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1 Introduction
In the last 20 years, the theoretical econometrics literature on weak instruments has
generated a wide range of results and procedures. These lecture notes aim to pro-
vide an overview of these results, with a particular attention to their implications for
empirical research in economics.

Most previous reviews of the literature on weak instruments primarily consider
models that assume homoskedastic errors in the reduced-form and first-stage regres-
sions. While the assumptions of homoskedastic errors is historically important both
in the development of the instrumental variables literature broadly, and in the devel-
opment of the literature on weak instruments, it is rarely an assumption maintained
in economic applications. Hence, a goal in these lecture notes is to highlight results
for the non-homoskedastic case (including settings with heteroskedasticity, cluster-
ing, and serial correlation), and to explore the relationship between these results and
common empirical practice.

In the leading case with a single endogenous regressor, we recommend that re-
searchers judge instrument strength based on the effective F-statistic of Montiel Olea
& Pflueger (2013). If there is only a single instrument, we recommend reporting
identification-robust Anderson-Rubin confidence intervals. These are efficient regard-
less of the strength of the instruments, and so should be reported regardless of the
value of the first stage F. Finally, if there are multiple instruments, the literature has
not yet converged on a single procedure, but we recommend choosing from among the
several available robust procedures that are efficient when the instruments are strong.

To examine the practical importance of weak instruments, we illustrate our dis-
cussion throughout with tabulations and simulations based on recent publications in
the American Economic Review (AER). We gathered data on the 17 articles pub-
lished in the AER from 2014-2018 (excluding articles in the May issue) that discuss
instrumental variables in their abstract. This yields a total of 230 specifications. For
simulations, we rely on the subset of 8 papers and 124 specifications for which we could
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on a draft of a review paper on weak instruments. We are grateful to Emily Oster and Jesse
Shapiro for suggesting the tabulations and simulations based on published results, among other
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Angrist (1994) to our attention. We are also grateful to the participants in the NBER 2018 Summer
Institute Methods Lectures.
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obtain full variance-covariance matrix for the reduced-form and first-stage estimates,
either from the published results or from posted replication data and code.

These notes are organized as follows. Section 2 lays out the instrumental variables
model and notation. Section 3 describes the weak instruments problem. Section 4
reviews methods for detecting weak instruments, Section 5 reviews weak-instrument
robust inference, and Section 6 concludes with a discussion of open questions in the
literature on weak instruments. Finally, in the appendix we discuss available Stata
implementations of the procedures we cover in the main text.

2 The Instrumental Variables Model
We study the linear instrumental variables (IV) model with a scalar outcome Yi, a
p × 1 vector of potentially endogenous regressors Xi, a k × 1 vector of instrumental
variables Zi, and an r × 1 vector of exogenous regressors Wi. This yields the linear
constant effects instrumental variables model

Yi = X ′iβ +W ′
iκ+ εi, (1)

X ′i = Z ′iπ +W ′
iγ + Vi, (2)

where E[Ziεi] = 0, E[ZiV
′
i ] = 0, E[Wiεi] = 0, and E[WiV

′
i ] = 0. We are interested in

β, but Xi is potentially endogenous in the sense that we may have E[εiVi] 6= 0. Conse-
quently we may have E[Xiεi] 6= 0, so regression of Yi on Xi and Wi may yield biased
estimates. This model nests a wide variety of IV specifications encountered in prac-
tice. We allow the possibility that the errors (εi, Vi) are conditionally heteroskedastic
given the exogenous variables (Zi,Wi), so E[(εi, V

′
i )
′(εi, V

′
i )|Zi,Wi] may depend on

(Zi,Wi). We further allow the possibility that (Yi, Xi, Zi,Wi) are dependent across i,
for example due to clustering or time-series correlation. Finally, the results we discuss
generalize to the case where the data are non-identically distributed across i, though
for simplicity of notation we do not pursue this extension.

Substituting for Xi in (1), we obtain the equation

Yi = Z ′iδ +W ′
i τ + Ui (3)

with δ = πβ. In a common abuse of terminology, we will refer to (1) as the structural
form, (2) as the first-stage, and (3) as the reduced-form (for the older meaning of
these terms, see e.g. Hausman (1983)). We can equivalently express the model as
(1)-(2) or as (2)-(3), since each set of equations is an invertible linear transformation
of the other. Likewise, the errors (Ui, Vi) = (εi + βVi, Vi) are an invertible linear
transformation of (εi, Vi).

For ease of exposition we focus primarily on the case with a scalar endogenous
regressor Xi, and so assume p = 1 unless noted otherwise. In our AER sample 211 of
the 230 specifications have p = 1, so this appears to be the leading case in practice.
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Further, for most of this section we assume that the instruments Zi are orthogonal to
the control variables Wi, and so drop the controls from our notation. We discuss how
to handle non-orthogonal control variables at the end of this section.

In this survey, we focus on estimators and tests that are functions of the reduced-
form least squares coefficient δ̂, the first-stage least squares coefficient π̂, and matrices
that can be consistently estimated from the first-stage and reduced-form (e.g. variance
and weighting matrices). Estimators in this class include two-stage least squares,
which for Q̂ZZ = 1

n

∑
ZiZ

′
i can be written as

β̂2SLS =
(
π̂′Q̂ZZ π̂

)−1
π̂′Q̂ZZ δ̂, (4)

as well as efficient-two-step GMM β̂2SGMM =

(
π̂′Ω̂

(
β̂1
)−1

π̂

)−1
π̂′Ω̂

(
β̂1
)−1

δ̂, for

Ω̂(β) an estimator for the variance of δ̂ − π̂β and β̂1 a first-step estimator. Limited
information maximum likelihood and continuously updated GMM likewise fall into
this class.

Under mild regularity conditions (and, in the time-series case, stationarity), (δ̂, π̂)
are consistent and asymptotically normal in the sense that

√
n

(
δ̂ − δ
π̂ − π

)
→d N (0,Σ∗) (5)

for
Σ∗ =

(
Σ∗δδ Σ∗δπ
Σ∗πδ Σ∗ππ

)
=

(
Q−1ZZ 0

0 Q−1ZZ

)
Λ∗
(
Q−1ZZ 0

0 Q−1ZZ

)
where QZZ = E[ZiZ

′
i] and

Λ∗ = lim
n→∞

V ar

((
1√
n

∑
i

UiZ
′
i,

1√
n

∑
i

ViZ
′
i

)′)
.

Hence, the asymptotic variance of
√
n(δ̂−δ, π̂−π) has the usual sandwich form. Under

standard assumptions the sample-analog estimator Q̂ZZ will be consistent for QZZ ,
and we can construct consistent estimators Λ̂∗ for Λ∗. These results imply the usual
asymptotic properties for IV estimators. For example, assuming the constant-effect
IV model is correctly specified (so δ = πβ) and π is fixed and nonzero, the delta
method together with (5) implies that

√
n(β̂2SLS − β) →d N

(
0,Σ∗β,2SLS

)
for Σ∗β,2SLS

consistently estimable. We can likewise use (5) to derive the asymptotic distribution
for limited information maximum likelihood as well as for two-step and continuously
updated GMM.
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Homoskedastic and Non-Homoskedastic Cases A central distinction in the
literature on weak instruments, and in the historical literature on IV more broadly,
is between what we term the homoskedastic and non-homoskedastic cases. In the
homoskedastic case, we assume that the data (Yi, Xi, Zi,Wi) are iid across i and
the errors (Ui, Vi) are homoskedastic, so E[(Ui, V

′
i )
′(Ui, V

′
i )|Zi,Wi] does not depend

on (Zi,Wi). Whenever these conditions fail, whether due to heteroskedasticity or
dependence (e.g. clustering or time-series dependence), we will say we are in the
non-homoskedastic case.

Two-stage least squares is efficient in the homoskedastic case but not, in general,
in the non-homoskedastic case. Whether homoskedasticity holds also determines the
structure of Λ∗. Specifically, in the homoskedastic case we can write

Λ∗ = E

[(
U2
i UiVi

UiVi V 2
i

)
⊗ (ZiZ

′
i)

]
= E

[(
U2
i UiVi

UiVi V 2
i

)]
⊗QZZ

where the first equality follows from the assumption of iid data, while the second
follows from homoskedasticity. Hence, in homoskedastic settings the variance matrix
Ω∗ can be written as the Kronecker product of a 2 × 2 matrix that depends on the
errors with a k × k matrix that depends on the instruments. The matrix Σ∗ inherits
the same structure, which as we note below simplifies a number of calculations. By
contrast, in the non-homoskedastic case Σ∗ does not in general have Kronecker product
structure, rendering these simplifications inapplicable.

Dealing with Control Variables If the controls Wi are not orthogonal to the
instruments Zi, we need to take them into account. In this more general case, let us
define (δ̂, π̂) as the coefficients on Zi from the reduced-form and first-stage regressions
of Yi and Xi, respectively, on (Zi,Wi). By the Frisch-Waugh theorem these are the
same as the coefficients from regressing Yi and Xi on Z⊥i , the part of Zi orthogonal
to Wi. One can likewise derive estimators for the asymptotic variance matrix Σ∗

in terms of Z⊥i and suitably defined regression residuals. Such estimators, however,
necessarily depend on the assumptions imposed on the data generating process (for
example whether we allow heteroskedasticity, clustering, or time-series dependence).

A simple way to estimate Σ∗ in practice when there are control variables is to
jointly estimate (δ̂, π̂) in a seemingly unrelated regression with whatever specifica-
tion one would otherwise use (including fixed effects, clustering or serial-correlation
robust standard errors, and so on). Appropriate estimates of Σ∗ are then generated
automatically by standard statistical software.
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3 The Weak Instruments Problem
Motivated by the asymptotic approximation (5), let us consider the case where the
reduced-form and first-stage regression coefficients are jointly normal(

δ̂
π̂

)
∼ N

((
δ
π

)
,Σ

)
(6)

with Σ = 1
n
Σ∗ known (and, for ease of exposition, full-rank). Effectively, (6) discards

the approximation error in (5) as well as the estimation error in Σ̂∗ to obtain a finite-
sample normal model with known variance. This suppresses any complications arising
from non-normality of the OLS estimates or difficulties with estimating Σ and focuses
attention solely on the weak instruments problem. Correspondingly, results derived in
the model (6) will provide a good approximation to behavior in applications where the
normal approximation to the distribution of (δ̂, π̂) is accurate and Σ is well-estimated.
By contrast, in settings where the normal approximation is problematic or Σ̂ is a poor
estimate of Σ results derived based on (6) will be less reliable (see Section 6 below,
and Young (2018)).

Since the IV model implies that δ = πβ, the IV coefficient is simply the constant of
proportionality between the reduced-form coefficient δ and the first-stage parameter π.
In the just-identified setting matters simplify further, with the IV coefficient becoming
β = δ/π, and the usual IV estimators, including two-stage least squares and GMM,
simplifying to β̂ = δ̂/π̂. Just-identified specifications with a single endogenous variable
constitute a substantial fraction of the specifications in our AER sample (101 out of
230), highlighting the importance of this case in practice.

It has long been understood (see e.g. Fieller (1954)) that ratio estimators like β̂
can behave badly when the denominator is close to zero. The weak instruments prob-
lem is simply the generalization of this issue to potentially multidimensional settings.
In particular, when the first-stage coefficient π is close to zero relative to the sam-
pling variability of π̂, the normal approximations to the distribution of IV estimates
discussed in the last section may be quite poor. Nelson & Startz (1990a) and Nelson
& Startz (1990b) provided early simulation demonstrations of this issue, while Bound
et al. (1995) found similar issues in simulations based on Angrist & Krueger (1991).

The usual normal approximation to the distribution of β̂ can be derived by lin-
earizing β̂ in (δ̂, π̂). Under this linear approximation, normality of (δ̂, π̂) implies ap-
proximate normality of β̂. This normal approximation fails in settings with weak
instruments because β̂ is highly nonlinear in π̂ when the latter is close to zero. As a
result, normality of (δ̂, π̂) does not imply approximate normality of β̂. Specifically, the
IV coefficient β̂ = δ̂/π̂ is distributed as the ratio of potentially correlated normals, and
so is non-normal. If π is large relative to the standard error of π̂, however, then π̂ falls
close to zero with only very low probability and the nonlinearity of β̂ in (δ̂, π̂) ceases
to matter. Hence, we see that non-normality of the instrumental variables estimate
arises when the first-stage parameter π is small relative to its sampling variability.
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The same issue arises in the overidentified case with p = 1 < k, where the weak in-
struments problem arises when the k × 1 vector π of first-stage coefficients is close to
zero relative to the variance of π̂. Likewise, in the general 1 ≤ p ≤ k case, the weak
instruments problem arises when the k × p matrix π of first-stage coefficients is close
to having reduced rank relative to the sampling variability of π̂.

Failure of the Bootstrap A natural suggestion for settings where conventional
asymptotic approximations fail is the bootstrap. Unfortunately, the bootstrap (and its
generalizations, including subsampling and the m-out-of-n bootstrap) do not in general
resolve weak instruments issues – see D. Andrews and Guggenberger (2009). For
intuition, note that we can view the bootstrap as simulating data based on estimates
of the data generating process. In the model (6), the worst case for identification is
π = 0, since in this case β is totally unidentified. In the normal model (6), however,
we never estimate π perfectly, and in particular estimate π̂ = 0 with probability
zero. Hence, the bootstrap incorrectly “thinks” β is identified with probability one.
More broadly, the boostrap can make systematic errors in estimating the strength of
the instruments, which suggests why it can yield unreliable results. None of the IV
specifications in our AER sample used the bootstrap.

Motivation of the Normal Model The normal model (6) has multiple antecedents.
A number of papers in the early econometric literature on simultaneous equations as-
sumed fixed instruments and exogenous variables along with normal errors, which
leads to the homoskedastic version of (6), sometimes with Σ unknown (Anderson &
Rubin, 1949; Sawa, 1969; Mariano & Sawa, 1972).

More recently, a number of papers in the literature on weak instruments including
Kleibergen (2002), Moreira (2003), D. Andrews et al. (2006), and Moreira & Moreira
(2015) derive results in the normal model (6), sometimes with the additional assump-
tion that the underlying data are normal. While here we have motivated the normal
model (6) heuristically based on the asymptotic normality (5) of the reduced-form
and first-stage estimates, this connection is made precise elsewhere in the literature.
Staiger & Stock (1997) show that the normal model (6) arises as an approximation to
the distribution of the scaled reduced-form and first-stage regression coefficients under
weak-instrument asymptotics where first-stage shrinks at a

√
n rate. As discussed in

Staiger & Stock (1997), these asymptotics are intended to capture situations in which
the true value of the first-stage is on the same order as sampling uncertainty in π̂, so
issues associated with small π cannot be ignored. Finite sample results for the model
(6) then translate to weak-instrument asymptotic results via the continuous mapping
theorem. Many other authors including Kleibergen (2005), D. Andrews et al. (2006),
I. Andrews (2016), and I. Andrews & Armstrong (2017) have built on these results to
prove validity for particular procedures under weak-instrument asymptotics.

More recently D. Andrews & Guggenberger (2015), I. Andrews and Mikusheva
(2016), D. Andrews & Guggenberger (2017), D. Andrews (2018), and D. Andrews
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et al. (2018a) have considered asymptotic validity uniformly over values of the first-
stage parameter π and distributions for (Ui, Vi,Wi, Zi). These authors show that some,
though not all, procedures derived in the normal model (6) are also uniformly asymp-
totically valid, in the sense that e.g. the probability of incorrectly rejecting true null
hypotheses converges to the nominal size uniformly over a large class of data generat-
ing processes as the sample size increases. D. Andrews et al. (2018a) discuss general
techniques to establishing uniform asymptotic validity, but the argument for a given
procedure is case-specific. Hence, in this review we focus on the normal model (6)
which unites much of the weak-instruments literature, and refer readers interested in
questions of uniformity to the papers cited above.

Simulated Distribution of t-Statistics While we know from theory that weak
instruments can invalidate conventional inference procedures, whether weak instru-
ments are a problem in a given application is necessarily case-specific. To examine
the practical importance of weak instruments in recent applications of instrumental
variables methods, we report simulation results calibrated to our AER sample.

Specifically, we calibrate the normal model (6) to each of the 124 specifications in
the sample for which we can estimate the full variance matrix Σ of the reduced-form
and first-stage estimates, based either on results reported in the paper or replication
files. We drop four specifications where our estimate of Σ is singular. It happens to
be the case that all remaining specifications have only a single endogenous regressor
(p = 1). Hence, our simulation results only address this case. In each specification,
we set the first-stage parameter π to the estimate π̂ in the data, and set δ to π̂β̂2SLS,
the product of the first-stage with the two-stage least squares estimates. We set Σ
equal to the estimated variance matrix for (δ̂, π̂), maintaining whatever assumptions
were used by the original authors (including the same controls, clustering at the same
level, and so on).

In each specification we repeatedly draw first-stage and reduced-form parameter
estimates (δ̂∗, π̂∗) and for each draw calculate the two-stage least squares estimate,
along with the t-statistic for testing the true value of β (that is, the value used to
simulate the data). In the left panels of Figures 1 and 2, we plot the median t-statistic
and the frequency with which nominal 5% two-sided t-tests reject on the vertical axis,
and the average of the effective F-statistic of Montiel Olea & Pflueger (2013), which
we introduce in the next section, on the horizontal axis. This statistic is equivalent to
the conventional first-stage F-statistic for testing π = 0 in models with homoskedastic
errors, but adds a multiplicative correction in models with non-homoskedastic errors.
For visibility, we limit attention to the 106 out of 124 specifications where there average
first-stage F-statistic is smaller than 50 (the remaining specifications exhibit behavior
very close to those with F-statistics between 40 and 50).

Several points emerge clearly from these results. First, there are a non-trivial
number of specifications with small first-stage F-statistics (e.g. below 10, the rule of
thumb cutoff for weak instruments proposed by Staiger & Stock (1997)) in the AER
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Figure 1: Median of t-statistic for testing true value of β plotted against the average
effective F-statistic of Montiel Olea & Pflueger (2013) in calibrations to AER data,
limited to the 106 out of 124 specifications with average F smaller than 50. Left panel
plots median at parameter values estimated from AER data, while middle and right
panels plot, respectively, the 5th and 95th percentiles of the median t-statistic under
the Bayesian exercise described in the text. Red line corresponds to a first-stage F of
10.

data. Second, even for specifications with essentially the same first-stage F-statistic,
the median t-statistic and the size of nominal 5% t-tests can vary substantially due
to other features (for example the true value β and the matrix Σ). Third, we see that
among specifications with a small average F-statistic, behavior can deviate substan-
tially from what we would predict under conventional (strong-instrument) asymptotic
approximations. Specifically, conventional approximations imply that the median t-
statistic is zero and 5% t-tests should reject 5% of the time. In our simulations, by
contrast, we see that the median t-statistic sometimes has absolute value larger than
one, while the size of 5% t-tests can exceed 30%. These issues largely disappear among
specifications where the average F-statistic exceeds 10, and in these cases conventional
approximations appear to be more accurate.

These results suggest that weak-instrument issues are relevant for modern appli-
cations of instrumental variables methods. It is worth emphasizing that these simula-
tions are based on the normal model (6) with known variance Σ, so these results arise
from the weak instruments problem alone and not from e.g. non-normality of (δ̂, π̂)
or difficulties estimating the variance matrix Σ.

These results are sensitive to the parameter values considered. Since we estimate
(β, π) with error, it is useful to quantify the uncertainty around our estimates for the
median t-statistic and the size of t-tests. To do so, we adopt a Bayesian approach
consistent with the normal model (6), and simulate a posterior distribution for the
median t-statistic and the size of 5% t-tests. Specifically, we calculate the posterior
distribution on (δ, π) after observing (δ̂, π̂) using the normal likelihood from (6) and
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Figure 2: Rejection probability for nominal 5% two-sided t-tests plotted against the
average effective F-statistic of Montiel Olea & Pflueger (2013) in calibrations to AER
data, limited to the 106 out of 124 specifications with average F smaller than 50. Left
panel plots size at parameter values estimated from AER data, while middle and right
panels plot, respectively, the 5th and 95th percentiles of the size under the Bayesian
exercise described in the text. Red line corresponds to a first-stage F of 10.

a flat prior. We draw values (
δ̃
π̃

)
∼ N

((
δ̂
π̂

)
,Σ

)
for the reduced-form and first-stage parameters from this posterior, calculate the im-
plied two-stage least squares coefficient β̃, and repeat our simulations taking (β̃, π̃) to
be the true parameter values (setting the reduced-form coefficient to π̃β̃). The middle
panels of Figures 1 and 2 report the 5th percentiles of the median t-statistic and size,
respectively, across draws (β̃, π̃), while the right panels report the 95th percentiles.
As these results suggest, there is considerable uncertainty about the distribution of
t-statistics in these applications. As in our baseline simulations, however, poor per-
formance for conventional approximations is largely, though not exclusively, limited
to specifications where the average F-statistic is smaller than 10.

Finally, it is interesting to consider behavior when we limit attention to the subset
of specifications that are just-identified (i.e. that have k = 1). Interestingly, when
we simulate behavior at parameter estimates from the AER data in these cases, we
find that the largest absolute median t-statistic is 0.06, while the maximal size for
a 5% t-test is just 7.1%. If, on the other hand, we consider the bounds from our
Bayesian approach, the worst-case absolute median t-statistic is 0.9 while the worst-
case size for the t-test is over 40%. Hence, t-statistics appear to behave much better
in just-identified specifications when we consider simulations based on the estimated
parameters, but this is no longer the case once we incorporate uncertainty about the
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parameter values.

4 Detecting Weak Instruments
The simulation results in the last section suggest that weak instruments may render
conventional estimates and tests unreliable in a non-trivial fraction of published spec-
ifications. This raises the question of how to detect weak instruments in applications.
A natural initial suggestion is to test the hypothesis that the first-stage is equal to
zero, π = 0. As noted in Stock & Yogo (2005), however, conventional methods for
inference on β are unreliable not only for π = 0, but also for π in a neighborhood of
zero. Hence, we may reject that π = 0 even when conventional inference procedures
are unreliable. To overcome this issue, we need formal procedures for detecting weak
instruments, rather than tests for total non-identification.

Tests for Weak Instruments with Homoskedastic Errors Stock & Yogo (2005)
consider the problem of testing for weak instruments in cases with homoskedastic
errors. They begin by formally defining the set of values π they will call weak. They
consider two different definitions, the first based on the bias of IV estimates relative
to OLS and the second based on the size of Wald- or t-tests. In each case they include
a value of π in the weak instrument set if the worst-case bias or size over all possible
values of β exceeds a threshold (they phrase this result in terms of the correlation
between the errors ε and V in (1) and (2), but for Σ known this is equivalent). They
then develop formal tests for the null hypothesis that the instruments are weak (that
is, that π lies in the weak instrument set), where rejection allows one to conclude that
the instruments are strong.

In settings with a single endogenous regressor, Stock & Yogo (2005)’s tests are
based on the first-stage F-statistic. Their critical values for this statistic depend on
the number of instruments, and tables are available in Stock & Yogo (2005). If we
define the instruments as weak when the worst-case bias of two-stage least squares
exceeds 10% of the worst case bias of OLS, the results of Stock and Yogo show that
for between 3 and 30 instruments the appropriate critical value for a 5% test of the
null of weak instruments ranges from 9 to 11.52, and so is always close to the Staiger
& Stock (1997) rule of thumb cutoff of 10. By contrast, if we define the instruments as
weak when the worst-case size of a nominal 5% t-test based on two-stage least squares
exceeds 15%, then the critical value depends strongly on the number of instruments,
and is equal to 8.96 in cases with a single instrument but rises to 44.78 in cases with
30 instruments.

Stock & Yogo (2005) also consider settings with multiple endogenous variables.
For such cases they develop critical values for use with the Cragg & Donald (1993)
statistic for testing the hypothesis that π has reduced rank. Building on these results,
Sanderson & Windmeijer (2016) consider tests for whether the instruments are weak
for the purposes of estimation and inference on one of multiple endogenous variables.
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Tests for Weak Instruments with Non-Homoskedastic Errors The results of
Stock & Yogo (2005) rely heavily on the assumption of homoskedasticity. As discussed
above, in homoskedastic settings the variance matrix Σ for (δ̂, π̂) can be written as
the Kronecker product of a 2 × 2 matrix with a k × k matrix, which Stock & Yogo
(2005) use to obtain their results. As noted in Section 2, by contrast, Σ does not
in general have Kronecker product structure in non-homoskedastic settings, and the
tests of Stock & Yogo (2005) do not apply. Specifically, in the non-homoskedastic case
the homoskedastic first-stage F-statistic is inapplicable, and should not be compared
to the Stock & Yogo (2005) critical values (Montiel Olea & Pflueger, 2013).

Despite the inapplicability of Stock & Yogo (2005)’s results, F-statistics are fre-
quently reported in non-homoskedastic settings with multiple instruments. In such
cases, some authors report non-homoskedasticity-robust F-statistics

FR =
1

k
π̂′Σ̂−1ππ π̂, (7)

while others report traditional, non-robust F-statistics

FN =
1

k
π̂′Σ̂−1ππ,N π̂ =

n

kσ̂2
V

π̂′Q̂ZZ π̂ (8)

for Σ̂ππ,N =
σ̂2
V

n
Q̂−1ZZ and σ̂2

V an estimator for E[V 2
i ]. In our AER data, for instance,

none of the 52 specifications that both have multiple instruments and report first-stage
F-statistics assume homoskedasticity to calculate standard errors for β̂, but at least six
report F-statistics do assume homoskedasticity (we are unable to determine the exact
count because most authors do not explicitly describe how they calculate F-statistics,
and not all papers provide replication data). To illustrate, the left panel of Figure 3
plots the distribution of F-statistics reported in papers in our AER sample, broken
down by the method (robust or non-robust) used, when we can determine this. Given
the mix of methods, we use “F-statistic” as a generic term to refer both to formal
first-stage F-statistics FN (which assume homoskedasticity and single endogenous
regressor) and to generalizations of F-statistics to non-homoskedastic settings, cases
with multiple endogenous regressors, and so on.

Use of F-statistics in non-homoskedastic settings is built into common statistical
software. When run without assuming homoskedastic errors the popular ivreg2 2
command in Stata automatically reports the Kleibergen & Paap (2007) Wald statis-
tic for testing that π has reduced rank along with critical values based on Stock &
Yogo (2005) (Baum et al., 2007), though the output warns users about Stock & Yogo
(2005)’s homoskedasticity assumption. In settings with a single endogenous variable
the Kleibergen & Paap (2007) Wald statistic is equivalent to a non-homoskedasticity-
robust F-statistic FR for testing π = 0, while in settings with multiple endogenous
regressors it is a robust analog of the Cragg & Donald (1993) statistic. Interestingly,
despite the equivalence of Kleibergen-Paap statistics and robust F-statistics in settings
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Figure 3: Distribution of reported first-stage F-statistics (and their non-homoskedastic
generalizations) in 72 specifications with a single endogenous regressor and first-stage
F smaller than 50. 36 other specifications (not shown) have a single endogenous re-
gressor but first-stage F-statistic larger than 50. Left panel decomposes by statistic
computed (either non-robust F-statistic FN , robust F-statistic FR, or unknown). Note
that in settings with a single endogenous regressor, the Kleibergen-Paap F-statistic
reduces to the robust F-statistic, so we categorize papers reporting this statistic ac-
cordingly. Right panel decomposes by label used by authors in text (either Kleibergen-
Paap or not explicitly discussed).

with a single endogenous variable, the distribution of published F-statistics appears
to differ depending on what label the authors use. In particular, as shown in the
right panel of Figure 3, published F-statistics labeled by authors as Kleibergen-Paap
statistics tend to be smaller.

We are unaware of theoretical justification for the use of either FN or FR to gauge
instrument strength in non-homoskedastic settings. As an alternative, Montiel Olea
& Pflueger (2013) propose a test for weak instruments based the effective first-stage
F-statistic, which can be written as

FEff =
π̂′Σ̂−1N,πππ̂

tr(Σ̂ππQ̂ZZ)
=
tr(Σ̂ππ,NQ̂ZZ)

tr(Σ̂ππQ̂ZZ)
FN =

kσ̂2
V

tr(Σ̂∗ππQ̂ZZ)
FN . (9)

In cases with homoskedastic errors FEff reduces to FN , while in cases with non-
homoskedastic errors it adds a multiplicative correction that depends on the robust
variance estimate.

The expressions for the two-stage least squares estimator in (4), FR in (7), FN

in (8), and FEff in (9) provide some intuition for why FEff is an appropriate statis-
tic for testing instrument strength when using two-stage least squares in the non-
homoskedastic case while FR and FN are not. Two-stage least squares behaves badly
when its denominator, π̂′Q̂ZZ π̂, is close to zero. The statistic FN measures this same
object but, because it is non-robust, it “gets the standard error wrong” and so does
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not have a noncentral F distribution as in Stock & Yogo (2005). Indeed, in the
non-homoskedastic case FN can be extremely large with high probability even when
π′QZZπ is small. By contrast, the statistic FR measures the wrong population object,
π′Σ−1πππ rather than π′Q−1ZZπ, so while it has a noncentral F distribution its noncen-
trality parameter does not correspond to the distribution of β̂2SLS.5 Finally, FEff

measures the right object and “gets the standard errors right on average.” More pre-
cisely, FEff is distributed as a weighted average of noncentral χ2 variables where the
weights, given by the eigenvalues of Σ̂

1
2
ππQ̂ZZΣ̂

1
2
ππ/tr(Σ̂ππQ̂ZZ), are positive and sum

to one. Montiel Olea & Pflueger (2013) show that the distribution of FEff can be
approximated by a non-central χ2 distribution, and formulate tests for weak instru-
ments as defined based on the Nagar (1959) approximation to the bias of two-stage
least squares and limited information maximum likelihood. Their test rejects when
the effective F-statistic exceeds a critical value. Note, however, that their argument
is specific to two-stage least squares and limited information maximum likelihood, so
if one were to use a different estimator, a different test would be needed.

For k = 1, Σππ, Σππ,N , and QZZ are all scalar, and FR = FEff . Both statistics
have a noncentral F distribution with the same noncentrality parameter that governs
the distribution of the IV estimator. Thus, in settings with k = 1, FR = FEff can be
used with the Stock & Yogo (2005) critical values based on t-test size (the mean of
the IV estimate does not exist when k = 1).

For k > 1, as noted above the theoretical results of Montiel Olea & Pflueger (2013)
formally concern only the Nagar (1959) approximation to the bias. Our simulations
based on the AER data reported in the last section suggest, however, that effective
F-statistics may convey useful information about instrument strength more broadly,
since we saw that conventional asymptotic approximations appeared reasonable in
specifications where the average effective F-statistic exceeded 10. This is solely an
empirical observation about a particular dataset, but a study of why this is the case
in these data, and whether this finding generalizes to a broader range of empirically-
relevant settings, is an interesting question for future research.

The main conclusion from this section is that FEff , not FR or FN , is the preferred
statistic for detecting weak instruments in the over-identified, non-homoskedastic set-

5The inapplicability of FR and FN in the non-homoskedastic case is illustrated by the following
example, which builds on an example in Montiel Olea & Pflueger (2013). Let k = 2, QZZ = I2, and

Σππ = E

[(
U2
i UiVi

UiVi V 2
i

)]
⊗
(
ω2 0
0 ω−2

)
.

Under weak instrument asymptotics with π = C/
√
n for C fixed with both elements nonzero, as

ω2 →∞ one can show that the distribution of the two-stage least squares estimate is centered around
the probability limit of ordinary least squares, which is what we expect in the fully unidentified case.
Hence, from the perspective of two-stage least squares the instruments are irrelevant asymptotically.
At the same time, both FN and FR diverge to infinity, and so will indicate that the instruments are
strong with probability one. By contrast, FEff converges to a χ2

1 and so correctly reflects that the
instruments are weak for the purposes of two-stage least squares estimation.
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ting when using two-stage least squares or limited information maximum likelihood.
FEff can be compared to Stock & Yogo (2005) critical values for k = 1 and to Montiel
Olea & Pflueger (2013) critical values for k > 1, or to the rule-of-thumb value of 10.
It appears that none of the papers in our AER sample computed FEff (except for the
k = 1 case where it equals FR), but we hope to see the wider use of this statistic in
the future.

4.1 Screening on the First-Stage F-Statistic

Given a method for detecting weak instruments, there is a question of what do if
we decide the instruments are weak. Anecdotal evidence and our AER data suggest
that in some instances, researchers or journals may decide that specifications with
small first-stage F-statistics should not be published. Specifically, Figure 3 shows
many specifications just above the Staiger & Stock (1997) rule of thumb cutoff of 10,
consistent with selection favoring F-statistics above this threshold.

It is important to note that Figure 3 limits attention to specifications where the
original authors report first-stage F-statistics, and uses the F-statistics as reported by
the authors. By contrast, in our simulation results we calculate effective F-statistics
for all specifications in our simulation sample (i.e. where we can obtain a full-rank
estimate of the variance matrix Σ), including in specifications where the authors do
not report F-statistics, and match the assumptions used to calculate F-statistics to
those used to calculate standard errors on β̂. So, for example, in a paper that as-
sumed homoskedastic errors to calculate F-statistics, but non-homoskedastic errors to
calculate standard errors on β̂, we use a non-homoskedasticity-robust estimator Σ̂ππ

to compute the effective F-statistic in our simulations, but report the homoskedastic
F-statistic FN in Figure 3. We do this because the F-statistic reported by the original
authors seems the relevant one when thinking about selection on F-statistics.

While selection on first-stage F-statistics is intuitively reasonable, it can unfor-
tunately result in bias in published estimates and size distortions in published tests.
This point was made early in the weak instruments literature by Nelson et al. (1998),
and relates to issues of pretesting and publication bias more generally. To illustrate
the impact of these issues, we consider simulations calibrated to our AER data in
which we drop all simulation draws where the effective F-statistic is smaller than 10.
Figure 4 plots the size of nominal 5% t-tests in this setting against the average effec-
tive F-statistic (where the average effective F-statistic is calculated over all simulation
draws, not just those with FEff > 10).

The results in Figure 4 highlight that screening on the F-statistics can dramati-
cally increase size distortions. This is apparent even in simulations based on reported
parameter estimates (shown in the left panel), where the maximal size exceeds 70%,
as compared to a maximal size of less than 35% for t-tests without screening on the
F-statistic. Matters look still worse when considering the upper bound for size (shown
in the right panel), where many specifications have size close to one. Moreover, these
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Figure 4: Rejection probability for nominal 5% two-sided t-tests after screening on
FEff > 10, plotted against the average effective F-statistic in calibrations to AER
data. Limited to the 106 out of 124 specifications with average effective F smaller
than 50. Left panel plots size at parameter values estimated from AER data, while
middle and right panels plot, respectively, the 5th and 95th percentiles of the size
under the Bayesian exercise described in Section 3. Red line corresponds to a first-
stage F of 10.

upper bounds suggest that non-negligible size distortions may arise even in specifica-
tions with an average first-stage F-statistic of nearly 20, and thus that screening on
first-stage F-statistics undermines the good properties we previously found for speci-
fications with average first-stage F larger than 10. Hence, screening on the first-stage
F-statistic appears to compound, rather than reduce, inferential problems arising from
weak instruments. This problem is not specific to the effective F-statistic FEff , and
also appears if we screen on FN or FR. Likewise, if we move the threshold from 10
to some other value, we continue to see size distortions in a neighborhood of the new
threshold.

If we are confident our instruments are valid, but are concerned they may be
weak, screening on F-statistics is unappealing for another reason: it unnecessarily
eliminates specifications of potential economic interest. In particular, as we discuss in
the next section a variety of procedures for identification-robust inference on β have
been developed in the literature. By using these procedures we may gain insight from
the data even in settings where the instruments are weak. Hence, weak instruments
alone are not a reason to discard applications.

5 Inference with Weak Instruments
The literature on weak instruments has developed a variety of tests and confidence
sets that remain valid whether or not the instruments are weak, in the sense that their
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probability of incorrectly rejecting the null hypothesis and covering the true parameter
value, respectively, remains well-controlled. Since instrumental variables estimates are
non-normally distributed when the instruments are weak, these procedures do not rely
on point estimates and standard errors but instead use test inversion.

The idea of test inversion is that if we are able to construct a size-α test of the
hypothesis H0 : β = β0 for any value β0, then we can construct a level 1−α confidence
set for β by collecting the set of non-rejected values. Formally, let us represent a generic
test of H0 : β = β0 by φ(β0), where we write φ(β0) = 1 if the test rejects and φ(β0) = 0
otherwise. We say that φ(β0) is a size-α test of H0 : β = β0 in the normal model (6) if

sup
π
Eβ0,π [φ(β0) = 1] ≤ α,

so the maximal probability of rejecting the null hypothesis, assuming the null is true,
is bounded above by α no matter the value of π. If φ(β0) is a size-α test of H0 : β = β0
for all values β0 then CS = {β : φ(β) = 0} , the set of values not rejected by φ, is a
level 1− α confidence set

inf
β,π

Prβ,π {β ∈ CS} ≥ 1− α. (10)

In practice, we can implement test inversion by taking a grid of potential values β,
evaluating the test φ at all values in the grid, and approximating our confidence set
by the set of non-rejected values.

When the instruments can be arbitrarily weak, correct coverage (10) turns out to
be a demanding requirement. Specifically, the results of Gleser & Hwang (1987) and
Dufour (1997) imply that in the normal model (6) without restrictions on (β, π) any
level 1 − α confidence set for β must have infinite length with positive probability.
For intuition, consider the case in which π = 0, so β is unidentified. In this case, the
data are entirely uninformative about β, and to ensure coverage 1 − α a confidence
set CS must cover each point in the parameter space with at least this probability,
which is impossible if CS is always bounded. That the confidence set must be infinite
with positive probability for all (β, π) then follows from the fact that the normal
distribution has full support. Hence, if the event {CS infinite length} has positive
probability under π = 0, the same is true under all (β, π). This immediately confirms
that we cannot obtain correct coverage under weak instruments by adjusting our
(finite) standard errors, and so points to the need for a different approach such as test
inversion.

To fix ideas we first discuss test inversion based on the Anderson-Rubin (AR) statis-
tic, which turns out be efficient in just-identified models with a single instrument. We
then turn to alternative procedures developed for over-identified models and inference
on subsets of parameters. Finally, we discuss the effect of choosing between robust and
non-robust procedures based on a pre-test for instrument strength. Since we base our
discussion on the OLS estimates (δ̂, π̂), the procedures we discuss here can be viewed
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as minimum-distance identification-robust procedures as in Magnusson (2010).

5.1 Inference for Just-Identified Models: the Anderson-Rubin
Test

Test inversion offers a route forward in models with weak instruments because the IV
model with parameter β implies testable restrictions on the distribution of the data
regardless of the strength of the instruments. Specifically, the IV model implies that
δ = πβ. Hence, under a given null hypothesis H0 : β = β0 we know that δ − πβ0 = 0,
and hence that

g(β0) = δ̂ − π̂β0 ∼ N(0,Ω(β0)) for Ω(β0) = Σδδ − β(Σδπ + Σπδ) + β2Σππ

where Σδδ, Σππ, and Σδπ denote the variance of δ̂, the variance of π̂, and their co-
variance, respectively. Hence the AR statistic (Anderson & Rubin, 1949), defined as
AR(β) = g(β)′Ω(β)−1g(β), follows a χ2

k distribution under H0 : β = β0 no matter the
value of π. Note that Anderson & Rubin (1949) considered the case with homoskedas-
tic normal errors, so the AR statistic as we define it here is formally a generalization
of their statistic that allows for non-homoskedastic errors.

Using the AR statistic, we can form an AR test of H0 : β = β0 as φAR(β0) =
1
{
AR(β0) > χ2

k,1−α
}
for χ2

k,1−α the 1 − α quantile of a χ2
k distribution. As noted by

Staiger & Stock (1997) this yields a size-α test that is robust to weak instruments.
Hence, if we were to re-compute Figure 2 for the AR test, the size would be flat at 5%
for all specifications. We can thus form a level 1−α weak-instrument-robust confidence
set CSAR by collecting the non-rejected values. In the case with homoskedastic errors
(or with non-homoskedastic errors but a single instrument) as noted by e.g. Mikusheva
(2010) one can derive the bounds of CSAR analytically, avoiding the need for numerical
test inversion.

Since AR confidence sets have correct coverage regardless of the strength of the
instruments, we know from Gleser & Hwang (1987) and Dufour (1997) that they
have infinite length with positive probability. Specifically, as discussed in Mikusheva
(2010) CSAR can take one of three forms in settings with a single instrument: (i) a
bounded interval [a, b], (ii) the real line (−∞,∞), and (iii) the real line excluding an
interval (−∞, a]∪[b,∞). In settings with more than one instrument but homoskedastic
errors, the AR confidence set can take the same three forms, or may be empty. These
behaviors are counter-intuitive, but have simple explanations.

First, as noted by Kleibergen (2007), as |β| → ∞, AR(β) converges to the Wald
statistic for testing that π = 0 (which is equal to k times the robust first-stage F-
statistic). Hence, the level-α AR confidence set has infinite length if and only if a
robust F-test cannot reject that π = 0, and thus that β is totally unidentified. Thus,
infinite-length confidence sets arise exactly in those cases where the data do not allow
us to conclude that β is identified at all.
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Second, CSAR may be empty only in the over-identified setting. In this case, the
AR approach tests that δ = πβ0, which could fail either because δ = πβ for β 6= β0,
or because there exists no value β such that δ = πβ. In the latter case the over-
identifying restrictions of the IV model fail. Hence, the AR test has power against both
violations of our parametric hypothesis of interest and violations of the IV model’s
overidentifying restrictions, and an empty AR confidence set can be interpreted as a
rejection of the overidentifying restrictions. The overidentifying restrictions could fail
due either to invalidity of the instruments or to treatment effect heterogeneity as in
Imbens & Angrist (1994), but either way imply that the constant-effect IV model is
misspecified.

The power of Anderson-Rubin tests against violations of the IV model’s overiden-
tifying restrictions means that if we care only about power for testing the parametric
restriction H0 : β = β0, AR tests and confidence sets can be inefficient. In particu-
lar, in the strongly-identified case with ‖π‖ large one can show that the usual Wald
statistic (β̂ − β0)2/σ̂2

β̂
is approximately noncentral-χ2

1 distributed with the same non-
centrality as AR(β0), so tests based on the Wald statistic (or equivalently, two-sided
t-tests) have higher power than tests based on AR. Strong identification is important
for this result. Chernozhukov et al. (2009) show that the AR test is admissible (i.e.
not dominated by any other test) in settings with homoskedastic errors and weak
instruments.

Efficiency of AR in Just-Identified Models In just-identified models there are
no overidentifying restrictions and the AR test has power only against violations
of the parametric hypothesis. In this setting, Moreira (2009) shows that the AR
test is uniformly most accurate unbiased. We say that a size-α test φ is unbiased if
Eβ,π [φ(β0)] ≥ α for all β 6= β0 and all π, so the rejection probability when the null
hypothesis is violated is at least as high as the rejection probability when the null
is correct. The Anderson-Rubin test is unbiased, and Moreira (2009) shows that for
any other size-α unbiased test φ, Eβ,π [φAR(β0)− φ(β0)] ≥ 0 for all β 6= β0 and all π.
Hence, the AR test has (weakly) higher power than any other size-α unbiased test no
matter the true value of the parameters. In the strongly-identified case the AR test
is asymptotically efficient in the usual sense, and so does not sacrifice power relative
to the conventional t-test.

Practical Performance of AR Confidence Sets Since Anderson-Rubin confi-
dence sets are robust to weak identification, and are efficient in the just-identified
case, there is a strong case for using these procedures in just-identified settings. To
examine the practical impact of using AR confidence sets, we return to our AER
dataset, limiting attention to just-identified specifications with a single endogenous
variable where we can estimate the joint variance-covariance matrix of (π̂, δ̂). In the
sample of 34 specifications meeting these requirements, we find that AR confidence
sets are quite similar to t-statistic confidence sets in some cases, but are longer in oth-
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ers. Specifically, in two specifications the first-stage is not distinguishable from zero at
the 5% level so AR confidence sets are infinite. In the remaining 32 specifications AR
confidence sets are 56.5% longer than t-statistic confidence sets on average, though
this difference drops to 20.3% if we limit attention to specifications that report a first-
stage F-statistic larger than 10, and to 0.04% if we limit attention to specifications
that report a first-stage F-statistic larger than 50.

5.2 Tests for Over-Identified Models

In contrast to the just-identified case, in over-identified settings the AR test is robust
but inefficient under strong identification. This has led to a large literature seeking
procedures that perform better in over-identified models.

Towards this end, note that in the normal model (6) the Anderson-Rubin statistic
for testing H0 : β = β0 depends on the data only through g(β0) = δ̂ − π̂β0. To
construct procedures that perform as well as the t-test in the strongly-identified case,
it is valuable to incorporate information from π̂, which is informative about which
deviations of δ−πβ0 from zero correspond to violations of the parametric restrictions of
the model, rather than the overidentifying restrictions. Specifically, under alternative
parameter value β, δ̂−π̂β0 ∼ N(π(β−β0),Ω(β0)). See I. Andrews (2016) for discussion.
Hence, to construct procedures that perform as well as the t-test in well-identified,
over-identified cases, a number of authors have considered test statistics that that
depend on (δ̂, π̂) through more than δ̂ − π̂β0.

Once we seek to construct weak-instrument-robust tests that depend on the data
through more than g(β0), however, we encounter an immediate problem: even under
the null H0 : β = β0, the distribution of (δ̂, π̂) depends on the (unknown) first-stage
parameter π. Hence, for a generic test statistic s(β0) that depends on (δ̂, π̂), the
distribution of s(β0) under the null will typically depend on π. For example, if we
take s(β0) to be the absolute t-statistic |β̂ − β0|/σ̂β̂, we know that the distribution of
t-statistics under the null depends on the strength of the instruments. One could in
principle find the largest possible 1-α quantile for s(β0) over the null consistent with
some set of values for π, for example an initial confidence set as in the Bonferroni
approach of Staiger & Stock (1997). For many statistics s(β0), however, this requires
extensive simulation and will be computationally intractable, and moreover typically
entails a loss of power.

An alternative approach eliminates dependence on π through conditioning. Specif-
ically, under H0 : β = β0(

g(β0)
π̂

)
∼ N

((
0
π

)
,

(
Ω (β0) Σδπ − Σππβ0

Σπδ − Σππβ0 Σππ

))
.

Thus, if we define
D(β) = π̂ − (Σπδ − Σππβ) Ω(β)−1g(β),
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we see that (g(β), D(β)) is a one-to-one transformation of (δ̂, π̂), and underH0 : β = β0(
g(β0)
D(β0)

)
∼ N

((
0
π

)
,

(
Ω (β0) 0

0 Ψ(β0)

))
for Ψ(β0) = Σππ − (Σπδ − Σππβ0) Ω (β0)

−1 (Σδπ − Σππβ0). Thus, under the null the
nuisance parameter π enters the distribution of the data only through the statistic
D(β0), while g(β0) is independent of D(β0) and has a known distribution. Hence,
the conditional distribution of g(β0) (and thus of (δ̂, π̂)) given D(β0) doesn’t depend
on π. This conditioning approach was initially introduced to the weak-instruments
literature by Moreira (2003), who studied the homoskedastic case. In settings with
homoskedastic errors g(β0) and D(β0) are transformations of the statistics S and T
introduced by Moreira (2003) – see I. Andrews and Mikusheva (2016).

We can simulate the conditional distribution of any statistic s(β0) given D(β0)
under the null by drawing g(β0)

∗ ∼ N(0,Ω(β0)), constructing (δ̂∗, π̂∗) as(
δ̂∗

π̂∗

)
=

(
I + β0 (Σπδ − Σππβ0) Ω (β0)

−1 β0I

(Σπδ − Σππβ0) Ω (β0)
−1 I

)(
g (β0)

∗

D (β0)

)
for given D (β0) , and tabulating the resulting distribution of s∗(β0) calculated based
on (δ̂∗, π̂∗). If we denote the conditional 1 − α quantile as cα(D(β0)), we can then
construct a conditional test based on s as φs = 1 {s(β0) > cα(D(β0))} , and provided
s(β0) is continuously distributed conditional on D(β0) this test has rejection proba-
bility exactly α under the null, Eβ0,π [φs(β0)] = α for all π, while if the conditional
distribution of s(β0) has point masses the test has size less than or equal to α. As
noted by Moreira (2003) for the homoskedastic case, this allows us to construct a size-
α test based on any test statistic s. For further discussion of the simulation approach
described above and a formal size control result applicable to the non-homoskedastic
case, see I. Andrews and Mikusheva (2016).

Tests which have rejection probability exactly α for all parameter values consistent
with the null are said to be similar. Theorem 4.3 of Lehmann & Romano (2005) implies
that if the set of values of π is unrestricted then all similar size-α tests of H0 : β = β0
are conditional tests in the sense that their conditional rejection probability given
D(β0) under the null is equal to α.Moreover, in the present setting the power functions
for all tests are continuous, so if the set of values (β, π) is unrestricted then all unbiased
tests are necessarily similar. Thus, the class of conditional tests nests the class of
unbiased tests. Together, these results show that in cases where (β, π) is unrestricted,
the class of conditional tests has attractive properties. Within this class, however,
there remains a question of what test statistics s(β0) to use. In the homoskedastic
case we recommend using the likelihood ratio statistic as proposed by Moreira (2003).
In the non-homoskedastic case, however, the literature has not yet converged on a
recommendation, other than to use one of several procedures that is efficient under
strong instruments.
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Tests for Homoskedastic Case A wide variety of test statistics have been pro-
posed in the literature. Kleibergen (2002) proposed a modified score test for the
model with homoskedastic errors, while in the same model Moreira (2003) proposed
the general conditioning approach for homoskedastic models and noted that both the
AR test and Kleibergen (2002)’s score test are conditional tests (trivially, since their
conditional critical values do not depend on D(β0)). Moreira (2003) further proposed
conditional Wald and likelihood ratio tests, based on comparing the Wald and like-
lihood ratio statistics to a conditional critical value. Unlike AR, both the score and
likelihood ratio statistics depends on both (δ̂, π̂), and conditional tests based on these
statistics are efficient in the well-identified case.

D. Andrews et al. (2006) found that the conditional likelihood ratio (CLR) test
of Moreira (2003) has very good power properties in the homoskedastic case with a
single endogenous variable. The Kronecker product structure of the variance matrix
Σ in this setting means that the problem is unchanged by linear transformations of
the instruments. It is therefore natural to limit attention to tests that are likewise
invariant, in the sense that their value is unchanged by linear transformations of
the instruments. D. Andrews et al. (2006) showed, however, that the power of such
invariant tests depends only on the correlation between the errors (U, V ), the (variance-
normalized) length of the first-stage π, and the true parameter value β. Imposing an
additional form of invariance to limit attention to two-sided tests, D. Andrews et al.
(2006) showed numerically that the CLR test has power close to the upper bound for
the power of any invariant similar test over a wide range of parameter values, where
the calculation is made feasible by the low dimension of the invariant parameter space.
D. Andrews et al. (2008) extended this result by showing that the power envelope for
invariant non-similar tests is close to that for invariant similar tests, and thus that
(a) there is not a substantial power cost to imposing similarity in the homoskedastic
setting if one limits attention to invariant tests, and (b) that the CLR test performs
well even in comparison to non-similar tests. Building on these results, Mikusheva
(2010) proved a near-optimality property for CLR confidence sets. D. Andrews et
al. (2018b) added a note of caution, showing that there exist parameter values not
explored by D. Andrews et al. (2006) where the power of the CLR test is further from
the power envelope, but still recommend the CLR test for the homoskedastic, single
endogenous regressor setting.

Tests for Non-Homoskedastic Case The simplifications obtained using Kro-
necker structure of Σ are no longer available in the non-homoskedastic case, intro-
ducing substantial complications.

Motivated by the positive results for the CLR test, a number of authors have
explored analogs and generalizations of the CLR test for non-homoskedastic set-
tings. The working paper version of D. Andrews et al. (2006), D. Andrews et al.
(2004), introduced a version of the CLR test applicable to the non-homoskedastic
case, while Kleibergen (2005) introduced the conditioning statistic D(β0) for the non-
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homoskedastic case and developed score and quasi-CLR statistics applicable in this
setting. D. Andrews & Guggenberger (2015) introduced two alternative generaliza-
tions of the CLR test for non-homoskedastic settings that allow a singular covariance
matrix Σ. I. Andrews (2016) studied tests based on linear combinations of AR and
score statistics, noting that the CLR test can be expressed in this way. Finally, the
results I. Andrews and Mikusheva (2016) imply a direct generalization of the CLR
test to settings with non-homoskedastic errors, which again compares the likelihood
ratio statistic to a conditional critical value.

All of these extensions of the CLR test are efficient under strong identification,
and all but the proposal of I. Andrews (2016) reduce to the CLR test of Moreira
(2003) in the homoskedastic, single endogenous variable setting where the results of D.
Andrews et al. (2006) apply. At the same time, however, while these generalizations
are intended for the non-homoskedastic case, evidence on their performance in the
weakly identified case has largely been limited to simulation results.

To derive tests with provable optimality properties in the weakly-identified non-
homoskedastic case, a recent literature has focused on optimizing weighted average
power, meaning power integrated with respect to weights on (β, π). Specifically
the similar test maximizing weighted average power with respect to the weights ν,∫
Eβ,π[φ]dν(β, π), rejects when

s(β0) =

∫
f(δ̂, π̂; β, π)dν(β, π)/f(δ̂, π̂|D(β0); β0)

exceeds its conditional critical value. Intuitively, this weighted average power optimal
test rejects when the observed data is sufficiently more likely to have arisen under the
weighted alternative H1 : β 6= β0, weighted by ν, than under the null H0 : β = β0.
As this description suggests, the choice of the weight ν plays an important role in
determining the power and other properties of the resulting test, though the use of
conditional critical values ensures size control for all choices of ν.

Montiel Olea (2017) proposed particular choices of weights for the homoskedas-
tic and non-homoskedastic cases, and showed that weighted average power optimal
similar tests can attain essentially any admissible power function through an appro-
priate choice of weights. Moreira & Moreira (2015) showed that unless the weights
ν are chosen carefully weighted average power optimal similar tests may have poor
power even in the homoskedastic case, and that the problem can be still worse in the
non-homoskedastic case. To remedy this, they modify the construction of weighted
average power optimal tests to enforce a sufficient condition for local unbiasedness,
and showed that these tests performed well in simulation and are asymptotically effi-
cient in the case with strong instruments. Finally, Moreira & Ridder (2017) proposed
weights ν motivated by invariance considerations. They further showed that there
exist parameter configurations in the non-homoskedastic case where tests that depend
only on the AR and score statistics, like those of Kleibergen (2005) and I. Andrews
(2016), have poor power.
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To summarize, in settings with a single endogenous regressor and homoskedastic
errors, the literature to date establishes good properties for the CLR test of Moreira
(2003). In settings with non-homoskedastic errors, by contrast, a large number of
procedures have been proposed, but a consensus has not been reached on what proce-
dures to use in practice, beyond the recommendation that researchers use procedures
that are efficient when the instruments are strong. Consequently, it is not yet clear
what procedure(s) to recommend in this case.

5.3 Inference with Multiple Endogenous Regressors

The methods we have so far discussed for models with a single endogenous regressor
can all be generalized to test of hypotheses on the p × 1 vector β in settings with
multiple endogenous variables (as in 19 of the 230 specifications in our AER sample).
By inverting such tests, we can form simultaneous confidence sets for β. Test inversion
with multiple endogenous variables becomes practically difficult for moderate or high-
dimensional β, since the number of grid points at which we need to evaluate our test
grows exponentially in the dimension. See the supplementary materials to I. Andrews
(2016) for a discussion of this issue. On the other hand, high-dimensional settings do
not appear common in practice, and no specification in our AER data has more than
four endogenous regressors. It is in any event rare to report confidence sets for the
full vector β in multidimensional settings with strong instruments. Instead, it is far
more common to report standard errors or confidence sets for one element of β at a
time.

Formally, suppose we decompose β = (β1, β2) and are interested in tests or con-
fidence sets for the subvector β1 alone. This is known as the subvector inference
problem. One possibility for subvector inference is the projection method. In the
projection method, we begin with a confidence set CSβ for the full parameter vector
β, and then form a confidence set for β1 by collecting the implied set of values

CSβ1 =
{
β1 : there exists β2 such that (β1, β2) ∈ CSβ

}
.

This is called the projection method because we can interpret CSβ1 as the projection
of CSβ onto the linear subspace corresponding to β1. The projection method was ad-
vocated for the weak instruments problem by Dufour (1997), Dufour & Jasiak (2001),
and Dufour & Taamouti (2005). Dufour & Taamouti (2005) derived analytic expres-
sions for projection-based confidence sets using the AR statistic in the homoskedastic
case.

Unfortunately, the projection method frequently suffers from poor power. When
used with the AR statistic, for example, we can interpret the projection method as
minimizing AR(β1, β2) with respect to the nuisance parameter β2, and then comparing
minβ2 AR(β1, β2) to the same χ2

k critical value we would have used without minimiza-
tion. As a result, projection-method confidence sets often cover the true parameter
value with probability strictly higher than the nominal level, and so are conservative.
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If the instruments are strong for the purposes of estimating β2 (so if β1 were
known, estimation of β2 would be standard), these problems have a simple solution:
we can reduce our degrees of freedom to account for minimization over the nuisance
parameter. Results along these lines for different tests are discussed by Stock &Wright
(2000), Kleibergen (2005), and I. Andrews and Mikusheva (2016).

If we cannot assume β2 is strongly identified, matters are unfortunately more com-
plicated. Guggenberger et al. (2012) show that in the setting with homoskedastic
errors one can reduce the degrees of freedom for the AR statistic to mitigate projec-
tion conservativeness (using a χ2

k−p2 critical value for p2 the dimension of β2), and
Guggenberger et al. (2018) propose a further modification to improve power. On the
other hand, Guggenberger et al. (2012) show that the analog of their result fails for
the score statistic of Kleibergen (2002). Moreover, Lee (2015) shows that even the re-
sults of Guggenberger et al. (2012) for the AR statistic does not extend to the general
non-homoskedastic case.

To improve the power of the projection method without assuming the nuisance
parameter β2 is strongly identified, Chaudhuri & Zivot (2011) propose a modified
projection approach which chooses the initial confidence set CSβ to ensure improved
performance for CSβ1 in the case with strong instruments. In particular, Chaudhuri
& Zivot (2011) base CSβ on the combination of a modified score statistic with an
Anderson-Rubin statistic, and show that the resulting CSβ1 comes arbitrarily close to
efficiency in the case with strong instruments. I. Andrews (2018) proposes a variant
of this approach for constructing confidence sets for functions f(β) of the parameter
vector other than subvectors, while D. Andrews (2018) generalizes Chaudhuri & Zivot
(2011) in several directions, introducing a variety of test statistics and deriving con-
fidence sets that are asymptotically efficient in the strongly identified case. Finally,
Zhu (2015) introduces a Bonferroni approach for subvector inference that provides an
alternative to projection.

5.4 Two-Step Confidence Sets

Weak-instrument-robust confidence sets are not widely reported in practice. For in-
stance, only two papers in our AER sample report robust confidence sets. When
such confidence sets are reported, it often appears to be because the authors have
uncovered evidence that their instruments are weak. For example, in a survey of 35
empirical papers that reported confidence sets based on Moreira (2003), I. Andrews
(2018) found that 29 had at least one specification reporting a first-stage F-statistic
smaller than 10.

Used in this way, robust confidence sets may act as an alternative to dropping
specifications altogether, which as discussed in Section 4.1 can result in large size
distortions. In particular one can consider constructing a two-step confidence set,
where one first assesses instrument strength and then reports conventional confidence
sets if the instruments appear strong and a robust confidence set if they appear weak.
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As discussed in I. Andrews (2018), the results of Stock & Yogo (2005) imply bounds on
the size of two-step confidence sets based on the first-stage F-statistic in homoskedastic
or just-identified settings. In overidentified non-homoskedastic settings, by contrast,
Andrews (2018) shows that in general two-step confidence sets based on the robust
first-stage F-statistic FR and conventional cutoffs can have large size distortions.

The implications of the negative results of I. Andrews (2018) for two-step confi-
dence sets in empirically relevant settings, or for two-step confidence sets based on
FEff , are not clear. To examine this issue, Figure 5 plots the size of two-step tests
based on the effective F-statistic (which use a t-test if FEff > 10 and an AR test if
FEff ≤ 10) against the average effective F-statistic in simulations based on our AER
data.
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Figure 5: Rejection probability for nominal 5% two-step test that uses 5% t-test
and 5% AR test when the effective F-statistic is larger than and smaller than 10,
respectively. Limited to the 106 out of 124 specifications with average effective F
smaller than 50. Left panel plots size at parameter values estimated from AER data,
while middle and right panels plot, respectively, the 5th and 95th percentiles of the
size under the Bayesian exercise described in Section 3. Red line corresponds to a
first-stage F of 10.

The results of Figure 5 show that two-step confidence sets based on the effective F-
statistic have at most mild size distortions in simulations calibrated to our AER data.
Specifically, no specification yields size exceeding 10%, and even when we consider
upper bounds no specification yields size exceeding 11.5%.

6 Open Questions
While considerable progress has been made on both detecting weak instruments and
developing identification-robust confidence sets, a number of important open questions
remain. As suggested in the last section, no consensus has been reached on what
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inference procedures to use in over-identified models with non-homoskedastic errors.
Likewise, existing optimality results for weak-instrument-robust inference on subsets
of parameters only address behavior in the strongly-identified case.

Simulation results calibrated to our AER sample raise additional questions. First,
we found that conventional t-tests appears to perform reasonably well in specifica-
tions where the average effective F-statistic is larger than 10, even in over-identified,
non-homoskedastic cases. Likewise, we found that two-step confidence sets based on
the effective F-statistic appear to have well-controlled size distortions. These results
suggest that the effective F-statistic might provide a useful gauge of identification
strength in a wider range of cases than is suggested by the current theoretical litera-
ture, but a more extensive and formal exploration of whether this is in fact the case
and if so, why, is needed.

Another set of open questions concerns model misspecification. Existing weak
instrument-robust procedures assume the constant-effect linear instrumental variables
model holds. If the model is instead misspecified, for example because the instruments
are invalid, then as noted by Guggenberger (2012) existing weak-instrument robust
confidence sets do not have correct coverage for the true parameter value. Of course,
the same is also true for conventional confidence sets with strong but invalid instru-
ments, so this issue is not unique to robust confidence sets. In over-identified settings
with weak instruments, however, the arguments for size control of existing procedures
break down even if one considers inference on pseudo-true parameter values (e.g. the
population analog of the two-stage least squares or GMM coefficient). This issue was
noted and corrected for two-stage least squares estimates in strong-instrument settings
with heterogeneous treatment effects in the appendix to Imbens & Angrist (1994), and
more recently by Lee (2018). To the best of our knowledge, however, analogous results
have not been developed for settings with weak instruments.

Concern about model misspecification could also interact with the practice of
screening on instrument strength: if one thinks that many instruments used in prac-
tice are slightly invalid (in the spirit of e.g. Conley et al. (2012)), then while this will
result in size distortions, it typically will not qualitatively change results when the
instruments are strong. On the other hand, when the instruments are weak, even a
small degree of instrument invalidity could account for most of the relationship be-
tween Z and X, and so lead to qualitatively quite different conclusions. To address
this, researchers may wish to limit attention to settings where the instruments are
sufficiently strong for them to be confident that results will be qualitatively robust to
low levels of instrument invalidity. How to make this argument precise and conduct
inference, however, we leave to future work.

Another important open question concerns the validity of the normal approxima-
tion to the distribution of the reduced-form and first-stage coefficients. In this review,
including in our simulations, we have used the model (6) which takes the reduced-
form and first-stage coefficients (δ̂, π̂) to be normally distributed with known variance.
While this approximation can be justified with asymptotic arguments, whether or not
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it is reasonable in a given application is necessarily case-specific. Important recent
work by Young (2018) casts serious doubt on the quality of this normal approximation
in many applications.

Using a sample of studies published in the journals of the American Economic As-
sociation which overlaps with but is substantially larger than our AER sample, Young
(2018) finds that many reported results are heavily influenced by a small number of
observations or clusters. Since the Central Limit Theorem used to derive the limiting
normal distribution (5) for the reduced-form and first-stage coefficients assumes that
the influence of each observation is small, this suggests that the normal approxima-
tion may be unreasonable. Moreover, Young (2018) notes that variance estimates Σ̂
for settings with non-homoskedastic data (which Young calls the non-iid case) can be
extremely noisy in finite samples. In simulations that account for these factors, Young
finds large size distortions for both conventional and AR tests, with particularly severe
distortions for AR tests in over-identified settings. Young (2018) further finds that
first-stage F-statistics do not appear to provide a reliable guide to the performance
of conventional inference procedures, and that we may spuriously observe large first-
stage F-statistics even when the instruments are irrelevant, though he finds somewhat
better behavior for the tests of Montiel Olea & Pflueger (2013). To address these
issues, Young (2018) suggests using the bootstrap for inference.

We know that bootstrap procedures based on IV estimates or t-statistics are in
general invalid when the instruments are weak, and so are not a satisfactory solu-
tion in settings with weak instruments. However, bootstrap procedures based on
identification-robust statistics may remain valid, as shown by Moreira et al. (2009)
for bootstrapped score and Anderson-Rubin tests in the homoskedastic case. Sub-
sequently, Davidson & MacKinnon (2014) proposed additional bootstrap procedures,
but did not establish their validity when the instruments are weak. We expect that
is should be possible to extend the results of Moreira et al. (2009) showing validity
of bootstrap-based identification-robust tests to the non-homoskedastic case, and to
other identification-robust procedures. Given the concerns raised by Young (2018),
and the practical importance of the non-homoskedastic case, such an extension seems
like an important topic for future work.
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Appendix: Weak-IV Robust Procedures in Stata
In constructing our AER sample, we noticed that the ivreg2 suite, described in
Baum et al. (2007), remains a common toolkit for linear IV estimation. ivreg2
implements the Stock & Yogo (2005) weak instrument test and reports confidence
sets for coefficients on endogenous regressors based on the t-test.

As discussed in the main text, the Stock & Yogo (2005) weak instrument test is only
valid in the homoskedastic case. The weak instrument test of Montiel Olea & Pflueger
(2013) is robust to heteroskedasticity, autocorrelation, and clustering. It is thus the
preferred test for detecting weak instruments in the over-identified, non-homoskedastic
setting. A recent Stata package weakivtest by Pflueger & Wang (2015) implements
this test. It computes the effective F-statistic and tabulates critical values based on
Montiel Olea & Pflueger (2013).

The weak instrument test of Montiel Olea & Pflueger (2013) concerns only the
Nagar (1959) bias approximation, not size distortions in conventional inference pro-
cedures (t-tests), though as discussed in the text, in the k = 1 case one can use the
Montiel Olea & Pflueger (2013) effective F-statistic, or the Kleibergen-Paap statistic
reported by ivreg2, along with the Stock & Yogo (2005) critical values to test for
size distortions. Our review paper discusses several tests robust to weak instruments
and explains how to construct a level 1 − α confidence set based on test inversion.
In just-identified models, the AR test is efficient and thus recommended. In over-
identified models with a single endogenous regressor and homoskedastic errors, the
CLR test has good properties. Except for the AR test and the Kleibergen score test,
these robust tests require simulations to calculate their critical values in many cases,
which can be computationally costly. Below we describe several recent Stata packages
that augment ivreg2 in terms of inference with weak instruments.6

For the p = 1 and homoskedastic case, the Stata package condivreg by Mikusheva
& Poi (2006) computes the AR, Kleibergen score, and CLR confidence sets. This rou-
tine implements algorithms proposed by Mikusheva (2010) that allow one to construct
confidence sets by quickly and accurately inverting these tests without having to use
grid search.

For the non-homoskedastic and p ≥ 1 case, the Stata package weakiv computes
the AR, Kleibergen score, and CLR confidence sets based on grid search. Finlay &
Magnusson (2009) describe a previous version of this package called rivtest. To-
gether with simulations for critical values of the CLR test, the grid search can be
computationally demanding.

As an alternative to a two-step confidence set based on first-stage F-statistic, I.
Andrews (2018) propose a two-step weak-instruments-robust confidence set. The Stata
package twostepweakiv by Sun (forthcoming) computes such confidence sets based
on grid search. While twostepweakiv does not need to simulate critical values for

6ivreg2 performs the Anderson-Rubin (AR) test for the null H0 : β = 0, but does not calculate
a confidence set.
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most cases, the grid search alone can be computationally demanding.
For the p > 1 cases, one may be interested in subvector inference. weakiv imple-

ments the traditional projection method and twostepweakiv implements the refined
projection method based on Chaudhuri & Zivot (2011).

To summarize, in homoskedastic settings, ivreg2 conducts valid weak instru-
ment tests and condivreg calculates weak-instrument-robust confidence sets. In non-
homoskedastic settings, weakivtest conducts valid weak instrument tests, but does
not guarantee valid inference. For k = 1 one can use the effective F-statistic reported
by weakivtest, or the Kleibergen-Paap statistic reported by ivreg2, along with the
Stock & Yogo (2005) critical values to test for size distortions. To construct robust
confidence sets, weakiv or twostepweakiv should be used.7

7Unfortunately, weakivtest and twostepweakiv are only compatible with the syntax of ivreg2.
weakiv is also compatible with the syntax of other weakivtest IV model packages including xtivreg2,
which accommodates fixed effects.
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