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Abstract

Discrete choice models of demand are widely used for counterfactual policy simulations, yet

their out-of-sample performance is rarely assessed. This paper uses a large-scale policy change

in Boston to investigate the performance of discrete choice models of school demand. In 2013,

Boston Public Schools considered several new choice plans that differ in where applicants can

apply. At the request of the mayor and district, we estimated discrete choice demand models

to forecast the effects of these alternatives. This work led to the adoption of a plan which

significantly altered choice sets for thousands of applicants. Pathak and Shi (2014) update

forecasts prior to the policy change and describe prediction targets involving access, travel, and

unassigned students. Here, we assess how well these ex ante counterfactual predictions compare

to the actual choices made under the new choice sets. For equilibrium outcomes, a simple ad

hoc model performs as well as the more complicated structural choice models for one of the

two grades we examine. However, the inconsistent performance of the structural models is

largely due to prediction errors in the characteristics of applicants, which are auxiliary inputs.

Once we condition on the characteristics of the actual applicants, the structural choice models

outperform the ad hoc alternative in predicting both equilibrium outcomes and choice patterns.

Moreover, refitting the models using the new choice data does not significantly improve their

prediction accuracy, suggesting that the choice models are indeed “structural” and are robust

across the reform. Our findings show that structural choice models can be effective in predicting

counterfactual outcomes, as long there are accurate forecasts about auxiliary input variables.

∗The first report of this project was released as NBER Working Paper 19859 in January 2014. We thank Boston
Mayor Thomas Menino and Boston Public School Superintendent Carol Johnson for authorizing this study. Boston
Public Schools staff, including Kamal Chavda, Tim Nicolette, Peter Sloan, Kim Rice, and Jack Yessayan, provided
essential help. We are grateful to our discussant Liran Einav for comments inspiring Section 7, Dan McFadden and
Ariel Pakes for encouragement, and participants at the McFadden 80th Birthday conference for input. We also thank
Nikhil Agarwal, Isaiah Andrews, Josh Angrist, Steve Berry, Glenn Ellison, Patrick Kline, and Michael Whinston for
feedback. Financial support is from the National Science Foundation under grant SES-1426566 and the W.T. Grant
Foundation. Pathak is on the scientific advisory board of the Institute for Innovation in Public School Choice.

†Pathak: Massachusetts Institute of Technology and NBER, Department of Economics, email: ppathak@mit.edu
and Shi: USC Marshall School of Business, Department of Data Science and Operations, email: pengshi46@gmail.com.

1



Contents

1 Introduction 3

2 Background 6

2.1 School Choice in Boston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Policy Reform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Prediction Approach 8

3.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Forecast Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Generating Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Multinomial Logit (MNL) Choice Model . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Mixed MNL (MMNL) Choice Model . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Lexicographic Choice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.4 Predicting Who Applies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Evaluating Predictions 17

4.1 Equilibrium Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Choice Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Back-testing and Hypotheses Formulation 19

6 Comparing Forecasts and Prediction Errors 20

6.1 Equilibrium and Choice Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 Decomposing Prediction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Selecting Another Policy 23

8 Conclusions 25

A Estimating the Mixed MNL Choice Model 26

A.1 Specifying the Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2 Overview of the MCMC procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.2.1 Random Walk Metropolis (RWM) . . . . . . . . . . . . . . . . . . . . . . . . 28

A.2.2 Metropolis Within Gibbs (MWG) . . . . . . . . . . . . . . . . . . . . . . . . 29

A.2.3 Hamiltonian Monte Carlo (HMC) . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.3 The MCMC Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B Computing Equilibrium Forecasts 32

C Evaluating Choice Forecasts 34

2



1 Introduction

The aim of developing models capable of quantitatively forecasting the effects of policy changes has

been an objective of economics since at least Hurwicz (1950) and Marschak (1953). In recent years,

design-based research strategies that estimate particular parameters or causal effects have become

increasingly popular. The design-based approach, however, does not immediately allow for ex ante

policy evaluations of changes far outside of historical experience. Both Angrist and Pischke (2010)

and Heckman (2010) attribute the growth of design-based research to skepticism about structural

modeling for counterfactual analysis given its reliance on parametric and behavioral assumptions.

Though opinions vary on the value of structural models, there is one area of consensus: there

are relatively few systematic evaluations of ex ante counterfactual predictions of structural mod-

els to the aftermath of the policy change. For instance, Angrist and Pischke (2010, “Industrial

Disorganization”) lament:

“Many new empirical industrial organization studies forecast counterfactual outcomes based

on models and simulations, without a clear foundation in experience. [...] At minimum,

we’d expect such a judgement to be based on evidence showing that the simulation-based

approach delivers reasonably accurate predictions. As it stands, proponents of this work

seem to favor it as a matter of principle.”1

The goal of this paper is to fill this void by evaluating the performance of predictions from discrete

choice models of demand, which underlie many studies in the new empirical industrial organization,

using a large-scale policy change that affected thousands of families in Boston in 2014.

Each year, thousands of Boston’s families submit rank order lists of public schools in the city’s

student assignment plan.2 In 2013, Boston Public Schools’ (BPS) officials, the mayor, and members

of the school committee sought to modify the plan to assign students to schools closer to their

homes, in part to reduce transportation costs. BPS publicized a number of plans that redraw the

boundaries of the city and shrink applicant choice sets. BPS and the broader community were

interested in predicting the choices families would make under these alternatives and the ensuing

final assignments.3 The mayor and superintendent delayed the timeline for selecting a new plan

and asked us to forecast the effects of these alternatives, stating (Menino, 2012b):

1Misra and Nair (2011) use a structural agency model to design and implement a compensation scheme, and
report that the new scheme’s outcomes match those from the model. For merger analysis, Peters (2006) examines
the predictive value of structural simulation methods for airline mergers and finds they do not predict post-merger
ticket prices well. Ashenfelter and Hosken (2008) argue that design-based estimates of mergers differ markedly
from structural estimates. In response to Angrist and Pischke (2010), Nevo and Whinston (2010) describe a few
counterfactual validations in the context of merger analysis and Einav and Levin (2010) support more retrospective
analyses of past mergers, but express skepticism about cross-merger extrapolation.

2The Boston assignment system has been subject to a number of theoretical studies including Abdulkadiroğlu and
Sönmez (2003), Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005), Pathak and Sönmez (2008), and Dur, Kominers,
Pathak, and Sönmez (2016).

3For more details, see Goldstein (2012) and Handy (2012). BPS communications reported more than 1,850 residents
offered feedback on the plans. For specific reactions to proposed plans, see Vaznis and Andersen (2012) and Burge
(2012).
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“We have the opportunity to generate an advanced analysis that will allow us to better

predict how families would make choices in the real world [...] This is something we have

never been able to do before.”

Our policy report, Pathak and Shi (2013), uses historical participation and rankings to predict new

choices under the different proposals. BPS administrators and the public referred to the report to

compare alternatives and ultimately select a new plan.

In January 2014, families throughout Boston ranked schools under new choice sets. For a typical

applicant, the new system adds three new school choices, removes sixteen choices, and keeps nine

choices intact. Figure 1 summarizes the timeline of the reform. Pathak and Shi (2014) updates

the earlier report using the most recent pre-reform data. In this paper, we use choices in the first

post-reform year to evaluate the accuracy of predictions.

To describe our approach and questions, we first introduce some notation. Let X encode the

characteristics of student and schools, including the set of schools to which each student can ap-

ply. Let Y encode the choice outcome of students, which is a rank-ordering over eligible school

programs for each student. We observe (X,Y ) under the existing policy and can compute equilib-

rium outcomes of interest, such as the chance students from various neighborhoods are assigned to

higher performing schools, as well as the distance students travel and the number unassigned. Let

M(X,Y ) denote these equilibrium outcomes, which is a well-defined function of X and Y , since

the assignment mechanism can be exactly recreated before or after the reform. From an ex-ante

perspective, the outcome M(X,Y ) is a random variable as both covariates X and choices Y are

uncertain.

The forecasting problem is to predict what happens under the new policy. We use demand

models to learn about the conditional distribution of choices given covariates, Y |X. Our paper

focuses on two questions:

1. How well do structural models predict equilibrium outcomes important for the school choice

context?

2. How well do structural demand models predict raw choice patterns?

Let (X∗, Y ∗) be the dataset observed under the new policy regime. The first question compares the

actual equilibrium outcomes M(X∗, Y ∗) with the forecast M(X,Y ). The second question compares

actual choices Y ∗ with the predicted choices conditioned on the actual applicant characteristics,

Y |X∗. Conditioning on the actual covariates X∗ isolates the performance of the demand model

from auxiliary forecasts of characteristics.

An innovation of our research design, illustrated in Figure 2, is that we made predictions prior

to the policy change. The benefit of making forecasts before the new policy is that we cannot

modify forecasts after observing the post-reform data. In this respect, our exercise contrasts with

other studies of structural models which use social experiments as a validation tool for structural

models (see, e.g., Wise (1985) and Todd and Wolpin (2006)). This format allows us to report

on unexpected outcomes and therefore provide a genuine out-of-sample assessment. Motivated by
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Nevo and Whinston (2010)’s call to compare structural models to other possibilities, we also report

forecasts not based on random utility maximization. This simple alternative provides a reference

point from which we judge relative performance.

Our prediction targets come from Pathak and Shi (2013) and were central to the Boston policy

debate. For students in each of Boston’s 14 neighborhoods, we predict the chance of being assigned

to a high-performing school, the average travel distance to school, and the number unassigned. To

focus on the choice models, we predict individual choices and the distribution of choices in each

neighborhood.

The discrete choice models we fit are the multinomial logit (MNL) model and the mixed MNL

model. In a pioneering contribution, McFadden and co-authors used the MNL model to study the

impact of BART, San Francisco’s rapid transit system (McFadden, Reid, Talvitie, Johnson, and

Associates, 1979). They collect data on the travel behavior of a sample of individuals in 1972,

prior to the introduction of BART, and estimate MNL models to predict the behavior of the same

individuals in 1975 after BART began. McFadden, Talvitie, and Associates (1977) provide a detailed

account of the performance of these models. McFadden (2001) summarizes

“our overall forecasts for BART were quite accurate, particularly in comparison to the official

1973 forecast [...]. We were lucky to be so accurate, given the standard errors of our forecasts,

but even discounting luck, our study provided strong evidence that disaggregate RUM-based

models could outperform conventional methods.”

Based in part on the BART experience, random utility models are widely employed in travel analysis

and other areas of economics involving choice (McFadden, 2001). There have also been many

developments in choice modeling in the subsequent four decades. Yet our study is one of the only

post-BART out-of-sample validations of discrete choice models of demand of which we are aware.

Our exercise holds the potential to provide unusually compelling evidence on the forecasting

performance of structural demand models and their value in counterfactual analysis. First, the

forecasts are based on flexible models of demand exploiting historical revealed preferences. The

data not only includes a student’s top choice, but his entire ranking of schools. Rank order list

data contain rich information about substitution patterns among choices beyond what is contained

in the top choice (see, e.g., Berry, Levinsohn, and Pakes (2004)). Moreover, our dataset includes

a large number of observables, including student characteristics and exact geographic location. In

addition, Boston’s choice plan has been in existence for more than two decades, so there is a wealth

of knowledge and shared experience about the system among participants. The current strategy-

proof system, in place since 2005, eliminates the need for participants to be strategic about their

choices and the advice BPS provides participants reflects this feature.4 Our exercise should also

be particularly informative on substitution patterns since the policy changes applicant choice sets.

As preference data from school assignment plans become more widely available, there is a rapidly

4For instance, the 2012 School Guide states: “List your school choices in your true order of preference. If you list
a popular school first, you won’t hurt your chances of getting your second choice school if you don’t get your first
choice.
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growing literature estimating school demand. Our results speak to the reliability of school demand

modeling as a policy planning tool for school districts.5 Finally, the relatively simple policy change

allows us to compare predictions and easily decompose sources of error, which may not be possible

in more complicated structural models.

On the other hand, the premise of our exercise, and other predictions based on discrete choice

models of demand is that preferences are stable, can be estimated well, and can be used to extrap-

olate to different environments. Along with a change in the choice set in Boston’s new plan, the

district also presented the choice set in a different way, which may induce a change in underlying

preferences (see Figure 3 shows how choices are presented). In a field experiment, Hastings and

Weinstein (2008) provide show that choice behavior in Charlotte’s school choice plan can be swayed

by informational cues. In other contexts, interventions simplifying information can significantly

alter choice behavior (Kling, Mullainathan, Shafir, Vermuelen, and Wrobel, 2012). If these features

dominate decision-making, then they may interfere with the reliability of forecasts that assume

stable preferences over time.

The rest of this paper is structured as follows. Section 2 provides details on the Boston student

assignment plan and events leading up to the adoption of a new plan in 2014. Section 3 describes

the data, forecast targets, and how we generate predictions. Section 4 discusses how we evaluate

predictions and Section 5 reviews hypotheses motivated by back-testing our framework. Section

6 compares our predictions to the the actual outcomes in the first year of the new plan. It also

decomposes sources of prediction error by examining changes to the set of participants and the

underlying stability of the demand model. Section 7 reports on how prediction errors affect the

ranking of plans other than the one Boston ultimately selected. Section 8 concludes and discusses

directions for future work.

2 Background

2.1 School Choice in Boston

Boston Public Schools has one of the nation’s most well-known school choice plans. From 1988 to

2013, the city was divided into the North, West, and East Zone for elementary school admissions,

shown in Figure 3. There roughly 25 to 30 elementary schools in each zone. Students residing in a

zone are allowed to rank any school in the zone as well as any school within a 1 mile walk zone of

their residence and a handful of city-wide schools. At each school, students are prioritized as follows:

continuing students (who are already assigned to the school at an earlier grade) have the highest

priority, followed by students who have an older sibling at the school, followed by other students.

Until 2013, for half of the program seats, students residing in the walk zone obtain priority, but this

5The growing literature estimating school demand from similar datasets includes: Abdulkadiroğlu, Agarwal, and
Pathak (2015), Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2017), Agarwal and Somaini (2014), Burgess,
Greaves, Vignoles, and Wilson (2015), Calsamiglia, Fu, and Guell (2017), Glazerman and Dotter (2016), Harris and
Larsen (2015), Hastings, Kane, and Staiger (2009), He (2012), Hwang (2015), Kapor, Neilson, and Zimmerman (2017),
Ruijs and Oosterbeek (2012), and Walters (2014).
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priority does not extend to the other half. A single lottery number serves as the tie-breaker.6

Since 2005, after students submit their choices, they are processed through a version of Gale and

Shapley (1962)’s student-proposing deferred acceptance (DA) algorithm (Abdulkadiroğlu, Pathak,

Roth, and Sönmez, 2005; Pathak and Sönmez, 2008). This algorithm takes as input the submitted

preference rankings of students, and the priorities of students to generate an assignment. DA works

as follows:

1. Each student applies to his first choice school. Each school ranks applicants by their priority,

rejecting the lowest-ranked students in excess of its capacity. The rest of applicants are

provisionally admitted: they are not rejected at this step but may be rejected in later steps.

2. The rejected students apply to their next most preferred school (if any). Each school considers

these new applicants together with applicants that it admitted provisionally in the previous

round, ranks them by their priority, rejecting the lowest-ranking students in excess of capacity.

This produces a new admit of provisionally admitted students at each school.

The algorithm terminates when there are no new applicants (some may remain unassigned). Under

DA, it is a weakly dominant strategy for all participants to rank schools truthfully (Dubins and

Freedman, 1981; Roth, 1982). Moreover, this algorithm produces a stable assignment (Gale and

Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003).

2.2 Policy Reform

The new policy, which began in 2014, affects the set of schools each applicant is allowed to rank.

There were two major rationales for the reform. The first was the desire to assign students closer

to home from families who wanted assignments at nearby schools and the district which wished to

reduce busing costs.7 Second, there were longstanding concerns about inequities in the three zone

system.

The reform was informed by the Pathak and Shi (2013) report, which used choice modeling and

simulations to predict the effects of the proposed plans. The study was commissioned by a mayoral-

appointed city committee, which met for over a year and hosted community meetings to collect

feedback and discuss proposals.8 The methodology of the report inspired BPS to later propose a

10 Zone plan, as well as a modified 11 Zone plan, and consider other plans from the community.

Shi (2015) provides more details on the role of the report. It’s worth noting that there were two

prior failed attempts to reform the choice sets of students in 2003 and 2009. Decision-makers did

not have access to comparable forecasts during these prior attempts.

6Dur, Kominers, Pathak, and Sönmez (2016) present additional details on Boston’s DA implementation.
7This motivation was emphasized by Mayor Menino, who spent the last year of his administration advocating for

a “radically different school assignment process—one that puts priority on children attending schools closer to their
homes” Menino (2012a). Other districts have similar objectives; see, e.g., the discussion about Seattle in Pathak and
Sönmez (2013).

8BPS’s initial plans divided the city into 6, 9, 11, or 23 zones, or assignment based purely on neighborhood. When
these plans were publicly unveiled in September 2012, they were met with widespread criticism (see, e.g., Seelye
(2012)).
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Based on the Pathak and Shi (2013) report and other discussions, the Boston school committee

adopted the Home-Based plan (see Seelye (2013) and Shi (2013)). This plan constructs customized

choice sets based on applicants’ exact residential address. It uses a BPS categorization of schools into

quality tiers, which are computed using a schools’ prior Massachusetts Comprehensive Assessment

System (MCAS) test test score growth and levels. Tiers were finalized as of January 2013 for 2014

admissions. Under the new plan, every applicant can choose from any school within a mile (as

the crow flies), along with the two closest Tier 1, the four closest Tier 1 or 2, the six closest Tier

1, 2 or 3 schools, and the three closest “option schools” chosen by BPS. The set of choices also

includes the closest early learning center (ELC) and closest school with an advanced work class

(AWC) program.9

Families access their choice set via an online portal, which shows a map of all schools in the

choice menu and a summary of their attributes. Figure 3 illustrates how participants see choice

information. The online application platform lists information on transportation, tier category,

and why the choice can be ranked. Previous years’ school brochures did not include comparable

information.

Aside from the changes to choice menus, the new plan also eliminates walk zone priority (Dur,

Kominers, Pathak, and Sönmez, 2016). The school priorities are: continuing students, followed by

siblings, followed by other students. As before, a single lottery number serves as tie-breaker. There

are no other changes to the DA implementation.

The new plan involves large changes in applicant choice sets. This fact can be seen in Table

1, which shows that for an average grade K1 student, the reform adds three new options, removes

sixteen options, and keeps nine options intact. While the choice set changes are substantial, there

is still overlap among likely top choices. Only 7% of post-reform grade K1 applicants cannot apply

to their top choice under the old plan. Conversely, Panel B shows that 16% of pre-reform grade

K1 applicants cannot apply to their top choice in the new plan. The new plan resulted in similar

changes in the choice set for grade K2 applicants.

3 Prediction Approach

3.1 Data Sources

Our data comes from BPS round 1 choice and enrollment files covering years 2010 to 2014. We focus

on round 1 assignment, which takes place in January and February, because over 80% of students

are assigned then. Forecasts are based on data from 2010 through 2013. We use the 2014 data,

9There are a few exceptions to this formula. First, students residing in parts of Roxbury, Mission Hill, and
Dorchester are allowed to rank the Jackson Mann school. Second, because transportation outside of East Boston
requires tunnel travel, East Boston students are eligible for any East Boston school. East Boston students have
priority over non-East Boston students at East Boston schools. Non-East Boston students have priority over East
Boston students for non-East Boston Schools. Finally, students who are English language learners or special needs
have additional choices. Level 1, 2, and 3 ELL students are allowed to apply to any compatible ELL program within
their ELL zone, a six-zone overlay of Boston. Substantially-separate special education students do not apply in round
1.
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from the first post-reform year, to evaluate these forecasts.

The choice data contains preference rankings and demographic information for every round 1

participant. The fields include student ID number; English language learner (ELL) status and first

language; special education or disability status; geocode (a geographic partition of the city into 868

regions); school program to which the student has guaranteed priority (designation for continuing

students); lottery number; first 10 choices and priorities at each; school program to which the

student was assigned and the priority used for that assignment. Using the assigned school and

program codes, we infer the capacity available for round 1 assignment for each school program. We

place students to one of 14 neighborhoods using the geocode.10

The enrollment data is a December snapshot and contains additional student demographics.

The fields are enrolled school and program, grade, geocode, address, gender, race, and languages

spoken at home. The file covers the vast majority of the students in the choice data, and can be

linked by student ID number. When there is a conflict between the demographic information in the

choice and enrollment files, we use the choice file. We also match geocodes to 2010 census block

groups, which contain median household income.

For the schools, we have characteristics for each of year (2010-2014). The school file has the

building code, address, school type, % of students of each race, % of ELL students, % of students

who have special education requirements, and % of students who scored Advanced or Proficient in

grades 3, 4, and 5 for MCAS math and English in the previous year. To measure distance to school,

we use walking distance estimates from Google Maps API.11

3.2 Forecast Targets

Each equilibrium outcome we target corresponds to a single number for each grade and each neigh-

borhood. They are defined as follows:

• Access to Quality: A student’s chance of being assigned a top tier school if he had ranked

it. In particular, we compute the average chance a student from a neighborhood is assigned

to any Tier 1 or 2 schools within his choice menu, assuming that he ranks all such schools

above other schools and given other students’ submitted rankings.

• Distance: The average distance between the student’s residence and school assignment.

• Unassigned: The number of students who are unassigned at the end of round 1.

Using the notation introduced above, these outcomes depend on applicant characteristics X and

choices Y , as well as the matching mechanism. We therefore refer to these equilibrium outcomes

as E[M(X,Y )]. As mentioned above, we chose these outcomes since the Boston debate focused on

equity of access to quality schools and assignment close to home. Travel distance plays an important

10For internal reporting, BPS classifies students into 16 neighborhoods. We combine three neighborhoods with few
students, Central Boston, Back Bay, and Fenway/Kenmore, into one neighborhood that we call “Downtown.”

11For students with missing address information, we treat the outcome centroid of the student’s geocode as the
address.
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role because BPS is required to cover busing costs for all Boston pupils. Unassigned students loom

large for facilities planning, staffing, and other budgeting issues.

The second set of targets involve student choices. We predict both individual student choices

and choice patterns across a group of students.

For individual choices, we predict the top k options ranked highest for each student, where

k varies from 1 to 3. For each pair of options in a student’s choice set, we also predict whether the

student would prefer one option over the other.

For distribution of choices, we predict the percentage of top k choices for each school by

grade and neighborhood. Furthermore, we predict the aggregate distribution of the top two choices

of students, for students who rank at least two choices.

Using the notation introduced above, these choice outcomes depend only on applicant charac-

teristics X and choices Y , but not the outcome of the mechanism.

3.3 Generating Predictions

We use data from before the reform to fit choice models to forecast outcomes for the first year

of the reform and compare these to outcomes induced by the actual choice data.12 To protect the

integrity of our out-of-sample comparison, we specify choice models and forecasts prior to the reform

by posting a pre-analysis plan before the data following the reform became available in Pathak and

Shi (2014).13

Our counterfactual predictions come from three approaches, two of which are based on random

utility models. The centerpiece of each approach is the choice model, which maps the characteristics

of an individual student as well as the set of schools in his menu to a ranking. The three choice

models we examine are:

• Multinomial Logit (MNL): This widely-used and easy-to-estimate model is motivated by

random utility maximization. It is also the basis of the Pathak and Shi (2013) report.

• Mixed MNL (MMNL): This model is a popular alternative to MNL since it can capture

substitution patterns that violate the Independence of Irrelevant Alternatives property of MNL

models. Mixture models are a significant development in discrete choice models of demand in

the years following McFadden (1974) (see e.g., Berry, Levinsohn, and Pakes (1995) and Nevo

(2001)).14

12The outcome induced by the actual choice data may not be identical to the actual round 1 assignment outcome,
since we use previous year’s program capacities in our computation rather than the actual capacities. We abstract
away from forecasting capacities this they are at the discretion of the school board and outside the scope of our
structural model.

13Pathak and Shi (2014) describe the specification of the mixed MNL model, but did not report estimates before
posting the report. Estimating the mixed MNL model was too computationally-intensive to complete in time. Pathak
and Shi (2015) update the report with the mixed MNL forecasts.

14McFadden (2001) states that the MNL methods used to account for substitution between modes of transportation
in the BART study are inferior to current methods.
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• Lexicographic: This model serves as our benchmark for models not motivated by random

utility maximization. The model is motivated by psychology and marketing literature. It

assumes that applicants rank programs based on an intuitive heuristic.

We describe the choice models in more detail below. For choice outcomes, we take the actual set

of students who applied in the first year of the reform and their characteristics, and use the choice

model to predict the relative ranking of options within the choice menu. We use the actual set of

students to isolate choice prediction from population forecasting. For the MNL-based choice models,

we then draw the parameters as jointly normal random variables, using the estimated means and

covariance matrix. We next simulate a complete ranking over for each student’s choice menu drawing

from distribution of idiosyncratic tastes. For individual choices, we predict the modal outcome after

many simulations.15 For predicting choice patterns, we use the empirical choice distribution.

For forecasting equilibrium outcomes, there are additional simulation layers. Rather than using

the actual applicants as with the choice forecasts, we simulate the pool of applicants and their

characteristics. At the time of the typical counterfactual forecast, an analyst does not know future

participants. With the simulated applicant pool, we then use each choice model to generate a

complete ranking of options within each student’s menu, similar to method in the choice forecasts.

We then truncate the generated preference rankings to the first ten choices. Truncation is

necessary because the choice data we receive from BPS only has the first ten choices, although there

is no restriction on the number of choices in the mechanism. More importantly, this assumption

allows us to sidestep modeling students’ outside options, for which we have little data.16 In Pathak

and Shi (2013), we performed sensitivity analysis on list length and found ten to be reasonable. In

Section 6.2, we further examine this assumption. Another parameter that affects the equilibrium

outcome is the number of seats in each school program. For the purpose of the prediction exercise

in this paper, we generate predictions based on the assumption that the school board uses the same

capacities as in the previous year. In practice, Boston runs DA several times with minor tweaks

to capacity but does not report the outcome until the final round 1 run. To abstract away from

this back-and-forth iteration, we use these capacities when we compute actual equilibrium outcomes

using the actual choice submissions in the first post-reform year.

Finally, we generate i.i.d. lottery numbers for each student, and compute the assignment using

DA. In computing access to quality, we compute the probability that the student receives a lottery

number that is good enough to be assigned one of the Tier 1 or 2 schools in his menu.17

15We focus on the mode because the best deterministic prediction of a biased coin that yields heads 60% of the
times is that it always yields heads.

16Moreover, students often enroll in options they did not rank but could have ranked, undermining the usual
assumption that an unranked option is inferior to the student’s outside option. In our interactions with parents and
BPS staff, it seems that many families are ranking few options not because they have better outside options, but
because they feel confident they would get into the ones they picked.

17This probability is estimated in a tractable way as follows. If there is at least one Tier 1 or 2 school with a
program with excess capacity for which the student is eligible for, then the student’s access to quality is 100%. If all
such programs are full, then we compute a lottery cutoff for the student, which is the worst lottery number needed
for that student to displace out at least one currently assigned student from one of these programs, and we report
the chance that the student gets a lottery number at least as high. This approach is exact in a continuum model like
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3.3.1 Multinomial Logit (MNL) Choice Model

For each student i and each program j, we define the MNL model by letting uij be the indirect

utility and xij be a K-dimensional vector of characteristics corresponding to the student and the

program, such as the student’s distance to the program, whether the student has a sibling at the

same school, whether the student is ELL and the program is an ELL program. The kth component

of this vector is denoted xkij . The indirect utility of program j is

uij = δs(j) +
K∑
k=1

βkxkij + εij , (1)

where s(j) denotes the school containing the program18, δs(j) is a school effect, β is a K-dimensional

vector of coefficients, and εij represents an unobserved idiosyncratic taste. We assume that εij

is distributed according to a type-I extreme value distribution, Gumbel(0,1). Since utility has

no scale, we normalize the scale parameter to one. The school effect captures unobserved school

characteristics such as safety, reputation, facilities, environment, and teacher quality. The estimated

parameters are (δ, β).

The rationale for and list of characteristics in xij is in our pre-analysis plan Pathak and Shi

(2014). The final list includes the following:

• distance: walking distance from the student’s residence to the school;

• continuing: indicator for whether the student has guaranteed status for the school program;

• sibling: indicator for whether student has sibling at the school;

• ell match: indicator for the student being ELL and the program being specialized for ELL;

• ell language match: indicator for the student being ELL and the program having a language-

specific ELL program in the student’s first language;

• walk zone: indicator for whether student lives in the school’s walk zone.

The list of characteristics also includes student-school interaction terms. The interacted student

characteristics are the median household income of the student’s census block group and race.19

The interacted school characteristics are distance and the following:

Azevedo and Leshno (2016).
18Each school may have multiple programs such as regular education or a specialized program for English language

learners. Since students may later transfer between programs within a school, and since Pathak and Shi (2013) did
not find significant program fixed effects, we include a school effect rather than a program effect.

19The race data includes whether the student is Black, Hispanic, Asian, White, or Other. Based on comparing
alternatives, the pre-analysis plan only include interaction terms that are statistically in the back-test in Pathak and
Shi (2014). White, Asian and Others are therefore grouped together for all three interactions, and Black and Hispanic
are grouped together for two of the interactions. Table A1 reports the set of interaction terms.
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• mcas: the proportion of the school’s students who score Advanced or Proficient in the previous

year’s MCAS standardized test for math, averaging the proportions for grades 3, 4, and 5.20

• % white/asian: the proportion of the school’s students who are white or asian.

Hausman and Ruud (1987) extend MNL models to situations with ranking data and we estimate

the parameters (δ, β) by maximum likelihood. To quantify uncertainty in the estimation, we estimate

a covariance matrix by taking the inverse of the Hessian of the log likelihood function at the

maximum. Table A1 reports estimated parameters and standard errors.

3.3.2 Mixed MNL (MMNL) Choice Model

This mixed MNL model adds random coefficients to the MNL model. Suppose we place random

coefficients on the first L components of xij . The model specifies the indirect utility as

uij = δs(j) +
K∑
k=1

βkxkij +
L∑
l=1

γlix
l
ij + εij ,

γi ∼ N (0,Σ),

where δ and β are fixed effects and coefficients in the MNL model and γi is a L-dimensional

vector of individual coefficients, assumed to be distributed according to a multivariate normal

distribution. The mean is zero without loss of generality because it is already captured in β, and

the covariance matrix Σ satisfies certain restrictions which we specify below. The idiosyncratic term,

εij , is distributed Gumbel(0,1) as in the MNL model. The estimated parameters are (δ, β,Σ). The

set of characteristics xij are the same the MNL model, and also include mcas and % white/asian

(which are explained in Section 3.3.1).

We allow random coefficients for the following characteristics, which we organize into “blocks.”

We assume independence across blocks, but allow arbitrary covariance within each block. The

blocks are:

Block Features

1 ell match

2 walk zone

3 distance, mcas, % white/asian.

The covariance matrix Σ therefore satisfies the restriction

Σ =

Σ1 0 0

0 Σ2 0

0 0 Σ3

 ,

20The MCAS test begins at grade 3. Grade 5 is the highest grade in many elementary schools. We only choose math
because it is highly correlated with English, with a correlation of 0.84 in both 2012 and 2013. MCAS performance
levels need not be a measure of school effectiveness. Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2017) show
that in New York City, applicant preferences are uncorrelated with effectiveness once we control for peer quality.
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where Σ1, Σ2, and Σ3 are 1×1, 1×1 and 3×3 symmetric positive definite matrices. This formulation

allows students to have heterogeneous preferences for ELL programs (if applicable), for schools in

the walk zone, and for distance, school performance, and school demographics.

Because the model no longer has a closed form log-likelihood function and the log-likelihood

functions are not necessarily globally concave, we fit the model by Markov Chain Monte Carlo

(MCMC) methods. One difficulty with our specification is that there are 75 school effects. As far as

we are aware, the state-of-the-art MCMC techniques for including fixed effects in mixed logit models,

described in Train (2003), involve adding a layer of Gibbs sampling and simulating the conditional

distribution of the fixed effects using the Random Walk Metropolis-Hasting algorithm. However,

simulating a 75-dimensional distribution is prohibitively slow using Random Walk Metropolis. We

therefore use Hamiltonian Monte Carlo (HMC) , which incorporates the gradient of the log likelihood

function, to quickly update the 75-dimensional fixed effect (Neal, 2011). We fit the model by using

1,000,000 iterations of MCMC sampling, throwing out the first half as burn-in. To check for the

convergence, we repeat the sampling six times with independent draws with random starting values,

and found the results to be nearly identical. Additional details are in Appendix A.

3.3.3 Lexicographic Choice Model

When evaluating structural choice models, Nevo and Whinston (2010) emphasize the importance

of comparing to an alternative. We therefore consider a model motivated by intuitive heuristics.

We posit that every student ranks the programs in his menu based on the following hierarchy:

Hierarchy Criteria

1 (most important) (for continuing students) current program

2 (for continuing students) another program in current school

3 school where sibling attends

4 (for ELL students) ELL program

5 (for ELL students) ELL program in home language

6 better tier school

7 closer walking distance

.

Students only consider the hierarchy that pertains to them. For example, new applicants do not

consider hierarchies 1 or 2 and non-ELL students do not consider hierarchies 4 and 5.

This choice model does not require the parameter estimation. However, it is still motivated by

past choice behavior and by expectations of how applicants would choose in the new plan. For

instance, the vast majority of continuing students (91%) rank their current program first and we

anticipated that pattern to continue under the new choice sets. Similarly, most students who have

a sibling at a school rank it first. Furthermore, from conversation with parents and BPS staff, we

learned that many people expect families to simply choose schools in the highest tier first and then

break ties within tier using distance. For ELL students, BPS staff thought that families prefer ELL

programs since they offer targeted programming, especially ELL programs in their home language.
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The Lexicographic model is motivated by the psychology and marketing literature. It is related

to Tversky (1969)’s lexicographic semi-order choice model in which options are rated with respect

to a variety of attributes and there is a lexicographic order across attributes. Between two options,

an agent first compares the most important attribute, and if there is significant difference, the agent

chooses the better option according to this attribute; if there is little difference, then the agent goes

to the next attribute. This encapsulates the Lexicographic model above if we define the academic

quality of schools based on tier. Another related choice model is Tversky (1972)’s elimination by

aspect. In this model, the agent chooses an option from a set by going through different aspects

(discrete attributes) in order of importance and eliminating options that are suboptimal with respect

to that aspect. Although the original paper allowed for probabilistic choice of aspects, subsequent

papers use a deterministic order of aspects: see, for example, Thorngate (1980), Johnson, Meyer,

and Ghose (1989), and Payne, Bettman, and Johnson (1988). The lexicographic rule is therefore a

special case of elimination by aspects with a deterministic ordering of aspect given by the hierarchy.21

We picked this alternative to compare with our discrete choice model given its empirical support.

Slovic (1975) conducts a laboratory experiment involving a choice between two options evaluated

on two dimensions, and show that the majority of subjects chose consistently based on the more

important dimension. Tversky, Sattah, and Slovic (1988) conduct other laboratory experiments and

show that in cases in which a decision is framed as choosing from a set, then a lexicographic rule

is often used. (If the same decision is framed in terms of varying a numerical dimension to make

the decision maker indifferent between the two options, then subjects are less biased toward the

more important dimension; this suggests that framing as a choice makes lexicographic rules more

likely.) In the marketing literature, Drolet and Luce (2004) show that lexicographic rules are more

likely when consumers have emotional reasons to avoid making trade-offs. Yee, Dahan, Hauser, and

Orlin (2007) study choices of consumers for cell phones and fit a variety of choice model to data.

A lexicographic rule by aspect predicts 75% of choices, making it perform as well as other discrete

choice procedures.

3.3.4 Predicting Who Applies

For grades K1 and K2, all students who wish to be assigned a Boston Public school must participate

in the choice process. The set of applicants is therefore an important determinant of our equilibrium

targets. A large influx of new applicants in a given neighborhood would increase the number

unassigned and reduce average access to top tier schools. If we had data on all potential applicants

and their non-BPS options, we might include the decision to participate as part of the structural

model. Since we don’t have this data, we still need to reflect this uncertainty and to capture any

trends in the neighborhood participation patterns.

To predict who applies, we use demographic trend projections. A similar approach was used in

the McFadden, Reid, Talvitie, Johnson, and Associates (1979) BART study, who write in Chapter

21This model has also been axiomatized. Fishburn (1974) surveys the older literature. Kohli and Jedidi (2007)
study when lexicographic orders can they be represented by a linear utility function. Manzini and Mariotti (2012)
generalize the original Tversky (1969) model to choosing from more than two options.
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IV.3

“It is in the nature of auxiliary forecasting that one does not have available complete struc-

tural or causal models; hence, forecasting must use data analysis and trend projection tech-

niques, combined with available external forecasts.”

McFadden et al. use census demographic data and projections to construct a representative sample

of San Francisco households. Since we have the universe of participants in previous years, we directly

observe the joint distribution of household characteristics and use it to predict the applicant pool.

We construct our applicant pool as follows. For continuing students, we exploit the fact that they

are already in the enrollment data of the previous year, and focus on the predicted the probability

that a given student who is currently enrolled will choose to continue on to the next grade. Once

we have a predicted probability, we include each currently enrolled student as a continuing student

with this probability, independently from everything else, and assume that the student will continue

in the same program in the next year. We model the probability of continuing to be normally

distributed and common across students for each grade-neighborhood combination. The common

probability for the neighborhood allows for a common shock on the number of continuing students.

For each grade and each neighborhood, the mean and standard deviation of the normal random

variable are estimated based on previous years’ data. To detect time trends, we regress the number of

students per neighborhood by year using four years of data from 2010-2013. For grade-neighborhood

combinations for which the slope of the regression is not significant at a 95% confidence level,

we discard any time trend and use the sample mean and sample standard deviation from the

previous four years. For the grade-neighborhood combinations in which the regression slope has

95% significance, we use the predicted mean and standard error of the regression.22

For new students, we use previous year’s applicant demographics as proxies. We first forecast

the total number of new applicants from each grade and neighborhood, and then sample with

replacement from the set of new applicants of the previous year from this grade and neighborhood.

We model the number of new applicants as the product of two independent normals, one representing

a BPS-wide shock and one a neighborhood-specific shock. The common shock captures macro effects

such as BPS publicity or economic factors driving private school enrollment. The neighborhood-

specific shock captures local population surges or unobserved reasons that affect participation. By

using one common shock for all grades, we implicitly assume that different grades trend in the same

way. Pathak and Shi (2014) provide additional details about the performance of this approach.

All predictions of equilibrium outcomes are based on 1,000 independent simulated samples of the

applicant pool.

22Grade K1 Charlestown and K2 Downtown are the only two grade-neighborhood combinations with a steady
upward trend in the number of applicants.
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4 Evaluating Predictions

4.1 Equilibrium Outcomes

Our metrics for evaluating equilibrium outcomes (access to quality, unassigned, or distance) take

several forms of uncertainty into account. Let ωh be a random variable that corresponds to the

simulated outcome for neighborhood h generated by a choice model and let ω = (ω1, ..., ωH). This

variable is random due to the randomness in the generation of the applicant pool, uncertainty in

estimated choice model parameters, the choice model’s taste shock, and the lottery numbers. The

prediction for neighborhood h is ω̄h ≡ E[ωh]. This quantity can be estimated by sampling ωh many

times and taking the average. In this paper, we take many samples so for notational simplicity, we

assume that the estimated mean is exactly equal to ω̄h for each h.

Let ω∗ denote the actual outcome vector, computed using the actual population, actual choices,

actual lottery numbers, and the school capacities described above. The root mean squared error

(RMSE), which is our main measure of prediction error for equilibrium outcomes, is defined as

RMSE ≡ |ω̄ − ω∗|2 ≡

√√√√ H∑
h=1

(ω̄h − ω∗h)2.

The RMSE is an overall measure of the amount of prediction error across neighborhoods. To

measure uncertainty in the prediction, we define

Expected RMSE ≡ E[|ω̄ − ω|2].

The expected RMSE measures how much prediction error we should expect when the choice model

is correct.

In addition, we estimate a 95% confidence interval by computing 2.5th and 97.5th percentile

of each predicted outcome for each grade-neighborhood combination. Let this interval be denoted

as Ωh. The proportion of neighborhoods for which the actual prediction is within the confidence

interval,

% in 95% C.I. = |h : ω∗h ∈ Ωh|/H,

is our last measure of prediction accuracy. If the model is correct, then we expect this to be close

to 95% on average.

4.2 Choice Forecasts

To measure prediction accuracy for individual choices, we report the percentage of mistakes for top

choices and for pairwise comparisons from the rank order list. To define the metrics precisely, we

first define some notation. For a given choice model, let yi be the vector of simulated preference

rankings of student i. yi1 is the index of the top choice, yi2 is the index of the second choice, and

so on. Define the set of top k choices as Yik ≡ {yi1, ..., yik}. Similarly, let y∗i denote the student’s
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actual choice ranking, ri denote the actual number of choices ranked, and Y ∗ik denote the actual set

of top k choices. Denote Ik = {i : ri ≥ k} as the set of students that ranked at least k choices.

Given a choice model, define Ŷik to be the best prediction of the top k choices for student i.

We predict by simulating the top k choices Yik = {yi1, · · · , yik} many times and taking the k most

common choices across simulations. Our first measure computes mistakes among the top k choices:

% Mistakes in Top k Choices =
1

|Ik|
∑
i∈Ik

|Ŷik\Y ∗ik|
k

.

That is, we tabulate the average proportion of predicted top k choices in the set Ŷik that are not

in the actual set of top k choices, Y ∗ik, counting only students who ranked at least k choices. When

k = 1, for example, this measures the fraction of top choices that are incorrectly forecast.

A second measure of prediction error considers pairwise comparisons. Given the actual ranking

y∗i , define the set of pairwise comparisons implied by this ranking to be a collection of ordered pairs:

C∗i = {(j, l) : program j is ranked before l in y∗i }.

A pair of programs (j, l) is in this set if both programs j and l are ranked and j is preferred, or if j

is ranked and l is unranked. Given a choice model, define ẑi(j, l) to be the indicator variable if we

predict that student i prefers option j over option l. This indicator is equal to 1 if the probability

that j is preferred over l is over 50%, and is 0 otherwise. Define the percentage of mistakes in pairwise

comparisons to be the proportion of comparisons that the choice model predicts incorrectly:

% Mistakes in Pairwise Comparisons =
1

|I1|
∑
i∈I1

1

|C∗i |
∑

(j,l)∈C∗i

(1− ẑi(j, l)).

For the distribution of choices, we use statistical distance to aggregate comparisons. We compute

this metric for the distribution of top choices for each neighborhood and the joint distribution of

the top two choices. For neighborhood h, define market share shjk to be the average proportion of

top k choices from this neighborhood that are for school j, counting only students who ranked at

least k choices. Let Ihk denote the set of students from this neighborhood who ranked at least k

choices. The predicted top k market share of school j in neighborhood h is

shjk =
1

|Ihk|
∑
i∈Ihk

E[|programs in Yik at school j|]/k.

Similarly, define the actual market share s∗hjk using the actual set of top k choices Y ∗ik instead of the

predicted set Yik for each student i. The statistical distance between two vectors is the minimum

mass needed to transform one vector to the other. It is also sometimes called the total variation.
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The average statistical distance across H neighborhoods is defined as:

Statistical Distance in Top k Market Share =
1

2H

H∑
h=1

∑
j

|shjk − s∗hjk|.

The final metric we examine is for the joint distribution of two highest ranked schools. For

pair of options (j, l), define pjl as the proportion of students who ranked at least two choices who

ranked school j first and school l second. Similarly, we define p∗jl for the corresponding actual choice

rankings. The following measures the minimum mass needed to transform one distribution to the

other:

Statistical Distance in Joint Distribution of Top 2 Choices =
1

2

∑
jl

|pjl − p∗jl|.

5 Back-testing and Hypotheses Formulation

Even though the policy reform involves a simple change to choice sets, our forecast approach rests on

several assumptions. Is there any hope that our predictions will be reasonable? To set expectations,

we report on a back-testing exercise which applies our prediction methodology on data from prior

years: we use data from two years before the reform (2012) to predict outcomes one year before

the reform (2013). Since applicant choice sets did not change between these years, we expect the

results from the back-test to provide a best-case scenario for what we might expect following the

large change in choice sets in 2014.

Figure 4 reports the predicted and actual access to quality by neighborhood in 2013. Each

bar corresponds to a choice model. For each prediction, the figure also plots the 95% confidence

interval. These estimates allow us to compute the overall root mean squared error (RMSE) across

neighborhoods, our summary measure of prediction error, and the proportion of neighborhoods for

which the actual access to quality falls within the confidence interval.

For each grade and for each moment of interest, the MNL and MMNL models exhibit nearly-

identical RMSE. This fact is shown in Table 2. Moreover, for every combination except access

to quality in grade K1, the MNL-based models exhibit smaller RMSE than the Lexicographic

model. However, the absolute performance of the MNL-based models involves several inaccuracies:

the RMSE is larger than the expected RMSE and the predicted outcome is within the predicted

95% confidence interval (C.I.) only about 70% of the time, averaging across outcomes. For the

Lexicographic model, the performance is worse: the actual outcome is inside the 95% C.I. less than

40% of the time.

The MNL and MMNL models also outperform the Lexicographic model for individual choice

predictions. Table 3 reports on MNL performance for each grade and for the top 1, top 2, and top 3

choices. As a benchmark, Table 3 also tabulates the accuracy of random guessing. For grade K1, the

table shows that random guessing predicts the top choice wrong 97% of the time. The Lexicographic

model predicts the top choice incorrectly 63% of the time, which means that it predicts the top choice
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(out of more than 30 options) correctly 27% of the time. For pairwise comparisons, random guessing

predicts wrongly 50% of the time by definition. The Lexicographic model predicts incorrectly 30% of

the time, while the MNL and MMNL models reduce the percentage of mistakes to 18%. A similar

comparison holds for grade K2. In summary, for predicting individual choices, the MNL-based

models are indistinguishable, and both outperform the Lexicographic model.

For predicting distribution of choices, the Lexicographic model is not much better than random

guessing, and for the joint distribution of top 2 choices, it can be even worse than guessing. These

facts are shown in Panel B of Table 3. The Lexicographic model does not allow for students to

prefer a more distant school in the same tier to a closer school, if the continuing, sibling, and

English language learner status of the student are the same at both schools. For these metrics, the

performance of the MNL-based models is nearly identical, and both outperform random guessing

and the Lexicographic model.

As a result of this analysis, we formulate the following hypotheses before choices are submitted

in the new plan:

• For equilibrium forecasts, the MNL-based choice models would perform similarly to one an-

other, and both would systematically outperform the Lexicographic model. For all models,

the actual prediction error would be significantly larger than the expected error if the model

were correct.

• For choice forecasts, the comparison across choice models would be the same as the equilibrium

forecasts. Moreover, the Lexicographic model would reasonably predict individual choices, but

would perform poorly for the distribution of choices.

6 Comparing Forecasts and Prediction Errors

6.1 Equilibrium and Choice Forecasts

Figure 5 shows the actual access to quality in the first post-reform year (2014), as well as the

predicted access to quality according to each choice model based on pre-reform data for each neigh-

borhood. For each prediction, the figure also contains the 95% confidence interval.

The MNL-based models outperform the Lexicographic model only for grade K1, but not for

grade K2. Table 4 shows that for grade K1, the MNL-based models exhibit a smaller RMSE

than the Lexicographic model, with a significantly higher fraction of predictions being in the 95%

confidence interval. This follows the pattern observed in the back-test. However, for grade K2,

the Lexicographic model exhibits similar RMSE as the MNL model, with slightly better prediction

accuracy for two out of the three targets: access to quality and number unassigned. Moreover,

for these two targets, the percentage of neighborhoods for which the outcome is within the 95%

confidence interval is also higher in the Lexicographic model compared to the MNL-based models.23

23This phenomenon is not due to greater uncertainty in the Lexicographic model prediction. Column 5 of Table 4
shows the expected RMSE of Lexicographic is similar to the MNL-based models.
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We cannot reject the other hypotheses about equilibrium outcomes in Table 4. In all cases, the

MNL and the MMNL models exhibit near-identical results, regardless of whether we consider the

RMSE or the fraction of predictions within the 95% confidence interval. The expected RMSE is

also similar between the two models. In addition, regardless of the model or the metric, the actual

RMSE is higher than the expected RMSE, which shows that none of the models is accurate in an

absolute sense.

For choice forecasts, the results of the prediction exercise are similar to those reported in the

back-test, and are consistent with our hypotheses. Table 5 shows that the MNL and MMNL

models exhibit near-identical performance, regardless of the grade and the metric. Furthermore,

the prediction error is smaller in the MNL-based models than in the Lexicographic model. The

amount by which the MNL-based models outperform the Lexicographic model is also much higher

for the distribution of choices than individual choices. This pattern was present in the back-test.

6.2 Decomposing Prediction Errors

When we use the actual applicants and their characteristics but not their choices, the MNL-based

choice models systematically outperform the Lexicographic model. Table 6 shows the predictions

about relative performance of the choice models are comparable to the back-test when we use

the actual set of applicants and their characteristics, instead of predicting these pre-reform. The

MNL and MMNL models have near-identical performance, and both outperform the Lexicographic

model. For access to quality and distance to school, the MNL-based models exhibit significantly

lower prediction error in both grades, contrary to the results when we predict applicants. For the

number unassigned, all of the choice models have similar prediction accuracy, and the RMSEs are

much smaller than the corresponding RMSEs that predict applicants. Nevertheless, the actual

RMSE is larger than the expected RMSE in all cases, consistent with expectations set from the

back-test.

Our findings suggest that the unexpected poor performance of the MNL-based models in the

original prediction exercise are due to poor predictions of the applicant pool, rather than due to

the choice models. Table 7 reports on how prediction accuracy changes with information from the

new dataset. In this table, we reproduce the RMSE of the MNL-based models from Table 4 (the

original forecast) and the RMSE under the following assumptions:

• New Applicants with Old Demand Model: Using the actual set of applicants, but choices from

demand model fit with old applicants, shown in Table 6.

• New Applicants with Refit Demand Model: Using the actual set of applicants and choice

models estimated from the actual choices.24

• New Applicants with Refit Demand Model and Ranking Length: Using the actual set of

applicants and choice models estimated from the actual choices as well the actual number of

choices ranked by each applicant.

24Table A1 and Table A2 contain the coefficient estimates
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• Sampling Actual Choices and Using Applicant Forecast: Using the predicted number of stu-

dents from each neighborhood, but sampling students from the actual applicant pool and

using the actual choices of these students. In predicting the number of students, we follow

the sampling methodology in the original forecasts.

Comparing the prediction error from these assumptions shows the following:

1. Estimates of the MNL-based choices models are robust across the reform. Prediction errors

are similar regardless of whether we estimate the models using data from before the reform

or after the reform. The RMSE in Table 7 for “New Applicants with Old Demand Model” is

similar compared to “New Applicants with Refit Demand Model.”

2. The assumption about rank-order list length is not of first-order importance. When we control

for the actual lengths of submitted rank-order lists, the prediction error only improves for

access to quality, but not for distance to school and the number unassigned. In comparison,

predictions of the applicant pool are first-order, as the RMSE improves significantly for every

metric when we compare the original forecasts to the version with the actual applicants.

3. Much of the overall error in the original forecast is due to predicting the wrong number of

students from each neighborhood. This is seen in how large the prediction error is with

sampling actual choices using the applicant forecast. new applicants.

The inconsistent performance of the MNL-based models in the original forecasts is driven by

errors in the applicant forecast rather than the choice models. When we control for the actual set

of applicants, the MNL-based models consistently outperform the Lexicographic model. Moreover,

the prediction error is similar regardless of whether we estimate the models using pre-reform or

post-reform data. These findings suggest that discrete choice models can be effective in predicting

counterfactual outcomes, as long as there are accurate forecasts about auxiliary input variables.

The stability of the MNL-based choice models across the reform is shown in Table 8, which

compares model performance when we estimate using pre-reform data and post-reform data. The

prediction error decreases when we estimate the model from post-reform choices, but the reduction

is relatively small. This fact provides support for the use of such choice models: even if the choice

sets change significantly and the presentation of options change, the choice model estimated using

past data from old choice sets are a close proxy to a choice model from choices made under the new

policy.

The new presentation of the choice menu has a small effect on the distribution of preferences.

Figure 6 plots the percentage of actual top choices that are Tier 1 compared to predicted choices

from the choice models. Tier has an effect in grade K2, where top choices shift toward Tier 1 schools

by a few percentages compared to the MNL-based predictions. The Lexicographic model overstates

the importance of tier since it predicts a larger shift toward Tier 1 schools.

While preferences measured by the choice model appear stable across policies, the set of ap-

plicants are not. Table A3 shows that there are three major errors: (1) the number of continuing
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K2 students is much larger than predicted, (2) the number of new grade K1 and K2 students is

significantly less than predicted, and (3) the proportion of grade K2 ELL students are less than

predicted.

Were these errors foreseeable? It is difficult to comment on this with any level of rigor since

almost anything can seem foreseeable after the fact. Nevertheless, we give our best guesses below.

We think that the first source of error was possibly foreseeable, as it is caused by misunderstanding

of how BPS assigns continuing students. We assumed that currently enrolled students who wish

to continue are assigned the same program code for the next grade, but in reality BPS sometimes

changes the program code when students change grades and our forecast did not capture these

changes adequately. The second error is unexpected as the number of applicants had been rising in

previous years. The low number of applicants is either due to a break in the previous trend in the

number of kindergarten-aged children in Boston, or due to a greater substitution to school options

outside of BPS, including charter and private schools or public schools in neighboring districts. Our

data do not allow us to distinguish these two alternatives. The third discrepancy is driven by a

simultaneous change in the test that BPS uses to determine eligibility to ELL programs, which

decreased the proportion of eligible students. This third change was done by the BPS Office of

English Learners, which has little overlap with the office in charge of school assignment, and was

therefore hard for us to foresee.

7 Selecting Another Policy

While our analysis has focused on the absolute accuracy of the choice models, it’s also worth

considering whether BPS would have chosen a different choice plan given the prediction errors.

Even if the prediction errors are large in an absolute sense, they may not affect the relative ranking

of alternative plans and BPS’s policy decision.

The alternative choice plans we consider are the 2012-2013 school assignment reform proposals

described in Pathak and Shi (2013). Most proposals partition the city into alternative zones, ranging

from six to twenty-three. Two proposals are variants of the Home-Based plan. The decision-making

that led Boston to adopt the Home-Based plan involved a compromise across several dimensions.

But the effects on access and proximity were central, and the school board was also concerned

about insufficient school capacity. We therefore evaluate the relative performance of other plans

with respect to these three equilibrium targets.

Table 9 reports on access to quality for grade K1 for the Allston-Brighton neighborhood. Each

entry of Panel A reports access to quality for eight plans for different choice models and applicant

samples. Column 1, for example, shows that access to quality is highest under the 10 Zone plan,

according to the MNL choice model estimated with post-reform choices with post-reform applicants.

In contrast, access to quality is 72.0% under the status quo. Since we cannot directly compare

plans that were not implemented, column 1 serves as our reference point. The ranking of plans is

unchanged when we use the MNL model fit pre-reform, but with the post-reform applicants. Access
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to quality is highest under the 10 Zone plan and lowest under the status quo. Panel B shows that

of the possible comparisons (e.g., Status Quo vs. Home Based A, Status Quo vs. Home Based B,

Home Based A vs. Home Based B, etc.), there are no reversals of pairwise comparisons.25

A more direct assessment of the impact of prediction errors on the ranking of alternative plans

is shown in column 3 of Table 9. Here, we report forecasts of access to quality based on pre-reform

choices and applicants. This more closely mirrors the Pathak and Shi (2013) report. The forecast

provides a more optimistic scenario for both versions of the Home-Based plan compared to the

reference in column 1. Specifically, the Home-Based plans have the highest access to quality after

the 10 Zone plan, but in column 1 they have the lowest access to quality after the status quo. In fact,

there are reversals across 8 of 22 possible non-trivial pairwise comparisons of plans. This suggests

that if Boston chose a plan based only on access to quality in the Allston-Brighton, the MNL

model forecast could have led to a different choice. However, this pattern also is present with the

Lexicographic model, where access is higher under the Home-Based plans than other alternatives.

There are more reversals of pairwise comparisons under Lexicographic than MNL.

Access to quality in a given neighborhood is not the only factor used to select among plans. We

therefore report on how the ranking across plans changes under different choice models, aggregating

across the three outcomes and 14 neighborhoods in Table 10. About 5% of the pairwise comparisons

across plan dimensions change when the MNL model is fit from pre-reform data compared to post-

reform data. In other words, the MNL choice model generates a similar ranking of plans for each

metric and neighborhood before and after the policy reform. However, column 3 shows that there

are larger reversals across the ranking of plans with the choice model fit pre-reform on pre-reform

applicants. The relative rankings reverse on average 16% of the times, shown in the last row of

the table. The extent of reversals of plan rankings is more than three times higher the number of

reversals when we had the same applicant pool as the point of reference in column 2. That is, the

relative ranking of alternative policies changes significantly due to errors in forecasting applicants.

In other words, Boston may have chosen another plan had there been a better forecast of the

auxiliary variables.

Does the susceptibility of the MNL forecast to errors in who applies undermine its value for

decision-making? The answer to this question depends on the performance of the alternative. Col-

umn 3 shows that errors in forecasting applicants do not erase the benefits of the MNL model

compared to Lexicographic. Despite the errors in the forecast of the auxiliary variables, there are

significantly fewer prediction reversals with the MNL model fitted from past data than the Lexi-

cographic model, under which nearly one-third of pairwise comparisons across plans are reversed.

The performance of the Lexicographic here is not much better from a random prediction, which

would reverse one-half of comparisons. In summary, even though counterfactual comparisons are

sensitive to prediction errors in auxiliary covariates, there is still value in using a structural choice

model instead of our alternative.

25For this tabulation, we only consider comparisons where the difference in access is at least 1%, to avoid tallying
trivial differences across plans.
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8 Conclusions

This paper report on an out-of-sample validation of structural models of school demand. Forecasts

from these models influenced a policy change that affected thousands of Boston families. We made

predictions prior to the policy change, so it is not possible to modify predictions after observing

realized outcomes. Since we observe choices participants made in the new policy, we also conduct

a decomposition of sources of prediction error.

We find that, once we control for changes in the environment outside of the structural model,

the choice models are reasonably accurate compared to expectations set by back-testing. Both

the MNL and mixed MNL choice model significantly outperform the Lexicographic model, when

using the actual applicants. Moreover, the performance of the MNL-based models is similar when

refit with post-reform data, suggesting that the distribution of preferences measured by the choice

model are stable even with a large change in choice sets and how choices are framed. We also find

that the MNL model’s performance is similar to the mixed MNL model, a fact foreshadowed in the

back-tests. The micro-level data we have on individual characteristics likely reduces the potential

benefit of the more flexible and computationally-intensive specification.

The scenario where an analyst has access to the actual participants under the new policy allows

us to focus attention on choice model performance. But it is a hypothetical scenario that does not

correspond to any real-world forecasting problem. Without the actual participants, the magnitude

of the error from the applicant forecast is so large for grade K2 that it undermines the performance

benefit of the MNL model. In fact, without using the actual applicants, the prediction error from

the Lexicographic specification is smaller for several forecast targets compared to the MNL model

in grade K2. Our decomposition shows that the superior performance of Lexicographic is driven by

the fact that errors in the applicant and choice forecasts counteract each other. The error in the

MNL forecast is large enough to change the ranking of several other alternative policies, and may

have led the city to pick a different plan. However, the negative effects of errors in the applicant

forecast does not erase the benefit of structural modeling: despite the presence of the errors in

auxiliary inputs, the correctly specified model fitted from past data still reproduces the majority

of counterfactual comparisons across plans, and does so much more consistently than the ad hoc

alternative.

In absolute terms, there is still substantial scope to improve the demand model predictions. An

open question is whether a more principled approach to variable selection in the choice models have

led to further improvements. It’s also possible that alternative non-choice based approaches would

have improved performance.

Structural demand models have widespread application in economics beyond demand for schools.

Our setting and policy change show possibilities for scenarios where substitution among choices is

central. While standard choice models may succeed in predicting choice behavior, there can still be

significant unforeseen error for outcomes that depend on choices due to changes in the environment

that are outside of the model. Difficulty predicting these auxiliary inputs likely plays a large role

in other applications.
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A Estimating the Mixed MNL Choice Model

Unlike in the MNL model, the log likelihood function associated with the mixed MNL model is

difficult to evaluate directly since it involves many multi-dimensional integrals. Hence, we estimate

it using Markov Chain Monte Carlo (MCMC) instead of maximum likelihood.

Train (2003) reviews the basic framework to calibrate estimate MMNL models using MCMC.

It is based on Gibbs sampling and the Metropolis-Hasting algorithm. However, our setting has

more fixed coefficients since we have a fixed effect for every school. It is known that the simple

Metropolis Hastings with random walk proposals does not perform well when estimating many

dimensions (see Katafygiotis and Zuev (2008)), especially if the dimensions are correlated. We

therefore modify the framework to use Metropolis-Within-Gibbs (MWG), which samples blocks

of coordinates iteratively (rather all coordinates at once), and Hamiltonian Monte Carlo (HMC),

which incorporates gradient information for directions to sample. We describe these methods in

greater detail in Section A.2.

A.1 Specifying the Likelihood Function

The first step of applying MCMC techniques is specifying the full likelihood function of observing

the data given the model parameters. An equivalent representation of the MMNL model from

Section 3.3.2 is as follows. Let the vector of characteristics xij = (xijr, xijf ), where xijr corresponds

to the first L components, which represent the terms with random coefficients, and xijf the last

K − L components, which have fixed coefficients. Let coefficient vector β = (βr, βf ) similarly. The

latent utilities are as follows.

uij = δs(j) + βf · xijf + γi · xijr + εij , (2)

γi ∼ N (βr,Σ), (3)

εij ∼ Gumbel(0, 1), (4)

The set of parameters to be estimated is (δ, β,Σ). In order for the model to be well-specified,

we normalize the last component of δ to be zero. Moreover, the covariance matrix Σ can be written

in the block diagonal form

Σ =

Σ1

Σ2

Σ3

 ,

where Σ1, Σ2 and Σ3 are 1× 1, 1× 1 and 3× 3 symmetric positive definite matrices.

The data to fit these parameters are the observed choices of every students along with the

observed characteristics vector xij . Suppose that student i makes mi choices, and let the chosen

programs from best to worst be yi1, yi2, · · · , yimi .

The likelihood function can be expressed as follows. Given γi, the conditional likelihood is

26



φi(δ, βf |γi) =

mi∏
c=1

exp(δs(yic) + βf · xiyicf + γi · xiyicr)∑mi
d=c exp(δs(yid) + βf · xiyidf + γi · xiyidr)

. (5)

This is the MNL likelihood function. The full likelihood function incorporating all the data is

Φ(δ, βf , βr,Σ) =
n∏

i=1

∫
R5

φi(δ, βf |γi) exp(−1

2
Σ−1‖γi − βr‖2)dγi. (6)

Here, n is the number of students; recall that the random coefficients γi each has five dimensions.)

Our estimates will be based on sampling the parameters based on this likelihood function Φ.

Because Φ is complex, we do this by MCMC. As a detour, we will give an overview of MCMC

and the specific techniques we use. Readers who are familiar with these techniques can jump to

Section A.3.

A.2 Overview of the MCMC procedure

The idea behind Markov Chain Monte Carlo (MCMC) is to sample from a distribution by construct-

ing a Markov chain whose unique stationary distribution is the desired distribution of interest. If the

chain is easy to simulate and if it is fast-mixing, meaning that it converges quickly to the stationary

distribution, then we can sample by simply simulating the chain. After throwing out a so-called

“burn-in” period at the beginning, we arrive at samples from the desired distribution.

The workhorse of MCMC are Gibbs sampling and Metropolis-Hasting. Gibbs sampling is used

when the desired distribution can be factored into several marginal distributions that are easier

to sample. For example, to sample from a joint distribution on x, y and z, one might iteratively

sample one variable at a time conditional on the other ones. We initialize x0, y0 and z0 arbitrarily.

For each t ≥ 1, sample iteratively from the following conditional distributions:

xt | yt−1, zt−1

yt | xt, zt−1

zt | xt, yt

After a sufficient number S of samples, and after throwing out the initial burn-in of B samples,

{(xt, yt, zt) : B < t ≤ S} would approximate samples from the original distribution, although

successive samples are not independent. One can remove the serial correlation by either sampling

independently from this set, or by keeping only samples in which t is a multiple of ∆, where ∆ is a

chosen positive integer.

Metropolis-Hasting is a technique to sample from an arbitrary distribution with given likelihood

function L(x). There are many variants, but the common idea is to use a proposal distribution that

is easy to sample from and reject certain samples to get the likelihood ratios to be correct. The

proposal distribution may depend on the current iterate x. Let transition probability density be

T (y|x); this is the probability density of proposing y given that the current sample is x. In order

to obtain the correct likelihoods, we can only accept a fraction of the samples proposed, and reject
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the others. The probability that we accept proposal y given the previous iterate being x is

A(y|x) = min(1,
L(y)T (x|y)

L(x)T (y|x)
).

Note that if T (y|x) is proportional to L(y), then the acceptance probability is always 1 as the

proposal distribution already matches the target. Otherwise, the above formula is tuned so that

the following identity, called “detailed balance” in the literature, holds:

L(x)T (y|x)A(y|x) = L(y)T (x|y)A(x|y).

This equation guarantees that the desired density p(x) is a stationary distribution of the Markov

chain induced by the proposal and acceptance process. Furthermore, if the chain is ergodic, which

is true for example if the proposal distribution has full support, then p(x) is the only stationary

distribution.

The sampling procedure is then to initialize x0 arbitrarily, and for each t ≥ 1

1. Draw y according to T (y|xt−1).

2. Set xt =

y with prob. A(y|xt−1),

xt−1 otherwise.

By iterating this many times and discarding sufficiently many burn-in samples, we arrive at the

desired distribution.

Because of the flexibility in the proposal distributions, there are many variants of the above

techniques. The goal is to find a proposal distribution that strikes a good balance of being easy

to sample from and approximating the target distribution locally. If it is not easy to sample from,

then each step would take too long; if it is too far from the target distribution, then the acceptance

probabilities would be very low and the chain may get stuck at a certain iterate for a very long time.

In the following sections we present the three variants we use: Random Walk Metropolis (RWM),

Metropolis-Within-Gibbs (MWG), and Hamiltonian Monte Carlo (HMC).

A.2.1 Random Walk Metropolis (RWM)

This method is the easiest to sample from, as it uses a simple random walk to propose the next

value: if the current iterate is x, it proposes y = x+ ε, where ε is multivariate normal distributed,

ε ∼ Normal(0, ρI), where I is the identity matrix and ρ is a scale parameter. Other covariance

matrices can also be used instead of the identity but it must be the same for every x. The scale

parameter is tuned to match the overall variance of the desired distribution. Too small a ρ and

successive samples and there will be too much serial correlation; too large a ρ and acceptance

probability might be near zero so the chain may get stuck. We tune ρ by multiplying it up or

down so that the average acceptance ratio since last tuning is between 0.4 and 0.6, which is the
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ball park value suggested by the literature.26 The number of steps we wait before tuning increases

exponentially, so that after our burn- in sample until our last iteration there is no tuning.

This method performs well when the target distribution has not too many dimensions, and has

approximately the same scale in each dimension. However, when there are many dimensions, it

becomes exponentially harder to guess the right direction, and the method may take very long to

converge; when there are dimensions that are at very different scales, then there may exist no ρ

that is good for all dimensions.

A.2.2 Metropolis Within Gibbs (MWG)

Metropolis Within Gibbs is a simple extension of RWM that allows various sub-blocks of coordinates

to have different scales. It is simply to sample each sub-block iteratively, conditional on the others,

much like running several RWM within a Gibbs sampling framework. It also reduces the number

of dimensions sampled at each step. The drawback is that more samples are needed.

Precisely speaking, instead of sampling all dimensions of vector x simultaneously, write it in

terms of sub-vectors x =


x1

x2
...

xk

. Each sub-vector may represent several coordinates. Initialize x0

arbitrarily and for t ≥ 1, sample

xt1 | xt−12 , · · ·xt−1k

xt2 | xt1, x
t−1
3 , · · ·xt−1k

· · ·
xtk | xt1, · · ·xtk−1

Each of the above is sampled using RWM, perhaps with different scale parameters for dif-

ferent sub-vectors. In each Gibbs iteration, for each of the variables, we only take one step of

Metropolis-Hasting, which involves one proposal and possible acceptance. Because of detailed bal-

ance, embedding Metropolis-Hasting into Gibbs sampling in this way also works.

A.2.3 Hamiltonian Monte Carlo (HMC)

This method uses the gradient of the log likelihood function to inform the proposals, which can

significantly improve the acceptance probabilities in high dimensions. The drawback is that each

iteration is slower as several gradient calls is needed. The method is motivated by Hamiltonian

dynamics in physics. It models the current iterate x as a location vector, and treats the negative

log likelihood function as an energy potential. In each step, it samples a random momentum

vector and simulates the trajectory of the object by discretizing time and alternatively updating

the momentum using the potential function and updating the position using the momentum. To

make detailed balance work out, the first and last steps of simulation are half-steps. Precisely

26See Roberts, Gelman, and Gilks (1997).
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speaking, let the gradient of the log likelihood function be G(x) = ∇(log(L(x))). Let ε and ∆

be tuning parameters, representing the discretization in time and the number of steps to simulate

respectively. The proposal is based on the pseudocode in this algorithm (this is taken from Neal

(2011)):

Algorithm 1 Pseudocode for one step of HMC

Function HMC STEP(x):
Draw momentum p0 ∼ Normal(0, I).
Initialize y = x, p = p0.
Update p = p− εG(y)/2.
for ∆− 1 iterations do

Update y = y + εp
Update p = p− εG(y).

end for
Update y = y + εp.
Update p = p− εG(y)/2.

return

{
y with prob. A(y|x) = min(1, L(y)L(x) exp(‖p0‖

2−‖p‖2
2 )

x otherwise

Note that the chance of proposing y given x is simply the chance of drawing momentum p0.

Moreover, by the reversibility of the intermediate steps of discrete simulation, if we started at y and

drew a momentum of −p (where p is the final momentum vector in HMC STEP), then the proposal

would be x. This implies that
T (y|x)

T (x|y)
=

exp(−1
2‖p0‖

2)

exp(−1
2‖ − p‖2)

,

which implies that

T (y|x)A(y|x)

T (x|y)A(x|y)
=

exp(−1
2‖p0‖

2)

exp(−1
2‖ − p‖2)

L(y)

L(x)
exp(

‖p0‖2 − ‖p‖2

2
) =

L(y)

L(x)
.

So detailed balance holds and the following is a valid Metropolis-Hasting sampler: Initialize x0

arbitrarily. For t ≥ 1, set xt = HMC STEP(xt−1).

One can show that as the time discretization ε→ 0, for any fixed total simulation time ε∆, the

acceptance probability goes to 1. Hence, we would like ε to be small enough so the chain does not

get stuck and ε∆ large enough so that successive samples are not too serially correlated. In practice,

we fix ∆ = 20 and tune ρ so that the empirical acceptance rate since last tuning is between 0.5

and 0.8. As before, we increase the interval between tuning times exponentially so that no tuning

happens in the sample we keep (after burn-in and before the last iteration). Another detail is that

to prevent cases in which ε∆ is exactly what makes the proposal y go back to original point x,

instead of using the same ε, we draw ε̃ ∼ Uniform(0.85ε, 1.15ε) before each call to HMC STEP, and

use ε̃ as the step size throughout that call. Because this distribution is a-priori fixed, we preserve

detailed balance. Neal (2011) describes these as best practices for applying HMC.
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A.3 The MCMC Sampler

Our MCMC procedure is based on the one in Train (2003) but breaking up the estimation of the

fixed coefficients into two steps, one step using Hamiltonian Monte Carlo (HMC) and the other

Metropolis Within Gibbs (MWG). We use HMC to estimate the school fixed effects and MWG to

estimate the other fixed coefficients. These techniques allow us to accommodate the large number

of school fixed effects and the unequal scales across the other fixed coefficients.

To sample from the full likelihood function Φ(δ, βf , βr,Σ) (Equation 6), we initialize δ0, β0f ,

β0r , Σ0
1, Σ0

2, Σ0
3 arbitrarily. For each t ≥ 1, we do a few layers of Gibbs sampling. In some of the

layers we embed a form of Metropolis-Hasting; but in each Gibbs iteration we only take one step of

Metropolis-Hasting, much as it is in MWG. Furthermore, let T be a parameter indicating how long

we wait before tuning. We initialize T to be 1 and increase this parameter steadily, so that tuning

becomes exponentially less frequent. For t ≥ 1, each MCMC step is as follows:

1. Draw γti |δt−1, β
t−1
f , βt−1r ,Σt−1. This is done using one iteration of RWM with likelihood func-

tion

L(x) = φi(δ
t−1, βt−1f , x) exp(−1

2
(Σt−1)−1‖x− βt−1r ‖2)

and starting value γt−1i . (See Equation 5 for definition of φi.) We initialize ρ = 0.05 and

initially to tune for each i every Uniform(1000T, 1500T ) steps.

2. Draw βtr|γti ,Σt−1. This is sampling from Normal( 1
n

∑n
i=1 γ

t
i ,

1
mΣt−1).

3. Draw Σt|γti , βtr. This can be done as follows: For l ∈ {1, 2, 3}, let Ct
l be the covariance matrix

of the lth block of γti assuming mean as in the lth block of βtr. (Recall that the random

coefficients are organized into 3 blocks, with ell match being the first block, walk zone being

the second, and distance, mcas, and % white/asian being the third.) Let kl be the number of

variables in the lth block and let n be the number of students. Draw Σt
l according to the Inverse

Wishart Distribution with degree of freedom ν = kl + n and scale matrix Ψ = klIl×l + nCt
l .

4. Draw δt|γti , β
t−1
f . This is done using one step of HMC with likelihood function

L(x) =

n∏
i=1

φi(x, β
t−1
f |γti ),

and constraining the last component to be zero. We initialize ε = 0.015, and ∆ = 20. We

tune every 1000T steps.

5. Draw βtf |γti , δt. This is done using one iteration of MWG with likelihood function

L(x) =
n∏

i=1

φi(δ
t, x|γti ).

We break the fixed coefficients βf into 6 subvectors: 1) “continuing;” 2) “sibling;” 3) “ell
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language match;” 4) “distance*black/hispanic” and “distance*income est.”; 5) “mcas*black”

and “mcas*income est.”; 6) “% white/asian*black/hispanic” and

“% white/asian*income est.” We initialize the scales ρ for each subvector to be .5, .5, .1, .1,

.5, and .5 respectively. We tune every Uniform(100T, 150T ) steps.

We run these steps 1,000,000 times, increasing the tuning interval parameter T by a factor of 1.2

every 5000 iterations. We throw out the first 500,000 iterations as burn-in. Note that in the interval

we keep, no tuning happens. This ensures the correctness of the Markov chain in this period.

For a robustness check, we re-ran this procedure 6 times, sometimes with different initial values,

and we found near identical results each time.

B Computing Equilibrium Forecasts

All post-reform equilibrium forecasts are computed by averaging the results of 1000 iterations of

the following sequence of steps.

1. Sample applicant pool X according to the assumptions described in Section 3.3.4. More details

are given in Section 4.2 of the Part I report, Pathak and Shi (2015).

2. Sample choice model parameters.

• For the Lexicographic model, we skip this step since the model does not have parameters.

• For the MNL model, we sample

(δ, β) ∼ N(µ,Σ),

where µ is the maximum likelihood estimate of the fixed effect δ and coefficients β, and

Σ is the inverse of the Hessian of the log-liklihood function evaluated at µ.

• For the MMNL model, we sample (δ, β,Σ) from the posterior distribution from MCMC,

and independently sample for each student i the individual coefficients γi ∼ N(βr,Σ).

3. For each student, compute a relative ranking of all options within his choice menu that he is

eligible for, truncating to the top 10 choices. (This corresponds to the Y |X, using the notation

introduced in Section 1. ) For the MNL and MMNL models, this involves independently

sampling idiosyncratic taste shocks εij ∼ Gumbel(0, 1) for every student i and eligible option

j. We also sample a lottery number li for each student i, li ∼ Uniform(0, 1).

4. Compute the assignment using the deferred acceptance algorithm described in Section 2 using

the following inputs.

• The simulated choice rankings from the previous step.

• The program capacities imputed from the round 1 assignment from the previous year

(which is 2013 for the calculation of post-reform forecasts.)
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• The following priority structure. Define the priority of student i for program j to be (the

higher the better)

πij = Boostij + li, (7)

Boostij = 8Continuingij + 4PresentSchoolij + 2Siblingij + SameSideij , (8)

where the variables on the right hand side of (8) are binary indicator variables for whether

the student is a continuing student for program j, a continuing student for another

program in the same school as program j, has a sibling in the school of program j, or is

on the same side of the East Boston bridge as the school housing program j.

5. Compute the equilibrium outcome of interest for each of the fourteen neighborhoods.

• Access to quality: Let the set of students assigned to school j be denoted Ij , and define

zj =

mini∈Ij πij if school j is full,

0 otherwise.
(9)

This is an estimate of the minimum priority needed to get into school j, given the

generated preferences and priorities of other students. The estimate is based on the large

market approximation of Azevedo and Leshno (2016). Define the access of student i to

school j to be the probability that his lottery number is high enough for his priority to

be higher than the cutoff of zj ,

Accessij = max(min(Boostij + 1− zj , 1), 0), (10)

and the student’s access to quality as the maximum Accessij over all program j in his

menu from a Tier 1 or 2 school. The final result is the average of the access to quality

estimates for every student i living within the neighborhod.

• Distance: compute the average walking distance an assigned student from the neighbor-

hood to his assigned school. The walking distance is from Google Maps API, based on

the student’s home address and the school’s address. For students for whom we do not

have the home address, we use the centroid of the geocode where the student lives as a

proxy.

• Unassigned: compute the number of students from the neighborhood who is not assigned.

In each of the 1000 iterations, we compute for each neighborhood a scalar estimate for each of

the three equilibrium outcomes of interest. The final forecast is the average of these 1000 values.

The estimated 95% confidence intervals are from the empirical 2.5 and 97.5 percentiles of these 1000

values.

In computing the actual outcome, only Steps 4 and 5 are needed. Instead of the simulated values
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from steps 1-3, we use the actual applicant pool X∗, the actual choices Y ∗, and the actual lottery

number li for each student i. As a result, only one iteration is needed.

The pre-reform forecasts (from the back-testing exercise) are computed similarly, except that

Step 4 above is altered to account for the different priority structure. Instead of the same-side

priorities above, the pre-reform assignment plan contains walk-zone priorities, which only apply to

50% of the seats. The exact implementation is as follows. Each program j is split into two bins of

equal size, j1 and j2. Bin j1 is called the walk-zone bin and j2 is the open bin. If program capacity

is odd, then the walk-zone bin has one additional seat. The preferences of students are augmented

to be over the bins, so that for the same program, every student prefers the walk-zone bin over the

open bin, but the relative preference between programs is as before. Priorities are now computed

for every student i and every bin. For a walk-zone bin j1 of program j, the priority boost is

Boostij1 = 8Continuingij + 4PresentSchoolij + 2Siblingij +WalkZoneij ,

where WalkZoneij is a binary indicator variable for whether student i lives in the walk-zone of the

school housing program j. For an open bin j2, the boost is as above except without the WalkZoneij

term. Given these preferences over bins and priorities of students to bins, we compute an assignment

of students to bins using the deferred acceptance algorithm. For access to quality, we define the

access of each student to each bin using the analog of Equation (10) for bins, and define a student’s

access to quality by finding the maximum access to an eligible quality bin, which is defined to be a

bin of a program from a Tier 1 or 2 school in the student’s menu.

C Evaluating Choice Forecasts

Using the notation of Section 4.2, the quantities that need to be computed to evaluate choice

forecasts for a given choice model are as follows.

1. Best prediction Ŷik for the set of top k choices of student i, where k ∈ {1, 2, 3}.

2. For each k ∈ {1, 2, 3}, market share shj of top k choices from this neighborbood that is for a

program in school j.

3. For each tuple of schools (j, l), the proportion pjl of students who ranked at least two choices,

who ranked school j first and l second.

4. For each tuple of programs (j, l), best prediction ẑi(j, l) for whether student i prefers program

j over program l.

Items 1-3 can be computed using many samples of the permutation of top 3 choices, (yi1, yi2, yi3),

for each student i. For Ŷik this is because due to the way the percentage of mistakes in Top k choices

is defined, we have by linearity of expectations that the optimal deterministic prediction Ŷik if we

believe the choice model to be correct is simply the top k most commonly occurrent options in

34



the set {yi1, · · · , yik). For shl and pjl, having many samples of the permutation of top 3 choices

suffices since the empirical market shares and empirical proportions are unbiased estimates of the

true values.

• For the Lexicographic model, one sample of (yi1, yi2, yi3) for each student i suffices since the

model is deterministic.

• For the MNL model, we sample 5000 independent draws of model parameters (δ, β) ∼ N(µ,Σ),

where µ is the maximum likelihood estimate and Σ is the inverse of the Hessian of the log-

likelihood function at µ. For each draw of (δ, β), and for each student i and program j,

we produce 200 independent draws of εij ∼ Gumbel(0, 1), and use these to simulate rank-

ings. Hence, for each student, we have 1,000,000 samples of (yi1, yi2, yi3) which are almost

independent of one another.27

• For the MMNL model, we use the same recipe as above: we produce 5000 independent samples

of the model parameters (δ, β,Σ) from the MCMC posterior and for each of these samples

and each student i, we produce an independent draw of individual coefficients γi ∼ N(βr,Σ).

For each of the 5000 combinations of (δ, β, γ), we produce 200 draws of εij for each student i

and program j as before and compute 1,000,000 almost independent samples of (yi1, yi2, yi3).

Item 4 can be computed easily for the Lexicographic model. For the MNL based methods, the

desired quantity ẑi(j, l) has the following form:

ẑi(j, l) =

1 if P(uij ≥ uil) ≥ 0.5,

0 otherwise.
(11)

Define ūij = uij − εij . This is student i’s utility for program j without counting his idiosyncratic

taste shock εij . Define ūil similarly. Observe that for the MNL model,

P(uij ≥ uil) = E
[

exp(ūij)

exp(ūij) + exp(ūil)
| β, δ

]
(12)

Hence, we can estimate the above quantity using the 5000 independent samples of model parameters

β and δ from the previous calculations for items 1-3. For the MMNL model, the same technique

can be applied except that Equation (12) also requires conditioning on γi, and we use the 5000

independent samples of (δ, β, γ) from before.

Another benchmark we use in evaluating choice forecasts is random guessing, in which case

the choice ranking yi is assumed to be a uniformly random permutation of options within student

i’s menu. For the metrics on individual choice, we do not need to explicitly sample but can write

explicitly formula for computing the relevant quantities. Let |Si| be the number of options in student

27They are not completely independent because 5000 draws of (δ, β) are shared across students and across each 200
draws of εij . The completely independent alternative would be to produce one million independent draws of (δ, β) for
each student, which is computationally expensive and we think will not change the results.
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i’s menu.

% Mistakes in Top k Choices = 1− k/|Si|,

% Mistakes in Pairwise Comparisons = 0.5.

For the metrics on distribution of choices, we can compute the top k market shares simply by

distribution the market share of each student uniformly among his available options, and averaging

over students of each neighborhood. For the joint distribution of top two chocies, we assume that

every ordered pair of distinct options is equally likely and apply the linearity of expectations and

average across students.
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Figure 1: Timeline of Policy Reform
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Figure 2: Overview of Research Design
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(a) Before reform (in 2013)

Map data ©2014 Google

Grade

K1



School Name  Getting
There

Eligibility

1 BTU K-8 Pilot  1.33 mi Tier 2

2 Curley K-8  0.52 mi 1 Mile, Tier 2

3 Dudley St Neigh. Schl  1.92 mi Citywide

4 Ellis Elementary  0.76 mi
1 Mile,

Option Sch

 Grades Offered

 Early Learning
Center

 K-5 (Elementary)

 K-8

 Enrollment

 Large

 Small

 Medium

 Uniform Policy

 Mandatory

(b) After reform (in 2014)

Figure 3: Illustration of the Change in Choice Sets

Panel (a) shows the geographic zones under the Three Zone plan in 2013. The choice set include all schools in a
student’s zone with a few exceptions for city-wide schools and for students residing on zone boundaries. Panel (b)
shows a computer-generated list of choices under the Home-Based Plan in 2014 for a given address. The set of choices
is generated for each student based on her address and the school’s tier.
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Figure 4: Backtesting Access to Quality

Access to quality is the chance a student has of being assigned a tier 1 or tier 2 school if it is ranked. For each grade,
this figure shows the predicted access to quality averaged across each neighborhood for each demand model. The
choice models are estimated using choices two years prior to the reform (2012). Access to quality is computed using
choices one year prior to the reform (2013). Whisker bars represent 95% confidence intervals.
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Figure 5: Predicted vs. Actual Access to Quality

Access to quality is the chance a student has of being assigned a tier 1 or tier 2 school if it is ranked. For each
grade, this figure shows the predicted access to quality averaged across each neighborhood for each demand model.
The demand models are estimated using choices from the year prior to the reform (2013). Actual access to quality is
computed using choices from the first year of the new assignment plan (2014). Whisker bars represent 95% confidence
intervals.
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Figure 6: Predicted vs. Actual Fraction of Top Choices Ranking Tier 1 Schools

This figure shows the percentage of top choices that are tier 1 schools for different demand models estimated using
data from the old assignment plan (in 2013) compared to the percentage from actual choices in the new assignment
plan (in 2014).
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Grade	K1 Grade	K2
(1) (2)

Schools	in	New	and	Old	Choice	Set	 9.4 12.6
Schools	Added	to	New	Choice	Set 2.5 2.9
Schools	Removed	from	Old	Choice	Set 16.1 18.4

			Top	1 93% 95%
			Top	3 91% 92%
			Top	5 90% 91%

			Top	1 84% 79%
			Top	3 76% 73%
			Top	5 68% 68%

Table	1.	Comparison	of	Choice	Sets

B:	Applicants	in	Old	Assignment	Plan

A:	Applicants	in	New	Assignment	Plan

Applicants	for	whom	Top	k	Choices	in	Old	Choice	Set	are	in	New	Choice	Set

Applicants	for	whom	Top	k	Choices	in	New	Choice	Set	are	in	Old	Choice	Set

Notes:	This	table	compares	choice	sets	between	the	old	three-zone	plan	(in	2013)	and	the	new	home-based	
assignment	plan	(in	2014).	Schools	in	New	and	Old	Choice	Set	is	the	average	number	of	choices	an	applicant	in	the	
new	plan	has	in	the	new	choice	set	that	are	available	in	the	old	choice	set.		Schools	Added	to	New	Choice	Set	is	the	
average	number	of	choices	an	applicant	in	the	new	plan	has	in	the	new	choice	set,	but	not	in	the	old	choice	set.		
Schools	Removed	from	Old	Choice	Set	is	the	average	number	of	choices	an	applicant	in	the	new	plan	would	have	in	
the	old	choice	set,	but	not	in	the	new	choice	set.		Applicants	for	whom	Top	k	Choices	in	New	Choice	Set	are	in	Old	
Choice	Set	reports	whether	highly	ranked	choices	in	the	new	choice	set	are	available	in	the	old	choice	set.	For	each	
student	in	the	new	plan,	we	compute	the	percentage	of	their	top	k	choices	that	are	still	available	under	the	old	
choice	set	for	k=1,	3,	and	5.			Applicants	for	whom	Top	k	Choices	in	Old	Choice	Set	are	in	New	Choice	Set	reports	
whether	highly	ranked	choices	in	the	old	choice	set	are	available	options	in	the	new	choice	set.		For	each	student	in	
the	old	plan,	we	compute	the	percentage	of	top	k	choices	that	are	still	available	options	under	the	new	plan,	for	k=1,	
3,	and	5.



RMSE Exp.	RMSE %	in	95%	C.I. RMSE Exp.	RMSE %	in	95%	C.I.
(1) (2) (3) (4) (5) (6)

Lexicographic 22% (3%) 36% 31% (3%) 36%
MNL 23% (6%) 36% 5% (4%) 100%
MMNL 20% (6%) 36% 5% (4%) 100%

Lexicographic 0.72 (0.25) 36% 0.46 (0.11) 29%
MNL 0.44 (0.18) 64% 0.26 (0.10) 64%
MMNL 0.40 (0.18) 64% 0.26 (0.10) 79%

Lexicographic 51 (17) 14% 26 (13) 57%
MNL 19 (17) 93% 19 (10) 71%
MMNL 18 (17) 93% 18 (11) 79%
Notes:	This	table	reports	backtesting	results	for	equilibrium	outcomes	for	the	last	year	of	the	old	assignment	plan	
(in	2013)	using	choice	models	estimated	from	data	two	years	prior	(in	2012).		In	both	years,	we	use	the	choice	set	
from	the	old	assignment	plan	(in	2013).	Access	to	Quality	in	percentages	is	defined	as	the	chance	each	student	has	
of	being	assigned	a	tier	1	or	tier	2	school,	distance	in	miles	is	the	Google-Maps	walk	distance	between	each	student	
and	their	assigned	school	(conditional	on	being	assigned),	and	Unassigned	is	the	number	of	students	unassigned	in	
each	neighborhood.			Lexicographic,	multinomial	logit	(MNL),	and	mixed	MNL	(MMNL)	are	the	three	choice	models.		
For	each	grade,	each	outcome	of	interest,	each	choice	model,	and	each	of	the	14	neighborhoods,	we	compute	the	
prediction	error,	defined	as	the	squared	difference	between	the	predicted	outcome	for	this	neighborhood	(based	
on	the	demand	model)	with	the	actual	outcome	(based	on	the	actual	choices).			Columns	1	and	4	report	the	root	
mean	squared	error	(RMSE),	defined	as	the	square	root	of	the	average	of	the	squared	differences	across	the	14	
neighborhoods.	Columns	2	and	5	reports	how	large	a	RMSE	we	should	expect	from	a	random	sample	if	the	model	
were	correct.	Exp.	RMSE	is	computed	by	simulating	each	outcome	1,000	times	given	a	choice	model,	accounting	for	
uncertainty	from	sampling	students,	coefficient	estimates,	and	lottery	numbers.		Each	sample	of	the	simulation	is	a	
vector	of	14	dimensions,	one	for	each	neighborhood.	We	compute	the	RMSE	of	each	sample	with	respect	to	the	
sample	mean	(the	Euclidean	distance	between	the	two	14-dimensional	vectors)	and	report	the	average	of	these	
RMSEs	across	the	1,000	samples.	Columns	3	and	6	present	another	metric	of	how	unexpected	the	RMSE	is	if	the	
model	were	completely	correct.		%	in	95%	C.I.	is	the	percentage	of	neighborhoods	for	which	the	actual	outcome	lies	
within	the	predicted	95%	confidence	interval	of	the	outcome.	The	confidence	interval	is	estimated	from	the	2.5	and	
97.5	percentiles	of	1,000	simulations	of	each	choice	model.	

C:	Unassigned

Table	2.	Backtesting	Equilibrium	Predictions	Using	Data	from	Two	Years	Prior	to	Predict	One	Year	Prior
Grade	K1 Grade	K2

	A:	Access	to	Quality

B:	Distance	(miles)



Random Lexicographic MNL MMNL Random Lexicographic MNL MMNL
(1) (2) (3) (4) (5) (6) (7) (8)

Top	Choice 97% 63% 58% 58% 97% 37% 35% 34%
Top	2	Choices 94% 70% 59% 58% 94% 67% 57% 57%
Top	3	Choices 90% 69% 54% 54% 90% 67% 54% 54%
All	Pairwise	Comparisons 50% 30% 18% 18% 50% 16% 10% 10%

Market	Shares	by	Neighborhood
			Top	Choice 56% 46% 22% 21% 52% 26% 16% 15%
			Top	2	Choices 52% 48% 19% 18% 52% 48% 20% 19%
			Top	3	Choices 49% 49% 16% 16% 48% 51% 17% 16%
Joint	Distribution	of	Top	2	
Choices

64% 76% 45% 41% 67% 79% 51% 47%

Notes:	This	table	reports	backtesting	results	for	choices	for	the	last	year	of	the	old	assignment	plan	(in	2013)	using	choice	models	estimated	from	data	two	years	
prior	(in	2012).		In	both	years,	we	use	the	choice	set	from	the	old	assignment	plan	(in	2013).	Panel	A	reports	on	individual	choices	of	students	and	panel	B	reports	on	
the	distribution	of	choices	of	students,	averaged	across	14	Boston	neighborhoods.	Each	column	corresponds	to	a	choice	model:	Random	in	columns	1	and	5	denotes	
uniformly	random	choices,	Lexicographic	in	columns	2	and	6	denotes	the	lexicographic	model,	MNL	in	columns	3	and	7	denotes	the	multinomial	logit	model,	and	
MMNL	in	columns	4	and	8	denotes	the	mixed	MNL	model.		%	Mistakes	in	Panel	A	uses	each	demand	model's	best	guess	of	the	student’s	choice	and	reports	the	
fraction	of	incorrect	guesses.		Top	Choice	is	for	the	first	choice.		Top	2	Choices	is	for	the	unordered	set	of	first	and	second	choice,	and	we	report	the	percentage	of	
elements	in	this	set	that	are	wrongly	predicted	and	average	over	students	who	ranked	at	least	two	options.		Top	3	Choices	reports	the	analog	for	the	unordered	set	
of	first,	second	and	third	choice,	averaging	over	students	who	ranked	at	least	three	choices.		Pairwise	is	the	set	of	pairwise	comparisons	of	options	implied	by	the	
student’s	actual	ranking	compared	to	the	best	guess	of	each	comparison	from	each	choice	model.			Statistical	distance	in	Panel	B	is	the	total	variation	distance	
between	the	predicted	distribution	of	choices	and	the	actual	distribution	for	neighborhood-level	market	shares.		The	first	three	rows	report	on	the	joint	distribution	
of	the	neighborhood-level	market	share	of	top	choices	following	Panel	B,	averaged	across	neighborhoods.		Joint	distribution	of	top	2	choices	aggregates	all	students	
and	compares	the	predicted	joint	probability	distribution	of	the	first	and	second	choice	of	students	who	ranked	at	least	two	choices	and	the	actual	distribution.		

Table	3.	Backtesting	Choice	Predictions	Using	Data	from	Two	Years	Prior	to	Predict	Choices	from	One	Year	Prior
Grade	K1 Grade	K2

A:	Individual	Choices	(%	Mistakes)

B:	Distribution	of	Choices	(Statistical	Distance)



RMSE Exp.	RMSE %	in	95%	C.I. RMSE Exp.	RMSE %	in	95%	C.I.
(1) (2) (3) (4) (5) (6)

Lexicographic 26% (5%) 14% 13% (4%) 86%
MNL 13% (6%) 71% 15% (5%) 36%
MMNL 13% (6%) 79% 14% (5%) 36%

Lexicographic 0.34 (0.14) 50% 0.14 (0.09) 71%
MNL 0.19 (0.12) 57% 0.13 (0.07) 71%
MMNL 0.19 (0.12) 57% 0.14 (0.07) 71%

Lexicographic 30 (16) 57% 34 (9) 43%
MNL 22 (16) 86% 41 (7) 14%
MMNL 21 (17) 86% 40 (8) 14%

C:	Unassigned

Table	4.	Accuracy	of	Equilibrium	Predictions	Compared	to	Actual	Outcomes
Grade	K1 Grade	K2

A:	Access	to	Quality

B:	Distance

Notes.	This	table	reports	the	accuracy	of	predictions	under	three	choice	models	for	equilibrium	outcomes	using	data	from	
2013	(the	last	year	of	the	old	assignment	plan)	compared	to	data	from	2014	(the	first	year	of	the	new	assignment	plan).		
For	each	grade,	each	outcome	of	interest,	each	choice	model,	and	each	of	the	14	neighborhoods,	we	compute	the	
prediction	error	as	the	squared	difference	between	the	predicted	outcome	for	this	neighborhood	(based	on	the	demand	
model)	with	the	actual	outcome	(based	on	the	actual	choices).	Table	2	notes	contain	definitions	of	the	prediction	targets.	



Random Lexicographic MNL MMNL Random Lexicographic MNL MMNL
(1) (2) (3) (4) (5) (6) (7) (8)

Top	Choice 93% 59% 54% 53% 93% 33% 32% 33%
Top	2	Choices 85% 62% 51% 51% 87% 60% 54% 55%
Top	3	Choices 78% 58% 47% 47% 80% 56% 50% 51%
All	Pairwise	Comparisons 50% 28% 23% 23% 50% 14% 12% 13%

Market	Shares	by	Neighborhood
			Top	Choice 47% 41% 20% 21% 45% 22% 15% 15%
			Top	2	Choices 41% 43% 16% 16% 43% 48% 19% 20%
			Top	3	Choices 37% 41% 13% 14% 38% 44% 15% 17%
Joint	Distribution	of	Top	2	Choices 62% 72% 41% 41% 67% 75% 49% 48%
Notes:	This	table	reports	on	the	accuracy	of	choice	predictions	using	data	from	2013	(the	last	year	of	the	old	assignment	plan)	compared	to	data	from	2014	
(the	first	year	of	the	new	assignment	plan).	Table	3	notes	define	prediction	targets.		

Table	5.	Accuracy	of	Choice	Predictions	Compared	to	Actual	Choices
Grade	K1 Grade	K2

B:	Distribution	of	Choices	(Statistical	Distance)

A:	Individual	Choices	(%	Mistakes)



RMSE Exp. RMSE % in 95% C.I. RMSE Exp. RMSE % in 95% C.I.

(1) (2) (3) (4) (5) (6)

Lexicographic 22% (2%) 7% 22% (2%) 0%

MNL 5% (3%) 64% 12% (3%) 79%

MMNL 6% (3%) 64% 12% (3%) 79%

Lexicographic 0.21 (0.07) 43% 0.15 (0.03) 14%

MNL 0.15 (0.08) 57% 0.08 (0.04) 57%

MMNL 0.15 (0.08) 50% 0.09 (0.05) 71%

Lexicographic 8 (4) 50% 15 (3) 21%

MNL 7 (4) 79% 14 (4) 36%

MMNL 7 (4) 64% 15 (4) 43%
Notes: This table reports the accuracy of predictions under three choice models for equilibrium outcomes using data 

from 2013 (the last year of the old assignment plan) compared to data from 2014 (the first year of the new assignment 

plan), with the actual set of applicants. Unlike Table 4, which randomly samples the applicant pool using past data, the 

calculation here uses the actual set of number of applicants and their characteristics. Choices are generated from 

demand model estimates fit from old data.   Table 2 notes contain definitions of the prediction targets. 

Table 6. Accuracy of Equilibrium Predictions Using Actual Applicants with Estimated Choices

Grade K1 Grade K2

C: Unassigned

B: Distance

A: Access to Quality



MNL MMNL MNL MMNL
(1) (2) (3) (4)

Original	Prediction 13% 13% 15% 14%
New	Applicants	with
					Old	Demand	Model 5% 6% 12% 12%
					Refit	Demand	Model 7% 7% 13% 13%
					Refit	Demand	Model	+	Ranking	Length 3% 3% 7% 7%
Sampling	Actual	Choices	Using	Applicant	Forecast

Original	Prediction 0.19 0.19 0.13 0.14
New	Applicants	with
					Old	Demand	Model 0.15 0.15 0.08 0.09
					Refit	Demand	Model 0.16 0.15 0.07 0.07
					Refit	Demand	Model	+	Ranking	Length 0.18 0.18 0.09 0.10
Sampling	Actual	Choices	Using	Applicant	Forecast

Original	Prediction 22 21 41 40
New	Applicants	with
					Old	Demand	Model 7 7 14 15
					Refit	Demand	Model 7 7 14 14
					Refit	Demand	Model	+	Ranking	Length 6 6 10 10
Sampling	Actual	Choices	Using	Applicant	Forecast
Notes:	This	table	compares	the	accuracy	of	predictions	from	Table	4	using	additional	information	from	the	new	assignment	plan.		Each	cell	entry	is	the	RMSE	
of	the	prediction	error.		Table	2	notes	contain	definitions	of	the	prediction	targets.	Original	Prediction	is	reproduced	from	columns	1	and	4	of	Table	4.		New	
Applicants	with	Old	Demand	Model	uses	new	applicants	in	2014	and	their	characteristics,	predicted	choices	from	the	demand	model	fit	in	2013,	following	
columns	1	and	5	of	Table	5.		New	Applicants	with	Refit	Demand	Model	uses	new	applicants	in	2014	and	predicted	choices	from	demand	model	refit	in	2014.		
New	Applicants	with	Refit	Demand	Model	+	Ranking	Length	uses	new	applicants	in	2014,	predicted	choices	from	demand	model	refit	in	2014,	and	and	the	
actual	number	of	choices	ranked	by	each	new	applicant	in	2014.		Sampling	Actual	Choices	Using	Applicant	Forecast	(not	demand-model	predicted	choices).		
To	do	this,	we	consider	continuing	and	non-continuing	students	separately.	Continuing	students	are	already	registered	in	BPS	in	a	lower	grade.	Non-
continuing	students	are	new	to	the	system.	We	predict	the	set	of	continuing	students	using	the	same	methodology	as	in	the	original	prediction	and	assume	
each	chooses	their	previous	choice.	For	non-continuing	students,	we	use	the	same	methodology	as	in	the	original	prediction	and	sample	actual	choices	in	
2014	with	replacement.

Table	7.	Prediction	Improvements	Using	Post-Reform	Data

A:	Access	to	Quality

B:	Distance

C:	Unassigned

0.08 0.07

22 15

Grade	K1 Grade	K2

8% 10%



MNL MMNL MNL MMNL
(1) (2) (3) (4)

Top	Choice Old 54% 53% 32% 33%
New 49% 49% 31% 30%

Top	2	Choices Old 51% 51% 54% 55%
New 50% 49% 51% 51%

Top	3	Choices Old 47% 47% 50% 51%
New 45% 45% 48% 48%

All	Pairwise	Comparisons Old 23% 23% 12% 13%
New 21% 21% 11% 11%

Market	Shares	by	Neighborhood
			Top	Choice Old 20% 21% 15% 15%

New 18% 17% 12% 11%
			Top	2	Choices Old 16% 16% 19% 20%

New 14% 13% 15% 14%
			Top	3	Choices Old 13% 14% 15% 17%

New 11% 10% 11% 11%
Joint	Distribution	of	Top	2	Choices Old 41% 41% 49% 48%

New 39% 37% 45% 43%
Notes:	This	table	compares	the	accuracy	of	choice	predictions	from	choice	models	fitted	using	2013	data	(the	last	year	of	
the	old	assignment	plan)	and	choice	models	fitted	using	2014	data	(the	first	year	of	the	new	assignment	plan).	Accuracy	
is	evaluated	compared	to	the	actual	choices	of	students	in	2014.	Table	format	follows	Table	7,	except	we	include	an	
additional	row	for	each	outcome	specifying	the	source	year	for	the	data	used	to	fit	the	demand	model.	We	consider	only	
the	multinomial-logit	(MNL)	model	(columns	1	and	3),	and	the	mixed	MNL	(MMNL)	model	(columns	2	and	4).		Table	3	
notes	contain	definitions	of	the	prediction	targets.		

Demand	Model	
Fit	Using	Data	

Grade	K1 Grade	K2
Table	8.	Accuracy	of	Choice	Predictions	from	Refit	Demand	Models

B:	Distribution	of	Choices	(Statistical	Distance)

A:	Individual	Choices	(%	Mistakes)



Choice	Model	(Year	of	Fitting) MNL	(2014) Lexicographic
Applicant	Pool 2014 2014 2013 2013

(1) (2) (3) (4)

Status	Quo	(3	Zone) 72.0% 77.7% 84.3% 100%
Home	Based	A 77.5% 82.9% 96.3% 55.0%
Home	Based	B 79.1% 84.5% 97.8% 57.0%
6	Zone 87.3% 91.3% 94.5% 54.3%
9	Zone 86.5% 90.7% 94.2% 54.4%
10	Zone 98.4% 99.8% 100.0% 64.9%
11	Zone 86.4% 90.5% 94.2% 54.2%
23	Zone 86.7% 91.3% 94.6% 57.6%

#	of	Non-Trivial	Comparisons 22 22 25
#	of	Reversals	of	Non-Trivial	Comparisons 0 8 14
Percentage	of	Reversals 0% 36% 56%
Notes.	In	panel	A,	we	report	the	point	predictions	for	access	to	quality	in	grade	K1	for	the	neighborhood	Allston-Brighton	under	
various	proposed	plans.	Each	row	corresponds	to	a	plan	proposed	during	the	2012-2013	Boston	student	assignment	reform,	with	
each	plan	representing	a	different	set	of	choice	menus	and	priorities.	The	first	row	is	the	pre-reform	status	quo,	and	the	second	is	the	
plan	chosen	after	the	reform.	The	third	row	is	a	variant	of	the	plan	in	the	second	row,	except	with	more	choices.	The	remaining	plans	
represent	alternative	partitioning	of	Boston	into	assignment	zones.	Each	column	specifies	the	choice	model	and	the	applicant	pool	
used	in	the	simulations.	Column	1	uses	the	multinomial-logit	(MNL)	choice	model	fitted	from	post-reform	choices	using	the	post-
reform	applicant	pool	in	2014.	Column	2	uses	the	MNL	model	fitted	from	pre-reform	choices	from	2013,	but	still	simulated	using	the	
post-reform	applicant	pool.	Column	3	is	similar	to	Column	2	except	that	it	uses	the	pre-reform	applicant	pool	in	2013.	Column	4	uses	
the	lexicographic	choice	model	and	the	pre-reform	applicant	pool.	
					In	panel	B,	we	measure	how	much	columns	2	through	4	in	panel	A	are	different	from	panel	1	in	terms	of	the	relative	rankings	of	
access	to	quality	across	plans.	Since	column	1	is	the	point	of	reference,	it	is	left	blank	in	panel	B.	Consider	first	the	comparison	
between	columns	1	and	2	of	panel	A,	which	are	reported	in	column	2	of	panel	B.	Since	there	are	8	plans,	there	are	28	comparisons.	
Each	comparison	corresponds	to	a	pair	of	rows	from	panel	A,	and	we	call	the	comparison	"trivial"	if	the	access	to	quality	predictions	
in	these	two	rows	are	within	an	addititve	difference	of	1.0%	of	one	another	in	both	columns	1	and	2.	For	example,	the	comparison	
between	the	11	and	23	Zone	plans	is	trivial,	but	the	comparison	between	the	Status	Quo	and	the	Home	Based	A	plan	is	not.	Row	1	in	
column	2	of	panel	B	reports	the	number	of	non-trivial	comparisons	between	columns	1	and	2	of	panel	A.	Row	2	of	panel	B	reports	
the	number	of	such	comparisons	that	is	reversed,	which	means	that	the	columns	differ	in	which	plan	results	in	a	higher	access	to	
quality.	For	example,	for	columns	1	and	3	of	panel	A,	the	comparison	between	the	Home	Based	A	plan	and	the	23	zone	plan	is	
reversed,	but	between	the	Home	Based	A	plan	and	the	Status	Quo	is	not.	Row	3	of	panel	C	reports	the	ratio	between	the	previous	
two	rows	expressed	as	a	percentage.	As	a	benchmark,	if	the	columns	agree	exactly	on	the	relative	rankings	across	plans,	then	the	
percentage	of	reversals	should	be	0.	On	the	other	hand,	random	guessing	results	in	an	expected	50%	of	reversals.	Thus,	we	see	that	
column	2	of	panel	A	is	a	perfect	proxy	for	column	1	in	terms	of	relative	ranking	across	plans,	while	column	3	results	in	36%	of	
reversals,	which	is	still	better	than	random	guessing.	However,	column	4	results	performs	worse	than	random	guessing	in	this	case.

Table	9.	Reversals	of	Counterfactual	Predictions	for	Access	to	Quality	in	Grade	K1	for	the	Neighborhood	
Allston-Brighton	under	Various	Simulation	Assumptions

MNL	(2013)

A.	Counterfactual	Predictions

B.	Reversal	of	Pairwise	Comparisons

(Point	of	
reference)



Choice	Model	(Year	of	Fitting) MNL	(2014) Lexicographic
Applicant	Pool 2014 2014 2013 2013

(1) (2) (3) (4)
Access	to	Quality

K1 13% 17% 32%
K2 4% 23% 35%

Distance
K1 2% 7% 18%
K2 1% 11% 24%

Unassigned
K1 5% 20% 44%
K2 5% 21% 38%

Overall 5% 16% 32%

Table	10.	Percentage	of	Reversals	of	Counterfactual	Predictions	Under	Alternative	Simulation	
Assumptions	(Averaged	Across	Neighborhoods)

MNL	(2013)

Notes:	This	table	reports	the	aggregate	result	of	the	analysis	in	Table	9	on	the	percentage	of	reversals	of	pairwise	
comparisons	of	counterfactual	predictions,	when	averaged	across	the	fourteen	neighborhoods	and	performed	for	
each	of	the	three	equilibrium	moments	of	interest.	See	the	notes	for	Table	9	for	description	of	the	columns	as	well	as	
for	the	eight	proposed	plans	compared.	See	the	notes	for	Table	3	for	descriptions	of	the	three	moments	of	interest.	
The	numbers	in	the	first	row	correspond	to	conducting	an	analogous	analysis	as	that	in	the	last	row	of	panel	B	of	Table	
9	for	all	fourteen	neighborhoods	instead	of	just	Allston-Brighton,	and	reporting	the	average	across	neighborhoods.	
The	second	row	is	similar,	except	for	grade	K2	instead	of	K1.	The	next	four	rows	are	for	different	moments	of	interest,	
but	the	analysis	is	analogous,	except	for	the	following	difference:	recall	from	the	notes	of	Table	9	the	definition	of	
"non-trivial"	comparisons	of	a	given	pair	of	plans,	and	that	the	threshold	for	a	non-trivial	comparison	is	set	to	an	
additive	difference	of	1.0%	for	access	to	quality.	For	distance,	this	threshold	is	set	to	0.01	miles.	For	unassigned,	this	is	
set	to	0.5	students/neighborhood.	
					The	last	row	reports	the	unweighted	average	of	the	first	six	rows,	and	corresponds	to	an	aggregate	measure	of	how	
much	relative	rankings	of	counterfactual	predictions	are	different	across	simulation	assumptions.	As	can	be	seen,	
conditional	on	using	on	using	the	post-reform	applicant	pool	and	the	MNL	model,	whether	or	not	one	fits	the	MNL	
model	from	post-reform	or	pre-reform	choices	only	reverses	pairwise	comparisons	of	counterfactual	predictions	5%	of	
the	time.	However,	if	one	had	used	pre-reform	applicant	pool	with	the	same	MNL	model,	then	the	predictions	would	
be	reversed	16%	of	the	time.	If	one	used	the	lexicographic	choice	model	instead	of	the	MNL	and	the	pre-reform	
applicant	pool,	then	the	predictions	would	be	reversed	32%	of	time.	As	a	benchmark,	random	guessing	would	result	in	
about	50%	of	the	predictions	reversed.

(Point	of	
reference)
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2012 2013 2014 2012 2013 2014
(1) (2) (3) (4) (5) (6)

distance -0.365*** -0.403*** -0.557*** -0.638*** -0.674*** -0.793***
(0.014) (0.015) (0.028) (0.037) (0.039) (0.045)

continuing 4.027*** 4.354*** 4.369*** 4.777*** 4.966*** 5.201***
(0.052) (0.054) (0.064) (0.069) (0.068) (0.085)

sibling 2.104*** 2.102*** 2.619*** 2.478*** 2.451*** 3.089***
(0.037) (0.038) (0.048) (0.045) (0.045) (0.060)

walk	zone 0.500*** 0.399*** 0.133*** 0.339*** 0.185*** 0.053***
(0.019) (0.020) (0.023) (0.028) (0.028) (0.029)

ell	program	x	ell	student 1.548*** 1.211*** 0.543*** 1.892*** 1.311*** 0.614***
(0.035) (0.040) (0.045) (0.058) (0.059) (0.061)
0.606*** 0.672*** 0.802*** 0.610*** 0.967*** 0.989***
(0.043) (0.049) (0.062) (0.052) (0.060) (0.078)

distance	x	black/hispanic 0.115*** 0.114*** 0.216*** 0.188*** 0.183*** 0.268***
(0.010) (0.011) (0.019) (0.024) (0.024) (0.031)

distance	x	block	group	income -0.262*** -0.296*** -0.274*** -0.295*** -0.343*** -0.337***
(0.021) (0.023) (0.039) (0.049) (0.052) (0.062)

mcas	x	black -0.874*** -1.062*** -0.901*** -1.100*** -1.371*** -1.283***
(0.105) (0.111) (0.089) (0.153) (0.144) (0.130)

mcas	x	block	group	income 0.424* -0.906*** 1.762*** 1.065*** 0.925*** 2.388***
(0.221) (0.252) (0.216) (0.299) (0.313) (0.278)

%	white/asian	x	black/hispanic -2.581*** -2.666*** -2.984*** -3.732*** -3.861*** -4.000***
(0.097) (0.094) (0.114) (0.162) (0.148) (0.170)

%	white/asian	x	block	group	income 1.982*** 1.778*** 1.052*** 2.633*** 2.217*** 1.355***
(0.211) (0.219) (0.249) (0.322) (0.311) (0.351)

*significant	at	10%;	**significant	at	5%;	***significant	at	1%.

MNL MMNL
Table	A1.	MNL	and	MMNL	Coefficient	Estimates

ell	program	language	match	x	ell	
student

Notes:	This	table	reports	the	estimated	coefficients	of	the	multinomial	logit	(MNL)	and	mixed	MNL	(MMNL)	choice	
models.	The	year	in	each	column	corresponds	to	the	source	year	for	choice	data.			All	models	include	a	fixed	effect	
for	each	school.		Distance	is	the	Google-maps	walking	distance	from	the	school	to	the	student’s	home.		Continuing	
is	a	binary	indicator	variable	for	whether	the	student	is	continuing	to	the	school	from	a	previous	grade.		Sibling	is	an	
indicator	for	whether	the	student	has	an	older	sibling	at	the	school.		Walk	zone	is	an	indicator	for	whether	the	
student	is	in	the	walk	zone	of	the	school,	which	is	approximately	a	one-mile	radius	around	the	school.		Ell	program	
is	an	indicator	for	whether	the	program	is	for	English	language	learners	(ELL).	Ell	student	is	an	indicator	whether	the	
student	is	classified	by	the	district	as	an	English	learner	and	thus	eligible	to	ELL	programs.		Ell	program	language	
match	is	an	indicator	for	whether	the	program	is	an	ELL	program	that	targets	students	who	speak	a	certain	
language	and	this	language	matches	the	student’s	home	language.		Black/hispanic	and	black	are	indicators	for	the	
student's	racial	classification.		Mcas	is	the	proportion	of	students	at	the	school	who	scored	“Advanced”	or	
“Proficient”	in	the	previous	year’s	standardized	test	for	math,	averaging	the	proportions	for	grades	3,4,	and	5.		
Income	(est)	is	the	medium	household	income	of	the	census	block	group	containing	the	centroid	of	the	student’s	
geocode	of	residence	measured	in	hundreds	of	thousands	of	dollars.		%	white/asian	is	the	proportion	of	the	
enrolled	population	at	the	school	who	are	White	or	Asian.		Standard	errors	are	in	parenthesis.		Standard	errors	for	
MNL	are	computed	using	the	Hessian	matrix	of	the	maximum	likelihood	at	the	point	estimate	of	the	coefficients.	
Standard	errors	for	MMNL	are	computed	using	the	sample	standard	deviation	of	the	MCMC	samples.	



2012 2013 2014
(1) (2) (3)

s(ell	program	x	ell	student) 1.638*** 1.358*** 0.959***
(0.058) (0.063) (0.068)

s(walk	zone) 0.981*** 0.878*** 0.703***
(0.030) (0.030) (0.035)

s(distance) 0.392*** 0.409*** 0.499***
(0.011) (0.011) (0.016)

s(mcas) 2.275*** 2.121*** 1.837***
(0.093) (0.101) (0.083)

s(%white/asian) 2.672*** 2.512*** 2.300***
(0.093) (0.106) (0.106)

r(distance,mcas) -0.232*** -0.285*** -0.134***
(0.041) (0.043) (0.049)

r(distance,	%white/asian) -0.089** -0.055 0.021
(0.039) (0.040) (0.051)

r(mcas,	%white/asian) 0.035 -0.110* 0.236***
(0.056) (0.061) (0.068)

*significant	at	10%;	**significant	at	5%;	***significant	at	1%.

Table	A2.	Covariance	Estimates	for	MMNL	Model

Notes:	This	table	reports	covariance	matrix	estimates	for	the	random	coefficients	in	the	
mixed	multinomial	logit	(MMNL)	model.	The	year	in	each	column	corresponds	to	the	source	
year	for	choice	data.		The	variables	“ell	program,”	“ell	student,”	“walk	zone,”	“distance,”	
“mcas,”	and	“%	white/asian”	are	defined	in	Table	A1	notes.		Panel	A	reports	the	square	root	
of	the	variance	of	each	random	coefficient.	Panel	B	reports	the	Pearson	correlation	
coefficient	of	the	three	pairs	of	random	coefficients	for	which	we	allow	correlation.			
Standard	errors	of	the	estimates	are	in	parenthesis,	computed	using	the	sample	standard	
deviation	of	the	MCMC	samples.

B:	Correlation	Coefficients

A:	Standard	Deviations



Predicted Std. Error Actual

(1) (2) (3)

Grade K1 Continuing 92 7 158

New 2652 177 2313

Grade K2 Continuing 1482 30 2051

New 2196 153 1875

ELL (Grade K1) Yes 44.4% 1.0% 46.7%

No 55.6% 0.7% 53.3%

ELL (Grade K2) Yes 30.8% 0.7% 14.6%

No 69.2% 0.7% 85.4%

Race Hispanic 35.1% 0.6% 36.5%

Black 28.8% 0.5% 28.0%

White 22.6% 0.5% 22.9%

Asian 8.4% 0.3% 7.9%

Other 5.1% 0.3% 4.7%

Median Block Group Income 0-25K 16.9% 0.4% 17.5%

25-50K 49.7% 0.6% 50.0%

50-75K 20.7% 0.5% 20.2%

75K+ 12.7% 0.4% 12.3%

Neighborhood Allston-Brighton 4.5% 0.3% 4.8%

Charlestown 3.5% 0.2% 3.2%

Downtown 3.7% 0.3% 3.4%

East Boston 12.7% 0.7% 12.3%

Hyde Park 6.3% 0.2% 6.4%

Jamaica Plain 6.7% 0.4% 7.2%

Mattapan 6.8% 0.3% 6.8%

North Dorchester 5.3% 0.5% 5.6%

Roslindale 8.5% 0.4% 8.1%

Roxbury 13.6% 0.4% 14.1%

South Boston 3.2% 0.2% 3.0%

South Dorchester 13.2% 0.5% 13.6%

South End 4.7% 0.2% 4.4%

West Roxbury 7.3% 0.4% 7.2%

Table A3. Prediction Error in Applicant Count and Demographics

A. Count of Applicants

B. Applicant Demographics

Notes: This table compares the predicted and actual new applicants across demographic categories.  

Column 1 reports the prediction for each category of students and column 2 reports the standard 

deviation. These are computed from the 1,000 actual samples of applicant pools used for computing the 

aggregate forecasts. Column 3 reports the actual number of students of each type. Column 1 reports the 

predicted percentage and column 2 the standard deviation of the prediction. The predictions are based on 

2013 data (the last year of the old assignment plan). The numbers shown are the sample mean and 

standard deviations of the percentage of applicants of each category in the 1,000 simulation samples used 

for Table 4. Column 3 reports the actual percentages in the 2014 data (the first year of the new assignment 

plan).  Panel A compares the predicted number of applicants to the actual number.  Continuing students 

register in BPS in the previous grade at the time of application. The remaining students are new applicants.   

Panel B reports applicant characteristics. ELL denotes whether the student is classified by BPS as an English 

language learner.  Race information is mising students for students who applied but did not enroll in any 

school.  Income and neighborhood information are based on centroid of student geocode.  Median block 

group income refers to the median household income of the census block group in which the student 

resides, based on the 2010 census.
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