur that draws idiosyncratic shock, ω, enjoys

rate of return:

Re
t = max {0, [ω − ω̄t]} ×Rk

tLt−1,

where Lt−1 is leverage. Note that this expression is independent of the entrepreneur’s level

of net worth because ω̄t and Lt−1 are not a function of N. We seek an expression for the

cross-sectional variance of the above expression:

V ar (Re
t ) =

(
Rk
tLt−1

)2
V ar (max {0, [ω − ω̄t]}) .

We can think of two versions of this variance. In one, it is conditional on not being bankrupt,

ω > ω̄t. In the second, it is not conditioned in this way. We begin with the first interpretation.

Note,

Emax {0, [ω − ω̄t]} =

∫ ∞
ω̄t

[ω − ω̄t] dF (ω)

= 1−G (ω̄t)− ω̄t [1− F (ω̄t)]

= 1− Γ (ω̄t)

Then,

V ar (max {0, [ω − ω̄t]}) =

∫ ∞
ω̄t

(ω − ω̄t − Emax {0, [ω − ω̄t]})2 dF (ω)

=

∫ ∞
ω̄t

(ω − ω̄t − [1− Γ (ω̄t)])
2 dF (ω)

=

∫ ∞
ω̄t

(ω − [1 + ω̄t − Γ (ω̄t)])
2 dF (ω)

=

∫ ∞
ω̄t

(
ω2 − 2 [1 + ω̄t − Γ (ω̄t)]ω + [1 + ω̄t − Γ (ω̄t)]

2) dF (ω)

=

∫ ∞
ω̄t

ω2dF (ω)− 2 [1 + ω̄t − Γ (ω̄t)] [1−G (ω̄t)] ...

+ [1 + ω̄t − Γ (ω̄t)]
2 [1− F (ω̄t)] (7.70)
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Then,

V ar (max {0, [ω − ω̄t]}) = [1− F (ω̄t)] {
∫∞
ω̄t
ω2dF (ω)

1− F (ω̄t)
− 2 [1 + ω̄t − Γ (ω̄t)]

[1−G (ω̄t)]

[1− F (ω̄t)]

+ [1 + ω̄t − Γ (ω̄t)]
2}

= [1− F (ω̄t)] {
∫∞
ω̄t
ω2dF (ω)

1− F (ω̄t)
− 2 [1 + ω̄t − Γ (ω̄t)]

[1−G (ω̄t)]

[1− F (ω̄t)]

+ [1 + ω̄t − Γ (ω̄t)]
2 +

(
1−G (ω̄t)

1− F (ω̄t)

)2

−
(

1−G (ω̄t)

1− F (ω̄t)

)2

}

= [1− F (ω̄t)] {
∫∞
ω̄t
ω2dF (ω)

1− F (ω̄t)
−
(

1−G (ω̄t)

1− F (ω̄t)

)2

+

[
1 + ω̄t − Γ (ω̄t)−

1−G (ω̄t)

1− F (ω̄t)

]2

}

= [1− F (ω̄t)]

{
V ar (ω − ω̄t|ω ≥ ω̄t) +

[
1 + ω̄t − Γ (ω̄t)−

1−G (ω̄t)

1− F (ω̄t)

]2
}
,

where the conditional variance is defined next.

Note,

V ar (ω − ω̄t|ω ≥ ω̄t) = V ar (ω|ω ≥ ω̄t) .

Then,

E {[ω − ω̄t] |ω ≥ ω̄t} =

∫ ∞
ω̄t

[ω − ω̄t]
dF (ω)

1− F (ω̄t)

=
1−G (ω̄t)− ω̄t [1− F (ω̄t)]

1− F (ω̄t)

=
1− Γ (ω̄t)

1− F (ω̄t)

E {ω|ω ≥ ω̄t} =

∫ ∞
ω̄t

ω
dF (ω)

1− F (ω̄t)
=

1−G (ω̄t)

1− F (ω̄t)
.

Then,

V ar (ω|ω ≥ ω̄t) =

∫ ∞
ω̄t

(
ω − 1−G (ω̄t)

1− F (ω̄t)

)2
dF (ω)

1− F (ω̄t)

=

∫ ∞
ω̄t

(
ω2 − 2

1−G (ω̄t)

1− F (ω̄t)
ω +

[
1−G (ω̄t)

1− F (ω̄t)

]2
)

dF (ω)

1− F (ω̄t)

=
1

1− F (ω̄t)

∫ ∞
ω̄t

ω2dF (ω)−
(

1−G (ω̄t)

1− F (ω̄t)

)2

,

as we supposed above.
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Note that however, we interpret the variance, we require

∫ ∞
ω̄t

ω2dF (ω) =

∫ ∞
ω̄t

ω2F ′ (ω) dω

=

∫ ∞
ω̄t

ω2

pdf of lognormal︷ ︸︸ ︷
1

ω
√

2πσ2
e−

1
2( logω−µ

σ )
2

dω

Consider the following change of variables:

y =
logω − µ

σ
,

so that

ω = exp {σy + µ}

dω = ωσdy

ȳt =
log ω̄t − µ

σ

Then,

∫ ∞
ω̄t

ω2dF (ω) =
1√

2πσ2

∫ ∞
ω̄t

ωe−
1
2( logω−µ

σ )
2

dω

=
e2µσ√
2πσ2

∫ ∞
ȳt

exp

[
−1

2
y2 + 2σy

]
dy

=
e2µσ√
2πσ2

∫ ∞
ȳt

exp

[
−1

2

(
y2 − 4σy + 4σ2 − 4σ2

)]
dy

=
e2µσ√
2πσ2

∫ ∞
ȳt

exp

[
−1

2
(y − 2σ)2 + 2σ2

]
dy

=
e(2µ+2σ2)σ√

2πσ2

∫ ∞
ȳt

exp

[
−1

2
(y − 2σ)2

]
dy

Now consider a new transformation, x = y − 2σ, so that x̄ = ȳ − 2σ, dx = dy :

∫ ∞
ω̄t

ω2dF (ω) = e(2µ+2σ2) 1√
2π

∫ ∞
x̄t

exp

[
−1

2
x2

]
dx

= e(2µ+2σ2) [1− Φ (x̄t)] ,

where Φ (x̄t) is the cdf of the standard normal distribution. We also have the restriction,

µ = −1
2
σ2, so that ∫ ∞

ω̄t

ω2dF (ω) = eσ
2

[1− Φ (x̄t)] .
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Also,

x̄t = ȳt − 2σ =
log ω̄t + 1

2
σ2

σ
− 2σ

=
log ω̄t
σ
− 3

2
σ

We conclude: ∫ ∞
ω̄t

ω2dF (ω) = eσ
2

[
1− Φ

(
log ω̄t
σ
− 3

2
σ

)]
.

H Appendix H: Priors on Parameters

The priors on the Calvo parameters, ξp and ξw, are assumed to follow a beta distribution

with mean 0.5 and 0.75, respectively, and standard deviation 0.1. They imply that prices and

wages are reoptimized on average once every 2 and 4 quarters, respectively. Our prior for the

frequency of price adjustments is taken from Smets and Wouters (2007), which is larger than

Mark Bils and Peter Klenow (2004) and Mikhail Golosov and Lucas (2007). When Golosov

and Lucas (2007) calibrate their model to the micro data, they select parameters to ensure

that firms re-optimize prices on average once every 1.5 quarters. However, we select a larger

prior than suggested by micro data, on the basis of the large body of evidence based on the

estimation of DSGE models for the US.

The distribution of the priors for the three indexation parameters is beta, with mean 0.5

and standard deviation 0.15, consistent with Smets and Wouters (2007). It encompasses a

wide range of empirical findings in the literature.

Habit persistence in consumption is assumed to follow a beta distribution with mean 0.5

and standard deviation 0.1. The parameter governing capacity utilization has a very loose

prior, following a Normal with mean 1 and standard error 1. The investment adjustment cost

is assumed to be Normal with mean 5 and standard error 3. The mean is consistent with the

value estimated in several empirical studies.

Turning to the parameters governing the financial contract, the probability of default is

assumed to follow a beta distribution with mean 0.007 —which is consistent with the value

suggested in Bernanke, et al (1999) —and standard deviation 0.004. The monitoring cost is

assumed to be a beta distribution with mean 0.275 and standard deviation 0.15. The mean

has been selected with reference to the range of 0.20-0.36 that Carlstrom and Fuerst (1997)

defend as empirically relevant.

The parameters describing the monetary policy rule are centered on the priors used in
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Smets and Wouters (2007). In particular, we assume that the long run reactions on inflation

and on economic activity are Normal with mean 1.5 and 0.25, respectively, and standard error

0.25 and 0.1, respectively. The persistence of the policy rule is determined by the coeffi cient on

the lagged interest rate, which is assumed to be Normal around a mean of 0.75 with a standard

error of 0.1.

The priors on the stochastic processes are taken primarily from Smets and Wouters (2007),

and are harmonized as much as possible. The persistence of the AR(1) processes is beta

distributed with mean 0.5 and standard deviation 0.2.The standard errors of the innovations

are assumed to follow an inverse-gamma distribution with a mean of 0.002 and standard

deviation 0.003, implying a loose prior. The standard error of the monetary policy innovation

follows an inverse-gamma distribution with mean 0.58 and standard deviation 0.8, and it is

selected to be in line with VAR evidence on the size of monetary policy shocks of about 50-60

basis points. The correlation among signals is assumed to be Normal with zero mean and

standard deviation 0.5.
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Figure 1a: Impact on standard debt contract of a 5% jump in 
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Figure 1b: Impact on standard debt contract of a 1% jump in Rk/R
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