Investigating Causal Effects of SNAP and WIC on Food Insecurity Using FoodAPS

Helen Jensen, Brent Kreider, and Alex Zhylyevskyy Iowa State University

> NBER Pre-Conference February 3, 2017

Research Questions

- (1) To what extent does participation in both SNAP and WIC lead to a reduction in household food insecurity compared with participation in SNAP or WIC alone?
- (2) How much can we learn by combining self-reported survey data on program participation with auxiliary administrative data in FoodAPS?
- Objective: Derive sharp bounds on average treatment effects (ATE) of multiple program participation
 - Must be logically consistent with the observed data and any imposed statistical and behavioral assumptions

FoodAPS

- Sample of 4,826 households that participated during one week between April 2012 and January 2013:
 - SNAP participants, low-income nonparticipants, higher income nonparticipants
- We focus on impacts of SNAP and WIC on food security
- Two data features of especially high value for our research:
 - FoodAPS contains *administratively verified* info on SNAP participation
 - FoodAPS-GC provides local food environment data: can construct Monotone Instrumental Variables (MIVs) related to food expenditures and food retailer availability

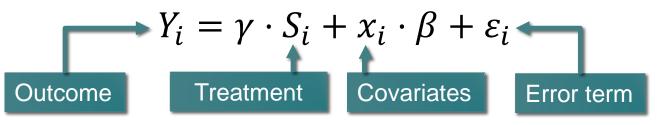
Identifying causal effects of program participation presents methodological challenges:

- Endogenous self-selection of households into the programs (not randomly assigned)
 - unobserved characteristics such as expected health, human capital, and financial stability may be related to both participation and food security outcomes
- Systematic underreporting of food assistance
 - propensity to misreport varies with unobserved characteristics

To identify causal impacts, extend recently developed nonparametric treatment effect methods:

 Account for endogenous selection and misclassification in a unifying potential outcomes framework

extend binary treatment methods to accommodate the case of a partially ordered treatment


- Exploit a unique feature of FoodAPS: provides both self-reported and administratively verified SNAP participation data
 - auxiliary information tightens inferences

To further tighten inferences, exploit information in the geographical component of FoodAPS to construct monotone instrumental variables (MIVs)

- Unlike standard instrumental variables (IVs), MIVs require no a priori exclusion restrictions
 - only require that the latent food insecurity outcomes vary monotonically with the MIV
- Will compare results with those obtained using conventional IV techniques
 - extract state-level IVs for program participation from the USDA ERS's SNAP Policy Database

Motivation for Our Methodology

Compare with a simple parametric approach:

- Treatment S_i is **binary**. Say, $S_i = 1$ if *i* is on SNAP, 0 if not
- If same unobservables affect S_i and Y_i , then $cov(S_i, \varepsilon_i) \neq 0$ and OLS is inconsistent due to **endogeneity**
- Measurement error in S_i is **nonclassical**. Thus, standard IV estimation is inconsistent as well
- Our nonparametric bounding methodology handles endogeneity, misreporting, and multiple treatments (not just binary S_i). Also, allows for heterogeneous response to treatment across i

Basics of Our Approach: Notation

S*: true program participation status is partially ordered

- $S^* = 0$: neither SNAP nor WIC
- $S^* = 1$: SNAP alone
- $S^* = 2$: WIC alone
- $S^* = 3$: both SNAP and WIC

S: **reported** program participation; *S* need not equal *S**

Potential outcomes framework:

 $Y(S^*)$: potential outcome under treatment S^*

Y = 1 if household is food secure, Y = 0 otherwise

X: covariates (some used as instruments)

SNAP Verification Status

 A fraction of households in FoodAPS was matched to administrative records. In such cases, we can verify whether a household received SNAP benefits in past month

Verification Status	Sample Fraction (Weighted)		
Matched households:			
Confirmed participation	57.6%		
Confirmed nonparticipation	2.6%		
Unmatched households:			
Not matched to administrative data	37.5%		
Withheld consent to be matched	2.3%		

Reported Program Participation

 Weighted sample distribution by reported participation when SNAP participation indicator incorporates administrative data [modified using SNAPNOWHH]:

		WIC	
		No	Yes
AP	No	15.3% [13.0%]	16.6% [13.6%]
SNAI	Yes	31.4% [33.6%]	36.7% [39.7%]

• Our sample (N = 460) includes FoodAPS households with:

- -income below 130% poverty, and
- -a pregnant woman, or a child aged < 5 years

Food Security by Participation

 Weighted prevalence of food security status by food program participation [modified using SNAPNOWHH]:

Proportion food secure

WIC

		No	Yes
AP	No	53.2% [55.1%]	54.5% [50.5%]
SNA	Yes	52.2% [51.6%]	58.5% [59.5%]

 Food security measure is based on USDA's 30-day Adult Food Security Scale

Food Security by Participation

 Weighted prevalence of food security status by food program participation [modified using SNAPNOWHH]:

Proportion not "very low food secure"

WIC

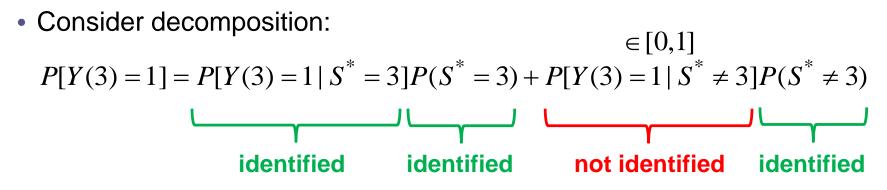
		No	Yes	
NAP	No	74.6% [73.4%]	83.7% [81.3%]	
SN	Yes	78.7% [78.9%]	90.4% [90.7%]	

 Food security measure is based on USDA's 30-day Adult Food Security Scale

Basics of Our Approach: ATE

We focus on average treatment effects (ATEs):

$$ATE_{jk} = P[Y(S^* = j) = 1 | X] - P[Y(S^* = k) = 1 | X]$$
 for $j \neq k$


• For example, consider ATE_{31} :

$$ATE_{31} = P[Y(S^* = 3) = 1 | X] - P[Y(S^* = 1) = 1 | X]$$

- ATE₃₁ measures by how much likelihood of food security would change if household were to participate in both SNAP and WIC vs. in SNAP alone
- There are no regression orthogonality conditions to satisfy
- Covariates are only used to specify subpopulations

Decomposition Strategy

- ATE cannot be point-identified without assumptions even if $S \equiv S^*$
- We decompose formulas into what is identified and what is not
- Simplify notation: $ATE_{31} = P[Y(3) = 1] P[Y(1) = 1]$

- Data cannot identify P[Y(3) = 1 | S^{*} ≠ 3] because it refers to an unobserved counterfactual.
- However, extending methods of Manski (1995), we derive worst-case bounds for P[Y(3) = 1], P[Y(1) = 1], and ATE₃₁

Addressing Misreporting

- When *S* may deviate from *S*^{*}, define: $\theta_i^{j,k} \equiv P(Y = i, S = j, S^* = k)$
- *P*[*Y*(3) = 1] becomes:

$$P[Y(3) = 1] = P(Y = 1, S = 3) + \theta_1^{-3,3} - \theta_1^{3,-3}$$
$$+ P[Y(3) = 1 | S^* \neq 3] \left\{ P(S \neq 3) + \sum_{j \neq 3} (\theta_1^{-j,j} + \theta_0^{-j,j} - \theta_1^{j,-j} - \theta_0^{j,-j}) \right\}$$

• *ATE*₃₁ can be bounded as:

$$-P(Y = 0, S \neq 1) - P(Y = 1, S \neq 3) + \Theta_{3,1}^{LB}$$

$$\leq ATE_{3,1} \leq$$

$$P(Y = 0, S \neq 3) + P(Y = 1, S \neq 1) + \Theta_{3,1}^{UB}$$

 $\Theta_{3,1}^{LB} \equiv \theta_1^{-3,3} - \theta_1^{3,-3} + \theta_0^{-1,1} - \theta_0^{1,-1}, \quad \Theta_{3,1}^{UB} \equiv -\theta_0^{-3,3} + \theta_0^{3,-3} - \theta_1^{-1,1} + \theta_1^{1,-1}$

Tightening Bounds

- Without assumptions, bounds on ATEs are wide
- To tighten the bounds, we can impose restrictions on
 - 1) Misreporting process
 - 2) Selection process
- Consider restricting the misreporting process:
 - Exploit logical constraints on probabilities and auxiliary data to restrict $\{\theta\}$: FoodAPS SNAP verification

Ex.
$$\theta_0^{-1,1} \le \min\{P(Y=0, S \ne 1, V_{SNAP} \ne 0), P(S^*=1)\}$$

exploits both the self-reported and administrative data in FoodAPS

Tightening Bounds, cont.

To **restrict selection process**, we can employ:

- **Exogenous selection** assumption (often does not hold, though)
- Monotone treatment selection (MTS) (Manski & Pepper, 2000)
- Monotone treatment response (MTR) (Manski, 1995)
 - We extend MTS and MTR to partially ordered unobserved treatments
- Monotone instrumental variables (MIVs, Manski & Pepper, 2000)
- Instrumental variables (IVs). E.g., IVs for SNAP (Ratcliffe et al., 2011)

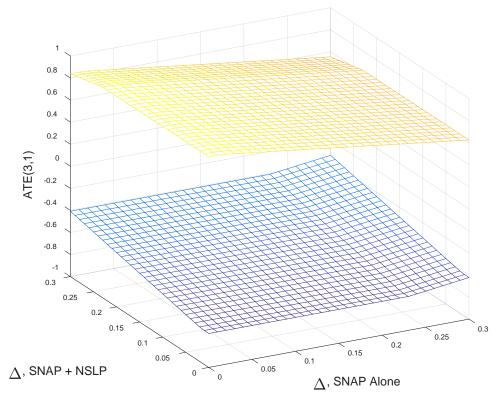
We can **combine assumptions** to further tighten bounds on ATEs

Example of Analytical Results

Proposition 2:

Under "no-stigma verification" with endogenous selection, bounds on $ATE_{3,1}$ are given as follows:

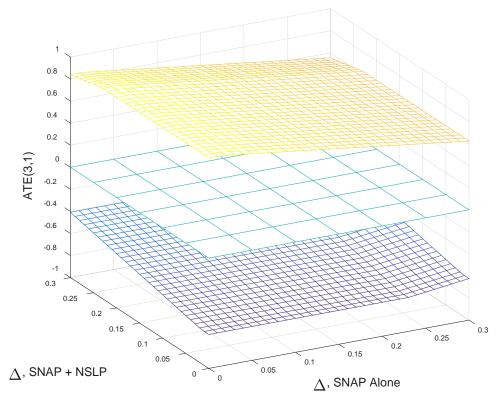
- Lower bound: $ATE_{3,1}^{LB} = -P(Y = 1, S \neq 3) - P(Y = 0, S \neq 1)$ $+ \max\{0, \Delta_3 - P_{000}\} + \max\{0, \Delta_1 - P_{100}\}$
- Upper bound:


$$ATE_{3,1}^{UB} = P(Y = 0, S \neq 3) + P(Y = 1, S \neq 1)$$
$$-\max\{0, \Delta_3 - P_{100}\} - \max\{0, \Delta_1 - P_{000}\}\}$$

$$\Delta_{1} \equiv P_{1}^{*} - P_{1}, \ \Delta_{3} \equiv P_{3}^{*} - P_{3},$$

$$P_{000} \equiv P(Y = 0, S = 0, V_{SNAP} \neq 1), \ P_{100} \equiv P(Y = 1, S = 0, V_{SNAP} \neq 1)$$
FoodAPS verification

Illustrative Worst-Case Bounds (CPS, not FoodAPS)


Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

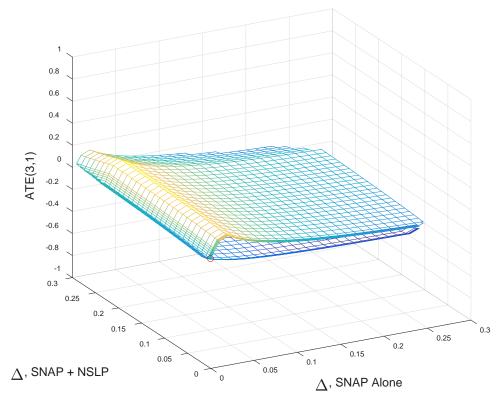
ATE(3,1): Endogenous Selection

Illustrative Worst-Case Bounds (CPS, not FoodAPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): Endogenous Selection

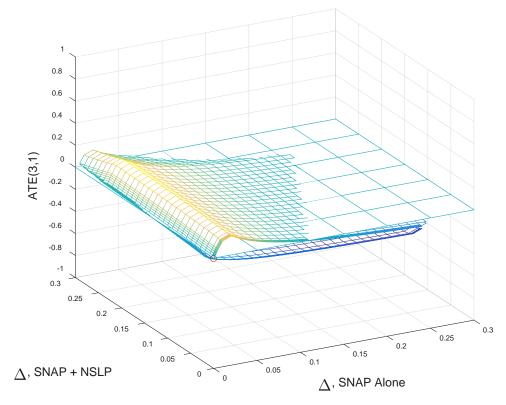
Exogenous Selection: Definition


Exogenous selection:

$$P[Y(j) = 1] = P[Y(j) = 1 | S^* = k] \quad \forall j, k$$

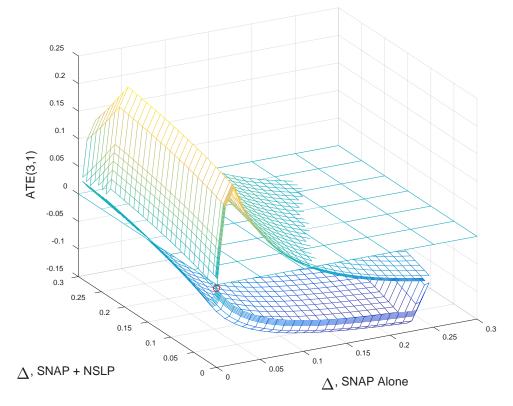
- Holds if potential outcomes do not depend on realized treatment
- Assumption applies when assignment to programs is truly random

Exogenous Selection (CPS data)


Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): Exogenous Selection

Exogenous Selection (CPS data)


Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): Exogenous Selection

Exogenous Selection (CPS data): Closer View

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): Exogenous Selection

Exogenous Selection: Identification Decay (CPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

$$\Delta_{1} = 0 \qquad \Delta_{1} = 0.01 \qquad \Delta_{1} = 0.01 \qquad \Delta_{1} = 0.10$$

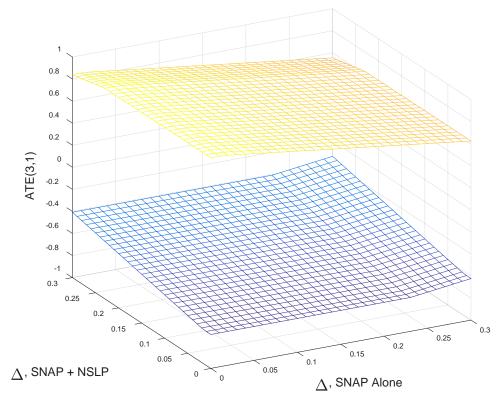
$$\Delta_{3} = 0 \qquad \begin{array}{c} LB & UB & width \\ p.e. \left[-0.007, \ -0.007\right] & 0.000 \\ CI & \left[-0.040, \ 0.026\right] & \left[-0.051, \ 0.16\right] & \left[-0.051, \ 0.167\right] & \left[-0.094, \ 0.007\right] & 0.101 \\ \left[-0.106, \ 0.022\right] & \left[-0.106, \ 0.022\right] & \left[-0.118, \ 0.010\right] & 0.129 \\ CI & \left[-0.057, \ 0.022\right] & \left[-0.053, \ 0.14\right] & 0.195 & \left[-0.118, \ 0.010\right] & 0.129 \\ CI & \left[-0.057, \ 0.022\right] & \left[-0.034, \ 0.025\right] & \left[-0.130, \ 0.025\right] & \left[-0.130, \ 0.025\right] & \left[-0.134, \ 0.054, \ 0.19\right] & \left[-0.108, \ 0.051\right] & \left[-0.108, \ 0.0$$

Identification deteriorates with extent of underreporting of SNAP

MTS: Definition

Monotone treatment selection (MTS):

$$P[Y(j) = 1 | S^* = 3]$$


$$\leq P[Y(j) = 1 | S^* = k] \leq$$

$$P[Y(j) = 1 | S^* = 0] \quad \forall j; k = 1, 2$$

 Under MTS assumption, decision to participate is monotonically related to food insecurity: on average, households choose to participate in more programs if anticipating worse food security situation

Recall: Worst-Case Bounds (CPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

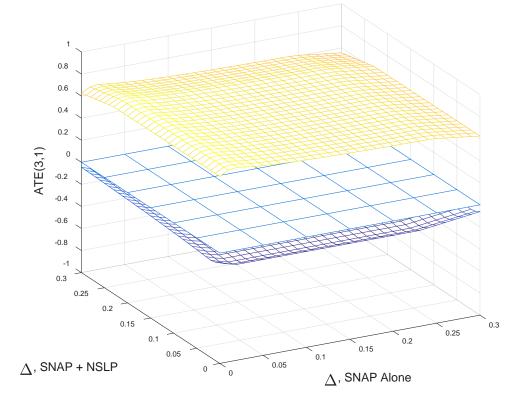
ATE(3,1): Endogenous Selection

Endogenous Selection with MTS (CPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

0.8 0.6 0.4 0.2 ATE(3,1) 0 -0.2 -0.4 -0.6 -0.8 -1 0.3 0.25 0.2 0.15 0.3 0.25 0.1 0.2 0.15 0.05 0.1 Δ , SNAP + NSLP 0.05 0

0


 Δ , SNAP Alone

ATE(3,1): Endogenous Selection with MTS

Endogenous Selection with MTS (CPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): Endogenous Selection with MTS

MTR: Definition

Monotone treatment response (MTR):

$$P[Y(3) = 1 | S^*] \ge P[Y(1) = 1 | S^*] \ge P[Y(0) = 1 | S^*]$$
$$P[Y(3) = 1 | S^*] \ge P[Y(2) = 1 | S^*] \ge P[Y(0) = 1 | S^*]$$

 On average, participation in more food programs would not harm food security (but might not help)

MIV: Definition

Monotone instrumental variable (MIV):

$$u_1 \le u \le u_2 \Rightarrow$$

$$P[Y(j) = 1 | v = u_1]$$

$$\le P[Y(j) = 1 | v = u] \le$$

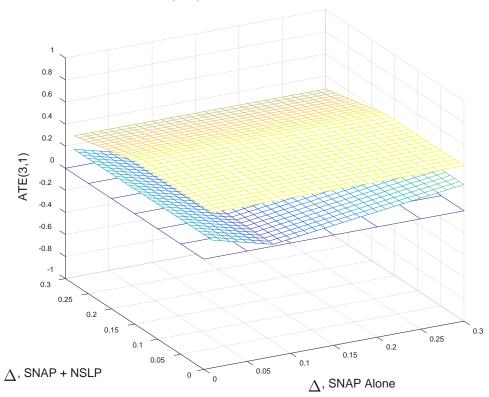
$$P[Y(j) = 1 | v = u_2]$$

We construct and use:

$$v = \frac{\text{Actual food-at-home expenditures}}{\text{TFP-based food expenditures}}$$

Assumption: higher *v* would not harm food security on average

IV: Definition


Instrumental variable (IV):

$$\forall u_1, u_2:$$

 $P[Y(j) = 1 | v = u_1] = P[Y(j) = 1 | v = u_2]$

- IV is a special case of MIV
- We employ SNAP Policy Database to construct conventional IVs used in previous literature to instrument for SNAP participation. Many such IVs are binary
- We create a scalar IV with many values by combining seven conventional IVs

Bounds under MTS + MTR + IV (CPS)

Bounds on ATE of participating in SNAP and NSLP vs. SNAP alone:

ATE(3,1): MTS + MTR + IV

Motivating question: How do existing food programs interact in creating a food safety net?

Research objective: Quantify by how much SNAP+WIC improves household food security vs. SNAP alone, or WIC alone, or nonparticipation

FoodAPS data: Partial verification of SNAP participation

Methodology: Nonparametric bounding approach handles endogeneity, misreporting, multiple partially ordered treatments

Appendix: Supplementary Data Sources

SNAP Policy Database provides state-level policies regarding SNAP eligibility, reporting requirements, use of biometric technology, etc.

- Coverage: every state, every month, 1996-
- Allows us to construct **IVs** for SNAP participation used in the literature:
 - Continuous: e.g., SNAP outreach spending per capita
 - Binary: e.g., fingerprinting, phone certification