Capital Share Dynamics When Firms Insure Managers

Barney Hartman-Glaser Hanno Lustig
UCLA Anderson Stanford GSB and NBER

Mindy X. Zhang
UT Austin McCombs

January, 2016

Abstract

The share of the average firm’s value added that accrues to its owners has declined, even though the aggregate capital share has increased. These changes in factor shares partly reflect a larger firm-level risk insurance premium paid by workers to owners. The largest firms in the right tail account for a larger share of output, but the compensation of workers at these firms has not kept up. We develop a model in which firms provide managers with insurance against firm-specific shocks. Larger, more productive firms return a larger share of rents to shareholders, while less productive firms endogenously exit. An increase in firm-level risk lowers the threshold at which firms exit and increases the measure of firms in the right tail of the size distribution, pushing up the aggregate capital share in the economy, but lowering the average firm’s capital share. As predicted by the model, the increase in firm size inequality is not matched by an increase in inter-firm labor compensation inequality.

Keywords: Idiosyncratic Risk, Selection, Capital Share, Labor Share, National Income Accounting.

* Hartman-Glaser: UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA 90095 (bhglaser@anderson.ucla.edu). Lustig: Stanford Graduate School of Business, 355 Knight Way, Stanford, Ca 94305 (hlustig@stanford.edu). Zhang: UT McCombs School of Business, 2110 Speedway B6600, Austin, TX 78712 (xiaolan.zhang@mccombs.utexas.edu). We received detailed feedback from Hengjie Ai, Andy Atkeson, Alti Aydogan, Frederico Belo, Jonathan Berk, Peter DeMarzo, Darrell Duffie, Bernard Dumas, Andres Donangelo, Mike Elsby (discussant), Bob Hall, Lars Hansen, Ben Hebert, Chad Jones, Pat Kehoe, Arvind Krishnamurthy, Pablo Kurlat, Ed Lazear, Monika Piazzesi, Luigi Pistaferri, Chris Tonetti, Sebastian DiTella, Martin Schneider, and Andy Skrypacz. The authors acknowledge comments received from seminar participants at Insead, the Stanford GSB, UT Austin, Universite de Lausanne and EPFL, the Carlson School at the University of Minnesota, the Federal Reserve Bank of Atlanta, the Federal Reserve Bank of New York, the Capital Markets group at the NBER Summer Institute, SITE, UCLA and the 2016 Labor and Finance group meeting.
1 Introduction

Over the last decades, publicly traded U.S. firms have experienced a large increase in firm-specific volatility of both firm-level cash flow as well as returns (see, e.g., Campbell, Lettau, Malkiel, and Xu, 2001; Comin and Philippon, 2005; Zhang, 2014; Bloom, 2014; Her- skovic, Kelly, Lustig, and Van Nieuwerburgh, 2015). At the same time, the share of total value added that accrues to the owners of these firms, the aggregate capital share, has also increased (see Karabarbounis and Neiman, 2014; Piketty and Zucman, 2014). We develop an equilibrium model which links these two facts and provides novel implications for national income accounting. Our model demonstrates that when shareholder’s insure managers against idiosyncratic risk, capital shares vary substantially over the size distribution of firms, with the largest and most productive firms having the highest capital share. We find that these compositional changes in firm-level capital shares have implications for aggregates. Even though the capital share at the average firm has decreased, the aggregate factor shares are largely determined by the largest firms in the right tail of the size distribution who have seen large increases in their capital share.

Since shareholders of publicly traded firms can diversify idiosyncratic firm-specific risk away, while risk-averse workers cannot, it is efficient to provide managers with insurance against firm-specific risk. We analyze a simple compensation contract in an equilibrium model of industry dynamics (see, e.g., Hopenhayn, 1992) that pays managers a fixed wage while allocating the remainder of profits to shareholders. The level of managerial compensation is set in equilibrium to capture the value of ex-ante identical firms, as in Atkeson and Kehoe (2005). Ex-post these firms are subject to permanent idiosyncratic shocks that lead some firms to increase in size and productivity while others decrease and potentially exit. We use this model as a laboratory to analyze the impact of changes in firm-level risk on the distribution of rents.

Standard national income accounting applied inside this model yields a new perspective on capital share dynamics. The manager’s compensation is set such that the net present value of starting a new firm, computed by integrating over all paths using the density for a new firm, is zero. In contrast, national income accounts only integrate over all firms that are currently active using the stationary size distribution, without discounting. As a result, the aggregate capital share calculation puts more probability mass on the right tail than the NPV calculation. As firm-level risk increases and the right tail of the firm size distribution grows, managers capture a smaller fraction of aggregate rents ex post, even though they capture all of the ex ante rents. This effect is partly offset by a larger mass of unprofitable firms in the left tail of the stationary size distribution, but, in our model, an
increase in firm-level risk invariably increases the capital share. Only when managers receive equity-only compensation is the capital share invariant to changes in firm-level volatility.

At the heart of this mechanism is the selection effect that arises by measuring the distribution of rents excluding firms that have endogenously exited.\(^1\) The capital share computed in national income accounts produces a biased estimate of the ex ante profitability of new firms. Moreover, an increase in selection increases the size of the bias. This effect explains the measured divergence between aggregate compensation and profits: compensation is tied to ex ante profitability, not the ex post realized profits. This result also has a natural insurance interpretation. When idiosyncratic risk increases, managers effectively pay a larger idiosyncratic insurance premium to shareholders ex post. The increase in the ex post premium leads to an increase in the aggregate capital share, even though the shareholders are risk-neutral and receive zero rents ex ante. Our mechanism has interesting cross-sectional implications. Only the capital share of the largest firms in the right tail increases as risk increases, but they determine aggregate capital share dynamics, echoing Gabaix (2011)’s observation that we need to study the behavior of large firms to understand macroeconomic aggregates. The capital share of the smallest firms will actually decrease. As a result, the average capital share across all firms will tend to decrease.

The aggregate facts are well-documented. Between 1960 and 2010, the U.S. labor share of total output in the non-farm business sector of the U.S. economy has shrunk by 15 percent. This phenomenon does not seem limited to the U.S. (see, e.g., Piketty and Zucman, 2014). In the universe of U.S. publicly traded firms, we find that the capital share, measured as total operating income divided by total value added and plotted in Figure 1, has increased from 40% to 60% since 1980, while the labor share has experienced a similar decline. We show that the increase in the capital share is concentrated among the largest firms in the U.S. Figure 2 displays the relationship between firm size and the capital income to sales ratio (a measure of the capital share of profits). In 1970, there was essentially no relation between firm size and the capital income to sales ratio. By 2000, this ratio was strongly increasing in size. This shift means that the average and aggregate capital share diverge. In fact, the equal-weighted average capital share of publicly traded companies has decreased, starting in the 1980’s. This new cross-sectional evidence is consistent with the selection mechanism: The divergence between the average and the aggregate labor share is a key prediction of selection.

In a calibrated version of our model, we find that an increase in the size of economic rents

\(^1\) Jovanovic (1982) is the first study of selection in an equilibrium model of industry dynamics. Selection has also been found to be quantitatively important. Luttmer (2007) attributes about 50 percent of output growth to selection in a model with firm-specific productivity improvements, selection of successful firms and imitation by entrants. This effect is closely related to Hopenhayn (2002)’s observation that selection biases average Tobin’s Q estimates for industries above one.
Figure 1. Capital and Labor Share of Value Added.

The figure presents the aggregate capital share and labor share for all firms in the Compustat public firms database. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014). Aggregate capital share = ∑ Operating Income, divided by ∑ VA, for each year.

(see, e.g., Furman and Orszag, 2015) together with an increase in volatility replicate the increase in the aggregate capital share and the decrease in the average capital share. The main competing hypothesis is that firms are increasingly substituting capital for labor (see, e.g., Karabarbounis and Neiman, 2014). As far as we know, this mechanism does not predict a divergence between the average and aggregate labor share that we document in the data.

Firm-level risk and the firm size inequality that results plays a key role in U.S. factor share dynamics. In a statistical decomposition, we find that the increase in firm size inequality induced by the increase in risk helps to account for the increase in the aggregate capital share for publicly traded firms. Consistent with the selection mechanism, we find that the decline in the aggregate U.S. labor share for publicly traded firms cannot be attributed to the evolution of the cross-sectional averages of log firm-level output and log compensation, but is entirely due to differential changes in the higher-order moments of the cross-sectional firm size and firm compensation distribution, as predicted by our model. In particular, starting in the late seventies, the increases in the variance and kurtosis of the log output distribution are not matched by similar risk increases for log compensation. An increase in firm size inequality that is unmatched by a commensurate increase in inter-firm compensation inequality mechanically lowers the aggregate labor income share. Even though inter-firm wage inequality has increased, as was recently pointed out by Song, Price, Guvenen, Bloom, and
Figure 2. Capital Income to Sales Ratio by Size.

The figure presents the relation between the capital income to sales ratio and firm size for all firms in the Compustat public firms database. Firm size is measured as total assets. Each point represents the within bin average of the ratio after grouping firms into 20 size bins. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
von Wachter (2015), the increase was too small to offset the increase in firm size inequality.

Our paper makes contact with three distinct strands of the literature. First, we use insights from recent work on the firm size distribution. In a series of papers, Luttmer (2007, 2012) characterizes the stationary size distribution of firms when firm-specific productivity is subject to permanent shocks. Firms incur a fixed cost of operating a firm. The selection effect of exit at the bottom of the distribution informs the shape of the stationary size distribution, which is Pareto with an endogenous tail index. Our work explores the impact of changes in the stationary size distribution on the distribution of rents in our laboratory economy.

Second, we embed an optimal risk sharing contract in our analysis. There is a large literature on optimal risk sharing contracts between workers and firms (see Thomas and Worall, 1988; Holmstrom and Milgrom, 1991; Kocherlakota, 1996; Krueger and Uhlig, 2006; Lustig, Syverson, and Nieuwerburgh, 2011; Lagakos and Ordoñez, 2011; Berk and Walden, 2013; Zhang, 2014). This literature has analyzed the trade-off between insurance and incentives. We analyze the case of two-sided limited commitment on the part of the firm and the manager, similar to Ai and Li (2015); Ai, Kiku, and Li (2013). There is strong evidence that firms insure workers. Guiso, Pistaferri, and Schivardi (2005) were the first to study insurance within the firm using U.S. micro data, and they find that firms fully insure workers against transitory shocks, but not against permanent shocks (see also Rute Cardoso and Portela, 2009; Fuss and Wintr, 2009; Lagakos and Ordoñez, 2011; Friedrich, Laun, Meghir, and Pistaferri, 2014; Fagereng, Guiso, and Pistaferri, 2016, for foreign evidence). Lagakos and Ordoñez (2011) find that wages of low-skilled workers are more responsive to shocks than those of high-skilled workers. In our model, unskilled labor does not benefit from insurance. When we introduce moral hazard and other frictions that hamper risk sharing, our mechanism will be mitigated. However, we show that when we allow managers to have some exposure to firm performance, our primary results remain unchanged. The intuition is that so long as a firm’s owners are providing some insurance to its managers, and can exit when productivity declines, the selection mechanism still applies.

Gabaix and Landier (2008); Edmans, Gabaix, and Landier (2009) find that equilibrium CEO compensation in a competitive market for CEO talent will be comprised of a cash component and an equity component. We analyze the implications of this class of contracts for our key results.

Third, our paper contributes to the growing literature on the decline in the labor share of output. Karabarbounis and Neiman (2014) argue that this decline is due a decrease in

2 Other work on characterizing the firm size distribution includes Miao (2005); Gourio and Roys (2014); Moll (2016). Perla, Tonetti, Benhabib, et al. (2014) examine the endogenous productivity distribution in an environment where firms choose to innovate, adopt new technology or keep producing with the old technology.
equipment prices that leads firms to substitute capital for labor. Elsby, Hobijn, and Şahin (2013) show that the labor share decreases most for industries exposed to import shocks, indicating that the decline may be due to the off-shoring of labor. Recently, Autor, Dorn, Katz, Patterson, and Reenen (2017) argue that the fall in the labor share is the result of low labor share at “superstar” firms. This mechanism is very similar to ours, in that we also predict that relatively large and productive firms will have high labor shares.

The rest of this paper is organized as follows. Section 2 describes the benchmark model that we use as a laboratory. Section 3 considers a simple endowment version of this economy in which managers are completely insured. We derive the stationary firm size distribution in the benchmark model, and it describes the implications for the aggregate capital share. Section 4 considers a large class of compensation contracts that allow for performance sensitivity. Finally, section 5 analyzes the capital share in the full version of our economy with unskilled labor and physical capital. Section 6 uses a calibrated version of our economy as a laboratory to explore the quantitative effect of changes in volatility on factor shares. Finally, Section 7 presents empirical evidence on U.S. capital share dynamics, and it concludes by showing that compensation inequality has not kept up with size inequality.

2 A Dynamic Model of Industry Equilibrium with Entry and Exit

In this section we present a model to rationalize the facts we present above. The model is very similar to that analyzed by Atkeson and Kehoe (2005). In the model, firms produce cash flows according to a simple production function. Importantly, the shareholders of a given firm hold an option to cease operations when productivity falls. This is the classic abandonment option that has been studied in the real options literature. As is standard in that literature, increasing the volatility of the firms cash flows increases the value of the option to wait to abandon, and thus decreases the threshold in productivity at which the firm ceases operations.

Given the solution to the optimal abandonment problem, we characterize the stationary distribution of firms. Increasing (idiosyncratic) cash flow volatility leads more firms to delay abandonment and survive long enough to become very productive. As such, the average across firms of the capital share of profits can be increasing in volatility.
2.1 Technology and Preferences

The economy is populated by a measure of ex ante identical firms each operating a standard production technology. A given firm i with productivity X_{it} has a single manager, rents physical capital K_{it} and employs unskilled labor L_{it}. The total output produced by this firm is given by

$$Y_{it} = X_{it}^\nu F(K_{it}, L_{it})^{1-\nu},$$

where F is homogeneous of degree one and $0 < \nu < 1$. ν governs the decreasing returns to scale at the firm level. Lucas refers to ν as the span of control parameter of the firm’s manager. Atkeson and Kehoe (2005) show that a decrease in competition in a richer model with imperfect competition is equivalent to an increase in ν in our model. The aggregate supply of physical capital and unskilled labor are denoted k and l respectively.

Firm productivity evolves according to

$$dX_{it} = \mu X_{it} dt + \sigma X_{it} dZ_{it} - X_{it} dN_{it}; \quad \text{for } X_{it} > X_{\min}, \tag{1}$$

where Z_{it} is a standard Brownian motion independent across firms, N_{it} is a Poisson process with intensity λ, and $X_{\min} > 0$ is some minimum level of productivity. If $dN_{it} = 1$, or of X_{it} reaches X_{\min}, X_i jumps to zero, and the firm exits. The process N_{it} gives rise to what is often referred to as an exogenous death rate of firms and is necessary to guarantee the existence of a stationary distribution of firms for all parametrizations of the model. Since all firms are identical up to their current level of productivity, we omit the subscript i for the remainder of the discussion.

Each firm is owned by an investor and requires a skilled manager to operate. We assume investors are risk-neutral and discount cash flows at the risk free rate $r > \mu$ while managers value a stream of payment $\{c_t\}_{t \geq 0}$ according to the following utility function

$$U(\{c_t\}_{t \geq 0}) = E \left[\int_0^\infty e^{-rt} u(c_t) dt \right],$$

where $u'(c) \geq 0$ and $u''(c) > 0$. We normalize the measure of managers in the economy to one.

Firms can enter and exit the economy at the discretion of their owners. When a firm exits, its owner receives the liquidation value of the firm, which we normalize to zero, and its manager immediately re-enters the skilled labor market. There is a competitive fringe of shareholders waiting to create new firms. When an shareholder creates a new firm, she matches with a manager then pays a cost P for the technology blueprint to begin production.
After creating a new firm, the firm’s initial productivity is drawn from a Pareto distribution with density

\[f(X) = \frac{\rho}{X^{1+\rho}}; \quad X \in [X_{\text{min}}, \infty). \]

This distribution implies that the log-productivity of an entering firm is exponentially distributed with parameter \(\rho > 1 \) and simplifies the characterization of equilibrium that follows. We denote the rate at which new firms are created by \(\psi_t \). Note that this implies that the entry rate at a given point \(X \) is \(\psi_t f(X) \).

Upon matching with a manager, an investor in a new firm offers a long term contract to the manager prior to the realization of the firm’s productivity and payment of the cost \(P \). The manager can reject the contract, at which point she is instantaneously matched with a new firm. Formally, this contract can be denoted by a process \(\{c_t\}_{t \geq 0} \) determining payment to the manager of \(c_t \) at time \(t \). We assume that the investor cannot commit to continue operations or to pay the manager once the firm has ceased operations. We also assume that the manager can choose to exit the contract and match with a new firm at any time and that she does not have access to a savings technology. This contracting environment features a two-sided limited commitment problem similar to Ai et al. (2013) and Ai and Li (2015). Importantly, the outside option of the manager will depend on the value of starting a new firm, which is endogenously determined in equilibrium.

2.2 The Investors’ Problem

We denote the utility the manager receives upon entering this market by \(U_0 \), which is also the manager’s reservation utility. At the inception of the contract, the investor and manager takes \(U_0 \) as exogenously given, although it will be determined in equilibrium by the market for managers. The investor will continue operations as long as doing so yields a positive present value. This means that the investor operating for the firm is the solution to a standard abandonment option common in the real options literature. Specifically, the investor operates the firm until a stopping time denoted by \(\tau \). The investor’s problem is thus

\[
\max_{K,L,\tau,c} \mathbb{E} \left[\int_0^\tau e^{-rt}(Y_t - c_t)dt \right]
\]

such that

\[
U_0 \leq \mathbb{E} \left[\int_t^\tau e^{-r(s-t)}u(c_s)ds + e^{-r(\tau-t)}U_0 \right] \quad \text{for all } t > 0.
\]
Intuitively, the manager’s limited commitment constraint given in equation (3) must bind as delivering more continuation utility to the manager can only ever reduce the investor’s value for the firm. As a result, the manager value for the contract is constant over time and it is without loss of generality to restrict attention to contracts that offer the manager a fixed wage c until the firm exits, at which point the manager reenters the market and receives her outside option.

2.3 Equilibrium

We will focus our analysis on equilibria in which the measure of firms at any given level of productivity is stationary. We denote by $\phi(x)$ the stationary distribution of log-productivity, where $x = \log(X)$ throughout.

Definition 1. A stationary equilibrium consists of a rental rate κ for physical capital, a demand for physical capital as a function of productivity $K(X)$, a wage rate w for unskilled labor, demand for unskilled labor $L(X)$ as a function of X, a compensation c^* for the managers, an entry rate of new firms ψ^*, an exit policy for the shareholder \bar{X}, and a stationary distribution $\phi(x)$ such that

1. The exit policy \bar{X} solves the investors problem given by (4).
2. The stationary distribution $\phi(x)$ is consistent with the entry rate of new firms ψ and the exit policy \bar{X}.
3. The markets for physical capital, unskilled labor, and managers clear

\[
\int_{X_{\text{min}}}^{\infty} K(x)\phi(x)dx = k, \quad \int_{X_{\text{min}}}^{\infty} L(x)\phi(x)dx = l, \quad \text{and} \quad \int_{X_{\text{min}}}^{\infty} \phi(x)dx = 1.
\]

4. Creating a new firm leaves the investor with zero expected NPV

\[
\int_{X_{\text{min}}}^{\infty} V(X; c)f(X)dX = P.
\]

Conditions 1-3 are standard equilibrium conditions. Condition 4 derives from the existence of the competitive fringe of investors waiting to create new firms. If an investor in a new firm offers a contract that leaves her with positive ex ante expected NPV, then the manager will reject it since she can simply re-enter the market and instantaneously match with a new firm. Thus, condition 4 is equivalent to allocating all of the ex ante bargaining power to the manager. This in turn determines the level of manager compensation. An
alternative definition would be to allocate some bargaining power to the investor, however, doing so will not drastically change the results.

3 An Endowment Economy

To demonstrate the main forces behind our results, we start by analyzing an endowment version of this economy in which we abstract from physical capital and unskilled labor. In this version of the economy, firm-level output is determined by firm-level productivity by $Y_t = X_t$. Thus, we can simplify the investors problem to

$$V(X; c) = \max_{\tau} E \left[\int_{0}^{\tau} e^{-rt} (X_t - c) dt | X_0 = X \right],$$

where $V(X; c)$ is the value of operating a firm with current productivity X given a manager contract c. The payment c to the manager then acts as a fixed cost or operating leverage. As such, the investor in a given firm will choose to exit if productivity X is low enough as in the classic problems of optimal abandonment considered in the real options literature or optimal default as in Leland (1994). It is without loss of generality to restrict attention to firm exit times that are given by threshold rules of the form

$$\tau = \inf \{ t | X_t \leq \bar{X} \text{ or } dN_t = 1 \}$$

for some $\bar{X} \geq 0$.

3.1 Equilibrium Analysis

In this section, we characterize the stationary equilibrium of the model and study its implications for national income accounting. To solve for the firm value function and exit policy of the investor, we use standard techniques from the real options literature. An application of Ito's formula and the dynamic programming principal imply that $V(X; c)$ must satisfy the following ordinary differential equation

$$(r + \lambda)V(X; c) = X - c + \mu X \frac{\partial}{\partial X} V(X; c) + \frac{1}{2} \sigma^2 X^2 \frac{\partial^2}{\partial X^2} V(X; c),$$

(5)
with the boundary conditions

\[V(\bar{X}(c); c) = 0, \tag{6} \]

\[\frac{\partial}{\partial X} V(\bar{X}(c); c) = 0, \tag{7} \]

\[\lim_{X \to \infty} \left| V(X; c) - \left(\frac{X}{r + \lambda - \mu} - \frac{c}{r + \lambda} \right) \right| = 0. \tag{8} \]

Conditions (6) and (7) are the standard value matching and smooth pasting conditions pinning down the optimal exercise boundary for the abandonment option. Condition (8) arises because as \(X_t \) tends to infinity, abandonment occurs with zero probability and the value of the firm must tend to the present value of a growing cash flow less a fixed cost.

The solution to equations (5)-(8) is given by

\[\bar{X}(c) = \frac{\eta}{\eta + 1} \frac{c(r + \lambda - \mu)}{r + \lambda} \tag{9} \]

\[V(X; c) = \frac{X}{r + \lambda - \mu} - \frac{c}{r + \lambda} - \left(\frac{\bar{X}(c)}{r + \lambda - \mu} - \frac{c}{r + \lambda} \right) \left(\frac{X}{\bar{X}(c)} \right)^{-\eta} \tag{10} \]

where

\[\eta = \frac{\mu - \frac{1}{2} \sigma^2 + \sqrt{(\mu - \frac{1}{2} \sigma^2)^2 + 2(r + \lambda)\sigma^2}}{\sigma^2} \]

is the positive root of the fundamental quadratic for equation (5.) Note that an increase in firm-level volatility \(\sigma \) invariably lowers the abandonment threshold, simply because an increase in volatility raises the option value of keeping the firm alive. This feature of the abandonment option will play key role in our analysis as will become apparent when we discuss the stationary distribution of firm size. Specifically, an increase in firm-level volatility will lead to an increase mass of firm’s that delay exit, increasing the mass of firms that have low productivity as well the mass of firms that survive long enough to achieve high productivity.

Given the solution for firm value conditional on a manager wage \(c \) as well as our assumption on the distribution of productivity of new firms, we can solve for the equilibrium compensation in closed form. We have

\[c^* = \left(\frac{P(r + \lambda)(\rho - 1)(\rho - \eta)}{\eta} \left(\frac{\eta(r + \lambda - \mu)}{(\eta + 1)(r + \lambda)} \right)^{\rho - \frac{1}{\rho - 1}} \right)^{-\rho - \frac{1}{\rho - 1}}. \tag{11} \]

The derivation of \(c^* \) is given in section of the Appendix.

In order for the distribution to remain stationary, the expected change via inflow and outflow in the measure of firms at a given level of \(x \) must be equal to the measure of firms
that exogenously die at the rate λ less the measure of firms that endogenously enter at the rate $\psi g(x)$ (see p. 273 in Dixit and Pindyck, 1994). This leads to the following Kolmogorov forward equation for $\phi(x)$

$$\frac{1}{2}\sigma^2 \phi''(x) - \left(\mu - \frac{1}{2}\sigma^2 \right) \phi'(x) - \lambda \phi(x) + \psi g(x) = 0.$$ \hspace{1cm} (12)

where $g(x) = \rho e^{-\rho x}$ is the density of initial log productivity x for entering firms. A similar argument gives a boundary condition for $\phi(x)$ at the exit barrier $\bar{x} = \log \bar{X}$

$$\phi(\bar{x}) = 0.$$ \hspace{1cm} (13)

The final equation that determines the stationary distribution of firm size is given by the market clearing condition for managers

$$\int_{\bar{x}}^{\infty} \phi(x) dx = 1.$$ \hspace{1cm} (14)

The solution to equations (12)-(14) is given by

$$\phi(x) = \frac{\rho \gamma}{\rho - \gamma} \left(e^{-\gamma(x-\bar{x})} - e^{-\rho(x-\bar{x})} \right)$$ \hspace{1cm} (15)

for $x \in [\bar{x}, \infty)$, where $\gamma = \frac{(\mu - \frac{1}{2}\sigma^2) + \sqrt{(\mu - \frac{1}{2}\sigma^2)^2 + 2\sigma^2\lambda}}{\sigma^2}$. The solution also allows us to characterize the aggregate entry rate of new firms

$$\psi = \frac{\gamma (\rho (\mu - \frac{1}{2}\sigma^2) + \frac{1}{2}\rho^2 \sigma^2 - \lambda)}{\rho - \gamma} e^{\rho \bar{x}}.$$ \hspace{1cm} (16)

We note the our assumption on the density of productivity of entering firms allows for the simple closed form solutions above. The general solution to the ODE given in equation (12) is exponential. By assuming that $g(x)$ is exponential as well, we are left with a solution to equation (12) for which it is possible to solve the boundary condition given in equation (13).

Figure 3 plots the stationary distribution of firm productivity for different levels of σ. The other parameters are calibrated at $r = 5\%, \mu = 2\%, \lambda = .05, \rho = 3, P = 1$. As σ increases, the stationary distribution shifts to the left and becomes more diffuse, with a fatter right tail. The shift to the left is due to the fact that as firm-level volatility increase, the value of the option to wait to exit increases, and the optimal point at which the investor chooses to exit necessarily decreases.

The effect of firm-level volatility on the shape of $\phi(x)$ visible in figure 3 is borne out by
Parameter values: \(\sigma = 0.1, 0.2, 0.3, \) \(r = 5\%, \mu = 2\%, \lambda = 0.05, \rho = 3, \) and \(p = 1. \)

Table 1. Higher-order moments of the log-size distribution implied by the model

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Skew.</th>
<th>Kurt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.879</td>
<td>0.700</td>
<td>0.120</td>
<td>0.151</td>
</tr>
<tr>
<td>0.2</td>
<td>1.493</td>
<td>0.696</td>
<td>2.186</td>
<td>5.631</td>
</tr>
<tr>
<td>0.3</td>
<td>1.181</td>
<td>0.789</td>
<td>2.742</td>
<td>7.310</td>
</tr>
</tbody>
</table>

Moments of the stationary distribution of log-productivity for \(\sigma = 0.1, 0.2, \) and \(0.3. \) Parameter values: \(r = 5\%, \mu = 2\%, \lambda = 0.05, \rho = 3, p = 1. \)

examining the higher-order moments of \(\phi(x) \). Table 1 reports the standard deviation, the skewness and the kurtosis of the log size distribution as we increase \(\sigma. \) As \(\sigma \) increases, the right skewness increases from 0.12 to 2.74 and the excess kurtosis of the log size distribution increases from 0.15 to 7.31. This overall widening of the distribution with a fattening of the left tail comes from two effects. First, there is a direct effect of \(\sigma \) on the dispersion of the distribution of firm size. When firm-level productivity is more volatile, the stationary distribution of firms must be more dispersed. This is evident by examining the dependence of \(\gamma \) on \(\sigma. \) The second effect operates through the abandonment option. When the option to wait to exit becomes more valuable, more firms delay exit, and as a result more firms survive long enough to become very productive. As a result the right tail of the distribution becomes fatter. In the next section, we show that this effect has important implications for national income accounting.
3.2 National Income Accounting

Armed with this stationary distribution, we can do national income accounting inside our model. We use this stationary distribution to calculate the total and average profit share for a range of σ. Specifically, we calculate the aggregate capital share and the average firm’s capital share, respectively:

\[
\text{Capital Share of Profits} = \Pi = \frac{\int_{\bar{x}}^{\infty} (e^x - c)\phi(x)dx}{\int_{\bar{x}}^{\infty} e^x\phi(x)dx},
\]

\[
= 1 - \frac{c}{\int_{\bar{x}}^{\infty} e^x\phi(x)dx},
\]

\[
\text{Average Capital Share of Profits} = \int_{\bar{x}}^{\infty} \left(\frac{e^x - c}{e^x}\right)\phi(x)dx.
\]

\[
= 1 - \int_{\bar{x}}^{\infty} \frac{c}{e^x}\phi(x)dx,
\]

We note that our expressions for both aggregate and average capital share are gross of the costs of starting new firms. Including these costs leads to less transparent expressions and does not change the results of the analysis below. To develop intuition for the effect of a comparative static change in idiosyncratic volatility on the aggregate capital share, it is useful to decompose the expression into its constituent parts. The denominator of the second term Π is the total profits to all firms in the economy, and is given by $\int_{\bar{x}}^{\infty} e^x\phi(x)dx = \left(\frac{\gamma}{\gamma-1}\right)\left(\frac{\rho}{\rho-1}\right)\bar{X}$, while the numerator is the total compensation paid to managers, and is given by $c = \left(\frac{1}{\eta}\right)\left(\frac{r+\lambda+(\eta+1)}{r+\lambda-\mu}\right)\bar{X}$. It suffices to normalize these terms by \bar{X} since it is a common factor in both. As σ increases, the total profits in the economy, normalized by the minimum productivity of active firms \bar{X}, increases because the right tail of the stationary distribution of x gets fatter.

Now consider the numerator. From the value matching condition pinning down \bar{X}, the present value of compensation c to a given manager must be equal to the present value of all future gross cash flows to the firm assuming that it will exit at \bar{X}. Thus, the expression for c given above states that total compensation to managers is the present value of all gross cash flows forgone by an exiting firm. This present value, normalized again by \bar{X}, also increases in σ for the same reason that total profits increase—there is a greater measure of future paths of the firm that result in high productivity. However, these high future draws of productivity are discounted at the rate r and thus have a smaller effect on total compensation paid to managers than on total profits. This intuition implies that the capital share of profits should
be increasing in σ.

To show this intuition is in fact correct, we can combine the terms above to get the following simple closed form expression for Π

$$\Pi = 1 - \left(\frac{r + \lambda}{r + \lambda - \mu}\right) \left(\frac{\rho - 1}{\rho}\right) \left(\frac{\gamma - 1}{\eta}\right) \left(\frac{\eta + 1}{\eta}\right). \quad (17)$$

We can then calculate the derivative of Π with respect to the volatility parameter σ:

$$\frac{\partial \Pi}{\partial \sigma} = - \left(\frac{r + \lambda}{r + \lambda - \mu}\right) \left(\frac{\rho - 1}{\rho}\right) \left[\left(\frac{\eta + 1}{\eta}\right) \frac{1}{\gamma^2} \frac{\partial \gamma}{\partial \sigma} - \left(\frac{\gamma - 1}{\gamma}\right) \frac{1}{\eta^2} \frac{\partial \eta}{\partial \sigma}\right]. \quad (18)$$

So $\partial \Pi/\partial \sigma$ is positive if and only if

$$\eta(\eta + 1) \frac{\partial \gamma}{\partial \sigma} \leq \gamma(\gamma - 1) \frac{\partial \eta}{\partial \sigma}. \quad (19)$$

It is straightforward to show that $\eta(\eta + 1) \frac{\partial \eta}{\partial \sigma} \leq 0$ and $\gamma(\gamma - 1) \frac{\partial \gamma}{\partial \sigma} \leq 0$, so to verify (19), it is equivalent to verify

$$\frac{\eta(\eta + 1)}{\gamma(\gamma - 1)} \frac{\partial \eta}{\partial \sigma} \geq 1. \quad (20)$$

One can show that

$$\frac{\eta(\eta + 1)}{\gamma(\gamma - 1)} \frac{\partial \gamma}{\partial \sigma} = \frac{\sqrt{\left(\mu - \frac{1}{2} \sigma^2\right)^2 + 2(r + \lambda)\sigma^2}}{\sqrt{\left(\mu - \frac{1}{2} \sigma^2\right)^2 + 2\lambda \sigma^2}} > 1 \quad (21)$$

which verifies that $\partial \Pi/\partial \sigma > 0$. Hence, in our model, the aggregate capital share always increases as volatility increases, as long as $r > 0$.

The expression given in equation (21) validates our intuition about the effect of discounting on the relative sensitivity of firm value and total stationary profits to changes in idiosyncratic volatility. The strictly positive sign of the comparative static requires that the discount rate r be positive. To understand this effect, it is helpful to consider the limiting case of no discounting. As r approaches zero, the ex ante average value of a firm (normalized
by r) approaches the aggregate value of all payments to investors:

$$
\lim_{r \to 0} \int_{X_{\text{min}}}^{\infty} rV(X)f(X)dX = \lim_{r \to 0} \int_{X_{\text{min}}}^{\infty} E \left[\int_0^\tau r e^{rt} (X_t - c) dt | X_0 = X \right] f(X)dX
$$

$$
= \lim_{r \to 0} \int_{\bar{x}}^{\infty} \int_0^\infty r e^{rt} (e^x - c) \phi_t(x) dx dt
$$

$$
= \int_{\bar{x}}^{\infty} (e^x - c) \phi(x) dx.
$$

where

$$
\phi_t(x) = \frac{\partial}{\partial x} \int_{\bar{x}}^{\infty} E[\mathbb{1}(x_t > x) \mathbb{1}(t \leq \tau) | x_t = y] g(y) dy
$$

is the distribution of log productivity x_t for a firm given an initial value drawn from $g(\cdot)$ conditional on the firm not having yet exited. Intuitively, as r goes to zero, the present value of all future cash flows is just given by the expectation of cash flow in the limit as t goes to infinity, i.e., in the stationary distribution. Returning to our intuition, the total compensation paid to managers is then proportional to total profits, and σ has no effect on the capital share.

Figure 4 plots a calibrated example. The figure plots the total and average capital share of profit as a functions of σ. We use the following parameter values: $r = 5\%, \mu = 2\%, \lambda = .05, \rho = 3, p = 1$. We can see that the total capital share of profits is increasing in σ while the average capital share of profits is decreasing. The intuition is as follows. As σ increases, the value of the option to delay abandonment increases, and hence the optimal threshold at which firms exit decreases. Holding the total measure of firms fixed, this means that the distribution of profits becomes more dispersed. The increase in mass of firms in the right tail of the firm size distribution increases the total profit share, because the profit share measures the ex post profitability of existing firms. This is effectively a selection bias. The profit share of entering firms is set by setting the NPV of the investor’s stake in the firm to zero. This NPV calculation integrates over all possible future paths for firm-level productivity, including those that lead the investor to choose to exit. In contrast, the stationary distribution of existing firms only consider firms that have survived. Surviving firms necessarily have a higher capital share of profits, otherwise the investor would have chosen to exit.

Our model also makes a novel prediction about the capital share at the average firm. The increase in mass of firms that delay exist means that there will be more firms with a low capital share. Thus an increase in firm-level volatility can decrease the average profit share. This is in contrast to the effect one would expect to see if the increase in total capital share of profits is due to a greater growth rate in the value of capital relative to wages that may
follow the substitution of capital for labor. In that case, one would expect both the total and average capital share to increase. We can also examine the capital share of firm value, with similar results as for profits. Figure 5 plots the total and average capital share of firm value derived from the model.

Finally, we examine the comparative statics of the capital share with respect to the entry parameter. First we have

$$\frac{\partial \Pi}{\partial \rho} = -\left(\frac{r + \lambda}{r + \lambda - \mu}\right) \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{\eta + 1}{\eta}\right) \frac{1}{\rho^2} < 0.$$

To understand this comparative static, note that an increase in ρ means that the right tail of the entry distribution becomes thinner and entering firms are on average smaller. This in turn implies that the capital share decreases because smaller firms have lower capital shares.

4 Pay for Performance

In this section we allow for some exposure in the manager’s compensation to firm performance. This exposure could arise for a variety of reasons. For example, there could be a firm-level agency conflict between the manager and investors or the investor could be risk averse. In either case, the optimal contract will call for the manager to bear some exposure to firm performance, either for incentive purposes or to improve risk sharing. The precise form
Figure 5. The total and average capital share of firm value as a functions of σ.

![Graph showing total and average capital share of firm value as a function of σ.]

Parameter values: $r = 5\%$, $\mu = 2\%$, $\lambda = .05$, $\rho = 3$, $p = 1$.

of the optimal contract will depend on the nature of the agency problem or the exact preferences of the managers and investors.\(^3\) A concern with our results thus far might be that this exposure could mitigate the insurance nature of the relationship between firms’ owners and their managers, thus decreasing or reversing the effect of firm level volatility on the capital share of profits. Rather than solve directly for an optimal contract for a particular problem, we assume that the manager’s contract takes the following simple affine form

$$c_t = \beta X_t + w.$$ \hspace{1cm} (22)

The sensitivity β of the managers payment c_t to the level of productivity is determined by either the severity of the agency problem or the nature of the risk-sharing problem, and is exogenous from the standpoint of our model. The fixed wage w is set in equilibrium in the same manner as total wages are set above. This contract has the advantage of being particularly tractable to analyze in the context of our model of equilibrium.

For a given fixed wage w, the investors problem is

$$\max_{\tau} \left[\int_{0}^{\tau} e^{-rt}((1 - \beta)X_t - w)dt \right].$$ \hspace{1cm} (23)

\(^3\)Edmans et al. (2009) derive CEO compensation in a competitive equilibrium with a talent assignment and moral hazard problem.
Again, standard arguments imply that the investor’s value function $V(X)$ must satisfy the following ODE

$$(r + \lambda)V = (1 - \beta)X - w + \mu X V' + \frac{1}{2} \sigma^2 X^2 V'', \quad (24)$$

with the boundary conditions

$$V(\bar{X}) = 0, \quad (25)$$
$$V'(\bar{X}) = 0, \quad (26)$$
$$\lim_{X \to \infty} \left| V(X) - \left(\frac{(1 - \beta)X}{r + \lambda - \mu} - \frac{w}{r + \lambda} \right) \right| = 0. \quad (27)$$

This problem is essentially the same as one given in equations (5)-(8), up to a scaling of the leading term by a factor of $(1 - \beta)$. Thus, the solution to equation (24)-(27) is

$$\bar{X} = \left(\frac{1}{1 - \beta} \right) \left(\frac{\eta}{\eta + 1} \right) \frac{w(r + \lambda - \mu)}{r + \lambda}$$
$$V(X) = \frac{(1 - \beta)X}{r + \lambda - \mu} - \frac{c}{r + \lambda} - \left(\frac{(1 - \beta)\bar{X}}{r + \lambda - \mu} - \frac{c}{r + \lambda} \right) \left(\frac{X}{\bar{X}} \right)^{-\eta}$$

where η is defined as above.

Given the solution for the investor’s value, we can apply the investor’s zero ex-ante profit condition to determine the fixed component of the manager’s equilibrium contract. Doing this calculation yields

$$w^* = \left(\frac{P(r + \lambda)(\rho - 1)(\rho - \eta)}{\eta} \right) \left(\frac{\eta(r + \lambda - \mu)}{(1 - \beta)(\eta + 1)(r + \lambda)} \right)^{\frac{1}{\rho - 1}}. \quad (28)$$

Comparing equations (11) and (28) reveals that the fixed component of the equilibrium affine contract is just the equilibrium wage under full insurance scaled by a function of β. The investor’s problem under the affine contract is identical to the problem under full insurance when the firm’s productivity is scaled by a factor of $1 - \beta$. The stationary distribution of firm productivity is unaffected by our assumption of affine contracts, up to a shifting of the optimal abandonment threshold, i.e. the left support of the stationary distribution. Thus we can again calculate the total capital share of profits in the stationary distribution to get

$$\Pi = 1 - (1 - \beta) \left(\frac{r + \lambda}{r + \lambda - \mu} \right) \left(\frac{\rho - 1}{\rho} \right) \left(\frac{\gamma - 1}{\gamma} \right) \left(\frac{\eta + 1}{\eta} \right). \quad (29)$$

Comparing equations (17) and (29) shows that the total capital share profits under the affine
contract depends on γ and η, and hence on σ, in the same manner as the total capital share of profits under full insurance. In other words, allowing the manager to share in success of the successful firms does not change our main qualitative results.

5 The Full Production Economy

In this section we return to the production economy analyzed by Atkeson and Kehoe (2005). We maintain our assumptions on the preferences of investors and managers as well as the structure of entry and exit in economy from our basic model. Given these assumptions, it is still optimal to offer managers a fixed wage. Also, investors face the same basic exit decision as in the endowment economy up to an adjustment to net profits for the payments to physical capital and labor. Investor will thus choose to exit when productivity falls below some threshold \bar{X}. Note that since firms rent physical capital and unskilled labor in spot markets, a given firm’s demand for these inputs will be a function of it's current productivity.

5.1 Equilibrium Analysis

To characterize equilibrium, we begin by considering the allocation of physical capital and unskilled labor across active firms. Given spot rates for physical capital and unskilled labor and some current level of productivity, a given firm chooses capital and labor to maximize profits net of the rental costs of physical capital and unskilled labor:

$$(K_t, L_t) = \arg \max_{K,L} \left\{ X_t \nu F(K, L)^{1-\nu} - wL - \kappa K \right\}.$$

The homogeneity of the production function F implies that the solution (K_t, L_t) of the maximization above is linear in X_t. Market clearing then implies that physical capital and unskilled labor are allocated across firms according to the following linear allocation rule:

$$K_t = \frac{k}{\hat{X}} X_t,$$

$$L_t = \frac{l}{\hat{X}} X_t,$$

where

$$\hat{X} = \int_{\bar{x}}^{\infty} e^{x} \phi(x) dx$$

is the average productivity in the economy given the stationary distribution of log productivity $\phi(x)$. This allocation rule implies that the output of any given firm is a linear function
of aggregate output:

\[Y_t = \frac{y}{X}X_t \]

where \(y = \hat{X}^{\nu}F(k, l)^{1-\nu} \) is aggregate output. As a result, a firm’s gross earnings (operating profit) are proportional to \(X_t \):

\[Y_t - wL_t - \kappa K_t = \frac{\nu y}{X}X_t. \]

For convenience, we let \(\hat{F} = \frac{\nu y}{X} \). We refer to \(\hat{F} \) as equilibrium rents normalized by (average) productivity \(\hat{X} \).

Having determined the allocation of physical capital and unskilled labor, we can now analyze the investor’s optimal abandonment decision. Thus, we can simplify the investor’s problem to

\[V(X; c, \hat{F}) = \max_{\tau} E \left[\int_0^\tau e^{-rt} \left(\hat{F}X_t - c \right) dt | X_0 = X \right], \quad (30) \]

where \(V(X; c, \hat{F}) \) is the value of operating a firm with current productivity \(X \) given a manager contract \(c \) and rents \(\hat{F} \). The solution technique for the investor’s problem is essentially the same as in the case with constant physical capital and labor up to a change in the coefficients in the ODE and determination of the optimal abandonment threshold. Given \(c \) and \(\hat{F} \), \(V(X; c, \hat{F}) \) must satisfy the following ordinary differential equation

\[(r + \lambda) V(X; c, \hat{F}) = \hat{F}X - c + \mu X \frac{\partial}{\partial X} V(X; c, \hat{F}) + \frac{1}{2} \sigma^2 X^2 \frac{\partial^2}{\partial X^2} V(X; c, \hat{F}), \quad (31) \]

with the boundary conditions

\[V(\bar{X}(c, \hat{F}); c, \hat{F})) = 0, \quad (32) \]

\[\frac{\partial}{\partial X} V(\bar{X}(c, \hat{F}); c, \hat{F})) = 0, \quad (33) \]

\[\lim_{X \to \infty} \left| V(X; c, \hat{F}) - \left(\frac{\hat{F}X}{r + \lambda - \mu} - \frac{c}{r + \lambda} \right) \right| = 0. \quad (34) \]

Where \(\bar{X}(c, \hat{F}) \) is the abandonment threshold given \(c \) and \(\hat{F} \). Conditions (32) and (33) are the standard value matching and smooth pasting conditions, while condition (34) arises because as \(X_t \) tends to infinity, abandonment occurs with zero probability as in the simple model we analyzed above. The smooth pasting condition (33) need only hold if \(\bar{X}(c, \hat{F}) > X_{\text{min}} \).
The solution to equations (31)-(34) is given by

\[
\bar{X}(c, \hat{F}) = \left(\frac{\eta}{\eta + 1} \right) \left(\frac{r + \lambda - \mu}{r + \lambda} \right) \left(\frac{c}{\hat{F}} \right) \tag{35}
\]

\[
V(X; c, \hat{F}) = \frac{\hat{F}X}{r + \lambda - \mu} - \frac{c}{r + \lambda} - \left(\frac{\hat{F}\bar{X}(c, \hat{F}) - c}{r + \lambda - \mu} \right) \left(\frac{X}{\bar{X}(c, \hat{F})} \right)^{-\eta} \tag{36}
\]

where \(\eta \) is as defined above.

Next, we consider equilibrium managerial compensation. As in the endowment economy, \(c \) is set so as to give zero profits to the investors for starting a new firm. Given the solution to the investors value function and the Pareto entry distribution of new firms, it is straightforward to solve the investor’s ex ante zero profit condition for the equilibrium \(c \). We have

\[
c^* = \left(\frac{P(r + \lambda)(\rho - 1)(\rho - \eta)}{\eta} \left(\frac{\eta(r + \lambda - \mu)}{(\eta + 1)(r + \lambda)\hat{F}} \right)^{\eta} \right)^{-\frac{1}{\rho - 1}}. \tag{37}
\]

Comparing the equilibrium managerial wage in the production economy vs the endowment economy, we see that the two are identical up to an adjustment for equilibrium rents \(\hat{F} \).

5.2 Stationary Size Distribution

Finally, we consider the equilibrium distribution of productivity \(\phi(x) \) as well as rents \(\hat{F}(\bar{X}) \) given an exit threshold \(\bar{X} \). Note that since \(X_t \) has the same dynamics as in the endowment economy model, the form of the stationary distribution for productivity is unchanged. The equilibrium average productivity is then

\[
\hat{X}(\bar{X}) = \frac{\bar{X}\gamma\rho}{(\gamma - 1)(\rho - 1)}. \tag{38}
\]

This in turn implies that equilibrium rents are

\[
\hat{F}(\bar{X}) = \nu \left(\frac{\hat{X}\gamma\rho}{(\gamma - 1)(\rho - 1)} \right)^{\nu - 1} F(k,l)^{1-\nu}. \tag{39}
\]

An equilibrium is then characterized by a solution \((\bar{X}, \hat{F})\) to equations (35), (37), and (39). One can show that such a solution exists and is unique.
5.3 National Income Accounting

As in the endowment model, we can do national income accounting within our model. Specifically, we can calculate the aggregate capital share of output:

\[
\text{Capital Share of Output} = \Pi = \frac{y - wl - c}{y} = 1 - (1 - \nu)(1 - \alpha(k, l)) - \frac{c}{y},
\]

where \(1 - \alpha(k, l) = \frac{1}{F(k, l)^{1-1} \frac{\partial F(k, l)}{\partial l}}\) is the elasticity of the production function \(F\) with respect to unskilled labor. In words, the capital share of output is one minus the total labor share where the labor share aggregates the share of output that accrues to unskilled and skilled labor. Using the definition of \(\widehat{F}\) and equations (35) and (38), we can write total output as

\[
y = \frac{\widehat{F}\widehat{X}}{\nu} = \left(\frac{\gamma \rho}{(\gamma - 1)(\rho - 1)}\right) \left(\frac{\eta}{\eta + 1}\right) \left(\frac{r + \lambda - \mu}{r + \lambda}\right) \left(\frac{c}{\nu}\right),\quad (40)
\]

so that total output \(y\) is linear in \(c\). Thus the total capital share of output simplifies to

\[
\Pi = 1 - (1 - \nu)(1 - \alpha(k, l)) - \nu \left(\frac{r + \lambda}{r + \lambda - \mu}\right) \left(\frac{\rho - 1}{\rho}\right) \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{\eta + 1}{\eta}\right).\quad (41)
\]

This expression is essentially the same as in the endowment economy less the unskilled labor share of output and an adjustment to the managerial share of output for the elasticity of output with respect to productivity. Importantly, the comparative static of total capital share with respect to idiosyncratic volatility \(\sigma\) will have the same positive sign in both the endowment economy and the production economy. Intuitively, the share of output that goes to unskilled labor is determined by the shape of the production rents and production other than through the aggregate quantity of physical capital and unskilled labor. At the same time the share of output that goes to the managers is determined by the equilibrium exit policy of firms and also does not directly depend on aggregate production. Thus, the capital share of output does not directly depend on aggregate output other than through aggregate quantity of physical capital and unskilled labor.

6 Quantitative Experiments in Calibrated Model

In this section, we explore the quantitative implications of our model. We calibrate the economy to match the empirical moments of the distribution of the capital share of output
across firms in the U.S. Compustat sample, and then we consider the effects of changes in the underlying parameters to quantify the effect of our selection mechanism on the aggregate and average capital share, as well labor share.

6.1 Data

To measure capital share at the firm level, we use widely available accounting data from Compustat/CRSP Merged Fundamentals Annual, which includes all publicly-traded firms, as well firms that were publicly traded but continue to report to Compustat. The sample is from 1960 to 2014. We exclude financial firms with SIC codes in the interval 6000-6799, and we also exclude firms whose sales, employee numbers and total asset values are negative. We provide further details on the data in Appendix B. We measure the firm level (aggregate) capital share of output as the ratio of firm level (aggregate) capital income to firm level (aggregate) value added. Capital income is measured as operating income before depreciation (OIBDP); OIBDP equals sales minus operating expenses including the cost of goods sold, labor cost and other administrative expenses. Value added is computed as the sum of OIBDP and XLR which records staff expenses. One drawback of the Compustat data is the lack of comprehensive labor expense data. XLR in Compustat is sparse with only roughly 13% firm-year observations in the sample. To address this weakness, we adopt Donangelo, Gourio, and Palacios (2015)’s imputation procedure to construct the extended labor cost for firms who failed to report staff expenses. Following Donangelo et al. (2015), we construct the extended labor cost (extended XLR). Firms are grouped into one of 17 industries, and firms are sorted into 20 size groups based on their total assets, so we obtain a total of 340 industry-size cells. We first estimate the average labor cost per employee (XLR/EMP) within industry/size cell for each year using the available XLR observations, and we use this estimate to impute labor costs to firms with missing XLR data as the number of employees times the average labor cost per employee of the same industry/size cell during that year. To check that our results are not an artifact of this imputation procedure, we also report the capital income as a fraction of sales.

6.2 Calibration

We first calibrate the model to match the aggregate moments from the U.S. publicly-traded firm sample over the period from 1960 to 1970. Panel A in Table 2 reports the moments we set out to match. While our calibrated model successfully matches the aver-

4We follow Donangelo et al. (2015) and use Fama-French 17 industry classifications. The result is robust using 2-digit SIC code.
Table 2. Benchmark Calibration

The table reports our benchmark calibration. Panel A reports target moments in the data and the implied moments from our production model. The data moments are computed from the sample Compustat/CRSP Merged Fundamentals Annual from 1960 to 1970. The sample excludes firms with SIC codes from 6000 to 6799. Panel B reports calibrated parameters. Panel C reports preset parameters. Firm-level value added VA_i is OIBDP plus Extended XLR. To deal with negative values, we identify the minimum of operating income (OIBDP) for each year, and we increase the value added of all firms by the absolute value of the minimum OIBDP $\times (1+1\%)$. The average capital share is computed using OIBDP divided by the adjusted value added. The standard deviation and skewness of capital share is also estimated using the adjusted value added measure. The aggregate capital share is calculated using the unadjusted value added.

Panel A: Capital Share Moments 1960-1970

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Capital Share</td>
<td>0.208</td>
<td>0.246</td>
</tr>
<tr>
<td>Aggregate Capital Share</td>
<td>0.419</td>
<td>0.318</td>
</tr>
<tr>
<td>Standard Deviation of Capital Share</td>
<td>0.152</td>
<td>0.082</td>
</tr>
<tr>
<td>Skewness of Capital Share</td>
<td>0.710</td>
<td>-0.021</td>
</tr>
<tr>
<td>Capital Share at Exit</td>
<td>0.076</td>
<td>0.064</td>
</tr>
<tr>
<td>Entry Rate</td>
<td>-</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Panel B: Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>0.2</td>
<td>Idiosyncratic Vol</td>
</tr>
<tr>
<td>μ</td>
<td>0.02</td>
<td>Firm Growth</td>
</tr>
<tr>
<td>λ</td>
<td>0.055</td>
<td>Exogenous Exit Rate</td>
</tr>
<tr>
<td>ρ</td>
<td>3.5</td>
<td>Entrants Firm Size Distribution</td>
</tr>
<tr>
<td>α</td>
<td>0.27</td>
<td>Aggregate Physical Capital Share of Output</td>
</tr>
</tbody>
</table>

Panel C: Preset Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.05</td>
<td>Discount Rate</td>
</tr>
<tr>
<td>k/l</td>
<td>1</td>
<td>Capital/Labor Ratio</td>
</tr>
<tr>
<td>p</td>
<td>1</td>
<td>Sunk Cost</td>
</tr>
<tr>
<td>ν</td>
<td>0.2</td>
<td>Share of Rents in GDP</td>
</tr>
</tbody>
</table>

age and aggregate capital share of output, it does not match the higher moments of the distribution. This is partly because the model cannot match the cross-sectional dispersion in the size distribution. Ours is a stylized model in which all firms are ex ante identical. To match the size distribution, we would need to insert more ex ante heterogeneity into the model. Panel B reports the parameters we chose to match these moments. Panel C reports preset parameters. We set $\sigma = 0.2$ to match the average idiosyncratic sales volatility. μ is chosen to match the average TFP growth rate of 2%. We calibrate λ and ρ to match the cross-sectional standard deviation of the firm-level capital share and the capital share at the exit threshold X. Our calibration of λ and ρ also produces a reasonable exit/entry rate of
the public firms at 1.34%; the average IPO rate is 3.4% in the 1980-2015 sample.5 We choose $\nu = 0.2$, following Atkeson and Kehoe (2005).

\section*{6.3 Quantitative Experiments}

Next, we use the benchmark calibration of the model to conduct a series of experiments in Table 3. In Panel A, we increase in turn σ, ρ and ν. σ is 20\% per annum in the benchmark calibration. Firm-level volatility has increased dramatically over the past five decades (see Comin and Philippon, 2005; Zhang, 2014; Herskovic et al., 2015). Figure 6 plots our measure of cash flow volatility and stock return volatility; these measures have doubled over the period 1960-2010. When we double the volatility, the model predicts a decline in the average capital share of output of 6.6 pps. and an increase the aggregate capital share of output of 1.4 pps. These numbers mask large changes in the distribution of rents. In the benchmark calibration of our model, the owners only collect 13.9\% of total rents at the average firm, but they collect 49.7\% of aggregate rents. To translate the change in the capital share of output to a change in the capital share of rents, we need to take into account that the rents are a fraction of output given by ν. Thus, doubling vol increases the aggregate share of rents collected by owners by 7.2 pps. (roughly 1.4 pps divided by $\nu = .2$), while decreasing the average share of rents by 33 pps (roughly 6.6 pps divided by $\nu = .2$).

While we use discount rate of 5\% as a base calibration, the intuition we discuss for the effect of volatility on the capital share of profits suggests that a larger discount rate would amplify the effects of changes in volatility on the moments of the model. To demonstrate this, we also report moments when the discount rate is 10\%. As expected, the increase in the aggregate share is larger when the discount rate is higher, because higher discount rates imply a larger gap between the ex ante and ex post calculations of firm profitability.

We also consider the effects of increasing ρ, the parameter governing the Pareto-entry distribution, as well as the size of rents in the economy ν. As pointed out by Atkeson and Kehoe (2005), an increase in ν maps directly into a decrease in competition in this class of models. Interestingly, doubling ν, the share of GDP due to rents, only increases the aggregate capital share by 4.5 pps., simply because the owners only get 13.9\% of rents. The ν parameter, or the level of aggregate rents, has no direct effect on the actual distribution of rents between capital owners and skilled labor. However, the mechanism through which volatility affects the capital share of profits operate through the split of the rents. Thus, when rents are larger, the effect of a change in volatility on the aggregate capital share of profits will be larger. Thus to address the fact that an increase in volatility alone cannot

5IPO rates prior to 1980 are not available. Fama and French (2004a) suggested that the IPO before 1979 is much lower.
The black line indicates annualized idiosyncratic firm-level stock return volatility. Idiosyncratic returns are constructed within each calendar year by estimating a Fama French 3-factor model using all observations within the year. Idiosyncratic volatility is then calculated as the standard deviation of residuals of the factor model within the calendar year. We obtain the time series of idiosyncratic volatility by averaging across firms at each year. The gray line indicates the firm-level cash flow volatility, estimated for all CRSP/Compustat firms using the 20 quarterly year-on-year sales growth observations for calendar years. The idiosyncratic sales growth is the standard deviation of residuals of a factor specification. The factors for sales growth are the first three major principal components. Source: CRSP 1960-2014 and Compustat/CRSP Merged Fundamentals Annual 1950-2014.
Figure 7. Aggregate and Average Capital Share

Figure plots the aggregate (left panel) and average (right panel) capital share against ν and σ. Parameter values: $r = 0.10, \mu = 0.02, \lambda = 0.055, \rho = 3.5, \alpha = 0.27$.

Quantitatively match the change in aggregate capital share in the data, why we consider a joint increase in volatility and the size of rents.

We report the effect of a joint increase in σ and ν in Panel B of Table 3. In this case, the model predicts an increase of 7.4 pps. in the aggregate capital share and a decrease of 15.9 pps. in the average capital share. When we increase the discount rate to 10%, the increase in the aggregate capital share is 9.3 pps. while the decrease in the average capital share is 9.2 pps. To visualize the joint effect of changes in volatility and the rents, Figure 7 plots the aggregate capital share (panel on the left) and the average capital share (panel on the right) against σ and ν. Increases in ν have a minor effect on the aggregate capital share, except when these are augmented by increases in σ. Finally, only increases in σ lower the average capital share.

To conclude, Table 4 considers the joint distribution of firm-level capital shares and size in the data and the model. Our model matches the size pattern in average capital shares remarkably well, provided that we consider a joint increase in ν and σ: negative capital shares for the smallest firms and large capital shares for the largest firms. We conclude that this model is able to quantitatively match the main changes in the moments of factor shares, provided that we consider an increase in volatility as well as a decrease in competition, leading to larger rents.

The table reports changes in moments of firm-level capital share distribution over different sample periods and the changes in moments of capital share distribution from the transitory experiment of the model. For both panels, the “Data” column reports the difference between moments of capital share distribution in 1990-2014 and 1960-1970, and the “Model” column reports the differences in the moments of two stationary size distributions in response to changes in parameters starting from the benchmark calibration. In Panel A, we sequentially double σ, ρ and ν and we compute the moments of the new stationary size distribution. In Panel B, we double σ and ν jointly, and we compute the moments of the new stationary size distribution.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Univariate Experiment</td>
<td>$\sigma \rightarrow 2\sigma$</td>
<td>$\rho \rightarrow 3\rho$</td>
</tr>
<tr>
<td>Discount Rate $r = 0.05$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Capital Share</td>
<td>-0.118</td>
<td>-0.066</td>
</tr>
<tr>
<td>Aggregate Capital Share</td>
<td>0.138</td>
<td>0.014</td>
</tr>
<tr>
<td>Capital Share at \bar{X}</td>
<td>-0.574</td>
<td>-0.190</td>
</tr>
<tr>
<td></td>
<td>Discount Rate $r = 0.10$</td>
<td></td>
</tr>
<tr>
<td>Average Capital Share</td>
<td>-0.118</td>
<td>-0.043</td>
</tr>
<tr>
<td>Aggregate Capital Share</td>
<td>0.138</td>
<td>0.018</td>
</tr>
<tr>
<td>Capital Share at \bar{X}</td>
<td>-0.574</td>
<td>-0.133</td>
</tr>
<tr>
<td>Panel B: Multivariate Experiment</td>
<td>$\sigma \rightarrow 2\sigma$</td>
<td>$\sigma \rightarrow 2\sigma$</td>
</tr>
<tr>
<td>$\nu \rightarrow 2\nu$</td>
<td>$\nu \rightarrow 2\nu$</td>
<td></td>
</tr>
<tr>
<td>DR $r = 0.05$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Capital Share</td>
<td>-0.118</td>
<td>-0.159</td>
</tr>
<tr>
<td>Aggregate Capital Share</td>
<td>0.138</td>
<td>0.074</td>
</tr>
<tr>
<td>Capital Share at \bar{X}</td>
<td>-0.574</td>
<td>-0.589</td>
</tr>
</tbody>
</table>
Table 4. Firm-level Capital Share and Size Distribution in Multivariate Experiment

The table reports joint distribution of firm-level capital share and size (total assets). In Panel A, the “Data” row reports the average capital share for size quintiles in sample period 1960-1970. The “Model” row reports the average capital share for size quintiles, computed from the benchmark calibration. In Panel B, the “Data” row reports the average capital share for size quintiles in sample period 1990-2014. The “Model” row reports the average capital share for size quintiles, computed after doubling ν and σ. The discount rate r is 0.05.

<table>
<thead>
<tr>
<th>Size Quintiles</th>
<th>Panel A: 1960-1970 Sample</th>
</tr>
</thead>
</table>
| | -20% | 20%-40% | 40%-60% | 60%-80% | 80%-
| Data | 0.042 | 0.094 | 0.157 | 0.237 | 0.357 |
| Model | 0.118 | 0.196 | 0.247 | 0.301 | 0.393 |

<table>
<thead>
<tr>
<th>Size Quintiles</th>
<th>Panel B: 1990-2014 Sample</th>
</tr>
</thead>
</table>
| | -20% | 20%-40% | 40%-60% | 60%-80% | 80%-
| Data | -0.119 | -0.137 | 0.059 | 0.264 | 0.497 |
| Model: $\sigma \rightarrow 2\sigma$ | -0.031 | 0.102 | 0.188 | 0.272 | 0.388 |
| Model: $\sigma \rightarrow 2\sigma \nu \rightarrow 2\nu$ | -0.334 | -0.070 | 0.103 | 0.271 | 0.497 |

7 Understanding U.S. Capital Share Dynamics

In this section, we present empirical evidence on the joint dynamics of compensation, firm size and the implied capital share dynamics. We show the findings are largely consistent with the implications of our model.

7.1 Time Series Dynamics in Capital Share

We start by examining the time series dynamics of the capital share and labor share of U.S. publicly traded firms as measured in the Compustat/CRSP Merged Fundamentals data set. We describe our measurement of the capital share in the previous section. To measure the labor share, we use the ratio of labor income (extended XLR) to value added. Figure 1 plots the aggregate capital share of value added, which has increased from 41 to 62% between 1970 and 2010. Similarly, Figure 1 also plots the aggregate labor share, which has decreased from 60% to less than 40% in the Compustat sample. The aggregate factor share trends that have been documented for the entire universe of U.S. firms (see Karabarbounis and Neiman, 2014; Piketty and Zucman, 2014) also characterize the sub-sample of publicly traded firms.

However, these trends in the aggregate factor shares are not operative for a typical U.S. firm. When analyzing firm-level data, we use sales instead of value added in the denominator, because our value added measure can be negative at the firm level in the Compustat data.
Figure 8 plots the average and aggregate capital share as a fraction of sales in the publicly traded firm sample. The average capital income/sales ratio is the cross-sectional mean of the capital income /sales ratio for a given year. The aggregate ratio equals the sum of capital income (OIBDP) across all the firms divided by aggregate sales. These ratios do not rely on our XLR imputation procedure. The large declines in the average capital income/sales ratio are driven mostly by small firms with negative operating margins. As the firm-level volatility increases, the aggregate and the average capital income/sales ratios share diverge. The average ratio drops from 13 % in 1960 to -40 % in 2014, while the aggregate ratio increases with a less dramatic scale, from 14 % in 1960 to 17 % in 2014. The initial decline in the aggregate capital income/sales ratio disappears when we correct the capital income measure for the expensing of R&D by adding it back to operating income. All of our empirical results remain robust to this adjustment.\footnote{The empirical evidence using capital income/sales ration after correcting income for R&D expenses is available upon request. We did not use the adjusted measure as our main measure is because R&D expenses in the public firm sample include wages to R&D employees.}

We find similar patterns in the labor share dynamics. The aggregate labor income/sales ratio in the non-farm business sector has declined by 15%. However, the the trend of the average labor share of output in the publicly traded firm sample did not decline. Figure 9 shows the time series of both the average and the aggregate Labor Income/Sales ratio in our sample using the estimated labor cost. The average labor share rises from 32% in 1960 to 40% in 2014, while the aggregate labor share drops from 25% to 19% during the same period of time. To summarize, we document a divergence in the moments of the firm-level capital and labor share distribution that is broadly consistent with the mechanism we highlight in our model. Specifically, the trends we observe in the data a consistent with changes in firm-level volatility causing a shift in the distribution of firm size that favors the owners of capital.

7.2 Cross Sectional Variation in Capital Share Dynamics

A key prediction of our model is that as idiosyncratic volatility increases, the distribution of capital shares across firm size becomes more dispersed. In particular, the capital share at the smallest firms declines. This is because small firms with low profitability delay exit when volatility increases. The cross-sectional variation in the factor shares bears this out. Over the period 1960 to 2014, firm-level volatility has doubled, and the capital share at the smallest firms as significantly decreased. Figure 10 presents the average capital share for different size quintiles. All firms are sorted into five quintiles based on their total assets. Within each group, we compute the average capital share in each quintile. The first aspect...
The capital income to sales ratio equals the ratio of operating income to sales. Aggregate capital income to sales ratio = \(\sum_i \text{Operating Income}_i\) divided by \(\sum_i \text{Sales}_i\) for each year. Average capital income to sales ratio = mean(Operating Income divided by Sales) for each year. The dotted lines are the HP-filtered trends. Source: Compustat/CRSP Merged Fundamentals Annual (1960–2014).
Labor income to sales ratio is the ratio of estimated staff expenses (XLR) to sales. Aggregate labor income to sales ratio = $\sum_i XLR_i$ divided by $\sum_i Sales_i$ for each year. Average labor income to sales ratio = mean(XLR divided by Sales) for each year. The dashed lines are the HP-filtered trends. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
The figures presents the average capital income to sales ratio by size over time. Size is measured by total assets, and the capital income/sales ratio is measured as operating income (OIBDP) divided by sales. For each year, firms are categorized into five groups based on their total assets, and we estimate the average capital income to sales ratio within each group for a given year. The sample is winsorized at 1%. The sample includes all Compustat firms (both active and inactive) for 1960-2014.

of this graph that we emphasize is that at each date, capital shares are increasing in firm size. This fact is consistent with the core mechanism of our model; larger more productive firms have higher capital shares ex post because their shareholders bear more risk than their managers. Next, we note that the average capital share tends to decline more in the smaller size quintiles, while the capital share of the large firms (last quintile) increases. The aggregate capital share increases, but the increase in profitability is driven exclusively by the larger firms. These facts are also consistent with our model. As volatility increases, the dispersion of the size distribution of firms increases. This in turn increases the dispersion in the distribution of capital shares since larger (and more productive) firms have larger capitals shares.

The increase in the dispersion of capital shares across the firm size distribution is also present within industries. To demonstrate this, we repeat the exercise carried out in Figure 10 within four industries: consumer goods, manufacturing, health products and information, computer and technology (high tech). Specifically, we fix the definitions of industries over

\[\text{assets < 20%} \]
\[\text{20% < assets < 40%} \]
\[\text{40% < assets < 60%} \]
\[\text{60% < assets < 80%} \]
\[\text{80% < assets} \]
time, and sort firms into five size quintiles within each industry. Figure 11 plots the results. We find similar cross-sectional patterns within each industry: the dispersion of capital share across size groups increases over the last five decades, while the more significant decline in capital share happens in the smaller size quintiles. Interestingly, we observe a greater increase in dispersion in the high tech and health products industries which have relatively higher firm-level volatility. For example, we observe highly negative operating margins for small firms in health product industry, a sector characterized by high volatility.

To provide further evidence that the patterns we see in the dynamics of capital share across the firm size distribution are due to firms delaying exit, we directly examine the capital share of firms close to the exit boundary. Specifically, we investigate firms that exit the public domain due to poor company performance, e.g., liquidation, insolvency, and bankruptcy, by obtaining the security delisting information from the CRSP U.S. Stock Event database. Figure 12 plots the capital to sales ratio three years prior to delisting for these firms. Consistent with our model, the average capital share of firms three years prior to delisting declines by almost 90 pps from 1970 to 2014. This result remains largely unchanged if we consider the capital share five years prior to delisting.

7.3 Firm Size and Firm Compensation Inequality

In our model, size inequality plays a key role as the driver of factor share dynamics. Specifically, the relation between the increase in idiosyncratic volatility and changes in the increase in the aggregate capital share arises because our model predicts that larger firms have higher capital shares. Since an increase in idiosyncratic volatility increases firm size inequality, it must also increase the aggregate capital share. We now provide direct evidence in support of this mechanism. One challenge is that in our model, compensation is always equal across firms. In reality, compensation inequality has been increasing. In this section, we show that the increase in firm size inequality has outstripped the increase in compensation inequality. To do so, we use the cumulant generating function to decompose labor share dynamics. The aggregate labor share is the ratio of two cross-sectional moments: $1 - \Pi = \frac{E(lab)}{E(sales)}$ where Π denotes the aggregate capital share. We decompose these cross-sectional moments using higher-order moments of the log sales and log labor income distribution. Note that we cannot compute the capital share decomposition because firm-level capital income can be negative. In particular, we can expand the log of the aggregate labor share as the difference in the cumulant-generating functions of log output and log capital at the

Accounts. The high tech industry consists of computer and electronic products, publishing and software, information and data processing, and computer system design and related services.
We use the revised Fama-French 5 industry classification. Within each industry, we sort firms into five groups based on their total assets. The plot shows the average capital share within each size group for four different industries. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
Figure 12. Exit Threshold: Average Capital Income to Sales Ratio Five Years before Delisting

The plots present the average capital share of output 5 years before delisting. We define firms’ exiting the public firm domain by delisting codes 400 to 490 and from 550 to 591. The dotted line is the HP filtered trend. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014) and CRSP delisting code.
firm level:

$$\log(1 - \Pi) = \log \mathbb{E}(lab) - \log \mathbb{E}(sales) = \sum_{j=1}^{\infty} \frac{\kappa_j(\log lab)}{j!} - \sum_{j=1}^{\infty} \frac{\kappa_j(\log sales)}{j!},$$ \hspace{1cm} (42)

where the cumulants are defined by: κ_1 (mean), κ_2 (variance), $\kappa_3/\kappa_2^{3/2}$ (skewness), and κ_4/κ_2^2 (kurtosis). Similarly, note that the average labor income share can be decomposed as:

$$\log(Average\ Labor\ Share) = \log \mathbb{E}(lab/sales) = \sum_{j=1}^{\infty} \frac{\kappa_j(\log lab - \log sales)}{j!}. \hspace{1cm} (43)$$

The first cumulant has the same effect on the average and the aggregate labor share, but the higher-order terms do not. For example, an increase in the variance of size not matched by an increase in variance of log compensation will increase the aggregate labor share, but decrease the average labor share. We decompose one minus the aggregate capital share

$$\log(1 - \Pi) \approx \log \left((Sales - OIBDP)/Sales\right),$$

instead of $\log (Labor/Sales)$, because the labor data is sparse in Compustat. We refer to $(Sales - OIBDP)$ as labor income, even though it includes other items. Table 5 provides a decade-by-decade overview of all four cumulants for sales and labor income. The sum of all these weighted differences in cumulants adds up the log labor income share. The means of the log sales and log labor income distribution do not contribute much to the decline in the labor income share. All of the time series variation in the aggregate labor share is induced by higher order moments. Note that a common measure of risk is the entropy of a random variable $L(x) = \log(\mathbb{E}(x)) - \mathbb{E}\log(x) = \sum_{j=2}^{\infty} \kappa_j$. Our findings imply that the change in the aggregate labor share is almost entirely attributable to difference in entropy between firm size (sales) and firm labor income:

$$\Delta \log(1 - \Pi) \approx L(lab) - L(sales) = \sum_{j=2}^{\infty} \frac{\kappa_j(\log lab)}{j!} - \sum_{j=2}^{\infty} \frac{\kappa_j(\log sales)}{j!}.$$

In other words, we can ignore the time-series variation in the first moments of $\log lab$ and $\log sales$. We can interpret $L(lab)$ as a measure of inter-firm compensation inequality, and $L(sales)$ as a measure of firm size inequality. The log of aggregate labor income share in this sample declines because the overall cross-sectional inequality in labor compensation increases far less than the overall inequality in the size distribution. Across-the-board, both for sales and compensation, we see large increase in variance and kurtosis starting in the seventies, together with large increases in negative skewness. However, these increases are much larger for sales than for labor income. Between 1960 and 2014, we record a 279 log point increase in the cumulant sum for firm sales, but only 208 log points for compensation, which implies
a 71 log point increase in the difference between the size and compensation weighted sum of cumulants. Table 6 reports the differences between the moments of the compensation and size distribution. The last column shows that 69 log points, almost the entire change, are due to the difference in firm size and firm compensation inequality ($\approx \mathbb{L}(lab) - \mathbb{L}(sales)$). Inter-firm compensation inequality has increased (see Song et al., 2015, for recent evidence), but not enough to offset the effect of the increase the firm size inequality on the capital share.

In sum, the increase in the cross-sectional variance and kurtosis of the log size distribution that started in the late 1970’s in our universe of firms is not matched by similar changes in the log labor compensation distribution. These forces are only partly mitigated by an increase in negative skewness of the log size distribution, because of a growing mass of small, unprofitable firms in the left tail of the size distribution, that is not offset a similar increase in the log labor compensation distribution.\footnote{As documented by Fama and French (2004b), the wave of new listings that started in 1980 gave rise to a large mass of unprofitable firms in the left tail of the size distribution. The increasing left skewness of profitability and right skewness of growth after 1979 are not due to younger firms seeking a public listing. Loughran and Ritter (1995) conclude that during 1980-1990 there is no downtrend in the average age of firms going public. Starting in 1996, this trend in new listings reversed itself, and there was a sharp decline in the number of listed firms (Doidge, Karolyi, and Stulz (2015)). The decline is concentrated mostly in smaller firms.}

8 Conclusion

We propose a mechanism whereby an increase in firm-level volatility can have important effects on national income accounting. A firm’s owner insures is managers against firm-level productivity shocks. As a result, that owner may choose to exit if productivity becomes too low. The level of the managers’ compensation is set based on expected firm value—which necessarily integrates over paths that end in exit. In contrast, when accounting for income, one typically integrates over surviving firms which necessarily feature lower capital shares of profit. This leads to an difference between the aggregate capital share of income, which is calculated ex post, and the capital share of value at the origination of firm, which is calculated ex ante. When firm-level volatility increases, the difference can increase, increasing the aggregate capital share and decreasing the average capital share. We also present time series and cross sectional evidence for Compustat firms consistent with our proposed mechanism.
Table 5. Firm Size and Compensation Inequality

The table shows the first four cumulants of the log sales distribution and the log labor compensation distribution. Labor compensation is computed at the firm level as Sales minus operating income before depreciation (OIBDP). The sample includes all Compustat firms (both active and inactive), 1960-2014. The sample is winsorized at 1%.

<table>
<thead>
<tr>
<th>Year Period</th>
<th>κ_1</th>
<th>κ_2</th>
<th>κ_3</th>
<th>κ_4</th>
<th>$\sum_{j=1}^{4} \frac{\kappa_j}{j!}$</th>
<th>$\sum_{j=2}^{4} \frac{\kappa_j}{j!}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960 - 1969</td>
<td>4.560</td>
<td>1.208</td>
<td>0.027</td>
<td>0.019</td>
<td>5.814</td>
<td>1.255</td>
</tr>
<tr>
<td>1970 - 1979</td>
<td>4.367</td>
<td>1.610</td>
<td>0.014</td>
<td>0.243</td>
<td>6.205</td>
<td>1.839</td>
</tr>
<tr>
<td>1980 - 1989</td>
<td>4.068</td>
<td>3.138</td>
<td>-0.841</td>
<td>0.549</td>
<td>6.915</td>
<td>2.847</td>
</tr>
<tr>
<td>1990 - 1999</td>
<td>4.541</td>
<td>2.704</td>
<td>-0.334</td>
<td>0.571</td>
<td>7.482</td>
<td>2.941</td>
</tr>
<tr>
<td>2000 - 2009</td>
<td>5.445</td>
<td>2.665</td>
<td>-0.470</td>
<td>0.566</td>
<td>8.206</td>
<td>2.761</td>
</tr>
<tr>
<td>2010 - present</td>
<td>5.968</td>
<td>2.693</td>
<td>-0.932</td>
<td>0.876</td>
<td>8.605</td>
<td>2.637</td>
</tr>
<tr>
<td>2010’s-1960’s</td>
<td>1.408</td>
<td>1.485</td>
<td>-0.959</td>
<td>0.857</td>
<td>2.791</td>
<td>1.382</td>
</tr>
<tr>
<td>Labor Compensation</td>
<td>3.384</td>
<td>1.242</td>
<td>0.008</td>
<td>0.032</td>
<td>5.666</td>
<td>1.282</td>
</tr>
<tr>
<td>1970 - 1979</td>
<td>4.192</td>
<td>1.647</td>
<td>0.006</td>
<td>0.110</td>
<td>5.954</td>
<td>1.763</td>
</tr>
<tr>
<td>1980 - 1989</td>
<td>3.954</td>
<td>2.793</td>
<td>-0.041</td>
<td>-0.385</td>
<td>6.320</td>
<td>2.366</td>
</tr>
<tr>
<td>1990 - 1999</td>
<td>4.421</td>
<td>2.338</td>
<td>0.332</td>
<td>-0.122</td>
<td>6.969</td>
<td>2.548</td>
</tr>
<tr>
<td>2000 - 2009</td>
<td>5.332</td>
<td>2.265</td>
<td>0.287</td>
<td>-0.210</td>
<td>7.674</td>
<td>2.343</td>
</tr>
<tr>
<td>2010 - present</td>
<td>5.774</td>
<td>2.358</td>
<td>0.086</td>
<td>-0.472</td>
<td>7.746</td>
<td>1.972</td>
</tr>
<tr>
<td>2010’s-1960’s</td>
<td>1.390</td>
<td>1.116</td>
<td>0.077</td>
<td>-0.504</td>
<td>2.080</td>
<td>0.689</td>
</tr>
</tbody>
</table>
Table 6. Time Series of Cumulants

The table shows the differences in the first four cumulants of the log labor compensation minus the same cumulants for the log sales distribution. Labor compensation is computed at the firm level as Sales minus operating income before depreciation (OIBDP). The sample includes all Compustat firms (both active and inactive), 1960-2014. The sample is winsorized at 1%.

<table>
<thead>
<tr>
<th>Period</th>
<th>$\kappa_1^\ell - \kappa_1^s$</th>
<th>$\frac{\kappa_2^\ell}{2} - \frac{\kappa_2^s}{2}$</th>
<th>$\frac{\kappa_3^\ell}{3!} - \frac{\kappa_3^s}{3!}$</th>
<th>$\frac{\kappa_4^\ell}{4!} - \frac{\kappa_4^s}{4!}$</th>
<th>$\sum_{i=1}^{4} \frac{\kappa_i^\ell}{i!} - \sum_{i=1}^{4} \frac{\kappa_i^s}{i!}$</th>
<th>$\sum_{i=2}^{4} \frac{\kappa_i^\ell}{i!} - \sum_{i=2}^{4} \frac{\kappa_i^s}{i!}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 - 1969</td>
<td>-0.176</td>
<td>0.034</td>
<td>-0.019</td>
<td>0.013</td>
<td>-0.148</td>
<td>0.028</td>
</tr>
<tr>
<td>1970 - 1979</td>
<td>-0.175</td>
<td>0.037</td>
<td>0.020</td>
<td>-0.133</td>
<td>-0.251</td>
<td>-0.076</td>
</tr>
<tr>
<td>1980 - 1989</td>
<td>-0.114</td>
<td>-0.346</td>
<td>0.800</td>
<td>-0.935</td>
<td>-0.594</td>
<td>-0.480</td>
</tr>
<tr>
<td>1990 - 1999</td>
<td>-0.120</td>
<td>-0.366</td>
<td>0.666</td>
<td>-0.693</td>
<td>-0.513</td>
<td>-0.393</td>
</tr>
<tr>
<td>2000 - 2009</td>
<td>-0.114</td>
<td>-0.400</td>
<td>0.757</td>
<td>-0.776</td>
<td>-0.532</td>
<td>-0.418</td>
</tr>
<tr>
<td>2010 - present</td>
<td>-0.194</td>
<td>-0.335</td>
<td>1.018</td>
<td>-1.348</td>
<td>-0.859</td>
<td>-0.665</td>
</tr>
<tr>
<td>2010’s-1960’s</td>
<td>-0.018</td>
<td>-0.369</td>
<td>1.037</td>
<td>-1.360</td>
<td>-0.711</td>
<td>-0.693</td>
</tr>
</tbody>
</table>

Note: $\kappa_i^\ell = \kappa_i(\text{log } \text{lab})$ and $\kappa_i^s = \kappa_i(\text{log } \text{sales})$.
References

URL http://www.nber.org/papers/w23108

URL http://raps.oxfordjournals.org/content/3/1/1.abstract

URL http://www.aeaweb.org/articles?id=10.1257/jep.28.2.153

URL http://dx.doi.org/10.1111/0022-1082.00318

URL http://www.nber.org/papers/w21181

URL http://rfs.oxfordjournals.org/content/22/12/4881.abstract

URL https://ideas.repec.org/a/eee/jfinec/v73y2004i2p229-269.html

URL http://dx.doi.org/10.3982/ECTA8769

URL http://qje.oxfordjournals.org/content/123/1/49.abstract

URL http://www.jstor.org/stable/10.1086/432136

URL http://www.jstor.org/stable/764957

URL http://www.jstor.org/stable/2951541

A Proofs

A.1 Derivation of equilibrium compensation

The equilibrium wage is given by the solution to the following equation

\[\int_{\tilde{X}(c)}^{\infty} V(X; c)f(X)dX = P, \]

where \(\tilde{X}(c) \) is given by equation (9), and \(V(X; c) \) is given by equation (10). Note that this equation is equivalent to condition 3 of Definition 1. First, evaluate the integral on the left side, we have

\[
\int_{\tilde{X}(c)}^{\infty} \frac{X}{r + \lambda - \mu} - \frac{c}{r + \lambda} - \left(\frac{\tilde{X}(c)}{r + \lambda - \mu} - \frac{c}{r + \lambda} \right) \left(\frac{X}{\tilde{X}(c)} \right)^{-\eta} \frac{\rho}{X^{1+\rho}} dX \\
\]

\[
= (\rho \tilde{X}(c))^\rho \left(\frac{\tilde{X}(c)}{(r + \lambda - \mu)(\rho - 1)} + \frac{c}{(r + \lambda)\rho} + \tilde{X}(c)(r + \lambda) - c(r + \lambda - \mu) \right) \\
= \left(\frac{\eta(r + \lambda - \mu)}{(1 + \eta)(r + \lambda)} \right)^{-\rho} \left(\frac{\eta}{(r + \lambda)(\rho - 1)(\eta + \rho)} \right) e^{-(\rho - 1)}.
\]

Note that our assumption on the Pareto form \(f(X) \) facilitates the computation of the integral shown above, because both \(V(X; c) \) and \(f(X) \) are power functions. This integral represents the expected value of the firm to the shareholder after paying the fixed cost but before realizing the initial productivity of the firm. Since \(\rho > 1 \), it is monotonically increasing in \(c \), and we can solve to obtain the expression for equilibrium compensation given in (11).

A.2 Derivation of stationary distribution

The ODE for \(\phi(x) \) has the following general solution:

\[
\phi(x) = A_1 e^{\gamma_1 x} + A_2 e^{-\gamma_2 x} + A_3 e^{-\rho x}, \tag{44}
\]

where \(\gamma_1 \) and \(\gamma_2 \) are given by

\[
\gamma_1 = \frac{\mu - \frac{1}{2} \sigma^2 + \sqrt{(\mu - \frac{1}{2} \sigma^2)^2 + 2\sigma^2 \lambda}}{\sigma^2}, \tag{45}
\]

\[
\gamma_2 = \frac{-(\mu - \frac{1}{2} \sigma^2) + \sqrt{(\mu - \frac{1}{2} \sigma^2)^2 + 2\sigma^2 \lambda}}{\sigma^2}. \tag{46}
\]
First note that $\gamma_1 > 0$ implies $A_1 = 0$. To ease notation we drop the subscript on γ_2. Next note that an application of the ODE gives

$$A_3 = -\frac{\rho \psi}{\frac{1}{2} \rho^2 \sigma^2 + \rho (\mu - \frac{1}{2} \sigma^2) - \lambda}.$$

(47)

Finally, the boundary condition implies that

$$A_2 e^{-\gamma \bar{x}} + A_3 e^{-\rho \bar{x}} = 0,$$

so

$$A_2 = -A_3 e^{(\gamma - \rho) \bar{x}}.$$

(48)

The result in equation (15) directly follows from the above and an application of the market clearing condition for managers.

A.3 Derivation of Total and Average Capital Share of Profits.

We have

$$\Pi = \frac{\int_{-\infty}^{\infty} (e^x - c) \phi(x) dx}{\int_{-\infty}^{\infty} e^x \phi(x) dx} = 1 - \frac{c \int_{-\infty}^{\infty} \phi(x) dx}{\int_{-\infty}^{\infty} e^x \phi(x) dx}$$

$$= 1 - \frac{c}{\int_{-\infty}^{\infty} e^x \phi(x) dx}$$

where the second step follows from the market clearing condition given in equation (14). To continue the calculation we have

$$\int_{-\infty}^{\infty} e^x \phi(x) dx = \int_{-\infty}^{\infty} \frac{\rho^\gamma}{\rho - \gamma} \left(e^{-(\gamma - 1)x + \gamma \bar{x}} - e^{-(\rho - 1)x + \rho \bar{x}} \right) dx$$

$$= \bar{X} \left(\frac{\rho}{\rho - 1} \right) \left(\frac{\gamma}{\gamma - 1} \right)$$

$$= \left(\frac{\rho}{\rho - 1} \right) \left(\frac{\gamma}{\gamma - 1} \right) \left(\frac{\eta}{\eta + 1} \right) \left(\frac{r + \lambda - \mu}{r + \lambda} \right) c$$

Substituting this expression into the expression for Π given above yields the desired result. The derivation of the average capital share is similar.
B Data Appendix

B.1 Data Construction

The Sample. Compustat/CRSP Merged Fundamental Annual contains widely available accounting data and stock return data for all publicly-traded firms. The sample is from 1960 to 2014, and it includes all Compustat/CRSP firms (both active and inactive). 9 We exclude financial firms with SIC codes 6000-6799 for our main analysis, and we exclude firms whose sales, employee numbers, and total asset values are negative. Last, we also exclude firms with currency code as Canadian dollars to focus on the sample of U.S. firms only. The sample is winsorized at 1%.

Construction of Main Variables. We measure a firm’s capital income using operating income before depreciation (OIBDP). The capital share of output is defined as OIBDP/Sales.

Labor income is measured using labor cost reported by the public firms. Since Staff Expenses (XLR) is not required to file for public firms, we obtain only sparse observations of labor cost directly from the database. Following Donangelo et al. (2015), we construct the extended labor cost (extended XLR). First, we estimate the average labor cost per employee (XLR/EMP) within the industry-size group for each year. Industries are classified using Fama-French 17 industry definition, and firms are sorted into 20 size groups based on their total assets, so we obtain a total of 340 industry-size groups. Then, the labor cost of a firm with missing XLR equals the number of employees multiplied by the average labor cost per employee of the same industry-size group during that year. We winsorize the extended XLR at 5% to exclude outliers from the approximation. We measure the labor share of output as extended labor cost (XLR)/Sales.

Value added (VA) is defined as OIBDP + extended XLR. We winsorize the VA at 5% to exclude outliers from the approximation of extended XLR. We also calculate capital share as OIBDP/VA and labor share as extended XLR/VA.

We measure firm-level volatility using both idiosyncratic cash flow volatility and idiosyncratic stock return volatility. Idiosyncratic stock returns are constructed within each year by obtaining the residual of a Fama-French 3-factor model using all observations within that year. Idiosyncratic stock return volatility is calculated as the standard deviation of residuals within that year. To obtain idiosyncratic cash flow volatility, we first estimate the first three major principal components of quarterly sales growth. The idiosyncratic cash flow volatility

9Using Compustat/CRSP merged dataset gives us consistent sample for estimating stock return volatility and the delisting threshold. All of our empirical results of capital share, capital income to sales ratio, and labor share remain the same using Compustat sample.
is the standard deviation of residuals of a sales growth factor specification using 20 quarterly year-on-year observations.

Industry Classification. We classify firms into five industries: *consumer goods, manufacturing, health products, high tech, and others*. The classification of consumer goods, manufacturing, and health products industries are taken from Fama-French 5-industry classification. The high-tech industry category is defined following the definition of the information, computer, and technology industry classification from the BEA Industry Economic Accounts, which consists of computer and electronic products, publishing industries (including software), information and data processing services, as well as computer systems design and related services. We classified all remaining firms (including the finance industry) into other industries. The traditional industries in our paper is a combination of the consumer goods and manufacturing industries. To categorize the new economy industries, or the highly intangible-intensive industries, we use our definition of high-tech (ICT) industries.

B.2 Figures and Tables

In this section, we provide more details of the figures and tables in the paper.

Average and Aggregate Factor Share. Using the Compustat sample, we construct the average and aggregate factor shares as follows: For each year, aggregate factor share = $\frac{\sum_i \text{Factor Income}}{\sum_i \text{Output}}$, and the average factor share = $\frac{\sum_i \left(\frac{\text{Factor Income}}{\text{Output}} \right)}{N}$.

Size Groups. For each year, all firms are sorted into five groups based on their total assets. Within each group, we compute the average and aggregate labor share and capital share. Figure 10 and Figure 11 show the time series of the average and aggregate capital share of each size group.

Delisting Threshold. We obtain the security delisting information from the CRSP U.S. Stock Events database. The delisting Code is a 3-digit integer code that (a) indicates that a security is still trading or (b) provides a specific reason for delisting. For our interest, we consider delisting due to liquidation (delisting codes 400 to 490) and delisting by the current exchange for various reasons due to poor company fundamentals, e.g., insolvency, bankruptcy or insufficient capital (delisting codes 550 to 591). Then, we calculate the average capital shares either three years or five years prior to delisting. Figure 12 shows the time series of the pre-delisting performance from 1970 to 2014.