Imbs’ and Méjean’s

“Elasticity Optimism”

Eaton Comments

IFM Meetings

Summer Institute

July 7, 2008
• The price elasticity of demand for imports

• A venerable topic
papers from my youth:

- Orcutt (1950)
- Kemp (1962)
- Houthakker and Magee (1969)
- Khan (1975)
- Stone (1979)
- Goldstein and Khan (1985)
- Marquez (1990)
• Good thing: place the elasticity in the context of a well-defined demand system with different varieties distinguished by source

• Relate demand elasticities to parameters of the demand system (elasticities of substitution)

Preferences

- upper tier:

\[C = \left[\sum_{k \in K} \alpha_k C_k^{(\gamma-1)/\gamma} \right]^{\gamma/(\gamma-1)} \]

- lower tier

\[C_k = \left[\sum_{i \in I} \left(\beta_{ki} c_{ki} \right)^{(\sigma_k - 1)/\sigma_k} + \left(\beta_{kd} c_{kd} \right)^{(\sigma_k - 1)/\sigma_k} \right]^{\sigma_k/(\sigma_k - 1)} \]
• Object of interest:

\[\eta = \frac{\partial \sum_{k \in K} \sum_{i \in I} p_{ki} c_{ki}}{\partial E} \frac{E}{\sum_{k \in K} \sum_{i \in I} p_{ki} c_{ki}} \]

\[= 1 - \sum_{k \in K} n_k \left[\sigma_k (w_k^M - 1) + \gamma w_k^M (w_k - 1) \right] \]

where

- \(n_k \): share of good \(k \) in total import expenditure
- \(w_k^M \): share total spending on good \(k \) going to imports
- \(w_k \): share of \(k \) in total spending

• Objective here: learn about \(\sigma_k \) to identify \(\eta \).
The methodology: (double difference: time t and reference country c $\Delta^{t,c}$):

$$
\begin{align*}
\Delta^{t,c} \ln s_{kit} &= -(\sigma_k - 1) \Delta^{t,c} \ln p_{kit} + \varepsilon^c_{kit} \quad (D) \\
\Delta^{t,c} \ln p_{kit} &= \frac{\omega_k}{1 + \omega_k} \Delta^{t,c} \ln s_{kit} + \delta^c_{kit} \quad (S)
\end{align*}
$$

ε, δ independent.
- Rewrite as:

\[
\Delta^{t,c} \ln s_{kit} + (\sigma_k - 1) \Delta^{t,c} \ln p_{kit} = \varepsilon^c_{kit} \quad (D)
\]

\[
\Delta^{t,c} \ln p_{kit} - \frac{\omega_k}{1 + \omega_k} \Delta^{t,c} \ln s_{kit} = \delta^c_{kit} \quad (S)
\]
• Multiply the two together and solve to get:
\[
\left(\Delta_t^{t,c} \ln p_{kit}\right)^2 = \theta_1 \left(\Delta_t^{t,c} \ln s_{kit}\right)^2 + \theta_2 \left(\Delta_t^{t,c} \ln p_{kit} \Delta_t^{t,c} \ln s_{kit}\right) + u_{kit}
\]

• Estimate, assuming that for each good \(k \) different varieties have different ratios of variances of demand and supply shocks.

• Parameters of interest \(\sigma_k \) and \(\omega_k \) can be recovered from \(\theta_1 \) and \(\theta_2 \), but a problem emerges is the solution is imaginary.

• Result here: allowing \(\sigma_k \) to vary across goods yields a much higher calculation of \(\eta \) (as foreseen by Orcutt).
• Good thing: bring microevidence and estimation techniques to answer a fundamental macroeconomic question
• But why are we focusing on only the demand side?

• What are we assuming about technology and factor prices?

• Is η a structural parameter across exogenous changes?
 – Text talks of a “change in the exchange rate due to a monetary shock”
 – where are the nominal rigidities?
 – Other shocks: technology, transfer (demand)
• Presumed policy question: how much of a change in relative international prices is needed in response to a macroeconomic shock?

• Answer depends on:
 – the shock
 – the extent of internal resource mobility (traded vs. nontraded)
 – the role of the extensive and intensive margins (Ruhl)

• We need a general equilibrium formulation
Ricardian model (but could be MC, etc.) with country i having efficiency $z_i(j)$ making good j, so that

$$p_{ni}(j) = \frac{c_id_{ni}}{z_i(j)}.$$

where $p_{ni}(j)$ is the cost of good j in n if purchased from i.

Distribution of efficiencies:

$$F_i(z) = \Pr[Z \leq z] = e^{-T_iz^{-\theta}}$$

Price

$$p_n(j) = \min_i \{p_{ni}(j)\}.$$
• Continuum [0, 1] of goods

• Fraction n buys from i:

$$\pi_{ni} = \frac{T_i (c_id_{ni})^{-\theta}}{\Phi_n}. $$

where:

$$\Phi_n = \sum_{i=1}^{N} T_i (c_id_{ni})^{-\theta}. $$
• Demand:

\[
X_n^M(j) = \left[\frac{p_n(j)}{p_n} \right]^{-(\sigma-1)} X_n^M,
\]

where:

\[
p_n = \left[\int_{0}^{\infty} p^{-(\sigma-1)} dG_n(p) \right]^{-1/(\sigma-1)} = \varphi \Phi_n^{-1/\theta}
\]

and \(\varphi \) is a parameter involving \(\theta \) and \(\sigma \) requiring \(\theta > \sigma - 1 \).

• Bilateral trade shares:

\[
\pi_{ni} = \frac{X_{ni}^M}{X_n^M} = \frac{\overline{\pi}_{ni} X_{ni}^M}{\sum_{k=1}^{N} \overline{\pi}_{nk} X_{nk}^M},
\]

where \(\overline{X}_{ni}^M \) is average spending per good in country \(n \) on goods purchased from \(i \).
• Consider a change in c_i to c'_i, with $\tilde{c}_i = c'_i / c_i$ caused by a realignment of deficits from D_n to D'_n.

• Goods market clearing condition:

$$\hat{w}_i Y_i = \sum_{n=1}^{N} \pi'_{ni} \left(\hat{w}_n Y_n + D'_n \right)$$

(ignoring nontradables and intermediates)
Extensive Margin Inoperative

- Change in import shares:

\[
\left(\pi_{ni}^{SR} \right)' = \frac{\pi_{ni} \hat{c}_i^{-}(\sigma-1)}{\sum_{k=1}^{N} \pi_{nk} \hat{c}_k^{-}(\sigma-1)}.
\]

- Change in prices indices:

\[
\left(p_n^{SR} \right)' = p_n \left[\sum_{i=1}^{N} \pi_{ni} \hat{c}_i^{-}(\sigma-1) \right]^{-1/(\sigma-1)}.
\]

- Elasticity of substitution in consumption $\sigma - 1$ matters.
Extension Margin Operative

• Change in import shares:

\[\pi_{ni}' = \frac{\pi_{ni}\hat{c}_i^{\theta}}{\sum_{k=1}^{N} \pi_{nk}\hat{c}_k^{\theta}}. \]

• Change in price indices:

\[p_n' = \varphi \left[\sum_{i=1}^{N} T_i (c_i'd_{ni})^{-\theta} \right]^{-1/\theta} = p_n \left[\sum_{i=1}^{N} \pi_{ni}\hat{c}_i^{-\theta} \right]^{-1/\theta}. \]

• The technology parameter \(\theta \) rather than \(\sigma - 1 \) matters.

• Remember that we need \(\theta > \sigma - 1 \).
Effect of deficit elimination on Relative GDP’s

\[\theta = 8.28 \]
\[\sigma = 2 \]

- Labor mobility and immobility between traded and nontraded sectors.

- How much of a change in relative GDP’s is needed?
<table>
<thead>
<tr>
<th>country</th>
<th>code</th>
<th>GDP</th>
<th>CA</th>
<th>Trade</th>
<th>Manuf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGERIA</td>
<td>alg</td>
<td>85</td>
<td>-11.2</td>
<td>-7.2</td>
<td>11.8</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>arg</td>
<td>153</td>
<td>-3.6</td>
<td>-11.0</td>
<td>9.5</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>aul</td>
<td>659</td>
<td>39.2</td>
<td>21.8</td>
<td>57.5</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>aut</td>
<td>293</td>
<td>-1.2</td>
<td>-4.4</td>
<td>7.3</td>
</tr>
<tr>
<td>BELGIUM/LUXEM</td>
<td>bex</td>
<td>392</td>
<td>-16.6</td>
<td>-20.5</td>
<td>52.6</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>bra</td>
<td>604</td>
<td>-12.5</td>
<td>-26.1</td>
<td>-8.8</td>
</tr>
<tr>
<td>CANADA</td>
<td>can</td>
<td>992</td>
<td>-22.5</td>
<td>-35.7</td>
<td>22.5</td>
</tr>
<tr>
<td>CHILE</td>
<td>chl</td>
<td>96</td>
<td>-1.7</td>
<td>-8.1</td>
<td>-2.4</td>
</tr>
<tr>
<td>CHINA/HK</td>
<td>chk</td>
<td>2106</td>
<td>-87.2</td>
<td>-54.0</td>
<td>-119.4</td>
</tr>
<tr>
<td>COLOMBIA</td>
<td>col</td>
<td>98</td>
<td>0.8</td>
<td>0.8</td>
<td>8.2</td>
</tr>
<tr>
<td>DENMARK</td>
<td>den</td>
<td>245</td>
<td>-6.3</td>
<td>-11.3</td>
<td>9.3</td>
</tr>
<tr>
<td>EGYPT</td>
<td>egy</td>
<td>82</td>
<td>-4.0</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>FINLAND</td>
<td>fin</td>
<td>189</td>
<td>-9.9</td>
<td>-9.6</td>
<td>-17.1</td>
</tr>
<tr>
<td>FRANCE</td>
<td>fra</td>
<td>2060</td>
<td>4.1</td>
<td>7.4</td>
<td>-3.3</td>
</tr>
<tr>
<td>GERMANY</td>
<td>ger</td>
<td>2740</td>
<td>-105.4</td>
<td>-122.9</td>
<td>-278.3</td>
</tr>
<tr>
<td>GREECE</td>
<td>gre</td>
<td>264</td>
<td>13.1</td>
<td>13.9</td>
<td>29.2</td>
</tr>
<tr>
<td>INDIA</td>
<td>ind</td>
<td>689</td>
<td>-7.8</td>
<td>14.5</td>
<td>-11.9</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>ino</td>
<td>254</td>
<td>-1.9</td>
<td>-10.1</td>
<td>-25.1</td>
</tr>
<tr>
<td>IRELAND</td>
<td>ire</td>
<td>183</td>
<td>0.8</td>
<td>-25.5</td>
<td>-68.8</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>isr</td>
<td>122</td>
<td>-3.3</td>
<td>0.1</td>
<td>-2.2</td>
</tr>
<tr>
<td>ITALY</td>
<td>ita</td>
<td>1720</td>
<td>13.4</td>
<td>-4.0</td>
<td>-46.6</td>
</tr>
<tr>
<td>JAPAN</td>
<td>jap</td>
<td>4580</td>
<td>-178.1</td>
<td>-72.4</td>
<td>-385.1</td>
</tr>
<tr>
<td>KOREA</td>
<td>kor</td>
<td>680</td>
<td>-29.1</td>
<td>-26.3</td>
<td>-146.4</td>
</tr>
<tr>
<td>MA/PHI/SING</td>
<td>mps</td>
<td>312</td>
<td>-43.2</td>
<td>-45.9</td>
<td>-58.3</td>
</tr>
<tr>
<td>MEXICO</td>
<td>mex</td>
<td>683</td>
<td>5.8</td>
<td>17.8</td>
<td>20.2</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>net</td>
<td>608</td>
<td>-55.2</td>
<td>-44.4</td>
<td>8.9</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>nze</td>
<td>98</td>
<td>6.3</td>
<td>1.1</td>
<td>10.0</td>
</tr>
<tr>
<td>NORWAY</td>
<td>nor</td>
<td>255</td>
<td>-35.1</td>
<td>-34.9</td>
<td>16.0</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td>pak</td>
<td>113</td>
<td>0.7</td>
<td>6.5</td>
<td>-0.9</td>
</tr>
<tr>
<td>PERU</td>
<td>per</td>
<td>70</td>
<td>-0.1</td>
<td>-1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>por</td>
<td>178</td>
<td>12.7</td>
<td>14.3</td>
<td>9.8</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>rus</td>
<td>592</td>
<td>-59.4</td>
<td>-69.6</td>
<td>-11.7</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>saf</td>
<td>216</td>
<td>7.2</td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>SPAIN</td>
<td>spa</td>
<td>1040</td>
<td>53.5</td>
<td>44.8</td>
<td>61.7</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>swe</td>
<td>349</td>
<td>-27.9</td>
<td>-27.4</td>
<td>-26.2</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>swi</td>
<td>360</td>
<td>-57.1</td>
<td>-32.8</td>
<td>-13.4</td>
</tr>
<tr>
<td>THAILAND</td>
<td>tha</td>
<td>161</td>
<td>-7.1</td>
<td>-6.0</td>
<td>-21.1</td>
</tr>
<tr>
<td>TURKEY</td>
<td>tur</td>
<td>302</td>
<td>15.2</td>
<td>12.5</td>
<td>18.0</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>unk</td>
<td>2150</td>
<td>32.3</td>
<td>74.2</td>
<td>103.5</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>usa</td>
<td>11700</td>
<td>649.7</td>
<td>667.0</td>
<td>438.4</td>
</tr>
<tr>
<td>VENEZUELA</td>
<td>ven</td>
<td>112</td>
<td>-14.0</td>
<td>-17.3</td>
<td>6.0</td>
</tr>
<tr>
<td>REST OF WORLD</td>
<td>row</td>
<td>3025</td>
<td>-53.4</td>
<td>-171.3</td>
<td>341.9</td>
</tr>
</tbody>
</table>

All data are in US$ billions. Negative numbers indicate surplus. MA/PHI/SING is a combination of Malaysia, the Philippines, and Singapore.
Figure 1: Change in GDP, Mobile Labor
Figure 3: Change in GDP, Immobile Labor
Figure 5: Change in GDP, Immobile Sourcing
Conclusion

- Disaggregation of the demand side is good.

- But what η is depends on context. It is not a structural parameter.

- We need to model the production side too.

- A challenge for future research: reconciling short and long runs.