Don’t Cross the Line:
Non-linear Effects of Taxation on Growth*

Nir Jaimovich† and Sergio Rebelo‡

June 2012 (preliminary version)

Abstract

We study a model in which the effects of taxation on growth are highly non-linear. Marginal increases in tax rates have a small growth impact when tax rates are low or moderate. When tax rates are high, further tax hikes have a large, negative impact on growth performance. We argue that this non-linearity is consistent with the empirical evidence on the effect of taxation and other disincentives to investment and innovation on economic growth.

Keywords: growth, taxes.

*We thank Gadi Barlevy, Marco Bassetto, and Ben Jones for their comments.
†Duke University and NBER.
‡Northwestern University, NBER, and CEPR.
1. Introduction

The 20th century provided two important observations on the determinants of long-run growth. The first observation is that there is no strong empirical relation between taxation and long-run growth.

Evidence on this issue comes from a variety of sources. Easterly and Rebelo (1993) find no correlation between tax rates and growth rates in a cross-section of countries. Stokey and Rebelo (1993) argue that it is hard to detect a negative growth impact of the large rise in income tax rates implemented in the U.S. after World War II. Their results were anticipated by Harberger (1964), who observed that U.S. growth rates have been invariant to large changes in tax structure. Jones (1995) finds that changes in policy variables tend to be permanent, but growth rates tend to be stationary. His result suggests that permanent changes in policy have no impact on long-run growth rates. Mendoza, Razin, and Tesar (1994) study the effect of taxes on growth using panel data for 18 OECD countries. They find no correlation between tax rates and growth rates. Similarly, Piketty, Saez, and Stantcheva (2011) find no correlation between growth rates and the large changes in marginal income tax rates that have been implemented in OECD countries since 1975.\(^1\)

This body of evidence does not imply that taxes cannot have important level effects or create large deadweight losses. High tax rates might, for example, induce agents to work less, as emphasized by Prescott (2004), or to reallocate effort from market activities towards home production, as emphasized by Sandmo (1990).

\(^1\)Romer and Romer (2010) study the short-run effect of taxes on output using postwar U.S. data. They assume that permanent changes in taxes affect output only over a three-year horizon and have no impact on the long-run growth rate of the economy. They find that a permanent tax increase has a negative short-run impact on output. Romer and Romer (2011) studies U.S. data for the inter-war period. They find that, even though there were large changes in marginal tax rates during this period, these changes had no short-run impact on the performance of the U.S. economy.
What the evidence is inconsistent with, is the implication, shared by many endogenous growth models, that changes in income and investment taxes have a large, permanent impact on the rate of long-run growth.\(^2\) So, are incentives to invest irrelevant for growth?

Our second observation is that countries that drastically reduce private incentives to innovate and invest hurt severely their growth prospects. One salient example is provided by the performance of China between 1949, when communists took over and abolished property rights, and the introduction of reforms by Deng Xiaoping in 1979. Another prominent example is the performance of India under the “permit raj” that lasted from 1947 until the reforms introduced by Rajiv Gandhi and Narasimha Rao in 1984 and 1991, respectively. Interestingly, when these countries gradually restored modest incentives to investment, growth rates increased dramatically.\(^3\) Here, incentives to invest seem to matter for growth!

There are two standard models consistent with our first observation: the neoclassical growth model and the Lucas (1988) model. In both of these models income taxes do not affect the steady-state growth rate. In the neoclassical model, this rate is determined by the pace of exogenous technical progress.\(^4\) In the Lucas (1988) model the engine of growth is the accumulation of human capital. The costs (foregone wages) and benefits (higher future wages) of this accumulation are

\(^2\)See Jones and Manuelli (1990), Barro (1990), Rebelo (1991), and Stokey and Rebelo (1995) for examples.

\(^3\)Ahluwalia (2002) discusses the gradualist approach to reform followed by India. McMillan, Whalley and Zhu (1989) and McMillan and Naughton (1992) discuss the gradual reforms introduced in China and their impact on productivity. In China and India reforms took place in an environment of political and institutional stability. In contrast, countries from the ex-Soviet block generally adopted a big-bang approach to reform that created substantial political and institutional turmoil that was generally associated with poor economic performance. See McMillan and Naughton (1992) for a comparison of the reforms in China and in the ex-soviet block.

\(^4\)In the neoclassical model taxes can affect growth through transition dynamics. However, versions of the neoclassical model in which these dynamics are important tend to imply that the real interest rate takes implausibly high values. See King and Rebelo (1993) for a discussion.
affected by income taxes in the same proportion. As a consequence, the growth rate is independent of the rate of income tax.\(^5\)

These models have, in our view, two problems. First, they imply that long-run growth rates remain constant even when tax rates approach 100 percent. One way to dramatize this implications is to note that these models imply the same long-run growth rate for North and South Korea. Second, these models are inconsistent with the observation that modest improvements in the incentives to invest, in economies with high disincentives to investment, produce large growth effects.

In this paper we propose a simple model that reconciles our two observations. In our model the effects of taxation on growth are highly non-linear. Taxation has a very small impact on long-run growth rates when tax rates are low or moderate. This property can create the impression that tax rates can be raised without affecting long-term economic performance. But, once tax rates and other disincentives to investment exceed a certain threshold, their negative impact on growth becomes very large.

To explain the source of this non-linearity it is useful to describe the structure of our model. We combine the growth model proposed by Romer (1990) with the Lucas (1978) model of occupational choice. As in Romer (1990), growth comes from innovation. As in Lucas (1978), the economy is populated by agents with different ability as entrepreneurs/innovators. These agents decide optimally whether to become workers or innovators. Motivated by the plethora of evidence on the presence of skewness in the distribution of patents, scientific paper citations, income, and profits, we assume that the distribution of ability is highly skewed.

\(^5\)Stokey and Rebelo (1993) and Mendoza, Milesi-Ferretti, and Asea (1997) discuss variants of the Lucas (1988) model which, for certain parameter configurations, produce a small impact of taxes on long-run growth. These variants include models in which labor supply is endogenous and physical capital is an input to human capital accumulation.
Because of this skewness, most of the innovation in our economy stems from a small number of highly-productive innovators. These entrepreneurs are unlikely to be deterred from innovating, even when tax rates are moderately high.

Increases in taxes do affect innovators who are on the margin and can lead to substantial exit from the innovation sector. But, since the marginal innovator is much less productive than the average innovator, this exit has a small impact on the growth performance of the economy. As a result, there is a range of tax rates over which changes in taxes have a small effect on long-run growth. Once taxes and other disincentives to innovation exceed a certain threshold, the entrepreneurs that drive most of the innovation in the economy no longer invest and the growth engine stalls.

In our benchmark model non-linearities become important for relatively high tax rates. In section 4 we explore a model that generates non-linearities for lower levels of taxation. This model allows for the possibility of “brain drain”: agents can migrate to other countries by paying a cost that is independent of their ability. So, when taxes rise, high-ability agents migrate producing a large decline in the growth rate of the economy.

Throughout our analysis we consider models in which agents know their entrepreneurial ability. As a robustness check, we consider, in Section 5, a model in which agents have to become entrepreneurs to learn their entrepreneurial ability. In this model high taxes might have a large impact on growth by deterring agents from trying to become entrepreneurs, and learn their ability. We show that this model also exhibits a non-linear response of growth to taxation. When taxes rates are low, it is optimal for all potential entrepreneurs to try their luck and learn their ability. So, there is a range of tax rates that is associated with the same rate of growth. However, once tax rates exceed a threshold level, taxes have a high impact on long-run growth.
Our paper is organized as follows. In Section 2 we study the impact of taxation on growth in an endogenous growth model in which all agents have the same entrepreneurial ability. In Section 3 we consider a model in which entrepreneurial ability follows a Pareto distribution. We compare the implications of the two models for the effects of taxation in Section 4. In Section 5 we extend our model to incorporate the possibility of “brain drain,” i.e. the migration of high skilled workers in response to high taxes or burdensome regulation. In Section 6 we consider the case of stochastic entrepreneurial activity. We offer some conclusions in Section 7.

2. Model with homogeneous ability

Our starting point is a model where growth is driven by innovation. This innovation expands the variety of goods available as intermediate inputs, as in Romer (1990). Agents decide whether to be workers or entrepreneurs, as in Lucas (1978).

To simplify, we focus our analysis on the effect of the corporate income tax, but our results can be easily extended to the case of a progressive income tax. Throughout, we omit time subscripts whenever this omission results in no loss of clarity.

Final-good producers The final-good producers operate a constant-returns-to-scale production function that combines labor (L) with a continuum of measure n of intermediate goods (x_i):

$$Y = L^\alpha \int_0^n x_i^{1-\alpha} di.$$

The objective of the final-good producer is to maximize after-tax profits, which are given by:

$$\pi_f = \left(L^\alpha \int_0^n x_i^{1-\alpha} di - \int_0^n p_i x_i di - wL \right) (1 - \tau),$$
where \(p_i \) is the price of intermediate good \(i \), \(w \) is the wage rate, and \(\tau \) is the corporate income tax rate. Both \(p_i \) and \(w \) are denominated in units of the final good. The first-order conditions for this problem are:

\[
\begin{align*}
 p_i &= (1 - \alpha)L^\alpha x_i^{-\alpha}, \\
 w &= \alpha L^{\alpha-1} n x^{1-\alpha}.
\end{align*}
\]

(2.1) (2.2)

The value of \(\pi_i^f \) is equal to zero in equilibrium. For convenience, we normalize the number of final-goods producers to one.

Intermediate good producers/innovators Each agent in the economy chooses whether to work in the final-goods sectors or become an innovator. Agents who choose the former, receive the wage rate \(w \). Agents who choose the latter, invent \(\delta n \) new goods and obtain a permanent patent on these inventions.\(^6\) The number of varieties in the economy, \(n \), evolves according to:

\[
\frac{\dot{n}}{n} = \delta (H - L),
\]

(2.3)

where \(H \) is the size of the population.

Each unit of the intermediate good, \(x_i \), requires an input of \(\eta \) units of the final good. The after-tax profit flow generated by each new good, \(\pi_i \), is given by:

\[
\pi_i = (p_i - \eta) x_i (1 - \tau).
\]

(2.4)

Equations (2.1) and (2.4) imply that the optimal price and quantity produced by the innovator are:

\[
\begin{align*}
 p &= \frac{\eta}{1 - \alpha} , \\
 x &= L \left[\frac{(1 - \alpha)^2}{\eta} \right]^{1/\alpha}.
\end{align*}
\]

(2.5)

\(^6\)As is common in this class of models, there is an externality in the sense that, the larger the value of \(n \), the easier it is to invent new goods. This externality is essential to be feasible for the economy to grow at a constant rate.
Since all producers make the same price and quantity decision, we eliminate the subscript i. The maximal after-tax profit per patent is given by:

$$\pi = \alpha (1 - \alpha)(1/\alpha) \eta^{-(1-\alpha)/\alpha} L(1 - \tau).$$ \hspace{1cm} (2.6)

Equations (2.2) and (2.5) imply that the equilibrium wage rate is equal to:

$$w = \alpha n \left[\frac{(1 - \alpha)^2}{\eta} \right]^{(1-\alpha)/\alpha}.$$

This equation implies that the wage rate grows at the same rate as n.\footnote{7}{The structure of the model is such that the wage rate does not depend on L. This property greatly simplifies the derivations that follow.}

For future reference, we note that the ratio of tax revenue to GDP is:

$$\frac{\tau n \tilde{\pi}}{n \tilde{\pi} L} = \frac{\tau}{1 + (1 - \alpha)^{-1}}.
$$

where $\tilde{\pi}$ denotes the pre-tax profits, $\tilde{\pi} = \pi/(1 - \tau)$.

The agent’s problem Agents have identical preferences. The utility of agent i, U_i, is given by:

$$U_i = \int_0^\infty e^{-\rho t} \frac{(C_i^t)^{1-\sigma} - 1}{1 - \sigma},$$

where C_i^t denotes the consumption of agent i. We assume, without loss of generality, that agents own an equal share of the final-goods firm. The budget constraint of agent i is:

$$a_i^t = r_t a_i^t + w_t l_i^t + m_i^t \pi_t + \pi_t^f / H - C_i^t + T_t.$$

where $l_i^t = 1$ if agent i chooses to be a worker in period t and zero, otherwise. The variable a_i^t denotes the agent’s bond holdings. The variable r_t and T_t denote the real interest rate and the flow of lump-sum transfers from the government, respectively.
The variable m_i^t denotes the number of patents owned by agent i at time t. The law of motion for m_i^t is given by:

$$\dot{m}_i^t = \delta n_i (1 - l_i^t).$$

This equation implies that agents who choose to be workers have a constant number of patents in their portfolio. Agents who become innovators see an instantaneous increase in the number of patents they hold.

The non-Ponzi game condition,

$$\lim_{t \to \infty} \int_0^t e^{-\int_0^s r_j \, dj} a_s^i \, ds = 0,$$

completes the description of the problem.

The first-order condition for the consumer problem is:

$$\frac{\dot{C}_i^t}{C_i^t} = r_t - \frac{\rho}{\sigma}. \tag{2.10}$$

Since all agents face the same real interest rate, they choose the same growth rate of consumption. We denote this growth rate by g.

We assume that, at time zero, each of the H agents in the economy has an identical share of the existing patents and zero bond holdings:

$$m_i^0 = \frac{n_0}{H},$$

$$a_i^0 = 0,$$

for all i. As we discuss below, this assumption ensures that the path of consumption is the same for all agents.

Solving the agent’s problem We can solve the agent’s problem in two steps. The first step is to maximize the agent’s wealth. The second step is to choose the optimal consumption path given the maximal level of wealth.
Integrating equation (2.9) we obtain:

\[
\int_0^∞ e^{-∫_0^s r_j ds} \left(w_s l_s^i + m_s^i π_s + π_s^f / H \right) dt = \int_0^∞ e^{-∫_0^s r_j ds} \left(C_s^i \right) dt,
\]

where the right-hand side is the agents wealth and the left-hand side is the present value of consumption.

The wealth maximization problem can be written as:

\[
\max \int_0^∞ e^{-∫_0^s r_j ds} \left(w_s l_s^i + m_s^i π_s + π_s^f / H \right) dt,
\]

subject to:

\[
\dot{m}_t^i = \delta n_t (1 - l_t^i).
\]

The Hamiltonian for this problem is:

\[
\mathcal{H} = \left(w_t l_t^i + m_t^i π_t + π_t^f / H \right) + V_t^i \delta n_t (1 - l_t^i),
\]

where \(V_t^i \) denotes the Lagrange multiplier associated with the law of motion for \(m_t^i \). The first-order condition with respect to \(m_t^i \) is:

\[
\dot{V}_t^i = r_t V_t^i - π_t.
\]

Solving this differential equation we obtain:

\[
V_t = \int_0^∞ π_t e^{-∫_0^s r_j ds} dt,
\]

where we omit the subscript \(i \) because the value of \(V_t \) is identical across agents. Equation (2.12) implies that the value of a patent for a new good is the discounted value of the profit flow.

The first-order condition with respect to \(l_t^i \) is:

\[
\begin{align*}
\delta V_t < w_t, & \quad l_t^i = 1, \\
\delta V_t = w_t, & \quad l_t^i \in \{0, 1\}, \\
\delta V_t > w_t, & \quad l_t^i = 0
\end{align*}
\]

The maximal value of wealth is identical across agents. Since the growth rate of consumption is also identical, all agents have the same consumption path.
Government The government rebates taxes back to the agents in a lump sum manner. Since profits are expressed net of taxes the budget constraint of the government is:

\[
\tau \frac{n_t \pi_t + \pi_t^f}{1 - \tau} = T_t.
\]

Equilibrium conditions Bonds are in zero net supply, so equilibrium in the credit market requires:

\[
\int_0^H a'_i di = 0.
\]

Recall that the path for consumption is the same for all agents. Since workers and entrepreneurs have different income paths, there can be borrowing and lending across agents in equilibrium.

Equilibrium in the goods market implies:

\[
\int_0^H C_i di + \eta m_t x_t = Y_t. \tag{2.14}
\]

Equilibrium in the labor market implies:

\[
\int_0^H l'_i di + \int_0^H (1 - l'_i) di = H.
\]

2.1. The fraction of entrepreneurs in the economy

Using the first-order condition from the household problem we obtain the following condition for the value of \(L\):

\[
\begin{align*}
n \delta V_t &< w_t, & L = H, \\
n \delta V_t & = w_t, & L < H. \tag{2.15}
\end{align*}
\]

When \(n \delta V_t < w_t\), the rewards to innovating are lower than the opportunity cost, so there is no innovation. In this case, all agents work in the production sector, \(L = H\).
When \(n\delta V_t = w_t \), there is an interior solution for the number of agents who decide to innovate \((H - L)\). The value of \(L \) is always strictly positive, otherwise there is no production of final goods and the value of innovating is zero.

To derive the value of \(L \) when the solution is interior, we first note that this economy has no transition dynamics, so the real interest rate and the rate of growth are constant over time (see proof in Appendix). Using this result, we can write equation (2.15) as:

\[
\delta n \frac{\pi}{r} = w. \tag{2.16}
\]

Replacing \(\pi \) and \(w \) using equations (2.6) and (2.7), we obtain:

\[
L = \frac{r}{\delta(1 - \alpha)(1 - \tau)}. \tag{2.17}
\]

To determine the interest rate, \(r \), note that since the real interest rate and the growth rate of the economy are constant, we can use equation (2.10) to write equation (2.17) as:

\[
L = \frac{\sigma g + \rho}{\delta(1 - \alpha)(1 - \tau)}. \tag{2.18}
\]

In a symmetric equilibrium, output is given by:

\[
Y = L^n x^{1-\alpha}. \tag{2.19}
\]

Equation (2.17) implies that \(L \) is constant. Equation (2.5) implies that \(x \) is constant as well. These two properties, together with equation (2.19), imply that output and \(n \) grow at the same rate. Equation (2.14) implies that consumption also grows at rate as \(n \).

Deriving the growth rate of \(n \) From equation (2.3) and the fact that consumption and output grow at the same rate as \(n \), we have:

\[
g = \delta (H - L).\]

11
Combining this result with equation (2.18), we obtain the following expression for the growth rate of the economy:

\[
g = \frac{\delta H(1 - \alpha)(1 - \tau) - \rho}{(1 - \alpha)(1 - \tau) + \sigma}.
\]

(2.20)

Equation (2.20) implies that the measure of agents who work in the final production sector is given by:

\[
L = \frac{\sigma H\delta + \rho}{\delta [(1 - \alpha)(1 - \tau) + \sigma]}.
\]

The impact of taxes

Equation (2.20) implies that, when the solution for \(L\) is interior, the marginal impact of taxes on growth is negative and given by:

\[
\frac{dg}{d\tau} = -\frac{(1 - \alpha)(\rho + \delta H\sigma)}{[(1 - \alpha)(1 - \tau) + \sigma]^2} < 0.
\]

(2.21)

There is a corner solution for \(L (L = H)\) whenever:

\[
\tau \geq 1 - \frac{\rho}{\delta H(1 - \alpha)}.
\]

(2.22)

The growth rate of the economy is zero for values of \(\tau\) that satisfy equation (2.22).

We return to this result in Section 4 when we compare these predictions with those of a model where entrepreneurs have an heterogeneous ability.

3. Model with heterogenous agents

There is a large literature that documents that firm size and executive compensation is skewed to the right and follows approximately a Pareto distribution.\(^8\)

This skewness is also present in variables related to innovation and entrepreneurship. Moskowitz and Vissing-Jørgensen (2002) document the presence of skewness in the returns to entrepreneurial activity. Scherer (1998) and Grabowski (2002) show that a small number of firms account for a disproportionate fraction of the profits from innovation. Harhoff, Scherer, and Vopel (1997), Bertran (2003), Hall, Jaffe, and Trajtenberg (2005), and Silverberg and Verspagen (2007) show that the distribution of patent values and patent citations is highly skewed. Almost half of all patents receive zero or one citation and less than 0.1 percent of total patents receive more than 100 cites.\(^9\)

One important question is: what is the source of skewness in economic performance? Huggett, Ventura and Yaron (2011) and Keane and Wolpin (1997) find that differences in individual ability are a key driver of heterogeneity in economics outcomes. Graham, Li and Qui (2012) find that ability is a key driver of executive compensation. Lotka (1926) and Cox and Chung (1991) show that the distribution of scientific publications per author is skewed. Redner (1998) finds similar results for the distribution of citations to scientific papers.

This body of evidence suggests that there is substantial heterogeneity in ability or productivity. In this sections we incorporate this heterogeneity in the model of Section 2.\(^{10}\)

We assume that ability, \(a\), follows a continuous distribution with cumulative distribution function (cdf), \(\Gamma(a)\). To simplify, we suppose that agents have the same productive as workers but differ in their ability as entrepreneurs. An agent with ability \(a\) can produce \(\delta na\) new goods per period.

\(^9\)These authors also show that citations are a good proxy for the value of a patent. The citation-weighted stocks of patents have a higher correlation with the market value of the patents than the unweighted stock of patents.

\(^{10}\)Recent papers that consider entrepreneurial ability as a major source of heterogeneity include Buera, Kaboski, and Shin (2012), and Midrigan and Xu (2010). Kortum (2007) and Jones (2007) consider models in which new ideas are productivity levels that follow a Pareto distribution.
As in section 2, this economy has no transitional dynamics, so the real interest rate is constant (see Appendix). The flow profit per patent, \(\pi \), that accrues to the innovator and the value of an additional patent are the same as in the previous section. Following the same steps used in Section 2, we obtain:

\[
\delta n a^* \frac{\pi}{r} = w, \tag{3.1}
\]

where \(a^* \) is the ability of the marginal innovator who is indifferent between being an innovator and a worker.

The fraction of the population that works in the final-production sector is then:

\[
L = H \Gamma(a^*). \tag{3.2}
\]

Using equations (2.6), (2.7), (3.1), and (3.2), we obtain:

\[
\delta a^*(1 - \alpha) H \Gamma(a^*)(1 - \tau) = r.
\]

We can substitute \(r \) using equation (2.10), obtaining:

\[
\delta a^*(1 - \alpha) H \Gamma(a^*)(1 - \tau) = \sigma g + \rho. \tag{3.3}
\]

To solve for \(a^* \) we first note that, as in Section 2, the growth rate of the economy is equal to the growth rate of the number of varieties,

\[
g = \delta H \int_{a^*}^{a_{\text{max}}} a \Gamma(da). \tag{3.4}
\]

To interpret this expression, recall that all agents with ability greater than \(a^* \) become entrepreneurs. There is a mass of agents with ability \(a \) which is equal to \(\Gamma(da) \). Each of these agents produces \(\delta n a \) varieties.

Using equation (3.4) to replace \(g \) in equation (3.3) we obtain the following implicit equation for \(a^* \):

\[
(1 - \alpha)a^* \Gamma(a^*)(1 - \tau) = \left[\sigma \int_{a^*}^{a_{\text{max}}} a \Gamma(da) + \rho/(\delta H) \right]. \tag{3.5}
\]
The Pareto distribution We assume that \(a \) follows a truncated Pareto distribution with shape parameter \(k \), lower bound \(a_{\text{min}} \), and upper bound \(a_{\text{max}} \). The motivation for this assumption is two fold. First, it allows us to obtain some additional analytical results. Second, it makes the model consistent with the evidence that variables such as firm size and executive compensation follow a Pareto distribution. We use a truncated version of the Pareto distribution because, otherwise, when the shape parameter of the Pareto distribution is one, there is an infinitesimal mass of agents with infinite ability that drive all the growth in the economy.

To find \(a^* \), and thus determine the growth rate of this economy, equation (3.5) suggests three expressions need to be computed. The cdf of \(a^* \), \(\Gamma(a^*) \), the probability density function (pdf) of \(a \), \(\Gamma(da) \), and the truncated mean for \(a > a^* \), \(\int_{a^*}^{a_{\text{max}}} a \Gamma(da) \) are given by:

\[
\Gamma(a) = \frac{1 - (a_{\text{min}}/a)^k}{1 - (a_{\text{min}}/a_{\text{max}})^k}, \quad (3.6)
\]

\[
\frac{d\Gamma(a)}{da} = \frac{k (a_{\text{min}})^k}{a^{1+k} 1 - (a_{\text{min}}/a_{\text{max}})^k}, \quad (3.7)
\]

\[
\int_{a^*}^{a_{\text{max}}} a \Gamma(da) = \frac{k (a_{\text{min}})^k}{1 - (a_{\text{min}}/a_{\text{max}})^k} \left[\frac{a_{\text{max}}^{1-k} - (a^*)^{1-k}}{1-k} \right] \quad (3.8)
\]

Combining these three equations with the equation (3.5), which determines the threshold value, \(a^* \), we obtain:

\[
(1 - \alpha) a^* \left[\frac{1 - (a_{\text{min}}/a^*)^k}{1 - (a_{\text{min}}/a_{\text{max}})^k} \right] (1 - \tau) = \left[\frac{\sigma}{1 - (a_{\text{min}}/a_{\text{max}})^k} \left[\frac{a_{\text{max}}^{1-k} - (a^*)^{1-k}}{1-k} \right] + \frac{\rho}{\delta H} \right]
\]

Combining equations (3.4) and (3.8) we obtain an expression for the growth rate
of the economy as a function of \(a^*\),
\[
g = \delta H \int_{a^*}^{a_{\text{max}}} a \Gamma(da) = \delta H \left\{ \frac{k (a_{\text{min}})^k}{1 - (a_{\text{min}}/a_{\text{max}})^k} \left[\frac{a_{\text{max}}^{1-k}}{1-k} - \frac{(a^*)^{1-k}}{1-k} \right] \right\} \tag{3.10}
\]

The effect of taxation on growth To gain further intuition we focus on the case of \(k = 1\) (as we discuss in Section 4 this value of the curvature parameter of the Pareto distribution is very close to existing estimates). To obtain the limit as \(k\) goes to 1 we need to compute the term

\[
\left[a_{\text{max}}^{1-k} - \frac{(a^*)^{1-k}}{1-k} \right]
\]

We can rewrite this expression as:

\[
\frac{\exp [(1 - k) \ln(a_{\text{max}})]}{1 - k} - \frac{\exp [(1 - k) \ln(a^*)]}{1 - k}
\]

L’Hopital’s rule implies that this limit is given by:

\[
\ln(a_{\text{max}})a_{\text{max}}^{1-k} - \ln(a^*) (a^*)^{1-k} = \log(a_{\text{max}}/a^*)
\]

implying that equation (3.9) can be written as

\[
a^*(1 - \tau) + \frac{\sigma}{(1 - \alpha)} a_{\text{min}} \log(a^*/a_{\text{max}}) = (1 - \tau) a_{\text{min}} + \frac{\rho (1 - a_{\text{min}}/a_{\text{max}})}{(1 - \alpha) \delta H} \tag{3.11}
\]

In what follows we use this last equation when deriving the effect of taxes on the growth rate.

In the case of \(k = 1\) the growth rate of the economy, (3.10) is given by:

\[
g = \frac{\delta H}{1 - (a_{\text{min}}/a_{\text{max}})} \{(a_{\text{min}}) \log(a_{\text{max}}/a^*)\} \tag{3.12}
\]

Using equation (3.11) we can write \(a_{\text{min}} \log(a_{\text{max}}/a^*)\) as:

\[
\frac{1}{\sigma} \left\{ (a^* - a_{\text{min}}) (1 - \tau) (1 - \alpha) - \frac{\rho (1 - a_{\text{min}}/a_{\text{max}})}{\delta H} \right\} = a_{\text{min}} \log(a_{\text{max}}/a^*).
\]
Using this expression and equation (3.12) we obtain:

\[g = \frac{1}{\sigma} \left[\frac{\delta H (a^* - a_{\min}) (1 - \tau) (1 - \alpha)}{1 - (a_{min}/a_{max})} - \rho \right]. \] (3.13)

Differentiating equation (3.13) with respect to \(\tau \) we obtain:

\[\frac{dg}{d\tau} = \frac{1}{\sigma} \frac{(1 - \alpha) \delta H}{1 - (a_{min}/a_{max})} \left[\frac{da^*}{d\tau} (1 - \tau) - (a^* - a_{min}) \right]. \]

Using equation (3.11) we compute \(\frac{da^*}{d\tau} \), the effect of a change in \(\tau \) on the ability of the marginal innovator:

\[\frac{da^*}{d\tau} = \frac{a^* - a_{min}}{(1 - \tau) + \sigma a_{min}/[(1 - \alpha)a^*]}, \]

The effect of change in the tax rate, \(\tau \), on the growth rate of the economy, \(g \), is given by

\[\frac{dg}{d\tau} = \frac{1}{\sigma} \frac{(1 - \alpha) \delta H}{1 - (a_{min}/a_{max})} \left[\frac{a^* - a_{min}}{(1 - \tau) + \sigma a_{min}/[(1 - \alpha)a^*]} (1 - \tau) - (a^* - a_{min}) \right]. \]

It can be shown that this expression is negative:

\[\frac{dg}{d\tau} = -\frac{\delta H (1 - \alpha) (a^* - a_{min})}{1 - (a_{min}/a_{max})} \left[\frac{a_{min}}{(1 - \alpha) (1 - \tau)a^* + \sigma a_{min}} \right] < 0. \] (3.14)

4. Homogeneous versus heterogenous ability

In what follows we study how the effects of changes in taxes differ between an economy with homogenous and heterogenous entrepreneurial ability. It is useful to consider two economies that are growing at the same rate, \(g^* \), have the same structural parameters \(\alpha \) and \(\rho \), and the same corporate tax rate, \(\tau \).

We begin by deriving the effects of \(\tau \) on \(g \) in the economy of homogenous entrepreneurial ability. It is useful to rewrite equation (2.20) as:

\[[g^* - \delta H] (1 - \alpha)(1 - \tau) = - (\rho + \sigma g^*). \] (4.1)
Totally differentiating this equation we obtain:

\[
\frac{dg^*}{d\tau} = \frac{[g^* - \delta H](1 - \alpha)}{\{(1 - \alpha)(1 - \tau) + \sigma\}}.
\]

Using equation (4.1) we obtain:

\[
\frac{dg^*}{d\tau} = \frac{-(\rho + \sigma g^*)}{(1 - \tau)} \frac{1}{\{(1 - \alpha)(1 - \tau) + \sigma\}}.
\]

We now derive the effects on the growth rate in the economy of heterogenous entrepreneurial ability. We can rewrite equation (3.13) as:

\[
\frac{\sigma g^* + \rho}{(1 - \tau)} = \frac{\delta H (a^* - a_{\min})(1 - \alpha)}{1 - (a_{\min}/a_{\max})}.
\]

Using equation (3.14):

\[
\frac{dg^*}{d\tau} = \frac{-(\rho + \sigma g^*)}{(1 - \tau)} \left[\frac{1}{(1 - \alpha)(1 - \tau) \frac{a^*}{a_{\min}} + \sigma} \right].
\]

Since, in the absence of changes in \(\tau\), the two economies grow at the same rate and share the same parameters, the difference in the slope comes from the second term which is given by

\[
\text{Heterogenous model} : \frac{1}{(1 - \tau)(1 - \alpha) \frac{a^*}{a_{\min}} + 1}
\]

\[
\text{Homogenous model} : \frac{1}{(1 - \alpha)(1 - \tau) + 1}
\]

Note that \(a^*/a_{\min} > 1\) as long as \(a_{\max} > a_{\min}\). So, the slope in the heterogenous agents model is smaller in absolute value implying that the effect of an increase in \(\tau\) on \(g\) is always smaller in an economy with heterogeneous ability.

We now discuss our motivation for using a truncated version of the Pareto distribution when \(k = 1\). Equation (3.11) implies that as \(a_{\max}\) goes to infinity, \(a^*\) also goes to infinity. This property suggests that the impact of taxes on growth
converges to zero as a_{max} goes to infinity. The intuition for this result is that as $a_{\text{max}} \to \infty$ the economy has an infinitesimal measure of entrepreneurs with infinite ability. These entrepreneurs drive most of the innovation in the economy. As long as the tax rate is lower than one then agents continue to innovate since their surplus from innovating versus working is very high. So, these individuals are willing to innovate even when the tax rate is very high. Consequently, taxes have no impact on growth.

4.1. Numerical example

We now use a numerical example to compare the effects of changes in the corporate income tax rate in economies with homogeneous and heterogenous agents. The following parameterization is shared in both economies. We set the labor share in the production of final goods to 60 percent ($\alpha = 0.60$). We assume that $\sigma = 1$ (log preferences). We choose $\rho = 0.01$, so that the annual real interest rate in an economy with no growth is one percent. Without loss of generality, we normalize δ and η to one. Finally, in both the homogeneous and heterogenous case we choose the value of H so that when $\tau = 0.35$ the growth rate of the economy is 2 percent per year. This value of τ corresponds to the U.S. Federal corporate income tax rate.

The distribution of ability in the economy with heterogeneity is governed by the three parameters of the Pareto distribution: $a_{\text{min}}, a_{\text{max}},$ and k. Without loss of generality we set $a_{\text{min}} = 1$. As in our theoretical analysis, we assume that the shape parameter of the Pareto distribution equal to one. This assumption is consistent with the findings in Luttmer (2010) who estimates $k = 1.06$. To choose a_{max} we build on Luttmer’s (2010) finding that the largest 1,000 U.S. firms in terms of employment account for roughly 25 percent of total employment. Since there are roughly 6 million employer firms in the U.S., these firms represent a mere \geq
percent of U.S. firms. Luttmer’s (2010) Figure 3 shows that this statistic is stable over time. In what follows we show how we can map this statistic into our model using the fact that firm size is proportional to the ability of the entrepreneur. This property enables us to calibrate a_{max} to match the Luttmer’s firm size statistic.

To map this statistic into our model, we proceed as follows. Suppose that firms are vertically integrated so that research firms hire workers to produce the final output goods. This assumption generates a non-trivial distribution of employment. We also assume that the ownership of the initial stock of patents is distributed among entrepreneurs in proportion to their ability:

$$s(a) = \frac{a}{H \int_{a^*}^{a_{\text{max}}} a \Gamma(da)}, \quad (4.2)$$

where $s(a)$ is the initial share of patents attributed to an entrepreneur of ability a.\footnote{These shares add up to one, $H \int_{a^*}^{a_{\text{max}}} s(a) \Gamma(da) = 1$.} The number of patents held by each entrepreneur grows at rate g and the share of patents held by this agent remains constant over time.\footnote{To see this property, suppose that the agent enters period t with $s(a)$ shares. The instantaneous growth rate in the number of patents held by this agent, m_t, is given by: $\frac{m_t}{m_t} = \delta H \int_{a^*}^{a_{\text{max}}} a \Gamma(da) = g$. Using equation (4.2), together with the fact that $m_t = s(a) n_t$, we obtain $\frac{m_t}{m_t} = \delta H \int_{a^*}^{a_{\text{max}}} a \Gamma(da) = g$.} Recall that all innovators produce the same quantity of intermediate goods, x, per patent and that the amount of labor employed in producing a given good is proportional to x. Under these conditions, firm size is proportional to the ability of the entrepreneur.

We choose a_{max} so that the top 0.017 percent of the entrepreneurs account for 25 percent of employment. We use an iterative process to find this value of a_{max}. For a given a_{max} we compute a^* and find \bar{a}, which denotes the the lower bound of the interval that contains the top 0.017 entrepreneurs.

$$\frac{\int_{\bar{a}}^{a_{\text{max}}} \Gamma(da)}{\int_{a^*}^{a_{\text{max}}} \Gamma(da)} = 0.017. \quad (4.3)$$
Using the Pareto distribution, this equation can be written as:

\[\bar{a} = \frac{a_{\text{min}}}{0.017 \left[(a_{\text{min}}/a^*) - (a_{\text{min}}/a_{\text{max}}) \right] + (a_{\text{min}}/a_{\text{max}})} \]

Since employment is proportional to ability, the requirement that the top 0.017 percent of entrepreneurs account for 25 percent of employment can be written as:

\[\frac{\int_{a^*}^{a_{\text{max}}} a \Gamma(da)}{\int_{a^*}^{a_{\text{max}}} \Gamma(da)} = 0.25. \] (4.5)

Using the Pareto distribution, we can write this equation as:

\[\frac{\log(a_{\text{max}}/\bar{a})}{\log(a_{\text{max}}/a^*)} = 0.25 \]

We iterate on \(a_{\text{max}} \) until both equations (4.3) and (4.5) hold; this convergence occurs for a value of \(a_{\text{max}} = 5000 \).

The first panel of Figure 1 shows how the effect of changes in the corporate tax rate on the growth rate of the two economies. In the homogenous ability model the growth rate of the economy is roughly linear in \(\tau \).\(^{13}\) The growth rates ranges from 3.15 percent, when \(\tau = 0 \), to zero when \(\tau = 0.816 \). Doubling the corporate income tax rate from 35 to 70 percent, reduces the growth rate from 2 percent to 0.56 percent. The reason for this strong effects of taxes is that higher taxes reduce the incentives to innovation, reducing the number of entrepreneurs. Since all agents in the economy are equally good at being entrepreneurs, this reduction has a large impact on the rate of creation of new goods and the rate of growth. It is this large response of the growth rate to tax rates that is difficult to find empirically.

In the heterogeneous ability model we see that the model exhibits the non-linear response of growth to taxation illustrated that we discuss in the introduction. The growth rates ranges from 2.15 percent, when \(\tau = 0 \), to zero when \(\tau = 1 \).

\(^{13}\)It is possible to generate a non-linear response of the growth rate to \(\tau \) in the homogeneous ability model. But it requires using values of \(\rho \) and \(\sigma \) that are close to zero.
Doubling the tax rate from 35 to 70 percent reduces the growth rate from 2 percent to 1.73 percent. This reduction in the rate of growth is much smaller than that implied by the model with homogeneous agents. This result might give the impression that the growth rate is independent of the tax rate. But the effects are highly non-linear: increasing taxes by 15 percent, from 70 to 85 percent reduces the growth rate by as much as doubling the tax rate from 35 to 70 percent.

The second panel depicts the fraction of entrepreneurs in the population for different values of τ. In the homogeneous ability model this fraction ranges from 23.3 percent, when $\tau = 0$ to zero when $\tau = 0.816$. The strong decline in the number of entrepreneurs that occurs when taxes rise is at the core of the model’s prediction that tax have a large, negative impact on growth. In contrast, in the heterogeneous ability model the fraction of agents who choose to be entrepreneurs ranges from 4.8 percent, when $\tau = 0$, to zero when $\tau = 1$. Even though the response of the fraction of entrepreneurs to taxes is roughly linear, the impact on growth is highly nonlinear, because as taxes rise the entrepreneurs that exit have higher ability.

Finally, the third panel depicts the tax revenues over output in the economy. This variable is given by equation (2.8) for both the homogeneous ability and the heterogeneous ability model. Suppose that the government wants to obtain a ratio of taxes to GDP of 25 percent. In both economies this objective would require a tax rate of 87.5 percent. This tax rate would reduce growth to zero in the homogeneous ability economy. In contrast, the heterogenous ability economy still grows at 1.43 percent.

To summarize, in this section we considered a numerical version of the two models. Consistent with the empirical evidence, in the model in which the distribution of entrepreneurial ability is skewed the effects of corporate income taxes on growth are highly non-linear. These effects are small when tax rates are low
or moderate and are high once tax rates exceed a certain threshold value.

The results in our model would be even stronger if we introduced the production complementarities emphasized by Kremer (1993) and Gabaix and Landier (2008). In models with production complementarities, it is optimal to implement assortative matching. In Kremer’s (1993) model it is optimal to form groups of agents with similar abilities. In Gabaix and Landier (2008) it is optimal to match the best managers with the most productive firms. In both cases, the skewness of the distribution of productivity of profits is a magnified version of the skewness in the distribution of ability.

5. Brain drain

The previous section abstracts from migration considerations. A potentially important effect of high taxes rates or burdensome regulation is the migration of high-skill individuals, a phenomenon known as “brain drain.”14 We explore this phenomenon in this section.

Consider a small open economy that can borrow and lend at a constant real interest rate, \(r \). The rest of the world has a stock of patents \(\hat{n}_t \) that grows at a constant rate, \(\hat{g} \). To simplify, we assume that there is no trade between the small open economy and the rest of the world.

An agent in the small open economy can migrate to the rest of the world and work or innovate there. For simplicity, we assume that this outside option can be summarized as follows. An agent with entrepreneurial ability \(a \) who migrates, receives a flow income in the rest of the world equal to \(\hat{x}_t a \), where \(\hat{x}_t \) grows at

14See Commander, Kangasniemi, and Winters (2004) and Beine, Docquier, and Rapoport (2008) for a summary of the literature on the brain drain phenomenon. Kleven, Landais, and Saez (2010) provide evidence on the impact of incentives on migration for European soccer players following the 1995 liberalization of the soccer labor market (is this phenomenon “foot drain”?).
rate \(\dot{g} \). To migrate, the agent pays a cost of \(\theta \hat{x}_t \) per period. Since this cost is proportional to \(\hat{x}_t \), it grows at rate \(\dot{g} \).

The problem of an entrepreneur in the home country is to maximize:

\[
\max_{l_t} \int_t^\infty e^{-r(s-t)} \left[\hat{x}_s a l_s^i (1 - \theta) + m_s^i \pi_s + \pi_s^f / H \right] ds,
\]

subject to:

\[
\dot{m}_t^i = \delta n_t a (1 - l_t^i),
\]

where \(l_t^i \) is an indicator function that takes the value one when the agent migrates and zero otherwise. The stock of domestic patents owned by an agent who migrates remains constant over time. The Hamiltonian for the entrepreneur’s problem is:

\[
\mathcal{H} = \hat{x}_t a l_t^i - \theta x_t l_t^i + m_t^i \pi_t + \pi_t^f / H + V_t^i \delta n_t a (1 - l_t^i).
\]

The first-order condition for \(l_t^i \) is:

\[
\hat{x}_t a - \theta \hat{x}_t = \frac{\pi}{r} a \delta n_t.
\]

This condition implies that the cutoff for ability above which an entrepreneur migrates is:

\[
\hat{a}_t = \frac{\theta}{1 - \pi \delta (n_t/\hat{x}_t) / r}.
\] (5.1)

The cutoff level of ability above which it is optimal to be an entrepreneur, \(a^* \), is given by:

\[
\delta na^* \frac{\pi}{r} = w.
\]

Replacing \(\pi \) and \(w \) using equations (2.6) and (2.7), and using equation (3.6) for the case of \(k = 1 \) we obtain:

\[
a^* = a_{\min} + \frac{r \left[1 - (a_{\min}/a_{\max}) \right]}{\delta (1 - \alpha) H (1 - \tau)}.
\] (5.2)
The growth rate is given by:

\[g = \delta H \frac{a_{\min} \log \left(\frac{a_{\max}}{a^*} \right)}{1 - \left(\frac{a_{\min}}{a_{\max}} \right)} \]

(5.3)

We assume that \(a^* < \theta \). This condition ensures that \(\hat{a}_t > a^* \) for all \(t \) (see equation (5.1)). In this case the ability of the marginal migrant is higher than that of the marginal entrepreneur, so only entrepreneurs migrate.

Suppose that the rate of corporate tax in the domestic economy, \(\tau \), is such that this economy grows at the same rate as the rest of the world and that the cost of moving, \(\theta \), is high enough that \(\hat{a} > a^{\max} \), so no one migrates. In what follows we analyze the effects of a tax rate increase.

We denote by \(\tau^* \) the threshold value for the corporate tax rate below which there is no migration. Replacing the expression for \(\pi \) in equation (5.1), we find that \(\tau^* \) is defined by the following equation

\[
\frac{\theta}{1 - \alpha (1 - \alpha)(2 - \alpha) a_{\max}^{-\alpha} (1 - \tau^*_t)} = a_t.
\]

The effect of an increase in taxes to a level \(\tau' < \tau^*_t \) In this experiment we analyze the effect of a permanent increase in the tax rate to a new level \(\tau' < \tau^*_t \). Since \(\tau' < \tau^* \) there is no immediate flow of migration. However, the growth rate of the economy falls below \(\hat{g} \) in response to the tax increase, according to the mechanism discussed in Section 3. This fall implies that over time, \(n_t / \hat{x}_t \) declines and thus, eventually \(\hat{a}_t \) falls below \(a_{\max} \). At this point migration begins (see equation (5.1)), as foreign opportunities improve faster than domestic opportunities (\(g_t < \hat{g} \)). This divergence between domestic and foreign growth rates lead to a smooth flow of migration that generates a slow decline in growth. The growth rate is given by:

\[
g_t = \left\{ \begin{array}{ll}
\delta H \int_{a_{\min}}^{a_{\max}} a \Gamma(da) = \delta H \frac{a_{\min} \log(a_{\max}/a^*)}{1 - a_{\min}/a_{\max}} \quad & \hat{a}_t \geq a_{\max} \\
\delta H \int_{a_t}^{a_{\max}} a \Gamma(da) = \delta H \frac{a_{\min} \log(\hat{a}_t/a^*)}{1 - a_{\min}/a_{\max}} \quad & \hat{a}_t < a_{\max}
\end{array} \right.
\]

(5.4)
Equation (5.1) implies that the migration threshold, \(\hat{a}_t \), keeps falling, converging to \(\theta \). This behavior of \(\hat{a}_t \) implies that, asymptotically, the growth rate converges to a new lower value given by:

\[
g_t = \delta H a_{\min} \log(\theta/a^*) \frac{1}{1 - a_{\min}/a_{\max}}
\]

So, the elasticity of the growth rate with respect to taxation is low in the short run and high in the long run. This pattern is illustrated in the top panel of Figure 2.

The effect of an increase in taxes to a level \(\tau' > \tau^*_t \). Suppose now that the tax rate is increased to a value greater than \(\tau^*_t \). In this case there is an immediate flow of migration at time \(t \) with all agents with abilities greater than \(\hat{a}_t \) leaving the economy. This brain drain leads to a discrete decline in the rate of growth of the economy (see the lower branch in equation (5.4)). The new value of \(g_t \) is lower than that implied by equation (5.3) for two reasons. First, \(\hat{a}_t < a_{\max} \), which reflects the fact that agents with skill above \(\hat{a}_t \) migrate, reducing the flow of innovation. Second, as discussed in Section 3, higher tax rates induce more agents to become workers, so there a rise in \(a^* \) which reduces the flow of innovation. The initial fall in the growth rate generates an immediate second wave of migration. This second wave is similar to the one that eventually occurs when \(\tau < \tau^* \). This pattern is illustrated in bottom panel of Figure 2.

In sum, raising the tax rate to a value below \(\tau^* \) results in no immediate migration and in a relatively small decline in the rate of growth, similar to the one discussed in Section 3. The growth rate remains stable for a while but, eventually, there is a wave of migration that causes further reductions in the rate of growth. Raising the tax rate to a value above \(\tau^* \) results in an immediate flow of migration and a discrete decline in the growth rate, followed by additional reductions in growth.
6. Stochastic ability

So far we have assumed that agents know their entrepreneurial ability. In this section we consider the case where entrepreneurs do not know their true ability before they try to become entrepreneurs. In this case, high tax rates might deter agents from discovering their entrepreneurial ability. To isolate the effect of this informational friction, we assume that all successful entrepreneurs have the same ability. In the model that we analyze, the impact of taxes on growth is non-linear as in the previous sections.

We consider a very simple scenario in which only a fraction μ of the population, H, can be an entrepreneurs, but they do not know their entrepreneurial ability. A candidate entrepreneur has high ability with probability ϕ. High-ability entrepreneurs discover δn new varieties. Low-ability entrepreneurs produce no new goods and end up operating a backyard technology that has productivity λw, $\lambda < 1$. At the beginning of time, agents have to commit to being workers or entrepreneurs.

In equilibrium, the measure of workers in the economy, L, has to such that:

$$
\begin{align*}
\phi U(\delta; L) + (1 - \phi)U(\lambda w) &< U(w) & L = H \\
\phi U(\delta; L) + (1 - \phi)U(\lambda w) &= U(w) & L \geq (1 - \mu)H \\
\phi U(\delta; L) + (1 - \phi)U(\lambda w) &> U(w) & L = (1 - \mu)H
\end{align*}
$$

where $U(\delta; L)$ is the utility of a successful entrepreneur when the number of workers in the economy is equal to L.

When the expected utility of an entrepreneur is equal to that of a worker the solution for the number of entrepreneurs is interior and the number of entrepreneurs is lower or equal to μH. There are also two corner solutions. The first corresponds to the case in which the expected utility of becoming an entrepreneur is higher than the utility of a being a worker. In this case all potential μH entrepreneurs decide to try to become entrepreneurs. The second corresponds to the case in which the expected utility of becoming an entrepreneur is lower than the
utility of a being a worker. In this case no one chooses to become an entrepreneur.

The successful entrepreneur’s utility To be consistent with balanced growth we assume that the initial number of patents, n_t, is equally distributed among successful entrepreneurs. As a result, the consumption at time zero, or at any time t, of a successful entrepreneur is:

$$C_t = n_t \pi / [\phi(H - L)] + \tau n_t \pi / [H(1 - \tau)].$$

Their utility is:

$$U^e = \frac{(n_0 \pi)^{1-\sigma} \{1/ [\phi(H - L)] + \tau / [H(1 - \tau)]\}^{1-\sigma}}{\rho(1 - \sigma) - (1 - \sigma)^2 g}$$

The number of varieties in the economy continues to evolve according to

$$\dot{n} = n \delta \phi(H - L)$$

The worker’s utility A worker’s consumption is given by:

$$C_t = w_t + \tau n_t \pi / [H(1 - \tau)];$$

implying

$$U^w = \frac{(n_0)^{1-\sigma} \{w_0/n_0 + \tau \pi / [H(1 - \tau)]\}^{1-\sigma}}{\rho(1 - \sigma) - (1 - \sigma)^2 g}$$

The frustrated entrepreneur’s utility The consumption of frustrated entrepreneurs is given by:

$$C_t = \lambda w_t + \tau n_t \pi / [H(1 - \tau)];$$

implying that

$$U^f = \frac{(n_0)^{1-\sigma} \{\lambda w_0/n_0 + \tau \pi / [H(1 - \tau)]\}^{1-\sigma}}{\rho(1 - \sigma) - (1 - \sigma)^2 g}$$
Equilibrium In the case of an interior solution for L, the value of L is given by:

$$\phi (n_0 \pi)^{1-\sigma} \left\{ 1/ \left[\phi (H - L) + \tau / [H(1 - \tau)] \right] \right\}^{1-\sigma}$$

$$+ (1 - \phi) (n_0)^{1-\sigma} \left\{ \lambda w_0/n_0 + \tau \pi / [H(1 - \tau)] \right\}^{1-\sigma}$$

$$= (n_0)^{1-\sigma} \left\{ w_0/n_0 + \tau \pi / [H(1 - \tau)] \right\}^{1-\sigma}.$$

Rearranging terms,

$$L = H - \frac{1}{\phi} \left\{ \frac{\left[\frac{w_0}{n_0 \pi} + \frac{\tau}{H(1-\tau)} \right]^{1-\sigma}}{\phi} - (1 - \phi) \left[\frac{\lambda w_0}{n_0 \pi} + \frac{\tau}{H(1-\tau)} \right]^{1-\sigma} \right\}^{1/(1-\sigma)} - \frac{\tau}{H(1 - \tau)} \right\}^{-1}.$$

Figure 3 shows results for a numerical example. Taxes have no impact on growth for values of τ between zero and 0.75. For tax rates in this range, the expected utility of being an entrepreneur is higher than the expected utility of being a worker. As a result, all potential entrepreneurs choose to be entrepreneurs. When tax rates are higher than 0.75, there is a larger effect of taxes on growth because the solution for L is interior. As tax rates increase, the number of entrepreneurs declines. This decline leads to a reduction in the number of successful entrepreneurs and in the growth rate of the economy.

7. Conclusion

In this paper we propose a model in which the effects of taxation on growth are highly non-linear. Taxes have a small impact on long-run growth when taxes rates and other disincentives to investment are low or moderate. But, beyond a certain threshold, further tax increases stifle growth. This non-linearity is generated

15The parameters used in this example are: $\alpha = 0.6, \sigma = 2, \rho = 0.01, H = 1, \delta = 2, \tau = 0.35, \eta = 1, \lambda = 0.91, \phi = 0.1, \mu = 0.1$.

29
by heterogeneity in entrepreneurial ability. In a low-tax economy the ability of the marginal entrepreneur is much lower than that of the average entrepreneur. Increases in taxes results in the exit of low-ability entrepreneurs and in a small decline in the rate of growth of the economy. In a high-tax economy the ability of the marginal entrepreneur is similar to that of the average entrepreneur. Increases in taxes result in the exit of high-ability entrepreneurs and in a large decline in the rate of growth of the economy.

We show that these non-linear effects of taxation on growth emerge naturally in two extensions of our model. In the first extension agents can migrate by paying a flow cost. Since this cost is assumed to be independent of ability, it creates an incentive for high-ability workers to migrate. When tax increases lead to no migration, the effects of taxation on growth are small. But, once tax rates cross a certain line, high-ability agents migrate, reducing the rate of innovation and producing a large decline in growth rates.

The second extension is a model in which potential entrepreneurs do not know their ability. This ability is learned only when agents become entrepreneurs. There is a range of tax rates such that all potential entrepreneurs try to be entrepreneurs. Changes in tax rates in this range have no impact on growth rates. But, once taxes exceed a certain threshold, the number of potential entrepreneurs decline reducing the growth rate of the economy.
8. References

Grabowski, Henry, “Patents and New Product Development in the Pharmaceutical and Biotechnology Industries,” in John V. Duca and Mine K. Yücel (eds.)

Kortum, Samuel S., “Research, Patenting, and Technological Change,” Econo-

Prescott, Edward, “Why Do Americans Work So Much More than Euro-

9. Appendix

9.1. Homogeneous agent model

In this appendix we show that the model in Section 2 has no transitional dynamics. The same property applies to the model in Section 3.

\[\pi = \alpha (1 - \alpha)^{(2-\alpha)/\alpha} \eta^{-(1-\alpha)/\alpha} L (1 - \tau). \] \hspace{1cm} (9.1)

Equations (2.2) and (2.5) imply that the equilibrium wage rate is given by:

\[w = \alpha n \left[\frac{(1 - \alpha)^2}{\eta} \right]^{(1-\alpha)/\alpha}. \] \hspace{1cm} (9.2)

Recall that the value of a patent for a new good is:

\[V_t = \int_t^\infty e^{-\int_t^s r_s ds} \pi_s ds, \]

When there is an interior solution for the number of entrepreneurs, we have:

\[\delta n_t V_t = w_t \]

Differentiating with respect to time:

\[\dot{n} \delta V_t + \delta n_t \dot{V}_t = \dot{w}_t \]

Define:

\[f(t, s) = e^{-\int_t^s r_s ds} \pi_s \]

Using Leibnitz’s rule:

\[\frac{d}{dt} \int_t^\infty f(t, s) ds = -f(t, t) + \int_t^\infty f_1(t, s) ds \]
\[
\frac{d}{dt} \int_{t}^{\infty} f(t, s) ds = -\pi_t + \int_{t}^{\infty} f_1(t, s) ds
\]
\[
\frac{d}{dt} \left[- \int_{t}^{s} r_s ds \right] = r_t
\]
\[
f_1(t, s) = \pi_s \frac{d}{dt} e^{-\int_{t}^{s} r_s ds} = \pi_s r_t e^{-\int_{t}^{s} r_s ds}
\]
\[
\dot{V}_t = \frac{d}{dt} \int_{t}^{\infty} f(t, s) ds = -\pi_t + r_t \int_{t}^{\infty} \left(\pi_s e^{-\int_{t}^{s} r_s ds} \right) ds
\]
\[
\dot{V} = \frac{d}{dt} \int_{t}^{\infty} f(t, s) ds = -\pi_t + r_t V_t
\]

Taking time derivatives of the free-entry condition, we have:

\[
\dot{n}_t \delta V_t + \delta n_t \left(rV_t - \pi_t \right) = \dot{w}_t
\]

Using the free-entry condition:

\[
\delta n_t V_t = w_t
\]

(9.3)

Equation (9.2) implies that \(w_t / n_t \) is constant. So, equation (9.3) implies that the value of the firm, \(V_t \) is also constant.

Equation (9.3) implies:

\[
\frac{\dot{n}_t}{n_t} + \frac{n_t V_t - \pi_t}{V_t} = \frac{\dot{w}_t}{w_t}
\]

Recall from equation (9.2) that \(\dot{w}_t / w_t = \dot{n}_t / n_t \), so we have:

\[
V_t = \frac{\pi_t}{r_t}.
\]

(9.4)

Replacing \(\pi_t \) and \(r_t \) in equation (9.4) for \(V_t \),
\[
\frac{\alpha(1 - \alpha)^{2 - \alpha/\alpha} \eta^{(1 - \alpha)/\alpha} L_t(1 - \tau)}{\sigma \delta (H - L_t) + \rho} = V
\]

Rearranging,

\[
\alpha(1 - \alpha)^{2 - \alpha/\alpha} \eta^{-(1 - \alpha)/\alpha} L_t(1 - \tau) = V [\sigma \delta (H - L_t) + \rho]
\]

Differentiating with respect to time, using the fact that \(\dot{V}_t = 0 \), we have

\[
\alpha(1 - \alpha)^{2 - \alpha/\alpha} \eta^{-(1 - \alpha)/\alpha} \dot{L}_t(1 - \tau) = -\dot{L}_t V \sigma \delta
\]

This equation implies that \(\dot{L}_t = 0 \). So, \(L_t \) is constant. This property implies that \(\pi_t \) is constant (equation (9.1)). Equation (9.4) implies that \(r_t \) is constant. In sum, the model has no transition dynamics.
9.2. Heterogenous agent model

The general equation for the identity of the marginal innovator is given by (2.15)

\[n\delta a_t^* V_t = w_t, \]

where

\[V_t = \int_t^{\infty} e^{-\int_t^s r_s ds} \pi_s ds. \]

We first note that the wage rate is given by

\[w = \alpha n \left[\frac{(1 - \alpha)^2}{\eta} \right]^{(1-\alpha)/\alpha} \]

implying that

\[a_t^* \delta V_t = \alpha \left[\frac{(1 - \alpha)^2 \gamma}{\eta} \right]^{(1-\alpha)/\alpha} \]

Differentiating with respect to time,

\[\frac{\dot{a}_t^*}{a_t^*} + \frac{\dot{V}_t}{V_t} = 0 \]

The term \(\dot{V} \) equals

\[\dot{V}_t = r_t V_t - \pi_t \]

yielding

\[\frac{\dot{a}_t^*}{a_t^*} + \frac{r_t V_t - \pi_t}{V_t} = 0 \]

\[\frac{\dot{a}_t^*}{a_t^*} + r_t - \frac{\pi_t}{V_t} = 0 \]

Conjecture that \(\dot{a}^* = 0 \), so \(a_t^* = a^* \). The free entry condition,

\[V_t = \frac{w_t}{n\delta a^*} \]

implies that \(V_t \) is constant, given that \(w_t/n_t \) is constant. We can now proceed as in the homogenous agent model and show that the real interest rate and the growth rate is constant and that all equations are satisfied, so that a constant value of \(a_t^* \) is a solution.
Figure 1

Growth rate (percent)

Tax rate

Homogeneous ability
Heterogeneous ability

Fraction of agents who are entrepreneurs

Tax rate

Tax revenue/GDP

Tax rate
Figure 2

Growth rate (percent)

Threshold value of ability (ahat)
