Exchange Rates and the Transmission of Global Liquidity

Avdjiev, Koch, and Shin

Jesse Schreger

Columbia University and NBER

NBER Capital Flows, Currency Wars, and Monetary Policy

Summary

- ▶ Bruno and Shin (2015): Risk-taking channel of exchange rates
- This paper
 - Evidence for this channel across major currencies
- ► This discussion:
 - Paper in literature
 - Review of main results
 - Some suggestions

- Bruno and Shin (2015 ReStud): "Cross-Border Banking and Global Liquidity"
 - ▶ Real appreciation of LC ⇒ Capital flows to banking sector ↑

- Bruno and Shin (2015 ReStud): "Cross-Border Banking and Global Liquidity"
 - ▶ Real appreciation of LC ⇒ Capital flows to banking sector ↑
- Bruno and Shin (2015 JME): "Capital Flows and the Risk-Taking Channel of Monetary Policy"
 - ► USD appreciation ⇒ Global bank leverage ↓

- Bruno and Shin (2015 ReStud): "Cross-Border Banking and Global Liquidity"
 - ▶ Real appreciation of LC ⇒ Capital flows to banking sector ↑
- Bruno and Shin (2015 JME): "Capital Flows and the Risk-Taking Channel of Monetary Policy"
 - ► USD appreciation ⇒ Global bank leverage ↓
- Hofmann, Shim, and Shin (2017): "Sovereign yields and risk-taking channel of currency appreciation"
 - ▶ USD appreciation ⇒ Spreads widen
- Avdjiev, Du, Koch, and Shin (2017): "The Dollar, Bank Leverage and the Deviation from Covered Interest Parity"
 - ▶ USD appreciation ⇒ CIP basis widens

- Bruno and Shin (2015 ReStud): "Cross-Border Banking and Global Liquidity"
 - ▶ Real appreciation of LC ⇒ Capital flows to banking sector ↑
- Bruno and Shin (2015 JME): "Capital Flows and the Risk-Taking Channel of Monetary Policy"
 - ► USD appreciation ⇒ Global bank leverage ↓
- Hofmann, Shim, and Shin (2017): "Sovereign yields and risk-taking channel of currency appreciation"
 - ▶ USD appreciation ⇒ Spreads widen
- Avdjiev, Du, Koch, and Shin (2017): "The Dollar, Bank Leverage and the Deviation from Covered Interest Parity"
 - ▶ USD appreciation ⇒ CIP basis widens
- Avdjiev, Bruno, Koch, and Shin (2018): "The Dollar Exchange Rate as a Global Risk Factor"
 - ► USD appreciation ⇒ Cross-border flows ↓ ⇒ Investment ↓

- Bruno and Shin (2015 ReStud): "Cross-Border Banking and Global Liquidity"
 - ▶ Real appreciation of LC ⇒ Capital flows to banking sector ↑
- Bruno and Shin (2015 JME): "Capital Flows and the Risk-Taking Channel of Monetary Policy"
 - ► USD appreciation ⇒ Global bank leverage ↓
- Hofmann, Shim, and Shin (2017): "Sovereign yields and risk-taking channel of currency appreciation"
 - ▶ USD appreciation ⇒ Spreads widen
- Avdjiev, Du, Koch, and Shin (2017): "The Dollar, Bank Leverage and the Deviation from Covered Interest Parity"
 - ▶ USD appreciation ⇒ CIP basis widens
- Avdjiev, Bruno, Koch, and Shin (2018): "The Dollar Exchange Rate as a Global Risk Factor"
 - ► USD appreciation ⇒ Cross-border flows ↓ ⇒ Investment ↓
- Heterogeneity in Strength of Risk-Taking Channel by Currency
 - ► Funding Currency appreciation ⇒ Reduction in cross-border flows in that funding currency
 - Global funding currencies: USD, JPY, and (maybe) EUR

Framework

Country-by-Country

$$\Delta xbl_{i,t}^c = \alpha_i^c + \beta_i^c \Delta \mathcal{E}_{i,t}^c + \sigma_{i,t}^c$$

Panel

$$\Delta xbl_{i,t}^{c} = \alpha^{c} + \beta^{c} \Delta \mathcal{E}_{i,t}^{c} + \sigma_{i,t}^{c}$$

- Variables
 - lacktriangledown $\Delta x b l_{i,t}^c$ is the % growth rate of cross-border lending to country i in currency c
 - ▶ $\Delta \mathcal{E}_i^c$ is % change in BER_i^c or $NEER^c$
 - c ∈ {USD, JPY, EUR}

Main Result: Country-by-Country

$$\Delta x$$
b $l_{i,t}^{USD} = \alpha_i^{USD} + \beta_i^c \Delta N$ EE $R_t^{USD} + \epsilon_{i,t}^{USD}$

Main Result: Panel

$$\Delta xbl_{i,t}^{c} = \alpha^{c} + \beta^{c} \Delta \mathcal{E}_{t}^{c} + \sigma_{i,t}^{c}$$

	USD		JPY		EUR		
Sample	Full	Full	Full	Full	Full	Full	10-15
ΔBER	-0.224***		-0.222***		0.041		
	(0.067)		(0.062)		(0.042)		
$\Delta NEER$		-0.496***		-0.411***		0.116	~ -0.7
		(0.049)		(0.062)		(0.091)	
Obs	5,775	5,775	6,074	6,074	2,106	2,106	
R^2	0.042	0.045	0.023	0.026	0.068	0.069	

Composite of Tables 2, 4, 6, Graph 9

Interpretation:

- Dollar key global funding currency
- JPY has also been an important funding currency
- Post-2010 EUR gains that status

Mechanism

► Firm default probability P^{DEF} increases (balance sheet weakens) as USD appreciates ($\mathcal{E}_{USD} \uparrow$)

$$P^{DEF} = F\left(Revenues - \mathcal{E}^{USD} \cdot D^{USD}\right), \ F'\left(\cdot\right) < 0$$

▶ Risk-taking channel: If banks face constraints on how much risk they can take, a USD appreciation causes banks to reduce their lending because now borrowers have higher credit risk

Mechanism: Multiple Currencies

Firm default probability PDEF

$$\textit{P}^{\textit{DEF}} = \textit{F}\left(\textit{Revenue} - \mathcal{E}^{\textit{USD}} \cdot \textit{D}^{\textit{USD}} - \mathcal{E}^{\textit{JPY}} \cdot \textit{D}^{\textit{JPY}} - \mathcal{E}^{\textit{EUR}} \textit{D}^{\textit{EUR}}\right)$$

► P^{DEF} should be relatively more sensitive to the exchange rate in which a higher share of debt is denominated

International Use of Currencies

Cumulative flows of cross-border bank lending to non-residents

In trillions of the respective currency

Graph 2

The three panels show the cumulative lending flows to all borrowers worldwide located outside of the respective currency area (eg. in the left-hand panel, US dollar denominated cross-border lending to all borrowers located outside of the United States on a non-consolidated basis). Lending flows comprise loan issuance and holdings of debt securities. The shaded areas indicate a quarterly depreciation of the nominal effective exchange rate for the respective currency denomination.

Sources: BIS Locational Banking Statistics; BIS effective exchange rate indices.

Suggestion #1

 Examine sensitivity of total cross-border flows to movements in different currencies

$$\Delta \textit{xbl}_{\textit{i},t} = \alpha_{\textit{i}} + \beta^{\textit{USD}} \mathcal{E}^{\textit{USD}}_{\textit{i},t} + \beta^{\textit{EUR}} \mathcal{E}^{\textit{EUR}}_{\textit{i},t} + \beta^{\textit{JPY}} \mathcal{E}^{\textit{JPY}}_{\textit{i},t} + \epsilon_{\textit{i},t}$$

- Allows for possibility that currencies vary in how important they are for all global capital flows
- ▶ Global funding currency by β ?

Suggestion #2

▶ What drives cross-country heterogeneity in β ?

$$\Delta xbl_{i,t}^{c} = \alpha_{i}^{c} + \beta_{i}^{c} \Delta \mathcal{E}_{t}^{c} + \sigma_{i,t}^{c}$$

- Can heterogeneity in β be explained by the currency composition of country's debt? Other factors?
- Potential compliment to JPY panel regressions for Emerging Asia and EUR panel regressions for Non-euro area Europe results
 - Uses the richness of the BIS LBS dataset to provide further evidence of channel

Conclusion

- Very interesting paper adding to an important and growing literature
- Compelling evidence for risk-taking channel of exchange rates for multiple currencies
- Suggestions to understand more about the cross-currency heterogeneity