“A Theory of Firm Scope”*

by

Oliver Hart (Harvard University and NBER)
and
Bengt Holmstrom (MIT and NBER)

December 2008
This version June 21, 2009

* This is an extensively revised version of two earlier papers that circulated as “A Theory of Firm Scope” and “Vision and Firm Scope.” Some of the material presented here formed part of the first author’s Munich Lectures (University of Munich, November 2001), Arrow Lectures (Stanford University, May 2002), Karl Borch Lecture (Bergen, May 2003), and Mattioli Lectures (Milan, November 2003). We are especially grateful to Andrei Shleifer for insightful comments. We would also like to thank Philippe Aghion, George Baker, Lucian Bebchuk, Patrick Bolton, Pablo Casas-Arce, Mathias Dewatripont, Florian Englmaier, Robert Gibbons, Richard Holden, Bob Inman, Louis Kaplow, Bentley MacLeod, Meg Meyer, David Scharfstein, Chris Snyder, Jeremy Stein, Lars Stole, Eric van den Steen, and seminar audiences at CESifo, University of Munich, Harvard University, London School of Economics, George Washington University, Stanford University, the Summer 2002 Economic Theory Workshop at Gerzensee, Switzerland, and the University of Zurich for helpful discussions. Finally, we have benefited from the very constructive suggestions of the editor and three referees. Research support from the National Science Foundation is gratefully acknowledged.
Abstract

The formal literature on incomplete contracts and firm boundaries has supposed that *ex post* efficiency is achieved through Coasian bargaining. In reality hold-ups and other types of disagreement are often resolved by parties exercising their rights to make decisions, that is, by authority. In this paper we develop a model, based on contracts as reference points and aggrievement, in which authority has a central role. We consider two units that have a horizontal or lateral relationship. The units take decisions that affect each other; for example, they may be deciding on whether to adopt a common standard. Each decision is *ex ante* non-contractible but *ex post* contractible. The boss has the right to make the decision; however, aggrieved parties may shade. A key ingredient of our model is the assumption that each unit generates two kinds of benefit: monetary profit, which is transferable with ownership, and private benefits of managers and workers, which are non-transferable. We show that nonintegrated firms fail to account for the external effects that their decisions have on other firms. An integrated firm can internalize such externalities, but it does not put enough weight on private benefits. We explore this tradeoff in a model that focuses on the difficulties companies face in cooperating through the market if the benefits from cooperation are unevenly divided; therefore, they may sometimes end up merging. We show that the aggrievement assumption introduces a friction that permits an analysis of delegation.
1. **Introduction**

In the last twenty years or so, a theoretical literature has developed that argues that the boundaries of firms--and allocation of asset ownership--can be understood in terms of incomplete contracts and property rights. The basic idea behind the literature is that firm boundaries define the allocation of residual control rights and these matter in a world of incomplete contracts. In the standard property rights model, parties write contracts that are *ex ante* incomplete but can be completed *ex post*; the ability to exercise residual control rights improves the *ex post* bargaining position of an asset owner and thereby increases her incentive, and the incentive of those who enjoy significant gains from trade with her, to make relationship-specific investments; and as a consequence, it is optimal to assign asset ownership to those who have the most important relationship-specific investments or who have indispensable human capital.\(^1\)

Although the property rights approach provides a clear explanation of the costs and benefits of integration, the theory has a number of features that have limited its applicability\(^2\). One that we focus on here is the assumption that *ex post* efficiency is achieved through Coasian bargaining with sidepayments. Although direct empirical evidence on this topic is not readily available, casual inspection suggests that bargaining with unrestricted sidepayments is not ubiquitous. Most decisions made in a firm will be carried out without consultation or negotiation with other firms even when these decisions impact the other firms in a major way. Rarely does a firm go to its competitor to discuss its strategic plans with the intention of extracting sidepayments for avoiding aggressive moves, for instance.\(^3\) Our paper is concerned with the case where *ex post* bargaining does not occur.

\(^2\) For a discussion of this, see Holmstrom and Roberts (1998) and Holmstrom (1999).

\(^3\) Of course, where there is an opportunity for mutual gains, a firm may approach another firm to explore whether there are ways to take advantage of the opportunity that are beneficial for both sides. However, it is also possible that the parties will simply do what is unilaterally in their best interest.
We present a new model of firm boundaries, which is designed to deal with strategic decisions that are taken *ex post* rather than *ex ante*. To justify the use of authority rather than Coasian bargaining, we adopt the “contracts as reference points” approach of Hart and Moore (2008). According to this approach, a contract (in our model an organizational form), negotiated under competitive conditions, circumscribes or delineates parties’ senses of entitlements. Parties do not feel entitled to outcomes *outside the contract*, but may have different views of what they are entitled to *within the contract*. More specifically, each side interprets the contract in a way that is most favorable to him. When he does not get his most favored outcome within the contract, he feels aggrieved and shades by performing in a perfunctory rather than a consummate fashion, creating deadweight losses. Given these assumptions, a more open-ended contract leads to more aggrievement and *ex post* Coasian bargaining with sidepayments is very costly.\(^4\) We rule out renegotiation on these grounds.

Our model comprises two units that have a horizontal or lateral relationship (this is another departure from the literature, which has focused on vertical integration). We think of a unit as an irreducible set of activities that it would be meaningless to break up further. Each unit makes a decision that affects the other unit, i.e., there are externalities. We have in mind strategic decisions of the sort mentioned earlier, which are so significant that they warrant consideration of an organizational structure that best supports them. For example, the units may be deciding whether to adopt a common standard or platform for their technology or product. Later in the paper we will use the model to interpret Cisco’s approach to platform leadership and acquisitions, especially its decision to purchase StrataCom, a leading supplier of a new transmission technology.

Each unit has a binary decision: it can choose “Yes” or “No”. Moreover, we simplify matters further by supposing that there are only two aggregate outcomes, which we term “coordination” or “non-coordination”. Coordination occurs if and only if both units choose Yes. That is, each party can veto the standard by choosing No. Restricting attention to binary choices simplifies the

\(^4\) For a summary and discussion, see Hart (2008).
analysis. But it is also a natural way of studying major strategic decisions such as Cisco’s adoption of StrataCom’s technology.\(^5\)

The decision in each unit is *ex ante* non-contractible, but *ex post* contractible. Each unit has a boss. The boss has the right to make the decision in that unit *ex post*; that is, the boss has residual control rights. In the simplest version of our model the boss is equivalent to an owner; however, in extensions the boss and owner can be different. We will compare two leading organizational forms. In the first, *non-integration*, the units are separate firms, and the unit managers are the bosses. In this case the unit managers take the Yes/No decisions. In the second, *integration*, the units are part of a single firm, and a professional manager is the boss; the managers are on fixed wage employment contracts. In this case the boss instructs the managers whether to choose Yes or No, and the managers must follow these instructions (they are contractible); however, the managers may shade on performance. These are not the only possibilities. For example, one could consider another form of integration where one of the unit managers is the boss (see Section 6). However, the main insights of our analysis can be obtained from the two leading forms.

A key ingredient in our model is the assumption that each unit generates two kinds of benefit: monetary profit, which is transferable with ownership, and private benefits, which are non-transferable. Private benefits may arise from various sources. They could reflect job satisfaction among the workers. Employees care about the size or scope of their company; this could be one reason why smaller companies pay less on average than larger companies (see, e.g., Schoar (2002) on pay in plants of conglomerates versus stand alone plants). In high-tech industries employees often have their human capital tied to particular technologies. Strategic choices concerning technology will therefore carry significant private consequences. Private benefits can also be viewed as a reduced form model of different beliefs held by managers and workers about the consequences of strategic choices (for an explicit analysis of differences in beliefs with organizational implications, see Van den Steen (2005)). In high-tech industries different visions

\(^5\) By focusing on a dichotomous decision, such as the choice of technology, we are singling out this decision as especially important relative to the myriad of other decisions that will follow.
about the future path of particular technologies are held with passion and influence both the costs of hiring and the decisions undertaken. The Cisco case that we will discuss later supports the view that private benefits are very important for the company and influenced its decision making.

The role of private benefits in our analysis can be illustrated as follows. Denote the pair of profits and private benefits (measured in money) accruing to each unit by \((v_A, w_A)\) and \((v_B, w_B)\), respectively. To simplify the analysis, assume that the manager is the only worker and hence private benefits refer to his job satisfaction.\(^6\) As well, assume that the boss of a unit can use her residual rights of control to divert all the profit from that unit to herself. This rules out profit-sharing as a way to influence incentives. Profit sharing would alleviate, but not eliminate, the effects we describe. Then, if the units are non-integrated and manager \(A\) is the boss of unit \(A\) and manager \(B\) the boss of unit \(B\), manager \(A\) ’s payoff will be \(v_A + w_A\) since he diverts the profit from unit \(A\) and cares about his own private benefits, and manager \(B\) ’s payoff will be \(v_B + w_B\) for similar reasons. In contrast, if units \(A\) and \(B\) are integrated, then, if a (professional) outsider is the boss, her payoff will be \(v_A + v_B\), since she diverts all the profit and does not care about private benefits.

As a benchmark, note that social surplus is given by \(v_A + v_B + w_A + w_B\).

The exact analysis is a little more complicated because the different outcomes that occur under the various organizational forms lead to aggrievement, and the deadweight losses from shading must be taken into account. Moreover, the opportunity to shade may depend on the nature of the relationship between the parties. This suggests a distinction between two forms of non-integration. In one, “non-integration without collaboration”, the relationship between the units is terminated if non-coordination occurs, and the units cannot shade against each other under non-coordination. In the other, “non-integration with collaboration”, the relationship persists and

\(^6\) We will show in Section 3 that the analysis extends to the case where private benefits accrue to everyone working in the unit.
shading can occur under non-coordination. In contrast we suppose that shading is always possible under integration: the parties continue to have a relationship.

Returning to the payoff functions, note the key point that integration results in less weight being placed on private benefits than non-integration. Under non-integration, \(w_d, w_b \) each appears in one boss’s objective function. In contrast, under integration the \(w \) ‘s fails to appear in the overall objective function. However, this diminished influence of private benefits is offset by the fact that, under integration, total profits, rather than individual unit profits, are maximized.\(^7\)

In summary, under non-integration, bosses have the right balance between private benefits and profits, but are parochial (they do not take into account their effect on the other unit), while, under integration, they have the right balance between units, but ignore private benefits. In our model, where the only issue is whether the units coordinate, we show that non-integration and integration make the opposite kind of mistake. Non-integration leads to too little coordination. This happens if the benefits from coordination are unevenly divided across the units. One unit may then veto coordination even though it is collectively beneficial. In contrast, under a weak assumption—specifically, that coordination represents a reduction in “independence” and therefore causes a fall in private benefits—integration leads to too much coordination.\(^8\)

We analyze the above model in Sections 2 and 3.\(^9\) In Section 4, we generalize the model to allow for delegation of decision-making authority under integration. We argue that it is hard to make

\(^7\) One could let the choice of a boss be part of the initial design. We discuss this further in Section 6.

\(^8\) In our model the boss of an integrated firm has relatively broad objectives because he diverts (all of) the profit from the units under his control. We believe that a boss may have broad objectives for other reasons: he may be judged according to how well all the units under his control perform, or obtain job satisfaction from their success.

\(^9\) In a previous version of the paper we assumed that decisions were non-contractible both ex ante and ex post, and did not adopt the “contracts as reference points” approach. We obtained a similar trade-off between non-integration and integration but our approach raised some questions. (In independent work, Baker et al. (2008) also obtain a similar trade-off to ours under the assumption that decisions are ex post non-contractible.) First, if a decision is ex post non-contractible, how does a boss get it carried out except by doing it herself? Second, even if decisions are ex post non-contractible, as long as decision rights can be traded ex post, then it is unclear why ex ante organizational form matters (in the absence of non-contractible investments). The parties could just rely on ex post Coasian bargaining of decision rights to achieve an optimum. Finally, the “ex post non-contractibility” approach by itself does not yield an analysis of delegation (see below).
sense of delegation in much of the literature, since it is unclear why the boss cannot change her mind *ex post* and take back the decision rights that she has delegated. The behavioral approach can help here. We assume that reversing delegation is regarded by the subordinates as a “breach of promise” or “hold-up” and leads to increased levels of aggrievement and shading. This makes delegation a credible commitment device: the boss will reverse herself only in “extreme” states of the world. We show that integration with delegation can be a valuable intermediate organizational form between non-integration and integration. Under delegation, managers get their way in states of the world where decisions matter significantly more to them than to the boss. However, in states of the world where the boss cares a lot about the outcome, either managers will do what the boss wants of their own accord, given the threat of shading by the boss, or the boss will take back the decision rights.

The interpretation that private benefits are enjoyed by a single manager is restrictive. In Section 2 we briefly consider a second interpretation of the model that applies to the case where the units are large companies, and private benefits refer to the aggregate job satisfaction of workers. In this interpretation we relax the assumption that the boss can divert all the profit.

Our paper is related to a number of ideas that have appeared in the literature. First, there is an overlap with the literature on internal capital markets; see particularly Stein (1997, 2002), Scharfstein and Stein (2000), Rajan et al. (2000), Brusco and Panunzi (2005), and Inderst and Laux (2005). This literature emphasizes the idea that the boss of a conglomerate firm, even if she is an empire builder, is interested in the overall profit of the conglomerate, rather than the profits of any particular division. As a result, the conglomerate boss will do a good job of allocating capital to the most profitable project (“winner-picking”). Our idea that the professional boss of an integrated firm maximizes total profit is similar to this; the main differences are that the internal capital markets literature does not stress the same cost of integration as we do – the insufficient emphasis on private benefits – or allow for the possibility that the allocation of capital can be done through the market (in our model, the market is always an alternative to centralized decision-making), or consider standard setting. Second, the idea that it may be efficient for the firm to have narrow scope and/or choose a boss that is biased toward particular
workers is familiar from the work of Shleifer and Summers (1988), Rotemberg and Saloner (1994, 2000), and Van den Steen (2005). These papers emphasize the effect of narrow scope and bias on worker incentives rather than on private benefits or wages, but the underlying premise, that workers care about the boss’s preferences, is the same. However, none of these papers analyzes firm boundaries. Third, several recent works explore firm boundaries and internal organization using the idea that some actions are non-contractible ex ante and ex post but may be transferable through ownership; see, e.g., Aghion et al. (2004), Alonso et al. (2008), Baker et al. (2008), Bolton and Dewatripont (2005), Hart and Moore (2005), Holmstrom (1999), Mailath et al. (2004), and Rantakari (2008). We have discussed in footnote 9 some reasons why we have not followed the “ex post non-contractibility” approach here.

We should point out how our analysis of delegation differs from the treatment of authority in Aghion and Tirole (1997) (see also Baker et al. (1999)). In Aghion and Tirole, a boss defers to a subordinate in situations where the subordinate has superior information; the subordinate’s position or title has no significance. In contrast, we are interested in situations where allocating authority to someone has meaning. It is important to note that inside a firm this corresponds to real rather than formal authority in Aghion and Tirole’s sense: if the board of directors appoints someone as unit head, say, it can legally always change its mind and take the authority back (as Baker et al. (1999) note). However, our model contains a friction: designating someone as unit head and then reversing the decision is costly given that reversal increases aggrievement (by the unit manager and the unit workers, given that the new boss will have different preferences.).

The paper is organized as follows. The basic model is presented in Sections 2 and 3. In Section 4 we analyze delegation. Section 5 illustrates the model using Cisco’s approach to platform leadership through acquisitions. Finally, Section 6 concludes.

2. A Basic Model of Coordination

Our model concerns two units A and B that have a horizontal or lateral relationship: they operate

10 In Baker et al. (1999), reversal is also costly given that it is a breach of a relational contract.
in the same output or input markets. Each unit makes a decision that affects the other unit. For example, the units may be deciding whether to adopt a common standard or platform for their technology or product. Each unit has a single manager (no workers). For simplicity, we focus on a basic coordination choice. Each unit has a binary decision: it can choose “Yes” (\(Y\)) or “No” (\(N\)). There are two aggregate outcomes: “coordination” or “non-coordination”. Coordination occurs if and only if both units choose \(Y\). The timeline is as in Figure 1. At the beginning, an organizational form is selected—specifically, whether the units should be separate firms (non-integration, i.e., there are two bosses) or should merge into one firm (integration, i.e., there is one boss). Next, each unit chooses \(Y\) or \(N\). Finally, the payoffs are realized.

Each unit generates two kinds of benefit: monetary profit \(v\) and private (non-transferable) benefits \(w\) in the form of job satisfaction for the manager working in the unit (private benefits are measured in money). We suppose that the boss of the unit can divert all the profit from that unit to herself.\(^{11}\) In contrast, the private benefits always reside with the managers. We represent payoffs from different outcomes in the following matrix. We assume that these payoffs are non-verifiable and, for simplicity, perfectly certain. Without loss of generality we normalize so that monetary profit and private benefits under non-coordination are zero in both units.

\(^{11}\) One justification is that the boss can use her residual control rights to authorize side-deals with other companies she owns, and this enables her to siphon profit out of the unit.
Here, unit A is the row player, and unit B is the column player. Subscripts refer to units, with v representing profit and w private benefits.

It will be convenient to introduce the notation

\[(2.1) \quad \Delta z_A \equiv \Delta v_A + \Delta w_A, \quad \Delta z_B \equiv \Delta v_B + \Delta w_B. \]

Here, \(\Delta z_A \) (resp., \(\Delta z_B \)) refers to the change in total surplus in unit A (resp., unit B) from coordination, and \(\Delta z_A + \Delta z_B \) equals the change in aggregate social surplus.

As noted in the introduction, private benefits refer (broadly) to job satisfaction or on-the-job consumption. It is reasonable to suppose that part of job satisfaction stems from the ability to pursue an independent course or agenda. Thus, we will assume that coordination leads to a reduction in private benefits:

\[(2.2) \quad \Delta w_A \leq 0, \Delta w_B \leq 0.\]

We put no restrictions on whether coordination increases or decreases profits; moreover, even if coordination increases total profits, profits may rise by more or less than the fall in private benefits, i.e., \((Y, Y)\) may be more (socially) efficient than \((N, N)\) \((\Delta z_A + \Delta z_B > 0)\), or less \((\Delta z_A + \Delta z_B < 0)\).

We will focus on two leading organizational forms:

<table>
<thead>
<tr>
<th>Unit A</th>
<th>Unit B</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A: (\Delta v_A, \Delta w_A)</td>
<td>A: 0, 0</td>
</tr>
<tr>
<td></td>
<td>B: (\Delta v_B, \Delta w_B)</td>
<td>B: 0, 0</td>
</tr>
<tr>
<td>N</td>
<td>A: 0, 0</td>
<td>A: 0, 0</td>
</tr>
<tr>
<td></td>
<td>B: 0, 0</td>
<td>B: 0, 0</td>
</tr>
</tbody>
</table>

Table 1
(1) **Non-integration:** Manager \(A\) is the boss of unit \(A\) and manager \(B\) is the boss of unit \(B\). Each manager diverts profit and receives private benefits from his unit, and so manager \(A\)'s payoff is \(v_A + w_A\), and manager \(B\)'s is \(v_B + w_B\).

(2) **Integration:** A professional manager (an outsider) is the boss of both units and managers \(A\) and \(B\) are subordinates. The boss receives \(v_A + v_B\). The unit managers are under fixed wage employment contracts and each manager receives the sum of the wage and private benefit in his unit.

(1) and (2) are not the only possible organizational forms. If the units are under common ownership, manager \(A\) (resp., manager \(B\)), rather than a professional, could be the boss; her payoff would then be \(v_A + v_B + w_A\) (resp., \(v_A + v_B + w_B\)). Furthermore, even if the units are separately owned, they could be run by a professional manager (it is even possible that manager \(A\) could be the boss of unit \(B\) and vice versa). However, for simplicity we focus on (1) and (2).

Organizational form and contracts are determined at date 0. We will assume, as in the standard incomplete contracts literature, that at this stage the coordination decisions are too complicated to specify in an *ex ante* contract; however, authority over these decisions can be allocated. We will take the view that the boss of each unit has residual rights of control, which gives her the legal authority to take the \(Y/N\) decisions in her unit. *Ex post* the \(Y/N\) decisions can be contracted on. Under non-integration each unit manager chooses \(Y\) or \(N\) in his unit. Under integration, the overall boss instructs the unit managers to choose \(Y\) or \(N\). We will suppose that the unit managers must follow these instructions— they are contractible—but the managers may choose to shade (see below)\(^{12}\). Shading may also occur under non-integration (again, see below).

\(^{12}\) We do not allow managers to quit within a period; that is, we suppose that their employment contract is binding for one period. As a result, if a manager did not follow instructions he would be in breach of contract. For discussions of this and other views of the employment relationship, see Hart and Moore (2008) and Van den Steen (2009). See also footnote 16.
As discussed in the Introduction, we use the “contracts as reference points” approach of Hart and Moore (2008) to justify the particular contracting assumptions that we make. According to this approach a contract – an organizational form in this case – negotiated under *ex ante* competitive conditions delineates or circumscribes parties’ feelings of entitlement *ex post*. In particular, a contracting party does not feel entitled to an outcome *outside* those specified by the contract or organizational form. However, parties may feel entitled to different outcomes *within* the contract or organizational form. A party who does not receive what he feels entitled to is aggrieved and shades on performance. We suppose that shading reduces the payoff of the shaded against party but does not affect the payoff of the party doing the shading. Shading creates deadweight losses.

Specifically, following Hart and Moore (2008), we assume that each party feels entitled to his most preferred outcome or decision within the contract, and that a party who receives k_i less than his maximum payoff will be aggrieved by k_i and will shade to the point where the other parties’ payoffs fall by θk_i. Here θ is an exogenous shading parameter, assumed the same for all parties, and $0 < \theta < 1$. Thus the total deadweight loss from shading is $\theta \sum_i k_i$.

The assumption that contracts are reference points provides a natural reason for parties to pin things down in an initial contract. A contract that is too flexible, that is, that specifies too little, can lead to a lot of aggrievement and shading *ex post*. The downside of a rigid contract is that it is harder for the parties to adjust to new circumstances.\[13\] Even though there is no payoff uncertainty in our model, our assumption that decisions become contractible only *ex post* constitutes a change in circumstances that makes the *ex ante* choice of organizational form relevant for the deadweight losses from aggrievement, as will become clear below.

There is a further consideration about shading: the ability of a party to shade may depend on the nature of the transaction that the party is engaged in. For example, under non-integration if the units fail to coordinate on a standard or platform they may no longer have dealings with each other, which will reduce shading possibilities. For this reason we will distinguish between two

\[13\] In simple cases, Hart and Moore (2008) show that it is optimal for the parties to write a contract that fixes prices or wages and allocates decision-making authority to one party.
forms of non-integration. In one, “non-integration without collaboration”, the parties’ relationship ends in the absence of adoption of a standard and so shading is not possible under non-coordination. In the second, “non-integration with collaboration”, the parties have a broader relationship that continues beyond the standardization decision and so shading is possible even under non-coordination. In contrast, under integration, we suppose that shading is always possible: the parties continue to have a relationship.

In our discussion of the Cisco-StrataCom relationship in Section 5 we will argue that, before StrataCom was acquired, their relationship was best described as “non-integration with collaboration.”

Under the aggrievement/shading assumptions of the Hart-Moore model, \(\text{ex post} \) renegotiation is not costless since each party will feel entitled to the best possible outcome in the renegotiation, and they cannot all be satisfied and will shade. Moreover, to the extent that renegotiation reopens consideration of the terms, and entitlements, underlying existing contracts, renegotiation can make all parties worse off. In the analysis below, we will rule out \(\text{ex post} \) renegotiation for simplicity. However, we believe that our results could be generalized to \(\text{ex post} \) renegotiation along the lines of Hart (2009).

A final assumption we make is that Coasian bargaining at the \(\text{ex ante} \) stage ensures that organizational form is chosen to maximize expected future surplus net of shading costs (lump sum transfers are used to redistribute surplus). That is, we suppose that at least one side of the market is competitive \(\text{ex ante} \) so that each side achieves the best outcome they could get in negotiating. Therefore there is no aggrievement or shading at the \(\text{ex ante} \) stage. In contrast, there is the potential for aggrievement at the \(\text{ex post} \) stage, since the parties are locked in then.

3. Optimal Organizational Form

In this section we analyze optimal organizational form. We compare non-integration without collaboration, non-integration with collaboration, and integration. In each case we suppose that
the *ex ante* incomplete contract the parties write fixes prices or wages and allocates authority to one party (see Hart and Moore (2008)). Also there is no renegotiation.

Non-integration without collaboration

Under non-integration, manager A’s payoff is \(v_A + w_A \), manager B’s payoff is \(v_B + w_B \), and either manager can veto coordination by choosing \(N \).

It is useful to distinguish three cases.

Case 1: \(\Delta z_A \leq 0, \Delta z_B \leq 0 \).

The managers’ preferences are aligned. Coordination does not occur since nobody wants it, and given that there is no disagreement there is no aggrievement. Social surplus is given by:

\[
(3.1) S = 0.
\]

Case 2: \(\Delta z_A \geq 0, \Delta z_B \geq 0 \).

The managers’ preferences are aligned. This time both parties want coordination and so coordination occurs without aggrievement. Social surplus is given by:

\[
(3.2) S = \Delta z_A + \Delta z_B.
\]

Case 3: \(\Delta z_i < 0, \Delta z_j > 0 \) (\(i \neq j \)).

Now there is a conflict. Manager i does not want coordination and can veto it by choosing \(N \). Since under non-integration without collaboration shading by manager j is infeasible if the parties do not coordinate, manager i will not hesitate to exercise his veto and the outcome will be non-coordination. Social surplus is given by:

\[
14 \text{ We do not consider contracts that specify a price range rather than a single price. For a discussion of such contracts, see Hart and Moore (2008).}
\]

\[
15 \text{ Note that, in Case 2, } (N, N) \text{ is a Nash equilibrium along with } (Y, Y); \text{ however, we will suppose that parties do not pick a Pareto-dominated equilibrium.}
\]
(3.3) \(S = 0 \).

We see that the first-best, coordinate if and only if

\[(3.4) \quad \Delta z_A + \Delta z_B \geq 0,\]

is achieved in Cases 1 and 2, but may not be achieved in Case 3. This is the problem of winners and losers. Even though aggregate surplus may rise, the distribution of the gains may be such that one party loses out, and this party will veto coordination.

In summary, under non-integration without collaboration, whenever coordination occurs it is efficient (Case 2 implies (3.4)); but coordination may not occur when it is efficient ((3.4) does not imply Case 2).

Non-integration with collaboration

Now shading is possible even under non-coordination. Cases 1 and 2 remain the same. However, under Case 3, manager \(i \) may choose not to veto coordination given that manager \(j \) will be aggrieved – by the difference between his payoff under the outcome he wanted, coordination, and the outcome that occurred, non-coordination – and will shade in proportion to this difference. That is, manager \(j \) will be aggrieved by \(\Delta z_j \) and will shade by \(\theta \Delta z_j \). Coordination will occur if the costs of shading imposed by manager \(j \) exceed manager \(i \)'s disutility from coordination:

\[(3.5) \quad \Delta z_i + \theta \Delta z_j \geq 0.\]

If (3.5) holds, manager \(i \) is a reluctant coordinator and will be aggrieved by \(-\Delta z_i \) because the best outcome for him would have been not to coordinate. Thus manager \(i \) will shade by \(-\theta \Delta z_i \). Note that (3.5) implies
and so manager j still wants to coordinate in spite of this shading. On the other hand, if (3.5) does not hold, coordination will not occur but manager j will shade by $\theta \Delta z_j$.

Social surplus is thus given by

$$(3.7) \quad S = \Delta z_A + \Delta z_B + \theta \Delta z_j \quad \text{if (3.5) holds,}$$

$$- \theta \Delta z_j \quad \text{if (3.5) does not hold.}$$

Again the first-best is achieved in Cases 1 and 2, but may not be in Case 3. It is easy to see that $(3.5) \Rightarrow (3.4)$, and so whenever coordination occurs it is efficient. However, as previously, coordination may not occur when it is efficient. Also there may be shading.

Integration

We divide the analysis into two cases.

Case 1: $\Delta v_A + \Delta v_B \leq 0$.

The managers’ and bosses’ preferences are aligned (given (2.2)). Coordination does not occur since no one wants it, and, given that there is no disagreement, there is no shading. Social surplus is given by:

$$(3.8) \quad S = 0.$$

Case 2: $\Delta v_A + \Delta v_B > 0$.

Now the boss wants coordination, but the managers don’t, and they will be aggrieved by $\Delta w_A + \Delta w_B$ and will shade by $\theta(\Delta w_A + \Delta w_B)$ if it occurs. The boss will coordinate if and only if
her payoff net of shading costs is higher:

\[(3.9) \quad \Delta v_A + \Delta v_B + \theta(\Delta w_A + \Delta w_B) \geq 0.\]

In other words, the boss partly internalizes the wishes of her subordinates. On the other hand, if
(3.9) does not hold, the boss will go along with what the managers want and will not coordinate. However, in this case, the boss is aggrieved by $\Delta v_A + \Delta v_B$ since she is not getting her preferred outcome, and so she will shade to the point where the unit managers’ payoffs fall by $\theta(\Delta v_A + \Delta v_B)$.

Social surplus is thus given by

\[(3.10) \quad S = \Delta z_A + \Delta z_B + \theta(\Delta w_A + \Delta w_B) \quad \text{if (3.9) holds,}\]
\[\quad - \theta(\Delta v_A + \Delta v_B) \quad \text{if (3.9) does not hold.}\]

The first-best is achieved in Case 1 but not in Case 2. In Case 2, there is too much coordination relative to the first-best ((3.4)=> (3.9) but not vice versa), and too much shading.

Define an outcome to be first-best efficient if it maximizes total surplus ignoring shading costs. Then we have established

Proposition 1. Non-integration errs on the side of too little coordination (when coordination occurs it is first-best efficient, but it may be first-best efficient and not occur), while integration errs on the side of too much coordination (when coordination is first-best efficient it occurs, but it may occur even when it is not first-best efficient). If (N, N) is first-best efficient, non-integration without collaboration achieves the first-best. If (Y, Y) is first-best efficient,
integration leads to coordination, but integration may not be optimal given the deadweight losses from shading.16

An Alternative Interpretation of Private Benefits

So far, we have emphasized the interpretation where the private benefits w_i are enjoyed by a single manager in each unit, who is the boss under non-integration and a subordinate under integration. However, there is a second interpretation of the model that is of interest. We can imagine that the private benefits refer to the job satisfaction of unit i workers and that some bosses have goals that are (partially) congruent with those of the workers, i.e., they care about the same things. In particular, suppose that there are three types of bosses, unit A enthusiasts with preferences $m + \lambda_A w_A$; unit B enthusiasts with preferences $m + \lambda_B w_B$; and professional managers with preferences m. Here, m is money and λ_A, λ_B represent congruence between a boss’s goals and those of unit A and B workers.

Suppose now that a boss can divert a fraction $\alpha < 1$ of total profit toward herself; one can imagine that she uses this profit for perks or empire-building activities that benefit her alone - fancy offices, secretaries, pet projects, etc. Denote profit by v. Then a unit i enthusiast will maximize

\begin{equation}
(3.11) \quad \alpha v + \lambda_i w_i
\end{equation}

while a professional manager will maximize v.17 If we make the simplifying assumption that $\alpha = \lambda_A = \lambda_B$, this yields the same objective function for the different kinds of bosses as in the

16 We have made the assumption that unit managers are locked in for a period and cannot quit. If quitting were possible, then under integration the boss would be forced to internalize some of the managers’ private benefits since if she pursued profit too much at the expense of private benefits, managers would leave. Obviously, quitting becomes more of an issue in a multi-period model where decisions are long-term, and a decision that reduces managerial independence might force the boss to pay higher wages in the future. In many interesting situations, however, it is plausible that managers and workers are not on the margin of quitting, perhaps because they have made relationship-specific investments or they are paid efficiency wages. When managers and workers are not on the margin, our analysis is likely to generalize.

17 With partial diversion, it may be desirable to give the manager of unit A a share of the residual profits of unit B in order to get closer to first-best, but we will not pursue this possibility here.
model without workers described above.18

In this interpretation, the choice of organizational form is made by the initial owner(s) of units A and B at the beginning of the period. They must decide whether the units should be separate (non-integration) or together (integration) and what kind of boss to put in charge. Assume that owners face a competitive labor market and wages are agreed up front. Then the (total) wage ω_i for unit i workers will satisfy

\begin{equation}
\omega_i + w_i = U,
\end{equation}

where U is the (total) market clearing reservation wage and w_i refers to (expected) worker private benefits. In other words, a reduction in anticipated private benefits leads to an increase in the wages the firm needs to pay.19 Suppose that the initial owner(s) wish to sell out and retire, i.e., they are interested only in money. Then, given that side-payments are possible, organizational form will be selected to maximize the total value of the two units net of wages and shading costs (we ignore the private benefits and remuneration of bosses).

We may conclude that the analysis of this second interpretation of the model is very similar to the previous one.

4. Delegation

We now consider a form of governance that is intermediate between integration and non-integration: integration with delegation, which we will refer to as delegation for short. Under delegation, the professional boss delegates her formal authority over decision rights to the unit

18 It obviously matters that there is no boss who is an enthusiast for both units A and B. Under integration, such a boss would maximize $\alpha(v_A + v_B) + \lambda_A w_A + \lambda_B w_B$, and if $\alpha = \lambda_A = \lambda_B$, this is the first-best objective function.

19 There is some evidence consistent with this. Schoar (2002), in a study of the effects of corporate diversification on plant level productivity, finds that diversified firms have on average 7% more productive plants, but also pay their workers on average 8% more than comparable stand alone firms.
managers.20 However, because the boss is legally in charge, there is nothing to stop her from changing her mind and taking back the decision rights \textit{ex post}. We refer to the taking back of decision rights as a \textit{reversal}: we assume that the timing is such that a reversal takes place \textit{ex post} before managers make their decisions. We suppose that the subordinates regard a reversal as a “breach of promise” or a “hold-up”, and this leads to increased levels of aggrievement and shading: the shading parameter rises from θ to $\tilde{\theta}$, where $1 \geq \tilde{\theta} \geq \theta$. If $\tilde{\theta} > \theta$, and there is uncertainty, we will see that delegation can have value as a partial commitment device.

As in our discussion of integration in Section 3, there are two cases:

\textbf{Case 1:} $\Delta v_A + \Delta v_B \leq 0$.

Preferences are aligned, and no one wants coordination. So coordination does not occur, and there is no shading. Social surplus is given by $S = 0$.

\textbf{Case 2:} $\Delta v_A + \Delta v_B > 0$.

Now there is a conflict. Ignore reversal for the moment. If the managers do not coordinate, the boss will be aggrieved. Suppose that the boss divides her shading 50:50 between the two parties21. Then the managers’ payoffs are given by $-\frac{\theta}{2}(\Delta v_A + \Delta v_B), i = A, B$. So the managers will choose to coordinate if

\begin{equation}
\begin{aligned}
\Delta w_A + \frac{\theta}{2}(\Delta v_A + \Delta v_B) &\geq 0, \\
\Delta w_B + \frac{\theta}{2}(\Delta v_A + \Delta v_B) &\geq 0.
\end{aligned}
\end{equation}

When (4.1) holds, the managers coordinate reluctantly. They feel aggrieved and will shade, reducing the social surplus down to

20 Although the boss delegates the right to make \textit{Y/N} decisions we suppose that she retains the ability to divert unit profit.

21 This is a simplifying assumption and other possibilities could be explored.
Suppose next that (4.1) does not hold. Then coordination will not occur unless the boss reverses the decision and forces coordination. Forced coordination leads to aggrievement levels of $\Delta w_A + \Delta w_B$ for the managers. Shading costs equal $\bar{\theta}(\Delta w_A + \Delta w_B)$, given that the shading parameter rises from θ to $\bar{\theta}$. Thus, the boss reverses if and only if

(4.3) \[\Delta v_A + \Delta v_B + \bar{\theta}(\Delta w_A + \Delta w_B) \geq 0. \]

So if neither (4.1) nor (4.3) holds, coordination does not occur and

(4.4) \[S = -\theta(\Delta v_A + \Delta v_B), \]

whereas, if (4.1) does not hold but (4.3) does, coordination occurs, and

(4.5) \[S = \bar{\theta}(\Delta w_A + \Delta w_B). \]

We summarize this discussion in the following proposition.

Proposition 2. In the delegation model

A) If $\Delta v_A + \Delta v_B \leq 0$, coordination does not occur and social surplus is given by

\[S = 0. \]

B) If $\Delta v_A + \Delta v_B > 0$ and (4.1) holds, managers will coordinate reluctantly and

\[S = \theta(\Delta w_A + \Delta w_B). \]

C) If $\Delta v_A + \Delta v_B > 0$ and (4.1) does not hold but (4.3) does, the boss forces coordination and

\[S = \bar{\theta}(\Delta w_A + \Delta w_B). \]
If $\Delta v_A + \Delta v_B > 0$ and neither (4.1) nor (4.3) holds, then coordination does not occur, but the boss is aggrieved and

$$S = -\theta (\Delta v_A + \Delta v_B).$$

It is useful to compare the outcome under delegation with that under integration. It is easy to see that (4.1) implies (3.9), given that $\theta < 1$ and also that (4.3) implies (3.9). It follows that, whenever coordination occurs under delegation, i.e., in cases B) or C) above, coordination occurs under integration too. However, since (3.4) implies (4.3) (given that $\overline{\theta} \leq 1$), there is still too much coordination under delegation relative to the first-best, i.e., coordination occurs whenever it is efficient, but also sometimes when it is inefficient.

Proposition 3. Under delegation there is (weakly) less coordination than under integration, but still too much coordination relative to the first-best.

Proposition 3 is intuitive. If unit managers reluctantly coordinate under delegation, i.e., reversal is not required, then a professional manager would also coordinate under integration. And if a professional manager would reverse delegation to achieve coordination, incurring higher aggrievement and shading costs, then she would surely coordinate if reversal were not required. Finally, since $\overline{\theta} \leq 1$, if coordination is efficient, the boss will be prepared to incur the costs of reversal to achieve it.

Thus, the tradeoff between integration and delegation is the following: both yield coordination too much of the time, but delegation yields it less of the time and therefore comes closer to the first-best. However, to the extent that the boss reverses delegation to achieve coordination, the deadweight losses from shading are higher under delegation than under integration.

The next proposition shows that delegation is never strictly optimal under certainty.
Proposition 4. Under perfect certainty, non-integration or integration can be strictly optimal, but delegation is never strictly optimal.

Proof. Suppose first that the equilibrium outcome under delegation is \((N, N)\). Then the equilibrium outcome under non-integration cannot be worse than this: either it is \((N, N)\) with less shading, or it is \((Y, Y)\), which is Pareto superior.

Suppose next that the equilibrium outcome under delegation is \((Y, Y)\). If (4.1) holds, so does (3.9), and so coordination occurs under integration with the same shading costs. On the other hand, if (4.1) does not hold, then (4.3) must hold, since otherwise the outcome would be \((N, N)\). But if (4.3) holds, then (3.9) holds, and so coordination again occurs under integration with lower shading costs.

Finally, it is easy to find parameters such that \((N, N)\) is socially optimal, and non-integration yields \((N, N)\), while integration and delegation yield \((Y, Y)\); and parameters such that \((Y, Y)\) is socially optimal, and integration yields \((Y, Y)\), while non-integration and delegation yield \((N, N)\). In other words, non-integration and integration can each be uniquely optimal.

Q.E.D.

Delegation may, however, be superior to either non-integration or integration in a world of uncertainty. For delegation to be better, it is important that \(\bar{\theta} > \theta\). To see this, note that if \(\theta = \bar{\theta}\), (4.1) implies (4.3), and (4.3) and (3.9) are equivalent. Thus, cases B) and C) above are both ones where (3.9) holds. A comparison of cases B)-D) and (3.3) then shows that the outcome under integration with delegation is identical to that under integration. From now on, therefore, we suppose \(\bar{\theta} > \theta\).

Assume that payoffs are drawn from a commonly known probability distribution, and are observed by both parties \textit{ex post} (there is symmetric information). To understand how delegation can be strictly optimal, it is useful to focus on the special case where \(\Delta w_A = \Delta w_B = \Delta w\). Also,
write $\Delta v = \frac{1}{2} (\Delta v_A + \Delta v_B)$. Then the first-best condition for coordination (3.4) is $\Delta v \geq |\Delta w|$, where $| |$ denotes absolute value. If $\Delta v \leq 0$, all organizational forms – non-integration, integration and delegation – yield the same outcome: non-coordination. So assume $\Delta v > 0$. Then the condition for coordination without reversal under delegation (reluctant coordination) becomes $\theta |\Delta v| \geq |\Delta w|$, while the condition for coordination with reversal under delegation (forced coordination) becomes $\Delta v > \theta |\Delta w|$. In contrast, the condition for coordination under integration can be written as $\Delta v \geq \theta |\Delta w|$.

The situation is illustrated in Figure 2, where Δw is fixed and Δv varies. For low values of Δv, $\Delta v \leq \theta |\Delta w|$, there is coordination under neither integration nor delegation. For values of Δv above $\theta |\Delta w|$, there is coordination under integration. In contrast, under delegation, Δv has to reach $\theta |\Delta w|$ before coordination occurs. The good news about delegation relative to integration, then, is that, in the range $\theta |\Delta w| \leq \Delta v \leq \bar{\theta} |\Delta w|$, it achieves a more efficient outcome. The bad news
is that, in the range $\frac{\bar{\theta} \Delta w}{2} \leq \Delta v \leq \frac{\Delta w}{\theta}$, delegation achieves coordination, but with higher shading costs since reversal is required.

It is fairly clear when delegation will dominate integration. Suppose that the probability distribution of Δv is such that Δv is either in the range $\theta |\Delta w| \leq \Delta v \leq \overline{\theta} |\Delta w|$ or in the range $\Delta v \geq \frac{\Delta w}{\theta}$. Then delegation achieves non-coordination when this is efficient, and coordination when this is efficient; moreover, the shading costs are low when coordination occurs since reversal is not required. In contrast under integration coordination would occur also when it is inefficient – i.e., in the range $\theta |\Delta w| \leq \Delta v \leq \overline{\theta} |\Delta w|$.

The intuition is simple. Delegation can be a good way for the boss to commit not to intervene when this is inefficient, given that the costs of intervening, i.e. reversal, are high. Note finally, that over the range where integration with delegation is superior to integration without delegation, integration with delegation will also be superior to non-integration if, when the gains from coordination are large, they are unevenly divided.

5. Platform Leadership and Standards – Cisco’s purchase of StrataCom

In this section we describe a context where we think our approach, broadly interpreted, is particularly relevant – the struggle for platform leadership in the network industry. We use Cisco as an example, because Bunnell (2000) (as well as Gawer and Cusumano (2002)) provides a detailed, informative account of Cisco’s acquisition strategy. We illustrate this strategy with Cisco’s acquisition of StrataCom.

Standards are very important in rapidly evolving industries like information and communication technology. The social benefits from a common standard can be huge, but getting parties to agree to a standard is often difficult, because the benefits from adopting a single standard tend to be
unevenly distributed. Instead, standards tend to be supported through self-enforcing, multi-
lateral cross-licensing agreements and industry consortia.

Naturally, the players owning key technological platforms have a disproportionate say in the
determination of standards, often to the point where they may come to dominate the evolution of
the industry. Therefore, the rewards from winning the battle for platform leadership are huge
(Gawer and Cusumano (2002)) and result in complex strategic games among the contenders. In
these games, acquisition strategies play an important role, for reasons that our model captures at
least in part.

Cisco’s Internet Operating System (IOS) is a technological platform that came to dominate its
industry (the network industry) in the course of the 1990s. Cisco had originally been successful
and grown rapidly thanks to its router technology that served the core network of the Internet.
However, over time, IOS, designed to run the routers, became the de facto technology platform
on which Cisco built its industry dominance (Gawer and Cusumano, pp. 164-176). This was no
accident. When John Chambers became the CEO of Cisco in 1992, he set as his goal to make
Cisco “the architect of the Internet” (Bunnell (2000), p. 79). The value of controlling the
architecture of the network ecosystem was accentuated by the customers’ desire to buy end-to-
end solutions that integrated the underlying technologies into a seamless user experience.

Acquisitions played a key role in achieving Cisco’s goal. Under Chambers’ leadership, Cisco
became the ultimate serial acquirer. Between 1993 and 2000, it bought a total of 71 companies –
23 companies in 2000 alone. Most of the acquired companies were start-ups, bought to fill gaps
in the expanding technological space that Cisco wanted to control. Arguably, the most critical
acquisition that Cisco made in this period was the purchase in 1996 of StrataCom, the leading
provider of a small, but rapidly expanding, new transmission technology, ATM (Asynchronous
Transmission Mode). It is instructive to look at this acquisition in some detail.

ATM was a new, cheaper non-router based technology that was very different from the packet
based router technology (Internet Protocol) that IOS was built for. For ATM to work with Cisco
equipment, IOS had to be adapted. Integrating ATM into IOS meant a major change in Cisco’s leading industry platform.

Deciding what to do about ATM became a big strategic decision for Cisco. The main concern was that ATM might eventually displace significant pieces of Cisco’s own router-based technology. Customers were keen to get ATM into their networks, because it was a more cost efficient technology. Even though the major ATM players (including StrataCom) were still small, they were growing fast. Cisco concluded that ATM had the potential to derail its plans to be the architect of the networking industry and felt it had to respond.

Cisco had three main ways to respond to the ATM threat:

(a) *Non-integration without coordination.* Cisco could decide not to adapt IOS to the ATM standard and hope that ATM would not take hold. ATM’s incompatibility with IOS would make it tough for ATM players to grow very large given IOS’s significant customer base, but it could be a risky and costly battle that Cisco might lose.

(b) *Non-integration with coordination.* Cisco could adapt IOS to ATM without making a major acquisition such as StrataCom. (Cisco had already bought Lightstream, a smaller player, as a safety play, but this had worked out poorly, because of skeptical customer reception; its size was too insignificant and customers weren’t sure that Cisco would support the technology in the long run – as it turns out, a valid concern.) This strategy would require Cisco to work with the leading ATM firms, making it much easier for ATM to grow and usurp Cisco’s technology. In fact, three years earlier Cisco had made an agreement with StrataCom and AT&T to collaborate on the definition of standards and the development of products for ATM, but apparently these efforts did not work out. (In the context of our model this agreement can be interpreted as an attempt at non-integration with collaboration.)
(c) **Integration with coordination.** Cisco could buy StrataCom (or some other major ATM player), adapt IOS to ATM internally, and become an industry leader in the ATM market. This would support Cisco’s ambitions to be the architect of the network industry. By holding the decision rights to both technologies, Cisco could determine how the two technologies should be integrated to provide a seamless customer experience and maximize overall surplus – much of which would flow into Cisco’s pockets, of course, if it could win the platform game.

Cisco chose option (c), the same strategy that it had successfully followed when the switching technology became a threat and it bought Crescendo. Cisco paid 4.7 Billion dollars for StrataCom – by far the most expensive acquisition that it had made until then and an incredibly high price for a start-up with modest earnings. Cisco’s stock price jumped 10% on the announcement of the deal.

How well does this case fit our model?

The price of the deal makes clear that significant joint benefits from coordination were anticipated. Integrating ATM and IOS seamlessly, and in a way that maximized the joint benefits of Cisco and StrataCom rather than those of the whole industry, would give Cisco and StrataCom a much better shot at winning the platform game. Thus, coordination was the preferred option. Next one has to ask whether coordination would have been feasible across the market. But, as noted in the description of option (b), cooperation across the market appeared difficult. We surmise that the reason was the reluctance of StrataCom, the dwarf in the relationship, to cooperate (choose Y), because this would have tilted the playing field too much in favor of the giant Cisco. Arguably, option (b) failed because of an uneven split of the surplus.

The effects on private benefits also have to be considered. Adapting Cisco’s IOS to the new ATM technology was something many Cisco employees disliked, both because ATM was “not invented here,” and because ATM was a cheaper, less sophisticated technology to which Cisco’s sales people strongly objected (Bunnell, p.84). But given the enormous acquisition price, it is
evident that the strategic and financial benefits were judged to be so large that they overwhelmed perceived losses in private benefits within Cisco. The private losses on StrataCom’s side were probably small, and there may even have been private gains (in contrast to (2.2)), given that StrataCom’s technology was adopted. One common reason why entrepreneurial firms sell out to a large player like Cisco (besides the money they get from selling their shares) is that access to a huge customer base brings their projects onto a large stage quickly, enhancing the private benefits enjoyed from the development and increased recognition of their product. Seeing one’s product succeed on a large scale is a big source of satisfaction for entrepreneurs.

Cisco’s acquisition strategy, and the rules that Cisco used to select its favored partners, make clear that Cisco was sensitive to the issue of private benefits. Chambers’ five criteria for partners were these: a common vision; cultural compatibility; a quick win for the shareholders; a long-term win for all constituencies; and geographic proximity (Bunnell (2000), p. 65). Chambers also went to great length to avoid alienating acquired employees, to minimize, we may assume, shading and quits. His strategy was to allow acquired firms to stay as independent as possible within Cisco to retain the spirit of entrepreneurship and worker motivation. Typically, a newly acquired firm only had to make its products compatible with IOS and submit to the purchase and sales systems in Cisco. Otherwise it was largely free to pursue its own agenda. The commitment worked: Cisco had a reputation for being a benevolent, well-liked acquirer.

The Mario rule illustrates Chambers’ efforts to protect acquired employees (Bunnell (2000), p. 37). The rule, named after the CEO of Crescendo, Mario Mazzola, stated that no employee of a newly acquired company could be terminated without the consent of Chambers and the former CEO. We interpret the Mario rule as a form of delegation. Interestingly, Cisco abandoned this rule after the dot.com crash in 2000 when it was forced to lay off thousands of employees because of the deep recession in the IT industry. Evidently, delegated rights are not as secure as ownership rights, but they are not valueless either, a distinction that fits our delegation model well.

It is worth asking whether traditional, hold-up based property rights theories fit the Cisco story as
well or better than ours. In hold-up models as well as our model, there is concern about being locked in and becoming unduly dependent on an outsider – for a service or a key element in one’s strategy. It is clear that there are hold-up concerns in this broad sense also in the Cisco-StrataCom deal. But we do think the essence of the deal was less about hold-ups in the sense of financial extraction, the hallmark of traditional hold-up models; and much more about the ability to control the path of the ATM-IOS integration and its successful development. This is supported by the whole rationale for Cisco’s acquisition strategy. In Chambers’ own words: “With a combination of IP (internet protocol) routing and ATM we can define the Internet of the future” (Bunnell (2002), p 88). Also, the five key criteria for acquisitions seem to have little to do with traditional hold-up stories, but they, together with the meticulous attention to employees in acquired firms, bear witness to the great significance of private benefits.

6. Conclusion

In the traditional property rights model asset ownership affects incentives to invest in human capital, but not \(ex \ post \) outcomes conditional on these investments. In our model decision rights directly affect what happens \(ex \ post \). Our structure is in many ways close to the traditional view of the firm as a technologically defined entity that makes decisions about inputs, outputs and prices. The difference is that our firm does not necessarily maximize profits, either because a boss cares directly about non-transferable private benefits or because the boss is forced to internalize them given that employees can shade. It is this relatively small wrinkle in the traditional model that opens the door to a discussion of boundaries. In the traditional model, barring regulatory constraints, it would be optimal to organize all activity in a single firm.

The “contracts as reference points” approach of Hart and Moore (2008) has two important benefits relative to models based on “\(ex \ post \) non-contractibility”. First, aggrievement plays a central role in explaining the need for an initial choice of ownership: without aggrievement costs (i.e., setting \(\theta = 0 \)) one could equally well choose the optimal ownership structure \(ex \ post \). Second, in a dynamic model with uncertainty, one would expect to see continuous reallocations of decision rights in that case. Reference points and aggrievement bring a natural source of
inertia into dynamic models, making *ex ante* choice relevant. That this source of inertia is empirically relevant is suggested by Cisco’s concern for cultural fit – restructuring can make employees aggrieved, sometimes so much that acquisitions will not happen.

Inertia is also what makes delegation distinct from ownership. How one allocates decision rights within the firm will make a difference. Firms do a lot of internal restructuring and many do major ones several times a decade in response to changes in their strategic situation. These restructurings have powerful effects not only on how the organization operates, but also on how employees feel. They do not come without a cost. The section on delegation is an indication that the approach here could be fruitful for analyzing internal organization and restructurings.

One of the features of our current model is that the outcome of integration does not depend on whether firm A takes over firm B or the other way around. But this is true only because of our simplifying assumption that the integrated firm is run by a professional manager. If firm A acquires firm B and the manager of firm A becomes the boss of the integrated firm the integrated firm’s decisions and direction will undoubtedly reflect manager A’s preferences, private benefits, and views of the world, and vice versa if the manager of firm B becomes the boss. Further, since a boss with skewed preferences is likely to take decisions that will cause aggrievement for employees with different preferences, our theory suggests that the cultural compatibility and fit of an acquisition partner may be of first order importance, something that we saw in Section 5 is consistent with Cisco’s strategy and experience.

To pursue this line further, it would be worthwhile thinking more generally about what makes bosses biased towards their workforces. One reason is that sustained contact with workers fosters friendship and empathy. Wrestling with the same problems, sharing the same information, and having a similar professional background are all conducive to a common vision that aligns interests, particularly on issues such as the strategic direction of the firm. Shleifer and Summers (1988) argue that it may be an efficient long-run strategy for a firm to bring up or train prospective bosses to be committed to workers and other stakeholders (on this, see also Blair and Stout (1999)). Milgrom and Roberts (1988) argue that frequent interaction gives workers the
opportunity to articulate their views and influence the minds of their bosses, sometimes to the detriment of the firm. All these explanations are consistent with our assumption that the boss of a firm with broad scope will put less weight on private benefits than a boss of a firm with narrow scope. With a broader range of activities, the firm’s workforce will be more heterogeneous, making the boss experience less empathy for any given group. Also, the intensity of contact with any particular group will go down, reducing the ability of that group’s workers to influence the boss.

Giving private benefits a pivotal role in the analysis moves the focus of attention away from assets towards activities in the determination of firm boundaries. It is remarkable how few practitioners, organizational consultants, or researchers studying organizations within other disciplines than economics (e.g. sociology and organizational behavior) ever talk about firms in terms of asset ownership. For most of them a firm is defined by the things it does and the knowledge and capabilities it possesses. Coase (1988) makes clear that he too is looking for “a theory which concerns itself with the optimum distribution of activities, or functions, among firms” (p. 64). He further notes that “the costs of organizing an activity within any given firm depend on what other activities the firm is engaged in. A given set of activities will facilitate the carrying out of some activities but hinder the performance of others.” The model we have proposed is in this spirit. In our analysis asset ownership is the means for acquiring essential control rights, but the underlying reason why such control rights are acquired in the first place is that activities need to be brought together under the authority of one boss in order to accomplish particular goals effectively.
REFERENCES

57 (6): 2379-2403.

A.J. (ed.) *Corporate Takeovers: Causes and Consequences*. Chicago: University of
Chicago Press, pp. 33-56.

Free Press.