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The Impact of Artificial Intelligence on Innovation: 

An Exploratory Analysis 

 

ABSTRACT 

 

Artificial intelligence promises to improve existing goods and services, and, by enabling automation of 
many tasks, to greatly increase the efficiency with which they are produced.  But it may have an even larger 
impact on the economy by serving as a new general-purpose “new method of invention” that can reshape 
the nature of the innovation process and the organization of R&D.  This exploratory essay considers this 
possibility in three interrelated ways.  First, we review the history of artificial intelligence, focusing in 
particular on the distinction between automation-oriented applications such as robotics and the potential for 
recent developments in “deep learning” to serve as a general-purpose method of invention.   We then assess 
preliminary evidence of this differential impact in changing nature of measurable innovation outputs in 
artificial intelligence, including papers and patents.  We find strong evidence of a “shift” in the importance 
of application-oriented learning research since 2009 (relative to developments in robotics and symbolic 
systems research), and that a significant fraction of this upswing in application-oriented learning research 
was initially led by researchers outside the United States.  Finally, we consider some of the implications of 
our findings, with a focus on both likely changes in the organization of the innovation process as well as 
the appropriate policy and institutional response that might be required if deep learning represents a 
meaningful general-purpose method of invention.  From an organizational perspective, there is likely to be 
significant substitution away from more routinized labor-intensive research effort (often directed towards 
testing specific hypotheses in relatively small purpose-built datasets) towards research that takes advantage 
of the interplay between passively generated large datasets and enhanced prediction algorithms for 
phenomena that result from complex interdependencies.  At the same time, the potential commercial reward 
is likely to usher in a period of racing, driven by powerful incentives for individual companies to acquire 
and control critical large datasets and application-specific algorithms.  We suggest that policies which 
encourage transparency and sharing of core datasets across both public and private actors can stimulate a 
higher level of innovation-oriented competition, and also allow for a higher level of research productivity 
going forward. 

 

 

 

 

  



3 
 

I. Introduction 

Rapid advance in the field of “artificial intelligence” has profound implications for the 

economy as well as society at large.   Artificial intelligence has the potential to directly influence 

products and services (and the tasks required to create these goods), with important implications 

for productivity, employment, and competition.  But, as important as these effects are likely to 

be, artificial intelligence also has the potential to change the innovation process itself, with 

consequences that may be equally profound, and may, over time, come to dominate the direct 

effect. 

Consider the case of Atomwise, a startup firm which developing novel technology for 

identifying potential drug candidates (and insecticides) by using neural networks to evaluate the 

3D structure of candidate molecules relative to that of target proteins and thus predict their 

bioactivity.  The company reports that its deep convolutional neural networks “far surpass” the 

performance of conventional “docking” algorithms.  After appropriate training on vast quantities 

of data, the company’s AtomNet product appears to be able to recognize foundational building 

blocks of organic chemistry and is capable of generating highly accurate predictions of the 

outcomes of real-world physical experiments (Wallach et al., 2015).  Such breakthroughs hold 

out the prospect of substantial improvements in the productivity of early stage drug screening, 

both by reducing the number of unnecessary tests, and identifying candidate molecules with 

greater chances of success.  Beyond the domain of drug discovery, Atomwise is now deploying 

this approach to discovery and development of new pesticides and agents for controlling crop 

diseases.  Of course, the commercial and medical productivity promise of Atomwise (and other 

companies leveraging artificial intelligence to advance drug discovery or medical diagnosis) is 

still at an early stage:  though their initial results seem to be promising, no new drugs have 

actually come to market using these new approaches.  But, whether or not Atomwise delivers 

fully on its promise, it represents a meaningful attempt to develop a new innovation “playbook” 

for drug discovery, one that leverages large datasets and learning algorithms to engage in precise 

prediction of biological phenomena in order to guide drug candidate selection. 

This example illustrates two key features of how advances in artificial intelligence have the 

potential to impact innovation.  First, though the origins of artificial intelligence are broadly in 

the field of computer science, and the principal commercial applications of artificial intelligence 
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so far such as industrial robots have been in relatively narrow domains of applications, the types 

of learning algorithms used by Atomwise and similar companies illustrate that artificial 

intelligence applications may span a very wide range.  From the perspective of the economics of 

innovation (among others, Bresnahan and Trajtenberg (1995)), there is an important distinction 

between the problem of providing innovation incentives for technologies that impact a relatively 

narrow domain of application, such as the field of traditional “robotics” which are purpose-built 

for narrow tasks (as exemplified by products such as the Roomba), versus technologies with a 

wide—advocates might say almost limitless—domain of application, as may be true of advances 

in neural networks and machine learning.   As such, a first question to be asked is the degree to 

which artificial intelligence (and which parts of artificial intelligence) are not simply examples of 

new technologies, but rather “general purpose technologies” (hereafter GPT) that have been so 

influential in long-term technological progress.  

Second, while many applications of artificial intelligence will surely be to provide a lower-

cost or higher-quality input into existing production processes (spurring concerns about the 

potential for large job displacements), the qualitative shift in the nature of prediction enabled by 

machine learning may not simply be an opportunity for direct application across a wide variety 

of domains but may itself allow for a further change in the nature of the innovation process 

within those domains.  As articulated famously by Griliches (1957), the “invention of a method 

of invention” (hereafter an IMI) has the potential for a more influential impact than a single 

invention, but is also likely to be associated with wide variation in the ability to adapt the new 

tool to particular settings, resulting in a heterogeneous pattern of diffusion and use over time.  

Here again it is useful to draw the distinction between the impact of artificial intelligence tools in 

areas such as traditional robotics versus advances in learning-oriented approaches such as neural 

networks.  Whereas innovation in areas such as robotics has likely had important direct effects 

through the introduction of new tools and techniques specific to the problems of that domain, 

machine learning seems more likely to satisfy the properties of an IMI, making the conditions 

under which different potential innovators are able to gain access to these tools and use them in a 

pro-competitive way a central concern for policy. 

This essay begins to unpack, in a preliminary way, the potential impact of advances in 

artificial intelligence on innovation, and identify the role that policy and institutions might play 
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in promoting effective incentives for innovation, diffusion, and competitive structure.  To do so, 

we begin in Section 2 by highlighting the distinctive economics of research tools such as 

artificial intelligence, focusing on the interplay between the degree of generality of application of 

a new research tool and the role of research tools not simply in enhancing the efficiency of 

research activity but in creating a new “playbook” for innovation itself.  We then turn in Section 

3 to briefly contrasting three key technological trajectories within the domain of AI – robotics, 

neural networks and machine learning, and symbolic systems.  We propose that these often 

conflated aspects of artificial intelligence likely hold very different roles for the future of 

innovation itself;  most notably, we suggest that whereas areas such as robotics have been 

relatively narrow in application and have low potential to themselves change the nature of 

invention, neural networks seem to be an area of research that is highly general-purpose and has 

the potential to change the innovation process itself.   

We then explore these contrasts more systematically by drawing out the empirical 

implications of this framing through an exploration of the evolution of different areas artificial 

intelligence in terms of scientific and technical outputs as measured (imperfectly) by the 

publication of papers and patents from 1990 through 2015.  In particular, we develop what we 

believe is the first systematic database that classifies the corpus of scientific paper and patenting 

activity in the broad areas of artificial intelligence and divides these outputs into those associated 

with robotics, learning, and symbolic systems.   Though preliminary in nature (and inherently 

imperfect given that key elements of artificial intelligence may not be observable using these 

traditional innovation metrics), we find striking evidence for a rapid and meaningful shift in the 

application orientation of learning-oriented publications, particularly after 2009.  The timing of 

this shift is informative, since it accords with qualitative evidence about the surprisingly strong 

performance of so-called “deep learning” multi-layered neural networks in a range of tasks 

including computer vision and other prediction tasks.  As well, though not as systematic as our 

work on the corpus of artificial intelligence, supplementary evidence based on the citation 

patterns to particular authors (such as Geoffrey Hinton) suggest a striking acceleration of work 

building on a small number of algorithmic breakthroughs related to multi-layered neural 

networks in just the last few years.   
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Though not a central aspect of the analysis for this paper, we further find that, whereas 

learning-oriented algorithms have had a slow and steady upward swing outside of the United 

States, US researchers have had a less sustained commitment to learning-oriented research prior 

to 2009, and have been in a “catch up” mode ever since. 

Finally, we begin to explore some of the organizational, institutional and policy 

consequences of our analysis.  We see machine learning as an IMI that depends, in each 

application, on having access to both the underlying algorithms but also large and granular 

datasets on physical and social behavior that allow for high levels of prediction of (usually rare) 

events that had previously defied systematic empirical analysis.  As one of the most distinctive 

aspects of artificial intelligence, the nature of this IMI raises the question of, even if the 

underlying scientific approaches are open (i.e., the basic multi-layered neural networks 

algorithms), whether the data to achieve the most consequential advances in this area are likely 

to be public or private and the consequences of that difference.  Specifically, if there are 

increasing returns to scale from data acquisition (there is more learning to be had from the 

“larger” dataset), it is possible that early or aggressive entrants into a particular application area 

may be able to engender a significant and long-lasting advantage over potential rivals merely 

through the control over data rather than through formal intellectual property or demand-side 

network effects.  Strong incentives to maintain data privately has the additional potential 

downside that data is not being shared across researchers, thus reducing the ability of all 

researchers to access an even larger set of data that would arise from public aggregation.  As the 

competitive advantage of incumbents is reinforced, the power of new entrants to drive 

technological change may be weakened.  Though this is an important possibility, it is also the 

case that, at least so far, there seems to be a significant amount of entry and experimentation 

across most key application sectors.   

 

II. The Economics of New Research Tools:  The Interplay between New Methods of 

Invention and the Generality of Innovation 

At least since Arrow (1962) and Nelson (1959), economists have appreciated the 

potential for significant underinvestment in research, particularly basic research or domains of 

invention with low appropriability for the inventor.   And, considerable insight has been gained 
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into the conditions under which the incentives for innovation may be more or less distorted, both 

in terms of their overall level and in terms of the direction of that research.   

As we consider the potential impact of different aspects of “artificial intelligence” on 

innovation, two dimensions seem particularly important – the potential for contracting problems 

in the face of a new “invention for the method of invention” and the potential for coordination 

problems arising from a new “general purpose technology.”  As we develop further in the rest of 

this paper, it is possible that, relative to the relatively narrow domains of application of 

traditional automation and industrial robots, those areas of artificial intelligence evolving most 

rapidly -- “machine learning” – have the potential for both of these features.  To understand the 

likely economic consequences of this potential change in the nature of artificial intelligence 

innovation, we therefore consider each of these elements in turn, and then consider the impact of 

their interplay. 

First, as initially highlighted by Griliches in his classic studies of hybrid corn, there are 

certain types of inventions – particularly those that might be considered “research tools” – which 

not only have a direct impact on a particular area of productive economic use, but may be more 

constructively thought of as an “invention of a method of invention.”  (Griliches, 1957).  An 

invention such as hybrid corn not only yielded a new variety of a particular corn strain, but 

suggested a new approach for breeding novel strains of agricultural products, including different 

types of corn, but also various grains, rice, and even fruits and vegetables.  Research tools such 

as hybrid corn are not simply a mechanism for reducing the costs of subsequent innovation, but 

perhaps more consequentially enable a new approach to innovation itself, by altering the 

“playbook” for innovation in the domains impacted by the new tool.  For example, prior to the 

systematic understanding of the power of “hybrid vigor,” a primary focus in agriculture had been 

improved techniques for self-fertilization (i.e., allowing for more and more specialized natural 

varietals over time).  Once the rules governing hybridization (i.e., heterosis) were systematized, 

and the performance advantages of hybrid vigor demonstrated, the techniques and conceptual 

approach for agricultural innovation was shifted, ushering in a long period of systematic 

innovation using these new tools and knowledge. 

Not simply a descriptive fact about a certain type of innovation, inventions that are 

themselves methods for invention may be particularly subject to a lack of appropriability.  As 



8 
 

emphasized by Scotchmer (1990), providing appropriate incentives for an upstream innovator 

that develops only the first “stage” of an innovation can be particularly problematic when 

contracting is imperfect and the ultimate application of a particular tool is uncertain.  Scotchmer 

and her co-authors emphasized a key point about a multi-stage research process:  when the 

ultimate innovation that creates value requires multiple steps, appropriate innovation incentives 

are not about whether to provide property rights in general, but how to distribute property rights 

and incentives across the multiple stages of the innovation process.  Lack of incentives for early-

stage innovation can mean that the tools required for innovation do not even get invented; strong 

early-stage property rights without adequate contracting opportunities may result in “hold-up” 

for later-stage innovators and so reduce the ultimate impact of the tool in terms of commercial 

application. 

Not simply a problem of appropriate intellectual property policy for industrial 

organization, the vertical research spillovers engendered by new research tools are exemplars of 

the core innovation externality highlighted by endogenous growth theory (Romer, 1990; Aghion 

and Howitt, 1992); a central source of underinvestment in innovation in the aggregate results 

from the intertemporal spillovers from innovators today to innovators tomorrow who do not need 

to pay the full cost of earlier findings as they “stand on the shoulders of giants.”  Not simply a 

theoretical consideration, an increasing body of evidence has accumulated over the last several 

years highlighting the central importance of research tools and institutions supporting 

intertemporal spillovers (among others, Furman and Stern, 2011; Williams, 2014).  A central 

insight of this work is that control – both in the form of physical exclusivity as well as formal 

intellectual property rights -- over tools and data can shape both the level and direction of 

innovative activity, and that rules and institutions governing control over these areas has a 

powerful influence on the realized amount and nature of innovation. 

A second and distinct potential challenge in providing appropriate innovation incentives 

is when an innovation has potential across a wide number of distinct applications.  These 

“general purpose technologies” (David, 1990; Bresnahan and Trajtenberg, 1995) are most often 

in the form of core inventions that have the potential to significantly enhance productivity or 

quality across a wide number of fields or sectors.  As famously argued by David (1990), the 

electric motor ushered in subsequent technological and organizational change (over a long period 
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of time) across a wide number of economic sectors, from established areas such as parts 

manufacturing or agricultural processing to the creation of entirely new sectors including X and 

Y.  As emphasized by Bresnahan and Trajtenberg (1995), the presence of a general-purpose 

technology gives rise to both vertical and horizontal externalities in the innovation process that 

can both lead to underinvestment as well as distortions in the direction of investment, depending 

on the private versus social returns to innovation across different application sectors.  Most 

notably, if there are “innovation complementarities” between the general purpose technology and 

each of the application sectors, lack of incentives in one sector can also result in an indirect 

externality resulting in a systemwide reduction in innovative investment itself.  In particular, the 

private incentives for innovative investment in each application sector depend on the market 

structure and appropriability regime of that sector; however, innovation in each sector enhances 

innovation in the GPT itself, which then induces subsequent demand (and further innovation) in 

other downstream application sectors.  Lack of coordination between the GPT and application 

sectors, as well as across application sectors, can significantly reduce realized innovative 

investment and incentives.  Despite these challenges, this reinforcing cycle of innovation 

between the GPT and a myriad of application sectors can result not simply in the improvement in 

a particular sector, but a more systemic economywide transformation; a rich empirical literature 

examining the productivity impacts of information technology point to the role of the 

microprocessor as a GPT as a way of understanding the impact of IT on the economy as a whole 

(among many others, Bresnahan and Greenstein (1995); Brynjolfsson and Hitt (1999); and 

Bresnahan, Brynjolfsson, and Hitt (2001)). 

It is useful to consider the interplay between these distinct but interrelated aspects of 

research tools.  On the one hand, most research tools are relatively narrow in scope (they are not 

a GPT) and their primary impact is to reduce the cost or enhance the quality of an existing 

innovation process.  For example, in the pharmaceutical industry, there are particularized 

materials that promise enhancements to the efficiency of narrow research processes.  At the same 

time, it is possible that a research tool, for example a “faster” workstation, is general in nature 

and applies across a wide domain but does not necessarily change the nature of the research itself 

in an important fashion.  As well, there are important IMIs that are nonetheless relatively narrow 

in application.  For example, the introduction of genetically engineered research mice (such as 

the Oncomouse) have had a profound impact on the conduct and “playbook” of research in fields 
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such as cancer and even in many areas of medicine, but are by construction limited to a relatively 

narrow influence in terms of their domain (i.e., genetically modified research mice have had 

essentially zero impact on areas such as information technology, energy, or aerospace).  And, of 

course, there are research tools that are simultaneously general in nature and also have the 

potential to change the method of innovation itself.  These types of technologies – from the 

telescope to the broader introduction of the computer in general – have the potential for profound 

and unanticipated implications across the economy and society in general. 

This framework covers of course only a subset of the key informational and competitive 

distortions that might arise when considering whether and how to provide appropriate innovation 

incentives both in terms of the level of research as well as its direction.  However, we highlight 

these two areas in particular as they are likely to be important in the consideration of the role of 

artificial intelligence, and in particular understanding the rapidly changing landscape of artificial 

intelligence arising from dramatic improvements in machine learning over the past few years.  

We therefore turn in the next section to a brief outline of these changes, with an eye towards 

bringing the framework here to bear on how we might consider the innovation challenges arising 

from AI moving forward. 

III. The Evolution of Artificial Intelligence:  Robotics, Neural Networks, and Symbolic 

Systems 

 In his omnibus historical account of artificial intelligence (AI) research, Nils J. Nilsson 

(2010) defines AI as “that activity devoted to making machines intelligent, and intelligence is 

that quality that enables an entity to function appropriately and with foresight in its 

environment.” His account details the contributions of multiple fields to achievements in AI, 

including but not limited to biology, linguistics, psychology and cognitive sciences, 

neuroscience, mathematics, philosophy and logic, engineering and computer science.  And, of 

course, regardless of their particular approach, artificial intelligence research has been united by 

its earliest motivations such as Turing (1950), and his discussion of the possibility of 

mechanizing intelligence.  

  But, though often grouped together, the intellectual history of artificial intelligence as a 

scientific and technical field is usefully informed by some of the key distinctions and differences 

among three interrelated but separate areas:  robotics, neural networks, and symbolic systems.   
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On the one hand, perhaps the most successful line of research in the early years of artificial 

intelligence – dating back to the 1960s – falls under the broad heading of symbolic systems.  

Though early pioneers such as Turing had emphasized the importance of teaching a machine as 

one might a child (i.e., emphasizing artificial intelligence as a learning process), the “symbol 

processing hypothesis.” (Newell, Shaw, and Simon, 1958; Newell and Simon, 1976) was 

premised on the attempt to replicate the logical flow of human decision making through 

processing symbols.   Early attempts to instantiate the logical approach to artificial intelligence 

yielded striking demonstration projects, such as the ability of a computer to be able to navigate 

elements of a chess game (or other board games) or engage in relatively simple conversations by 

following specific heuristics and rules embedded into a program.  However, while research based 

on the concept of a “general problem solver” has continued to be an area of significant academic 

interest, and there have been explosions of interest over time in the ability to use such 

approaches to assist human decision-making (e.g., in the context of early-stage expert systems to 

guide medical diagnosis), the symbolic systems approach has been subject to fundamental 

critiques about the ability to develop a level of performance that can meaningfully impact real-

world processes in a scalable way.  While it is of course possible that there will be breakthroughs 

in the future using this approach, it is fair to say that, while symbolic systems continues to be an 

area of academic research, this research stream, grounded as it is on a systematic logical system 

that is pre-determined, has not been central to the commercial application of artificial 

intelligence nor is it at the heart of the recent reported advances in artificial intelligence that are 

associated with the area of machine learning and prediction. 

 A second influential trajectory in artificial intelligence has been broadly around the area 

of robotics.  While the concepts of “robots” as machines that can perform human tasks dates 

back at least to the 1940s, the field of robotics began to meaningfully flourish from the 1980s 

onwards through a combination of the advance of relatively mechanistic numerically controlled 

machine tools and through the development of more adaptive but still rules-based robotics that 

relied on active sensing of a known environment.  On the one hand, perhaps the most 

consequential application of the broad science of artificial intelligence has been in the area of 

industrial robotics. These machines are precisely programmed to undertake a given task in an 

highly controlled environment.  Often located in “cages” within highly specialized industrial 

processes (most notably automobile manufacturing), these purpose-built tools are perhaps more 
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aptly described as highly sophisticated numerically controlled machines rather than as robots 

with significant artificial intelligence content.  However, over the past twenty years, the scientific 

field of robotics has had an important impact on manufacturing and automation, most notably 

through the introduction of more responsive robots that are provided with precisely programmed 

response algorithms as they encounter certain types of stimuli.  This approach, famously 

pioneered by Rod Brooks (1990), focused the commercial and innovation orientation of artificial 

intelligence away from the modeling of human-like intelligence and instead focused on 

providing feedback mechanisms that would allow for practical and effective robotics for 

specified applications (an insight which led to among other applications the Roomba and also 

adaptable industrial robots that could interact with humans such as Rethink Robotics’ Baxter).   

While these advances are indeed important, and are indeed exemplars of many of the most 

advanced robots that have captured public imagination with artificial intelligence, it is likely that 

these innovations are not themselves inventions for the method of invention itself.  The principal 

ways in which these robots are used are in terms of specialized end-use applications, and are not 

centrally connected to the underlying ways in which researchers themselves might develop 

approaches to undertake innovation itself (across many domains). 

Finally, a third stream of research that has been a central element of artificial intelligence 

since its founding can be broadly characterized as a “learning” approach.  Rather than being 

focused on symbolic logic, or precise sense-and-react systems, the learning approach was based 

on the idea of creating reliable and accurate methods for prediction of particular events (either 

physical or logical) in the presence of particular inputs.   Though the field of learning is quite 

large, of particular importance was the development of the concept of a neural network.   A 

neural network is a program that translates a set of inputs through a combination of weights and 

thresholds into outputs, measures the “closeness” of the outputs to reality, and then adjusts 

weights to narrow the distance between outputs and reality by following the gradient of the 

weights. In this way, the neural network could learn as it is fed more inputs (Rosenblatt, 1958; 

1963).  Over the course of the 1980s, Hinton and co-authors further advanced the conceptual 

framework for neural networks through the development of back-propagating neural networks 

that enhance the potential for supervised learning.    
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Though initially heralded as having significant promise, the field of neural networks has 

been subject to considerable ebb and flow, particularly within leading institutions within the 

United States.  From the 1980s through the mid-2000s, the challenge of neural networks was that 

there seemed to be significant limitations on the ability to enhance prediction in the face of larger 

datasets or through the introduction of additional “layers” for the learning process (i.e., 

additional layers that allow for reinforcement through back propagation) (Edwards, REF).    

However, in the mid-2000s, several a small number of new algorithmic approaches held the 

potential to develop multi-layer networks that had the ability to enhance prediction through the 

propagation of increasing layers, could increase their predictive power with larger and larger 

datasets, and were able to scale to an arbitrary level (among others, a key reference here is 

Hinton and Salakhutdinov (2006)).  These conceptual advances were then shown to exhibit a 

“surprising” level of practical performance improvement through several research projects from 

2009 onwards, notably the dramatic improvements in performance that were able to be achieved 

using “deep learning” in the context of the ImageNet visual recognition project competition 

pioneered by Fei-Fei Li at Stanford (Krizhevsky, Sutskever and Hinton, 2012). 

How Might Different Fields within Artificial Intelligence Impact Innovation? 

The purpose of this discussion is not simply to provide an intellectual history of artificial 

intelligence.  Instead, this discussion allows us to form a more specific set of hypotheses about 

how different types of AI – each of which is associated with different types of underlying 

functionality – are likely to influence the innovation process going forward.   

First, though a significant amount of public discussion of AI focuses on the potential for 

AI to achieve super-human cognitive capabilities over a wide range of human capabilities, it is 

useful to note that, at least so far, the significant advances in AI have not been in the form of the 

“general problem solver” approaches that were at the core of early work in symbolic systems 

(and were the motivation for considerations of human reasoning such as the Turing test).  

Instead, both the mechanical advances in robotics and the algorithmic advances in machine 

learning are by and large methods that require a significant level of human planning and focus a 

machine, in a given instance, on a relatively narrow domain of problems-solving (e.g., learning 

chess, picking up a particular object, etc.)  While it is of course possible that an independent 

stream of invention will arise that meaningfully mimics the nature of human subjective 
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intelligence and emotion, the precise advances that have attracted scientific and commercial 

attention are well removed from these domains. 

Second, though most economic and policy analysis of artificial intelligence draws out 

consequences from the last two decades of automation to consider the impact of artificial 

intelligence going forward (e.g., in the domain of job displacement for an ever-increasing 

number of tasks), it is important to emphasize that there is a sharp difference between the 

advances in robotics that were a primary focus of application during the 2000s and the potential 

applications of learning which have come to the fore over the last few years. 

To consider this more systematically, we build on our discussion from Section 2 and 

contrast a number of different underlying new “tools” that have been enabled by artificial 

intelligence (see Figure A).  It is useful to note that robotics by and large has been associated 

with applications that were highly specialized and also focused on end-user applications rather 

than the innovation process itself.  As well, though there has been significant advance in robotics 

in enhancing their generality (pick-and-place robots such as Baxter clearly are destined for a 

much wider range of application than traditional industrial robots), these advances do not seem 

as of yet to have translated to a more general invention in the method of invention.  Robotics is 

an area where we might focus on the nature of the innovations themselves in terms of job 

displacement versus enhancement, but it is unlikely to be a direct source for a change in the 

innovation process.  At the same time, many of the most important algorithmic advances in the 

last twenty years (which many have used to consider the potential impact of deep learning) have 

represented important IMIs, but have lacked generality.  For example, powerful algorithms to 

scan brain images (so-called functional MRI imaging) have transformed our understanding of the 

human brain (even though those algorithms themselves are imperfect) not simply through their 

direct research findings but by establishing an entirely new paradigm and protocol for brain 

research.  However, despite its role as a powerful IMI, fMRI lacks the type of general-purpose 

applicability that has been associated with the most profound GPTs.   In contrast, the specific 

form of advance that has been achieved by techniques through deep learning have the potential 

to not simply be general-purpose nor simply be an IMI but to be a general-purpose IMI for the 

field of innovation. 
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It is useful to articulate more precisely how the promise of deep learning as a general-

purposes IMI might be realized.  Specifically, the core technical advance promised by deep 

learning is to provide an enormously powerful new tool that allows for unstructured “prediction” 

for physical or logical events that had previously resisted systematic empirical characterization.    

The development of this new approach to prediction suggests a new approach to undertaking 

scientific and technical research.  Specifically, rather than focusing on small well-characterized 

datasets or testing settings, it is possible to instead focus instead on identifying large pools of 

unstructured data and leverage these new tools in order to construct and exploit the ability to 

predict both technical and consumer phenomena.   To return to our initial example of Atomwise, 

it is possible to consider an unstructured approach to predictive drug candidate selection that 

brings together a vast array of previously disparate clinical and biophysical data in a way that 

fundamentally reshapes the “ideas production function” for drug candidates.   

FIGURE 1 

 

 

To be clear, if true (and it is of course just a hypothesis), the arrival of a general-purpose 

IMI would have enormous economic, social, and technological consequence (over the long run).  

First, such a shift would imply that the near-term impact of AI on jobs, organizations, and 

productivity are likely to be only a very small fraction of the impact that will be felt over a 

longer time frame as this new IMI diffuses across the widest number of application sectors.  A 

more subtle implication of this point is that “past is not prologue”:  even if automation over the 
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recent past has resulted in job displacement (e.g., Acemoglu and Restrepo, 2017a), the job design 

and employment consequences of artificial intelligence will be equally shaped by its ability to 

enhance the potential for “new tasks” (as in Acemoglu and Restrepo, 2017b!).   

Second, the arrival of a general-purposes IMI is a sufficiently uncommon occurrence that 

its impact could be profound for economic growth and its broader impact on society.  There are 

only a handful of previous general-purposes IMIs –think of the impact of optical lenses in the 

17th century – and each of these has had an enormous impact not primarily through their direct 

effects (e.g., glasses) but through their ability to reshape the ideas production function itself  

(telescopes and microscopes).  It would be useful to understand whether it is possible that deep 

learning might allow researchers to significantly reshift their approach in order to enhance 

research productivity (in the spirit of Jones (2009)).   

Finally, if deep learning has the potential to serve as a general-purpose IMI, it will be 

important to consider and develop institutions and a policy environment conductive to enhancing 

innovation through this approach and doing so in a way that promotes competition and social 

welfare.   A central concern here may be the interplay between the key input required for deep 

learning – large unstructured databases that provide information about physical or logical events 

– and competitive structure.    While the underlying algorithms for deep learning are primarily 

open (and can and are being improved on rapidly), the data “pools” that can be used to form 

predictions may be public or private, and will depend on organization, policy and institutions. As 

a general-purposes IMI, it may be possible, in a particular application area, for a specific 

company (either an incumbent or start-up) to invest aggressively in developing a learning 

algorithm that is significantly advanced relative to alternatives, and thus allows that company to 

have a significant and persistent innovation advantage due to their control over data that is 

independent of traditional economies of scale or demand-side network effects.  This “deep 

learning competition for the market” is likely to come with several consequences.  First, it will 

lead to a duplicative race of establish a data advantage in particular application sectors (say, 

search, autonomous driving, or navigation) followed by the establishment of durable barriers to 

entry that may be of significant concern for competition policy.  And, perhaps even more 

importantly, this strategic behavior will result itself in a balkanization of data within that 

application area, reducing innovative productivity in that sector, which itself reduces the 
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spillovers back up to the deep learning GPT sector, and then to other application sectors.  

Accordingly, both from the perspective of competition policy as well as innovation policy, 

proactive development of institutions and policies that encourage competition, data sharing, and 

openness are likely to be important.  

Of course, our discussion so far has been highly exploratory, and it would be useful to 

consider whether the key claims underlying our hypothesis – that deep learning may be a 

general-purposes IMI distinct from earlier generations of technology associated with AI – have 

empirical content.  To do so, we turn in the next section to a preliminary examination of the 

evolution of artificial intelligence, with an eye towards identifying the role of learning network 

as a GPT and IMI, and then drawing out consequences in terms of competitive and industrial 

structure. 

IV. Data 

This analysis draws upon two distinct datasets, one that captures a set of Artificial 

Intelligence (AI) publications from Thompson Reuters Web of Science, and another that 

identifies a set of Artificial Intelligence patents from the U.S. Patent and Trademark Office. In 

this section, we provide detail on the assembly of those datasets and summary statistics for 

variables in the sample.  

 The primary challenge of this work is to identify and sort AI publications and patents into 

a cohesive set of subgroups. As previously discussed, peer-reviewed and public-domain 

literature on artificial intelligence points to three different fields of AI: robotics, learning systems 

and symbol systems, each comprised of numerous AI subfields (Appendix 1 lists the classifiers 

we used to group AI-oriented research into these three fields).  In short, the robotics field 

includes AI approaches in which a system engages with and responds to environmental 

conditions; the symbolic systems field which attempts to represent complex concepts through 

symbols, e.g. consider a digital computer as a collection of zeros and ones, and the learning 

systems field which processes data through analytical programs modeled on neurologic systems.  

IV.A. Publication Sample and Summary Statistics 

Our analysis focuses on journal articles and book publications through the Web of 

Science from 1955 to 2015.  We conducted a keyword search utilizing the keywords described in 
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Appendix A (we tried several variants of these keywords and alternative algorithmic approaches 

but this did not result in a meaningful difference in the publication set).   We are able to gather 

detailed information about each publication, including publication year, journal information, 

topical information, as well as author and institutional affiliations.   

This search yields 98,124 publications.  We then code each publication into one of the 

three main fields of AI, as described above.   Overall, relative to an initial dataset of 98,124, we 

are able to uniquely classify 95,840 as symbolic systems, learning systems, robotics, or “general” 

artificial intelligence (we drop papers that involve combinations of these three fields).  Table 1 

reports the summary statistics for this sample. 

Of the 95,840 publication in the sample, 11,938 (12.5 percent) are classified as symbolic 

systems, 58,853 (61.4 percent) as learning and 20,655 (21.6 percent) as robotics, with the 

remainder being in the general field of “artificial intelligence.”  To derive a better understanding 

of the factors that have shaped the evolution of artificial intelligence, we create indicators for 

variables of interest including organization type (private versus academic), location type (US 

domestic versus International), and application type (computer science versus other application 

area, in addition to individual subject spaces, e.g. biology, materials science, medicine, physics, 

economics, etc.).  

We identify organization type as academic if the organization of one of the authors on the 

publication is an academic institution. 81,998 publications (85.5 percent) and 13,842 (14.4 

percent) are produced by academic and private sector authors, respectively. We identify 

publication location as US domestic if one of the authors on the publication lists the United 

States as his or her primary location. 22,436 publications (25 percent of the sample) are produced 

domestically.  

We also differentiate between subject matter. 44 percent of the publications are classified 

as Computer Science, with 56 percent classified as other applications. Summary statistics on the 

other applications are provided in Table 3. The other subjects with the largest number of 

publications in the sample include Telecommunications (5.5 percent), Mathematics (4.2), 

Neurology (3.8), Chemistry (3.7), Physics (3.4), Biology (3.4), and Medicine (3.1).  
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 Finally, we create indicator variables to document publication quality, including journal 

quality (top 10, top 25 and top 50 journals by impact factor1) and a count variable for cumulative 

citation counts. Less than one percent of publications are in a top 10 journal with two percent and 

10 percent in top 25 and top 50 journals. The average citation count for a publication in the 

sample is 4.9.  

IV.B. Patent Sample and Summary Statistics 

We also undertake a similar approach for gathering a dataset of patents that relate to the 

broad areas of artificial intelligence.  We start with the public-use file of USPTO patents (Marco, 

Carley et al., 2015; Marco et al., 2015,), and filter the data in two ways. First, we assemble a 

subset of data by filtering the USPTO Historical Masterfile on the U.S. Patent Classification 

System (USPC) number. 2  Specifically, USPC numbers 706 and 901 represent “Artificial 

Intelligence” and “Robots,” respectively. Within USPC 706, there are numerous subclasses 

including “fuzzy logic hardware,” “plural processing systems,” “machine learning,” and 

“knowledge processing systems,” to name a few. We then use the USPC subclass to identify 

patents in AI fields of symbolic systems, learning systems and robotics. We drop patents prior to 

1990, providing a sample of 7,347 patents through 2014.  

Second, we assemble another subset of AI patents by conducting a title search on patents, 

with the search terms being the same keywords presented in Table 1.3 This provides an 

additional 8,640 artificial intelligence patents. We then allocate each patent into an AI field by 

associating the relevant search term with one of the overarching fields. For example, a patent that 

is found through the search term “neural network,” is then classified as a “learning” patent. Some 

patents found through this search method will be duplicative of those identified by USPC search, 

i.e. the USPC number will be 706 or 901. We drop those duplicates. Together these two subsets 

create a sample of 13,615 unique AI patents. Summary statistics are provided in Table 4.  

                                                             
1 The rankings are collected from Guide2Research, found here: http://www.guide2research.com/journals/  
2 We utilized data from the Historical Patent Data Files. The complete (un-filtered) data sets from which we derived 
our data set are available here: https://www.uspto.gov/learning-and-resources/electronic-data-
products/historical-patent-data-files 
3 We utilized data from the Document ID Dataset that is complementary to Patent Assignment Data available on 
the USPTO website. The complete (un-filtered) data sets from which we derived our data set are available here: 
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-assignment-dataset 
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Unlike the distribution of learning systems, symbolic systems and robotics in the 

publication data, the fields are more evenly distributed in the patent data: 3,832 (28 percent) 

learning system patents, 3,930 (29 percent) symbolic system patents, and 5,524 (40 percent) 

robotics patents. The remaining patents are broadly classified only as artificial intelligence.  

Using ancillary datasets to the USPTO Historical Masterfile, we are able to integrate 

variables of interest related to organization type, location, and application space. For example, 

Patent Assignment Data tracks ownership of patents across time. Our interest in this analysis 

relates to upstream innovative work, and for this reason, we capture the initial patent assignee by 

organization for each patent in our sample. This data enables the creation of indicator variables 

for organization type and location. We create an indicator for academic organization type by 

searching the name of the assignee for words relating to academic institutions, e.g. “University”, 

“College” or “Institution.” We do the same for private sector organizations, searching for “corp”, 

“business”, “inc”, or “co”, to name a few. We also search for the same words or abbreviations 

utilized in other languages, e.g. “S.p.A.” Only seven percent of the sample is awarded to 

academic organizations, while 91 percent is awarded to private entities. The remaining patents 

are assigned to public organizations, e.g. U.S. Department of Defense.  

Similarly, we create indicator variables for patents assigned to U.S. firms and 

international firms. The international firm data can also be more narrowly identified by specific 

country (e.g. Canada) or region (e.g. European Union). 59 percent of our patent sample is 

assigned to U.S. domestic firms, while 41 percent is assigned to international firms. Next to the 

United States, firms from non-Chinese, Asian nations account for 28 percent of patents in the 

sample. Firms from Canada are assigned 1.2 percent of the patents, and firms from China, 0.4 

percent.  

Additionally, the USPTO data includes NBER classification and sub-classification for 

each patent (Marco, Carley, et al., 2015). The USPTO utilize the same classification methods as 

Hall, Jaffe and Trajtenberg (2001). These sub-classifications provide some granular detail about 

the application sector for which the patent is intended. We create indicator variables for NBER 

sub-classifications related to chemicals (NBER sub-class 11, 12, 13, 14, 15, 19), communications 

(21), computer hardware and software (22), computer science peripherals (23), data and storage 

(24), business software (25), medical fields (31, 32, 33, and 39), electronics fields (41, 42, 43, 
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44, 45, 46, and 49), automotive fields (53, 54, 55), mechanical fields (51, 52, 59), and other 

fields (remaining). The vast majority of patents (71 percent) reside in NBER subclass 22, 

Computer Hardware and Software. Summary Statistics of the distribution of patents across 

application sectors are provided in Table 5.  

Using the organization information, we are able to consider the degree of concentration in 

each AI field over time. To accomplish this, we create an indicator variable for the top 30 and 

top 5 patent assignees within each field by year, which we will use to evaluate concentration 

ratios within each application-sector year. 

V. Deep Learning as a GPT:  An Exploratory Empirical Analysis  

As described in Section 3, the history of artificial intelligence suggests that a specific 

trajectory, focused on learning, experienced a meaningful shift over the past decade, and may 

represent the nucleus of a general-purpose invention for the method of invention.  The purpose of 

this section is to begin examining this claim in more detail by considering the evolution of 

artificial intelligence as a field using the data described in Section IV. 

We begin in Figure 2 with a simple description of the evolution over time of the three 

main fields we identified in the corpus of patents and papers.   The first key insight is that the 

overall field of artificial intelligence has experienced sharp growth since 1990.   While there are 

only a small handful of papers (counted at less than a hundred per year), each field of artificial 

intelligence now record more than a thousand papers per year.  At the same time, there is a 

striking divergence in activity across fields:  though starting from a similar base, there is a steady 

relative increase in the learning publications relative to robotics and symbolic systems, 

particularly after 2009.   Interestingly, at least through the end of 2014, there is more similarity in 

the patterns for all three fields in terms of patenting, with robotics patenting continuing to hold 

an advantage over learning and symbolic systems.  However, there does seem to be an 

acceleration of learning-oriented patents in the last few years of the sample, and so there may be 

a relative shift towards learning over the last few years which will manifest itself as one looks at 

more recent trends in patenting.   

In terms of the publication data, there is a striking pattern over time in terms of the 

geographic origin of these publications.  Figure 3A shows the overall growth in learning 
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publications by US versus rest-of-world, and Figure 3B captures the fraction of learning 

publications by US versus rest-of-world (i.e., what fraction of publications within each 

geography are learning publications?).    For the US researchers, there is both a lower level of 

research on learning, and, in an environment where the overall size of the field is increasing, the 

relative focus of the US on learning is far more variable.  This is consistent with the claim that 

learning research has had a “faddish” quality in qualitative histories of artificial intelligence that 

have focused primarily on the United States, with the additional insight that the rest of the world 

(notably Canada) seems to have taken advantage of this inconsistent focus in the United States to 

develop capabilities and comparative advantage in this field. 

With these broad patterns in mind, we turn to our key empirical exercise:  whether there 

has been a shift in the late 2000s of learning relative to other areas of artificial intelligence 

towards more “application-oriented” research and away from academic computer science.   We 

begin in Figure 4 with a simple graph that examines over time the number of publications (across 

all three fields) in computer science journals versus application-oriented outlets.  While there has 

actually been a stagnation (even a small decline) in the overall number of artificial intelligence 

publications in computer science journals, there has been a dramatic increase in the number of 

artificial intelligence-related publications in application-oriented outlets.  By the end of 2015, we 

estimate that nearly 2/3 of all publications in artificial intelligence were in fields beyond 

computer science.   

We then focus more closely on the areas of computer science from which this growth 

emanates in Figure 5.  We divide all publications into the three areas of computer science and by 

whether the publication is classified as belonging to the field of computer science versus an 

application sector.  Several patterns are worthy to note.  First, as earlier, we can see the relative 

growth through 2009 in learning versus other fields in both computer science and application 

publications.   Also, consistent with more qualitative accounts of the fields, we see the relative 

stagnation of symbolic systems research relative to robotics and learning.  But, after 2009, we 

see that there is a significant increase in application publications in both robotics and learning, 

but that the learning boost is both steeper and more long-lived.  Over the course of just seven 
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years, learning-oriented application publications more than double in number, and now represent 

just under 50% of all artificial intelligence publications.4 

These patterns are if anything even more striking if one disaggregates by the geographic 

origin of the publication.    In Figure 6, we examine learning publications by computer science 

versus applications, disaggregated by the US versus rest-of-world.  The striking upward swing 

beginning in 2009 is actually led by international publications (which are at a much higher 

overall level than the United States), though US researchers begin a period of catch-up at an 

accelerating pace towards the final few years of the sample. 

Finally, we consider how these applications areas themselves have changed over time.  In 

Table 3, , we examine the number of publications by applications field in each of the three areas 

of computer science across two three-year cohorts (2004-2006 and 2013-2015).  There are a 

number of patterns of interest.  First, and most importantly, in a range of application fields 

including medicine, radiology and economics, there is a large relative increase in learning-

oriented publications relative to robotics and symbolic systems.  As well, there are some sectors 

that realize a large increase in both learning-oriented research as well as other AI fields, such as 

neuroscience or biology.  And, there are some more basic fields such as mathematics that have 

experienced a relative decline in publications (indeed, learning-oriented publications in 

mathematics experienced a small absolute decline, a striking different relative to most other 

fields in the sample).  Overall, though it would be useful to dig much more deeply into precisely 

the type of research that is being conducted and what is happening at the level of particular 

subfields, these results are consistent with our broader hypothesis that, alongside the overall 

growth of artificial intelligence, learning-oriented deep learning research may represent a 

general-purpose technology that is now beginning to be exploited far more systematically across 

a wide range of application sectors. 

 Together, these exploratory findings seem to provide direct empirical evidence for at 

least one hypothesis about the economics of artificial intelligence:  rather than simply being an 

extrapolation of past efforts at artificial intelligence that have had relatively little broad-scale 

                                                             
4 The precise number of publications for 2015 are estimated from the experience of the first nine months (the Web 
of Science data run through September 30, 2015).   We apply a linear multiplier for the remaining three months 
(i.e., estimating each category by 4/3). 
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economic impact (but have of course been highly important in particular application areas), 

learning-oriented artificial intelligence seems to have some of the signature hallmarks of a 

general-purpose technology, and one that is already seeing diffusion across a wide number of 

fields and sectors that had previously been isolated from developments in artificial intelligence.  

VI. Deep Learning as a General-Purpose Invention for the Method of Invention:  

Considerations for Organizations, Institutions and Policy 

 With these results in mind, it is useful to consider the potential implications for 

innovation if deep learning is indeed a general-purpose technology.  As discussed briefly in 

Section 3, it is useful to distinguish the case between the potential for deep learning to serve as a 

GPT and the perhaps even more consequential contention that it also represents an IMI.   In the 

former, deep learning will allow for enhanced research productivity across a range of 

applications (with potential for spillovers both back to the learning GPT and also to other 

application sectors) but would not itself change the nature of the innovation production function 

itself.  However, though systematic empirical evidence has not yet been developed in this area, 

cases such as Atomwise and other areas that deep learning is a specific approach that may have 

the potential to reorient the research process itself. 

 As discussed in Section III, this would involve a shift towards research that uses large 

datasets to create meaningful predictions for physical and logical events that had previously 

resisted systematic empirical scrutiny.  To be clear, the underlying data would often be passively 

created as the result of events both online (e.g., search or online purchasing behavior) and in the 

physical world (i.e., from various types of sensor data) or from prior knowledge (as in the case of 

“learning” prior literatures as in Watson or Atomwise).  Suppose for a moment that this potential 

shift was in fact real.  What would be the likely consequences in terms of appropriate 

organization of innovation, the institutions we have for training and conducting research over 

time, and in terms of policy, particularly as we think about private incentives to maintain 

proprietary datasets and application-specific algorithms? 

The Management and Organization of Innovation  

 Perhaps most immediately, the rise of general-purpose predictive analytics using large 

datasets to substitute towards capital and away from labor in the research production process.  
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Many types of R&D and innovation more generally are effectively problems of labor-intensive 

search with high marginal cost per search  (Evenson and Kislev, 1975, among others). and the 

promise of deep learning is to substitute away from labor in these search processes towards 

undertaking fixed costs investments in the development of application-specific AIs that can then 

reduce marginal search costs dramatically.  On the one hand, this opens up the possibility for 

researchers to investigate a much wider range of social, physical, and natural phenomena than 

has previously been considered feasible, and should open up significant new opportunities to 

expand the range of subjects and phenomena that are covered under the domain of systematic 

scientific and empirical research. 

 Three interrelated related implications arise as one considers the likely impact of deep 

learning as a new IMI in the research sector.  First, it is possible that the ability to substitute 

away from specialized labor and towards capital (that in principle could be rented or shared) may 

lower the “barriers to entry” in certain scientific or research fields (where data and algorithms are 

made available) while erecting new barriers to entry in other areas (e.g, by restricting access to 

data and algorithms).  As of yet, there are few if any organized “markets” for AI capital for 

research services, and few standards to evaluate alternatives.  The development of markets for 

shared AI services is likely a precursor to broad adoption and dissemination of deep learning into 

a variety of scientific, technological and research fields. 

 At the same time, the arrival of this new research paradigm is likely to require a 

significant shift in the management of innovation itself.  For example, it is possible that the 

democratization of innovation will also be accompanied by the lack of investment by individual 

researchers in developing deep research skills and expertise in a given area, reducing the level of 

underlying theoretical or technical depth.  This shift away from career-oriented research 

trajectories and towards the ability to find new findings based on deep learning may undermine 

long-term incentives for breakthrough research that can only be conducted over a long period of 

time. 

 Finally, it is possible that deep learning will itself change the nature of scientific and 

technical advance.  To a first approximation, classical science and engineering fields are 

dominated by relatively sophisticated disciplines that nonetheless focus on identifying a 

relatively small number of causal drivers of underlying phenomena (a parsimony famously 
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attributed to Einstein that theory should be “as simple as possible but no simpler.”)   However, 

deep learning offers an alternative paradigm based on the ability to “predict” complex multi-

causal phenomena in a “black box” approach that abstracts away from underlying causes but 

does allow for a singular prediction index that can yield sharp insight.    But, this substitution 

away from causal mechanisms may come at a deep expense:  it may be possible to train a deep 

learning algorithm to discover the double helix structure of DNA but it would likely require a 

level of human judgment to notice that the proposed structure suggested a direct mechanism for 

heredity. 

 

Innovation and Competition Policy and Institutions 

A second and related area of impact will not simply be on the organization of individual 

research projects or the nature of what counts as “science” in a particular field, but on the 

appropriate design and governance of institutions governing the innovation process.  Three 

implications stand out.   

 First, as discussed in Section 2, research over the past two decades has emphasized the 

important role for institutions that encourage cumulative knowledge production through low-cost 

independent access to research tools, materials and data (Furman and Stern, 2012; Murray, et al, 

2015). At least so far, there has only been a modest level of attention to ensure transparency and 

replicability within the deep learning community.  Particular initiatives such as those through 

github and reddit are grassroots efforts to encourage openness.  But, it is useful to emphasize that 

there is likely to be a significant gap between the private and social incentives to share and 

aggregate data outside of formal institutional mechanisms (even among academic researchers or 

private sector research communities).  Specifically, to the extent that any individual research 

result will depend on the aggregation of data from many sources, it will be important to develop 

rules concerning the appropriate credit and attribution, and also the ability to replicate results to 

detect false inferences (particularly important given the potential for p-hacking in the case of 

deep learning). 

A particular area of concern will be in the design and enforcement of formal intellectual 

property rights.  Though the level of patenting in the area of deep learning has so far been 
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relatively low (and we have yet to hear of the “patent on intelligence”), the history of the 

economics of research tools has been that the emergence of new breakthrough approaches – 

combined with relatively few capabilities in the relevant technical area at the patent offices – 

results in long periods of uncertainty, hold-up, and potential lowered research productivity and 

competition due to ineffective intellectual property policy. 

In addition to these traditional innovation policy institutions, the prospect for deep 

learning raises a wide variety of other issues, including issues relating to privacy, the potential 

for bias (deep learning has been found to reinforce stereotypes already present in society), and 

consumer protection (related to areas such as search, advertising, and consumer targeting and 

monitoring).  The key is that, to the extent that deep learning is general-purpose, the issues that 

arise across each of these domains (and more) will play out across a wide variety of sectors and 

contexts and at a global rather than local level.  Little analysis has been conducted that can help 

design institutions that will be responsive at the level of application sectors that also internalize 

the potential issues that may arise with the GPT. 

 Finally, as we briefly outlined in Section 3, the recognition that this new general-purpose 

IMI may yield significant prediction insights across a range of sectors is likely to engender a 

race, within each sector, to establish a proprietary advantage leveraging these approaches.  As 

such, the arrival of deep learning raises issues for competition policy.   In each application 

sector, there is the possibility that firms that are able to establish an advantage at an early stage, 

and so be able to generate more passive data (about their technology, about customer behavior, 

about their organizational processes) will be able to erect a deep-learning-driven barrier to entry 

that will ensure market dominance over at least the medium term.   As such, rules ensuring data 

accessibility are not simply a matter of research productivity or aggregation, but instead impinge 

on the potential to guard against lock-in and anticompeitive conduct.  At least so far, there seems 

to be a large number of individual companies attempting to take advantage of artificial 

intelligence across a wide variety of domains (e.g., there are probably more than 20 firms 

engaging in significant levels of research in autonomous vehicles, and no firm has yet to show a 

decisive advantage), but this high level of activity today likely reflects an expectation for the 

prospects for significant market power in the future.  Ensuring that deep learning does not 
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enhance monopolization and increase barriers to entry across a range of sectors will be a key 

topic going forward. 

VI. Concluding Thoughts 

 The purpose of this exploratory essay has not been to provide a systematic account or 

prediction of the likely impact of artificial intelligence on innovation, nor clear guidance for 

policy or management of innovation.  Instead, our goal has been to raise a specific possibility --- 

that deep learning represents a new general-purpose method for the method of invention -- and 

draw out some preliminary implications of that hypothesis for management, institutions, and 

policy.   

Our preliminary analysis highlights a few key ideas that have not been central to the 

economics and policy discussion so far.    First, at least from the perspective of innovation, it is 

useful to distinguish between the significant and important advances in fields such as robotics 

(that nonetheless are unlikely to change the nature of innovation itself) from the potential arrival 

of a general-purpose method of invention from multi-layered neural networks.    Our preliminary 

empirical evidence documents a striking shift since 2009 towards application-oriented research 

that focuses on learning, consistent with qualitative evidence from the field about these 

underlying breakthroughs. Second, and relatedly, the prospect of a change in innovation raises 

key issues for a range of policy and management areas, ranging from how to evaluate this new 

type of science to the potential for prediction methods to induce new barriers to entry across a 

wide range of industries.  Proactive analysis of alternative policies and institutions from these 

breakthrough seems like an extremely promising area for research going forward. 
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Table 1A:  Publication Data Summary Statistics 

     
 Mean Std. Dev. Min Max 
Publication Year 2007 6.15 1990 2015 
Symbolic Systems .12 .33 0 1 
Learning Systems .61 .48 0 1 
Robotics .21 .41 0 1 
Artificial Intelligence .06 .23 0 1 
Computer Science .44 .50 0 1 
Other Applications .56 .50 0 1 
US Domestic .25 .43 0 1 
International .75 .43 0 1 
Observations 95840    
     

 

Table 1B: Patent Data Summary Statistics 

     
 Mean Std. Dev. Min Max 
Application Year 2003 6.68 1982 2014 
Patent Year 2007 6.98 1990 2014 
Symbolic Systems .29 .45 0 1 
Learning Systems .28 .45 0 1 
Robotics .41 .49 0 1 
Artificial Intelligence .04 .19 0 1 
Computer Science .77 .42 0 1 
Other Applications .23 .42 0 1 
US Domestic Firms .59 .49 0 1 
International Firms .41 .49 0 1 
Org Type Academic .07 .26 0 1 
Org Type Private .91 .29 0 1 
Observations 13615    

 

  



32 
 

 

Table 2A: Distribution of Publications across Subjects 

   
 Mean Std. Dev. 
Biology .034 .18 
Economics .028 .16 
Physics .034 .18 
Medicine .032 .18 
Chemistry .038 .19 
Mathematics .042 .20 
Materials Science .029 .17 
Neurology .038 .19 
Energy .015 .12 
Radiology .015 .12 
Telecommunications .055 .23 
Computer Science .44 .50 
Observations 95840  
   

 

Table 2B: Distribution of Patents across Application Sectors 

   
 Mean Std. Dev. 
   
Chemicals .007 .08 
Communications .044 .20 
Computer Hardware and 
Software 

.710 .45 

Computer Peripherals .004 .06 
Data and Storage .008 .09 
Business software .007 .09 
All Computer Science .773 .42 
Medical .020 .14 
Electronics .073 .26 
Automotive .023 .15 
Mechanical .075 .26 
Other .029 .16 
Observations 13615  
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Table 3: Publications Across Sectors, by AI Field, 2004-2006 versus 2013-2015 

 
Biology Economics Physics Medicine Chemistry Math Materials Neuro. Energy Radiology Telecom. CompSci

2004-2006 258 292 343 231 325 417 209 271 172 94 291 3889

2013-2015 600 423 388 516 490 414 429 970 272 186 404 4582

% growth 133% 45% 13% 123% 51% -1% 105% 258% 58% 98% 39% 18%

2004-2006 33 10 52 69 24 45 36 31 6 47 653 1431

2013-2015 65 12 122 83 92 80 225 139 18 25 401 1322

% growth 97% 20% 135% 20% 283% 78% 525% 348% 200% -47% -39% -8%

2004-2006 93 8 68 96 139 54 32 35 15 82 51 827

2013-2015 105 10 125 84 149 60 101 73 22 56 88 1125

% growth 13% 25% 84% -13% 7% 11% 216% 109% 47% -32% 73% 36%

Learning Systems

Robotics

Symbol Systems
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Table 4: Herfindahl-Hirschman Index for Application Sectors 

 

Application Н= ∑𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐 

Chemical Applications 153.09 

Communications 140.87 

Hardware and Software 86.99 

Computer Science Peripherals 296 

Data and Storage 366.71 

Computer Science Business Models 222 

Medical Applications 290.51 

Electronic Applications 114.64 

Automotive Applications 197.03 

Mechanical Applications 77.51 

Other 129.20 
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Figure 2A: Publications by AI field over Time 

 

Figure 2B: Patents by AI field over Time 
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Figure 3A: Academic Institution Publication Fraction by AI Field 

 

Figure 3B: Fraction of Learning Publications by US versus World 
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Figure 4: Publications in Computer Science versus Application Journals 

 

Figure 5: Publications in Computer Science versus Application Journals, by AI Field 
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Figure 6: Learning Publications in Computer Science versus Applications, By US versus ROW 

 

  

0
50

0
10

00
15

00
20

00

1990 1995 2000 2005 2010 2015
pubyear

U.S.A. (CS) International (CS)
U.S.A. (Apps.) International (Apps.)



39 
 

Appendix A 
Appendix Table 1: Artificial Intelligence Keyword Allocation 

 

 
 

 


